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UNSUPERVISED LEARNING WITH WORD EMBEDDINGS CAPTURES  

QUIESCENT KNOWLEDGE FROM COVID-19 AND  

MATERIALS SCIENCE LITERATURE  

 

 

Tasnim Gharaibeh, Ph.D. 

 

Western Michigan University, 2022 

 

 

Millions of scientific papers are produced each year and the scientific literature is 

continuing to grow at a head-spinning speed. Thus, massive scientific knowledge exists in solid 

text, but all these publications make it difficult, if not impossible, for researchers to keep in up 

to date with discoveries, even within a narrow scientific area. This massive amount of 

information  also makes it difficult to find implicit and hidden connections, relationships, and 

dependencies within the information that may guide the direction of future research or lead to 

valuable new insights. So, there is a need for algorithms or models that can scan the text of 

millions of papers to uncover new scientific knowledge and search for hidden connections 

within this knowledge. For computer algorithms, to utilize this resource, it should be converted 

in terms of numbers and represent the words in some mathematical form. This is where artificial 

intelligence and machine learning can help. Advanced algorithms in machine learning and 

natural language processing can be used to make large databases more useful and easier to 

handle by both researchers and clinicians. We used Word2Vec for our implementation and 

trained many unsupervised word-embedding models on different data sets in materials science 

and in the medical field to extract hidden knowledge, relations, and interactions based on words 

that appear in similar contexts in the text while often having similar meanings. So far, we have 

adopted three main models. The first is trained within additive manufacturing (AM), targeting 

the powder bed fusion (PBF) processes, such as selective laser sintering (SLS), selective laser 

melting (SLM), and direct metal laser sintering (DMLS), with the goal of extracting new 

knowledge to improve AM processes and address material properties depending on the process 



used. Other properties inherent to the materials, such as the giant magnetocaloric effect, are 

also addressed in a specific model. The second model is trained within COVID-19 drugs 

literature to address what insights can be obtained on candidate drugs to treat COVID-19. 

Finally, the third model is trained within COVID-19 vaccine literature to predict good 

candidate vaccines. We thus demonstrate how word embeddings can help extract hidden 

knowledge from the published literature in very distinct areas of research.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background and Context 

 

Machine learning approaches are usually divided into three categories: supervised, un-

supervised, and reinforcement learning. Supervised learning deals with labeled data, data that 

contains both the inputs and the desired outputs, to train the model. It uses linear regression, 

neural networks, nearest neighbor, or naive Bayes algorithms to predict or classify data. 

Reinforcement learning allows machines or software agents to automatically decide the 

required behavior within a specific situation to maximize its performance. Using Q-Learning, 

temporal difference (TD), or deep adversarial networks, reinforcement learning algorithms can 

be applied to robotic hands, computer-played board games, and self-driving cars. Unsupervised 

learning is a machine learning technique that allows the model to work on its own to find 

structure and discover patterns and information that were previously undetected, without the 

need to supervise the model. It mainly deals with unlabeled data as input [1]. Clustering and 

association are two types of unsupervised learning. The association rules establish relations 

among data objects inside large databases, whereas clustering splits the dataset into groups 

based on their similarities. 

The word embedding technique is one of the most important, versatile examples of 

unsupervised learning models, leading to a type of language modeling or word representation 

that allows words with similar meanings to be understood by machine learning algorithms [2]. 

As a representation of words obtained from an unlabeled large corpus, by embedding both 

semantic and syntactic meanings, word embedding can be represented as:  

 

V      ℝD: 𝑤       𝑤 
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mapping a word 𝑤 from a vocabulary V to a real-valued vector in an embedding space of 

dimension D [3]. To compute the similarities between vectors in the embedding space, the 

cosine similarity function can be used, which is defined as  

 

similarity(w1,w2) =
w1.w2

║w1║║w2║
 

 

According to this function, the nearest neighbors of a word 𝑤 are given as a list of words 

vϵV\{𝑤}, sorted in descending order [3]. 

Word embedding is an important method commonly used in the tasks of modern natural 

language processing (NLP), such as semantic analysis [4], retrieval of information [5], 

dependency parsing [6] [7] [8], query answering [9] [10], and computer translation [9] [11] 

[12]. In these techniques, individual words are represented as real-valued vectors, often 

comprising tens or hundreds of dimensions, in a predefined vector space. Each word is mapped 

to one vector. The vector values are learned using an approach that resembles a neural network, 

and, hence, the technique is often lumped into the field of deep learning. The word-embedding 

methods vary and can be grouped into different categories. For example, models can be 

classified as either paradigmatic or syntagmatic models, based on the word distribution 

information [13] [14]. The most important aspect of the syntagmatic model is that words co-

occur in the text region, whereas for the paradigmatic model, it is a similar context that matters.  

Another grouping that is dependent on how the word embedding is generated divides models 

into two classes: matrix factorization and sliding-window sampling. The first method is based 

on the word co-occurrence matrix, where word embeddings are obtained from a matrix 

decomposition. In sliding-window sampling, data sampled from sliding windows are used to 

predict the context word [15]. Word embeddings have many important applications, such as 

idiomaticity analysis, sentiment analysis, syntax analysis, speech (POS) tagging, named entity 
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recognition, as well as textual entailment [16]. Various word-embedding models are available, 

such as Word2Vec, GloVe, and FastText.  

The Word2Vec method is based on a shallow neural network with two layers, which 

takes a large corpus of text as its input and produces a vector space, typically of several hundred 

dimensions, with remarkable linear relationships called analogies. These allow for math 

operations, such as vec(“king”) - vec(“man”) + vec(“woman”) ≈ vec(“queen”) [17]. As an 

unsupervised learning technique, and a machine learning algorithm used to draw inferences 

from datasets consisting of input data without labeled responses, it comprises two techniques: 

CBOW (Continuous Bag of Words) and Skip-gram. CBOW predicts the probability of a word 

given a context, while Skip-gram predicts the context given a word. These machine learning 

models have great benefits and a significant impact in many areas of science and technology, 

including medical research and materials science. 

1.1.1 COVID-19 Drugs 

 

The increase in knowledge and understanding of diseases and drugs is associated with 

a growth in information. The resulting big data is ready to deliver the benefits of the application 

of machine learning (ML) in diagnosis, prognosis, and drug development. AI and machine 

learning models can change drug discovery radically by extracting hidden patterns, structures, 

relations, and evidence from biomedical data. Pharmaceutical companies have used AI for drug 

discovery and development. 

At a time when COVID-19 patients flood hospitals worldwide, physicians are searching 

for effective antiviral therapies to save lives. However, there is still a lack of proven effective 

medications against COVID-19. Multiple vaccine trials and treatments are underway, yet they 

need more time and testing. Furthermore, the SARS-CoV-2 virus that causes COVID-19 

appears to affect various animals in different ways (with respect to infection and spreading), 

which limits preclinical animal studies. So, one of the many major challenges of the pandemic 
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has been to find effective treatments for the virus. The rapid spread of coronavirus has created 

an immediate need for comprehensive therapies, which is a massive undertaking for scientists 

and drug developers.  

Since word embedding in machine learning could speed the research and open further 

options by detecting existing drugs that could help fight COVID-19, we trained an 

unsupervised learning model using the Word2Vec algorithm to capture latent knowledge about 

COVID-19 drugs from the most recent literature, while focusing on the keywords: drugs, 

biomedical, medication, antibodies, immunity, immunology, and vaccines. Depending on the 

co-occurrence of the words, since words that occur together tend to have a similar context, we 

used approved drugs, such as remdesivir, or most promising drugs, such as avigan, atazanavir, 

dexamethasone, and REGN-COV2, as seeds to our model to find the most similar drugs. As a 

result, we suggest some possible candidate drugs for clinical investigation or support other ones 

in different testing phases for approval, according to their high similarity with the currently 

approved and most promising treatments.   

1.1.2 COVID-19 Vaccine 
 

In order to address the COVID-19 pandemic by limiting transmission, an intense global 

concerns the development of a safe and effective vaccine, which generally requires several 

years of pre-clinical and clinical stages of evaluation, as well as strict regulatory approvals. 

However, because of the unprecedented impact of COVID-19 worldwide, the development and 

testing of new vaccines have been accelerated. There are currently some authorized, not yet 

approved, vaccines to fight COVID-19, besides other ones in clinical evaluation or in a pre-

clinical stage, and many more being researched. Vaccine discovery methods have been costly, 

and it may take many years to develop an appropriate vaccine against a specified pathogen. In 

the COVID-19 case, vaccines are essential in reducing morbidity and mortality, especially 

since the virus establishes itself in the population. Thus, the development of a new vaccine 
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should be accelerated to save lives. When most people in a community are vaccinated against 

a disease, the ability of the pathogen to spread is limited, which also provides indirect 

protection to people who cannot be vaccinated. Machine learning can accelerate the discovery 

of effective vaccines or suggest components of a vaccine after understanding the viral protein 

structure and assist medical researchers scouring tens of thousands of related scientific papers 

[17][18]. 

1.1.3 Materials Science 

Materials science focuses on the relationship between the structure, operation, 

characteristics, and applications of materials. Current material science research involves many 

“trial-and-error methods,” depending on the experience that guides a large number of 

experiments, with a limited number of computer simulations and calculations. This 

conventional method of studying materials is unreliable and consumes time, manpower, 

materials, and financial resources [19]. Therefore, finding a new efficient research method is 

necessary to accelerate innovation. Machine learning could speed up the process by 

constructing models that learn rules from datasets to effectively predict required properties of 

materials, optimize the process parameters, obtain the hidden relationships among various 

variables, guide the chemical synthesis route, and improve current material characterization 

methods [20]. 

In materials science, additive manufacturing (AM) is an advanced type of 

manufacturing technique that fabricates parts. It is the process of creating a 3D object through 

a computer-aided-design (CAD) method by building it layer by layer. Several sectors are now 

taking advantage of fabricating complex structures using AM technologies to increase 

functionality, light-weighting, and part number reduction. AM is being used to fabricate end-

use products in aircraft, custom parts (e.g., classic car parts, surgical tools), dental restorations, 

medical implants, automobiles, handling and robotics, and even fashion products [21]. 
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Specific methods can be implemented in additive manufacturing based on different 

needs to utilize different deposition techniques. Some of these melt the materials and some 

change the materials into semisolid forms or powders. According to the different heating 

sources used to change the material states, such as lasers and resistance heaters, additive 

manufacturing can be divided into seven different processes [22]: vat photopolymerization 

[23], material jetting, binder jetting, material extrusion, powder bed fusion, sheet lamination, 

and direct energy deposition [24].  

In powder bed fusion (PBF), thermal energy is used, typically in the form of a laser or 

electron beam. Because of its low-cost quality, this process has widely grown in the last few 

years and attracted the interest of researchers. PBF also allows for different materials, including 

metals, plastics, glass, and alloys. Since the powder used in the process can be recycled to 

produce more parts, recycling is one of the best qualities of PBF [25].  

Selective laser sintering (SLS), selective laser melting (SLM), and direct metal laser 

sintering (DMLS) [24][26] are common versions of powder bed fusion for fabricating metal 

parts.  

SLS is a process of combining powder material (e.g., nylon, thermoplastic, or 

polystyrene) to build a solid piece layer by layer using heat and pressure, performed with the 

help of a laser beam. SLS is ideal for biomedical uses, such as prosthetics, pre-surgical 

planning, and bone scaffolds for tissue engineering [27][28]. 

SLM is a process that fabricates 3D products layer by layer using high-energy laser 

beams on a powder bed, where the powder is melted rather than sintered. SLM can process 

different materials, such as polymers, engineering plastics, and ceramic and metal oxide 

materials. Furthermore, among all AM processes, SLM is the fastest and is able to fabricate 

multiple parts in one round [29]. 
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Direct metal laser sintering (DMLS) is also a layer-by-layer, laser-based AM technique, 

in which the product is developed with the use of metal powders. Basically, the machine 

fabricates the object on a movable platform by applying incremental layers of the pattern 

material, with an equal thickness of approximately 0.1 mm [29]. All processes continue, layer 

by layer, until the object is fabricated completely. 

In PBF techniques, process and product development are based on a few factors, such 

as alloy chemistries, powder characteristics, powder bed processes and beam, powder 

interactions, and material properties and performance. The wide range of materials that can 

potentially be processed using PBF is one of the main advantages of PBF techniques. 

Theoretically, any material that can be melted and resolidified can be processed with PBF; but, 

in practice, this is not the case. The main materials and alloys used in PBF processes are 

aluminum, tool steels, titanium, stainless steel, refractory, and super alloys [25]. 

However, PBF has its challenges, including high material costs; slow speeds; laborious 

post-processing requirements; and restrictions on materials compatibility. In addition, a variety 

of defects limits the process in terms of repeatability, precision, and resulting mechanical 

properties [30], such as porosity, cracks, and residual stresses problems. These challenges can 

be improved by more research into how the materials interact when being fused together. Also, 

if more people understand the material properties and how they interact in specific heat (such 

as lasers) and for different alloys, then there is a better chance to understand how to avoid these 

defects and make this process more efficient. The world is still waiting for materials that enable 

the technology to fulfill its true potential. 

As an example for these materials and within our area of interest are the materials with 

compounds exhibiting a giant magnetocaloric effect (GMCE). By applying/removing a 

magnetic field, the isothermal entropy or the adiabatic temperature will change. A sharp change 

in magnetization associated with the structural transformation from the high-temperature 
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austenite phase to the low-temperature martensite phase of lower crystallographic symmetry 

results in large GMCE [31]. Simply, it is the ability of some magnetic materials to heat up 

when they are magnetized and cool down when are demagnetized in a thermodynamic cycle. 

Ni-Mn-based Heusler alloys are one of the materials that exhibit GMCE materials. Heusler 

alloys (HAs) are materials of enormous interest due to their multifunctional properties 

including shape memory, magnetoresistance (MR), thermoelectric effect, half-metallicity, spin 

filtering, and spin injection [31]. 

To lend a hand in facing these challenges, we trained several unsupervised word-

embedding models using Word2Vec on literature involving powder bed fusion (PBF) as the 

AM process, trying to determine the main additive manufacturing parameters that affect the 

alloy properties, after the composition is already known or determined. Furthermore, using 

these models, we intend to search for new high-performance materials or properties that are 

similar to the ones currently known and could be used to improve AM. 
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CHAPTER 2 
 

THE PROBLEM ADDRESSED IN THIS DISSERTATION 

 

2.1 Problem Statement 

 

The vast majority of scientific knowledge is published in articles that provide useful 

knowledge of the interactions and relationships between data objects as viewed by the authors. 

However, it is difficult to interpret this knowledge either by ordinary machine learning 

approaches or advanced statistical analysis. For its leverage, that knowledge from the published 

literature is represented using vectors of words or word embeddings. Without human labeling 

or any explicit insertion of pre-knowledge, these embeddings can capture hidden or unknown 

relations existing within very different fields, such as materials science or COVID-19 drug and 

vaccine research.  

2.2 Research Questions 

How can word embeddings, using Word2Vec, help to extract hidden knowledge from 

the published literature? 

What candidate drugs can be obtained from word embeddings using Word2Vec 

algorithms to treat COVID-19 (the study and results reported in [32])? 

What candidate vaccines can be obtained from word embeddings using Word2Vec 

algorithms to reduce COVID-19 cases (the study and results reported in [33])? 

What new knowledge on materials and properties, which are similar to those of known 

materials and properties, can be extracted to improve AM processes? 

2.3 Relevance and Importance of the Research 
 

Our COVID-19 model may suggest possible candidate drugs or vaccines for clinical 

investigation and support other ones in different testing phases for approval, according to their 

high similarity with currently approved and most promising treatments. We also hope that our 
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AM models, particularly on SLS, SLM, and DMLS, could add some improvements to AM 

processes. 
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CHAPTER 3 

 

LITERATURE REVIEW 
 

3.1 COVID-19 Drugs 
 

3.1.1 Drug Repurposing 
 

Drug repurposing or repositioning is a strategy that uses previously approved drugs to 

treat newly emerging and challenging diseases, including COVID-19, by extracting hidden 

patterns and evidence from biomedical data [34]. This technique reduces development 

timelines and costs, since the safety of these drugs has already been tested in clinical trials for 

other applications. The probability of failure is lower because, in preclinical models, the 

repurposed drug has already been shown to be reasonably effective, and subsequent efficacy 

tests are less likely to fail at least from a safety point of view if the early-stage tests have been 

completed [35]. Some successful drug repurposing examples are Zidovudine in 1987 to treat 

HIV/AIDS, which was originally used to treat cancer, and the repurposing of aspirin in 2015 

to treat colorectal cancer, even though its regular use had been for analgesia [35]. 

3.1.2 Drug Repurposing Using Machine Learning 

Machine learning is creating a paradigm shift in medicine, starting with research and 

ending in clinical applications. A variety of machine learning methods are showing their utility 

for drug discovery and development, such as naive Bayesian, support vector machines, and, 

more recently, deep neural networks.  

Many works discuss the role of machine learning models in precision medicine. Beck 

et al. [40] developed a hybrid CNN and RNN model called Molecule Transformer-Drug Target 

Interaction (MT-DTI), a pre-trained deep learning-based drug-target interaction model to 

predict whether any commercially available antiviral drugs could work for SARS-CoV-2. The 

authors identified several known antiviral drugs, such as atazanavir, remdesivir, efavirenz, 
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ritonavir, and dolutegravir, for the potential treatment of SARS-CoV-2 infection. Furthermore, 

they suggested considering the list of antiviral drugs identified by the MT-DTI model and also 

found that several antiviral agents, such as Kaletra (lopinavir/ritonavir), could be used for the 

treatment. According to the associated inhibitory potency, their result showed that the best 

chemical compound is atazanavir, which is an antiretroviral medication used to treat and 

prevent human immunodeficiency virus (HIV) infection, with an inhibitory potency of 94.94 

nM against the SARS-CoV-2 3C-like proteinase; remdesivir (113.13 nM) came next, then 

efavirenz (199.17 nM), ritonavir (204.05 nM), and dolutegravir (336.91 nM). In Beck et. al’s 

prediction, lopinavir, ritonavir, and darunavir may also bind to the replication complex 

components of SARS-CoV-2 with an inhibitory potency with Kd < 1000 nM, in addition to 

targeting viral proteinases [40]. 

Another machine learning technique used to discover candidate drugs for SARS-CoV-

2 is graph representation learning. This deep-learning technique is used to predict new links 

and relations between existing approved drugs. The graph contains relationships between 

different kinds of medical entities (e.g., diseases, drugs, and proteins). Gysi and his team [36] 

used this technique to develop a model that presented a SARS-CoV-2 case study with 81 

potential repurposing candidates identified. According to their prediction, the virus can be 

found in different tissues, such as the reproductive system, and brain regions. They developed 

three network-based drug repurposing strategies, relying on their prediction and depending on 

network proximity, diffusion, and AI-based metrics. Based on their likely efficacy for COVID-

19 patients, in addition to aggregating predictions, their strategies rank all approved drugs. 

Ritonavir, isoniazid, troleandomycin, cilostazol, chloroquine, rifabutin, and flutamide are the 

first seven highest ranked COVID-19 candidate drugs. 

Another team worked with graph representation learning to construct a comprehensive 

COVID-19 knowledge graph (named CoV-KGE), using a large scientific corpus of 24 million 
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PubMed publications to create a knowledge graph with 15 million edges across 39 types of 

relationships connecting pathways, drugs, genes, diseases, proteins, and expressions of genes 

and proteins. To build this deep-learning methodology, Zeng et al. [37] used Amazon Web 

Services’ computing resources and graph representation learning techniques. As a result, the 

team identified 41 repurposed drug candidates (including dexamethasone and melatonin) for 

COVID-19 treatment distributed over three categories, including anti-inflammatory agents, 

selective estrogen receptor modulators (SERMs), and antiparasitics. For validation, they used 

the ongoing COVID-19 trial data set as a validation set. CoV-KGE showed high performance 

in identifying COVID-19 repurposable drugs, as indicated by its large AUROC metric value 

(AUROC = 0.85). AUROC, the area under the receiver operating characteristic, is a 

performance metric that can be used to evaluate classification models [37]. 

Kuusisto and his team [38] introduced an unsupervised learning method using a word-

embedding mining approach to find out candidate treatments for SARS-CoV-2. They used the 

BioWordVec5 model [39], the most recent prebuilt biomedical word embedding available at 

the time, which performed well on several benchmark tasks. Given that SARS-CoV-2 is a strain 

of SARS-CoV they used SARS as an approximation reference to SARS-CoV-2 or COVID-19 

because BioWordVec was published before SARS-CoV-2 was discovered and has no reference 

to SARS-CoV-2 or COVID-19 in its vocabulary. To find a vector representation for treatments, 

they used the analogy approach [17]. Taking advantage of word-embedding structure and its 

ability to carry semantic meaning, they used three separate drug-to-disease pairs as a seed 

treatment for the analogies: metformin to diabetes, benazepril to hypertension, and albuterol to 

asthma. The drug names were extracted from the FDA’s approved drug database [41]. To 

validate their work, they used these seed drug-disease pairs as analogies to find drugs for 

Alzheimer’s, allergies, and cancer. All drugs resulting from each analogy for each validation 

disease were the drugs with primary indications for this disease (Alzheimer’s, allergies, and 
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cancer) or a similar disease from the same family. Then they used SARS as the query disease 

and marked every drug that has either been suggested or is currently under investigation for 

the treatment of SARS-CoV-2. Their results showed 22 of 50 drugs either suggested or under 

investigation for treatment against SARS-CoV-2 from the metformin-diabetes analogy, 12 of 

50 hits from benazepril-hypertension analogy, and 8 from the albuterol-asthma analogy. 

Amantadine, rimantadine, zanamivir, oseltamivir are some hits common to all analogies. 

3.2 COVID-19 Vaccines 
 

3.2.1 Vaccine Development  

A pathogen is a bacterium, virus, parasite, or fungus that can cause disease within the 

body. Each pathogen has its unique subparts. One important factor is the antigen, which causes 

the formation of antibodies. The antibodies produced in response to the pathogen’s antigen are 

an important part of the immune system. Often, vaccines contain weakened or inactive parts of 

a particular antigen that train the immune system to recognize and fight pathogens, which 

greatly reduces the risk of infection. The immune system can safely recognize the pathogen 

when it is encountered naturally; and by delivering an immunogen, a specific type of antigen 

elicits an immune response [42].  

To fight virus-infected cells, the host immune system produces antibodies on the 

surface of B-cells or attacks the virus directly using T-cells. To assist T- and B-cells in attacking 

and binding with invaders, the human leukocyte antigen (HLA) gene encodes MCH-I and 

MCH-II proteins, which present epitopes as antigenic determinants [43].  

To ensure the safety and efficiency of the new vaccine, many actions and steps are 

taken, such as pre-clinical studies, Phase I clinical trials, Phase II clinical trials, Phase III 

clinical trials, Phase IV post-marketing surveillance, and human challenge studies. In the pre-

clinical studies, the vaccine is tested first in animal studies for efficacy and safety. Then in a 

Phase I clinical trial, small groups of healthy adult volunteers receive the vaccine to test for 
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safety. After that, in a Phase II clinical trial, people who have characteristics for whom the new 

vaccine is intended are given the vaccine. The next step of testing the vaccine is by giving it to 

thousands of people, which is a Phase III clinical trial. After the vaccine is approved and 

licensed, many studies are conducted to learn the future effects of the vaccine in the population 

in the long term [44]. 

Since the outbreak of the novel coronavirus, different machine learning approaches 

have been used to predict potential effective vaccines.  

3.2.2 Machine Learning and the Development of COVID-19 Vaccines  

To accelerate the vaccine design process by predicting the design of a multi-epitope 

vaccine for COVID-19, Zikun et al. [45] implemented a supervised deep-learning model 

(DeepVacPred) in silico. From the available SARS-CoV-2 spike protein sequence, their model 

was able to predict 26 candidate vaccine subunits, by combining the in silico 

immunoinformatic and deep neural network strategies. In order to construct a multi-epitope 

vaccine for the SARS-CoV-2 virus, they identified the top 11 from the 26. According to the 

best 11 candidates, they suggested a 694aa (consisting of 694 amino acid residues) multi-

epitope vaccine that contains 16 B-cell epitopes, 82 CTL epitopes, and 89 HTL epitopes, as a 

promising vaccine to fight the SARS-CoV-2 viral infection. They also concluded that the 

designed vaccine can be used successfully with the recent RNA mutations of the virus by 

investigating the SARS-CoV-2 mutations for RNA. 

Since the T-cell and B-cell epitopes could be used to produce good vaccines, as well as 

recognize neutralizing antibodies, Fast et al. [46] tried to identify 2019-nCoV T-cell and B-cell 

epitopes based on viral protein antigen presentation and antibody binding properties, using 

computational tools from structural biology and two supervised neural networks (MARIA, a 

multimodal recurrent neural network [47] and NetMHCpan4, a trained neural network in [48]). 

Their results show good antigen presentation scores for 405 potential viral peptides, for both 
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human MHC-I and MHC-II alleles. Their models also identified two potential neutralizing B-

cell epitopes close to the 2019-nCoV spike protein receptor-binding domain (440-460 and 494-

506). They also concluded that the spike protein for the SARS-CoV-2 virus could be a potential 

vaccine candidate. This conclusion was the result of their analysis of mutation profiles of 68 

viral genomes spread through four continents that showed no mutations are present near the 

spike protein receptor-binding domain, and 96 coding-change mutations occurred only in 

regions with good MHC-I presentation scores [46].  

By using the same method, the recurrent neural networks (RNN), and a training set 

consisting of alpha, beta, gamma, and delta coronavirus spike sequences, Crossman simulated 

the spike protein sequences of coronaviruses for the previously known sequences and tested 

their characteristics. This simulation could help in the development of vaccine design to predict 

alternative possible spike sequences that could arise in the future [49].  

In another study that introduces a computational framework from several computational 

approaches, such as reverse vaccinology and immunoinformatics tools with deep learning, 

Abbasi et al. [50] predicted a potentially suitable protein vaccine candidate against SARS-

CoV-2. Reverse vaccinology uses the expressed genomic sequences to find new potential 

vaccines, whereas immunoinformatics tools, such as PSORTb, FungalRV, SignalP, TargetP, 

IEDB, BLASTp, ProtParam, Vaxijen, etc., were modified to classify proteins into positive and 

negative datasets. As a result, one protein (Spike S–Surface Glycoprotein with accession no. 

QHD43416.1) was shortlisted as a potential vaccine candidate out of the 10 proteins of SARS-

CoV-2. Out of 41 B-cell epitope sequences that were predicted using BcePred, only 15 peptides 

were identified to be highly antigenic as specified by the Vaxijen server, where a peptide 

“DLCFTNVY” is predicted as the highest-ranking peptide. For T-cell epitopes, they consider 

peptides with a 100% conservancy rate, so 45 epitopes were identified by the ProPred-I tool to 

be conserved out of the 46 predicted MHC class-I binding epitopes, where KIADYNYKL was 
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found with the highest antigenicity score and 90 out of 94 MHC- II allele binding T-cell 

epitopes predicted by the ProPred tool with VKNKCVNFN as the highest antigenicity score. 

3.3 Machine Learning in Materials Science 

Due to the enormous numbers of controllable and uncontrollable parameters, the large 

size of the data acquired, and the difficulties encountered in analyzing it, processing the data 

in the AM process is a difficult task. Also, manually detecting the defects in AM processes is 

time-consuming and laborious work. Therefore, there is a need for applying machine learning 

(ML) techniques for processing the data and detecting defects. 

3.3.1 Optimizing AM Process Parameters 

Traditionally, to additively manufacture new materials, simulation methods and the 

design of experiments are used to implement process parameter development and optimization. 

The physically-based simulation can reveal the underlying mechanism for the formation of 

specific features during processing. However, it may suffer from discrepancies with 

experimental results due to simplified assumptions. On the other hand, the design of experiment 

approaches involves trial-and-error, which is time-consuming and costly for AM. Therefore, 

to address these challenges in the process optimization of metal AM, many researchers have 

explored the feasibility of introducing ML approaches [51]. 

To predict some properties, such as the high cycle fatigue life of laser powder bed fusion 

of stainless steel 316, Zhang et al. examined the use of a neuro-fuzzy-based machine learning 

method. For simulating a complex nonlinear input-output environment, they prepared a dataset 

that consists of fatigue life data for samples with different processing conditions, such as scan 

speed, laser power, and layer thickness; post-processing treatments, such as annealing and hot 

isostatic pressing; and cyclic stresses. They developed two models for the processing/post-

processing parameters and tensile properties. The models showed a good prediction accuracy 
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against the test data, even with the diverse fatigue and fracture properties. The team suggested 

that these models could be used concurrently, for quality assurance at the manufacturing stage 

and property assessment stage [52].  

In another prediction, Shen et al. developed an artificial neural network (ANN) 

approach for density prediction of SLS parts. Their ANN is a two-layer supervised neural 

network supplied with SLS process parameters, such as laser power, scan speed, scan spacing, 

and layer thickness. To collect experimental training and test datasets, an orthogonal 

experimental method was employed. They concluded that, by applying the ANN approach, the 

density prediction of SLS parts is rather accurate. Their method does not need to know the 

precise model, which is an outstanding advantage [53]. 

Wang et al. used a neural network combined with GA (Genetic Algorithm) techniques 

to study SLS optimum process parameters, such as layer thickness (0.2 mm), interval time (1 

s), laser power (18 W), scanning speed (1,800 mm/s), hatch spacing (0.12mm), work 

surroundings temperature (93°C), and scanning mode (subarea and direction change scanning), 

based on the minimum shrinkage ratio. These parameters were obtained by using the genetic 

algorithm based on the neural network model, so that the part manufactured under the optimal 

process parameters results in minimum shrinkage. The GA searched the global optimum with 

reasonable speed for population size = 30. After applying the measurements five times under 

the same condition layer, they found that the repeatability of the shrinkage ratio was good, 

between 0.128% and 0.130%, depending on the part number [54]. 

3.3.2 Detecting Defects 

ML has been successfully used in different defect detection scenarios during the AM 

process. To detect the track defect and predict the printability of materials in SLM for the 

application in a factory, Chen et al. introduced a neural network (NN) as a supervised machine 

learning (ML) method. Their method helps in finding the better parameter combinations for 
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intelligent defect-free printing. A 3D microscope inserted into the selective laser melting 

method for in-situ measurement was used to track the process. As findings, they classified five 

types of the printed single tracks according to the measured surface morphologies, and the 

results were used as target outputs for the ML model. Then, for a quantitative evaluation of the 

quality of the tracks, they used four evaluation indicators, which are correlated to the surface 

morphology and important geometrical characteristics of the printed single tracks. Their 

approach using a backpropagation neural network model successfully predicted the process 

window for parameters, such as laser power and scan speed, for a TiB2 reinforced AlSi10Mg 

composite. Furthermore, they confirmed the feasibility of the prediction model by experiment 

[55]. 

In another work, Yadav et al. prepared a balanced labeled dataset (with an equal number 

of “drift” and “no-drift” data points) for training a supervised Support Vector Machine (SVM) 

classifier, as a classification algorithm that divides the dataset into multiple classes, to detect 

the drift in the parts [56]. By drift they mean the non-uniformity that results in “hotspots” in 

the melt pool signatures. These hotspots are the areas of the highest probability to generate real 

defects in the part. In addition, they are an indication of drift; these are the areas where the 

intensity of the signal is higher compared to the rest of the layer. To acquire the in-situ data, a 

co-axial melt pool monitoring (MPM) system installed on a commercial SLM 280HL machine 

was used without any additional hardware modifications. Specific geometries incorporating the 

overheating and lack of fusion drift were printed by varying the volumetric energy density and 

were used to test the trained algorithm. The trained SVM classifier was tested for the 

overheating of samples and for lack of fusion, which results in internal porosity in the final part 

and is a challenging detection task. As a result, their model was able to allocate 98.53% of data 

points with the correct label—“drift” or “no-drift” [56]. 
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Gobert et al. [57] used in-situ layer-wise imaging with a digital single-lens reflex 

camera to take images of each layer during the build process, under different lighting 

conditions. They used these images as data for a supervised ML model, using binary 

classification techniques, i.e., a linear support vector machine (SVM), for defect detection 

during the L-PBF process. Computed Tomography (CT) scans were used to evaluate the 

results. In CT scans, discontinuities, e.g., incomplete fusion, porosity, cracks, and inclusions, 

were identified using automated analysis tools or manual inspection. After training the model, 

the resulting accuracy of defect detection during the process was up to 85% [57].    

Using a convolutional neural deep network, Baumgartl et al. could detect and identify 

defects during printing processes with an average balanced accuracy of 96.80%. Their model 

achieves fast compilation and training without the need for powerful hardware, even though it 

is very small and light in computational costs. They used thermographic images for training 

and testing. The images were taken in the printing process of H13 steel specimens, during in-

situ off-axis monitoring. For the network training of a geometrical shape, an uncritical defect 

splatter and critical defect delamination were chosen. Also, the model could output a heatmap 

to help in deciding the type and location of the error. Their model could be used for other defect 

types, as well as for in-situ defect detection of L-PBF processes, because the model is based 

on a single source of information, and there is no need to carry out additional evaluations using 

expensive and time-consuming methods like X-ray or CT [58].        
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CHAPTER 4 

 

RESEARCH METHODS 

 

4.1 Data Collection and Processing 

4.1.1 COVID-19 Drugs Model  

We obtained around 18,600 full-text papers and articles primarily focused on COVID-

19 in the years 2019 and 2020 from Science Direct at Elsevier. Through Science Direct 

application programming interfaces (APIs) (https://dev.elsevier.com/), interactive APIs, and 

with some Python (3.6) code [59] we performed the text-mining process. We searched the 

Science Direct database using specific search terms as a first step in cleaning the data. These 

terms combined “COVID-19 OR 2019-nCoV OR COVID19 OR nCoV-19 OR Sars-CoV-2” 

with keywords, such as drugs, biomedical, medication, antibodies, immunity, immunology, 

and vaccines.  

4.1.2 COVID-19 Vaccines Model 

From Science Direct at Elsevier, we obtained around 54,427 full-text published papers 

and articles primarily focusing on COVID-19 in the years 2019, 2020, and 2021 (see Table 1). 

In order to perform the text-mining process, we used Science Direct application programming 

interfaces (APIs) (https://dev.elsevier.com/), interactive APIs, and some Python (3.6) code 

[59]. We searched the Science Direct database using specific search terms as a first step in 

cleaning the data. These terms combined “COVID-19 OR 2019-nCoV OR COVID19 OR 

nCoV-19 OR Sars-CoV-2” with vaccines, biomedical, medication, antibodies, immunity, 

immunology, and drugs.  
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Table 1.  

The Obtained COVID-19 Data from Science Direct in the Elsevier 

  2019 2020 2021 

Drugs 99 4870 3475 

Vaccines 110 7850 5115 

Biomedical 32 1888 1469 

Medication 21 4274 2685 

Antibodies 104 4497 2931 

Immunity 115 7462 4764 

Immunology 35 1540 1091 

Sum 516 32381 21530 

Toltal 54427 

 

4.1.3 AM Model 

We obtained around 95,990 full-text papers and articles primarily focused on Ni-Mn-

based alloys, SLM, SLS, DML in the years from 2012 to 2022 from Science Direct at 

Elsevier (see Table 2).  

Table 2.  

The Obtained SLS, SLM, and DMLS Data from Science Direct at Elsevier 
 

 

 

 

 

 

 Year Ni-Mn-

based alloys 
SLM  SLS  DMLS  

2022 64 32 23 19 

2021  6800 4076 2313 2453 

2020  6443 4054 2309 2331 

2019  5574 3368 1947 2095 

2018  4935 2909 1629 1820 

2017  4422 2222 1234 1446 

2016  3697 1805 1045 1278 

2015  3697 1459 834 1082 

2014  3180 1316 701 972 

2013  3045 1173 624 882 

2012  2506 968 478 730 

Total  44363 23382 13137 15108 
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 Through Science Direct application programming interfaces (APIs) 

(https://dev.elsevier.com/), interactive APIs, and some Python (3.6) code [59], we performed 

the text mining process.  

4.2 Cleaning Data 

 

Extensive cleaning processes were needed to reduce the noise in the corpus, speed up 

model training, and improve model efficiency. We deleted words with a length of more than 

20 letters; usually, these words are URLs or descriptions related to the metadata. Then we 

converted all uppercase characters in the corpus to lowercase, so COVID and covid will have 

one vector. Finally, we deleted the stop words and punctuation from the corpus, so “vaccine” 

and “vaccine,” will have one vector. We started with a data file of size 820 MB and obtained a 

reduced file of size 600 MB for the COVID-19 drugs model and from a file of size 2.74 GB to 

a reduced file of size 2 GB for COVID-19 vaccine. Finally, for the AM model, an initial data 

file of size 6.58 GB yielded a reduced file of size 4.42GB. 

4.3 Word2Vec Training 
 

We used a combination of the Word2Vec implementation in genism [60] and the open-

source code implemented by Vahe Tshitoyan et al. [61], with a few modifications to train our 

models. 

Several parameters that affect both training speed and efficiency are recognized by 

Word2Vec. In our models, we only consider vocabulary that occurs more than five times 

because words that appear in a billion-word corpus only once or twice or less than five times 

are probably uninteresting typos and garbage. Furthermore, there is not enough knowledge to 

include any practical training on those terms, so it is better to ignore them. The vector size, or 

size of the embedding, in the models is 200. Larger size values need more data from training 

https://dev.elsevier.com/
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but can lead to better (more precise) models. Usually, fair vector size values are in the tens to 

hundreds[61]. 

To speed up the training, we set the workers parameter to 16 workers, which relates to 

the number of threads to employ while training. The models were trained using a 10th 

generation Intel i7 processor that features 8 Cores and 16 Threads. Since Python contains 

excellent built-in tools for both multiprocessing and threading, we adjusted the code for 

Word2Vec to use multiple threads.  In the gensim Word2Vec, the input stream of sentences is 

chunked (fixed number of sentences,100 by default) into jobs that are sent to threads for 

training [62]. Models use a skip-gram algorithm for the training with negative sampling loss. 

With negative sampling, we randomly select just a small number of “negative” words (let’s say 

n = 15) for which to update the weights. In this context, a “negative” word is one for which the 

neural network should output a 0. Negative sampling decreases the computational burden of 

the training process and increases the efficiency of the resulting word vectors by having each 

training sample only modify a small percentage of the weights, rather than all of them [63]. It 

was found that skip-gram with negative sampling loss (n = 15) performs best according to 

Tshitoyan [61]. 

With respect to Google code [64], the author indicated that CBOW is faster, while Skip-

gram is slower, but the latter does a better job with infrequent words because Skip-gram seeks 

the prediction of the context given a word instead of the prediction of a word given its context 

like CBOW does. The window size was 8, which relates to the maximum distance within a 

sentence between the actual and the predicted word. The initial learning rate was 0.01 and 

would drop linearly to 0.0001 as training progressed in 30 epochs. The learning rate aims to 

decide what proportion of the observed error should be used to change weights. The typical 

range is between 1 and 10-6. The model will oscillate if the learning rate is set too high, and the 

model will converge too slowly to a solution by setting it too low. A learning rate of 0.01 
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usually works with most networks [65]. To optimize the computation, we use a hierarchical 

SoftMax training algorithm, which employs a binary tree to represent all words in the 

vocabulary [66]. We also trained a model with a different parameters combination according 

to some other references. For example, we set the number of vector dimensions to 400 instead 

of 200 [67], the window size of words to 9 instead of 8 [68], the negative samples to 5 instead 

of 15 [68], and we used CBOW instead of skip-gram [17]. We performed some verification 

and the results, for example in the similarities, were too far to be considered as similar words 

to a specific queried word. In addition, several strange words and words without meaning 

occurred as similar words. So we decided not to consider the model with these parameters 

 

 

Table 3.  

The Top 10 Similarities for COVID-19, Drugs, Fever, and Hygiene 

Covid19 

 

Drugs 

 

Fever 

 

Hygiene 

covid_19 medications dry_cough Handwashing 

disease antiviral_drugs fever_cough hand_hygiene 

sarscov2 
repurposed_ 

drugs 
shortness_breath personal_hygiene 

pandemic Medicines dyspnoea good_hand_hygiene 

coronavirus 
antiinflammatory_ 

drugs 
symptoms hygiene_practices 

2020 Treatments malaise Sanitation 

patients Repurposed 
cough_shortness_ 

breath 
preventive_measures 

covid 
antimalarial_ 

drugs 
fever_fatigue wear_mask 

cases drug_candidates flulike_symptoms Distancing 

severe existing_drugs 
nonproductive_ 

cough 
cough_etiquette 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

5.1 COVID-19 Drugs Model 
 

5.1.1 Verification 
 

Some generally known words for COVID-19 and their top 10 similarities were used to 

verify our model, CDVec. We chose covid19, drugs, fever, and hygiene since these and their 

similarities are well-known. Similar words tend to occur together and will have a similar 

context, and words with similar contexts end up with similar vectors. As preiously shown in 

Table 3, the top 10 similar words for covid19 are covid_19, disease, sarscov2, pandemic, 

coronavirus, 2020, patients, covid, cases, and severe. These words are often found in the same 

context as covid19. The word drugs has medications, antiviral_drugs, repurposed_drugs, 

medicines, anti-inflammatory_drugs, treatments, repurposed, antimalarial_drugs, 

drug_candidates, and existing_drugs as similar words. On the other hand, the top 10 similar 

words for fever are well-known and main symptoms for COVID-19. These words are 

dry_cough, fever_cough, shortness_breath, dyspnoea, symptoms, malaise, 

cough_shortness_breath, fever_fatigue, flulike_symptoms, and nonproductive_cough. The top 

10 similar words for the fourth word, hygiene, are handwashing, hand_hygiene, 

personal_hygiene, good_hand_hygiene, hygiene_practices, sanitation, preventive_measures, 

wear_mask, distancing, and cough_etiquette. These similarities are some of the most important 

ways to protect against COVID- 19 and many other diseases. 

5.1.2 Similarities for Some Drugs 

The therapies currently under investigation include drugs that have been used to treat 

autoimmune diseases, antiviral drugs, and antibodies from people who have recovered from 

COVID-19. 
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In this section, we discuss results for some current candidates for COVID-19 drugs that 

are found in the published literature with their similarities. 

Looking for drug similarities reveals more candidate drugs to be tested and other ones 

to be excluded, or it may increase the chance for under-testing candidates. Without any explicit 

insertion of prior chemical or structural knowledge about the drugs or COVID-19 treatments, 

CDVec can find candidate drugs based on word co-occurrences. We divided the results into 

the categories of antiviral drugs, anti-inflammatory drugs, and antibodies cocktail. 

5.1.2.1 Antiviral Drugs 

5.1.2.1.1 Remdesivir 

 

The antiviral drug remdesivir (Veklury) was approved in October 2020 by the U.S. 

Food and Drug Administration (FDA) to treat certain patients hospitalized with COVID-19. 

Remdesivir is recommended for the treatment of COVID-19 in adults and pediatric patients 

(12 years of age and older and weighing at least 40 kg) who need hospitalization [69]. However, 

this approval does not include the entire patient population, and scientists are working hard to 

develop other effective treatments. CDVec suggests lopinavir-ritonavir, favipiravir, 

remdesivir_chloroquine, darunavir, lopinavir_ritonavir, hydroxychloroquine, and galidesivir 

as top candidates with highest similarities as shown in Figure 1. 

5.1.2.1.2 Avigan/Favipiravir 

 

Since 2014, Avigan has been approved as an influenza antiviral drug for manufactur-

ing and sale in Japan, as it selectively inhibits the RNA polymerase required for the viral 

replication of influenza [70], and this is the basis for pursuing approval for treating COVID-

19. It has been approved, at least on an emergency basis, for COVID-19 by many nations, such 

as  Russia and India, and is on the way to being formally approved by other countries, such as 

Japan.  
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CDVec shows that inhibitors_remdesivir_favipiravir, roseltamivir_umifenovir, 

boceprevir, rimantadine_amantadine, avipiravir_un_dergone, zalcitabine, (favipiravir_ 

undergone), ribavirin_ remdesivir, and adefovir are the top similar drugs to Avigan, and that 

may increase their chance to be used as COVID-19 treatments (Figure 2). 

Figure 1. The Top 10 Similar Words for Remdesivir 

 

 

Figure 2. The Top 10 Similar Words for Avigan 
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5.1.2.1.3 Atazanavir 

Atazanavir is a prescription drug that was originally approved by the FDA for the 

treatment of HIV in adults and children from three months of age [71]. Atazanavir belongs to 

the protease inhibitors class of medications and functions to decrease the amount of HIV in the 

blood [72]. In a recent study [73], it was found that atazanavir inhibits SARS-CoV-2 

replication, in Vero cells and a human pulmonary epithelial cell line, alone or in combination 

with ritonavir (RTV). Atazanavir/ritonavir also weaken virus-induced enhancement of 

interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels, and the results clearly 

suggest that atazanavir should be nominated among the repurposed drugs undergoing clinical 

trials in the battle against COVID-19. Other studies suggest atazanavir according to the 

associated inhibitory potency as the best chemical compound followed by remdesivir, 

efavirenz, ritonavir, and dolutegravir for treating COVID-19. When CDVec obtains the similar 

words for atazanavir, it finds the same order for remdesivir (with similarity = 0.594158) and 

efavirenz (with similarity = 0.594158), then ritonavir (with similarity = 0.594398), but with 

higher similarity for dolutegravir (with similarity = 0.654778). 

On the other hand, CDVec indicates more drugs that are similar to atazanavir but with 

similarities higher than the previous drugs, such that nelfinavir, ritonavir, cobicistat, tipranavir, 

and saquinavir. 

5.1.2.2 Anti-Inflammatory 

5.1.2.2.1 Dexamethasone 

Dexamethasone, a corticosteroid, is identical to a natural hormone formed by the 

adrenal gland. When the body does not produce the natural hormone, it replaces it to relieve 

inflammation, such as redness, swelling, pain, and heat; treat some cancer types; heal intestinal 

disorders (e.g., colitis, severe allergies, and asthma); treat certain forms of arthritis and skin, 

blood, kidney, eye, and thyroid diseases [74]. Dexamethasone has decreased mortality in 
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patients diagnosed with COVID-19 by 28 days among those undergoing intrusive mechanical 

ventilation or randomized oxygen on their own but not among those without any respiratory 

assistance [75][76]. 

Figure 3. The Top 10 Similar Words for Dexamethasone 

CDVec proposes the top similar words for dexamethasone as methylprednisolone, 

corticosteroid, prednisolone, anakinra, bevacizumab, steroid, anti-inflammatory_drugs, 

combination_lopinavirritonavir (see Figure 3). From these similarities, methylprednisolone, 

anakinra, bevacizumab, and azithromycin_hydroxychloroquine are promising treatments, so 

their presence in dexamethasone similarities increases their chances to be considered as future 

treatments for COVID-19. 

5.1.2.3 Antibody Cocktail 

An antibody is a protein produced by immune cells in just the right shape and size to 

bind to a certain foreign object, such as a virus or bacteria in the blood, at a particular point. 

By entering the antibody, these invaders may be used to directly resist infection or they can be 

labeled for immune cell death. 
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5.1.2.3.1 REGN-COV2 

The antibody cocktail in REGN-COV2 trials is a combination of two effective, 

complementary, virus-neutralizing antibodies, monoclonal antibodies (REGN10933 and 

REGN10987), that originates from a human survivor of COVID-19. Regeneron scientists 

selected them after evaluating and investigating thousands of options. Each antibody binds to 

the spike proteins on the virus to block the interaction between the virus and healthy cell, which 

makes the binding less successful. According to the preclinical studies, REGN-COV2 reduced 

the virus concentration and associated harm in the lungs [77]. We get many other antibody 

candidates from our model with high similarities (80%). We obtain ty027, js016, brii196, 

ctp59, brii198, scta01, 5_vector_expresses, humanized_igg1, nct04348877, and nct04344015 

as the top 10 similar words to REGN-COV2 in order (see Figure 4). The first six are antibodies 

under investigation in different phases as a treatment for COVID-19. Their high similarities to 

REGN-COV2 make them strong candidates. Furthermore, nct04348877 and nct04344015 are 

ClinicalTrials.gov identifiers for plasma-rich antibodies from patients recovered from COVID-

19. 

5.1.3 Similarity Visualization 

In Figure 5, we used T-SNE, a machine learning algorithm for data visualization, to 

reduce the dimensionality of our word-embedding model by mapping the 200-dimensional data 

in CDVec to two dimensions and visualizing the top 20 similarities between words (remdesivir, 

fever, drugs, hygiene, avigan, covid19, atazanavir, regncov2, and dexamethasone). 

Note the overlap between the similar words for remdesivir, avigan, and dexamethasone, 

whereas the similar words for atazanavir are separate even though atazanavir is an antiviral 

medicine like remdesivir and avigan. 
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Figure 4. The Top 10 Similar Words for REGN-COV2 

 

 

Figure 5. The Similar Words for Remdesivir, Fever, Drugs, Hygiene, Avigan, COVID-19, 

Atazanavir, REGN-COV2, and Dexamethasone 
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5.2 COVID-19 Vaccine Model  

5.2.1 Verification 

To verify our COVID-19 vaccine model (CVW2V) results, some general known words 

and phrases related to COVID-19 vocabulary, such as SARS, vaccines, wearing a mask, and 

dry cough, were chosen as seeds for the model to test the relationships between these words 

and their similarities, depending on human judgment as shown in Table 4. For the first word, 

SARS, the top similar words are sarscov, sarscov1, sars_coronavirus, 

middle_east_respiratory_syndrome, sarscov2, severe_acute_respiratory_syndrome, mers_sars, 

corona_virus, infec-tion, and pandemic. The first eight similarities are similar names for 

COVID-19, whereas infection and pandemic are more general references related to COVID-

19. Similar words for vaccines are vaccine_candidates, inactivated_vaccines, mrna_vaccines, 

immunization, live_attenuated, viral_vector, proteinbased_vaccines, subu-nit_vaccines, 

rabies_vaccine, and hpv_vaccine. Most of these are types of vaccines. Wearing a mask, as a 

protective means for COVID-19, has washing_hands, avoid_touching_face, wearing_gloves, 

frequent_handwashing, maintaining_social_distance, staying_home, face_covering, 

personal_hygiene, avoiding_crowds, and cough_etiquette as the top 10 similarities, which are 

also all protective measures against COVID-19. As a symptom of COVID-19, we chose dry 

cough, which resulted in the top 10 similarities of shortness_breath, fever_cough, dyspnoea, 

chills, runny_nose, chest_tightness, sore_throat, difficulty_breathing, myalgias, and 

diarrhea_abdominal_pain. Thus, the similarities found are also symptoms of COVID-19. 

5.2.2 Similarities for Some Vaccines 

Vaccines are being developed with different technologies, some well-known and others 

completely new for human vaccines, such as peptide and nucleic acid technologies. 
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Table 4.  

The Top 10 First Similarities for SARS, Vaccines, Wearing a Mask, and Dry Cough 

5.2.2.1 Whole Virus Vaccine  

These are live-attenuated and inactivated vaccines. Live-attenuated vaccines use a 

weakened (or attenuated) pathogen that causes disease and creates a strong and long-lasting 

immune response. Because these vaccines are so close to the real natural infection, only one or 

a maximum of two doses are needed to give lifetime immunity against the pathogen. These are 

used to protect against rotavirus, yellow fever, and chickenpox [78]. The inactivated vaccines 

use the dead version of the pathogen. Therefore, these vaccines do not provide an immunity 

protection as strong as activated vaccines, so several doses are needed over time to get lasting 

immunity. They are used to immunize against hepatitis A, flu, polio, and rabies [78]. 

Sinopharm and CoronaVac are examples of the inactivated virus vaccines for COVID-19.  
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5.2.2.1.1 Sinopharm  

Sinopharm, also known as BBIBP-CorV, was developed by the National 

Pharmaceutical Group Corporation (CNPGC) in China, with 86% efficacy against the COVID-

19 infection [79]. As the most similar words for Sinopharm, CVW2V found sinovac, 

coronavac, inactivated_vaccine_candidate, ad5ncov, sputnik_v, covaxin, co-dagenix, 

adenovirusvectored, adults_aged_18–59_years, and wibp_vaccine (see Figure 6). 

 

 

Figure 6. The Similar Words for the Inactivated Virus Vaccines for  

COVID-19, Sinopharm, and CoronaVac 

  

Sinovac is a biopharmaceutical company in China that focuses on the research, 

development, manufacturing, and commercialization of vaccines. This company developed the 

CoronaVac inactivated virus COVID-19 vaccine. Ad5-nCoV, or Convidicea, was the first 

novel coronavirus vaccine for COVID-19 in China and is a viral vector-based vaccine. 

CoronaVac and Convidicea are under emergency use authorization status in China, Mexico, 

Pakistan, Hungary, and Chile [80]. Sputnik-V (or Gam-COVID-Vac) is a viral vector vaccine 

for COVID-19 developed by the Gamaleya Research Institute of Epidemiology and 
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Microbiology in Russia. Registered on 11 August 2020 by the Russian Ministry of Health and 

followed by an interim analysis of the trial was published in February 2021, the trial indicated 

91.6% efficacy. Over a billion doses of that vaccine were requested by Russia, Argentina, 

Belarus, Hungary, Serbia, and the United Arab Emirates for immediate distribution globally 

[81]. Covaxin is another inactivated virus-based COVID-19 vaccine developed in India, by 

Bharat Biotech in collaboration with the Indian Council of Medical Research. After the second 

dose, it showed 81% intermediate effectiveness in preventing COVID-19 in those who had not 

been previously infected [82]. Codagenix is a clinical-stage synthetic biology company that 

uses programs to recode the genomes of viruses in order to create live-attenuated vaccines or 

viruses that can be used to prevent viral infections. It generated COVI-VAC, a single-dose, 

intranasal, live-attenuated vaccine against COVID-19. In Phase I, COVI-VAC showed good 

results with respect to safety and protection after just one dose in the gold standard animal 

model and is currently being evaluated in the clinical phase. COVI-VAC is designed to produce 

immunity against all SARS-CoV-2 proteins to protect against a range of SARS-CoV-2 strains 

[83]. Adenovirus vectored is a vector-based vaccine that adds a gene for the coronavirus 

vaccine into a modified version of a chimpanzee adenovirus that can then enter human cells 

but not replicate inside, so the vaccine can target the spike proteins that SARS-CoV-2 uses to 

enter human cells [84]. Both the wibp_vaccine and BBIBP-CorV are in-activated virus 

COVID-19 vaccines developed by Sinopharm [79].  

5.2.2.1.2 CoronaVac 

CoronaVac is an inactivated virus COVID-19 vaccine developed by the Chinese 

company Sinovac Biotech. It has been in Phase III clinical trials in several countries. Because 

it does not need to be frozen, it can be transported and refrigerated at 2–8 °C (36–46 °F), which 

is the same temperature at which traditional flu vaccines are kept [85]. When CoronaVac was 

used as a seed in our model, the top similar words were sinopharm, inactivated_vaccine, 
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sinovac, picovacc, twodose_regimen, 4_weeks_apart, inovio, ino4800, scb2019, and arcov (see 

Figure 6).  

Picovacc is the previous name for CoronaVac, which requires a twodose_regimen and 

4_weeks_apart, corresponds to the treatment plan that specifies the amount and schedule for 

vaccination. Inovio, or ino4800, is a DNA vaccine, INO-4700, against MERS CoV that is 

currently in preparation to initiate a Phase II vaccine trial [86]. The scb2019 subunit vaccine 

candidate is developed by Clover Pharmaceuticals [87]. Arcov is the first mRNA vaccine in 

China and may be ready for final stage trials overseas in May 2021[88]. 

5.2.2.2 RNA or mRNA Vaccines 

mRNA vaccine development uses a new technology, based on proteins, to trigger an 

immune response. They have several benefits compared to other types of vaccines, including 

shorter manufacturing times and, because they do not contain a live virus, no risk of causing 

disease in the person getting vaccinated. Moderna and Pfizer-BioNTech are examples of 

mRNA vaccines for COVID-19. Under an Emergency Use Authorization (EUA) in December 

2019, the FDA authorized emergency use of these vaccines to prevent or reduce the COVID-

19 infection in individuals of age 16 years and older. We used these two vaccines as seeds for 

our model to search for similar candidate vaccines.  

5.2.2.2.1 Moderna 

The top similarities for Moderna are pfizer_biontech, mrna1273, mrnabased_vaccine, 

encapsulated_mrna, johnson_johnson, astrazeneca, curevac, arcturus, gsk, and gx19 (see 

Figure 7).  

The mrna1273 similarity is another name for Moderna. CureVac COVID-19 is an 

mRNA COVID-19 vaccine candidate developed by CureVac N.V. and the Coalition for 

Epidemic Preparedness Innovations (CEPI), which is different from the current mRNA 
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COVID-19 vaccines, Pfizer–BioNTech and Moderna. CureVac uses unmodified RNA, while 

the other two use nucleoside-modified RNA. CureVac is in Phase III clinical trials, as of April 

2021 [89]. Arcturus, or ARCT-02,1, is an mRNA COVID-19 vaccine candidate developed by 

Arcturus Therapeutics and currently in Phase II [90]. Gsk, or VAT00002, is a protein subunit 

COVID-19 vaccine candidate in Phase II and developed by Sanofi Pasteur and GSK [91]. The 

gx19 DNA COVID-19 vaccine candidate is developed by Genexine and in Phase II status [92].  

 

Figure 7. The Similar Words for Moderna and Pfizer-BioNTech as mRNA  

Vaccines for COVID-19 

5.2.2.2.2 Pfizer-BioNTech  

The similar words found for Pfizer-BioNTech are astrazeneca, moderna, sputnik_v, 

zydus_cadila, twodose, bbv152, adenovirusvectored, adults_aged_18–59_years, minor_side_ 

effects, and menacwy_vaccine (see Figure 7).  
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An Indian multinational pharmaceutical company, zydus_cadila, develops a DNA 

plasmid-based COVID-19 vaccine named ZyCoV-D, which is expected to get emergency use 

authorization in May or June of 2022 [93]. BBV152, or Covaxin, is an inactivated virus-based 

COVID-19 vaccine, which was developed by the Indian Council of Medical Research and 

Bharat Biotech [94]. The MenACWY vaccine is a single injection given into the upper arm 

that protects against four meningococcal bacteria strains that cause meningitis and blood 

poisoning: A, C, W, and Y [95].  

5.2.2.3 Viral Vector 

Viral vector is a type of vaccine that uses a modified version of one virus as a vector. 

This vector is a DNA molecule used as a vehicle to artificially carry foreign genetic material 

into another cell. Even though it has two strange objects that enter the body, this type of vaccine 

does not cause infection with either the virus used as the vector or the source of the antigen. 

The genetic material it delivers does not integrate into a person’s genome [96]. Johnson & 

Johnson’s Janssen and Oxford-AstraZeneca are examples of a viral vector-based COVID-19 

vaccine.  

5.2.2.3.1 Johnson & Johnson’s Janssen 

Johnson & Johnson’s Janssen is a one dose viral-based COVID-19 vaccine developed 

by Janssen Vaccines company. We used Johnson & Johnson’s Janssen as a seed to our model. 

Pfizer, astrazeneca, nonreplicating_viral_vector, eli_lilly, merck, bgb_dxp593_beigene, 

ad26covs1, sclamp, plantderived_vlp, and greffex are some similar words for this vaccine (see 

Figure 8). 

In addition, eli_lilly is an antibody-based treatment for COVID-19 with an Emergency 

Use Authorization from the Food and Drug Administration [97]. Merck is a pharmaceutical 

company working on developing an oral medication for COVID-19 and is in a Phase II clinical 



 

 40 
 

trial with promising early findings [98].  BGB-DXP593 is a neutralizing anti-body, or protein-

based therapy, under investigation for SARS-CoV-2 in a clinical trial for participants with 

mild-to-moderate COVID-19 by BeiGene [99]; ad26covs1 is another name for Johnson & 

Johnson’s Janssen vaccine. Sclamp, or V451, is a subunit-based COVID-19 vaccine developed 

by the University of Queensland and the Australian pharmaceutical company CSL Limited and 

is still in Phase I [100]. The plantderived_vlp vaccine is a different type of COVID-19 vaccine. 

Instead of using a viral vector, it uses living plants as bioreactors to produce non-infectious 

versions of viruses, called Virus-like Particles, or VLPs. This type of vaccine was developed 

by the Canada-based biopharma Medicago and GlaxoSmithKline and is currently in Phase III 

clinical trials [101]. Greffex is a vaccine based on an adenovirus viral vector, currently in a 

pre-clinical phase and developed by Greffex, a genetic engineering company [102].   

 

 

Figure 8. The Similar Words for Viral Vector-Based COVID-19 Vaccine, Johnson & 

Johnson’s Janssen, and Oxford–AstraZeneca 
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5.2.2.3.2 Oxford-AstraZeneca  

Oxford-AstraZeneca is a viral vector-based COVID-19 vaccine developed by Oxford 

University and AstraZeneca. According to CVW2V, interesting similar words for Oxford-

AstraZeneca are covishield, sinopharm, anges, ag0301covid19, vaxart, nvxcov2373, 

simian_adenovirusvectored, TY027, and altimmune (see Figure 8).  

The word covishield is another name for Oxford-AstraZeneca. Anges, or AG0302-

COVID-19, is a DNA candidate vaccine developed by AnGes Inc. in Japan and currently in 

Phase II/III [103]. Vaxart is a nonreplicating viral vector oral vaccine platform for COVID-19 

in Phase I [104]; and nvxcov2373 is a protein-based COVID-19 vaccine [105]. The 

simian_adenovirusvectored vaccine is used as a vector in the vector-based vaccine instead of 

the human adenovirus because of its advantages over the human adenovirus. TY027 is a 

treatment for patients with COVID-19 to slow the progression of the disease and accelerate 

recovery and has the potential to provide temporary protection against infection with SARS-

CoV-2 [106]. Altimmune is a single-dose viral vector COVID-19 vaccine that triggers a broad 

immune response—neutralizing IgG, mucosal IgA, and T-cells—and is still in Phase I [107]. 

5.3 AM Model 

 

5.3.1 Verification 

 

We used some general keywords related to AM processes, parameters or alloys, such 

as SLM (Selective Laser Melting), LPBF (Laser Powder Bed Fusion), hatch spacing, binder 

saturation level, NiMn, and powder bed, as seeds to our AM model (AMW2V), to find their 

most similar words. The results are shown in Table 5. 
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Table 5.  

The Similar Words for SLM, LPBF, Hatch Spacing, Binder Saturation Level,  

NiMn, and Powder Bed 
SLM LPBF hatch spacing binder saturation level NiMn powder bed 

lpbf slm Hatch_distance zb56 coni Powderbased 

ebm ebm scan_spacing layer_thickness_binder_ 

saturation 

Mncu pbf_processes 

dmls dmls laser_spot_diameter air_gap_raster_angle feni loose_powder 

sebm lbm line_spacing orientation_raster_angle+ fecu build_platform 

lmd waam 008mm air_gap_raster_width nico Recoating 

alsi10

mg 

ss316l layer_thickness_kept

_constant 

wc12_co comn Sls 

ti64 scan_ 

strategy 

laser_power_200w zcast Mnfe unsintered_powder 

ss316l 174_ph 131w farzadi_m_solatihashjin ni3fe blown_powder 

ti6al4v in625 focal_position exone_innovent Cozn Layering 

alsi12 in718 stripe_width beam_speed_hatch feco binder_jetting 

For SLM, the most similar words were lpbf, ebm, dmls, sebm, lmd, alsi10mg, ti64, 

ss316l, ti6al4v, and alsi12. The lpbf (laser powder bed fusion), ebm (Electron Beam Melting), 
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dmls (Direct Metal Laser Sintering), sebm (Selective Electron Beam Melting), and lmd (Laser 

Metal Deposition) are different AM techniques for SLM, whereas alsi10mg, ti64, ss316l, 

ti6al4v, and alsi12 are popular alloys used in AM. AlSi10Mg is an aluminum alloy commonly 

used in a powder form in the AM process because of its distinctive and convenient properties, 

such as good hardness, low density, dynamic toughness, high corrosion resistance, and high 

mechanical strength of the end parts [108]. Ti64 (or Ti-6Al-4V) is a well-known light titanium 

alloy used in AM with characteristics that make it ideal for many high-performance 

applications in medical, aerospace, and automotive areas. The high strength, hardness, high 

plasticity, long fatigue life for the parts, low density, excellent corrosion resistance, and 

superior biocompatibility with human tissue are the most important characteristics that make it 

suitable for such applications [109]. SS316L (or 316L stainless steel) is another ideal alloy, 

with a nickel and chromium content, manufactured by AM due to its properties, such as ease 

of fabrication, biocompatibility, reasonable cost, sufficient mechanical strength, and corrosion 

resistance [110]. The AlSi12 alloy is one of the most widely used metal powders in selective 

laser melting (SLM), which is because of its relatively low price, low melting point, good 

thermal properties, needed corrosion resistance, and high tensile strength with low specific 

gravity [111]. 

The similar words for the lpbf (Laser Powder Bed Fusion) were slm, ebm, dmls, lbm, 

waam, ss316l, scan_strategy, 174_ph, in625, and in718. The slm (Selective Laser Melting), 

ebm (Electron Beam Melting), dmls (Direct Metal Laser Sintering), lbm (Laser Beam Melting), 

and waam (Wire Arc Additive Manufacturing) are different techniques in AM. The ss316l and 

174_ph alloys belong to the stainless-steel family of powders that have been used in AM 

because of their optimal characteristics, whereas the in625 (or Inconel 625) and in718 (or 

Inconel 718) alloys are members of the nickel alloy family of powders that AM has used to 
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fabricate many parts for different applications, such as gas turbines for aerospace and energy 

industries and ship building. 

The words hatch_distance, scan_spacing, laser_spot_diameter, line_spacing, 008mm, 

layer_thickness_kept_constant, laser_power_200w, 131w, focal_position, and stripe_width 

were the most similar words for hatch spacing. The hatch spacing (or hatch distance) is one of 

the AM process parameters, particularly laser and scan parameters. It is the separation of two 

consecutive laser beams, measured by the distance from the center of one beam to the center 

of the next beam. 

Laser_spot_diameter, line_spacing, layer_thickness_kept_constant, laser_power_ 

200w, focal_position, and stripe_width are also parameters that influence the properties of parts 

fabricated by AM processes [112], whereas 008mm and 131w are some values related to the 

previous parameters. 

For the binder saturation level, the most similar words were zb56, 

layer_thickness_binder_saturation, air_gap_raster_angle, orientation_raster_angle, air_gap_ 

raster_width, wc12_co, zcast, farzadi_m_solatihashjin, exone_innovent, and 

beam_speed_hatch. The binder saturation level is the amount of binder deposited through the 

printhead in the AM printing process. The layer_thickness, air_gap_raster_angle, 

orientation_raster_angle, air_gap_raster_width, and beam_speed_hatch are some important 

parameters in the printing process. The printing parameters are the settings and tuning that need 

to be provided to the process in order to produce the AM product [113]. The words zcast and 

zb56 are related to an AM process; zcast is a process developed by the Z Corporation that can 

generate mould tools for the direct printing of complex moulds quickly and inexpensively with 

a proprietary mould material (ZCast501), and zb56 is a binder in Zcast powder that gives 

hardiness [114]. WC12Co is a powder consisting of tungsten carbide-cobalt that produces hard, 

abrasive, and corrosion-resistant coatings, provides service in environments up to 900°F, and 
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has been used in SLM as a powder to fabricate parts [115]. The name farzadi_m_solatihashjin 

is given after the names of two professors, A. Farzadi and Mehran Solati-Hashjin, in the 

Department of Materials and Metallurgical Engineering at the Amirkabir University of 

Technology, Tehran. Their research areas of interest are biomaterials, 3D printing and 

bioprinting, with a number of publications and citations. The ExOne Innovent is a 3D printer 

made by the German manufacturer ExOne for industrial uses. 

On the other hand, the similar words for NiMn (Nickel Manganese alloy) were coni 

(Cobalt Nickel superalloy), mncu (Manganese-Copper alloy), feni (Iron–Nickel alloy), fecu 

(Copper Iron alloy), nico (Cobalt-Nickel superalloy), comn (Cobalt Manganese alloy), mnfe 

(Iron Manganese alloy), ni3fe (Nickel Iron alloy), cozn (Cobalt Zinc alloy), and feco (Iron 

Cobalt alloy). All of these alloys have been used, sometimes in combinations, in AM 

fabrication parts, especially in LPBF [116][117][118]. 

The words that had a vector similar to the powder bed vector were powderbased, 

bf_processes, loose_powder, build_platform, recoating, sls (Selective Laser Sintering), 

unsintered_powder, blown_powder, layering, and binder_jetting. Powder bed fusion 

(powderbased or bf_processes) is a technique to fabricate parts in AM using lasers and the 

powder of alloys. The terms loose_powder and unsintered_powder refer to the extra or unused 

powder remaining from the powder bed fusion process, which could be reused in a new 

fabrication. The word build_platform is the part of the printer where the object is printed. The 

recoating is where a new layer of powder is spread on top of the printed layer in the PBF 

process. The blown powder process (also known as Directed Energy Deposition (DED) or laser 

cladding) involves inserting metal powder into a heat source—for example, a laser that melts 

metal particles together when deposited [119]; binder_jetting is another type to fabricate parts 

in AM that does not use heat during the materials fusing process.  
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5.3.2 Similarities for Some Alloys 

There are many produced alloys with wanted and required properties that have been 

used in SLM, SLS, and MDSL. We are interested in Heusler alloys with Giant Magnetocaloric 

Effect (GMCE) as observed in some of the Ni-Mn-X-based Heusler alloys. The MCE is a 

property of some magnetic materials that, when heated up, they are placed in a magnetic field 

(or magnetized) and cooled down when they are removed (or demagnetized). When the applied 

magnetic field is increased, these materials transform from a low-symmetry martensitic phase 

to a highly symmetric ferromagnetic (FM), austenitic phase. In some cases, such as with Ni-

Mn-based materials, a Giant Magnetocaloric Effect (GME) is exhibited, which is a 

magnetocaloric effect much larger than MCE in other magnetic materials and can be exploited 

for efficient cooling. Magnetic cooling could be a clean energy solution to replace conventional 

vapor compression refrigeration in the future. 

The net cooling effect of GMCE can be dominated by many factors, such as the 

magneto-structural transition [120] and magnetic entropy changes. The magneto structural 

phase transition is a coupling between structural and magnetic transitions that are exhibited by 

magnetic materials [121]. The magnetic entropy change causes a temperature change of 

magnetic materials in an adiabatic process under an external magnetic field.  

The SLM process uses the powder of Ni-Mn-Ga to produce it in the form of melt-spun 

precursors. The resulting material is capable of martensitic transformation and has a uniform 

chemical composition. This alloy shows a typical plate-like martensitic microstructure. Apart 

from martensite plates, the microstructure contains a high density of stacking faults and 

dislocations. From the magnetic susceptibility and magnetization measurements, it turns out 

that the ternary Ni-Mn-Ga shows a stronger magnetic response than the other alloys [122]. In 

order to search for more Ni-Mn-based Heusler alloys candidates, we used main words, such as 

giant magnetocaloric effect, Ni-Mn-based Heusler alloys, magnetic entropy change, and 
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magneto structural transition as seeds to our model to find some new candidate alloys. We 

queried our model, AMW2V, to find the most similar words for these key words. Because this 

resulted in many different alloys, properties, and parameters, we decided to tighten the result 

by making the key words more specific. We studied some intersections between the word 

similarities, looking for alloys that occur simultaneously within the similar words for both 

“giant magnetocaloric effect” and “Ni-Mn-based Heusler alloys.” As shown in Figure 9, 

mnfepge_compounds, ni-mn-in-co, fe49rh51, nicomnsn, mncoge, ni50mn35in15_heusler, 

nimnsn, ni43mn46sn11, lafesi13based, mnas1-xsbx, gd5ge2si2, mnassb, tb5si2ge2, erco2, 

mnnige, mnfe2psi, gd5si2ge2, nazn13type, mnfep1xasx, ni-co-mn-in, mnfepsi, ni-co-mn-sb, 

and nimnz are in the intersection of similarities considered. This introduces them as predicted 

candidates to be produced in LBPF processes. 

Figure 9. The Intersection of the Similarities for Both “Giant Magnetocaloric Effect”  

and “Ni-Mn-Based Heusler Alloys” 
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Figure 10. The Intersection of the Similarities for Both Magnetic Entropy Change  

and Ni-Mn-Based Heusler Alloys 

 

Some other intersections between the similarities were obtained, such as the 

intersection of the similar words between “magnetic entropy change” and “nimnbased heusler 

alloys” )see Figure 10), and the intersection of the similar words between “magnetic entropy 

change” and “giant magnetocaloric effect” )see Figure 11). 

 

Figure 11. The Intersection of the Similarities for Both Magnetic Entropy 

Change and Giant Magnetocaloric Effect 
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Figure 12. The Intersection Between Ni-Mn-Based Heusler Alloys, Magnetic  

Entropy Changes, GMCE, and Magnetostructural Transition 

 

To find the top candidate alloys, the intersection between the most dominant factors in 

the GMCE was obtained (see Figure 12). Because mnfep045as055, erco2, ni43mn46sn11, 

mncogebased, gd5ge2si2, mn3gac, and ni50mn34in16 are the alloys that occur within the 

similar words for Ni-Mn-based Heusler alloys, magnetic entropy changes, GMCE, and 

magnetostructural transition, they could be considered as top candidates to be produced in 

LPBF processes. Alloy MnFeP045As055, as compared to well-known magnetic alloys, such 
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as gadolinium alloy, is thought to be a promising magnetic material with improved magnetic 

properties [123].  ErCo2 shows a large magnetocaloric effect, suggesting a high potential for a 

working substance of magnetic refrigeration at 30-50 K [124]. In addition, ni43mn46sn11 and 

ni50mn34in16 are alloys with a behavior that allows the magnetic-field-driven transition from 

martensitic phase with low magnetization to austenite with high magnetization, which results 

in a GMCE property [125]. MnCoGe-based alloys have a strong interplay between structure 

and magnetism, which results in the exhibited GME [126]. We also found that gd5ge2si2 is a 

very good alloy for application as an active regenerator material in room temperature magnetic 

refrigerators because of the GME with a transition temperature at around 276 K [127]. All of 

these alloys have not been produced by LPBF processes (as of the date of writing). Thus, they 

may be good candidate materials with GMCE to be produced by LPBF. However, the usage of 

As and Gd would be a significant concern in terms of the material's safety [128][129][130]. 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 
 

In this work, we trained several unsupervised learning models using word embeddings 

and the Word2Vec algorithm with information from the COVID-19 literature, especially 

concerning drugs and vaccines, and with Additive Manufacturing literature focusing on LPBF 

processes, GMCE, and Ni-Mn-based Huesler alloys. 

To answer the research question—“What candidate drugs can be obtained from word 

embeddings using Word2Vec algorithms to treat COVID-19?”—we trained an unsupervised 

learning model (CDVec) using word embedding and the Word2Vec algorithm to capture latent 

knowledge about COVID-19 treatments from the most recent literature, while focusing on 

drugs, biomedicine, medication, antibodies, immunity, immunology, and vaccines. Without 

any prior explicitly inserted knowledge about drugs, treatment, or biomedical information 

about COVID-19, our model CDVec was able to indicate some candidate drugs for COVID-

19. Depending on the co-occurrence of the words, as similar words that occur together tend to 

have a similar context, we used approved drugs, like remdesivir, or most promising drugs, like 

avigan, atazanavir, dexamethasone, and REGN-COV2, as seeds to our model to find the most 

similar drugs. As a result, CDVec suggests many possible candidate drugs for clinical 

investigation and supports other ones in different testing phases for approval, according to their 

high similarity with currently approved and most promising treatments [32]. 

In addition to our work in on drug discovery using Word2vec for COVID-19 

treatments, for the research question—“What candidate vaccines can be obtained from word 

embeddings using Word2Vec algorithms to reduce COVID-19 cases?”—we trained an 

unsupervised word embedding model (CVW2V) to search for potential candidate vaccines in 

the COVID-19 literature, according to their similarities with authorized or most promising 
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existing ones. These studies rely on the property that words sharing similar surrounding words 

are semantically close. After verifying CVW2V with the terms SARS, vaccines, wearing a 

mask, and dry cough as general words and their similarities, CVW2V was provided with 

currently authorized vaccine names, such as Sinopharm and CoronaVac, as inactivated whole 

virus-based vaccines, Moderna and Pfizer-BioNTech as mRNA vaccines, and Johnson & 

Johnson’s Janssen and Oxford–AstraZeneca as viral vector-based COVID-19 vaccines. As a 

result, without any explicitly inserted knowledge about COVID-19 or vaccines or any super-

vision on the words or objects and their meanings, the CVW2V model was able to suggest 

several potential target vaccines for clinical investigation and support other ones in different 

clinical experimental phases, according to their high similarity with currently authorized and 

most promising vaccines [33]. 

In order to answer the research question—“What new knowledge on materials and 

properties that are similar to those of known materials and properties can be extracted to 

improve AM processes?”—we trained an unsupervised word-embedding model (AMW2V), 

using Word2Vec primarily focused on Ni-Mn-based alloys, SLM, SLS, and DML, in the years 

from 2012 to 2022 from Science Direct at Elsevier, to search for candidate alloys with GMCE 

to be produced with LPBF processes. AMW2V predicted some candidates, such as 

mnfep045as055, erco2, ni43mn46sn11, mncogebased, gd5ge2si2, mn3gac, and 

ni50mn34in16, according to their similarities with given Ni-Mn-based Huesler alloys 

exhibiting GMCE properties based on magnetic entropy changes and magnetostructural 

transition. 

6.2. Future Work 

 

For future work in the COVID-19 field, we are planning to obtain more hidden 

knowledge from the updated published literature about, for example, COVID-19 preexisting 

conditions, healthcare, vaccine deniers, and possible new strains of COVID-19. 
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On the materials science side, our research supports a direction of producing candidate 

alloys using LPBF with optimum process parameter combinations, including laser power, 

scanning speed, hatch spacing, and layer thickness, allowing manufacturers to accurately 

produce parts with complex shapes and intricate features from the candidate alloys. 
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