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EXPLORING THE IMPACT OF PRETRAINED BIDIRECTIONAL LANGUAGE MODELS
ON PROTEIN SECONDARY STRUCTURE PREDICTION

Dillon G. Daudert, M.S.

Western Michigan University, 2018

Protein secondary structure prediction (PSSP) involves determining the local conforma-

tions of the peptide backbone in a folded protein, and is often the first step in resolving a protein’s

global folded structure. Accurate structure prediction has important implications for understand-

ing protein function and de novo protein design, with progress in recent years being driven by the

application of deep learning methods such as convolutional and recurrent neural networks. Lan-

guage models pretrained on large text corpora have been shown to learn useful representations for

feature extraction and transfer learning across problem domains in natural language processing,

most notably in instances where the amount of labeled data for supervised learning is limited. This

presents the possibility that pretrained language models can have a positive impact on PSSP, as

sequenced proteins vastly outnumber those proteins whose folded structures are known.

In this work, we pretrain a large bidirectional language model (BDLM) on a nonredundant

dataset of one million protein sequences gathered from UniRef50. The outputs and intermediate

layer activations of this BDLM are incorporated into a bidirectional recurrent neural network (RNN)

trained to predict secondary structure. We provide an empirical assessment of the impact the

representations learned by our pretrained model have on PSSP and analyze the mutual information

of these representations with secondary structure labels.
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Chapter 1

Overview and Background

1.1 Introduction

The behavior and function of a protein in its environment is determined by its 3D structure, so

knowing that structure is a first step toward learning the function of a newly discovered protein [2].

Furthermore, having a robust understanding of the relationship between structure and function is

a prerequisite for designing novel protein-based medications and therapies. [3].

Experimental techniques for resolving 3D structure, such as X-ray crystallography and nu-

clear magnetic resonance (NMR) imaging, are orders of magnitude more expensive than sequencing

entire genomes ( $100,000 [4] vs. $1000 [5]). As such, the number of proteins whose sequences are

known but whose 3D structures are not is increasing rapidly, demonstrating the value of predicting

structure from sequence information alone.

Recently, the incorporation of deep learning methods has led to advances in many areas of

bioinformatics, including subcellular localization [6], toxicity prediction [7], as well as contact map

prediction [8], and has had a notable impact on protein secondary structure prediction [9].

Determining structure involves a pipeline of computational tasks, and predicting secondary

structure is a critical first step [10]. Techniques such as generative stochastic networks [1], convo-

lutional neural fields [11], and long short-term memory recurrent neural networks [12] [13] have all

been shown to improve performance on protein secondary structure prediction.
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1.1.1 Research objectives

This thesis is motivated by three observations:

• the vast amount of protein sequence data now available represents an opportunity to leverage

it to improve tasks that have more limited data (namely protein structures),

• deep neural networks, having already been established as effective at predicting secondary

structure, scale well with the amount of data on which they are trained [14], and

• recent work suggests that pretrained language models are effective for representation learning

in natural language processing.

With these in mind, we propose the following objectives:

1. Determine if unsupervised pretraining is suitable for protein structure prediction

2. Explore how one unsupervised pretraining method for recurrent neural networks using lan-

guage models impacts secondary structure prediction

1.1.2 Thesis structure

In the rest of Chapter 1, we cover the basics of structural biology, structure prediction, machine

learning, and deep learning. Chapter 2 states the protein secondary structure prediction problem

formally and presents our model architecture, experiments, results, and discussion. Chapter 3

concludes the thesis.

1.2 Structural Biology

1.2.1 Proteins: primary, secondary, and tertiary structure

Proteins are an important class of biological macromolecules that occupy a wide range of critical

roles in biological processes, including catalyzing reactions, cell signaling, and immune responses.

They are comprised of linear chains of smaller molecules called amino acids, ranging in length from

only a few residues to several thousands.

Amino acids consist of an amine group (N terminal), a carboxyl group (C terminal), and

an R group, or side-chain, that is specific to each amino acid. There are 20 common proteinogenic

2



Figure 1.1: Molecular representation of an amino acid. Image from OpenStax Biology 2e / CC BY 4.0

Table 1.1: Secondary structure assignments as described by DSSP.

Q8 Label Description

H α-helix
E β-strand
T Turn
S Bend
G 310 helix
B β-bridge
I π-helix
L Unknown or loop / irregular

amino acids that form peptide bonds between their N and C terminals, and a chain of multiple

amino acids is called a polypeptide chain. The unique string of amino acid residues of a protein is

referred to as the primary, or 1D, structure of that protein. The majority of known proteins undergo

a process whereby the polypeptide backbone folds into a stable 3-dimensional conformation, known

as the protein’s native state. During this process, local subregions along the chain organize in

regular patterns called secondary structures, two of the most common of which being alpha-helices

and beta-sheets.

Secondary structures are classified by their hydrogen bonds; for example, the helical shape

characterizing α-helices arises from the side chains of amino acids 4 residues apart forming a

hydrogen bond. One standard classification of secondary structures is given by the dictionary of

secondary structures of proteins (DSSP) , which defines 8 structural patterns [15]:

These local structures further organize into a global conformation, referred to as the tertiary

structure. Understanding the folding mechanisms that determine what the tertiary structure for

3
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Figure 1.2: The two most common types of protein secondary structure, α-helices and β-sheets. The dots
indicate hydrogen bonds between amino acid side chains. Image from OpenStax Biology 2e / CC BY 4.0

a protein is, as well as the temporal process of going from unorganized to folded, has been a

fundamental challenge in biology for nearly 60 years.

1.2.2 Function and homology

Homology refers to the evolutionary relationships between biological structures - both on the

macroscale and the molecular scale. For proteins, two or more proteins are homologous if they

evolved from a common ancestor. Homology can be divided into two categories depending on the

nature of the evolutionary relationship: orthologs are homologous proteins in two different species

that diverged from a common ancestor (speciation), whereas paralogs are proteins that diverged

from a common ancestor within the same species. It is also possible for two proteins in different

species to have similar functions but no evolutionary relationship, in which case these are called

analogs. Homology relationships are important when determining structure and function as evo-

lutionarily related proteins often have similar 3D structures, even when their sequences are very

dissimilar. This is due to the fact that evolutionary processes change the structure of orthologous

proteins much more slowly than the amino acid sequence [16]; selective pressure on the descendant

protein in each species to fulfill the function of the original. The situation for paralogs is more com-

plicated, as only one descendant must retain its original function, whereas the other may evolve to

4
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Figure 1.3: The hierarchy of protein structure. Quaternary structure has to do with the structural organi-
zation of collections of disjoint proteins. Image from OpenStax Biology 2e / CC BY 4.0
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Figure 1.4: The evolution of the H1 histone gene in humans (red and blue). Two events split the gene into
homologs: gene duplication within the same species creates two genes which are paralogs; speciation results
in two copies of each gene, so these are orthologs. The HNS gene in E. Coli has no evolutionary relationship
with H1, but serves a similar function as the H1 gene, so this is an analog. Sequence homology by Thomas
Shafee / CC BY 4.0

A C C A T G - T T
| | | | | |

- C C A A G T T T

Figure 1.5: Pairwise alignment of two DNA sequences. Magenta columns indicate an insertion or deletion,
and the cyan column indicates a mismatch.

have entirely new functions.

Determining homology involves establishing that two proteins are evolutionarily related,

however the reconstruction of this evolutionary tree is impossible in most cases. Instead, homology

is approximated by calculating the similarity of two or more protein sequences via global or local

alignment methods. These methods can be a powerful tool for discovering related sequences and

structures, but also have some limitations.

1.2.3 Sequence alignment and identity

Approximating homology consists of finding an alignment of two sequences of characters that max-

imizes the number of matching positions, and then calculating the likelihood that those sequences

are related.

Sequence alignment is closely related to the idea of string similarity. One way to measure

how similar two strings are is through the Levenshtein distance [17], which counts the number of

insertions, deletions, and mismatches between two strings. This is a kind of edit distance, as it
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Figure 1.6: BLOSUM62 by Hannes Röst / CC BY-SA 3.0

captures how much one string must be edited to be turned into another. Typical sequence alignment

algorithms are more complex than the Levenshtein distance, however, and weight edits to a protein

or DNA string differently based on statistical measures as well as a priori knowledge about the

evolutionary and mutation process.

An example of statistical weighting is the BLOSUM matrix (meaning BLOcks SUbstitution

Matrix), which weights the cost of pairwise mutations of amino acids in protein sequences. BLO-

SUM is calculated by counting the frequency of mutations between proteins in highly conserved

regions (regions where alignments do not have gaps (insertions/deletions)).

Note that unlike the Levenshtein distance, for which higher values mean more dissimilar

strings, alignments are usually interpreted as measures of similarity, with a higher alignment score

indicated a higher degree of similarity. This is the case for BLOSUM, where higher values indicate

higher likelihood of a particular pairwise mutation.

Sequence identity is calculated by counting the number of exact matches in the optimal

alignment of two sequences. For protein sequences, high sequence identity (>40%) unambigu-

ously determines similar structure. However, as identity decreases below this threshold, identifying

homology relationships becomes increasingly unreliable, up until below the 20% threshold, where

homology is practically impossible to determine without direct analysis of the protein structure[18].
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Figure 1.7: Image from the RSCB PDB of PDB ID: IZNJ (DOI 10.2210/pdb1ZNJ/pdb)

1.2.4 Folding and structure prediction

Determining the native structure of a protein in solution is equivalent to solving for how that

protein will fold. Research into the protein folding problem spanning over 50 years has brought a

considerable amount of insight into the mechanisms that dictate how this process takes place, which

physical and chemical interactions have the most influence, as well as how information about the

structure of a protein is encoded in its amino acid sequence. Extensive overviews of the progress

that has been made can be found in [19] and [2]. In the following paragraphs, we share some major

ideas that are relevant to our work.

In general, proteins fold quickly to their native state, although environmental factors can

prevent or undo this process (protein denaturing), such as extreme temperatures or pH. Further-

more, some proteins utilize other molecules called chaperones in order to avoid premature misfolding

during synthesis or undesirable aggregation [20]. Folding is thought to be hierarchical to some de-

gree: secondary structures fold to transient local conformations which are then stabilized by the

coalescing tertiary structure [21].

Early on, it was suspected that the native state of a protein was that state with the lowest

8
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Figure 1.8: Visualization of a protein energy landscape. Image by Thomas Splettstoesser / CC BY-SA 3.0

free energy. The question of how proteins explore the exponentially large space of possible confor-

mations to find the state with the lowest energy so quickly is referred to as Levinthal’s paradox.

While originally it was thought that proteins might fold along specific pathways to their native

state, the common belief now is that folding takes place along funnel-shaped energy surfaces [22].

As described previously, the particular arrangement of a polypeptide backbone in its sec-

ondary and tertiary structures arises due to hydrogen bonds between the amino acid residue side

chains. In light of this, one might reasonably ask if all of the information for how a protein will

fold is contained in these side chains; indeed, Anfinsen’s dogma[23] 1 states that protein native

structure is determined solely by its amino acid sequence, although the original hypothesis only

applied to globular proteins.

Our understanding of how sequence encodes structure, sometimes referred to as the protein

folding code, has shown that many physical and chemical interactions play a role during folding,

among these are hydrogen bonds, hydrophobic and electrostatic interactions, and van der Waals

forces.

1Anfinsen’s dogma, also called the thermodynamic hypothesis, states more specifically that the native structure of
a polypeptide chain, when found in its typical environment, is the conformation with the lowest free energy, where
the energy is a function of the interactions between amino acid side chains.
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One important challenge of structural biology has been the development of computational

methods able to predict protein structure. The next section covers the major existing methods,

and provides context for the role of secondary structure prediction, the method on which this thesis

focuses.

1.2.5 Methods of structure prediction

Protein structure prediction methods can be divided into two areas. The first involves simulating

the dynamics of the folding process explicitly. The second attempts to reduce the degrees of freedom

for the final conformation either by exploiting similarities to known structures when they exist -

homology-based methods - or by calculating likely local conformations of the protein backbone with

statistical techniques - ab initio methods.

Simulation

The most straightforward way for computing a protein’s folded structure is to simulate the molecular

dynamics of the protein as it folds directly. As mentioned before, proteins fold to the conformation

with the least free energy. This energy can be modeled as an energy function, and the protein is

considered folded when this energy function is minimized.

Classical physics theory models atoms as discrete masses that interact via forces. Thus,

the energy of a molecular system can be described as a function of all the forces interacting on

the atoms of that system. This function can be more or less complicated, but generally consists of

bonded and unbonded forces:

Etotal = Ebonded + Eunbonded

.

Bonded forces are calculated between atoms that share a covalent bond and nonbonded

forces between pairs of atoms lacking a covalent bond but close enough to interact. The total energy

of the system is minimized when this energy function is minimized. It is clear that if nonbonded

forces are considered between all pairs of atoms in the system, then the overall complexity of

calculating this energy function is of order O(n2), where n indicates the number of atoms. Although
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this runs in polynomial time, in general, it must be recalculated for each time step of a simulation,

resulting in an overall complexity of O(t ∗n2), where t might be in the billions. Furthermore, since

these calculations typically simulate molecular dynamics within some medium, e.g. water, then the

number of atoms n grows proportionally to the volume of the simulation.

Large-scale structure determination, such as the kind necessary for de novo protein design,

might involve solving the structures of over 10,000 candidate sequences, making direct simulation of

molecular dynamics impractical. However, simulation can be incorporated at the end of a structure

prediction pipeline as a refinement step, where the positions of the atoms are ideally already close

to their lowest energy states.[10]

Homology-based methods

Homology-based methods rely on similarities to proteins with known sequences and structures to

infer the likely structure of a new protein. The power of these methods has improved considerably

with the wealth of sequence and structure information contained in public repositories such as

UniProt[24] and the Protein Data Bank [25, 26].

While such methods demonstrate high degrees of accuracy when similar sequences are avail-

able, their predictive power suffers when encountering a protein that has no known homologs. The

usefulness of homology-guided structure prediction is particularly limited in the context of de novo

protein design, where sequences and structures that bear no relationship to naturally occuring

proteins may be of interest. This leads to the category of ab initio prediction methods.

Ab initio methods

Both homology-based and ab initio methods aim to reduce the search space of possible peptide

backbone conformations. In the absence of structural information of related sequences, the search

space can be reduced by finding backbone fragments with similar local sequences even if the global

similarity is relatively low[27].

Since incorrect local structures lead to poor sampling, improving the accuracy of predicted

secondary structure would directly improve the ability to predict native structure. As a case in

point, in CASP 11, an annual competition for evaluating structure prediction methods, the greatest

source of error in the top performing method came from inaccurate SS prediction and incorrect
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domain parsing[10].

Role of structure prediction in de novo protein design

Structure prediction also serves a fundamental role in de novo protein design. Designing a protein

with a specific structure involves computing a large number of potential backbone conformations,

and for each predicting the sequence(s) with the lowest energy for that structure. Once these are

found, ab initio structure prediction methods are used to find the structure with the lowest energy

for that sequence. These predicted structures are an important validation of the designed protein,

as a particular design typically won’t be experimentally validated unless the computed structures

converge to the designed structure[28].

Secondary structure prediction impacts other problems

Accurate secondary structure prediction also improves the prediction of a number of other problems

related to protein structure, including protein function[29], solvent exposure of amino acid residues

[30], and distinguishing between structured and intrinsically disordered proteins[31].

With the important role of PSSP well established, we now focus on recent methods and

results that have been applied to this problem.

1.2.6 Relevant work

In this section, we give a brief description of recent work in protein secondary structure prediction

that is relevant to our research.

Recurrent neural networks have become ubiquitous for structure prediction, in particular the

variant long short-term memory cell. [12] used bidirectional LSTM RNNs with dense layers inserted

at the hidden-to-hidden connections to predict secondary structure directly. Our replication of the

architecture and experiments of this paper are included in the appendix.

[13] also employed LSTM RNNs, building on several prior works, including [32] and [33],

to demonstrate that multi-task learning, and iterative learning improve the prediction of 3-state

protein structure as well as solvent accessibility and torsion angles. Here, LSTM RNNs were

trained to predict secondary structure, solvent accessibility, and torsion angles simultaneously,

and notably showed improvements in predicting structures that arise due to non-local interactions
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Table 1.2: Recent performance on protein secondary structure prediction

Paper Year
Q3 accuracy

single / ensemble
Q3 accuracy

single / ensemble

Busia and Jaitly 2017 - / - 71.4 / -
Fang et al. 2018 - / - 70.7 / -

Heffernan et al. 2017 84.0 / - - / -
Li and Yu 2016 - / - 69.4 / 69.7

Wang et al. 2016 82.3 / - 68.3 / -
Heffernan et al. 2015 82.0 / - - / -

Sonderby and Winther 2015 - / - 67.4 / -
Zhou and Troyanskaya 2014 - / - 66.4 / -

between residues. This process was repeated four times: each iteration, the model was trained to

convergence. Models after the first were additionally supplied with the outputs of the model trained

in the previous iteration, whose weights were fixed. Both multi-task learning and iterative learning

share many of the same theoretical motivations as unsupervised pretraining. Whereas unsupervised

pretraining aims to learn hidden features that effectively represent the input variables x, multi-

task learning finds a distributed representation of the inputs that can jointly predict different but

related target variables, y and z. The similarity between these two methods is apparent once it

is recognized that the auxiliary target variable, y, could also be used as an element of the input

features, x. Iterative learning is even more closely related to unsupervised pretraining, in that it

is nearly exactly the same procedure as greedy layer-wise pretraining [34]. In the latter case, the

weights are not fixed during the final training step of the full network, whereas in the former (in

this instance) an entire model is pretrained and then held fixed, not just a single layer.

Although models based on recurrent architectures handle sequence data most naturally,

convolutional neural networks have also shown impressive results for predicting protein structures.

Two notable examples include the inception-inside-inception network from [35] and the next-step

conditioned model proposed by [36], where a CNN was trained as a language model over secondary

structures. The generative stochastic network proposed in [1] also included convolutional layers,

and [37] combined both recurrent and convolutional layers in their architecture. Table 1.2 lists the

Q3 and/or Q8 accuracy reported in these works.
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1.3 Machine Learning

Machine learning methods acquire knowledge directly from raw data, in contrast with rule-based

and formal systems where knowledge is hard-coded by humans. Deep learning is a subdomain of

machine learning that represents knowledge as a hierarchy of concepts, with complex high-level

concepts being composed of simple, low-level concepts. The combination of these two capabilities -

the ability to learn deep representations from data without direct human intervention - has led to

breakthroughs in a diverse range of tasks such as image recognition [38], speech recognition [39],

and machine translation [40]. There have also been many successful applications of deep learning

to problems in biology and chemistry, including for predicting the activity of drug molecules [41],

compound toxicity prediction [7], subcellular localization [6], and protein structure prediction.

In this section, we provide an introduction to the main ideas in machine learning and deep

learning, as well as overviews of the major techniques relevant to this thesis.

1.3.1 Supervised learning

For many real-world problems, we are interested in predicting the target or outcome of an event

given some value or values we can observe. This might be identifying whether an image contains a

house or an airplane, or whether or not a particular protein mutation will cause disease. Supervised

learning is so named because the data used to train a model to make such predictions contains

information about both the inputs and outputs for each example in the dataset. By convention,

we use x ∈ X to indicate samples of inputs and y ∈ Y to indicate the associated outputs of those

samples. Interpreted probabilistically, we say that a supervised learning algorithm models the

conditional distribution p(y | x).

Supervised learning can be subdivided into two categories, depending on the type of the

target variable. When the target is categorical, supervised learning is referred to as classification,

and the targets as class labels. For continuous targets, supervised learning is called regression.

1.3.2 Unsupervised learning

Unsupervised learning on the other hand encompasses tasks for which there are no targets known,

either because adding that information would be prohibitively expensive or because no target is
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through the activation function f, producing the output h.
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Figure 1.10: Two layers of neurons. The labels h
(i)
j signify that these layers could be found at any level of a

neural network, not necessarily just the first.

known a priori. An example of this latter case is clustering, where the distribution of the samples

in the dataset is used to partition X into different categories. Commonly, the goal of unsupervised

learning is to learn interesting properties of the distribution of the inputs, p(x), and another name

for unsupervised learning is knowledge discovery.

1.3.3 Deep learning

Deep learning is a subfield of machine learning wherein the primary modeling tools consists of deep

artificial neural networks. Artificial neural networks consist of neurons which receive input from

other neurons in previous layers and in turn produce their own output. The output of a neuron is

also called that neuron’s activation, or activity.

In mathematical notation, a neuron is a sum of inputs x multiplied by weights w. This

weighted sum is passed through an activation function, f , which is typically a nonlinear function

such as tanh or the rectified linear unit (ReLU):
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Figure 1.11: Rectified linear unit (ReLU) activation function.

ReLU(x) = max(0, x).

For a single layer neural network with n inputs and m neurons, the input-weight product

can be represented by vector-matrix multiplication,

h = f(Wx),

where x ∈ Rn, h ∈ Rm, and W ∈ Rmxn.

In deep neural networks (DNNs), these neurons are stacked into multiple layers (hence

“deep”), and it is precisely these layers of nonlinearities that gives DNNs their representational

power.

Convolutional Neural Networks

Convolutional neural networks (CNNs) can be thought of as a restriction of “vanilla”/dense neural

networks, where the input to each neuron covers only a locally connected region of the outputs of

the previous layer. This inductive bias forces the neurons of a layer to focus on inputs that are

spatially related, and ignore everything else, and is particularly well suited for inputs that consist

of multiple arrays, such as images or sequences. The convolution operation also imposes a second

bias on the network, translation invariance, via weight sharing. The convolution operator takes

two functions f , g and returns a third function, h, which is the result of convolving f with g. If f
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Figure 1.12: Convolution of two matrices I and K.

and g are defined over the set of integers, then h is given by

h(t) ==
∞∑

τ=−∞
f(τ)g(t− τ).

We can think of t as the offset of g, and the summation calculates the global similarity of

the two functions at that offset. One way to visualize what this operation does is to imagine g

“sliding” over f . When f and g resemble one another, then the magnitude of h(t) will increase.

Commonly, g is referred to as a filter in computer vision, which comes from the idea that a filter

will pick out some important feature when convolved with an input image.

In CNNs, g is instead a matrix of trainable parameters rather than fixed a priori. The
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Figure 1.13: Visualization of the first layer of filters learned by AlexNet [38]. This layer learns to distinguish
various kinds of edges and color transitions.

x

ht−1

ot

htRNN

W

U

Figure 1.14: The graph showing how the inputs and previous state are related for a recurrent neural network.
Note that in the basic RNN, ht and ot are the same.

idea is that, during training, the filters will learn a set of weights that recognize features of their

inputs that are important for predicting the correct output. When multiple convolutional layers

are stacked together, they also learn to compose these features into higher-level representations.

For images, the features learned by the initial CNN layers may be simple edge detectors.

For 1D sequences, these filters might learn to recognize k-grams (where k-grams might be of words,

letters, amino acids, etc.).

Recurrent Neural Networks

Another variation of the dense neural network that is particularly well-suited to sequence data is

the recurrent neural network (RNN). The basic RNN resembles a dense neural network with an

added connection that links its output to the input of the next time step. The advantage of RNNs

over non-recurrent architectures is that this self-connection lets the network remember inputs it

has seen previously.
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Figure 1.15: An unrolled RNN, showing computation across multiple time steps.

The algebraic formulation of the RNN is as follows:

ht = φ(Wht−1 + Uxt + b),

where φ is the activation function (logistic sigmoid, tanh, ReLU, etc), ht ∈ Rn is the current

state (and output), ht−1 ∈ Rn is the previous state, xt ∈ Rm is the current input, W ∈ Rn×n,

U ∈ Rm×n,and b ∈ Rn are the weights and biases, and n and m are the state and input sizes.

Theoretically, RNNs are very powerful computational devices, and can learn any computable

function [42]. However, in practice training RNNs has proved to be very difficult due to the way

that the information flow changes over time [43] [44].

One prominent example is that of information morphing. This idea has to do with the

fact that at each step, the recurrent state must undergo a nonlinear transformation from one

representation to another. Consider an RNN that wishes to maintain its state when it receives no

new inputs at a given time step; or F (x) = (Wht−1 + b) is the identity function with respect to

ht−1. This is impossible, as is a nonlinear function. Residual connections in deep neural networks

were motivated by a similar observation in [45].

Another problem when training RNNs via gradient descent is that of exploding and van-

ishing gradients. From the formulation of the basic RNN, we can see that the state at each time

step is multiplied by the weight matrix W . As the number of time steps grows, the gradient of

the error with respect to this weight matrix will either shrink or grow without bound (vanish or

explode, respectively). This is due to the fact that the gradient of output ht with respect to output

ht−k includes a term of W k. If W is square with eigenvalues λ >1, it is easy to see that the norm
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of the gradient will grow as k increases; similarly, if the eigenvalues of W are <1, the gradient will

vanish [43]. Both cases pose problems for training RNNs, because when gradients explode, we can’t

train our models, and when gradients vanish, we can’t learn long-range dependencies as the model

becomes too sensitive to recent distractions.

The long short-term memory cell (LSTM) [46] was devised to address both the issue of

information morphing and gradient magnitudes.

Long short-term memory

Much of the difficulty in training RNNs arises from the nonlinear matrix multiply that occurs at

every time step. The LSTM avoids this by keeping a separate memory cell, Ct, that flows directly

from one step to the next, with only element-wise updates to its state. For a particular input xt

and previous output ht−1, the LSTM calculates four gates:

ft = σ(Wf [ht−1, xt] + bf ) (1.1)

it = σ(Wi[ht−1, xt] + bi) (1.2)

Ĉt = φ(WC [ht−1, xt] + bC) (1.3)

ot = σ(Wo[ht−1, xt] + bo) (1.4)

Ct = ft ⊗ Ct−1 + it ⊗ Ct, (1.5)

where σ is the logistic sigmoid function, φ is the hyperbolic tangent function (tanh), ht ∈ Rn is the

current hidden state and output, ht−1 ∈ Rn is the previous hidden state, Ct ∈ Rn is the cell state,

xt ∈ Rm is the current input, W ∈ Rn+m×n and b ∈ Rn are the weights and biases of the gates, n

and m are the state and input sizes, and ⊗ is the Hadamard product.

The forget gate, ft, determines how much of the previous cell state should be forgotten the

input gate, it, weights how much current input (called the candidate write, Ĉ) should be added

to the state, and the output gate, ot, determines how much of the cell state will be “revealed” to

produce the next output, ht:

ht = ot ⊗ φ(Ct). (1.6)
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LSTMs have become the de facto standard RNN architecture due to their ability to learn

long-term dependencies. In point of fact, all of the models based on RNNs in our review of the

PSSP literature used the LSTM cell, with the exception of one. 2

1.3.4 Unsupervised pretraining

Unsupervised learning tries to learn something meaningful about the shape of the input distribu-

tion, often with the goal of leveraging unlabeled data to improve generalization on a supervised

learning task [48]. In some instances, this procedure has been shown to act as a regularizer and

a parameter initializer, and scales well with the amount of unlabeled data [49]. Regularization by

unsupervised pretraining is also effective when combined with other regularization techniques [50].

One hypothesis for how unsupervised pretraining acts as a regularizer is that it forces the network

to discover features that are relevant to the underlying causes for the observed data. Another way

to state this is to say that we make the assumption that the causal factors of the input variables x

are meaningfully related to the output variables y, and so training a model to learn p(x) will also

help when learning p(y | x).

Supervised learning using deep neural networks can be powerful in the presence of very

large amounts of labeled data. However, for many tasks the amount of unlabeled data far exceeds

the amount with labels. In this latter case, unsupervised pretraining offers a pathway to improve

2[37] used a simplified variant of the LSTM called the Gated Recurrent Unit (GRU) [47] which ties the input and
forget gates in a single “update” gate and merges the cell and hidden states
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performance on supervised tasks. The next section covers several recent methods for pretraining

recurrent neural networks.

Pretraining RNNs

Recurrent neural networks are a natural choice for sequence data, and several different unsupervised

learning techniques for recurrent networks have been shown to improve performance on sequence

prediction tasks.

[51] used next-step prediction and sequence autoencoding to pretrain long short-term mem-

ory recurrent networks in NLP, where this improved stability and generalization when later fine-

tuned on various text classification tasks. Here, pretraining LSTM RNNs on a large corpus of

unlabeled data allowed the authors to train models that outperformed a number of other models

that had access to more labeled data.

Next-step prediction is commonly used in language modeling (LM), either at the character

or word level. A character-level language model models the probability of the character xi+1 given

inputs x1, x2, . . . , xi, that is, p(xi+1 | x<=i) for an input string x = [x1, x2, . . . , xT ].

An autoencoder consists of an encoder f(.) and a decoder g(.) whose composition approaches

the identity function: g(f(x)) ≈ x. A sequence autoencoder is a type of seq2seq model [52] [47],

where the input and output sequences are the same.

Skip-thought vectors [53] are an unsupervised learning algorithm in NLP where a recurrent

network is given an input sentence and learns to predict both the preceding and following sentences.

This objective forces the model’s representation of a sentence to capture important semantic content

by relating sentences to the context in which they’re found.

[54] used pretrained bidirectional language models to learn context-sensitive word embed-

dings. Their bidirectional language model consisted of two unidirectional LMs that were trained

separately, one in the forward direction and one in the backward direction, and then combined.

These embeddings were then shown to improve performance on two natural language sequence la-

beling tasks. We take inspiration from this application of language modeling to sequence prediction

for our own experiments, discussed in the next chapter.
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Chapter 2

Methodology and Experiments

2.1 Problem Description

We express protein secondary structure prediction as a sequence transduction problem. Let X be

the set of amino acid labels and Y a set of secondary structures labels, for example as determined

by DSSP. The sets of all possible strings of amino acids and structures are then X? and Y?,

respectively. We assume each residue in the protein backbone corresponds to only one secondary

structure, that is if x = [x1, x2, . . . , xn] ∈ X?, then there exist y = [y1, y2, . . . , yn] ∈ Y? and a pairing

(x1, y1), (x2, y2), . . . , (xn, yn) that together uniquely determine the secondary structure of x. The

goal is thus to find a map f : X? 7→ Y? such that f(x) = y. This can be seen as a search over the

set of all possible maps; for a protein of length n, there are 8n possible assignments of secondary

structure labels.

2.2 Methods

2.2.1 Bidirectional RNNs

Secondary structure is influenced by interactions between all residues of a protein [55]. To properly

capture information on both sides of each residue, we model f with a bidirectional recurrent neural

network (BDRNN), K, where

K(x) = argmaxŷp(ŷ | x) ≈ y.
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Figure 2.1: A bidirectional RNN. Image from [56] obtained with permission.

2.2.2 Language models

To investigate the impact that unsupervised pretraining has on this task, we pretrain a separate

RNN as a language model on amino acids. A unidirectional language model estimates the proba-

bility of a sequence as the product of the conditional probabilities of each element of the sequence

conditioned on the preceding elements. That is,

p(x) = p(x1)p(x2 | x1)p(x3 | x1, x2) . . . p(xn | x1, x2, . . . , xn−1) =
n∏
i=1

p(xi | xj<i).

2.2.3 Bidirectional language models

Our language model, L,L(x) = argmaxx̂p(x̂) ≈ x, is also bidirectional in order to incorporate both

the preceding and following contexts of the protein:

p(x) = p(x1 | x2, . . . , xn)p(x2 | x1, x3, . . . , xn) . . . p(xn | x1, . . . , xn−1) =
n∏
i=1

p(xi | xj 6=i).
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2.2.4 Objective function

Since both the language model L and the structure model K are predicting sequences of discrete

categories, we measure their performance using the categorical cross entropy loss:

H(L(x), x) = −
n∑
i=1

p(xi) logL(x)i, and

H(K(x), y) = −
n∑
i=1

p(yi) logK(x)i.

2.3 Representation and Features

Both amino acids and secondary structures can be represented using a one-hot encoding, which is a

binary vector of n elements where exactly 1 element, indicating the discrete category of that vector,

takes the value 1 and the rest are 0. There are 20 common proteinogenic amino acids and these,

along with an additional element representing “Unknown” and two elements for tokens denoting

both the beginning and the end of a sequence, are encoded into a one-hot vector ac ∈ R23.

The one-hot encodings are supplemented with physicochemical features of each amino acid.

These physicochemical properties are to greater or lesser extents involved in the folding process

[2, 57], and have been included as features in other work on PSSP. In determining which prop-

erties to include, we began with the following: hydrophobicity, polarity, hydropathy index [58],

hydrophilicity, isoelectric point1, van der Waals volume, dissociation constants of the carboxyl and

amine groups, graph shape index 2 (steric), and polarizability [59]. (Table 2.1)

We removed any feature sharing an absolute correlation coefficient greater than 0.6 with any

other feature to reduce the amount of redundant information. With the exception of hydrophobicity,

we normalized these features so that they had zero mean and unit variance, resulting in the final

features in Table 2.2. The physicochemical features are thus a vector of 7 real values af ∈ R7.

In our experiments, the input vectors consisted of both the one-hot encoded amino acid ac

and the physicochemical properties of that amino acid af concatenated together. For the supervised

dataset CPDB described in the next section, position-specific similarity matrices were also fed to

1Isoelectric point is the acidity at which a molecule has a neutral electric charge.
2The graph shape index roughly captures the properties of each side chain arising from steric effects, a particular

interaction between non-bonded atoms within a molecule. These are calculated from the molecular graph of each
residue.
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Table 2.1: Raw physicochemical features

π1 pole η π2 pH(l) υv pK1 pK2 Ξ α

A 0.0 0.0 1.8 3.0 6.01 67.0 2.35 9.87 1.28 0.05
C 1.0 -1.0 2.5 -1.0 5.05 86.0 1.92 10.7 1.77 0.13
D 2.0 1.0 -3.5 3.0 2.85 91.0 1.99 9.9 1.6 0.11
E 2.0 1.0 -3.5 3.0 3.15 109.0 2.1 9.47 0.0 0.15
F 1.0 -1.0 2.8 -2.5 5.49 135.0 2.2 9.31 2.94 0.29
G 0.0 0.0 -0.4 0.0 6.06 48.0 2.35 9.78 0.0 0.0
H -1.0 1.0 -3.2 -0.5 7.6 118.0 1.8 9.33 2.99 0.23
I 1.0 -1.0 4.5 -1.8 6.05 124.0 2.32 9.76 4.19 0.19
K 2.0 1.0 -3.9 3.0 9.6 135.0 2.16 9.06 1.89 0.22
L 1.0 -1.0 3.8 -1.8 6.01 124.0 2.33 9.74 2.59 0.19
M 1.0 -1.0 1.9 -1.3 5.74 124.0 2.13 9.28 2.35 0.22
N -2.0 1.0 -3.5 0.2 5.41 96.0 2.14 8.72 1.6 0.13
P -1.0 0.0 1.6 0.0 6.3 90.0 1.95 10.64 2.67 0.0
Q -2.0 1.0 -3.5 0.2 5.65 114.0 2.17 9.13 1.56 0.18
R 2.0 1.0 -4.5 3.0 10.76 148.0 1.82 8.99 2.34 0.29
S -2.0 0.0 -0.8 0.3 5.68 73.0 2.19 9.21 1.31 0.06
T -2.0 0.0 -0.7 -0.4 5.6 93.0 2.09 9.1 3.03 0.11
V 1.0 -1.0 4.2 -1.5 6.0 105.0 2.39 9.74 3.67 0.14
W 1.0 -1.0 -0.9 -3.4 5.89 163.0 2.46 9.41 3.21 0.41
Y -2.0 -1.0 -1.3 -2.3 5.64 141.0 2.2 9.21 2.94 0.3
X 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Physicochemical properties of the 20 proteinogenic amino acids: hydrophobicity π1, polarity pole, hydropathy
intensity η, hydrophilicity π2, isoelectric point pH(l), van der Waals volume υv, dissociation constants of the
−COOH group (pK1) and −NH3 group (pK2), graph shape index Ξ, polarizability α
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Table 2.2: Normalized physicochemical features.

π1 η pH(l) pK1 pK2 Ξ α

A 0.0 0.71 -0.01 1.06 0.69 -0.84 -1.14
C 1.0 0.94 -0.56 -1.25 2.32 -0.39 -0.38
D 2.0 -1.05 -1.81 -0.88 0.75 -0.55 -0.57
E 2.0 -1.05 -1.64 -0.28 -0.09 -2.01 -0.19
F 1.0 1.04 -0.31 0.25 -0.41 0.68 1.14
G 0.0 -0.02 0.02 1.06 0.51 -2.01 -1.62
H -1.0 -0.95 0.9 -1.9 -0.37 0.73 0.57
I 1.0 1.6 0.01 0.9 0.48 1.82 0.19
K 2.0 -1.19 2.04 0.04 -0.9 -0.28 0.48
L 1.0 1.37 -0.01 0.95 0.44 0.36 0.19
M 1.0 0.74 -0.16 -0.12 -0.47 0.14 0.48
N -2.0 -1.05 -0.35 -0.07 -1.56 -0.55 -0.38
P -1.0 0.64 0.16 -1.09 2.2 0.43 -1.62
Q -2.0 -1.05 -0.22 0.09 -0.76 -0.58 0.1
R 2.0 -1.39 2.7 -1.79 -1.03 0.13 1.14
S -2.0 -0.16 -0.2 0.2 -0.6 -0.81 -1.05
T -2.0 -0.12 -0.24 -0.34 -0.82 0.76 -0.57
V 1.0 1.5 -0.02 1.27 0.44 1.35 -0.29
W 1.0 -0.19 -0.08 1.65 -0.21 0.93 2.29
Y -2.0 -0.32 -0.22 0.25 -0.6 0.68 1.24
X 0.0 0.0 0.0 0.0 0.0 0.0 0.0

the structure model K. Exactly which features were used and how are detailed for each experiment.

2.4 Datasets

Several datasets of proteins and their structures were used in our experiments. The first section

describes a public dataset compiled by the authors of [1] that has been used in a number of past

work for secondary structure prediction, CullPDB. To assess the impact that additional unlabelled

data has on this problem, we constructed two new datasets. The second section describes a new

dataset of proteins with known structures, constructed in the same manner as CullPDB, which we

refer to has CullPDB2. The third section then details a large dataset of proteins without known

structure gathered by culling UniRef50.
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2.4.1 CullPDB (CPDB) and CB513

CullPDB3 is a publicly available dataset consisting of 6128 non-homologous proteins. As was

described in that work, this dataset was constructed by using the PISCES web server [60] to pull

all proteins from the Protein Data Bank [25] sharing less than 30% sequence identity and whose 3D

structures were resolved to at least 2.5 Angstroms. Additionally, all sequences having fewer than

50 or more than 700 residues were removed. CB513 is an independent test set built in a similar

manner.

Each protein was encoded as a sequence of one-hot vectors, indicating amino acids as well

as a special “NoSeq” token, concatenated with position-specific scoring matrices. The PSSMs were

calculated by running PSIBLAST [61] for 3 iterations with an inclusion threshold of 0.001 against

the UniRef90 database. The UniRef clusters [62] group proteins of high sequence similarity using

the CD-HIT algorithm [63]. For example, in the case of UniRef50, proteins sharing 50% or higher

sequence similarity form a single cluster, represented by a single member, reducing the total number

of proteins by roughly 80% - from ∼149 million in UniRef100 to ∼31 million in UniRef504.

UniRef90 was filtered by using the program pfilt, available as a part of PSIPRED [64], to

remove low information content and coiled-coil like regions. Once calculated, the similarity scores

were scaled to the range [0, 1] by passing them through the logistic sigmoid function. Two more

features were added to signify both the start and end of each protein.

The DSSP software [15] was used to infer the likely 8-state secondary structure for each

amino acid along the protein backbone as well as both the relative and absolute solvent accessibility.

[1] discretized these two solvent accessibility measures in a manner similar to was done in [65]. To

obtain final model performance, CPDB was further filtered by removing all sequences that shared

more than 25% sequence identity with the independent test set CB513.

The original5 57 features for CPDB are described in Table 2.3.

3Available to download at www.princeton.edu/ jzthree/datasets/ICML2014/
4UniRef statistics at www.uniprot.org/statistics/UniRef
5Note that we use different features than the ones originally described in [1], with the exception of the sequence

profile matrices.
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Table 2.3: Protein features used in Zhou and Troyanskaya

Range Description

[0, 22) amino acid label
[22, 31) secondary structure label
[31, 33) N- and C- terminals
[33, 35) solvent accessibility
[35, 57] sequence profile

Table 2.4: Frequencies of DSSP labels in the CPDB dataset

Q8 Label Description Frequency in CPDB (%)

H α-helix 34.54
E β-strand 21.78
T Turn 11.28
S Bend 8.26
G 310 helix 3.9
B β-bridge 1.03
I π-helix .02
L Unknown or loop / irregular 19.18

2.4.2 CullPDB2 (CPDB2)

Since 2014, over 30,000 new proteins have had their structures resolved and been added to the

PDB6. To leverage this new data, we followed a similar process as was done for CPDB to build a

new dataset, which we refer to as CPDB2.

We pulled proteins from the PDB that shared no more than 30% sequence identity and

whose structures were known to a resolution of at least 2.5 Angstroms using the PISCES web

server7. The secondary structure, solvent accessibility, and torsion angles of each protein were then

calculated using the DSSP software8. To calculate position-specific scoring matrices, we calculated

multiple sequence alignments using PSIBLAST with an e-value of 0.001 for 3 iterations. To reduce

computation time, we ran PSIBLAST against the UniRef50 database [62] filtered with pfilt to

remove coiled-coil and low-complexity regions in sequences [66]. The resulting dataset contains

14726 sequences.

6PDB statistics available at rcsb.org
7http://dunbrack.fccc.edu/PISCES.php
8https://swift.cmbi.umcn.nl/gv/dssp/index.html
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2.4.3 CullUniRef50 (CUR50)

Due to relative cheapness of sequencing proteins compared to determining 3D structure, there exist

nearly 2 orders of magnitude (131K in the PDB vs. >100mill in UniProtKB) more proteins whose

sequences are known but whose structures are not. To build a collection of unlabelled data, we

began with the publicly available dataset UniRef50.

We used MMseqs2 [67] to further cluster the representatives in UniRef50 down to 20%

sequence identity using a sensitivity parameter of 69 and a maximum of 100 aligned sequences per

query. By default, MMseqs2 clusters sequences by representing proteins as nodes in a graph. Two

protein nodes will share an edge if the user-set alignment criteria are met: % sequence identity,

coverage (number of aligned residue pairs divided by the maximum of the lengths of the query

or target sequence), and e-value (Gap-corrected Karlin-Altschul statistics). We used the default

settings for coverage and e-value. Once edges are calculated, clusters are found by a greedy set

cover algorithm, where nodes with the highest degree and their neighbors form a cluster and are

removed, iteratively. The filtering→ alignment→ cluster process is repeated 3 times with increasing

sensitivity to find the final clusters, of which there were 14,879,863.

To ensure that no sequences present in the structure dataset are also present in any of

the data used for pretraining, we additionally use MMseqs2 to filter out all sequences sharing

20% identity to any sequence in CPDB2. This left 13,341,228 clusters and their representatives.

Finally, for practical considerations, we did not include any sequences with lengths outside of 25 -

1040 residues in the training or validation sets.

2.5 Architecture

Our experiments contain two types of bidirectional RNN (BDRNN). The first is a bidirectional

language model (BDLM), L, and has the following structure.

The one-hot vectors ac are passed through a dense projection layer and concatenated with

af . These are fed to a 1D CNN [68]. We denote the outputs of the CNN as ci−1i−k−1, with the

subscript indicating which input steps (i− 1 to i− k − 1 in this case) were covered by the kernel.

9The sensitivity parameter controls how sensitive sequence queries are. A sensitivity of 6 roughly corresponds to
the sensitivity of a search with BLAST.
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Figure 2.2: Graph of our bidirectional language model architecture. The outputs from the convolutional
layer are fed to both the forward and backward RNNs. Circles indicate vectors of features and squares
indicate model layers.

A 2-layer bidirectional LSTM calculates outputs for the forward and backward directions, with the

outputs linearly projected to have size d. For layer j, the state at step i of the forward (backward)

LSTM is written . A residual connection adds the outputs of the CNN to the inputs of the second

layer. Both the CNN outputs and the LSTM outputs are linearly projected to have the same size.

That is, ci−1i−k−1 ∈ Rd and hFW,i, hBW,i ∈ Rd.

Let FW (j), BW (j) be the jth layers of the forward and backward RNNs, and let h
(j)
FW,i,

h
(j)
BW,T−i denote their hidden states, respectively. Then

h
(1)
FW,i = FW (1)(ci−1i−k−1, hFW,i−1), and

h
(1)
BW,i = BW (1)(ci+k+1

i+1 , hBW,i+1)

The outputs of the second layer are concatenated and fed through a dense softmax layer,

which forms the final outputs of the language model, oi = softmax(Whi); hi = [h
(2)
FW,i, h

(2)
BW,i], and

W is a weight matrix that projects hi to the same dimensionality as x. Note that output hi has no

information about the input at step i.

We use a second BDRNN to predict secondary structures: K. Here, ac is projected as before

and concatenated with af as well as the position-specific scoring matrix features, ap.The resulting

features are normalized via layer normalization [69] and then passed directly to a bidirectional
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Figure 2.3: Architecture for our structure BDRNN K.

LSTM RNN. The output of the LSTM is then fed through a dense layer with softmax activation

to make the final predictions.

The precise hyperparameters of each model - e.g. the number of layers in the RNNs, the

size of the dense layers, activation functions, etc. - are specified in detail in the following sections.

2.6 Experiments

2.6.1 Baseline

In order to examine the impact of pretrained language models on secondary structure prediction,

we first established performance on a baseline model.

Architecture details

The amino acid labels ac are transformed to a dense embedding of size 256: ad ∈ R256. Once

concatenated with the physicochemical properties and PSSMs, the final feature vector is xi =

[ad, af , ap] ∈ R284.

The rest of the architecture was determined by a small grid search over the hyperparameters

in Table 2.5. The right column indicates the sets of possible values for each hyperparameter, with

each experiment consisting of a unique value from each row.
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Table 2.5: Hyperparameter grid

Hyperparameter Values

Layers {1, 2, 3}
Recurrent State Size {128, 256}

Dropout {0.0, 0.3}

The hyperparameters searched over for the baseline model. The row for dropout indicates the dropout
probability for non-recurrent layers as well as the variational dropout [70] probability for the recurrent
hidden-to-hidden activations.

Architecture and training details are shared between all variations of K. The recurrent layers

are standard LSTM cells. All dense layers have ReLU activation functions, with the exception of

the input embedding and softmax layers which are linear. All weights are initialized by sampling

from the Glorot uniform distribution [71].

Dataset

We used a random train/validation split of the CPDB dataset. The validation set contained 512

samples, leaving 5022 samples for training.

Training regimen

All models were trained via stochastic gradient descent with a batch size of 50. When sampling

batches, sequences were grouped by length into buckets [72] to speed up training. The initial

learning rate was 0.2, and we divided the learning rate by 2 if there was no improvement in

validation loss for 10 consecutive evaluations (roughly 5 epochs). The global norm of the gradient

was calculated according to

norm2 = ‖ gradient

batch size
‖2.

If the norm exceeded 2.0, the gradient was scaled by 2
norm2

.

Grid search results

Validation losses and accuracies are reported in Table 2.6, as well as the training step at which

those values occurred.
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Table 2.6: Hyperparamater search results

Layers Units Dropout Accuracy Loss Step

1 128 0.0 .7002 .577 19200

2 128 0.0 .6914 .5924 11801

3 128 0.0 .6859 .603 11501

1 128 0.3 .6959 .5781 36550

2 128 0.3 .6719 .6266 20550

3 128 0.3 .6828 .6035 17450

1 256 0.0 .696 .5875 15000

2 256 0.0 .6832 .6078 10500

3 256 0.0 .6792 .6175 10400

1 256 0.3 .7047 .5632 49800

2 256 0.3 .703 .561 40400

3 256 0.3 .7038 .5625 40800

Grid search results on the validation set for the baseline model.

The goal of this grid search was to find a reasonable architecture for our baseline model.

While not comprehensive, it did reveal interesting changes in model performance and training

behavior at different hyperparameter settings. Some of the general trends we observed were:

• Adding model capacity beyond a single layer BDRNN with 128 units without a concomitant

increase in regularization always resulted in poorer performance due to overfitting

• For models with 128 units, performance also suffered after adding layers, even when the model

was regularized via dropout

• Adding dropout resulted in up to a 5-fold increase in training time, but improved performance

for models with 256 units per layer

There are two important points to make when considering the performance of the models reported

in this table: (1) The choices for the baseline and grid search were purposefully kept simple, and

(2) The results are noticeably lower than the reported highest accuracies reported in other works.
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We justify point (1) by noting that our interest is in evaluating the impact of unsupervised

pretraining on this problem, not necessarily in achieving state of the art performance. Point (2)

is therefore understandable, as models which perform better on this task are typically much more

complicated in design.10

We chose an LSTM BDRNN with a single layer of 256 units and dropout values of 0.3 as

our baseline. Since there was not a large difference between this model and the 2-layer version, we

chose the simpler model.

2.6.2 Protein language model

As touched on in the section on unsupervised pretraining, language models are commonly used in

NLP to initialize recurrent neural networks. It is well established that LM performance scales well

with larger model sizes and datasets [73] [74], and that such large-scale models can also effectively

be integrated into downstream tasks: for semi-supervised sequence tagging [54]; as context-sensitive

word embeddings [75]; for inductive transfer learning [76].

These recent successes demonstrate the remarkable power and flexibility that pretrained

language models possess across many domains within NLP, and offer a framework for their appli-

cation to problems involving biological sequence data.

Architecture details

Our language model architecture resembles that of [75], with the size of the LSTM states and output

projections reduced to account for available GPU memory. The one-hot amino acids are passed

through a dense projection with 25 units; ad ∈ R25. The dense embeddings and physicochemical

features are concatenated and fed to a 1D CNN with 1024 filters and a kernel size of 7, which

is linearly projected down to a size of 256. The recurrent part of the model consists of a 2-layer

bidirectional LSTM RNN with 1024 units and 256-dimensional projections. A residual connection

adds the inputs of the first layer to its projected outputs before being passed to the second layer.

As noted before, the outputs of the forward and backward directions are shifted and concatenated

such that the outputs for prediction i only contains information from the preceding (j < i) and

10Although we would like to note that we were unable to reproduce the results reported in [12] after replicating
their proposed model and experimental setup (see Appendix A).
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following (k > i) steps. The concatenated outputs are then passed through a softmax layer. Our

language model contains a total of 22 million trainable parameters.

Dataset

While it would be possible to train on the entire CUR50 dataset, for practical considerations we

randomly sampled a training and validation set of 1 million and 10,000 proteins, respectively.

Training regimen

Training was almost identical to the baseline, with the difference that the global norm constraint on

the gradients was set to a maximum of 1.0. Additionally, since the forward and backward directions

are independent except at the final softmax layer, we parallelize training by assigning each direction

to a different GPU. We do not add any regularization to the network.

The loss on the validation set converged smoothly over the course of just under 300k training

steps, which corresponded to roughly 15 epochs and 30 hours. The occasional steep drops in loss

(e.g. around step 110k) occurred when the learning rate was divided in half. Overall, our BDLM

achieved a per-residue accuracy of 15% on the validation set. Although we are unaware of recent

efforts to apply language models to protein sequences, a unigram Markov model trained on the

proteins of a single species reached a perplexity of 16.6 and a cross-species perplexity between 17 and

21 [77]. Perplexity measures how well a model predicts samples from an unknown distribution, and

is defined as the exponentiation of the cross entropy, giving our model a perplexity of e2.69 = 14.732.

We can also compare the performance to similar models in NLP. The recurrent highway

network language model of [78] achieved state of the art results for character-level language mod-

eling, with their 21 million parameter model reaching an overall bits-per-character (bpc) of 1.30

on the enwik811 test set (although this has since been surpassed by much larger models, e.g. [74]).

Since we use the natural logarithm for cross entropy, the loss of our model is in nats-per-character.

We can convert to bits by multiplying by 1
ln 2 , giving a bpc of around 3.89. Note that, since there

are 23 characters in our alphabet, it would take log2 23 = 4.52 bpc to encode an arbitrary sequence,

assuming the characters are uniformly distributed.

11The enwik8 dataset (http://mattmahoney.net/dc/textdata.html) is a collection of the first 108 bytes of the
English Wikipedia, gathered in 2006.
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(a) Validation loss

(b) Validation accuracy

Figure 2.4: Results for the bidirectional language model, L.

37



Comparisons to language models applied to natural language are likely of limited use,

however, as biological sequences such as DNA and proteins are known to be intrinsically information

dense [79]. One hypothesis for why this is the case is that evolutionary pressure drives proteins

to near-optimal compression rates. As such, it is unlikely that language models of proteins can

achieve similarly low entropies as in NLP. Speculating what the optimal performance might be, a

question closely related to protein compressibility, is an interesting research pursuit but beyond the

scope of this thesis.

2.6.3 Pretrained LMs and secondary structure prediction

We experimented with incorporating the pretrained language model L into the structure BDRNN

K in three different ways, which we refer to as outSEQ, ELMO1, and ELMO2. In each case, we

kept the total number of input features the same as the baseline, and adjusted the dimensionality

of the amino acid embeddings (ad) to account for the size of the BDLM features. For each method,

we performed 5-fold cross validation on random train/validation splits of the CPDB training data.

The results of these trained models are compared to each other, as well as the baseline.

outSEQ

Method 1 uses the softmax outputs of the language model as additional features to the structure

BDRNN. Since the language model is trained to predict amino acids, these features comprise a

probability distribution over amino acids. The full feature vector is then [oi, ad, af , ap], where

oi ∈ R23 are the softmax outputs of the BDLM, ad ∈ R23312 is the dense embedding of the one-hot

amino acid tokens, and af ∈ R7, ap ∈ R21 are the physicochemical and PSSM features of each

residue, respectively.

ELMO1 and ELMO2

Methods 2 and 3 use ELMo embeddings [75] of the intermediate activations of the language model

as extra inputs to the structure BDRNN. An ELMo embedding is a weighted sum of the activations

12This was chosen so [oi, ad] ∈ R256, matching the size of ad from the baseline.
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of each layer: if

h
(0)
i = [ci−1i−k−1, c

i+k+1
i+1 ],

h
(1)
i = [h

(1)
FW,i, h

(1)
BW,i], and

h
(2)
i = [h

(2)
FW,i, h

(2)
BW,i],

are the intermediate activations of L for step i, then the ELMo embedding for step i is

ei =
2∑
j=0

s(j)h
(j)
i .

13

where the s(j),
∑

j s
(j) = 1 weight each layer and are learned during training. This results in

a single feature vector ei ∈ R2d where d is the size of the intermediate representations of the BDLM

- in this case, d = 256. ELMos allow the supervised model to weight all of the representations

learned by our pretrained model, not just the outputs as in outSEQ.

For ELMO1, we linearly projected ei to match the dimensionality of oi. In this case, the

input features are [ei, ad, af , ap], where ei ∈ R23, and ad, af , ap are identical as outSEQ.

We were also interested in how performance was affected when ei represented a larger

proportion of the input features, and so for ELMO2, the dimensionalities of ad and ei were swapped:

ad ∈ R23, ei ∈ R233.

Architecture details

The architecture for each method is identical with the exception of the inputs to the structure

BDRNN. Additionally, since in general the distributions of the intermediate activations of L (and

therefore of the ELMo inputs) may be very different from each other as well as the other inputs

(such as the physicochemical features), we normalize the inputs to the structure BDRNN for all

methods using layer normalization [69].

13While the original formulation included a scaling coefficient γ, all our models normalized their inputs via layer
normalization [69] which has its own scale parameter (also called γ). This would make an additional coefficient on ei
redundant.
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Figure 2.5: Mean validation and test accuracy

Training regimen

We performed the same training procedure as the baseline grid search, with the exception that

instead of halving the learning rate every 10 evaluations, the patience was increase exponentially;

each time the learning rate was halved, the patience increased by a factor of 1.2 (starting at 10).

Results

All figures are averaged across the 5 folds trained for each model.

The validation and test accuracies in Table 2.5 show that including information from the

pretrained BDLM can improve secondary structure prediction, with the notable exception of the

ELMO2 model.

The validation loss curves in Table 2.6 show the 95% confidence intervals at each validation

step during training. The curve for ELMO2 is interesting, as all copies of that model showed quick

improvements to validation performance early on in training, then leveled off. This is consistent

with the model overfitting, and could explain its relatively poor performance on the test set. In

contrast, the other three models show gradual improvements over a longer span of the training

process.

Since the sequences in the pretraining dataset have a slightly higher maximum length (1040

vs. 700), one might expect performance on longer sequences to improve for pretrained models.

There appears to be some evidence of this in Table 2.8, with our best model, ELMO1, outperforming
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Figure 2.6: Mean validation losses and 95% confidence intervals

(a) Baseline model (b) outSEQ model

(c) ELMO1 model (d) ELMO2 model

Figure 2.7: Confusion matrices
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Figure 2.8: Mean test accuracy vs. sequence length

all other models at sequence lengths above 300. Model accuracy for lengths above 550 is somewhat

unpredictable, with ELMO2 beating outSEQ despite worse performance across all other lengths.

Sequence/structure mutual information

Information theoretic measures have been used to explore the statistical relationships between

protein sequence and structure [80]. In addition to empirically testing the impact of the represen-

tations learned by pretrained language models, it is also possible to directly measure the amount

of information about the structure labels they contain.

Mutual information captures the amount of information contained in one (potentially vector-

valued) random variable about another. It is conceptually similar to the covariance, with the im-

portant difference that covariance captures linear relationships whereas mutual information can

capture both linear and nonlinear relationship between random variables. For discrete random

variables X,Y , the mutual information I(X;Y ) is defined as

I(X;Y ) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
.

Another way of viewing mutual information is as the difference of the joint distribution p(X,Y )

from the product of the marginal distributions p(X)p(Y ). Note that I(X;Y ) >= 0 and is 0 if and

only if p(X,Y ) = p(X)p(Y ); that is, the mutual information is zero only when the two random

variables are independent, and positive otherwise.
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For discrete distributions, one can calculate the sample mutual information directly. How-

ever, this isn’t possible in the case of continuous variables, as this typically requires integrating

the density function of the joint distribution. There are several methods for estimating MI of con-

tinuous random variables that have been shown to do well empirically [81]. Notably, the nearest

neighbor-based method introduced in [82], referred to as KSG, estimates entropy by using distances

to the k-nearest neighbors of each sample, and has the theoretical guarantee of being an unbiased

estimator of MI as the amount of data grows. We use KSG to estimate the mutual information of

the PSSMs with the secondary structure labels.

Table 2.7 contains the mutual information for the CPDB 513 test set for several variables

of interest and secondary structure, s. Here, a indicates the true amino acid labels; â are the

predictions made by the BDLM, L (â = argmax oi); max ap are the indices of the PSSMs for each

position, and ap are the real-valued PSSM features. We used KSG with k = 1000 to estimate

I(s; ap). The value in the table is equal to the estimate of I minus an estimate of the systematic

error, calculated by averaging over random shuffles of the data (randomly shuffling X should result

in a mutual information with Y of 0).

Table 2.7: Mutual information results

I(s;−)

a 0.067055
max ap 0.091479

â 0.594856
ap 0.616562

Information content of several variables with secondary structure labels for the CB513 test set.

I(s;a) gives the information shared between amino acids and corresponding secondary struc-

tures for each residue in the dataset. The position-wise correlation between amino acid and sec-

ondary structure is known to be relatively weak and we use this as a baseline.

I(s; max ap) is an estimate of I for secondary structure and the PSIBLAST-generated

PSSMs. These scoring matrices are calculated by an iterative multiple sequence alignment pro-

cess, and contain much more information about structure than amino acids alone. In this case, we

discretize the scores by assigning a label to each sample equal to the amino acid with the largest

value in the scoring matrix. This is equivalent to assigning the label of the amino acid which
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would maximize the alignment score at that position. Unsurprisingly, this results in a relatively

low mutual information with the structure, as in most cases the amino acid that would maximize

an alignment score is the precisely the amino acid found at that position.

In comparison, I(s; â) is the mutual information of secondary structure and the predicted

amino acids at each position. This is a coarse-grained measurement of the quality of the repre-

sentations learned by our BDLM, but interestingly it shows a markedly high amount of shared

information. It is worth noting that as accuracy of the language model improves, the mutual in-

formation of its predictions and the secondary structure will approach I(s;a); that is, better L

predictions for amino acids would eventually decrease I(s; â).

2.7 Discussion

2.7.1 Model performance

There are subtle differences between the performance of the baseline, outSEQ, and ELMO1. In

terms of end performance, the latter two with pretrained feature inputs suggest that these features

improve test accuracy, with the richer features provided by ELMo improving performance slightly

more than the output probabilities of the language model. All 3 models also have notably different

loss curves during training from the baseline model, with validation loss decreasing both more

quickly and converging to lower values across the board. In the case of ELMO2, this led to

overfitting and the end performance suffered as a result, however for outSEQ and ELMO1, both

training and validation loss decreased jointly throughout training.

An examination of the results per secondary structure label reveals that our best 2 models

show the same pattern: they are somewhat worse at recognizing α-helices (H), but more accurate

for β-strands (E), bends (S), and 310-helices (G) and roughly on par with the baseline for turns

(T).

ELMO1 vs. ELMO2

The disparities between ELMO1 and ELMO2 are worth considering. Both models use a weighted

sum of the internal activations of L, however ELMO1 compresses these into a feature vector of size

23 - less than 1/20th the size of the unmodified representations - whereas ELMO2 only reduces
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the dimensionality by about half, to 233. Although the overall number of features remains the

same, a larger proportion come from ei for ELMO2, and this results in overfitting. In fact, the

training behavior of ELMO2 more closely resembles that of baseline models that were trained with

no dropout. We hypothesize that this is due to the model fitting to spurious relationships in the

embeddings, and this likely does not occur for ELMO1 due to the size of the projection acting as

a bottleneck.

2.7.2 Information content

In section 1.3.4, we mentioned that one way unsupervised pretraining may be helpful for supervised

learning is by guiding the model to learn useful features about the causal factors of the observed

variables, in this case the primary sequence of proteins. It is an interesting exercise to consider

what the causal factors of protein sequences might be, and in the case of homologous proteins, we

already have some idea: the evolutionary pressures that preserve protein structure in such cases,

discussed in section 1.2.2, guide the process of mutation to favor sequences whose associated native

structures are similar to one another. This fact is perhaps why PSSMs calculated via multiple

sequence alignments (MSA) - which encode the evolutionary neighborhood around related proteins

- have such a large positive impact on predicting secondary structure.

Unlike an MSA, however, our language model was trained on proteins filtered to have low

sequence identity. With the acknowledgement that our filtering procedure is noisy and therefore

likely does not eliminate every homologous protein from the dataset, it seems reasonable to claim

that for a given sample xi, the outputs of L, oi, encode information about the distribution of

sequences xj , j 6= i that aren’t in the evolutionary neighborhood of xi - precisely the opposite of

the sort of information captured by the PSSM features ap.

With that being said, Table 2.7 shows that I(s; â) (which is itself only a coarse-grained

estimate of I(s;oi)) - nearly matches I(s;ap). That is, the predictions of L contain nearly as

much information about secondary structure as the PSSMs. Investigating why this is the case is a

compelling question for future research.
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Chapter 3

Conclusion

In the final chapter of this thesis, we provide interesting directions for future work and offer some

concluding remarks.

3.1 Future Work

Much of our understanding about the utility of language models comes from results reported in

natural language processing, and more research needs to be done to build a robust understanding

of their representational and predictive power on biological sequence data. There are some clear

directions to pursue to further shed light on these models.

Due to resource constraints, both the size of our language model and the amount of unla-

beled data on which it was trained were limited. Training on the full set of proteins available (over

13 million) would almost certainly improve the representations learned by this model.

Although we did not emphasize this fact here, one major benefit of pretraining is that

the relatively expensive pretraining process can be amortized via transfer to new domains. The

pretrained model described in our work can be applied to any sequence prediction task where it

might reasonably be expected that protein sequence information be beneficial to task performance.

This includes fine-tuning on new protein sequence datasets, or predicting other sequence properties

such as solvent accessibility, contact maps, and torsion angles.

In the section on unsupervised pretraining, we noted that sequence autoencoders are also a

valid method for pretraining recurrent neural networks. Work published in early 2018 [83] demon-
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strated that autoencoders can learn to embed proteins in a latent space wherein euclidean distance

corresponds to edit distance. Sequence autoencoders offer a natural way to learn a global represen-

tation (in contrast to the local representations learned by language models) that may be amenable

to predicting properties of proteins that are also global, e.g. antimicrobial activity, toxicity, edit

distance, etc.

3.2 Concluding Remarks

We trained a bidirectional language model on protein sequences and evaluated the effect the rep-

resentations learned by this model had on secondary structure prediction. Our experiments show

that these representations contain a significant amount of information about secondary structure

even when trained on primary sequence alone, and suggest that they have a beneficial effect on

performance. We believe these results are encouraging, and that further research will elucidate the

potential of neural language models for unsupervised learning on biological sequence data.
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Appendix A

Reproducing (Sonderby & Winther,

2015)

Validating experiments by reproducing their results is crucially important in science as it strength-

ens the basis upon which future research is conducted. The goal of this section is to build confidence

in recent literature applying deep learning to protein secondary structure prediction. We followed

these policies when reproducing results:

• Implement the model as close to its description as possible

• In cases where there is ambiguity, or the authors do not specify, choose a reasonable default,

and make that choice clear

• In cases where there are multiple models or training setups, choose the one with the best

reported Q3/Q8 accuracy on CB513 (or a similar independent test set)

• Only compare single models, not ensembles

A.1 Protein secondary structure prediction with long short-term

memory networks

The model proposed in [12] includes an interesting variation on traditional long short-term memory

networks while remaining conceptually straightforward. While the performance reported at the time
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was state of the art for Q8 accuracy, we note that the training and evaluation procedures used could

have been better detailed and more rigorous. The combination of these facts means that there is

value in reproducing these results.

A.1.1 Architecture details

The model consists of a bidirectional long short-term memory recurrent neural network. Both

forward and backward networks have 3 layers of 300 or 500 units each. The basic LSTM structure

is modified to pass the hidden state at each time step through a feed-forward network with 2 layers

of 300 or 500 units with ReLU activations and skip connections. The outputs of the forward and

backward networks is concatenated and fed through 2 fully-connected layers of 200 or 400 units

each and ReLU activations.

The LSTM used here has the same formulation as described in equations 1.1 through 1.6,

with the added feed-forward network between the recurrent hidden-to-hidden activations:

ht−rec = ht + feedforwardnet(ht)

A.1.2 Dataset

We use the same dataset as the original paper, CPDB.

A.1.3 Setup and training

Since we are interested in reproducing a particular paper, we do not attempt to optimize the choice

of any hyperparameters. The LSTM weights were initialized by sampling from a uniform random

distribution in the range [-0.05, 0.05]. The weights of the fully-connected layers were initialized by

the default in the Lasagne library; when we checked on 29/04/2018, this was the Glorot uniform

distribution. All biases were initialized to zero. The concatenation network was regularized using

dropout with a keep probability of 50%. The model was optimized with the AdaDelta optimizer

[84] with default settings (learning rate=1.0, rho=0.95, epsilon=1e-6) using a batch size of 128.

After each backward pass, the global norm of the gradient divided by the batch size was calculated,
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norm2 = ‖ gradient

batch size
‖2.

If the norm exceeded 0.5, the gradient was scaled by 0.5
norm2

. The initial cell and hidden

states for the forward and backward networks were learned.

Our experimental setup replicates the original setup with some small differences:

• No details are provided for how many epochs or steps the models were trained for, nor what

stopping conditions (if any) the authors observed. We chose to implement a simple algorithm

that stopped training once the validation loss had not improved for 8 validation steps.

• To speed up training, we group samples by sequence length into buckets [72].

• Due to GPU memory constraints, we use a batch size of 50 for all buckets.

A.1.4 Results

The results for both the small and large versions of the model are in the figures below. The training

does not run for the same number of steps for both models due to the early stopping procedure

mentioned above. In both cases, the total training time was less than 2 hours.

Table A.1: Reproduced Q8 and Q3 accuracies

CB 513 (Test) Q8 Accuracy Q3 Accuracy

LSTM Small (Original) .671 N/A
LSTM Large (Original) .674 N/A

LSTM Small (Ours) .6658 .7990
LSTM Large (Ours) .6578 .7881
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