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A REMOTE SENSING AND MACHINE LEARNING-

BASED APPROACH TO FORECAST THE ONSET 

OF HARMFUL ALGAL BLOOM 

Moein Izadi, Ph.D. 

Western Michigan University, 2022 

In the last few decades, harmful algal blooms (HABs, also known as “red tides”) have 

become one of the most detrimental natural phenomena all around the world especially in 

Florida’s coastal areas due to local environmental factors and global warming in a larger scale. 

Karenia brevis produces toxins that have harmful effects on humans, fisheries, and ecosystems. 

In this study, I developed and compared the efficiency of state-of-the-art machine learning models 

(e.g., XGBoost, Random Forest, and Support Vector Machine) in predicting the occurrence of 

HABs. In the proposed models, the K. brevis abundance is used as the target, and 10 level-02 

ocean color products extracted from daily archival MODIS satellite data such as Euphotic Depth 

(m) and Secchi disk depth, Chlorophyll-a (mg/m3), Diffuse attenuation coefficient (Kd_490;

m−1), Sea surface temperature (C°) , Fluorescence line-height, … are used as controlling factors. 

The adopted approach addresses two main shortcomings of earlier models: (1) the paucity of 

satellite data due to cloudy scenes and (2) the lag time between the period at which a variable 

reaches its highest correlation with the target and the time the bloom occurs. Eleven spatio-

temporal models were generated, each from three consecutive day satellite datasets, with a 

forecasting span from one to 11 days. The 3-day models addressed the potential variations in lag 

time for some of the temporal variables. One or more of the generated 11 models could be used 

to predict HAB occurrences depending on availability of the cloud-free consecutive days. 

Findings indicate that XGBoost outperformed the other methods, and the forecasting models of 



5–9 days achieved the best results. The most reliable model can forecast eight days ahead of time 

with balanced overall accuracy, Kappa coefficient, F-Score, and AUC of 96%, 0.93, 0.97, and 

0.98 respectively. The euphotic depth, sea surface temperature, and chlorophyll-a are always 

among the most significant controlling factors. The proposed models could potentially be used to 

develop an “early warning system” for HABs in southwest Florida. 
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CHAPTER   1 

INTRODUTION 

For the last few decades, Harmful Algal Bloom (HAB; Karenia Brevis formerly 

known as Gymnodinium breve and Ptychodiscus brevis) has exponentially become one of 

the most deteriorative natural phenomena in Charlotte County, southwestern Florida, and 

even globally. Algae can adversely affect fresh and saltwater ecosystems and produce 

toxins that have harmful effects on human’s health, fish industry, marine mammals, birds, 

and local economies. In other words, Algal blooms can significantly change the water 

bodies’ quality like color, odor, and taste. This requires taking costly measurements like 

the closure of beaches and conducting costly filtration processes and decontamination 

activities. There are several environmental variables contributing to the propagation and 

exponentially growth of Algae’s. For example, ever-growing adjacent agricultural 

activities are being transported into prone water bodies like bay areas by hydrodynamic 

processes such as infiltration and run off water. These provides Algae with favorable 

nutrients and as a result can adversely affect the biodiversity and habitats of aquatic 

ecosystems. Algal Bloom socio-economic importance is not needed more to be 

emphasized. Algal Bloom is directly affecting people's lives. That is why we need to make 

society aware of this problem and its urgency. This phenomenon is not a local problem 

and you can find Algae everywhere these days. Thus, there is a crucial need for mapping 

and forecasting HAB.  

Earlier studies to address this problem are using different approaches. Some used 

real-time field monitoring of chlorophyll and dissolved oxygen, some used wind-driven 

and hydrodynamic variables in water current models, and some used rate and volume of 
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flow, and upwelling-down welling pulses. These models were used mostly for same-day 

mapping and to model onset of blooms. Later, they were developed to make early-warning 

systems for HAB forecasting and mapping. Such models depend on whether continuous 

real-time and archival field data or remotely sensed data which means they are not always 

available shortly after data acquisition for marine and coastal areas. Some more recent 

studies have used remotely sensed satellite data like Moderate Resolution Imaging 

Spectroradiometer (MODIS)-derived fluorescence along with field data to make data-

driven statistical models (e, g,. Multiple Linear Regression model) to identify factors 

controlling HAB propagation. They provided a same-day distribution (now casting) and 

forecast their occurrences up to three days ahead of time. However, with such models there 

might be some deficiencies in model interpretation because of not addressing different lag 

times of different variables contributing to Algal Bloom. Sometimes addressing 

multicollinearity stay a challenge in linear models. Moreover, such models in data 

collection strategy and training phase more consider spatial variations within their 

variables (Spatio-Temporal vs Spatial). There is always a need to have a good statistical 

metrics to evaluate the model’s performances and having different statistical models and 

comparing them can add values and reliability to the study results.  

Monitoring HAB requires extensive field-based observation and measurements 

that are not available in most of the vulnerable areas. Fortunately, recent advances in 

remote sensing hold the promise to address these inadequacies. Models in Earth and Ocean 

Sciences need to be interpretable to show the significance and the correlations between 

controlling factors. For example, Artificial Neural Networks models are powerful 

functions for modeling real-world problems. However, it performs as a black box and the 
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neuron connections, their weights and different layers cannot be associated much with the 

concept of your physical problem in hand. On top of that, since the paucity of data has 

always been one of the challenges in front of researchers, a good model should work and 

be trained with limited dataset. The advantage of the proposed method is that it is 

addressing the before mentioned shortcomings and it can give a good range of forecasting 

time because of its spatio-temporal features.  
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CHAPTER 2 

 

Introduction 

 
Harmful algal blooms (HABs) in saline waters, often referred to as “red tide” events, have been 

reported in many areas around the world, including the Gulf of St. Lawrence in Canada, Tampa 

Bay in the Gulf of Mexico, the Bay of Bengal, the Bay of Biscay in Spain, Paracas Bay in Peru, 

Lisbon Bay in Portugal, and the Persian Gulf [1–8].  

In the USA, red tides have been reported in many locations, including the Gulf Coast of Florida, 

the Gulf of Maine, and Monterey Bay in California [9–12]. The reddish color of the ocean water 

is most often caused by the proliferation of a microscopic photosynthetic organism called Karenia 

brevis (formerly known as Gymnodinium breve and Ptychodiscus brevis) [13–15]. Over the last 

few decades, K. brevis has become the predominant HAB phytoplankton species among 5000 

known species and one of the most harmful natural phenomena in many areas in the Gulf of 

Mexico [13,16,17] including our study area, Charlotte County in southwest Florida (Figure 1) [18].  
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Figure 1. Location map for the study area covering coastal waters (width: ~10–60 km; length: 180 km) of Charlotte 

County in southwest Florida. 

 

HABs can significantly change the quality (i.e., color, odor, and taste) of bodies of water, 

adversely affect fresh and saltwater ecosystems, and produce neurotoxins called brevetoxins [19] 

that have harmful effects on human health, the fishing industry, marine mammals, seabirds, and 

local economies [20–22]. These algae-related adverse effects require local authorities to take 

costly measurements and/or remedies including closure of beaches and conducting costly filtration 

processes and decontamination activities [23,24]. Several environmental factors contribute to the 

growth and propagation of algae, such as nutrients introduced from agricultural activities, lighting 

condition (low irradiance), salinity, and water temperature [9,25]. K. brevis consumes both 

inorganic and organic nitrogen and phosphorus compounds [26]. Nitrogen-based fertilizers are the 

main source of nitrogen in the Gulf of Mexico [27,28], where the nutrients of these fertilizers are 

transported from the agricultural fields within the Mississippi-Atchafalaya River basin [29] into 
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prone water bodies (e.g., bay areas) by surface runoff and infiltration of nutrient-rich waters and 

groundwater flow towards neighboring water bodies [30,31]. 

There has been a long standing desire, and a need for, forecasting and mapping HABs [24] given 

their adverse effects on human health [21,22] and on the biodiversity and habitats of aquatic 

ecosystems [16,17]. The majority of earlier attempts to detect, map, and forecast HABs can be 

lumped in two groups: ones that rely heavily on the utilization of satellite remotely acquired data 

and ones that do not [9,32]. The latter research activities entail the acquisition of in situ real-time 

field monitoring of relevant parameters, such as chlorophyll-a concentration, dissolved oxygen, 

and nutrients [33]. Real-time nucleic acid sequence-based amplification assays and simple test 

kits have been used to detect and quantify the red tide dinoflagellate K. brevis [32]. The HAB 

Program of Florida Fish and Wildlife Research Institute (FWC) is one such program that designs 

and employs light and electron microscopy and genetic tools to identify and/or quantify HABs 

[24]. Hydro-meteorological variables (e.g., sea surface temperature [SST], wind speed, cloud 

amount, salinity, and rainfall) were used in statistical models (fuzzy reasoning and the ensemble 

method classifiers) to predict HABs occurrences [34,35]. 

Additional approaches involved the construction of wind-driven models or three- dimensional 

physical hydrodynamic models to forecast the dominant regional physical processes that result 

in water exchange events and bloom propagation [33,34]. Most of these models were designed 

for same-day mapping and modeling the onset of blooms. Although the above-mentioned field-

based approaches have been shown to be successful in detecting HABs [24], their application in 

many parts of the world has been hindered by their spatiotemporal limitations, high cost, and labor-

intensive operational procedures [36]. The footprint of many of the remote-sensing sensors 

cover large areas with high temporal resolution; thus, they can potentially capture the spatial and 
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temporal variabilities of HABs, as evidenced by the extensive literature describing the detection, 

monitoring, and forecasting of HABs using remote sensing-based techniques and sensors [9]. 

Investigations utilizing moderate-resolution imaging spectroradiometers (MODIS-Aqua and 

MODIS- Terra), SeaWiFS, MERIS, Sentinel-2, and unmanned aerial vehicles have contributed 

the most to these studies [9,37–42]. The more recent and advanced satellites (e.g., Sentinel-3, 

launched in February 2016) provide added valuable resources for ocean color products, yet their 

recent deployment and, hence, their short record of historical data compared to earlier operational 

satellites (e.g., MODIS: 1999–present) puts them on the waiting list for future machine learning-

based forecasting projects. 

Many of the earlier attempts for HAB detection used reflectance-based classification algorithms 

and targeted chlorophyll-a, a good proxy for phytoplankton biomass [43–45]. These include 

classifications based on chlorophyll-a concentration [46], band ratios (e.g., blue–green band 

ratios) [47], ocean color band difference algorithms such as fluorescence line height (FLH), and 

maximum chlorophyll index. Chlorophyll-a concentrations derived from Landsat-8 (OLI) 

images over inland lakes in China using machine learning techniques (XGBoost) were shown 

to be more reliable than outputs from band ratio algorithms [48]. A comprehensive review of 

all these remote sensing-based methods was compiled by a research team mentioned in the reference 

section [43]. The use of these simple and straightforward indices and measurements, although 

successful, often introduces uncertainties, including false positive detections [49]. One approach 

to reduce these false positives is to develop statistical models that use more of the available ocean 

color products [50]. Using remotely sensed data, a number of machine learning studies were 

conducted to detect, monitor, and forecast HABs. Applying artificial neural networks and multiple 

linear regression (MLR) techniques in Kuwait Bay, a hybrid method showed a correlation between 
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a variety of spatial and temporal ocean color products and HAB propagation and growth in the bay 

[50]. In early machine learning (ML) studies, and using remote sensing data over Monterey Bay, 

random forest (RF) and support vector machines (SVMs) were applied to build a decision support 

system for predicting the distribution of algal blooms in the bay [51]. A machine learning-based 

spatio-temporal data mining approach using kernel-based SVM was applied to detect HAB events 

in the Gulf of Mexico [52]. In a red tide detection study, a deep learning method was applied 

to Landsat 8 Operational Land Imager data acquired over the southern coastal region of the 

Korean Peninsula [53]. Additionally, in a recent study, spatiotemporal SVM, RF, and deep 

learning long- and short-term memory methods were adopted to develop an HAB detection and 

forecasting system for the whole west coast of Florida [54]. These methods apply a state-of-the-

art machine-learning algorithm; however, most of them use only a limited number of variables 

(one to five) and do not consider as one of the main targets of their investigations the lag time 

between the onset of a bloom and the time it takes for a variable to have a maximum impact on 

bloom propagation. 

MODIS-derived ocean color products, along with field data, were used to develop data-driven 

statistical models based on MLR expressions to identify factors controlling HAB propagation 

[55] and to forecast bloom occurrences up to three days in advance. These models assumed a 

unified lag time for the significant variables, an assumption that does not adequately portray the 

complex interactions between the controlling factors, leading to the propagation of the HABs [56–

58]. Addressing this problem will lead to the development of more realistic modeling structures 

that can better account for the HAB growth patterns [59]. This could be accomplished by allowing 

each of the independent variables to have different lag times and the model to select the significant 

variables, each with its optimum lag time. In practice, the more satellite data and lag time choices 
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we provide, the better and more comprehensive the model. 

There are advantages for selecting statistical models that portray the relative significance of, and 

the correlation between, the factors controlling the onset of HABs. For example, artificial neural 

networks and deep learning (DL) models are powerful functions for modeling real-world problems 

[60,61]. The growth of HABs was successfully predicted using historical data and ecological 

informatics and applying DL methods [62]. The DL methods were also used to predict algal 

growth in rivers [63–66], lakes [67,68], and coastal areas [69,70]. However, these methods 

function as black boxes, and the neuron connections, their weights, and different layers cannot be 

associated much with the concept of the physical problem at hand [71]. The paucity of data has 

always been one of the challenges facing researchers—a good model should work and be trained 

with limited datasets [71,72]. Different machine learning models (e.g., linear versus non-linear 

and tree-based versus non-tree-based models) need to be adopted to compare and contrast the 

results in terms of consistency and model performance. The proposed approach addresses the 

aforementioned shortcomings, and provides an adequate forecasting period (up to 9 days) because 

of its spatio-temporal features [9]. 

In this manuscript, first I demonstrate the enhanced predictive power of the statistical model when: 

(1) multiple day (>2 days) satellite data acquisitions are utilized instead of single and 2-day models, 

(2) the optimum forecasting period is identified and the variations in lag times for the independent 

variables are accommodated, and (3) multiple statistical models are tested and the optimum 

predictive model is selected. In light of our findings, then I identify and use the optimum 

predictive statistical model and data structure to develop multiple sequential forecasting models 

that utilize available cloud-free scenes that span a period ranging from 1 to 11 days ahead of the 

onset of the HAB bloom. In doing so, our approach addresses the paucity and temporal 
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discontinuity of satellite ocean color products due to cloud coverage or missing values in areas 

close to shorelines due to masking and processing data (from levels 0 to 2) and random and 

systematic errors during data acquisition. Additionally, each of the individual models allows for 

variations in lag times of up to 2 days for the independent variables. In addition, we utilize 

statistical models that portray the relative significance of the factors controlling the onset of 

HABs. 

 

 
Study Area 
 

The study area incorporates the coastal areas (width: ~10–60 km, length:  180 km) of Charlotte 

County in southwest Florida and nearby estuaries, where freshwater and seawater mix (Figure 

1). Like many other coastal zones within the Gulf of Mexico, there have been persistent HAB 

outbreaks that pose serious environmental challenges to the tourism and fishery industries in the 

county. Charlotte County has a relatively high density of septic systems in areas where the water 

table is often less than 2 feet below land surface. Shallow ground water and defective septic 

systems cause seepage of septic effluent into the water table. The introduction of nitrogen from 

septic systems into lakes, estuaries, and coastal areas is of concern given that nitrogen is one of 

the primary nutrients responsible for algal blooms occurrences. The majority of the samples are 

close to the shoreline and the sampling density decreases as we move away from the shoreline 

towards the ocean. Unfortunately, the study area lacks comprehensive, continuous, organized 

field-based monitoring systems. 

 

 



11 
 

Data and Methods 
 
In this study, I apply an approach that addresses the paucity of continuous satellite temporal data 

and lag time variations among the controlling factors, provides predictions for bloom occurrences 

up to 9 days in advance, and provides insights into the factors controlling the onset of HABs, 

while predicting optimum solutions. Our approach takes advantage of remote sensing datasets, 

GIS technologies, and machine learning data-driven modeling. These data-driven models 

recognize hidden patterns in the collected data (dependent and independent variables) and 

provide insights into the behavior patterns of the observed ecosystems, namely the factors 

controlling the onset of HABs. In our case, the factors controlling, or correlating with, HAB 

bloom growth and propagation are represented by the independent variables and the HAB 

occurrences are the dependent or the response variable. The workflow (Figure 2) involved four 

major steps: (1) downloading and processing of daily MODIS data; (2) developing statistical linear 

and non-linear models based on historical HAB occurrences and ocean color products derived 

from consecutive day MODIS data; (3) comparison of the performance of the models, and (4) 

selection of the optimum model and structure. 
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Figure 2. Flowchart describing the adopted methodology. 

 
 

Data 
 
Two types of data were used to construct our data-driven models for the period from late 2000 to 

March 2020. First were the independent variables—daily ocean color satellite products acquired 

by the National Aeronautics and Space Administration (NASA) MODIS Aqua satellite. Automatic 

selection of cloud-free (<10%) MODIS data (2905 scenes) was performed and used for this study. 

Only a small fraction (5%) of the omitted cloudy scenes was found to be cloud-free over the study 

area based on visual inspection of a subset     of those scenes. Second was the dependent variable, 

daily K. brevis abundance (cells/L) observations from the National Oceanic and Atmospheric 

Administration (NOAA) and the Florida Fish and Wildlife Conservation Commission (FWC). 
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The independent variables were extracted from NASA’s ocean color website (https: 

//oceancolor.gsfc.nasa.gov/) for the daily acquired user-defined region of interest (ROI). 

Southwestern Florida was selected as ROI, and MODIS in Aqua mode as the source of data. The 

automatic data downloading was scheduled within the Linux environment. Following the 

download of Level 0 data, it was processed to Level 1, then to Level 2 using SeaDAS (NASA, 

Greenbelt, MD, USA, version 7.4) Ocean Color Science Software. Radiometric and geometric calibrations 

were performed to correct for differences in scene acquisition geometries (level 1 processing), and ocean 

color products were generated (level 2 processing). 

The dependent variable (historical occurrences of K. brevis and their cell count) was compiled from two 

resources, namely from FWC and NOAA. The FWC and NOAA datasets contain daily observation of K. 

brevis, and both cover the period from 2000 to 2020. 

Independent Variables 
 

Daily ocean color satellite products were automatically downloaded and processed. These include 

euphotic depth (ED), Secchi disk depth, chlorophyll-a, chlorophyll-gsm, chlorophyll-giop, 

diffuse attenuation coefficient (Kd_490), SST, FLH, particulate backscattering coefficient at 547 

nm (bbp_547_giop), and turbidity index. Because previous work has shown that one or more of 

these variables could affect, or correlate with, the onset of HABs, each of these potential 

controlling factors was included in the statistical analysis; the individual variables are described 

below with their potential contribution to HABs’ growth and propagation. 

1.1.1.1. Euphotic depth (m) and Secchi disk depth 

The ED, represents the depth at which about 1 percent of the total incoming light on the ocean’s 

surface can reach [73]. Beyond ED, light cannot penetrate, net photosynthesis and productivity 

https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/
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decreases, and nutrients and algae diminish [74]. ED varies with change in season and latitude 

from only a few centimeters in highly turbid eutrophic waters to around 300 m in the open ocean. 

Low EDs can represent high nutrient content and provide desirable conditions for HAB growth 

and propagation [75,76]. The ED was calculated using the approach described in [77]. The Secchi 

disk depth has a similar concept; it is the depth at which a disk with alternating black and white 

quadrants disappears as it is lowered in the water column, and thus, it is a measure of the water 

transparency. 

1.1.1.2. Chlorophyll-a (mg/m3) 

Three common pigments (chlorophyll-a, -b, and -c) can be found in HABs, but the former 

(chlorophyll-a) was found to be the best proxy for measuring algal growth in aquatic 

environments [78,79]. Three different semi-analytical algorithms were developed to compute the 

chlorophyll-a concentration: chlorophyll-a OC3M (ocean chlorophyll three- band algorithm for 

MODIS [80]), chlorophyll-a GSM (Garver-Siegel-Maritorena [81]), and chlorophyll-a GIOP 

(Generalized Inherent Optical Property [82]). These three chlorophyll- a measurements products 

are highly correlated with HAB cell count, yet they are not redundant; often, one of these 

algorithms can best estimate the chlorophyll-a concentration in a particular optically complex 

estuarine environment [83]. In general, the increase in chlorophyll-a concentration has been 

found to have a strong correlation with the HAB distribution [66]. 

1.1.1.3. Diffuse attenuation coefficient (Kd_490; m−1) 

The diffuse attenuation coefficient of downwelling irradiance at 490 nm reflects the attenuation 

of the light in blue to green wavelength regions for turbid water and is one of the most important 

optical properties of ocean water [84]. In one study the Kd_490 coefficient was used as a proxy 

for the growth of phytoplankton in turbid coastal waters, where the light attenuation was shown 



15 
 

to be controlled by the concentration of scattering particles, HABs being one of them [85]. In 

another study under normal and red tide outbreak conditions in the Persian Gulf, the MODIS 

Chlorophyll-a normalized line fluorescence height, and Kd_490 were compared; a high correlation 

was observed between chlorophyll-a and Kd_490 during red tides [86]. The Kd_490 was calculated 

using the technique described in [87]. 

1.1.1.4. Sea surface temperature (◦C) 

Phytoplankton and HAB growth and productivity is directly correlated with SST. The HABs can 

thrive under specific habitat characteristics and temperature range. The temperature controls the 

survival of the HABs and the availability and solubility of nutrients that are vital for the growth 

of HABs as well [88,89]. The correlation between SST and algal bloom growth and its 

distributions has been successfully demonstrated in various settings worldwide [89–92]. 

1.1.1.5. Fluorescence line height 

FLH provides a standard method for measuring radiance, leaving the coastal and ocean surface 

in the chlorophyll fluorescence emission band (676 nm) [44]. A strong positive correlation was 

reported between chlorophyll-a concentration and the FLH in ocean waters containing HABs [40]. 

FLH alone and together with backscattering coefficient have been successfully used in the 

detection of chlorophyll-a and K. brevis distribution in the Charlotte Harbor Estuary in Florida and 

in the Gulf of Mexico [30,93–96]. 

1.1.1.6. Particulate backscattering coefficient 

This factor represents the backscattering coefficient of water particles at 547 nm. Earlier studies 

have shown its utility in identifying HABs distribution, particularly the K. brevis in the Gulf of 

Mexico [96]. In two different studies at the West Florida shelf, the particulate backscattering 
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coefficient at 551 nm, in conjunction with fluorescence (in the first study) and chlorophyll-a (in 

the second) was utilized to detect K. brevis [94,97] The backscatter coefficient of particles at 547 

nm was calculated using an algorithm provided in [98]. 

1.1.1.7. Turbidity index 

The turbidity index is based on the reflectance in the green part of the spectrum. It provides a 

measure of the water clarity based on the amount of the scattered light caused by water-suspended 

particles [99]. When it is low, water is clearer, and more light can penetrate down into the water 

column, providing favorable living and growing conditions for HABs [100]. On the other hand, 

HAB growth increase turbidity, per se. Turbidity alone is not a direct indicator of HAB 

concentration, but it can be used in conjunction with other aforementioned factors. It has been 

successfully used to estimate the severity of HABs and to identify phytoplankton blooms [4,101]. 

The turbidity index was calculated using the method described in a previous study [102]. 

Target Variable 
 

The number of K. brevis (cells/L)) in shallow (depth: 0.5 m) waters is considered to be the target 

dependent variable (response variable). A threshold of 10,000 cells/L was adopted for 

classification purposes, because at concentrations exceeding 10,000 cells/L, respiratory irritation 

and fish kills are more likely to occur (https://myfwc.com/research/redtide/statewide/) and the 

chlorophyll-a concentration is high enough to enable the detection of HABs from satellite data 

[103]. Moreover, the adopted cell count groupings in this study are those used by the HABs 

Observing System (+ve: >10,000 cells/L; −ve: <10,000 cells/L) [12]. 

 

https://myfwc.com/research/redtide/statewide/
https://myfwc.com/research/redtide/statewide/
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Data Preparation 
 

In the proposed models, the number of K. brevis cells (cells/L) is used as the response variable. 

For the classification application a threshold of 10,000 cells/L was adopted to separate cell counts 

into two classes of positive and negative events. Ten level-02 ocean color products are used as 

controlling factors. Chromophoric dissolved organic matter index was manually removed from 

the list of level 02 products due to the discontinuous and patchy nature of this variable over the 

investigated period. In the generation of the models, the dataset was randomly split into train 

(70%) and test (30%). All the models were tested on roughly 300 positive and negative events 

that have not been seen by the models covering the observation time period from 2000 to 2020. 

For data quality control, I tried to keep the dataset size the same for all different models when it 

comes to comparison among the models to avoid any bias towards model bias and variance. 

Machine Learning Modeling 
 

We developed data-driven machine learning models to address the problem. The adopted state-

of-the-art machine learning models are discussed in two categories: linear versus non-linear, and 

tree-based versus non-tree-based models. Shrinkage methods were adopted as an example of 

regularized linear models, SVM for non-tree-based models, and XGBoost and RF as examples 

for non-linear tree-based models. Due to data size, data distribution, and the complexity of 

patterns in data, I follow a common practice in which I utilize, compare, and contrast a set of 

statistical models described in the following sections. 
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Linear Models 

We chose linear models because they have advantage in interpretability. By stacking up the same 

variables for different days (multicolinearity alert), I significantly increase the feature space (e.g., 

three consecutive days and 10 predictors for each day). Used the shrinkage method that applies a 

penalty term to the loss function embedded in the linear regression (LR) to avoid over- and 

underfitting. Shrinkage models shrink insignificant variables (coefficient estimates) into zero, 

which leaves us with the most significant variables to address the lag times [72]. 

Tree-Based Models (Non-Linear) 

Since we are stacking up a few sets of the same variables in consecutive days, the correlation 

among the same variables is very high. This imposes unsolvable multicollinearity to linear models. 

Therefore, I resorted to nonlinear models, such as tree-based models, to address the nonlinearity 

content of the problem. These models provide variable importance plots and can handle limited 

training datasets, which is the case in our investigation. Trees can be non-robust with high 

variance, which is why we considered ensemble models such as extreme gradient boosting (XGB) 

and RF to improve the prediction accuracy and lower the variance [72,104]. 

Extreme Gradient Boosting 

XGB is a scalable learning algorithm designed for higher speed and performance. It uses a 

regularized model formalization to control overfitting. 

In gradient boosting, the input predictors X (X1 ... Xn) are utilized to predict the corresponding 

target values Y (Y1 ... Yn). In fact, we need to minimize the sum of the loss function (J) by 

improving the model F(X). Equations (1)–(5) are from [105,106].  
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𝐽=∑ L(𝑦𝑖, F(𝑥𝑖))𝑛
𝑖=1 ,     (1) 

 

where L is a differentiable convex loss function to measure the difference between the predicted 

values F(𝑥𝑖) and the real target values ( 𝑌𝑖).  

 

In applying the XGB, we went through the following iterations. I first calculated the negative 

gradients of J with respect to (xi), which is − 
∂j

∂F(𝑥𝑖) 
  

Then, we fit a classification tree, ℎ, to 
∂j

∂F(𝑥𝑖)
. The new updated (𝑋𝑖) is (𝑋𝑖) + 𝛾ℎ, where 𝛾 is the 

step size to reach the estimated minimum of 𝐽.  

 

The iteration continues to the point at which we achieve the minimum difference between 

prediction and observation. In XGB, the loss function is: 

  

𝐽= ∑ L(𝑦𝑖, F(𝑥𝑖))𝑛
𝑖=1 =1 + Ω (ℎ),     (2) 

where  

Ω (ℎ) = 𝛾𝑇 + 
1

2
𝜆‖𝜔‖2 ,     (3) 

 

𝑇 is the number of tree leaves, and 𝜔 is the weights of those leaves. The function 𝛺 penalizes the 

model complexity. The optimal weight 𝜔 of leaf 𝑗 was calculated using (eq.4): 
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                                 𝜔j=
 ∑ gj𝑗

∑ hj+λ𝑗
,                (4)  

                                                                                

where 𝑔j= − 
∂j

∂F(Xi) 
 and ℎ is the 𝑗th classification tree fitted to 𝑔j. The optimal value of the loss 

function was calculated using (eq.5)[105] 

 

𝐽=− 
1

2
 ∑

(∑ gj𝑗  )2 

∑ hj+λ𝑗

𝑇
𝑗=1 +𝛾𝑇                   (5) 

 

The additional regularization term was added to avoid overfitting [104][105]. 

To achieve the optimum structure for the XGB model, parameters such as the number of boosting 

iterations, gamma, maximum depth, and learning rate (eta) were tuned. Gamma is a pseudo-

regularization hyper parameter in gradient boosting (complexity control). The higher the gamma 

is, the higher the regularization and the more conservative the algorithm will become. The eta 

specifies the participation of each tree and reduces overfitting. Maximum depth determines the 

maximum number of end nodes in each leaf of the trees. These hyperparameters were calculated 

based on grid search and cross-validation in R. I found that the optimum hyperparameters for the 

XGB including the number of boosting iterations, gamma, maximum depth, and learning rate 

(eta) were 100, 0, 10, and 0.05, respectively.  

 

Random forest  

In RF we build hundreds of trees on bootstrapped training samples. But each time we generate 

an individual tree and a split in a tree is considered, a random fresh selection of M predictors is 
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chosen as split candidates from the full set of the P predictors to avoid the strongest predictor 

always being utilized in the process [106]. Typically, M is calculated using eq. 6  

 

M=√P        (6) 

 

At each split, a new sample of predictors is considered according to a user-defined number of 

predictors (Mtry). Another user-specified hyperparameter is the number of trees (Ntree). Small 

values were avoided to enable the making of the forest and to enhance the variance-bias tradeoff 

[89][108]. For global optimum, two-third of the samples were used for training, and the remaining 

out-of-bag (OOB) were used to cross-validate the RF model. The OOB error was utilized to 

calculate the prediction error and to evaluate the variable importance measures [109]. The RF 

hyperparameters (Mtry and Ntree) that were used in this study to optimize the model performance 

were 6 and 1000, respectively.  

Support vector machines  

To evaluate the reliability of results, a non-parametric (insensitive to the distribution of data) non-

tree-based supervised learning method called SVM was adopted [92]. SVM proposes a 

nonparametric approach to finding linear discriminant functions. It tries to find a unique 

hyperplane between each pair of the classes in a multidimensional feature space [111].  

The linear function general formula is g(x) = WT .x + b, which is a hyperplane in higher 

dimensions and is represented in Figure 3. 
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Figure 3. Two-dimensional feature space with SVM linear discrimination function. 

Here, x1 and x2 are two features and the green and white classes are separated by the line WT x + 

b = 0, n is normal vector of the hyperplane (n = 
𝑤

||𝑤||
); where ‖w⃗‖ is the Euclidian distance between 

w⃗ and the origin. The main objective of SVM is to find a set of weights that specify two 

hyperplanes (eq. 7) 

Given a set of data points {(xi, yi)}, i = 1, 2… n; where: 

 

      {
𝑦𝑖  =  +1, 𝑤𝑡 𝑥𝑖 +  𝑏 ≥  𝑘

𝑦𝑖 =  −1,  𝑤𝑡 𝑥𝑖 +  𝑏 ≤  𝑘
        

                                                                                        (7) 

k = 1 after scale transformation on both w and b. 

 

We have infinite possible discrimination functions. One way to find the optimal hyperplane is by 

maximizing the width of the margin (margin width: 
2

||𝑤||
 ) or minimizing 

1

2
||𝑤||

2
 = 

1

2
 wt w  

such that: Yi ( 𝑤𝑡 𝑥𝑖 +  𝑏) ≥ 1  
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{
min (

1

2
 𝑤𝑡 w)

𝑦𝑖 ( 𝑤𝑡 𝑥𝑖 +  𝑏) ≥  1 
        (8) 

 

By solving this optimization equation for w and b, each of the 𝑦𝑖 data points is correctly classified. 

In fact, 𝑦𝑖 indicates the class value (transformed either to +1 or −1). 

 

In the adopted SVM, a radial basis function kernel yielded a better performance and was applied 

to address nonlinearity and overfitting. Model optimization was performed using the tune 

function in the R software package on the SVM hyperparameters (gamma [γ] and cost [c]). The 

cost hyperparameter specifies the cost of a violation to the margin; at small cost values margins 

will be wide and many support vectors will be available, and vice versa at high-cost values. The 

model overfits data as the values of c or γ increase and underfits as their values decrease. The 

average number of support vectors, optimum γ, and optimum c were selected at 95, 0.5, and 0.1, 

respectively.  

 

Assessment of Models 
 

The performance of the models was evaluated using the test data with binary classes of low and 

high concentration of K. Brevis and applying a confusion matrix.  

 

Some of the important metrics of confusion matrix appropriate for imbalanced datasets are 

Cohen's kappa, balanced accuracy, and F-score. On top of that, the receiver operating 

characteristic (ROC) curve and the area under the curve (AUC) were calculated to compare 
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different classifiers. ROC is a graphical plot that represents false and true positive rates on the x 

and y axes, respectively. ROC indicates a model's diagnostic ability when the class discrimination 

threshold varies [106]. These criteria are calculated as follows [106]:  

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖ci𝑡𝑦= 
𝑇𝑁

𝑇𝑁+𝐹𝑃 
         (9)  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦= 
𝑇𝑃 

𝑇𝑃+𝐹𝑁 
        (10)  

Balanced_a𝑐𝑢𝑟𝑎𝑐𝑦= 
Specificity+Sensitivity

2 
     (11)  

F-Measure = 
𝑇𝑃

𝑇𝑃+ 
1

2
 (𝐹𝑃+𝐹𝑁)

       (12) 

𝐾𝑎𝑝𝑝𝑎= 
𝑃𝑜−𝑃𝑒

1−𝑃𝑒 
                    (13)  

where  

𝑃𝑜= 
𝑇𝑃+𝑇𝑁

𝑛 
 and 𝑃𝑒=

1

√N
 ((𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃) + (𝐹𝑃+𝑇𝑁)(𝐹𝑁+𝑇𝑁)).  

 

In the above equations, 𝑁 is the total number of cases, 𝑛 points to the number of accurately 

categorized incidents or non-incidents, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 refer to true positive, true negative, 

false positive, and false negative, respectively. 

 

The performance of one day (e.g., −7; −8; −9), 2-consecutive day (e.g., −7, −8; −8, −9), and 3-

consecutive day (e.g., −7, −8, −9) models were measured using four performance metrics (kappa, 

F-score, precision, and balanced accuracy). In this case and throughout the text, the “−ve” sign 

and the numbers refer to the number of days ahead of a bloom onset.  . For example, the 3-
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consecutive (−7, −8, −9) model refers to a model that uses satellite data acquired on three 

consecutive days, 7, 8, and 9 days ahead of a bloom occurrence.  For simplification purposes, a 

3-consecutive (−7, −8, −9) model will be referred to hereafter as a 7-day model, a 3-consecutive 

(−9, −10, −11) model as a 9-day model, and a 3-consecutive (−10, −11, −12) model as a 10-day 

model. 

 

There are two measures of variable importance in the RF models. The first is based on how much 

the accuracy decreases when we exclude the variable. The second measure is based on the 

decrease in Gini impurity when a variable is selected to split a node. For boosting-based models 

(XGBoost), learning is done serially; when there are several correlated features (as in our case), 

boosting will tend to choose one and use it in several trees (if necessary), and the use of other 

correlated features will be limited. On the other hand, each tree of an RF is not built from the 

same features (there is a random selection of features to use for each tree). Therefore, RF has the 

most intuitive feature importance for our case. In addition, each time we run the forest-based 

classification, we get slightly different results due to both randomness introduced in the model to 

avoid overfitting and the random sub-setting of validation data. Therefore, instead of a bar chart, 

we get a variable importance box-plot that shows the distribution of importance across many 

runs. 
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Results 

  

4.1. Model structure comparison and selection of optimum model structure 

Using the XGB model, I compared the performance of one day (−7; −8; −9), 2-consecutive day 

(−7, −8; −8, −9), and 3-consecutive day (−7, −8, −9) models (Table 1).  Examination of Table 1 

shows that the 3-consecutive day structure outperforms the 2-consecutive day models, which in 

turn outperforms the single-day models. A similar exercise was conducted using the SVM model, 

and again the 3-consecutive structure was found to outperform the 2-consecutive day models, 

which in turn outperform the single day. Although not shown, we observe a general enhancement 

in the performance of each of the remaining three models (XGBoost, RF, and SVM) with an 

increasing number of consecutive days. Thus, there are added benefits for increasing the number 

of consecutive day entries to our models given the same number of variables.  

Table 1. Comparison between the performance of single, and 2- and 3-consecutive day models 

Combination (7th XGB) −7 −8 −9 −7, −8 −8, −9 −7, −8, −9 

Kappa 0.77 0.76 0.76 0.74 0.76 0.80 
F-score 0.89 0.88 0.88 0.85 0.88 0.96 
Precision 0.84 0.88 0.88 0.92 0.88 0.94 
B. accuracy 87.0 86.0 86.0 83.0 86.0 88.0 
Combination (2nd SVM) −2 −3 −4 −2, −3 −3, −4 −2, −3, −4 
Kappa 0.35 0.4 0.37 0.4 0.4 0.50 
F-score 0.51 0.52 0.48 0.52 0.52 0.60 
Precision 0.56 0.72 0.81 0.73 0.73 0.82 
B. accuracy 66.0 66.0 64.0 67.0 66.0 71.0 

 

Unfortunately, the availability of cloud-free (<10%) MODIS data over the study area limits our 

ability to develop models that utilize more than 3 consecutive days. Table 2 shows that out of a 

total of 2905 scenes that were acquired over the study area and period, the single scenes 

constituted 36% (1039) of the cloud-free scenes, the 2-consecutive day scenes 20% (562 scenes), 

the 3-consecutive day scenes 9% (260 scenes), the 4-consecutive day scenes constituted <2% (57 
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scenes), and each of the 5, 6, and 7 consecutive scenes constituted less than 1% of the cloud-free 

scenes.  

 

 
Table 2. Availability of cloud-free (<10%) MODIS data (2905 scenes) acquired 

Over the study area and period 2000−2020 

Days (2000–2020) < 10% cloud Scenes Frequency 

Total 2905  

single days 1039 36% 

2 consecutive days 562 20% 

3 consecutive days 260 9.0% 

4 consecutive days 57 1.9% 

5 consecutive days 29 0.9% 

6 consecutive days 21 0.7% 

7 consecutive days 14 0.4% 

8 consecutive days 6 0.2% 

9 consecutive days 1 0.03% 

10 consecutive days 0 0% 

 

 

Given the paucity of consecutive MODIS data for periods exceeding three days and the lesser 

chances for finding field observations (dependent variable) in 4-consecutive days for model 

training purposes, I chose to develop our models based primarily on the 3-consecutive day 

structure.  

 

Eleven 3-consecutive day models were generated (Table 3, top). This structure and bundle of 

temporally overlapped models provide short- to mid-term HAB forecasting through a range of 

Spatio-temporal models, and addresses, at least in part, the differences in optimum lag times 
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between each of the individual independent variables and the onset of HABs. For example, the 

first model uses ocean color products acquired a day prior, two days prior, and three days before 

the onset of a HAB occurrence; the last model uses data acquired 10, 11, and 12 days in advance. 

As described earlier, the 3-consecutive day models produce better results than the 2-day models. 

For comparison purposes, the structure of 11 2-consecutive day models is shown in Table. 3 

(bottom). 

 

Table 3. Temporal modeling structure for 2- and 3-consecutive day models 

     3 Day Models      

−13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 Day 

          X X X Bloom 
         X X X  Bloom 

        X X X   Bloom 

       X X X    Bloom 

      X X X     Bloom 

     X X X      Bloom 

    X X X       Bloom 

   X X X        Bloom 

  X X X         Bloom 

 X X X          Bloom 

X X X           Bloom 

     2 Day Models      

−13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 Day 

         X X Bloom 

          X X  Bloom 

         X X   Bloom 

        X X    Bloom 

       X X     Bloom 

      X X      Bloom 

     X X       Bloom 

    X X        Bloom 

   X X         Bloom 
  X X          Bloom 

 X X           Bloom 
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4.2. Comparison of performance of statistical models and selection of optimum model 

A variety of machine learning algorithms were adopted based on the nature of data and the 

problem at hand. The Lasso regression analysis was first adopted, but all the variables were found 

to shrink to zero due to very high multicollinearity among the variable sets. Tree-based models 

(XGBoost, RF, and SVM) were then applied. The ROC curve (AUC), balanced accuracy, kappa, 

and F-score derived from the confusion matrix were adopted to evaluate the performance of 

models on the test dataset. The comparison of forecasting models is displayed in Table 4 and 

Figure 4. The model structures are represented by numbers ranging from −1 to −13, representing 

the days in advance of a HAB occurrence. The best metrics among the three models (XGB, RF, 

SVM) are boldfaced. For example, XGBoost achieved the highest performance among the 

models for eight (−8) days forecasting with all four metrics (accuracy: 96%; Kappa: 0.93; F-

score: 0.97; and AUC: 0.98). Figure 4 displays the ROC plots for the train and test datasets for 

8-day SVM, RF, and XGBoost models. The three model ROC curves and the area under them 

(AUC) indicate a slightly higher performance for the XGBoost compared to the other models 

(AUC: XGBoost, 0.98; RF, 0.96; SVM, 0.94). XGBoost was selected as the optimum model. 
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Table 4. Comparison between the performance of 3-consecutive day models using XGBoost, RF, and SVM. The 

best metrics are face bolded 

 XGBoost Model Performance 

−13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −
1 

Accuracy Kappa F-score AUC 

          X X X 73.1 0.52 0.64 0.74 

         X X X  73.9 0.65 0.82 0.85 

        X X X   58.0 0.27 0.63 0.67 

       X X X    76.4 0.58 0.78 0.84 

      X X X     83.9 0.0.7 0.87 0.88 

     X X X      92.0 0.86 0.95 0.97 

    X X X       87.6 0.81 0.96 0.98 

   X X X        96.2 0.93 0.98 0.98 

  X X X         87.4 0.76 0.92 0.91 

 X X X          83.6 0.71 0.88 0.81 

X X X           79.6 0.68 0.80 0.80 

 RF Model Performance 

−13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −
1 

Accuracy Kappa F-score AUC 

          X X X 65.6 0.40 0.74 0.73 

         X X X  77.2 0.63 0.71 0.86 

        X X X   54.7 0.13 0.20 0.74 

       X X X    76.1 0.60 0.73 0.87 

      X X X     83.5 0.67 0.80 0.83 

     X X X      89.2 0.82 0.84 0.95 

    X X X       91.4 0.75 0.84 0.96 

   X X X        95.2 0.92 0.95 0.96 

  X X X         78.3 0.73 0.88 0.80 
 X X X          81.7 0 .67 0.78 0.87 

X X X           80.7 0.62 0.71 0.79 

 SVM Model Performance 

−13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −
1 

Accuracy Kappa F-score AUC 

          X X X 62.4 0.35 0.72 0.69 

         X X X  71.2 0.50 0.60 0.80 

        X X X   56.3 0.20 0.27 0.79 

       X X X    73.7 0.63 0.75 0.84 

      X X X     83.6 0.67 0.81 0.81 

     X X X      87.0 0.66 0.77 0.94 

    X X X       91.1 0.72 0.79 0.90 

   X X X        88.2 0.83 0.86 0.93 

  X X X         74.1 0.62 0.63 0.82 

 X X X          63.0 0.32 0.74 0.80 

X X X           61.0 0.59 0.70 0.80 
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Figure 4. Machine Learning models ROCs for Test ROC (a) and Train ROC (b). 

4.3. Comparison of lag times and selection of optimum lag time 

Inspection of Table 4 reveals that, in general, the forecasting models of ~5–9 days in advance (5 

to 9-day models) achieved relatively more reliable and comparable results, with the 7 and 8-day 

forecasting models being the optimum models. For example, Figure 5 shows a good 

correspondence between the reported concentrations of K. brevis in 170 random test samples 

within the study area with the predicted concentration for each of those samples from an 8-day 

RF model. The samples have been classified correctly with an accuracy of 95%.  

XGBoost (the top sub table) also demonstrated a more uniform superiority performance in this 
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interval, which is portrayed by boldfaced figures. The models out of this range (5–9 days) in 

general showed a relatively lower performance, especially on the kappa metric, which is an 

indicator of model performance in comparison to a random guess (random classifier). For 

example, in general, the 1-, 2-, 3-, 4-, 10-, and 11-day models in all three ML methods showed 

low kappa values compared to the 5-, 6-, 7-, 8-, and 9-day models.  
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Figure 5. Comparison between the reported K. brevis concentration in 170 randomly selected test samples within the 

study area (top) with their predicted concentrations from an 8-day RF model (bottom). The samples have been 

classified correctly with 95% accuracy. 
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4.4. Identification of controlling factor importance  

An RF feature importance plot was selected for the depiction of the significant variables because 

it provides the most intuitive display of variable importance (refer to section 2.2). Figure 6 shows 

the variable importance boxplot for the 8-day RF model.  The x-axis displays 30 controlling 

factors, 10 factors for each of 3 days (days 8, 9, and 10) in three sets; the y-axis is the scaled 

variable importance. Boxplots show the range of variations in variable importance in different 

model runs (n=100). Each set of 10 variables is separated by a vertical blue line. Chlorophyll-a, 

SST, Secchi disc depth, and ED from the 8th day are amongst the most significant variables. 

Although not shown, XGBoost showed generally similar, yet not identical results in feature 

importance. 

 

Figure 6. Variable importance (VI) boxplot for the best RF model. The VI metrics are on the y-axis and the 10 

variables for each of the 3-consecutive days are numbered. 
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Discussion  
 

This study was intended to provide guidelines for the development of comprehensive predictive 

HABs models using temporal remotely acquired data in ways that can address, at least in part, 

two of the main shortcomings of remote sensing-based HAB predictive models. These are (1) the 

paucity of satellite data due to cloudy scenes and other systematic and random missing data that 

prevent us from making reliable models, and (2) the differences in lag time between the period 

at which the individual variables reach their highest correlation with the target and the time the 

bloom occurs.  

Our findings suggest that these shortcomings could be addressed by using multiple sequential, 

consecutive day models, as opposed to single-day models [54]. The larger the number of 

consecutive days, the better the results. In our case, the paucity of consecutive cloud-free data 

limited our analysis to 2- and 3-consecutive-day models (11 models). The 3-consecutive day 

models predict the onset of HABs from 1 to 11 days in advance and accommodate differences in 

a lag time of up to 2 days for the independent variables. Three-consecutive day models increased 

the variability within the models and increased the overall performance of all models (SVM, 

XGBoost, and RF) in comparison with the single-day or two-day models. In absence of 3-

consecutive day data, one can resort to the use of 2-consecutive day models.  Comparisons of our 

3-day XGB model outputs with previous single-day model outputs [54] over the study area reveal 

enhanced overall performance for our 3-consecutive day models. The single-day model achieved 

65% accuracy for the one-day in advance model, and 72.1% for the two-day model [54]. The 

overall performance of our 1-day and 2-day forecasting XGBoost models adjusted for imbalance 

yielded an accuracy of 73.0% and 73.9, respectively. In both studies, the SST, chlorophyll-a, 

KD_490, and euphotic depth were among the most important controlling factors. 
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Following the general trend in almost all four metrics, the performance of the models was 

enhanced with the ~5–9-day models, and the best results were those obtained from the 7–8-day 

models. For example, in the XGBoost analysis (Table 4), the kappa ranged from 0.5 to 0.6 for 

day 1, 2, 3, and 4 models, rose to up to 0.93 in the day-8 model, then decreased to 0.68 in the 

day- 11 models. The mid-term forecasting of 5–9 days is not only more accurate but is also more 

functional compared to short-term forecasting models. They provide enough time to execute 

appropriate warning and mitigation steps before the onset of HAB occurrences. One explanation 

for the above-mentioned findings is that better (−5 to −9) and optimum lag times (−7, −8) are met 

within these time frames. The VI boxplot shows that the ED and Secchi disc depth were found to 

be highly significant factors, probably due to the spatial variability of these factors throughout 

the study area and their correlation with the distribution and concentration of HABs. Chlorophyll-

a and SST were found to be significant factors as well. Our findings are consistent with previous 

non-data-driven studies [52][57][112]. In the Persian Sea, phytoplankton biomass was found to 

correlate with SST with a lag time of 2–8 days [57]; in Santa Monica, it was 5 days [113]. In 

addition, a 3–6 day lag time was reported between the introduction of phosphorus nutrients and 

the occurrence of HAB events [114].  

 

The XGBoost model outperformed the SVM and RF models. It combines the advantages of RF 

and gradient boosting. The high performance of the XGBoost model can be attributed to the 

specific data patterns and size, data imbalance, and more robustness of the model to noisy data 

and outliers due to its loss function flexibility, which has a regularization term to reduce the 

complexity of the three functions. 
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Our method has its limitations. The application of our methodology in an area will ultimately 

depend on the availability of consecutive cloud-free data. In arid parts of the world, that should 

not be a major problem, but in temperate areas, cloud-free data for the application of the optimum 

3-day models (5- to 9-day models) might not be available, and in such cases, less accurate 3-day 

models (1–4, 10, and 11-day models) or even 2-day models will have to be used instead. The 

generated models are specific for the investigated area, and thus similar models have to be tailored 

to individual areas. Moreover, the proposed approach is labor-intensive, since it requires the 

development of many models—in our case, some 20 models, including extensive data 

engineering, data blending, and data wrangling. Using archival field and satellite data (as a 

training data set) for areas of interest, future work should concentrate on the development of 

automated systems that can construct tens to hundreds of models at various combinations of 

consecutive days, (2-day, 3- day, 4-day, 5-day models, etc), evaluate their performance using test 

data, rank the models based on their performance, and depending on availability of cloud-free 

ocean color data select and apply the model with the highest performance. 
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Conclusion 
 

We developed, compared, and contrasted the efficiency of state-of-the-art data-driven machine 

learning models (XGBoost, RF, and SVM) in predicting the occurrence of HABs. The number 

of K. Brevis cells in surface water samples collected during red tides over the past 20 years was 

used as a binary response to the environmental controlling factors (target variable) and 10 level-

02 ocean color products extracted from daily archival MODIS satellite data were used as 

environmental controlling factors.  

 

Two main shortcomings of earlier models were addressed: (1) the paucity of satellite data due to 

cloudy scenes and other systematic and random missing data, and (2) the lag time between the 

period at which a variable reaches its highest correlation with the target and the time the bloom 

occurs. Eleven Spatio-temporal models were generated, each from three consecutive days' 

satellite datasets, with a forecasting span of 1 to 11 days. One or more of the generated 11 models 

could be used to predict HAB occurrences with acceptable performance depending on the 

availability of the cloud-free consecutive days.  

 

Findings indicate: (1) XGBoost, outperformed the remaining methods, (2) the forecasting models 

of 5–9 days achieved the best and most reliable results, (3) the most reliable model can forecast 

eight days ahead of time, and (4) ED, SST, and chlorophyll-a are always among the most 

significant variables.  

 

The findings from this study could serve as guidelines for the development of remote sensing-

based early warning systems for HABs in southwest Florida with short- to mid-term forecasting 
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capabilities. As described above, the generated models are specific to the study area and their 

development is labor-intensive. Thus, speedy and wide scale applications of the developed 

concepts in areas outside of the study area require the development of fully automated algorithms 

that will accomplish the following functions: downloading of daily data acquisition for the 

desired study area from a big data platform, designing and maintaining a database management 

system for data blending and query-based data engineering, online ML modeling, and interactive 

model evaluation.  

 

In southwest Florida, it was difficult to get cloud-free ocean color acquisition for more than three 

consecutive days. There are many other coastal areas around the world, especially in arid areas 

in which cloud-free scenes are more available, where the developed methodologies could be 

readily applied. The development of automated systems that can construct many models at 

various combinations of consecutive days could facilitate the application of the advocated 

methods over areas where cloud-free data is limited.  

Additional approaches to address the paucity of cloud-free consecutive day data should be 

explored and their performance evaluated. For example, additional statistical models that rely on 

non-consecutive day data could be generated; alternatively, the values of the missing days could 

be estimated using forward window averages or data imputation before feeding the data into the 

ML algorithms.  The consecutive raster images potential for data imputation, interpolation for 

coming up with more consecutive days should also be investigated for the future works. 
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Appendix  
 
 
In this section, I added the main body of code that I used for one of my models. 
 
###################### 
###install.packages### 
###################### 
install.packages('randomForest') 
install.packages('gbm') 
install.packages('tree') 
install.packages('PerformanceAnalytics') 
install.packages('tidyverse') 
install.packages('caret') 
install.packages('pROC') 
install.packages('purrr') 
install.packages('lattice') 
install.packages('ggplot2') 
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install.packages('e1071') 
install.packages('ROCR') 
install.packages('precrec') 
install.packages('ROCit') 
install.packages("vip") 
install.packages("ranger") 
install.packages("xgboost") 
install.packages('Ckmeans.1d.dp') 
install.packages('party') 
library(Ckmeans.1d.dp) 
library(ggplot2) 
library(precrec) 
library(vip) 
library(ranger) 
library(ROCit) 
library(precrec) 
library(pROC) 
library(tidyverse) 
library(caret) 
library(purrr) 
library(lattice) 
library(ggplot2) 
library(e1071) 
library(PerformanceAnalytics) 
library(randomForest) 
library(gbm) 
library(tree) 
library(ROCR) 
library(xgboost) 
library(party) 
library(ROCR) 
library(caTools) 
 
################### 
### Read  ######### 
################### 
set.seed(500) 
dataset = read.csv(file = "Cleaned_to_NA_3dys_MICE146.csv") 
dataset = read.csv(file = "Cleaned_to_NA_3dys_MICE196.csv") 
dataset = read.csv(file = "Cleaned_to_NA_3dys_MICE340.csv") 
head(dataset) 
 
### Factorizing ####### 
#dataset$Karenia_br= cut(dataset$Karenia_br, breaks=c(-1,100000,100000000), labels=c("not 
present", "Present")) 
dataset$Karenia_br= cut(dataset$Karenia_br, breaks=c(-1,10000,100000000), labels=c("0", "1")) 
 
##### train/test split ####### 
set.seed(1116) 
#split = sample.split(dataset$Karenia_br, SplitRatio = 0.8) 
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#training_set = subset(dataset, split == TRUE) 
#test_set = subset(dataset, split == FALSE) 
#test.Karenia_br <- test_set[111] 
train <- sample(1:nrow(dataset), nrow(dataset)/2) 
dataset.test <- dataset[-train, ] 
test_set=dataset[-train, ] 
training_set = dataset[train, ] 
test.Karenia_br <- dataset$Karenia_br[-train] 
test.Karenia_br <- dataset$Karenia_br 
 
####################################################################
#################### 
######### Random Forest (randomForest) ######## 
############################################### 
# m = sqrt{p} foR classification AND p/3 for regression 
rf.dataset <- randomForest(Karenia_br ~., subset = train, data = dataset, mtry = 6, 
                           importance=TRUE,importanceSD=TRUE, localImp=TRUE, ntree=1000) 
 
###### Predictions on the TEST dataset 
yhat.rf <- predict(rf.dataset, newdata = dataset[-train,], 'prob') 
yhat.rf <- predict(rf.dataset, newdata = dataset, 'prob') 
#plot(yhat.rf[,2], test.Karenia_br) 
#abline(0, 1) 
h=cbind(yhat.rf[,2], test.Karenia_br)[1:170,] 
h 
###### Variable importance plot 2 ##### 
#importance(rf.dataset, type=1) 
#varImpPlot(rf.dataset) 
 
######################## 
## RF ConfusionMatrix ## 
######################## 
confusionMatrix(yhat.rf, test.Karenia_br, positive = "Present", mode="everything") 
#error <- mean(test.Karenia_br != yhat.rf) 
 
 
 
####################################################################
################################# 
######################################################### 
##################### XGBOOST ########################### 
######################################################### 
classifier = xgboost(data = as.matrix(training_set[-1]), label = 
as.numeric(levels(training_set$Karenia_br))[training_set$Karenia_br], type="response", 
                     objective = "binary:logistic", #"binary:hinge", 
                     nrounds = 100,  
                     max_depth = 6,  
                     eta = 0.05, 
                     gamma = 0,  
                     colsample_bytree = 0.1,  
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                     min_child_weight =1, 
                     subsample = 1, 
                     verbose = 5 
                    ) 
 
# Predicting the Test set results 
y_pred = predict(classifier, newdata = as.matrix(test_set[-1]), type="response", outputmargin=F) 
y_pred = predict(classifier, newdata = as.matrix(dataset[-1]), type="response", outputmargin=F) 
 
 
######################## 
## XGB ConfusionMatrix ## 
######################## 
#confusionMatrix(as.factor(y_pred), as.factor(test.Karenia_br), positive = "Present", 
mode="everything") 
confusionMatrix(as.factor(y_pred), as.factor(test.Karenia_br), mode="everything") 
h=cbind(factor(y_pred), factor(test.Karenia_br))[1:170,] 
h 
################################### 
##### XGBoost Tuning ############## 
################################### 
set.seed(500) 
dataset = read.csv(file = "Cleaned_to_NA_3dys_MICE340.csv") 
dataset$Karenia_br= cut(dataset$Karenia_br, breaks=c(-1,10000,100000000), 
labels=c("notpresent", "Present")) 
##### train/test split ####### 
set.seed(1116) 
split = sample.split(dataset$Karenia_br, SplitRatio = 0.8) 
training_set = subset(dataset, split == TRUE) 
test_set = subset(dataset, split == FALSE) 
test.Karenia_br <- test_set$Karenia_br 
 
cv.ctrl <- trainControl(method = "repeatedcv", repeats = 1,number = 3,  
                        #summaryFunction = twoClassSummary, 
                        classProbs = TRUE, 
                        allowParallel=T) 
 
xgb.grid <- expand.grid(nrounds = 100, 
                        eta = c(0.01,0.05,0.1), 
                        #eta = c(0.01,0.05), 
                        max_depth = c(2,4,6,8,10,14), 
                        #max_depth = c(2,4), 
                        gamma= c(0, 10),  
                        colsample_bytree= c(0.1, 0.4),  
                        min_child_weight= c(1L, 10L) , 
                        subsample= c(0.5, 1) 
                        #colsample_bytree= 0.1,  
                        #min_child_weight= 1L , 
                        #subsample= 0.5 
) 
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set.seed(45)  
xgb_tune <-train(training_set[,-1], 
                 training_set$Karenia_br, 
                 method="xgbTree", 
                 trControl=cv.ctrl, 
                 tuneGrid=xgb.grid, 
                 verbose=T, 
                 metric="AUC", 
                 nthread =3 
) 
xgb_tune 
 
 
 
 
####################################################################
################################# 
######################################################### 
##################### Gradiant Bossting ################# 
######################################################### 
aa=dataset[train,] 
AAA=dataset[-train,] 
AAA=AAA[,-1] 
set.seed(102) 
bst <- xgboost( 
  data = data.matrix(subset(dataset[train,], select = -Karenia_br)), 
  label = aa$Karenia_br,  
  objective = "reg:linear", 
  nrounds = 1000,  
  max_depth = 100,  
  eta = 0.4, 
  verbose = 0  # suppress printing 
) 
 
# Predicting the Test set results 
y_pred2 = predict(bst, newdata = as.matrix(AAA)) 
y_pred2 = predict(bst, newdata = as.matrix(dataset[,-1])) 
#y_pred2 = (y_pred2 >= 0.5) 
 
 
####################################################################
################################# 
############################################################## 
##################### Support Vector Machine ################# 
############################################################## 
svm.fit2 <- svm(Karenia_br ~ ., data = dataset[train, ], kernel = "radial", gamma = 1, cost = 1, 
probability = TRUE) 
svm.pred <- predict(svm.fit2, newdata = dataset[-train, ], probability = TRUE, type = "prob") 
svm.pred <- predict(svm.fit2, newdata = dataset, probability = TRUE, type = "prob") 
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Prob=attr(svm.pred,"probabilities")[,2] 
 
 
 
############################### 
############ ROC  ############# 
############################### 
 
######## ROCR- 2005 ############ 
#pred <- prediction(yhat.rf[,2], test.Karenia_br) 
#perf <- performance(pred,"tpr","fpr") 
#plot(perf,colorize=TRUE) 
 
########### pROC - 2010 Data science ROC ################  
########### Random Forest ROC 
pROC_obj <- roc(test.Karenia_br,yhat.rf[,2], 
                smoothed = TRUE, 
                # arguments for ci 
                ci=TRUE, ci.alpha=0.9, stratified=FALSE, 
                # arguments for plot 
                plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE, 
                print.auc=TRUE, show.thres=TRUE) 
sens.ci <- ci.se(pROC_obj) 
plot(sens.ci, type="shape", col="lightblue") 
plot(sens.ci, type="bars") 
###### ROCit - 2019 Youden index ######## 
ROCit_obj <- rocit(score=yhat.rf[,2],class=test.Karenia_br) 
plot(ROCit_obj) 
 
########### pROC - 2010 Data science ################  
########### XGBoost ROC 
pROC_obj <- roc(test.Karenia_br,y_pred, 
                smoothed = TRUE, 
                # arguments for ci 
                ci=TRUE, ci.alpha=0.9, stratified=FALSE, 
                # arguments for plot 
                plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE, 
                print.auc=TRUE, show.thres=TRUE) 
sens.ci <- ci.se(pROC_obj) 
plot(sens.ci, type="shape", col="lightblue") 
plot(sens.ci, type="bars") 
###### ROCit - 2019 Youden index ######## 
ROCit_obj <- rocit(score=y_pred,class=test.Karenia_br) 
plot(ROCit_obj) 
 
########### pROC - 2010 Data science ################  
########### GBM ROC 
pROC_obj <- roc(test.Karenia_br,y_pred2, 
                smoothed = TRUE, 
                # arguments for ci 
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                ci=TRUE, ci.alpha=0.9, stratified=FALSE, 
                # arguments for plot 
                plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE, 
                print.auc=TRUE, show.thres=TRUE) 
sens.ci <- ci.se(pROC_obj) 
plot(sens.ci, type="shape", col="lightblue") 
plot(sens.ci, type="bars") 
###### ROCit - 2019 Youden index ######## 
ROCit_obj <- rocit(score=y_pred2,class=test.Karenia_br) 
plot(ROCit_obj) 
 
########### pROC - 2010 Data science ROC ################  
########### SVM ROC 
test.Karenia_br <- test_set$Karenia_br 
test.Karenia_br=as.numeric(levels(test.Karenia_br))[test.Karenia_br] 
pROC_obj <- roc(test.Karenia_br, Prob, 
                smoothed = TRUE, 
                # arguments for ci 
                ci=TRUE, ci.alpha=0.9, stratified=FALSE, 
                # arguments for plot 
                plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE, 
                print.auc=TRUE, show.thres=TRUE) 
sens.ci <- ci.se(pROC_obj) 
plot(sens.ci, type="shape", col="lightblue") 
plot(sens.ci, type="bars") 
###### ROCit - 2019 Youden index ######## 
ROCit_obj <- rocit(score=Prob,class=test.Karenia_br) 
plot(ROCit_obj) 
 
 
##### Compare ROCs ######## 
pred2 <- prediction(y_pred, test.Karenia_br) 
pred <- prediction(yhat.rf[,2], test.Karenia_br) 
pred3 <- prediction(y_pred2, test.Karenia_br) 
pred4 <- prediction(Prob, test.Karenia_br) 
perf2 <- performance(pred2, "tpr", "fpr") 
perf <- performance( pred, "tpr", "fpr" ) 
perf3 <- performance(pred3, "tpr", "fpr") 
perf4 <- performance(pred4, "tpr", "fpr") 
plot( perf, colorize = FALSE, col="blue", lty = 1, lwd = 1.5) 
plot(perf2, add = TRUE, colorize = FALSE, col="GREEN", lty = 1, lwd = 1.5) 
plot(perf4, add = TRUE, colorize = FALSE, col="RED", lty = 1, lwd = 1.5) 
#plot(perf4, add = TRUE, colorize = FALSE, col="PURPLE", lty = 1, lwd = 1.5) 
legend(x = "bottomright", 
       col = c("GREEN", "blue","red" , "PURPLE"), lty = 1, lwd = 4, 
       legend = c('XGboost', 'Random Forest', "GBM", "SVM"), cex=1.1) 
legend(x = "bottomright", 
       col = c("GREEN", "blue","red"), lty = 1, lwd = 4, 
       legend = c('XGboost', 'Random Forest', "SVM"), cex=1.1) 
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################################################ 
############### precrec - 3*3 plots ############ 
# Random Forest 
precrec_obj1 <- evalmod(scores = yhat.rf[,2], labels = test.Karenia_br) #Precision-Recal 
precrec_obj2 <- evalmod(scores = yhat.rf[,2], labels = test.Karenia_br, mode="basic") #ALL 
autoplot(precrec_obj1) 
autoplot(precrec_obj2) 
 
 
#roc_imp <- filterVarImp(x = training_set[, -ncol(training_set)], y = training_set$Karenia_br) 
#head(roc_imp) 
 
 
 
 
 
############################################## 
############ Variable Importance ############# 
############################################## 
######## VarImpt BOXPLOT (cforest)  
set.seed(1) 
cf <- cforest(Karenia_br ~., subset = train, data = dataset, 
              control = cforest_unbiased(mtry = 6, ntree = 1000)) 
vi <- t(replicate(50, varimp(cf))) 
boxplot(vi) 
 
 
########## VIP BARplot (ranger) 
#set.seed(101) 
#rfo <- ranger(Karenia_br ~ ., data = dataset[train,], importance = "impurity") 
#(vi_rfo <- rfo$variable.importance) 
#barplot(vi_rfo, horiz = TRUE, las = 1) 
 
########## VI plot for XGBOOST Color cluster ######### 
(vi_bst <- xgb.importance(model = classifier)) 
xgb.ggplot.importance(vi_bst) 
########## VI plot for GMB Color cluster ########### 
(vi_bst2 <- xgb.importance(model = bst)) 
xgb.ggplot.importance(vi_bst2) 
 
######## VI for model-specific (not Model-agnostic VI scores) 
#vi(rfo)   # rf 1 
#vi(cf) # rf 2 
vi(rf.dataset) # rf 3 
vi(bst)   # GBM 
vi(classifier) # XGBOOST 
p1 <- vip(rf.dataset, width = 0.5, aesthetics = list(col = "blue1"))   # rf 3 
p2 <- vip(bst, aesthetics = list(col = "green2"))    # GBM 
p3 <- vip(classifier, aesthetics = list(col = "red2"))   # XGBOOST 
grid.arrange(p1, p2, p3, ncol = 3) 
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######## SVM Var Importance ###### 
w = t(svm.fit2$coefs) %*% svm.fit2$SV 
ww = as.data.frame(w) 
ww=sort(w) 
head(svm.fit2$decision.values) 
ww=ww[(length(ww)/2):length(ww)] 
barplot(ww, 
        main = "SVM Variable Importance", 
        xlab = "Variable Importance", 
        ylab = "Variable", 
        names.arg = c("1", "2", "3", "4", "5", "6", "7","8","9"), 
        col = "BLACK", 
        horiz = TRUE) 
 
 
# for theme_light() function 
# vip(bst, num_features = 5, geom = "point", horizontal = FALSE, aesthetics = list(color = "red", 
shape = 17, size = 4)) + theme_light() 
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