
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Honors Theses Lee Honors College

4-25-2024

Finite State and Sequential Automata Finite State and Sequential Automata

Kriti Gulgulia
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/honors_theses

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Gulgulia, Kriti, "Finite State and Sequential Automata" (2024). Honors Theses. 3811.
https://scholarworks.wmich.edu/honors_theses/3811

This Honors Thesis-Open Access is brought to you for
free and open access by the Lee Honors College at
ScholarWorks at WMU. It has been accepted for
inclusion in Honors Theses by an authorized
administrator of ScholarWorks at WMU. For more
information, please contact wmu-
scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/honors_theses
https://scholarworks.wmich.edu/honors
https://scholarworks.wmich.edu/honors_theses?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F3811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F3811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/honors_theses/3811?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F3811&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

Finite-State and Sequential Automata

Kriti Gulgulia

April 25, 2024

Abstract

In this thesis, we introduce the concept of a Moore machine M =
(S, I, F, s0, T) and construct a quotient machine M̄ = (S̄, I, F̄ , [s0], T̄).
We explore the notion of a machine’s language L(M) and examine its
properties such that L(M) = L(M̄). In this context, we demonstrate
the technique of constructing simplified Moore Machines. Furthermore,
we look at the notion of Mealy machines M = (S, I, θ, F,G, s0, T) in
relation to output function and output symbol. Within the context of
this thesis, we present a demonstration of the machines in arrangements.
Furthermore, we examine linear finite state machines.

1

Contents

1 Finite-State Automata and Languages 3
1.1 Introduction . 3
1.2 Machines and Regular Languages 6
1.3 Simplification of Machines 10

2 Finite-state Automata with Output 14
2.1 Introduction to Mealy Machines 14
2.2 Structure of Finite State Machines 16

3 Linear Finite State Machines 20
3.1 Monoid of Finite State Machines 20
3.2 Properties of Linear Finite State Machines 22

4 References 25

2

1 Finite-State Automata and Languages

1.1 Introduction

The Theory of Automata is a fundamental and enduring mathematical
theory that focuses on the study of abstract machines, known as au-
tomata and their computational capacities. It was first developed to
model the capabilities of computer systems. Currently, automata are
widely used in many activities such as the creation and validation of
hardware and software systems, as well as in text and speech recognition
and digital picture processing. This thesis will primarily examine two
forms of finite state machines: the Moore machine and the Mealy ma-
chine. This chapter focuses on the concept of a Moore machine.

We think of machine as system that can accept input, possibly produce
output and have some sort of internal memory that can keep track of
certain information about previous inputs. The complete Internal con-
dition condition of the machine and all of it’s memory at any particular
time is said to constitute state of the machine at that time. The state
in which a machine finds itself at any instant summarizes it’s memory of
past inputs and determines how it will react to subsequent input. When
more input arrives, the given state of machine determines the next state
to be occupied and any output that may be produced.

Definition 1.1.1. If the number of states is finite the machine is finite
state machine. Suppose that we have a finite set S = {s0, s1,, sn}, a fi-
nite set I and for each x ∈ I, a function fx : S 7→ S. Let F = {fx | x ∈ I}.
The triple (S,I,F) is called a finite state machine where S is called state
set of the machine and it’s elements are called states. The set I is called
the input set of machine and the function fx which describes the effect
that occurs on states of machine for any input is called state transition
function.

So if a machine is in state si and input x occurs the next state of the
machine will be fx(si). The following illustrates an example of a finite
state machine.

Example 1.1.2: Let S = {s0, s1} and I = {0, 1}, so we define f0 and
f1 as follows: f0(s0) = s0, f1(s0) = s1, f0(s1) = s1 and f1(s1) = s0. This
shows that the given finite-state machine has two states s0 and s1 ac-

3

cepts two possible inputs 0 and 1. We observe that the input 0 leaves
each state fixed whereas input 1 reverses each state. The state-transition
table the digraph of the machine is shown below.

0 1
s0 s0 s1
s1 s1 s0

Table 1. State-transition table

Figure 1: Digraph of Moore machine M

Now we can think of above machine as a model for a circuit device and
visualize such a device. The output signals will, at any given time, con-
sists of two voltages, one higher line than the other. Either line 1 will
be at the higher voltage and line 2 at the lower, or the reverse. The
first set of output conditions will be denoted as s0 and the second will be
denoted as s1. An input pulse, represented by the symbol 1, will reverse
output voltages. The symbol 0 represents the absence of an input pulse
and so results in no change of output. This device is often called a T
flip-flop and is a concrete realization of the machine. We summarize this
machine in Table 1. The table shown there lists the states down the side
and input across the top. The column under each input gives the value of
the function corresponding to that input at each state shown on the left.
The table given for summarizing the effects of inputs on states is called
state transition table of the finite state machine. It can be used with any
machine of reasonable size and is a convenient method of specifying the
machine. Let us look at another example of Finite State Machine with
digraph given below.

Example 1.1.3: Let us now consider the machine M whose table is
given below.

4

a b c
s0 s0 s0 s0
s1 s2 s3 s2
s2 s1 s0 s3
s3 s3 s2 s3

Table 2. State-transition table

Then the digraph of the machine is

Figure 2: Digraph of Moore machine M

Note that an edge may be labeled by more than one input, since sev-
eral inputs may cause the same change of state. The reader will observe
that every input must be part of the label of exactly out of each state.
This is a general property that holds for the labeled diagraph of all finite-
state machines. For brevity, we will refer to the labeled diagraph of a
machine M simply as the digraph of M. It is possible to add variety of
extra features to a finite-state machine in order to increase the utility of
the concept. A simple, yet very useful extension results in what is often
called Moore machine or recognition machine. The Moore machine is
named after Edward F. Moore, an American mathematician and com-
puter scientist who lived from 1925 to 2003. He was an early pioneer of
artificial life and introduced the notion in a 1956 paper on finite state
Machines.

Definition 1.1.4. Moore machine is defined as M = (S, I, F, s0, T)
where (S, I, F) constitutes a finite-state machine where s0 ∈ S and
T ⊆ S. The state s0 is called the starting state of M and it will be

5

used to represent the condition of the machine before it receives any in-
put. The set T is called the set of acceptances states of M.

When the diagraph of Moore machine is drawn, the acceptances state
are indicated with two concentric circles, instead of one.

Definition 1.1.5. Let M = (S,I,F) be a finite-state machine and sup-
pose that R is an equivalence relation on S. We say that R is a Machine
congruence on M if for any s, t ∈ S, s R t implies that fx(s) R fx(t) for
all x ∈ I.

In other words, R is a machine congruence if R-equivalent pairs of states
are always taken into R-equivalent pairs of states by every input in I. If R
is a machine congruence on M = (S,I,F) we let S̄ = S/R be the partition
of S corresponding to R. Then S̄ = {[s] | s ∈ S}. If M = (S, I, F, s0, T)
is a Moore machine and R is a machine congruence on M, then we may
let T̄ = {[t] | t ∈ T}. Here, the sequence M̄ = (S̄, I, F̄ , [s0], T̄) is a
Moore machine. In other words, we compute the usual quotient machine
M/R; then we designate [s0] as a starting state, and let T̄ be the set of
equivalence classes of acceptance states. The resulting Moore machine
M̄ constructed this way will be called the quotient Moore machine of M.

1.2 Machines and Regular Languages

In this section we will be looking at language of a machine.

Let M = (S, I, F) be a finite state machine with the state set S =
{s0, s1, s2,, sn}, input set I and state transition function F = {fx, |
x ∈ I}. We will associate with M two monoids.

First, there is the free monoid I∗ on the input set I. This monoid consists
of all finite sequences from I, with catenation as it’s binary operation.
The identity is the empty string Λ. Second, we have the monoid SS,
which consists of all functions from S to S and which has the function
composition as it’s binary operation. The identity in SS is the function
1S defined by 1s(s) = s for all s in S.

6

Definition 1.2.1. If w = x1x2.....xn ∈ I∗, we let fw = fx · fy · · fv
the composition of functions. Also we define fΛ to be 1s. In this way
we assign an element fw of SS to each element w of I∗. If we think of
each fx as the effect of the input x on the states of machine M then fw
represents the combined effect of all input letters in the word w received
in the sequence specified by w. So we call fw as the state transition
function corresponding to w.

This method of interpreting word transition functions such as fw and
f ′w is useful in designing machines that have word transitions possessing
certain desired properties.This is a crucial step in the practical applica-
tion of the theory and we will consider it in the next section.

Let M = (S, I, F) be a finite state machine. We define a function T
from I∗ to SS. If w is a string in I∗ let T (w) = fw as defined previously.
Then we have the following result.

Theorem 1.2.2. If w1, w2,, wn ∈ I∗ then

T (w1 · w2 ·wn) = T (wn) · T (wn−1) ·T (w2) · T (w1).

Proof. Now let w1 = a1a2.....an, w2 = b1b2....bn ,....., wn = z1z2....zn be
strings in I∗. Then we have
T (w1 · w2 · · wn) = T (a1a2.....anb1b2....bnz1z2....zn)
= (fzn · fzn−1 ·fz1 · · (fbn · fbn−1 ·fb1) · · (fan · fan−1 ·fa1)

= T (wn) · T (wn−1) · · T (w2) · T (w1). □

Example 1.2.3: Let M = (S, I, F), where S = {s0, s1, s2}, I = {0, 1}
and F is given by the following state transition table.

0 1
s0 s0 s1
s1 s2 s2
s2 s1 s0

Table 3. State-transition table

7

Let w = 011 ∈ I∗. Then,

fw(s0) = (f1 ◦ f1 ◦ f0)(s0) = (f1(f1(f0(s0))) = (f1(f1(s0)) = (f1(s0)) = s2.
fw(s1) = (f1 ◦ f1 ◦ f0)(s1) = (f1(f1(f0(s1))) = (f1(f1(s2)) = (f1(s0)) = s1
fw(s2) = (f1 ◦ f1 ◦ f0)(s2) = (f1(f1(f0(s2))) = (f1(f1(s1)) = (f1(s2)) = s0.

Theorem 1.2.4: If M = T (I∗), then M is a submonoid of SS.

Proof. From theorem 1.2.2 we know that if f and g are in M then f ·g and
g ·f are in M. Thus M is a subsemigroup of Ss. Since 1s = T (Λ), 1s ∈M .
Thus M is a submonoid of Ss. The monoid M is called the monoid of the
machine M. □

Example 1.2.5 Let M = (S, I, F), where S = {s0, s1, s2}, I = {0, 1}
and F is given by the following state transition table. We will show that
fw(s0) = s0 if and only if w has 3n 1’s for some n ≥ 0.

0 1
s0 s0 s1
s1 s1 s2
s2 s2 s0

Table 4. State-transition table

We first construct the digraph of machine M as shown in Figure 3 below.

Figure 3: Digraph of Moore machine M

8

Observe that f0 = 1s, so the 0’s in a string w ∈ I∗ have no effect on
fw. Thus, if w̄ is w with all 0’s removed, then fw = fw̄.

Let l(w) denote the length of w, that is, the number of digits in w.
Then l(w̄) is the number of 1’s in w, for all w ∈ I∗.

For each n ≥ 0, consider the statement

P(n): Let w ∈ I∗ and let l(w̄) = m.

(a) If m = 3n, then fw(s0) = s0.
(b) If m = 3n+ 1, then fw(s0) = s1.
(c) If m = 3n+ 2, then fw(s0) = s2.

We prove by mathematical induction that P(n) is true for all n ≥ 0.
Suppose that n = 0. Then we consider the three cases as follows.

Case (a): m = 0, therefore, w has no 1’s and fw(s0) = 1s(s0) = s0.
Case (b): m = 1, so w̄ = 1 and fw(s0) = fw̄(s0) = f1(s0) = s1
Case (c): m = 2, so w̄ = 11, and fw(s0) = fw̄(s0) = f11(s0) = f1(s1) = s2.

Next, we must use P(k) to show P (k + 1). Let w ∈ I∗, and denote
l(w̄) by m. Let us first consider case (a). Here, m = 3(k + 1) = 3k + 3.
This implies w̄ = w′.111, where l(w′) = 3k. It follows that fw̄(s0) =
fw′(f111(s0)) = fw′(s0) = s0. Similarly, we solve for case (b) and (c). it
follows that P (k + 1) is true.

Hence, by the principle of mathematical induction, P(n) is true for all
n ≥ 0, so fw(s0) = s0 if and only if the number of 1’s in w is a multiple
of 3.

9

1.3 Simplification of Machines

Let’s start this section by discussing the simplification of Moore ma-
chines. First we examine a fundamental theorem regarding the relation
on Moore machines.

Let M = (S, I, F, s0, T) be a Moore machine. We define a relation R
on S as follows: For any s, t ∈ S and x ∈ I∗, we say that s and t are w-
compatible if fw(s) and fw(t) both belong to T, or neither does. Also,
let sRt imply that s and t are w-compatible for all w ∈ I∗.

Theorem 1.3.1: Let M = (S, I, F, s0, T) be a Moore machine and
let R be the relation defined previously then:
(i) R is an equivalence relation on S
(ii) R is a machine congruence

Proof. (i) R is clearly symmetric and reflexive. Suppose now that s
R t and t R u for s,t and u in s and let w ∈ I∗. Then s and t are w
compatible as are t and u, so if we consider fw(s), fw(t) and fw(u) it
follows that either all belong to T or all belong to T̄ , the complement of
T. Thus s and u are w-compatible and so R is transitive. Hence R is an
equivalence relation.

(ii) We must show that if s and t are in S and x ∈ I then s R t im-
plies that fx(s) R fx(t). To show this let w ∈ I∗ and let w

′
= x ·w where

the dot represents the operation of catenation. Since s R t, f
′

w(s) and
f

′

w(t) are both in T or both in T̄ . But f
′

w(s) = fx·w(s) = fw(fx(s)) and
f

′

w(t) = fx·w(t) = fw(fx(t)) so this clearly implies that fx(s) and fx(t)
are w- compatible. Since w is arbitrary in I∗, fx(s) R fx(t). □

Example 1.3.2. Let M = (S, I, F, s0, T) be a Moore machine where,
S = {s0, s1, s2, s3}, I = {0, 1}, and T = {s2, s3}. We will find the quo-
tient machine M̄ .
First, we see that s0Rs1. Note that fw(s0) ∈ T and fw(s1) ∈ T if and
only if w contains at least one 1. Thus, s0 and s1 are w-compatible
for all w ∈ I∗. Now s2 is not related to s0 and s3 is not related
to s0, since f0(s2) ∈ T , f0(s3) ∈ T but fw(s0) does not belong to
T. This implies that {s0, s1} is one R-equivalence class. Also, s2Rs3,
since fw(s2) ∈ T and fw(s3) ∈ T for all w ∈ I∗. This proves that
S/R = ((s0, s1), (s2, s3)) = ([s0], [s2]). Also note that T/R = ([s2]). The

10

resulting quotient Moore machine M̄ is equivalent to M and its diagraph
is shown in the Figure below.

Figure 4: Moore Machine M

Figure 5: Quotient Moore machine M̄

Given that R is a machine congruence, the quotient Moore machine can
be constructed as M̄ = (S/R, I, F̄ , s0, T/R). Here the Machine M̄ is the
efficient version of M and we shall demonstrate, using the subsequent
theorem that L(M̄) = L(M)

Theorem 1.3.3. Let M = (S, I, F, s0, T) be a Moore machine, let R be
the equivalence relation defined previously and let M̄ = (S/R, I, F̄ , s0, T/R)
be the corresponding quotient machine. Then L(M̄) = L(M).

Proof. Let us suppose that W is accepted by M so that fw(s0) ∈ T .
Then ¯fw[(s0)] = [fw(s0)] ∈ T/R which implies M̄ also accepts W. Now

11

let us conversely suppose that M̄ accepts W so that ¯fw[(s0)] = [fw(s0)]
is in T/R. This means that t R fw(s0) for some element of t in T.
By definition we know that t and fw(s0) are w

′
compatible for every

w
′ ∈ I∗. When w

′
is Λ, the empty string, then f

′

w = 1s, so t = f
′

w(t) and
fw(s0) = f

′

w(fw(s0)) are both in T or both in T̄ . Since t ∈ T , we must
have fw(s0) ∈ T , so M accepts w. □

Theorem 1.3.4: (a) Rk+1 ⊆ Rk for all k ≥ 0.
(b) R ⊆ Rk for all k ≥ 0.

Proof. If s,t ∈ S and s and t are w-compatible for all w ∈ I∗ or for
all w with l(w) ≤ k+1, then in either case s and t are compatible for all
w with l(w) ≤ k. This proves both part (a) and (b). □

The subsequent two theorems aid us in formulating an algorithm for
calculating relation R.

Theorem 1.3.5: (a) S/R0 = {T, T̄} where T̄ is the complement of
T. (b) Let K be a non negative integer and s, t ∈ S. Then s Rk+1 t if
and only if:
(1) s Rk t
(2) fx(s) Rk fx(t) for all x ∈ I.

Proof. (a) Since only Λ has length 0 it follows that sR0t if and only if
both s and t re in T or both are in T−. This proves that S/R0 = T, T̄ .

(b) Let w ∈ I∗ be such that l(w) ≤ k + 1. Then w = x · w′
for some

x ∈ I and for some w
′ ∈ I∗ with l(w) ≤ k. Conversely if any x ∈ I and

w
′ ∈ I∗ with l(w′) ≤ k are chosen, the resulting string w = x · w′

has
length less than or equal to k+1. Now fw(s) = fx.w′(s) = fw′(fx(s)) and
fw(t) = fx.w′(t) = fw′(fx(t)) for any s, t ∈ S. This shows that s and t are
w-compatible for any w ∈ I∗ with l(w) ≤ k + 1 if and only if fx(s) and
fx(t) are, for all x ∈ I, w′-compatible, for any w’ with l(w′) ≤ k. That
is, sRk+1t if and only if fx(s) Rk fx(t) for all x ∈ I.

This result says that we may find the partition Pk, corresponding to
the relations Rk by the following recursive method:

Step 1: Begin with P0 = {T, T̄}.
Step 2: Having reached partition Pk = {A1, A2,Am}, examine each

12

equivalence class Ai and break it into pieces where two elements s and t
of Ai fall into the same pieces if all inputs x take both s and t into same
subset Aj depending on x.
Step 3: The new partition of S, obtained by taking all pieces of all the
Ai, will be Pk+1.

Now, either of these equivalent conditions implies that sRkt, since Rk+1 ⊆
Rk, as desired. □

Theorem 1.3.6: If Rk = Rk+1 for any non negative k, then Rk = R.

Proof. Suppose that Rk = Rk+1, then by above theorem s Rk+2 t if
and only if fx(s) Rk fx(t) for all x ∈ I. This happens if and only if
s Rk+1 t . Thus Rk+2 = Rk+1 = Rk. By induction it follows that Rk = Rn

for all n. Now it is easy to see that R =
⋂

Rn, since every string w in I∗

must have some finite length. Since Rk+1 ⊆ Rk ⊆ Rk−1 ⊆R2 ⊆ R1.
Hence this implies that the intersection of Rn’s is exactly Rk so R = Rk.□

A procedure for reducing a given Moore machine to an equivalent ma-
chine is as follows:

Step 1: Start with partition P0 = {T, T̄}.
Step 2: Construct successive partitions P1, P2, ... corresponding to the
equivalence relation R1, R2, ... by using the method outlined in Theorem
1.3.7.
Step 3: Whenever Pk = Pk+1 we need to stop. The resulting partition
P = Pk corresponds to relation R.
Step 4: The resulting quotient machine is equivalent to the given Moore
machine.

Example 1.3.7. Let us now reconsider machine M from Example 1.3.2.

First, the partition P0 = {{s0, s1}, {s2, s3}}. To find P1, let us decom-
pose the P0. Consider the set (s0, s1). Input 0 takes both the states
into {s0, s1} and input 1 takes them into {s2, s3}. This implies that the
equivalence class {s0, s1} does not decompose in passing to P1. Next,
Consider the set {s2, s3}. We see that both input 0 and 1 takes s2 and s3
into {s2, s3}. So, this implies that the equivalence class {s2, s3} does not
decompose in passing to P1. It follows that P1 = P0 so P0 corresponds
to the congruence R.

13

2 Finite-state Automata with Output

2.1 Introduction to Mealy Machines

Now, let us examine another variant of finite state machine known as a
Mealy machine. The Mealy machine is named after George H. Mealy,
who introduced the concept in a paper published in 1955. This machine
is a seven-tuple machine, as opposed to a Moore machine, which typically
consists of five tuples. We define the Mealy machine as follows:

Definition 2.1.1 A finite state Mealy machine is a seven tuple M =
(S, I, θ, F,G, so, T) where

(i) S is the finite nonempty set of states
(ii) I is the finite nonempty set of input symbols
(iii) θ is the finite nonempty set of output symbols
(iv) F is the state-transition function whose mapping is F : S × I → S
(v) G is the output function whose mapping is G: S × I → θ

Now, let’s examine the important characteristics associated with state
transition and output function which are provided proof free.

Definition 2.1.2. Let M = (S, I, θ, F,G, so, T) be a finite state Mealy
machine. For each s ∈ S , x ∈ I∗ and a ∈ I,

F (s,Λ) = s
F (s, xa) = F (F (s, x), a)
G(s,Λ) = s
G(s, xa) = F (s, x)G(F (s, x), a) and

Ĝ(s, xa) = G(F (s, x), a)

Mealy machines are utilized for a variety of purposes, including: a rudi-
mentary mathematical paradigm for cipher machines is provided by them.
When the input and output alphabets are considered, such as the Latin
alphabet, one can design a Mealy machine capable of converting a series
of letters (an input sequence) into a ciphered output sequence. Despite
the fact that it could be employed to depict the Enigma, the intricacy
of the state diagram would render it impracticable to devise practical
methods for developing intricate ciphering devices. It is possible to model
straightforward software systems, especially those that are re-presentable

14

via regular expressions such as (i) Vending machines, (ii) Bar code scan-
ner, (iii) watches with timer, etc.

Let us now understand the following theorem which highlights that when
two machines are in the same state and receive the exact same input, they
will consistently produce the same output and transition to the identical
state.

Theorem 2.1.3. If two Mealy machine M1 and M2 have same state
and input then it results in
(i) Same output
(ii) Same state.

Proof. (i) Let us assume to the the contrary that M1 and M2 have
different outputs. So, g1(s, x) = θ1 and g2(s, x) = θ2 but we know that
g : s × x → θ. It follows that g1(s, x) = s × x = θ = s × x = g2(s, x)
implies θ1 = θ = θ2 which is a contradiction.
(ii) Let us assume to the contrary that M1 and M2 have different states.
So, F1(s, x) = s1 and F2(s, x) = s2 but we know that F : s× x → s′. It
follows that F1(s, x) = s× x = s′ = s× x = F2(s, x) implies s1 = s′ = s2
which is a contradiction. □

Example 2.1.4. Let M =< S, I, θ, F,G, s0, T > where S = {s0, s1, s2}
and I = θ = {0, 1}. The following two tables showcase the F- function
and G- function.

0 1
s0 s0 s0
s1 s1 s1
s2 s1 s0

Table 5. F-function for Machine M

0 1
s0 0 1
s1 0 0
s2 0 1

Table 6. G-function for Machine M

15

Let us now begin by defining input-output relations of a machine using
an example. Following that, we will demonstrate under certain condi-
tions how state transition functions of two machines are equivalent.

Definition 2.1.5. Let M =< S, I, θ, F,G, s0, T > be a finite state ma-
chine. Define F (M) = Gs | s ∈ S andR(M) = (x,G(s, x)) | x ∈ I∗, s ∈ S
F(M) is set of functions of m, while R(M) is input-output relation of M.

Definition 2.1.6. Let Mi =< S, I, θ, F,G, s0, T > be finite state ma-
chines. States si ∈ Si, i = 1, 2 are said to be equivalent if G1(s1, x) =
G2(s2, x) for each x ∈ I∗. We write s1 ≡ s2.

Theorem 2.1.7. Let Mi =< S, I, θ, F,G, s0, T > for i = 1, 2 be finite
state machines. If si ∈ Si, i = 1, 2 and s1 ≡ s2 then F1(s1, x) ≡ F2(s2, x)
for each a ∈ I.

Proof. Let x ∈ I∗, then

G1(F1(s1, a), x) = Ĝ1(s1, ax) = Ĝ2(s2, ax) = G2(F2(s2, a), x).

Therefore, F1(s1, x) ≡ F2(s2, x). □

2.2 Structure of Finite State Machines

This section will examine the structure of finite state machines. To start,
we will commence by defining a minimal machine and examining its sig-
nificant results with illustrations. Subsequently, we will delve into the
concept of machines in arrangement.

Definition 2.2.1. Let M =< S, I, θ, F,G, s0, T > be a finite state
machine. M is said to be minimal if s1 ≡ s2 implies s1 = s2 for each
s1, s2 ∈ S.

Definition 2.2.2. Let Mi =< S, I, θ, F,G, s0, T > be finite state
machines. K is said to be homomorphism from M1 into M2 if K is a map
from S1 onto S2 such that
K(F1(s, a) = F2(Ks, a) and G1(s, a) = G2(Ks, a) for each (s, a) ∈ S1 ∗ I.

Theorem 2.2.3. For each finite state machineM1 =< S1, I, θ, F1, G1, s0, T1 >
there is a minimal machine M such that M1 ≡M .

16

Proof. Let M =< S, I, θ, F,G, s0, T > where M is constructed from
M1 by taking S = {[s] | s ∈ S1} where [s] is the equivalence classes
of the relation ≡ which contains S. It follows that F ([s], a) = [F1(s, a)]
and G([s], a) = [G1(s, a)]. M which is really M1/ ≡ is well defined. For
S1 ≡ S2 implies F1(s1, a) ≡ F2(s2, a) so that F1([s1], a) = F2([s2], a).
So, G([s1], a) = G([s2], a). Clearly, M is minimal if [s] ≡ [s′] then
G([s], x) = G([s′], x) implies G1(s, x) = G1(s

′, x). So, s ≡ s′ or [s] = [s′].
Since M is clearly equivalent to M1, implies there is a minimal machine
M such that M1 ≡M . □

Now, let us define a map K called an assignment and then we will un-
derstand it with Example 2.2.5.

Definition 2.2.4. Let Mi =< S, I, θ, F,G, s0, T > for i = 1, 2 be fi-
nite state machines. M2 is a state realization of M1 if there is a one to
one map K from Q1 into Q2 such that K(F1(s, a) = F2(Ks, a) for each
(s, a) ∈ S1 ∗ I. K is called an assignment.

Example 2.2.5. Let M1 and M2 be defined below.

0 0 1 1
s0 s2 0 s1 0
s1 s0 1 s1 1
s2 s2 1 s0 1

Table 7. Machine M1

0 0 1 1
s0 s2 0 s1 0
s1 s0 1 s1 1
s2 s2 1 s0 0

Table 8. Machine M2

s Ks
s0 (0, 0)
s1 (1, 1)
s2 (0, 1)

17

Table 9. Assignment K

0 0 1 1
s0 (0, 1) 0 (1, 1) 0
s1 (0, 0) 1 (1, 1) 1
s2 (0, 1) 1 (0, 0) 0

Table 10. Machine M2

It is possible to establish a network of interconnected machines in a
configuration that exhibits intriguing properties. Let us begin by first
defining the arrangement of machines coupled in a parallel composition
and then in serial composition.

Definition 2.2.6. Let Mi =< S, I, θ, F,G, s0, T > for i = 1, 2 be fi-
nite state machines. The parallel connection of M1 and M2 is defined
to be M1 || M2 =< S1 ∗ S2, I, θ1 ∗ θ2, F,G > where F ((s1, s2), a) =
(F1(s1, a), F2(s2, a)) and G((s1, s2), a) = (G1(s1, a), G2(s2, a)) for each
(s1, s2, a) ∈ S1 ∗ S2 ∗ I.

Now, in the figure shown below, we observe that two machines M1 and
M2 are arranged in parallel combination. Machine M1 is in state s1
and machine M2 is in state s2. They receive input a and so their state
transition function is given by F ((s1, s2), a) = (F1(s1, a), F2(s2, a)). Simi-
larly, the output function is G((s1, s2), a) = (G1(s1, a), G2(s2, a)) for each
(s1, s2, a) ∈ S1 ∗ S2 ∗ I.

Figure 6: Machines in Parallel Connection

18

Definition 2.2.7. Let Mi =< S, I, θ, F,G, s0, T > for i = 1, 2 be
finite state machines. The serial connection is M2 ← M1 =< S2 ∗
S1, I1, θ2, F,G > where F ((s′, s), a) = (F2(s

′, G1(s, a)), F1(s, a)) andG((s′, s), a) =
G2(s

′, G1(s, a)).

Now, in the figure shown below, we observe that two machines M1 and
M2 are arranged in serial combination. MachineM1 is in state s1 and ma-
chineM2 is in state s2. Here, we note that the output from machineM1 is
actually the input for machineM2. So, under an initial input a their state
transition function is given by F ((s′, s), a) = (F2(s

′, G1(s, a)), F1(s, a)).
Similarly, the output function is G((s′, s), a) = G2(s

′, G1(s, a)).

Figure 7: Machines in Serial Connection

19

3 Linear Finite State Machines

3.1 Monoid of Finite State Machines

In this section, we will first provide a description of the submachine M
′

that is part of a given machine M . We will next examine the monoid
of M and discuss significant findings regarding the relationship between
isomorphism and the monoid of a machine.

Definition 3.1.1. Let M = < S, I, θ, F,G, s0, T > be a finite state
machine. Let M

′
=< S

′
, I, θ, F

′
, G

′
, s

′

0, T
′
> is a submachine of M if :

(i) ∅ ̸= S
′ ⊆ S

(ii) For each a ∈ I, F (S
′
, a) = {F (s

′
, a) | s′ ∈ S ′} ⊆ S

′

(iii) F
′
= F ∩ (S

′ × I × S
′
) and G

′
= G ∩ (S

′ × I ×Θ)

Example 3.1.2. Let M be a finite state machine having S = {s0, s1},
I = {0}, θ = {0, 1}. Then, M ′

is a submachine of M.

0 0
s0 s0 0
s1 s0 1

Table 11. Machine M

0 0
s0 s0 0

Table 12. Machine M
′

Let us commence by providing a precise definition of a monoid. We will
first define it in terms of algebraic structures and then consider its inter-
pretation from a machine perspective.

Definition 3.1.3. A monoid is a triple < S, ∗, e > where S is a non void
set and * is a binary operation on S which is associative i.e., a(bc) = (ab)c
for all a,b,c ∈ S. Where e ∈ S is the identity so ae = ea = a for all a ∈ S.
As usual we have written ab for a ∗ b. Let M =< S, I, θ, F,G, s0, T > be
a finite state machine. For each x ∈ I∗, we write x(M) as the mapping
which takes s into F(s,x).

Definition 3.1.4. For each finite state machine M, the monoid of M,

20

usually denoted by G(M) is G(M) = {x(M) | x ∈ I∗}. We note that
the monoid operation is composition of functions and that Λ(M) is the
identity mapping on S. Moreover xy(M) = x(M)y(M) for all x,y ∈ I∗.

Example 3.1.5. Let M be the finite state machine having S = {s0, s1, s2},
and I = {0, 1}.

0 1
s0 s1 s2
s1 s2 s0
s2 s0 s1

Table 13. Machine M

Λ(M) 0(M) 1(M)
s0 s0 s1 s2
s1 s1 s2 s0
s2 s2 s0 s1

Table 14. G(M)

Definition 3.1.6. Let M and M
′
be finite state machines. M is said to

be state isomorphic to M
′
, if M

′
state realizes M via an assignment k

which is also onto.

Let us now examine the following theorem, which will help us compre-
hend how state realization and submachine relate to each other.

Theorem 3.1.7. If M1 = < S1, I, θ, F1, G1, s0, T1 > and M2 = <
S2, I, θ, F2, G2, s0, T2 > be finite state machines and M2 is a state real-
ization of M1, then M1 is state isomorphic to some submachine M

′
of M2.

Proof. Since M2 is a state realization of M1, there is a one to one map k
from S1 into S2 such that kF1(s, a) = F2(ks, a). Let S

′
= kS1 ⊆ S2, so let

us consider M
′
= < S

′
, I, θ, F

′
, G

′
, s0, T

′
> where F

′
= F2∩ (S

′× I×S
′
).

Clearly M
′
is a submachine of M2. The map k is restricted to S

′
is still

one to one and is now onto. Hence it is a state isomorphism. □

The next two theorems will elucidate the relationship between state iso-
morphism and the monoid of a machine. The initial one is presented here
without proof, however it will assist us in demonstrating theorem 2.3.9.

21

Theorem 3.1.8. If M1 = < S1, I, θ, F1, G1, s0, T1 > and M2 = <
S2, I, θ, F2, G2, s0, T2 > be finite state machines. If M

′
is a submachine

of M2 and M1 is state isomorphic to M
′
, then G(M1) is isomorphic to

submonoid of G(M2).

Theorem 3.1.9. Let M1 = < S1, I, θ, F1, G1, s0, T1 > and M2 = <
S2, I, θ, F2, G2, s0, T2 > be finite state machines. If M2 is a state realiza-
tion of M1 then G(M1) is isomorphic to submonoid of G(M2).

Proof. Since M2 is a state realization of M1, M1 is state isomorphic to
a submachine M

′
of M2 by theorem 3.1.7. By the theorem 3.1.8 G(M1)

is isomorphic to a submonoid of G(M2). □

3.2 Properties of Linear Finite State Machines

This section is an introduction to a linear finite state machine, along with
a discussion of key properties associated with them. In the language of
system theory they are linear, finite-dimensional, time invariant systems
From an intuitive perspective, these machines can be understood as finite
state machines in which their state transition and output functions can
be represented as linear functions. The following is the definition of a
linear finite state machine:

Definition 3.2.1. A linear finite state machine (LSM for short) is a
finite state machine M = (S, I, θ, F,G, so, T) with the following special
properties. There exists a field F and non-negative integers n, k and l
such that S = Fn, I = Fk and θ = Fl. Furthermore there exists an n× n
matrix A over F, an l × k matrix B over F, an l × n matrix C over F
and an l × k matrix D over F such that for each (s, a) ∈ S × I
F(s,a) = As + Ba
G(s,a) = Cs + Da.

Now that we have an understanding of what the state transition function
and output function for a linear finite state machine is, we exhibit the
following three important results.

Theorem 3.2.2. Let M be an LSM. For each s ∈ Fn and x0, ..., xt−1 ∈
Fk, t > 0 then

22

F (s, x0, ..., xt−1) = Ats+
∑t−1

i=0 A
t−1−iBxi.

Proof. Let p(t) = F (s, x0, ..., xt−1) = Ats +
∑t−1

i=0 A
t−1−iBxi. We

induct on the length of w = x0, ..., xt−1. Since

F (s, x0) = A1s+ A0Bx0 = As+Bx0

implies the statement p(1) true. Now we assume that p(t) is true for any
arbitrary positive integer k such that

F (s, x0, ..., xk−1) = Ats+
∑k−1

i=0 A
k−1−iBxi.

Now, for p(k + 1) we have

F (s, x0, ..., xk) = F (F (s, x0, ..., xk−1), xk) =⇒
F (Ats+

∑k−1
i=0 A

k−1−iBxi), xk) =⇒
A(Ats+

∑k−1
i=0 A

k−1−iBxi)+Bxk =⇒ Ak+1s+
∑k−1

i=0 A
k−1−iABxi+Bxk.

Hence, by the principle of mathematical induction, p(t) is true for any
positive integer k. □

Theorem 3.2.3. Let M be an LSM. For each s ∈ Fn and x0, ..., xt−1 ∈
Fk, then

Ĝ(s, x0, ..., xt−1) = CAt−1s+
∑t−2

i=0 CAt−i−2Bxi +Dxt−1.

Proof. Consider

p(t) = Ĝ(s, x0, ..., x1) = CA2−1s+CA0Bx0+Dx1 = CAs+CBx0+Dx1.

This implies that the statement p(t) is true for t = 2. Now, suppose p(t)
is true for any arbitrary t ≥ 2 such that

Ĝ(s, x0, ..., xt−1) = CAt−1s+
∑t−2

i=0 CAt−i−2Bxi +Dxt−1.

Then for p(t+ 1) we have,

Ĝ(s, x0, ..., xt) = CAts+
∑t−1

i=0 CAt−i−1Bxi +Dxt.

Hence by the principle of mathematical induction, p(t) is true for all
t ≥ 2 . □

Furthermore, we may apply the aforementioned outcome to a number
of linear finite state machines arranged in series.

Theorem 3.2.4. Let M1,M2,,Mn be linear finite state machines ar-
ranged in a serial connection (as shown in Figure below). Then

23

G(Sn, In) = CSn +
∑n−1

i=1 DiCSn−i +DnI1.

Proof. We proceed by using mathematical induction. For n = 2 we
get,

G(S2, I2) = G(S2, θ1) = G(S2, CS1 +DI1) = CS2 +D(CS1 +DI1) =
CS2 +DCS1 +D2I1.

Hence we find that the statement holds true for n = 2. Let us assume
that for n = k it holds true such that

G(Sk, Ik) = CSk +
∑k−1

i=1 D
iCSk−i +DkI1.

Then for n = k + 1 we have,

G(Sk+1, Ik+1) = G(Sk+1, θk) = G(Sk+1, CSk +
∑k−1

i=1 D
iCSk−i +DkI1) =

CSk+1 +DCSk +D
∑k−1

i=1 D
iCSk−i +DkI1 =

CSk+1 +DkI1 +DCSk + [D2CSk−1 +D3CSk−2 + ...+DkCS1] =

CSk+1 +DkI1 +
∑k

i=1D
iCSk+1−i.

Hence by the principle of mathematical induction, the formula holds true
for all n ≥ 2 . □

24

4 References

[1] B. Kolman, R. Busby, S. Ross, Discrete Mathematical Structures.
Pearson Prentice Hall, N.J. (2004).

[2] M. Harrison, Lectures on Linear finite state Machines, Academic
Press, New York and London, (1962).

[3] H. Gallaire, M. Harrison, Decomposition of linear finite state ma-
chines. Math. Systems Theory, Vol. 3 (1969).

[4] A. Gill, Introduction to the Theory of Finite State Machines. McGraw-
Hill, New York, (1962).

[5] A. Ginzburg, Algebraic Theory of Automata. Academic press, New
York, (1968).

[6] M. Harrison, Introduction to Switching and Automata Theory, McGraw-
Hill, New York, (1962).

25

	Finite State and Sequential Automata
	Recommended Citation

	Finite-State Automata and Languages
	Introduction
	Machines and Regular Languages
	Simplification of Machines

	Finite-state Automata with Output
	Introduction to Mealy Machines
	Structure of Finite State Machines

	Linear Finite State Machines
	Monoid of Finite State Machines
	Properties of Linear Finite State Machines

	References

