
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Dissertations Graduate College

12-2022

Instance Segmentation-based Depth Completion Using Sensor Instance Segmentation-based Depth Completion Using Sensor

Fusion and Adaptive Clustering for Autonomous Vehicle Fusion and Adaptive Clustering for Autonomous Vehicle

Perception Perception

Mohammad Z. El-Yabroudi
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations

 Part of the Navigation, Guidance, Control, and Dynamics Commons

Recommended Citation Recommended Citation
El-Yabroudi, Mohammad Z., "Instance Segmentation-based Depth Completion Using Sensor Fusion and
Adaptive Clustering for Autonomous Vehicle Perception" (2022). Dissertations. 3909.
https://scholarworks.wmich.edu/dissertations/3909

This Dissertation-Open Access is brought to you for free
and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Dissertations by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/dissertations
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/dissertations?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3909&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1409?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3909&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/dissertations/3909?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3909&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

INSTANCE SEGMENTATION-BASED DEPTH COMPLETION

USING SENSOR FUSION AND ADAPTIVE CLUSTERING

 FOR AUTONOMOUS VEHICLE PERCEPTION

Mohammad Z. El-Yabroudi, Ph.D.

Western Michigan University, 2022

Depth sensing is critical for safe and accurate maneuvering in robotics and self-driving car

(SDC) applications. Most recent LiDAR sensors, such as Ouster and Velodyne, offer 360 degrees

of scanning at the rate of ten frames per second, making them very appropriate for autonomous

driving applications. However, LiDAR point cloud data show many shortcomings, especially its

data sparsity and unassigned nature, making it very challenging to utilize in applications such as

perception, 3D object detection, 3D scene reconstruction, and simultaneous localization and

mapping.

In this study, a novel framework using instance image segmentation and the raw LiDAR

data for the goal of depth completion is developed. The framework uses a custom-trained two-

stage instance segmentation architecture to focus on target objects (e.g., cars, pedestrians, and

cyclists) and a fusion-based two-branch guided depth completion encoder-decoder deep neural

network to generate accurate dense depth information. Results from the extensive experimental

work using the KITTI depth completion dataset indicate that the proposed method achieves better

performance than the baseline model. Moreover, to address the raw unassigned nature of LiDAR

 point cloud data, an adaptive estimation for the tuning parameters of the Density-Based Clustering

of Application with Noise (DBSCAN) algorithm in SDC applications is proposed. This method

utilizes a field-of-view division scheme and local insights about the LiDAR point cloud data to

automate the estimation of the tuning parameters: epsilon and min_points. Experimental

simulations using the KITTI object detection dataset achieved excellent clustering performance

while waiving the need to the brute force tuning of parameter values.

Aiming to handle the challenges of the sparse and unassigned nature of LiDAR depth data,

the key contributions of this dissertation include the development of a depth completion framework

utilizing image instance segmentation features, the integration of object type within the depth

completion deep neural networks, the development of an adaptive DBSCAN parameters-

estimation technique, and the implementation of the instance segmentation-based depth-

completion using sensor fusion framework. However, the overarching contribution is the

introduction of a fundamental sensor fusion framework that fuses features and information from

image instance segmentation and critical SDCs sensors such as LiDARs, RADARs, and cameras,

and results in better perception and scene understanding.

INSTANCE SEGMENTATION-BASED DEPTH COMPLETION

USING SENSOR FUSION AND ADAPTIVE CLUSTERING

 FOR AUTONOMOUS VEHICLE PERCEPTION

by

Mohammad Z. El-Yabroudi

A dissertation submitted to the Graduate Collage

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Electrical and Computer Engineering

Western Michigan University

December 2022

Doctoral Committee:

Ikhlas Abdel-Qader, Ph.D., Chair

Bradley Bazuin, Ph.D.

Osama Abudayyeh, Ph.D.

Rakan Chabaan, Ph.D.

Copyright by

Mohammad Z. El-Yabroudi

2022

ii

ACKNOWLEDGEMENTS

I want to thank all those who have supported, guided, and encouraged me through this long,

challenging work. First and foremost, thank you to my advisor, Professor Ikhlas Abdel-Qader,

who, from the first step until the end of this incredible Ph.D. journey, has paved the path to success

with her deep knowledge, experience, and futuristic vision. Professor Abdel-Qader acts as a

professional advisor and a close friend who always looks for the best choices that align well with

my academic interest and success. Without her guidance, advice, assistance, support, and

encouragement, I would never reach this milestone and would be lost. Thank you, Dr. Abdel-

Qader, for giving me the opportunity to learn from you the academic knowledge and the

tremendous soft skills you are always happy to share. I also want to express my gratitude and

appreciation for your kindness, humanity, and understanding during the hard times I went through,

especially when my family and I got COVID-19 with severe symptoms. I will always be in debt

to you.

Meanwhile, I would like to express my most profound appreciation to the entire dissertation

committee members for accepting my invitation to be a valuable and critical part of my research

journey. This milestone will never be like this perfection without your helpful comments, support,

and encouragement. I want to express my sincere appreciation to Professor Bradley Bazuin for all

the fruitful discussions and valuable additions you made to my research work and for your trust

and confidence in my skills by giving me the privilege and chance to teach several labs and courses

iii

Acknowledgments—Continued

for CEAS students during this Ph.D. journey which enhanced my skills and enriched my

experience.Thank you, Professor Osama Abudayyeh, for your valuable reviews,

suggestions, and directions. And a great appreciation for the incredible skills and knowledge I

learned from you during the CCE6960 class.

To the final committee member and my industrial soul Professor Rakan C. Chabaan, thank

you very much for your insights, industry-level information, and valuable emerging technology

updates that aligned my research with industry advancements.

At home, I would like to thank my family, who surrounded me with endless support.

Thanks to my father, Ziad, and my mother, Nisreen, who have always been available to talk,

encourage, pray, and advise. Thanks to my hero, my wife Athar, who did a great job taking care

of me, our kids, and our home. What you did is unbelievable. You are always a great model of

patience and altruism. You have been an indispensable part of this journey and will be a crucial

part of my life forever. Thanks to my kids, Zaid, Yousef, and Zainah, your voices always kept me

motivated, encouraged and optimistic, and they will do so forever.

Mohammad Z. El-Yabroudi

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER

1. INTRODUCTION ... 1

Overview .. 1

Motivation .. 5

Problem Statement, Challenges, and Goals ... 6

Organization ... 9

2. BACKGROUND ... 10

Sensors in Self-Driving Cars ... 11

Camera ... 12

LiDAR ... 13

RADAR ... 15

Perception Module ... 17

Depth completion .. 18

v

Table of Contents ــ Continued

CHAPTER

Object detection and classification .. 24

Instance segmentation ... 28

Autonomous Driving Datasets ... 31

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 33

3. RELATED WORK .. 36

Depth Completion-Related Work .. 36

Deep neural networks-based depth completion ... 36

Image processing-based depth completion work .. 38

Clustering related work .. 38

4. METHODOLOGY .. 41

Instance Segmentation-Based Depth Completion Framework Using Sensor Fusion 41

A DBSCAN LiDAR Point Cloud Clustering Framework ... 58

5. EXPERIMENTAL RESULTS... 65

Dataset.. 65

KITTI object detection dataset .. 66

KITTI depth completion dataset .. 68

vi

Table of Contents ــ Continued

CHAPTER

KITTI instance segmentation dataset .. 70

Experimental Setup .. 71

Environment .. 71

Instance Segmentation Based Depth Completion Framework Using Sensor Fusion 72

Performance metrics .. 72

Instance segmentation results .. 73

Depth completion results ... 78

LiDAR Point Cloud Clustering Results ... 86

Performance metrics .. 86

Clustering qualitative and quantitative results .. 88

6. CONCLUSIONS AND FUTURE WORK .. 90

 BIBLIOGRAPHY .. 92

vii

LIST OF TABLES

1. Comparison between different sensors' capabilities ... 17

2. Example of, the shape of the input of the depth DNN .. 54

3. KITTI dataset main classes statistics for the training split ... 66

4. DISPLY lab Development Environment Specifications ... 71

5. Performance metrics of the custom-trained Mask-RCNN .. 77

6. Performance measures on the validation dataset .. 82

7. Performance measures on the training dataset .. 82

8. Quantitative results of the proposed clustering method .. 89

viii

LIST OF FIGURES

1. Self-driving car architecture ... 3

2. Automation levels ... 11

3. Camera applications with respect to the mount location on self-driving cars [18] 13

4. LiDAR operation mechanism illustration [19] ... 14

5. LiDAR point cloud sweep example [16] .. 15

6. Sparse LiDAR point cloud .. 19

7. Example of the expected completed depth map image ... 20

8. Simplified depiction of the non-guided depth completion framework [30] 21

9. Simplified depiction of the guided depth completion framework [30] 22

10. Autoencoder deep neural network with skip connections [30] ... 24

11. Viola and Jones features and usage example [38] .. 25

12. Summary of the available one-stage and two-stage object detectors [24] 27

13. Object detectors architecture... 28

14. Different image segmentation techniques ... 29

15. DBSCAN points types .. 35

16. Selected images from KITTI dataset .. 43

ix

List of Figures ــ Continued

17. Proposed Instance Segmentation-based Depth Completion Framework 44

18. LiDAR point cloud in different FOV and projection.. 45

19. Instance segmentation main processes [95] .. 47

20. Transfer learning concept, knowledge from task 1 used to facilitate task 2 [96] 48

21. Instance segmentation example .. 50

22. Instance segmentation objects’ masks and types encoded into a single 2D 1-channel array . 51

23. High-level presentation of the proposed depth completion DNN .. 53

24. Proposed network architecture .. 57

25. Foreground segmentation framework ... 59

26. a) Raw 3D LiDAR point cloud b) Foreground point cloud [16] ... 60

27. DBSCAN with different Eps and minPts [16] .. 61

28. Proposed FOV division and parameters definitions ... 62

29. MinPtsDist parameters illustration ... 64

30. KITTI object detection dataset example ... 67

31. KITTI depth dataset .. 69

32. KITTI Instance Segmentation Dataset .. 70

33. Instance segmentation combined loss ... 75

x

List of Figures ــ Continued

34. Instance segmentation bounding box loss ... 75

35. Instance segmentation classification loss.. 76

36. Instance segmentation mask loss .. 76

37. Performance of the trained instance segmentation model .. 77

38. RMSE for both the proposed method and the baseline model over different epochs 78

39. MAE for both the proposed method and the baseline model over different epochs 79

40. MSE for both the proposed method and the baseline model over different epochs 80

41. RMSE over different epochs ... 81

42. MAE over multiple epochs ... 81

43. Qualitative comparison between the baseline model and the proposed method [16] 85

44. Proposed DBSCAN-based clustering evaluation flowchart ... 86

45. Clustering evaluation on a selected KITTI frame ... 87

46. Qualitative clustering results of the proposed method .. 88

1

CHAPTER 1

INTRODUCTION

Overview

Self-Driving Cars (SDCs), also known as Autonomous Vehicles (AVs) or driverless cars,

have been envisioned since the middle of the 1980s. However, they have recently reached the

implementation and testing phase. This is due to the significant improvements in essential

technologies such as sensors and real-time computing, which made accurate real-time decisions

possible. The SDC architecture consists of four modules: navigation system, environmental

perception, path planning, and car control. The environmental perception module is designed to

process information collected by various sensors such as cameras, radio detection and ranging

(Radar), light detection and ranging (LiDAR), Sonar, Global Positioning System (GPS), and

Inertial Measurement Unit (IMU). The environmental perception module also receives

information from other road cars or infrastructure devices. The entire bag of information is then

forwarded to the planning module, which guides the control module to drive the vehicle safely and

correctly. This architecture is depicted in Figure 1, which shows the leading technologies, modules,

and their interactions [1]–[4]. To control the advances in SDCs, the Society of Automotive

Engineering (SAE) published classification criteria to define the levels of autonomy in

autonomous cars, primarily concerned with the level of human interaction in the driving process.

Figure 2 depicts the six SAE levels, which range from 0 as the basic car system wherein a human

driver is essential, and five, where no human driver is needed in all circumstances [5]. The United

States is still at level 2 of the SAE classification system; the vehicle provides one or more

2

automated systems while the motorist does the rest [6]. The slow development from one level to

the next is due to many factors, such as regulations, testing, and technology. From a technological

perspective, the performance of many critical systems within the SDCs is still not elevated to the

completeness and perfection needed by higher levels of autonomous driving, such as levels 3, 4

and 5, or it requires huge computing resources that are not yet technically feasible, cost-effective

or commercially available. For example, the depth completion process within the perception

module of many recently published works still performs poorly in scenarios such as when objects

are small, far, occluded, when severe weather conditions exist, or where they require high-

performance computing resources and large datasets as well as extended training time[7] [8].

Sensors play a vital role in SDCs, and they vary in their technology, the range they span,

and their immunity to external effects like lighting and weather conditions. LiDAR uses laser beam

technology to measure the distance from objects. LiDAR provides three-dimensional (3D)

information, essential to many SDCs tasks such as 3D object detection, collision prediction, and

obstacle avoidance. LiDAR is very good in night scenarios as well as in inclement weather

conditions. RADAR uses radio waves technology; standard systems are either 77 GHz or 24 GHz.

Depending on the frequency, RADAR can be distinguished as short, medium, or long-range radar

[9], [10]. Ultrasonic sensors use sound waves technology to emit high-frequency signals that

measure the distance from objects after reflection. Ultrasonic sensors have a limited coverage area,

usually a few meters; thus, their applications are limited to low-speed applications like automatic

parking assistance systems. The camera’s technologies are based on light reflection from the

environment; images from the camera vary in quality based on different external conditions like

weather and illumination. GPS systems utilize satellites for the instantaneous measurements of

position and time, which are often used for navigation or geolocation. An inertial measurement

3

unit (IMU) is a combination of two technology: Micro Electro Mechanical Systems (MEMS) and

Gyroscopes, and it provides information like acceleration forces and angular rates [3], [11].

Figure 1. Self-driving car architecture shows the perception module and its interaction with other

modules and information sources[1], [4]

Each sensor has its strength and weakness for application in SDCs. For instance, Camera

sensors are affordable and very efficient in classification tasks, but they require high computational

power, and their performance degrades in severe weather conditions. On the other hand, LiDAR

is an expensive sensor that provides information in 3D format. RADAR is handy in bad weather

conditions but has less angular accuracy and provides less information than cameras and LiDAR.

These differences in performance capabilities between different sensors encouraged researchers to

utilize the complementary properties of each sensor by combining them in a process usually called

sensor fusion or data fusion. Data/sensor fusion benefits multiple tasks like object detection,

4

occupancy grid mapping, and object tracking [2]. More information will be provided in the

background section.

The perception module is responsible for critical tasks like object detection and

classification, semantic segmentation, and localization. The perception module uses single or

multiple sensors to acquire the surrounding environment information and then apply different

detection and classification algorithms to process the data and generate detections and

classifications. Recently, 3D information has become a significant clue for applications like

robotics, self-driving cars, 3D modeling, and augmented reality. Depth information can be

captured by two general methods: active and passive. In passive methods, two cameras are used to

generate depth information by utilizing parallax, intrinsic and extrinsic camera specs, and stereo-

matching techniques. In active methods, structured light, shape from shading, shape from texture,

and time of flight methods are used to estimate the depth of a given scene. LiDAR is a commonly

used sensor within the active depth generation methods which rely on the time of flight to measure

the depth of objects within a scene [10], [12]. Unfortunately, even with high-quality LiDARs, the

produced depth maps are extraordinarily sparse and noisy. Therefore, a depth completion process

is usually conducted to recover denser maps from sparse, noisy ones. To that end, a wide range of

techniques have been proposed, which can be categorized by the modalities they use or the

technology they exploit. In the first category, single or multiple sensors are used, where the former

is usually referred to as non-guided depth completion, and the latter is guided depth completion.

In the second category, pure image processing or artificial neural network are typically utilized.

Recent solutions are based on deep convolutional networks [13].

5

Motivation

Self-driving cars have been designed to reduce road fatalities and fuel consumption by

eliminating human errors. Although industrial progress of automation is at level 3, commercially

available vehicles in the USA are still at level 2 of automation. Moving forward toward higher

levels requires improvements in different technological aspects. Accurate and rich 3D information

plays a critical role in advancing SDCs. The current state-of-the-art techniques that enhance 3D

knowledge are promising and produce good results. However, the training requirement is very

resource-intensive and time-consuming, and the performance on object edges or distant objects

still suffers from high errors. Most current work focuses on the entire scene and does not treat

objects of interest individually or separately. Additionally, applications such as robotics and self-

driving cars require both fast training mechanisms and fast inference because in some scenarios,

training could be needed in real-time while the SDCs or robots are on site. Moreover, using a vast

number of resources and requiring long training time could limit other researchers’ ability to study

and improve the current state of the art.

This dissertation focuses on the perception module of SDCs, specifically on the sparse LiDAR

point cloud depth completion and clustering, which are essential in many perception tasks, such as

3D object detection and classification. The dissertation has two main parts: in the first part, a sensor

fusion and instance segmentation-based object depth completion framework is introduced, and in

the second part, the LiDAR point cloud is clustered using DBSCAN with an adaptive and

automatic parameters selection.

6

Problem Statement, Challenges, and Goals

This research aims to investigate a novel guided depth completion methodology and

LiDAR point cloud clustering using density-based spatial clustering of applications with noise

(DBSCAN) with automatic tuning parameters selection in a self-driving context.

Depth completion is a widely investigated technique in vast research areas like machine

vision and image processing. It deals with methods that generate dense depth maps from sparse

measurements. Although strategies that tackle this problem are vast, they generally fall into two

main categories: guided and non-guided. In guided depth completion methods, a high-resolution

color image is usually fused into the system to provide complementary information to the primary

sensor (LiDAR). In contrast, in the non-guided depth completion methods, only LiDAR data is

used to generate a dense depth map. Most of the current state of art is Deep Neural Network (DNN)

based solutions. Still, they focus on the entire LiDAR point cloud without concentrating on the

objects of interest like cars, pedestrians, or cyclists. As a result, DNN training usually requires a

large amount of data and computing resources. As an alternative, this work will utilize image

instance segmentation which provides exciting information like pixel-level object boundaries and

object class, among others. This information can significantly help depth completion to focus on

the objects of interest and thus provide higher accuracy.

The dense depth map is then consumed by different applications like 3D object detection

and 3D object classification, which commonly apply point cloud clustering; deep neural networks

and custom clustering algorithms are usually used. DBSCAN is a viral density-based clustering

algorithm used in many applications. None of the previous works tackle the scenario when the

LiDAR is installed on a moving car, like in SDCs or mobile robotics applications. In these

7

applications, the relation between the LiDAR points and the SDC. e.g., Euclidean distance or the

LiDAR points interrelation can be considered. Furthermore, no previous works evaluated

DBSCAN improvements on available SDCs datasets like the KITTI dataset. Therefore, this

dissertation proposes an adaptive and automatic estimation for DBSCAN parameters in SDCs

applications and evaluates the proposed work on the SDCs KITTI dataset.

The following challenges have been observed regarding the depth completion frameworks:

• Requires a lot of computing resources, especially for training.

• Applies algorithm on the entire sparse depth without focusing on objects of interest.

• Need hundreds of thousands of annotated training data files.

• Even with good computing resources, the training time is long.

The following challenges have been observed regarding LiDAR point cloud clustering:

• Manual selection for clustering parameters is not practical in dynamic environments like

SDCs.

• Most current clustering works are based on deep learning techniques that require a long

training time and an extensive dataset.

• Clustering objects that are very close to each other is still an issue.

This dissertation aims to introduce a new depth completion framework that focuses on the

objects of interest by utilizing image instance segmentation and multi-level sensor fusion.

Moreover, this dissertation provides an automated technique to estimate tuning parameters of the

DBSCAN algorithm for LiDAR point cloud clustering in SDCs applications.

The goals for this work are:

8

Goal 1: Implement and evaluate a depth completion framework that utilizes image instance

segmentation and sensor fusion to generate dense depth information for the objects of interest.

Goal 2: Develop a framework based on the DBSCAN algorithm to cluster LiDAR point clouds,

focusing on automating the estimate of DBSCAN tuning parameters.

The goals of this work have been achieved through the following contributions:

Depth completion work:

i. Customized an instance segmentation framework to generate accurate object masks and

object classes.

ii. Implemented a data structure and encoding scheme to combine instance segmentation

features into a single 2D one-channel array.

iii. Fused information from different sensor modalities alongside instance segmentation

features.

iv. Customized a depth completion framework that accepts interesting features like

instance segmentation masks and object classes and generates dense depth

measurements.

v. A comprehensive evaluation of the implemented framework the KITTI depth dataset.

LiDAR Point cloud clustering work:

i. Implemented a SDC field-of-view division scheme.

ii. Clustered LiDAR point cloud using DBSCAN but with automatic parameter selection,

and for this purpose:

iii. Proposed equations that can estimate the DBSCAN tuning parameters automatically

and dynamically.

iv. Evaluated the proposed work on the KITTI object detection dataset

.

9

Organization

The dissertation is organized as follows.

 In Chapter 1, a general introduction to the topic of Self Driving Cars with emphasis on the

perception module is provided. Chapter 2 presents a comprehensive background survey for the

perception module alongside typical SDCs sensors. In chapter 3, the very related work is presented

and discussed. The Proposed methods are presented in chapter 4, while chapter 5 provides the

experimental results. Chapter 6 provides conclusions and future works.

10

CHAPTER 2

BACKGROUND

In 2021, in the United States of America, 42915 people died from car accidents, about 117

people per day [14]. Reducing car accidents on the roads and boosting driving efficiency are among

the most critical objectives for advancing autonomous driving technology. Self-driving cars have

been in the vision of many academia and industrial sectors since the 1980s, well-known examples

from the 1990s are the Navlabs mobile platform, University of Pavia’s and University of Parma’s

car “ARGO”, and UBM’s two vehicles: “VaMoRs” and “VaMP”. Many challenges have been

launched to advance autonomous vehicle technology, like those organized by the Defense

Advanced Research Projects Agency (DARPA): DARPA Grand Challenge and DARPA Urban

Challenge. Since then, many other competitions have also occurred [2]. SDCs have the same

transportation capabilities as traditional vehicles but can also perceive their surroundings and self-

navigating with little or no human interaction.

The J3016 "Levels of Driving Automation" standard was introduced in 2014 by SAE

International, formerly known as the Society of Automotive Engineers (SAE), and it is

continuously updated. The J3016 standard specifies six levels of driving automation, ranging from

SAE level 0 (complete driver control of the vehicle) to SAE level 5 (full control of all aspects of

dynamic driving activities without human intervention). Figure 2 depicts a high-level overview of

these levels, frequently quoted and referenced by industry in the safe design, development, testing,

and deployment of highly automated vehicles (HAVs).

11

Figure 2. Automation levels published by the Society of Automotive Engineers J3016 standard [5]

This background section focuses on the perception module and provides an overview of

the most common sensors available for autonomous vehicles. Also, it gives a brief overview of the

main perception tasks like object detection and classification, depth completion, and instance

segmentation. This section also provides an overview of the DBSCAN algorithm.

Sensors in Self-Driving Cars

Sensors are electronic-mechanical devices usually attached to autonomous cars to detect

events or changes in the surrounding environment and report these detections to subsequent

processing units for proper safe driving. Sensors can be classified in different ways; from an

operational perspective, sensors fall into two categories: internal and external state sensors [9],

[15]. Examples of internal state sensors are IMU, encoders, and positional sensors; this category

measures internal dynamic values like 3D acceleration, angular rate, wheel speed, and load.

Examples of external state sensors are Cameras, RADARs, and LiDARs. These sensors measure

external information like specific distances and color image information about the surrounding

12

environment [8]. The following subsections will provide comprehensive information about

popular sensors usually installed in SDCs.

Camera

Camera technologies are widely adopted to perceive the surrounding environment.

Cameras detect light reflected off or emitted from the surrounding objects through a lens and

project it onto a photosensitive surface. From a cost perspective, cameras are inexpensive, and they

can detect moving and static objects; however, for moving objects, extra software and processing

are needed to correlate multiple images (frames). Cameras are suitable for applications that need

to identify road signs, traffic lights, and road lane markings, all color/intensity-related tasks. Figure

3 shows examples of camera applications with respect to the mount location. Camera systems can

be either monocular (single camera) or binocular (multi cameras). Usually, AVs utilize both types.

Single cameras provide rich color information but cannot provide depth information. On the other

hand, multi-cameras can be installed side by side to form a stereo camera that can provide both

color and depth information. Stereo cameras consist of at least two image sensors, separated from

each other by a known distance, and they employ the same depth perception process used by

animals; images from two cameras for the same scene implies slight differences, and these

difference are used to calculate depth by exploiting a disparity map and epipolar geometry and

triangulation methods [3], [11], [16]–[18].

13

Figure 3. Camera applications with respect to the mount location on self-driving cars [18]

LiDAR

LiDAR is an external sensing device that works on the principle of producing laser light

pulses that reflect off target objects. The equipment detects these reflections, and the time between

emission and reception of the light pulse allows for distance estimation. LiDAR sensors can be

categorized based on the information they deliver; three main categories can be identified: 1D, 2D,

and 3D LiDARs. The most commonly used LiDAR type is the 3D LiDAR sensors. Their output

usually consists of four values: x, y, and z coordinates and the intensity information of the objects

within the surrounding environment. For autonomous driving applications, LiDAR sensors

internally consist of multiple layers (channels) of emitting sensors; 64 or 128 channels are

commonly employed to generate LiDAR images (or point cloud data) for self-driving context. On

the other hand, 1D LiDARs only measure the distance of the surrounding environment using one

14

single coordinate, e.g., x coordinates. 2D LiDAR provides information about the angle, aka x and

y coordinates. Figure 4 depicts a basic operation of the LiDAR.

Figure 4. LiDAR operation mechanism illustration [19]

In general, due to their reliability and ability to provide high-quality perception in both day

and night settings, 3D spinning LiDAR is the most popular LiDAR in the autonomous context [2],

[18]. Figure 5 depicts a typical 360-degree LiDAR sweep. LiDAR beams are emitted at all 360-

degree horizontal angular directions and then collected back. The sensor specification defines how

far a laser beam can travel. For example, the KITTI dataset [16] uses Velodyne HDL-64E [20],

which has 64 channels and can emit and measure beams up to 120 meters in distance. Velodyne

15

HDL-64E has a 360° horizontal and 26.9° vertical field of view with 0.08° angular resolution

(azimuth) and around 0.4° vertical resolution.

Figure 5. LiDAR point cloud sweep example [16]

RADAR

RADARs work on emitting periodic Electromagnetic (EM) waves within the region of

interest and receiving reflected waves from targets for signal processing and determining range

information. It can determine the relative speed and position of identified obstacles using the

Doppler property of EM waves. The Doppler effect describes how relative motion between a wave

source and its targets causes variations or shifts in wave frequency. When the target travels toward

the radar system's direction, the frequency of the detected signal rises. Different operational

frequencies are available in the market, 24 Gigahertz (GHz), 60 GHz, 77 GHz, and 79 GHz; the

16

lower the frequency, the lower the range, velocity, and angle resolution the RADAR provides.

Radar can operate day or night in foggy, snowy, or cloudy situations because the propagation of

EM waves (radar) is somewhat immune to unfavorable weather conditions and the function of

radar is independent of the ambient illumination conditions. The misleading identification of metal

objects around the perceived surroundings, such as road signs or guardrails, is one of the downsides

of radar sensors, as are the difficulties in differentiating static, stationary objects [18]. Radar

sensors are often mounted on multiple locations within SDCs, such as on the roof, around the top

of the windshield, and behind the vehicle bumpers. Maintaining the precision of mounting

positions and orientations of radars is critical since any angular misalignment could result in

incorrect vehicle operation and lead to inaccurate or late detections of hazards around the vehicle.

The three major types of automotive radar systems are Medium-Range Radar (MRR), Long-Range

Radar (LRR), and Short-Range Radar (SRR). SRR is used for parking assistance and collision

proximity warning, MRR is used for side/rear collision avoidance and blind-spot recognition, and

LRR is used for adaptive cruise control and early detection[11], [18], [21], [22].

It is noteworthy that each sensor has its advantages and disadvantages; for example,

LiDAR provides depth information and is immune to light variation; however, its data lacks color

information. On the other hand, a Camera provides color information but is very sensitive to light

variation and weather conditions. Sensor fusion combines data from multiple sensors and thus can

provide a richer representation. Table 1 provides a comparison between the three primary sensors:

Camera, LiDAR, and RADAR, from different factors and applications.

17

Table 1. Comparison between different sensors' capabilities with respect to different factors or

applications, x means the sensor is not appropriate for this application or factor, * means the sensor can

work well with this task or factor, ** means the sensor is aptly performing with this task or application

Factor Camera LiDAR RADAR

Range * ** *

Resolution ** * x

Distance accuracy * ** **

 Velocity * x **

Color Perception ** x x

Weather conditions x * **

Illumination

Conditions

x ** **

Application Camera LiDAR RADAR

Object detection ** * x

Object classification ** * x

Lane detection ** x x

Depth completion * * x

Perception Module

In a process very analogous to human visual cognition, the perception module examines

raw sensor data and other information from other vehicles and infrastructure to generate an

environmental understanding which is very important to many other modules like the planning

module. Examples of the main tasks related to the perception module are object detection and

classification, object tracking, semantic segmentation, and depth completion, among others.

18

Perception technologies in the state-of-the-art can be divided into two categories: computer vision-

based and machine learning-based. The former tackles visual perception issues by defining them

with explicit projective geometry models and utilizing optimization techniques to discover an

optimal solution. On the other hand, Machine learning technologies depend on data to drive

solutions, problems usually modeled like regression or classification problems. In classification

problems, data are generally assigned into multiple classes (multi-class classification); for

example, car, bicycle, or van. Alternately there may be two classes (binary classification); for

instance, a LiDAR point is either a foreground or background point. In regression problems, values

such as object heading and angles are regressed. In the subsequent sections, three important

perception tasks are discussed: depth completion, object detection/classification, and instance

segmentation [23]–[25].

Depth completion

Depth completion is a critical task in machine vision and robotics. LiDAR sensors can only

provide sparse depth information, and when projecting these depth values to the image coordinate

system, many pixels are left without depth information. For example, on the well-known and

widely used autonomous driving dataset KITTI [16], only 5-7% of pixels have a valid depth

measurement. Figure 6 shows an example generated from the KITTI dataset; the bottom image is

the sparse LiDAR point cloud, while the top image provides the Camera 2D image for reference.

On the other hand, applications like 3D object detection and classification can only work properly

if there are enough valid depth points. To that end, depth completion is usually performed where

a dense depth map is generated from a sparse set of measurements. This process can be done with

or without the guidance of other modalities like camera data. Techniques that utilize camera data

benefit from the structure information available within the images; thus, their performance usually

19

surpasses other methods. An example of the expected completed depth maps is shown in Figure

7.

Figure 6. Sparse LiDAR point cloud (bottom) and the corresponding reference camera image (Top) [16]

20

Figure 7. Example of the expected completed depth map image (bottom image), pixels with whiter color

belonging to the far objects, and the camera image for reference (top image) [16]

a) Non-guided depth completion

In non-guided depth completion, methods only utilize LiDAR data. Examples of

approaches include [26] used bilateral filtering in a non-guided depth completion framework to

maintain the edges information, while [27] proposed a complete deep neural framework with

sparse convolution layers which take into account the location of missing data to tackle the depth

completion problem and only rely on the sparse LiDAR information. Moreover, [28] proposed

CNNs that focus on the uncertainty of depth data in both the input and the output; the work uses

an input confidence estimator to identify distributed measurements in the information; meanwhile,

a normalized convolutional neural network is utilized to produce an uncertainty measure for the

final output. [29] used compressed sensing techniques and Alternating Direction Neural Networks

21

(ADNN) to tackle the depth map completion problem. The adoption of ADNNs enabled the

implementation of a deep recurrent encoder-decoder framework. Figure 8 shows a simplified

framework for a non-guided depth completion framework where the only input is the sparse

LiDAR depth map.

Figure 8. Simplified depiction of the non-guided depth completion framework [30]

b) Guided depth completion

Combining information from different but related sensors has led to remarkable

performance improvement in many applications. Many fusion strategies have been proposed, and

the field is still wide open for additional contributions. Different works suggest combining data

from various sensors like LiDAR and Camera for depth completion problems. Figure 9 shows a

simplified framework for a guided depth completion framework. [31] consider the depth

completion a regression problem and utilize a single convolutional neural network that takes both

RGB images and a sparse depth measurement as input and produces a dense depth map. The

proposed network is an encoder-decoder style wherein the encoder is a resNet CNN followed by

a convolutional layer. On the decoder side, upsampling layers are followed by bilinear upsampling.

The work examined different loss functions and reported that L1 loss (2-1) produced better

performance. [32] proposed a deep regression network with encoder-decoder style, where data

22

from LiDAR and Camera are fused within the network. Skip connections are used to pass features

from encoding layers to the corresponding decoding layers.

 𝐿1 = |𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑| (2-1)

Where 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 are the ground truth and the predicted value, respectively.

Figure 9. Simplified depiction of the guided depth completion framework [30]

Figure 10 depicts a general structure of an autoencoder deep neural network with skip

connections. These connections can send the features map from the encoder layers directly to the

corresponding decoder layers; this process is beneficial to provide the decoder layers with

additional information that might be degraded during the encoding process. In addition, the authors

23

also proposed a self-supervised training framework that relies only on a sequence of RGB images

and sparse depth images; that is, no ground truth is needed. The existence of nearby data is used

to provide supervision signals. [33] provided two branches encoder/decoder framework with

geometric encoding and multiple levels and modalities fusion. The authors fuse RGB and LiDAR

data in one branch and fuse the generated semi-depth with the depth in another branch. Moreover,

features are fused at different levels and between the two branches. [34] introduced DeepLiDAR

framework, which consists of two separate pipelines, the first pipeline is used to generate surface

normal from the sparse set of measurements, then the second pipeline is used to obtain a semi-

depth map from RGB images. Finally, both surface normal as well as semi depth maps are fused

and fed into another network which is trained to produce the final depth map. [35] proposed

FusionNet, a two-branch framework, one branch for local features and the second for global

features; for proper fusion. FusionNet generates a confidence map to fuse information from

different branches adaptively. [36] suggest a more accurate sampling strategy and propose a deep

neural network with a graph convolution module to overcome the limitations of the traditional

square kernel.

24

Figure 10. Autoencoder deep neural network with skip connections [30]

Object detection and classification

Milestones in Object detection and classification can be divided into two main categories:

Conventional object detection and classification approaches and deep neural networks-based

object detection and classification approaches. The first category piece together all approaches

before the revolution of the deep neural network, while the second category conjoins all deep

neural network-related approaches [24], [37].

a) Conventional object detection and classification approaches

Conventional object detection and classification approaches started emerging in 2001 and

have depended on handcrafted features. In 2001, Viola and M. Jones [38] introduced the first real-

time human faces detection approach, which has been generalized for different objects like cats

25

and dogs. The method is named the VJ detector and has three main techniques: integral image,

feature selection, and detection cascades. Figure 11 shows the different shapes of the features used

to detect faces. In 2005 Another critical milestone was the Histogram of Oriented Gradients

(HOG) [39], which was considered a significant improvement for incorporating scale invariant

feature transforms and shape contacts. In 2008, the Deformable Part-based Model (DPM) [40] was

introduced based on the divide and conquer approach, wherein the training is considered the proper

way for decomposing while the inference is regarded as an ensemble of detection.

Figure 11. Viola and Jones features and usage example [38]

b) Deep neural-based object detection and classification approaches

Due to the recent advancements in computing capabilities and the tremendous

improvements in machine learning and deep neural networks, object detection and classification

have been developed and enhanced dramatically. Deep neural networks have been utilized to learn

high-level features from images, and since 2012 many object detection and classification works

have been published. Object detection and classification methods fall into two main groups: two-

stage and single-stage detectors. Where the former relies on two stages to accomplish the task, one

26

for proposals generation and the other one for refinement. However, the latter performs the

detection and classification in one single stage.

i. Two-stage object detection and classification

Great examples for the two-stage group are Region-Based Convolutional Neural (RCNN)

[41], wherein a selective search technique is used to generate proposals regions. Then the proposals

are fed into a CNN for feature learning. A Support Vector Machine (SVM) is used to predict the

object's presence and class within the proposed region. Spatial Pyramid Pooling Networks

(SPPNet) [42] advanced the field by introducing the Spatial Pyramid Pooling layer, which allows

different input images or region sizes. Fast RCNN [43] allows for simultaneous detection and

regression, Fasters RCNN [44] was introduced after Fast RCNN, and it is considered the first near

real-time detector, which utilizes a separate Region Proposal Network which generates proposals

with a minimal amount of computation resources. Feature Pyramid Networks (FPN) [45] were

introduced after faster RCNN and had a top-down architecture to create high-level semantics at all

scales.

27

Figure 12. Summary of the available one-stage and two-stage object detectors [24]

ii. One stage object detection and classification

An excellent example of the one-stage group is: You Only Look Once (YOLO) (Redmon

et al., 2016), which utilizes one network to localize and recognize objects within images. Other

examples include: [46] introduced Single Shot MultiBox Detector (SSD), a multi-reference and

multi-resolution detection technique to overcome the drawback of YOLO in detecting small

objects. RetinaNet [47] is a single stage with a new loss function called focal loss, which was

introduced and used to overcome the extravagant background and foreground instances imbalance.

Figure 12 shows a summary of the available object detectors, while Figure 13 highlights

the main differences between one and two-stage object detectors.

28

Figure 13. Object detectors architecture - Two (top) and one (bottom) stage object detectors [48]

Instance segmentation

Image segmentation is considered a fundamental problem in computer vision. It is an

essential visual understanding element in many applications like medical image analysis, self-

driving cars, and video surveillance. Under the Image segmentation umbrella, three main subfields

are available: semantic segmentation, instance segmentation, and panoptic segmentation [49]. In

semantic segmentation, image pixels are classified with semantic labels but without distinguishing

between different objects within the scene. On the other hand, instance segmentation extends the

concept of semantic segmentation by providing accurate object detection capabilities at a pixel

level, thus providing a precise mask for each object within the scene. Therefore, the instance

segmentation process solves two problems together: object detection and semantic segmentation.

Panoptic segmentation combines the characteristics of both semantic and instance segmentation

[50]. Figure 14shows the different segmentation techniques applied into randomly selected frames

from the KITTI dataset.

29

Algorithms that tackle image segmentation task are numerous and can be grouped into two

main categories: early non-deep learning methods like thresholding, region growing graph cuts,

and active contours; and deep learning methods, which in recent years have produced impressive

performance enhancements and a paradigm shift in image segmentation field.

Since 2014 many deep neural network-based image segmentation algorithms have been

proposed, the most popular ones fall into two categories: two-stage and one-stage. In the two-stage

category, algorithms perform two subtasks: detection and segmentation. Depending on the order

of these

Figure 14. Different image segmentation techniques: a) reference RGB image b) semantic segmentation

c) Instance segmentation d) Panoptic segmentation [16]

30

subtasks, two-stage instance segmentation can further be divided into two methods: top-

down methods and bottom-up methods. The former is a detection-based instance segmentation

method wherein top-level bounding boxes are first generated, then a foreground segmentation is

conducted, while the latter is a segmentation-based method that starts with pixel-level

segmentation and then uses clustering to group similar pixels. Implementations for top-down

methods can be grouped into four categories: dense sliding windows, multi-level features, R-CNN,

and contour information. Regional Convolutional Neural Networks (R-CNN) and its improved

versions fast, and faster RCNN have achieved good performance. R-CNN algorithms detect

objects by providing bounding boxes and class information; inspired by the R-CNN method, many

instance segmentation methods have been proposed. For example, Mask R-CNN, which is based

on the faster R-CNN architecture, instead of bounding boxes Mask R-CNN generates a high-

quality segmentation mask while also detecting all objects in the scene [51].

In the one-stage category, algorithms consider the relationship between detection and

segmentation within one DNN, this technique has faster performance, but the network is complex.

Methods within this category are either anchor-based methods or anchor-free methods.

Representative examples of the anchor-based methods are InstanceFCN, FCIS, TensorMask and

YOLACT. On the other hand, representative anchor-free methods are SOLO, SOLOv2 and

CenterMask [49], [51], [52]. For example, SOLO divides the camera image into multiple grids;

these grids encode the relative position of the potential instances; the network consists of two main

branches: the category branch, which is used to generate the semantic category, and the mask

branch, which is used to predict the instance mask.

31

Autonomous Driving Datasets

Data is considered the fuel of deep neural networks and machine learning algorithms. Data

plays a vital role in generating accurate nonbiased models. However, data collection is costly in

terms of time and money and requires careful labeling and calibration, especially in autonomous

driving applications, wherein multiple sensors are utilized and must be synchronized and logged

carefully. Fortunately, many research and industrial companies are currently releasing their

datasets for public use; some of these datasets focus on a single sensor, while others provide a bag

of information from multiple sensors. Also, datasets are application specific, and some datasets

are prepared for object detection, tracking, and classification, while others are for lane detection

localization and behavioral analysis. A summary of the publicly available datasets that can be

utilized for different applications, including instance segmentation, depth completion, object

detection, and object classification tasks, is presented as follows:

▪ The Apollo open platform (Apollo, 2018) prepared by baidu Inc. and released in 2018, contains

data from camera and LiDAR as well as vehicle data.

▪ Argoverse [53], prepared by Argo AI and released in 2019, data were collected in the USA

and specifically in Miami and Pittsburgh; the data are for Camera, GPS, and LiDAR.

▪ Deep drive dataset [54] released by UC Berkeley. Dataset was collected in San Francesco Bay

area and New York using a camera only but collected in diverse traffic conditions like urban,

rural, and highways. It is also recorded in different daytime like night and non-night situations.

▪ Cam vid [55] is also a Camera only generated dataset recorded in the UK by the university of

Cambridge in 2009.

32

▪ Cityscapes [56] is collaboration between multiple companies from multiple cities. The dataset

mainly concerns vision algorithms, specifically semantic-related algorithms like scene labeling

and object detection.

▪ Diamler de Ag, MPI-IS, and TU Darmstadt worked together to prepare the dataset recorded in

Germany, Switzerland, and France. The dataset has information from the camera and other

sensors. However, LiDAR was not used in this dataset.

▪ Elektra [57] was collected in Spain and Barcelona by the autonomous university of Barcelona

and polytechnic university of Catalonia, and they only used a camera and infrared to collect

the dataset.

▪ JAAD dataset [58] was collected in Ukraine and Canada in 2016 by York University, and it

only utilizes Camera sensors.

▪ KAIST [17] multi-spectral dataset collected in 2015 by KAIST university, data collected from

Camera, LiDAR, GPS, and Infrared for a scene in South Korea for both night and non-night

scenarios and with a focus on pedestrians.

▪ KITTI (ccfv et al., 2013) Was released in 2011 and collected by Karlsruhe institute of

technology and Toyota technological institute, the data were collected in Germany – Karlsruhe;

Camera, LiDAR, and GPS are the primarily used sensors, and the dataset is suitable for a wide

range of applications like object detection and classification(2D and 3D), and semantic

segmentation and instance segmentation, and this dataset is the one that will be used in this

dissertation and more information about it will be provided later in this section.

33

▪ NuScenes [59] dataset collected by Nu Tonomy Inc. and Aptiv for scenes in Boston, USA,

and Singapore. It uses Camera, LiDAR, and GPS. It is recorded in different weather and light

conditions.

▪ Udacity dataset [60] was released in 2016 for scenes in Mountain View, USA. The dataset was

collected by different sensors like Camera, LiDAR, and GPS.

▪ Caltech Ped [61] is another camera-generated dataset collected by the California Institute of

Technology in Los Angeles, USA, and released in 2009.

▪ NightOwls [62] was released in 2018 and collected by Oxford University, Max Planck

Institute, and Continental Corp. The dataset was collected at different UK, Netherlands, and

German sites.

▪ TUD-Brussels Ped [63] was collected in 2009 for pedestrian detection applications and was

collected by Max Planck Institute for informatic in Belgium.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Clustering algorithms can fall into nine categories: partition, hierarchy, fuzzy theory,

distribution, density, graph theory, grid, fractal theory, and model-based [64]. Density-based

clustering algorithms are handy for data that are separable by density level, wherein clusters

assemble data in dense regions with different shapes [65], [66]. This is a typical scenario in mobile

robotics and SDCs wherein surrounding objects like cars, trucks, and pedestrians have different

characteristics. Density-based spatial clustering of applications with noise (DBSCAN) [67] is a

density-based clustering algorithm that is very appropriate for clustering in applications in which

the number of clusters is unknown, data is noisy and data dimensions are high. DBSCAN is

34

controlled by two critical fixed, global parameters ε (epsilon), which is the point neighborhood

search distance (also defined as a cluster radius), and minPts, which is the minimum number of

neighboring points needed to form a cluster from a given point. The user selects these parameters’

values, which may vary from one dataset to another and are applied globally to the entire dataset.

Moreover, slight changes in these values will affect the clustering performance and a minute

change may result in merging two or more neighboring objects into one cluster or producing some

noise points as legitimate clusters.

DBSCAN defines core point, border point, and noise point expressions to distinguish the

data points. A core point is a point in the dataset with minPts neighborhood points within the ε

radius. A border point is a point within a core point neighborhood but has fewer points than the

minPts within the ε radius. A noise point is a point that neither satisfies the core point definition

nor the border point definition. Figure 15 shows the main point types.

35

Figure 15. DBSCAN points types: red points are core points, the gray point is a border point, and the

black point outside the circles is a noise point [67]

Important relations in DBSCAN concerning ε and minPts are the directly density-

reachable, the density-reachable, and the density-connected relations. The directly density

reachable relation can be defined as follows: for any two points p and q, a point p is directly density

reachable from point q if p belongs to the q points neighborhood and q is a core point. However,

density reachable relations relax the restriction in the directly density reachable relation by

allowing for a chain of connectivity; that is, a point p is density reachable from point q if there is

a chain of points where each consecutive points are directly density reachable. Finally, point p is

density connected to point q if there is another point m which is density reachable from both p and

q.

36

CHAPTER 3

RELATED WORK

This dissertation deals with the LiDAR point cloud depth completion and clustering. Many

works have been done to improve the performance of these tasks, and solutions usually fall into

two main categories: machine learning and deep neural network techniques. In the following sub-

sections, related works to these topics will be discussed.

Depth Completion-Related Work

Deep neural networks-based depth completion

Many works have been published to improve the depth completion task for self-driving

cars. [33] proposed strong networks for efficient depth completion, namely ENet and PENet; the

backbone network consists of two main branches: color–dominant branch and depth dominant

branch; the former accept both the LiDAR sparse depth map and the color Depth map but the

branch focus on color information throughout an encoder/decoder like network, the later accept

both the semi-dense depth map generated from the first branch alongside the sparse depth map.

Both branches generate confidence arrays that combine the depth generated from each branch in

an adaptive way. Extra refinement is also proposed using an improved implementation of [68]

work. Although [33] work achieved outstanding results, the proposed work is very complex. It

requires extensive computing resources (the GitHub repository mentioned 4 GPUs), and the

training process is very long and could take several days.

Moreover, the results have been achieved after using around 86K annotated frames. [69]

proposed a generative adversarial network (GAN) based for depth completion purposes. This work

https://en.wiktionary.org/wiki/adaptiveness

37

considers the unguided depth completion problem wherein only sparse depth information is

available. The final goal is to train a generator with a minimum loss and obtain the model

parameters. Equation (3-1) show the main equation to solve.

𝜃�̂� = arg min
1

𝑁
∑ 𝐿𝐺

𝑁

𝑛=1

 (𝐺𝜃𝐺
(𝐼𝑛

𝑆𝑃), 𝐼𝑛
𝐷𝑁)

(3-1)

where, 𝐿𝐺 is the generator loss function, 𝐼𝑛
𝑆𝑃 the training sparse depth samples, 𝐼𝑛

𝐷𝑁 dense depth

samples, 𝜃𝑔 are the CNN parameters to solve for the best minimum loss. It worth noting that 𝐿𝐺 is

a combination of different loss functions like adversarial loss, normal loss, and pixel loss. The

network consists of three main parts: dense residual blocks, hourglass attention mechanism, and

residual in residual dense blocks. [70] proposed a multitask generative adversarial network that

works for both semantic segmentation and depth completion; they used the semantic segmentation

output as input to improve the depth prediction accuracy. This work is guided as it uses the RGB

images alongside the sparse LIDAR depth information. The authors introduced multi-scale pooling

blocks within the network to extract features from different levels. The architecture has two main

branches, one for semantic segmentation and the other for depth completion. Which yields two

generators and two discriminators. [71] proposed a fully convolutional neural network for depth

completion task; the network architecture is GAN and only utilizes sparse LiDAR information.

The network comprises six convolutional layers, and ReLU follows all middle layers.

38

Image processing-based depth completion work

Work focusing on depth completion task using image processing is limited, [72] proposed

a depth completion framework that depends entirely on image processing techniques and can run

on CPU only. The framework consists mainly of several image processing operations like dilation,

morphological operation, and filtering. At the time of publication, the performance of the proposed

work was very promising; however, recently published work that utilizes deep neural networks

and sensor fusion surpasses this image processing approach. [72] work utilizes LiDAR point

cloud only. [73] also works on depth images super-resolution, wherein they focus on the 3D points

and use repetitive structures to recognize similar patches throughout different levels.

Clustering Related Work

The related work discussion is divided into two main parts. The first part focuses on some

promising generic DBSCAN improvements. In contrast, the second part focuses on the DBSCAN

related works in the domain of mobile robotics and SDCs LiDAR data processing.

DBSCAN is a well-known density-based clustering technique that has been used in various

fields and applications [74]–[78]. However, due to the DBSCAN limitations in handling sparse

data and variable densities, many DBSCAN variants have been proposed to overcome these

limitations and improve performance. Surveying all of these variants is beyond the scope of this

work; however, some of the recent works that suggest ideas to automate the process of estimating

DBSCAN tuning parameters are highlighted. In A-DBSCAN [79] Kth-Nearest Neighbor (K-NN)

graph is used to select data core samples. Instead of ε and minPts, A-DBSCAN uses k values and

39

noise presence. They proposed ADBSCAN using three main steps; in the first step, the algorithm

splits the dataset into disjointed subgraphs, then in the second step, it filters any subgraph that does

not lie in the dense area; and finally, it assigns subgraphs into clusters where close subgraphs are

assigned to the same cluster. In Approximate Adaptive DBSCAN [80] a quadtree-based density

layer tree was used to partition the dataset equally without the need for an extra parameter or

merging process. The same work also uses (K-NN) to further improve the AADBSCAN by solving

the static ε drawback of AADBSCAN. [81] proposed a generic Adaptive DBSCAN which first

starts with a random value for ε and then evaluates the performance; if no clusters are detected,

then it increases ε by 0.5, and this process will repeat until 95% of the data has been exhausted.

The proposed method requires an assignment for the expected number of clusters which is not

practical in many applications. [82] proposed method to estimate the value of ε and minPts, the

method requires another parameter K to draw K-dist graph required to find the knees that

corresponds with the density changes. Knees also used to estimate a set of ε values which then

used to estimate the minPts.

Although DBSCAN is widely utilized in a wide range of clustering applications, minimal

work has been done to automatically and adaptively estimate DBSCAN tuning parameters within

applications like robotics and self-driving cars. [83] proposed an estimation approach based on the

average K-NN. Their process consisted of the following steps: 1) it normalizes the data, and this

step is only needed if the LiDAR data combines both coordinates and color information, 2) it builds

a spatial index and uses both the spatial index and different distances calculations it estimates the

clustering parameters, and 3) clustering takes place using the different estimated ε. [84] proposed

an Adaptive Searching-DBSCAN which starts with initial values and is updated in each clustering

iteration. The authors suggested equations to estimate both initial and subsequent values. The

40

proposed equations consider different parameters like expected target width and number of points

per location. However, none of the equations considered the location of the LiDAR nor the relative

distance of the points to the LiDAR.

[85] uses the infrastructure LiDARs to detect and track pedestrians at intersections, to

improve DBSCAN and automatically select the tuning parameters, they took into consideration

the properties of the installed LiDAR. They introduced two equations to find both the minimum

horizontal and minimum vertical distance between LiDAR points; also, three zones division

scheme was introduced to change the values of the tuning parameters based on the object’s

locations.

41

CHAPTER 4

METHODOLOGY

This work focusses on the perception module of self-driving vehicles and utilizes

information from two sensor modalities: LiDAR and Camera. The first part of the thesis addresses

the depth completion problem wherein missing depth information in the sparse LiDAR point cloud

data is estimated. An instance segmentation-based guided depth completion method is proposed

that utilizes both LiDAR point cloud and raw camera images. The second part of this thesis

addresses the clustering of the LiDAR point cloud problem. A density-based clustering algorithm

is investigated and enhanced by adding an adaptive and automated technique to estimate clustering

parameters.

Instance Segmentation-Based Depth Completion Framework Using Sensor

Fusion

Depth completion aims to obtain dense depth maps from sparse depth measurements. It is

a critical component in many vision applications and has rapidly growing significance for

autonomous driving. Accurate depth is essential for many perception tasks such as 3D object

detection and shape recognition, 3D mapping, and localization. These tasks are at the heart of

many applications, including augmented reality, SDCs, and robotics. Due to the limited detection

range, environmental interference, and cost considerations, frequently used depth sensors such as

LiDAR, RGB-D sensor cameras, and Time-of-Flight (TOF) cameras produce sparse depth

measurements. For example, the top-of-the-line Velodyne HDL- 64E LiDAR sensor costs around

$75,000 but can only deliver sparse data with vertical resolution/angular resolution of 0.4/0.08

[86]. On the other hand, dense depth maps are required in many high-level applications such as

42

3D object detection, 3D scene reconstruction, and simultaneous localization and mapping

(SLAM). Depth completion or generating dense depth maps from sparse depth data has become a

popular technique to bridge the gap between sparse and dense depth maps.

Depth completion techniques fill in the gaps in a sparse depth map either without or with

the help of a reference image. The latter uses structure information from the guidance image to

improve performance, attracting increased study attention. However, the input depth map is

irregular, sparse, and noisy. Moreover, the color image and the depth map are from two different

sensor modalities; therefore, the image-guided depth completion task has unique challenges. As a

result; various sparse invariant convolutions, uncertainty exploration, and multi-modality fusion

algorithms have been developed to overcome these challenges. In addition, several modern

approaches use multi-scale characteristics, surface normal, semantic information, or context

affinity to further increase performance [87].

 Most of the recent work in the domain of depth completion is deep neural networks based;

although the current state of the art achieved very good performance, the generated depth at object

boundaries or for distant objects still suffers from inaccurate depth values. In addition, none of the

previous works provided a customized approach to completing selected objects instead of the

entire scene. Many factors can degrade depth completion process performance at objects

boundaries or for distant objects, such as the lack of sufficient point cloud and when some objects

are very close or even occluding each other. Figure 16 shows selected images from the KITTI

dataset [16] wherein objects (cars) close and occlude each other.

43

Figure 16. Selected images from KITTI dataset showing scenarios where objects like cars are very close

to each other or occluding each other [16]

Most of the recent depth completion work [33], [68], [70], [88] applies algorithms to the

entire sensors data without paying attention to the object’s boundaries and object’s types. Accurate

objects boundaries and objects types are valuable features and can guide depth completion

frameworks more accurately. In the last few years, instance segmentation has gained huge interest

from the industry and academia, because it combines both object detection and segmentation

capabilities in a pixel level accuracy, and provides different unique scene insights like the number

of objects, pixel-level object boundaries, type of object and distinguish between objects that fall

into the same type; making it an up-and-coming technology to guide the depth completion process.

Using Instance segmentation in depth completion has many benefits, for example:

- Accurate pixel-level object boundaries.

- Accurate object detection, especially for far objects.

- Accurate object classification.

44

Using instance segmentation in depth completion will allow for objects level depth

completion, thus performing the depth completion for the objects of interest instead of depth

completion on the entire scene.

In this dissertation, an object-based depth completion framework is proposed and

implemented. Figure 17 shows a high-level presentation of the implemented framework.

Figure 17. Proposed Instance Segmentation-based Depth Completion Framework

 The framework consists of the following steps:

1- Input Data Preparation

The proposed framework uses two leading sensing technologies: remote LiDAR sensing

and optical image sensing (Camera). These modalities are from different coordinate systems and

have a non-identical field of view. For example, the used LiDAR device can capture 360° of the

surrounding environment with a 26.9° vertical field of view, 0.08° angular resolution (azimuth),

and around 0.4° vertical resolution [89]. On the other hand, the camera sensor can only sense the

vehicle's front view. Therefore, the LiDAR point cloud is cropped to match the camera field of

view and projected from the LiDAR coordinate system into the camera coordinate system. Figure

45

18 shows the raw LiDAR point cloud, the cropped LiDAR point cloud, and the LiDAR point cloud

projected into the camera 2D coordinate system. It is worth mentioning that LiDAR points in

Figure 18-d are colorless but colored and enlarged for better visualization.

Figure 18. LiDAR point cloud in different FOV and projection a) LiDAR raw point cloud with 360° field

of view b) LiDAR point cloud cropped to match camera sensor field of view c) camera sensor reference

image d) LiDAR point cloud projected into optical sensor 2D coordinate system and color-coded (cold

color for far objects while warm colors for near objects) [16]

To project a 3D point 𝑥 = (𝑥, 𝑦, 𝑧, 𝐼)𝑇 from the LiDAR coordinate system into a 2D point 𝑦 =

(𝑢, 𝑣, 𝐼)𝑇 in the i'th camera sensor coordinates system, equation (4-1) [16] is used.

 𝒚 = 𝑃𝑟𝑒𝑐𝑡
𝑖 𝒙 (4-1)

Where 𝑷𝒓𝒆𝒄𝒕
𝒊 is the rectifying rotation matrix, and I is the intensity of the LiDAR point.

46

2- Instance Segmentation

For Instance Segmentation, the Mask R-CNN architecture has been selected. Although

there are many other alternatives in the literature, Mask R-CNN is unique for different reasons.

First, it is based on a stable and supported R-CNN object detection architecture. Second, Mask R-

CNN provides mask information and inherits information from the R-CNN like object bounding

boxes, detection scores, and object types. Finally, Mask R-CNN is common and has been trained

on many big generic datasets like COCO [90], which make the process of generalizing it to other

tasks faster. Mask R-CNN is a two-stage instance segmentation framework; the first stage is used

to scan the input image and generate proposals which are objects potential areas. The second stage

performs object classification, bounding boxes regression, and mask generation. Figure 19 depicts

a high-level representation of the Mask R-CNN instance segmentation framework.

Mask R-CNN uses a backbone network to extract features wherein an RGB camera image

is converted into a feature map and further feed into a feature pyramid network (FPN). Deep neural

network computer vision literature has many strong feature extraction backbones like AlexNet

[91], VGG-16 [92] GoogLeNet [93] and ResNets [94],

The resulting feature map is forwarded into a region proposal network (RPN). The primary

purpose of this network is to find areas in the feature map that contain potential objects. RPN uses

a sliding window technique that scans anchors with different sizes and aspect ratios. For each

anchor, the RPN generates two outputs: anchor class and a bounding box. The anchor class

classifies each box into foreground or background, where foreground means a potential object

exists. The content of each proposed region is classified, and an accurate bounding box for each

classified object is regressed.

47

It is worth mentioning that all of the previous operations belong to the faster R-CNN

architecture [43], but the next step is the unique part of Mask R-CNN [95], wherein a segmentation

mask is generated in parallel with the classification and bounding boxes regression operation.

Figure 19 depicts the instance segmentation process.

Figure 19. Instance segmentation main processes [95]

Mask R-CNN is already pre-trained on a wide range of big public datasets like COCO [90].

However, to make it more suitable for the self-driving domain, a transfer learning approach has

been adopted to add more data from the KITTI instance segmentation dataset [16] while preserving

knowledge from the COCO dataset [90]. Transfer learning is the ability to transfer already acquired

knowledge from a previous task to a new related task. This approach is prevalent in image

knowledge-based tasks due to the underlying shared initial processes like detecting edges, colors,

and brightness, among others. Figure 20 depicts the concept of transfer learning; task 2 is similar

to task 1; e.g., task 1 is to detect people in a generic setting, while task 2 is to detect cyclists on the

road. Task 1 dataset is usually bigger than task 2, contains more genetic information, and requires

more training time; on the other hand, task 2 dataset is generally smaller than task 1 and requires

less training time.

48

Figure 20. Transfer learning concept, knowledge from task 1 used to facilitate task 2 [96]

Transfer learning can be performed in two ways. The first way is to allow all model layers

to update and adjust weights based on the new training dataset. The second way is to freeze all

layers except the last layers (heads) and only train and adjust the final layers [96]. The second

approach is adopted in this dissertation since the similarity between the two tasks is very big, and

thus the previously learned weights are reasonable to preserve. During training, the original Mask

R-CNN loss functions have been used, which are: classification loss, bounding box regression loss,

Mask loss (binary cross-entropy loss), and combined loss [95], which are formulated in equations

(4-2), (4-3), (4-4) and (4-14), respectively.

 𝐿𝑐𝑙𝑠(𝑝𝑖, �̂�𝑖) = −𝑙𝑜𝑔 (𝑝𝑖
𝑐) (4-2)

49

Where �̂� is the predicted probability for the proposed region belonging to class c.

 𝐿𝑏𝑜𝑥 = 𝑙1
𝑠𝑚𝑜𝑜𝑡ℎ(𝑡𝑖 − �̂�𝑖) (4-3)

Where 𝑡𝑖 , �̂�𝑖 are the ground truth coordinate of the bounding box and the predicted coordinate,

and 𝑙1
𝑠𝑚𝑜𝑜𝑡ℎ is a combination of Least Absolute Deviations and Least Square Errors.

𝐿𝑚𝑎𝑠𝑘 = −

1

𝑚2
 ∑ [𝑦𝑖𝑗 𝑙𝑜𝑔 �̂�𝑖𝑗

𝑘 + (𝑖 − 𝑦𝑖𝑗)𝑙𝑜𝑔(1 − �̂�𝑖𝑗
𝑘)]

1≤𝑖,𝑗≤𝑚

(4-4)

𝑤h𝑒𝑟𝑒 𝑦𝑖𝑗 is the groundtruth lable of pixel at i, j location 𝑎𝑛𝑑 �̂�𝑖𝑗
𝑘 is the predicted label of pixel

at i, j.

 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑙𝑜𝑠𝑠 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 (4-5)

The output of the instance segmentation step contains the following meta information:

• Objects ids: a list contains all detected objects in the given input image: {3, 3, 3, 3, 2, 1}

where here these number corresponds to different objects, e.g., cars, pedestrians, or

cyclists.

• Detection scores: a list contains confidence scores for all detected objects: {0.99, 0.97,

0.99, 0.91, 0.85, 0.25}.

• Region of Interest ROI array: an array consists of the dimensions of bounding boxes for

each detected object. [[Object 1 ROI], [Object 2 ROI], …, Object n ROI]

• Masks array: an array consists of the object's mask. Pixels belonging to a legitimate object

are assigned a value of 1, while pixels outside a legitimate object are assigned a value of

0.

50

Figure 21. Instance segmentation example that applied into a randomly selected KITTI frame with all

results’ attributes shown; each object has a type, confidence score, bounding box, and mask [16]

An Example of all information resulting from the instance segmentation module is

provided in Figure 21; each object has a class name, e.g., car, score, e.g., 0.95, bounding box

(dashed rectangle), and mask (the overlayed color on each object).

Instance segmentation output is huge, especially the instance segmentation masks; because

it increases the storage requirement dramatically (if a 1D mask array needs 1 MB of storage, then

an image with five objects needs 5 MB). Therefore, we designed a data structure and encoding

scheme to solve this problem that dramatically reduced storage requirements. The proposed

technique embeds all essential information into one array consisting of object ids, scores, and

object indexes within the mask array. The proposed technique is presented in Algorithm 1 which

describes the main operation of this encoding scheme. This algorithm will generate a small

footprint of the needed instance segmentation information. In training, instance segmentation

information is prepared in the shape of a 2D image where pixels corresponding to potential objects

are assigned the object class id value. In contrast, other pixels will have a zero value. Figure 22

51

depicts the encoded instance segmentation feature masks and object types into a single 2D 1-

channel array.

Figure 22. Instance segmentation objects’ masks and types encoded into a single 2D 1-channel array

ALGORITHM 1: ALGORITHM TO COMPRESS INSTANCE SEGMENTATION MASKS

AND OBJECTS TYPE

Function Compress instance(i)

Input i: array - RGB image with size (w,h,c)
Output r: array with size (w,h,1)

1:
2:

3:
4:
5:

6:
7:
8:
9:

10:
11:
12:
13:

14:
15:

16:
17:

18:

//calling instance segmentation model
R = instance_segmentation_Detect(i)

//Create empty arrays to hold the output
Fram_instance_seg_info = []
masks_idx = []

//append all class ids to the output array
fram_instance_seg_info.append(R['class_ids'])
//append all detection scores to the output array
fram_instance_seg_info.append(R['scores'])

//loop over all detected objects
for j in range(len(R['class_ids'])):
 obtain indexes of the pixels belonging to objects
 mask_idx = np.where(R['masks'] [j] == True)

 //append indexes to the array
 masks_idx.append(mask_idx)

//append the full masks indexes array to the output array
fram_instance_seg_info.append(masks_idx)

return fram_instance_seg_info

52

3- Depth Completion

 Depth completion deals with the problem of estimating a dense set of depth measurements

from a sparse input. Let us assume the dense output is D and the sparse input S, then D can be

estimated using a network N with parameters 𝜃 as formulated in equation (4-6).

 𝐷 = 𝑁(𝑆, 𝜃) (4-6)

Equation (4-6) applies to non-guided depth completion problems where only a sparse

LiDAR point cloud is used. However, accurate dense depth maps can be obtained by combining

multi-sensor information. A commonly used method is fusing data from RGB cameras and LiDAR

in early or late fusion mechanisms. This technique is formulated in equation (4-7) for RGB image

I:

 𝐷 = 𝑁(𝑆, 𝐼, 𝜃) (4-7)

In this research, we updated this formula and added another exciting piece of infor-mation

to improve the guided depth completion performance. Instance segmentation pipelines provided

useful information like object types, objects locations in a bounding box format, and pixel-level

mask for detected objects. This information is very beneficial in guiding the DNN. Thus we

revisited equation (4-7) and included the instance segmentation information: object type and object

mask, as in equation (4-8):

 𝐷 = 𝑁(𝑆, 𝐼, 𝑀, 𝑇, 𝜃) (4-8)

53

Where M and T represent the object’s pixel level mask, and object types, respectively.

The parameter θ is optimized during the training by minimizing the loss function given a ground

truth sample gt as in equation (4-9)

 𝜃 = argmin ℒ (𝐷, gt) (4-9)

Instance segmentation will generate accurate information about all objects of interest

within the camera field of view. The generated segmentation mask and the classification results of

the objects of interests will be used to accuretyly guided the depth estamtion network.

Figure 23. High-level presentation of the proposed depth completion DNN with the inputs and output

Figure 23 depicts a high-level presentation of the depth completion DNN. The DNN will

accept the depth information, object types, object boundaries (masks), and RGB color information

and learn through a convolutional layer organized in an encoder-decoder-like framework to predict

the depth of the missing pixels for each object. The input for the network is an array of five

54

channels where the first three channels represent the RGB information, the fourth channel holds

the depth information, and the fifth channel contains the mask and object type.

Table 2. Example of, the shape of the input of the depth DNN, please be informed that these entries are

not adjacent and are selected for illustration purposes only

Pixel

number

RGB camera information

Depth

information

Mask and

object type

R G B D (m) Mask_object

0 120 115 33 10 3

1 110 100 30 0 3

2 200 120 100 25 3

3 30 200 110 70 2

4 60 90 130 3 0

5 55 33 20 1 0

6 40 120 200 1.5 2

Table 2 shows an example of the shape of the input for the depth DNN. For example, the

second pixel has the value of (110, 100, 30) for the color information and 0 for the depth, and 3

for the mask_object (3 represents the class of the car) channel, which means this entry belongs to

55

a legitimate point but miss the depth value. In contrast, pixel numbers 4 and 5 belong to pixels

outside objects of interest because mask_object is 0 (0 represents background).

a. Network architecture

To evaluate the effectiveness of instance segmentation in guiding the depth completion

process, a two-branch convolutional neural network backbone similar to [33], [88] is used. The

network consists of two branches; the first accepts three different input information: RGB image,

depth map, and instance segmentation mask and objects of interest types. Each branch implements

an encoder-decoder network with symmetric skip connections. Autoencoder architecture is a well-

known DNN architecture with a proven performance record in solving noise reduction and data

improvement problems[97]. The depth completion process aims to fill in the gap between the

sparse LiDAR point cloud points by estimating this missing information from the available sparse

information. The encoder consists of one convolutional layer and ten basic residual blocks [94].

The decoder comprises five deconvolutional layers and one convolutional layer. Each

convolutional layer is followed by batch normalization and relu activation layers. In this network,

information is fused in different levels. Initially, input data is fused following an early fusion

approach, and then another step of fusion is also conducted between two branches. Features from

the first branch's decoder part are also fused into the encoder part of the second branch. A final

late fusion process is also conducted by fusing the two semi depth maps into a final dense depth

with the help of confidence values generated by each branch. The fused depth map �̂�𝐹𝑢𝑠𝑒𝑑(𝑢, 𝑣)

is calculated unising equation (4-10). Figure 24 provided more details about the network

architecture.

56

�̂�𝐹𝑢𝑠𝑒𝑑(𝑢, 𝑣) =

𝑒𝐶𝐵1(𝑢,𝑣). �̂�𝐵1(𝑢, 𝑣) + 𝑒𝐶𝐵2(𝑢,𝑣). �̂�𝐵2(𝑢, 𝑣)

𝑒𝐶𝐵1(𝑢,𝑣) + 𝑒𝐶𝐵2(𝑢,𝑣)

(4-10)

 Where 𝐶𝐵1(𝑢, 𝑣), 𝐶𝐵1(𝑢, 𝑣), �̂�𝐵2(𝑢, 𝑣) , �̂�𝐵2(𝑢, 𝑣) represent the confidence map from the first

branch, the confidence map from the second branch, the estimated depth from the first branch, and

the estimated depth from the second branch, respectively. (𝑢, 𝑣) represents the pixel location.

5
7

Figure 24. Proposed network architecture, the top part depicts the first branch, which takes the instance segmentation as input, while the lower

part represents the second branch which takes branch one depth and the sparse depth as an input

58

A DBSCAN LiDAR Point Cloud Clustering Framework

Light Detection and Ranging (LiDAR) technology is used in applications like urban road

detection, planning, robotics, and Self-Driving Cars (SDCs). In robotics and SDCs, LiDAR is used

for environment perception and understanding [98], [99]. However, LiDAR data is unordered and

sparse. Grouping LiDAR data based on some criterion benefits many LiDAR-based real-time

applications like object detection and classification [100],[83], [101].

DBSCAN clustering was built based on the assumption that the data has a consistent

density; thus, using fixed global parameters seems appropriate. However, density is not uniform

in real-world scenarios, so setting these parameters to constants should be addressed. The

autonomous vehicle is immersed in a very dynamic environment, and the data from the LiDAR is

very sparse and non-uniform. Accurate object detection in a LiDAR sweep demands an adaptive

estimation of both ε and minPts.

In this work, I propose to model the system's dynamics and automatically and adaptively

estimate the DBSCAN parameters ε and minPts using empirical equations and the FOV division

scheme.

• Foreground Points Extraction

Extracting foreground points from the entire LiDAR point cloud is vital to the success of

any LiDAR data clustering process; it reduces the number of points dramatically, thus simplifying

the clustering task and making it much faster. To distinguish LiDAR foreground points from

background points, I followed the same approach of [102] in removing background points and

reducing the total number of points using DNN. That is, all LiDAR 3D point clouds are fed into

59

encoder/decoder DNN to learn discriminative features, saving the resulting features into a vector,

and then fed to a classification head; the classification head classify the points into two groups:

foreground and background points, that is label: ‘0’ for background points and label: ‘1’ for

foreground points. For training, the ground truth objects bounding boxes within KITTI have been

used to distinguish foreground points from background points. Using the following assumption:

All points inside the ground truth bounding boxes are considered foreground points, and the

remaining points are considered background points. The same parameters proposed by (Shi et al.,

2018) have been adopted for training. Figure 25 shows the foreground segmentation framework

where the output of the segmentation head is either foreground points (orange points) or

background points (gray points).

Figure 25. Foreground segmentation framework, the final output on the right shows orange points as the

foreground, while gray points are the background [16]

Additionally, Figure 26 provides another example of the segmentation process. Figure 20-

a is the original point cloud, while Figure 26-b shows the resulting foreground points from the

camera FOV perspective bounded by the white lines. The segmentation process marks all

irrelevant points as a background, such as trees, walls, and road infrastructure.

60

As shown in Figure 26, the camera FOV was used as a reference. It is worth noting that the

original LiDAR data size in Figure 26-a is 18,876 points. After background removal, it drops to

5,158 points, which is almost a 75% reduction, which is very beneficial to any clustering algorithm.

Figure 26. a) Raw 3D LiDAR point cloud b) Foreground point cloud [16]

• Adaptive Density and Ego Vehicle Location Aware DBSCAN (ADEVLA-DBSCAN)

DBSCAN can be applied to LiDAR point cloud clustering, but using global fixed tuning

parameters ε and minPts will negatively impact the overall performance. They may cause it to be

unusable in real-time critical applications like SDCs and mobile robotics. Different clustering

simulation experiments have been performed using DBSCAN with different tuning parameters to

elaborate more on this. And visually and manually examined the results. Figure 27 shows the effect

61

of using different ε and minPts on the same LiDAR sweep, a wide range of ε and minPts, has been

used. However, the values shown in Figure 27 are (0.5, 1, 1.5, 2) and (9, 8,15) for ε and minPts,

respectively. ε has a significant impact on the final points per cluster; for example, in Figure 27-b

and Figure 27-e, changing the ε value from 0.5 to 2.0 allowed DBSCAN to detect and cluster the

far object pointed by the white arrow, however, due to this change in ε, extra noise added to the

orange cluster and two objects have merged together as a single object. Similar scenarios also exist

in Figure 27- a, d, c, and f.

Figure 27. DBSCAN with different Eps and minPts [16]

To reduce computations and to get insights from the LiDAR sweep locally, the LiDAR

FOV is divided into regions and the regions into cells. The number of regions and cells is selected

by considering the LiDAR and camera FOV and the objects/lanes expected length and width. Road

lanes width can be up to about 3.5m [103], and vehicles length is usually between 3 ~ 5 meters for

mid-size vehicles [104]; therefore, taking into consideration the LiDAR FOV, dividing the ego

62

vehicle FOV into eight regions and eight cells is very reasonable. Figure 28 depicts the division

scheme and the main parameter definitions.

Figure 28. Proposed FOV division and parameters definitions

Based on the division scheme and different simulation experiments, two equations are also

proposed that can estimate the values of ε and minPts for each LiDAR point individually and

locally. Equation 4-3 calculates Eps while equation 4-4 calculates minPts.

𝐸𝑝𝑠 =
(
𝑐𝑒𝑙𝑙_𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙_𝑙𝑒𝑛

𝐹𝑂𝑉_𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙
∗ 100) ∗ (

𝑑𝑖𝑠𝑡
𝑚𝑎𝑥𝑑𝑖𝑠𝑡

) ∗ 𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝑑

sqrt(𝑑𝑒𝑛𝑠𝑖𝑡𝑦)

(4-11)

63

𝑀𝑖𝑛𝑃𝑡𝑠 =
𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑔𝑖𝑜𝑛𝑠 ∗ (

𝐸𝑝𝑠
𝑚𝑖𝑛𝑃𝑡𝑠𝐷𝑖𝑠𝑡[𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝑑]

)

𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝑑

(4-12)

Where 𝑑𝑖𝑠𝑡 is the Euclidean distance between the point and the LiDAR(origin), 𝑚𝑎𝑥𝑑𝑖𝑠𝑡

is the LiDAR max depth. It is 70.2 m for the used LiDAR in the KITTI dataset, 𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑔𝑖𝑜𝑛𝑠 is

the total number of regions, 𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝑑 is the id of the region where the point is located, and

𝑐𝑒𝑙𝑙_𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙_𝑙𝑒𝑛 is the diagonal distance within cells and 𝐹𝑂𝑉_𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 the diagonal distance

within the entire FOV. Also, the 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 is the density of points per cell and is calculated in

equation (4-13) as follows:

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
#𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙

𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎

(4-13)

And 𝑚𝑖𝑛𝑃𝑡𝑠𝐷𝑖𝑠𝑡 is the minimum horizontal distance between LiDAR points, and it is

calculated with reference to the middle of each region using the equation (4-14) below:

𝑚𝑖𝑛𝑃𝑡𝑠𝐷𝑖𝑠𝑡 [regionId] = 2 ∗ tan (
𝐿𝑖𝐷𝐴𝑅𝐻𝑅

2
) ∗ 𝑟𝑒𝑔𝑖𝑜𝑛𝑀𝐷

(4-14)

Where LiDAR𝐻𝑅
is the LiDAR horizontal resolution and tan (

𝐿𝑖𝐷𝐴𝑅𝐻𝑅

2
) is the tan of the half

horizontal LiDAR resolution, which is 0.4 degrees for the used LiDAR in the KITTI dataset,

𝑟𝑒𝑔𝑖𝑜𝑛𝑀𝐷 is the distance between the middle of the region and the LiDAR. The equation applies

triangle relations to find 𝑚𝑖𝑛𝑃𝑡𝑠𝐷𝑖𝑠𝑡, and Figure 29 provides more parameters’ illustrations for

equation (4-14).

64

Figure 29. MinPtsDist parameters illustration

65

CHAPTER 5

 EXPERIMENTAL RESULTS

Dataset

In this dissertation, the well-known KITTI Vision Benchmark Suite [16] has been selected

and used to evaluate the proposed methodology and to generate different visual and numerical

results. KITTI raw data are transformed, customized, and processed to support various research

areas like stereo, flow, scene flow, depth prediction, depth completion, object detection, object

classification, object tracking, road lane detection, and semantic segmentation. KITTI contains

about six hours of driving in various set-ups, like driving in rural areas, highways, and urban areas.

The dataset is well-calibrated, synchronized, and labeled. The dataset was captured in Karlsruhe,

Germany, by a moving VW station wagon equipped with four Camera sensors (colored and

monochrome), a LiDAR scanner (Velodyne HDL-64E), and high-precision GPS/IMU (OXTS

RT3003). The raw data is divided into five main categories: Road, City, Residential, Campus, and

person. Data are also saved into three folders: Images containing images captured by the four

cameras. OXTS includes the GPS and IMU values and Velodyne, which has the LiDAR data

points. The proposed work is related to object detection and depth completion; thus, in section

5.1.1, detailed information about KITTI object detection is provided, in section 5.1.2, detailed

information about the depth completion dataset is provided. At the same time, in section 5.1.3,

detailed information about the instance segmentation dataset is also provided.

66

KITTI object detection dataset

The KITTI Object detection dataset contains around 7481 training images and 7518 testing

images. The total number of labeled objects is 80256. Objects include cars, pedestrians, cyclists,

trams, people sitting, and misc. Another essential piece of information is the level of occlusion and

truncation for each labeled object. Each label contains the following interesting information: frame

id, track id, truncation level (from 0 to 2) and occlusion level (from 0 to 3), object angle, bounding

box information in 2D format or 3D format, location, and rotation around the y-axis. For the three

major object types of KITTI: cars, pedestrians, and cyclists, Table 3 provides the total number of

labels for each object type distinguished by the level of complexity.

Table 3. KITTI dataset main classes statistics for the training split

Class Total instances Easy Moderate Hard

Cars 11017 3153 4893 2971

Pedestrians 2113 1186 653 274

Cyclists 597 378 179 40

In the clustering work, the 2D KITTI object detection dataset is used, wherein bonding

boxes are provided in the form of 2D rectangles. LiDAR data are raw and provided in a 360-degree

range. Thus, the LiDAR data is also cropped and aligned with the Camera's field of view. Figure

30 shows an example from the KITTI object detection dataset. Figure 30-a shows the camera frame

67

with 2D bounding boxes, Figure 30-b shows the camera frame with 3D bounding boxes, and

finally, Figure 30-c shows LiDAR point cloud from the camera point of view with both 3D

bounding boxes and labels.

Figure 30. KITTI object detection dataset example a) camera image with 2D bounding boxes b) camera

image with 3D bounding boxes c) LiDAR point cloud with 3D bounding boxes and labels from camera

FOV [16]

68

KITTI depth completion dataset

The KITTI depth completion dataset is a large-scale dataset created based on the raw KITTI

dataset. which consists of 85,898 training data frames from RGB cameras and LiDAR; the dataset

also has 1K validation data frames. We observed that the RGB images are extracted from two

cameras positioned to capture the car’s front view. To reduce the training time, we used only one

camera data, which reduced the number of frames to 42,949, and further, we applied a ¼ random

sampling, resulting in a final training dataset size of 10,737 frames. Each training sample consists

of four main entities: (1) RGB frame with a resolution of 1216x352, (2) Sparse LiDAR depth map,

(3) Ground truth depth map, and (4) Instance segmentation information encoded using our

encoding algorithm. It is worth noting that the sparse depth maps have about 5% valid depth

information, and the ground truth depth maps have about 16% valid depth information.

The dataset creators automated the noise and artifacts removal process available in the

KITTI raw dataset due to different sources like occlusions and reflection. The automated cleaning

process is done by correlating the LiDAR scans to the depth maps generated using the stereo

reconstruction approach. They accumulate eleven laser beams to increase the density of the

generated depth maps. And finally, evaluate the generated dataset by comparing it with the

manually cleaned stereo dataset [105]. Figure 31 shows an example from the KITTI depth

completion dataset. Figure 31-a shows the Camera sensor image. Some work only uses the camera

data for referencing purposes (non-guided depth completion) and do not use it in their pipeline.

In contrast, other works apply a guided depth completion approach that combines multiple

sensor information like camera and LiDAR. Figure 31-b shows the sparse LiDAR depth map, and

Figure 31-c shows the dense LiDAR depth map (the ground truth in the dataset). For both Figure

69

31-b and Figure 31-c, LiDAR depth information has been projected into the camera 2D plan and

color-coded based on the depth range for easier understanding and better visualization.

Figure 31. KITTI depth dataset a) Camera image b) Sparse LiDAR depth map in the 2D domain c)

LiDAR ground truth in the 2D domain [16]

*Depth maps have been colored for easier visual understanding

70

KITTI instance segmentation dataset

KITTI also provides a dataset for instance segmentation work [52]. The dataset consists of

200 training images and another 200 validation images, combining real and synthetic data. Figure

32 depicts an example of the instance segmentation dataset and shows the wide range of

semantically labeled objects in a self-driving context.

Figure 32. KITTI Instance Segmentation Dataset [52] Example a) reference camera image b) Instance

segmentation of the image objects, wherein each color is assigned to a unique object, e.g., dark blue for

cars

71

Experimental Setup

Environment

The simulation and analysis have been carried out in two environments; the development

and prototyping have been done in a local server located in DISPLY lab. The server is Intel(R)

Xeon(R) CPU E5-1620 0 @ 3.60GHz equipped with 32GiB of RAM and a GTX 1080 TI GPU.

The operating system is Ubuntu, and the primary programming language is Python. Both

TensorFlow and Pytorch frameworks have also been used. The long training and simulation have

been done on google Colab environment with Pro membership which provides Tesla P100 or Tesla

T4 GPU with 25.4 GB graphic RAM and 32GB of machine RAM and 167GB SSD storage. Table

4 provides additional specification information about the local development environment.

Table 4. DISPLY lab Development Environment Specifications

Item Specification

Processor Intel(R) Xeon(R) CPU E5-1620 0 @ 3.60GHz

Number of cores 8

RAM 32836MB

GPU GTX 1080 TI

GPU RAM 11 GiB

Machine Type Tower

Operating System Ubuntu 20.04.2 LTS

Programming language 1 Python3 V 3.8.10

72

Tabel 4 - continued

Programming language 2 Pytorch V 1.2.0

Environment control Anaconda

Nvidia toolkit Driver Version: 470.103.01

CUDA Version: 11.4

Instance Segmentation Based Depth Completion Framework Using Sensor

Fusion

Performance metrics

In this research, for instance segmentation, the standard COCO metrics: AP, AP0.5 and

AP0.75, where AP stands for average precision and 0.5 and 0.75 represent the area overlap threshold

is used. Instead of the general intersection over Union (5-10), the Mask IOU to evaluate the

generated masks' quality is used. As for depth completion, the KITTI benchmark and other

existing methods [33], [69], [70] are used as well as the five standard metrics: Root Mean Squared

Error (RMSE), Mean Absolute Error (MAE), inverse Depth Root Mean Squared Error (iRMSE),

inverse depth Mean Absolute Error (iMAE) and the Mean Squared Error (MSE). These metrics

are as given in equations (5-1), (5-2), (5-3), (5-4), (5-5), respectively:

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑(�̂�𝑖 − 𝑑𝑖)2

𝑁

𝑖

 (5-1)

 𝑀𝐴𝐸 =
1

𝑁
 ∑ |(�̂�𝑖 − 𝑑𝑖)|𝑁

𝑖 (5-2)

73

𝑖𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ |

1

�̂�𝑖

−
1

𝑑𝑖
|

𝑁

1

2

(5-3)

𝑖𝑀𝐴𝐸 =
1

𝑁
 ∑ |

1

�̂�𝑖

−
1

𝑑𝑖
|

𝑁

1

 (5-4)

𝑀𝑆𝐸 =
1

𝑁
∑(�̂�𝑖 − 𝑑𝑖)

2

𝑁

𝑖

(5-5)

where �̂�𝑖 , 𝑑𝑖 are the predicted pixel depth value and ground truth pixel depth value, respectively,

and N is the number of pixels.

Instance segmentation results

The instance segmentation network has been trained on the KITTI instance segmentation

dataset for 42 epochs. Figure 33, Figure 34, Figure 35, and Figure 36 show four primary loss

performances over the epoch’s interval: the combined loss, bounding box loss, class loss, and mask

loss, respectively. Losses values were recorded for both the training subset and validation subset.

All losses decrease significantly within the first 30 epochs. For example, the mask loss was around

0.06 at epoch 30 and stayed around the same value for the remaining training process. The

validation loss is generally small and very close to the training loss, which means that the model

is not over-fitted and can be generalized well for new unseen data. Equations (5-6), (5-7), (5-8),

and (5-9) show the mathematical equations used to calculate classification loss, bounding box loss,

mask loss, and combined loss [43], [95], respectively.

74

 𝐿𝑐𝑙𝑠(𝑝𝑖, �̂�𝑖) = −𝑙𝑜𝑔 (𝑝𝑖
𝑐) (5-6)

where, 𝑝𝑖
𝑐 is the predicted probability for the proposed region belonging to class c

 𝐿𝑏𝑜𝑥 = 𝑙1
𝑠𝑚𝑜𝑜𝑡ℎ(𝑡𝑖 − �̂�𝑖) (5-7)

where 𝑡𝑖 , �̂�𝑖 are the ground truth coordinate of the bounding box and the predicted coordinate, and

𝑙1
𝑠𝑚𝑜𝑜𝑡ℎ is a combination of Least Absolute Deviations and Least Square Errors.

𝐿𝑚𝑎𝑠𝑘 = −

1

𝑚2
 ∑ [𝑦𝑖𝑗 𝑙𝑜𝑔 �̂�𝑖𝑗

𝑘 + (𝑖 − 𝑦𝑖𝑗)𝑙𝑜𝑔(1 − �̂�𝑖𝑗
𝑘)]

1≤𝑖,𝑗≤𝑚

(5-8)

𝑤h𝑒𝑟𝑒 𝑦𝑖𝑗 is the ground truth label of the pixel at i, j location 𝑎𝑛𝑑 �̂�𝑖𝑗
𝑘 is the predicted label of

the pixel at i,j.

 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑙𝑜𝑠𝑠 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 (5-9)

Figure 37 shows the performance of the instance segmentation model on a randomly

selected frame from the KITTI dataset. The top left image shows the frame with the instance mask

placed on each object. The figure also shows the LiDAR sparse point cloud and instances

examples. Interestingly, instance segmentation masks precisely identify each object's boundaries

especially occluded and small objects such as those in examples 4 and 5.

 Depth completion neural network can work either on each instance individually or the

entire scene with preliminary information about instance masks and types.

75

Figure 33. Instance segmentation combined loss on both training and validation subsets over different

epochs

Figure 34. Instance segmentation bounding box loss on both training and validation subsets over

different epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

C
o

m
b

in
ed

 lo
ss

Epoch

Combined loss

Training

Validation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

b
b

o
x

lo
ss

Epoch

Bounding box loss

Training

Validation

76

Figure 35. Instance segmentation classification loss on both training and validation subsets over different

epochs

Figure 36. Instance segmentation mask loss on both training and validation subsets over different epochs

0

0.05

0.1

0.15

0.2

0.25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

cl
as

s
lo

ss

Epoch

Classfication loss

Training

Validation

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

m
as

k
lo

ss

Epoch

Mask loss

Training

Validation

77

Figure 37. Performance of the trained instance segmentation model on a randomly selected frame from

the KITTI dataset [16]

Although the KITTI instance segmentation dataset is small, using the transfer learning

technique, a very close performance measures to those generated from the official Mask- RCNN

work. Table 5 summarizes the performance measures for the custom-trained Mask-RCNN and the

official trained Mask-RCNN.

Table 5. Performance metrics of the custom-trained Mask-RCNN

 AP AP50 AP75

Custom trained Mask-RCNN 32.1% 51.4% 34.6%

Official Mask-RCNN 37.1% 60% 39.4%

78

Depth completion results

Several experiments have been done to evaluate the impact and usefulness of instance

segmentation in the depth completion problem. It is worth mentioning that depth completion

training is a resource and time-consuming process. Most recent works reported days or weeks of

training time. Our Baseline model is the ENet [33] model. Since we are using a subset of the KITTI

dataset, we first retrained the ENet on the prepared subset and used it as our baseline. The 1K

validation images supplied by the KITTI dataset have been used for validation purposes. Figure

38 shows the validation RMSE for both the proposed instance segmentation-based depth

completion and the baseline model; the RMSE decreases as the epoch increases, indicating that

the models are improving and that the proposed method surpasses the baseline model. It is also

clear that at early epochs, the proposed method starts with a lower RMSE than the baseline model,

which is about 20K RMSE less than the baseline model.

Figure 38. RMSE for both the proposed method and the baseline model over different epochs

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
M

SE

Epoch

Validation RMSE

proposed method baseline

79

Figure 39 shows the validation MAE for both the proposed instance segmentation-based

depth completion and the baseline model; the MAE decreases as the epoch increases, indicating

that the models are improving and that the proposed method surpasses the baseline model. It is

also clear that at early epochs, the proposed method starts with a lower MAE than the baseline

model, which is about 10K MAE less than the baseline model.

Figure 39. MAE for both the proposed method and the baseline model over different epochs

Figure 40 shows the validation MSE for both the proposed instance segmentation-based

depth completion and the baseline model; the MSE decreases as the epoch increases, indicating

that the models are improving and that the proposed method MSE is less than the baseline model

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
A

E

Epoch

Validation MAE

proposed method baseline

80

by a good factor. It is also clear that at early epochs, the proposed method starts with a lower MSE

than the baseline model, which is about 150M MSE less than the baseline model.

Figure 40. MSE for both the proposed method and the baseline model over different epochs

Figure 41 and Figure 42 shows RMSE and MAE but on during the training phase. The

figures show that the proposed method outperforms the baseline model and starts with lower errors

at the initial stages.

0

50000000

100000000

150000000

200000000

250000000

300000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
SE

Epoch

Validation MSE

proposed method baseline

81

Figure 41. RMSE over different epochs for both the proposed method and the baseline model at the

training phase

Figure 42. MAE over multiple epochs for both the proposed method and the baseline model at the

training phase

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
M

SE

Epoch

Training RMSE

proposed method baseline

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
A

E

Epoch

Training MAE

proposed method baseline

82

Table 6 shows the validation performance measure for the proposed method and the baseline

model at the last trained epoch. All listed metrics are the lower is the better. The proposed method

outperforms the baseline model by 0.35 %, 0.64%, 1.85%, 1.32%, 0.37% and 4.74% for RMSE,

iRMSE, MAE, iMAE and MSE, respectively.

Table 6. Performance measures on the validation dataset at the last epoch for both the proposed method

and the baseline model

Metric Baseline Proposed method

RMSE ↓ (mm) 882.636 879.525

iRMSE ↓(1/KM) 3.178 3.1585

MAE ↓(mm) 266.933 261.991

iMAE ↓(1/KM) 1.279 1.262

Table 7. Performance measures on the training dataset at the last epoch for both the proposed method

and the baseline model

Metric Baseline Proposed method

RMSE ↓ (mm) 773.704 764.626

iRMSE ↓(1/KM) 3.373 3.327

MAE ↓(mm) 239.695 240.602

iMAE ↓(1/KM) 1.268 1.290

MSE ↓ 623970.8 613420.5

83

Table 7 shows the training performance measure for the proposed method and the baseline

model at the last trained epoch. The proposed method outperforms the trained model in the training

RMSE, and iRMSE and was very close in performance in the remaining.

Figure 43 shows three examples of the quality of the proposed method compared to the

baseline model. For each example, we are providing the RGB image as a reference, the depth map

of the proposed method, and the depth map from the baseline model, and the instance segmentation

mask. We are also highlighting interesting areas that are easy to focus on to see the strength of the

proposed method compared to the baseline model. Finally, we also provide the RMSE and MAE

for each example. The proposed method in the three examples revealed an outstanding

performance when focusing on objects and their boundaries.

In Figure 43, In example 1, the white rectangle highlights how the proposed method could

distinguish between the two cars and the area between them. In the baseline model, the area was

considered part of one of the vehicles. In example 2, the white rectangle highlights how the

proposed method was able to distinguish between the right side of the cyclist while the baseline

model included part of the background area to the same depth level as the right side of the cyclist.

Finally, in example 3, the white rectangle highlights how the proposed method was able to

distinguish between the two adjacent pedestrians while the baseline model merges them.

In summary, experimental results proved the ability of instance segmentation clues in

guiding depth completion tasks. The proposed framework achieved superior performance

compared to the baseline model. Both quantitative and qualitative measures have been addressed.

Quantitatively the framework surpasses the baseline in all related metrics like RMSE, MAE, and

84

MSE. Additionally, in earlier training epochs, the proposed framework showed smaller error

values than the baseline model, proving the ability of instance segmentation clues to efficiently

guide the depth completion task.

8
5

Figure 43. Qualitative comparison between the baseline model and the proposed method [16]

86

LiDAR Point Cloud Clustering Results

Performance metrics

An evaluation framework has been developed to evaluate the clustering performance that

compares the ground truth 2D bounding boxes from the dataset with the 2D bounding boxes

resulting from the clustering process. Clusters are considered correct if the intersection over union

between the ground truth bounding box and the bounding box generated from the clustering

process is less than a specific threshold. As a final metric, the total number of correct clusters vs.

the total number of incorrect clusters is used. The flowchart in Figure 44 depicts the entire

evaluation process.

Figure 44. Proposed DBSCAN-based clustering evaluation flowchart

87

A graphical representation from the real dataset is also depicted in Figure 45. The 2D image

is used for illustration and evaluation purposes only. LiDAR Data as shown in Figure 45-b, is

processed by removing the background points. Clusters of the foreground points are projected as

a 2D image as in Figure 45-c, each cluster colored with a unique color to make the visual evaluation

easier. In the last step, as shown in Figure 45-e, a bounding box for the clusters is generated (green

box) and compared with the ground truth 2D bounding box (white box) provided by the KITTI

dataset. The intersection is calculated (the black area), and the two bounding boxes are correlated

using the Intersection Over Union (IOU) as shown in equation (5-10) [25], and assessed based on

a specific threshold.

Figure 45. Clustering evaluation on a selected KITTI frame a) raw camera image, b) raw LiDAR data, c)

generated clusters in a 2D domain, d) generated clusters in a 3D domain, e) ground truth and generated

2D initial bounding boxes and intersections [16]

88

𝐼𝑂𝑈(𝑏, 𝑏𝑔) =

𝑎𝑟𝑒𝑎 (𝑏 ∩ 𝑏𝑔)

𝑎𝑟𝑒𝑎 (𝑏 ∪ 𝑏𝑔)

(5-10)

where 𝑏 and 𝑏𝑔 are the generated bounding box and the ground truth bounding box, respectively.

It is worth noting that the IOU has been used since the dataset does not provide cluster

information explicitly. In fact, we utilize the bounding boxes to find points association; thus, IOU

can provide a good indicator of accuracy for the proposed clustering method.

Clustering qualitative and quantitative results

Using the same LiDAR sweep of Figure 27, clustering simulation was repeated using the

proposed method. As shown in Figure 46, all objects were successfully clustered without assigning

specific ε or minPts. The results also show that all potential objects were identified without

merging adjacent objects.

Figure 46. Qualitative clustering results of the proposed method, all objects have been appropriately

clustered, especially those that are very close to each other [16]

89

Applying the evaluation process depicted in Figure 44 to the entire evaluation portion of

KITTI dataset yields improvements when compared to DBSCAN. It is worth mentioning that for

DBSCAN, extensive simulation experiments have been done to estimate the best tuning

parameters. The results presented in the second column of Table 5 are the values that delivered the

best performance.

In Table 8, the proposed algorithm achieved relatively similar performance to the original

DBSCAN with the brute-forced parameters. The proposed equations consider LiDAR specs; thus,

the proposed algorithm can be used in applications with different LiDAR specs.

Table 8. Quantitative results of the proposed clustering method compared to the original DBSCAN

Performance Indicator DBSCAN

(ε = 1, minPts =10)

ADEVLA-DBSCAN

Total Ground truth samples 14385 14385

Total Number of correctly

detected samples

12170 12114

Total number of not

detected samples

2215 2271

Accuracy 84.6% 84.2%

In summary, the experimental results using the KITTI object detection dataset indicated the ability

of the automated DBSCAN parameter selection framework to achieve a similar accuracy level

compared to the manual selection approach. Reveling the framework's ability to cancel the need

to brute force search for the proper tuning parameter values.

90

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Self-driving cars are a promising technology not only it will reduce fatalities of humans

and wild life, curb or end emissions and fuel consumption, but also it will revolutionize public

transportation by increasing traffic efficiency and better travel experiences specifically for the

physically and visually impaired. However, without artificial intelligence and machine learning

advancements and stringent testing, AV will not be as planned and by 2030. Hence, developing

high-quality, accurate, and real-time algorithms is of utmost importance. This dissertation focuses

on the perception module of self-driving vehicles, wherein two key challenges have been

addressed: depth completion and LiDAR point cloud clustering. Both are critical to self-driving

cars' enablement as they are the primary source of 3D information, which is an essential for many

perception tasks like 3D object detection, 3D instance segmentation, localization, simultaneous

localization and mapping, and 3D object tracking.

For depth completion, a guided depth completion with a multi-level sensor fusion

framework has been proposed. The framework utilizes and fuses the image instance segmentation

features, such as object type and objects pixel-level locations, alongside the sparse depth

measurement and the color image information to guide the depth completion process. For efficient

training, a data structure and encoding scheme are developed to combine the objects' location-

masks and object types into a 2D 1-channel array. Experimental results on the KITTI dataset

indicated the ability of the proposed framework to generate accurate depth information and exceed

the baseline performance. In addition, in earlier training epochs, the proposed framework starts

with smaller errors than the baseline work, which eventually allows the model to reach a faster

91

convergence state. We demonstrated that instance segmentation clues are very valuable in guiding

the depth completion process successfully.

For LiDAR point cloud clustering, a framework that is based on the DBSCAN algorithm

to cluster LiDAR point cloud is proposed, wherein DBSCAN tuning parameters are adaptively

and automatically estimated. The framework uses a felid of view division scheme and points cloud

statistics to calculate tuning parameters for each frame. Experimental results using the KITTI

dataset revealed the framework's ability to achieve relative accuracy to DBSCAN while

eliminating the need for brute force search for the best tuning parameters to make the clustering

algorithm more robust in SDCs environment.

Aiming to avoid the perceptual limitations of single sensor modality and to generate 3D

far-reaching global scene understanding and high redundancy, this dissertation presents a sensor

fusion framework that combines information from different sensor modalities and preprocessing

techniques. In this dissertation, a thorough investigation of the advantages of fusing image instance

segmentation features for a better depth completion pipeline is presented. Many other promising

directions can be explored in the future. For example, panoptic segmentation can be used instead

of instance segmentation since it provides richer information. However, it has a higher

computation complexity and hence careful computing optimization is a must. Other works can use

this dissertation’s framework to include various feature fusion strategies maximizing benefits from

the many AV deployed sensors to propel perception and scene understanding.

92

 BIBLIOGRAPHY

[1] J. Kocic, N. Jovicic, and V. Drndarevic, “Sensors and Sensor Fusion in Autonomous

Vehicles,” 2018 26th Telecommun. Forum, TELFOR 2018 - Proc., no. February, 2018, doi:

10.1109/TELFOR.2018.8612054.

[2] C. Badue et al., “Self-driving cars: A survey,” Expert Syst. Appl., vol. 165, no. July 2020,

p. 113816, 2021, doi: 10.1016/j.eswa.2020.113816.

[3] M. Hirz and B. Walzel, “Sensor and object recognition technologies for self-driving cars,”

Comput. Aided. Des. Appl., vol. 15, no. 4, pp. 501–508, 2018, doi:

10.1080/16864360.2017.1419638.

[4] R. Yee, E. Chan, B. Cheng, and G. Bansal, “Collaborative Perception for Automated

Vehicles Leveraging Vehicle-to-Vehicle Communications,” IEEE Intell. Veh. Symp. Proc.,

vol. 2018-June, no. Iv, pp. 1099–1106, 2018, doi: 10.1109/IVS.2018.8500388.

[5] SAE, “Shuttleworth, J. SAE Standard News: J3016 Automated-Driving Graphic Update.

2019,” 2019. https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-

graphic (accessed Nov. 03, 2022).

[6] J. S. Choksey and C. Wardlaw, “Levels of Autonomous Driving, Explained,” jdpower,

2021. https://www.jdpower.com/cars/shopping-guides/levels-of-autonomous-driving-

explained (accessed Nov. 03, 2022).

[7] N. Goberville et al., “Analysis of LiDAR and Camera Data in Real-World Weather

Conditions for Autonomous Vehicle Operations,” SAE Tech. Pap., vol. 2020-April, no.

April, pp. 1–7, 2020, doi: 10.4271/2020-01-0093.

[8] E. Khatab, A. Onsy, M. Varley, and A. Abouelfarag, “Vulnerable objects detection for

autonomous driving: A review,” Integration, vol. 78, no. March 2020, pp. 36–48, 2021, doi:

10.1016/j.vlsi.2021.01.002.

[9] and E. K. Alexandros Gazis, Evangelos Ioannou, “Examining the sensors that enable self-

driving vehicles,” IEEE Potentials 39, no. 1, pp. 46–51, 2019.

[10] R. Horaud, M. Hansard, G. Evangelidis, and C. Ménier, “An overview of depth cameras

93

and range scanners based on time-of-flight technologies,” Mach. Vis. Appl., vol. 27, no. 7,

pp. 1005–1020, 2016, doi: 10.1007/s00138-016-0784-4.

[11] R. Fan, J. Jiao, H. Ye, Y. Yu, I. Pitas, and M. Liu, “Key Ingredients of Self-Driving Cars,”

2019, [Online]. Available: http://arxiv.org/abs/1906.02939.

[12] Y. Xu, X. Zhu, J. Shi, G. Zhang, H. Bao, and H. Li, “Depth completion from sparse LiDAR

data with depth-normal constraints,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2019-Octob,

pp. 2811–2820, 2019, doi: 10.1109/ICCV.2019.00290.

[13] X. Ma, Z. Geng, and Z. Bie, “Depth Estimation from Single Image Using CNN-Residual

Network,”2017, [Online]. Available: http://cs231n.stanford.edu/reports/2017/pdfs/203.pdf.

[14] N. National Center for Statistics and Analysis and H. T. S. Administration, “Early Estimates

of Motor Vehicle Traffic Fatalities And Fatality Rate by Sub-Categories in 2021,” no. May,

2022.

[15] J. Zhao, B. Liang, and Q. Chen, “The key technology toward the self-driving car,” Int. J.

Intell. Unmanned Syst., vol. 6, no. 1, pp. 2–20, 2018, doi: 10.1108/IJIUS-08-2017-0008.

[16] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI dataset.

The International Journal of Robotics Research,” Int. J. Rob. Res., no. October, pp. 1–6,

2013.

[17] Y. Choi et al., “KAIST Multi-Spectral Day/Night Data Set for Autonomous and Assisted

Driving,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 3, pp. 934–948, 2018, doi:

10.1109/TITS.2018.2791533.

[18] D. J. Yeong, G. Velasco-hernandez, J. Barry, and J. Walsh, “Sensor and sensor fusion

technology in autonomous vehicles: A review,” Sensors, vol. 21, no. 6, pp. 1–37, 2021, doi:

10.3390/s21062140.

[19] M. Beer, J. F. Haase, J. Ruskowski, and R. Kokozinski, “Background light rejection in

SPAD-based LiDAR sensors by adaptive photon coincidence detection,” Sensors

(Switzerland), vol. 18, no. 12, 2018, doi: 10.3390/s18124338.

[20] Mapix, “velodyne-hdl64.” https://www.mapix.com/lidar-scanner

sensors/velodyne/velodyne-hdl64/.

94

[21] H. H. Meinel and W. Bösch, “Radar Sensors in Cars,” in Automated Driving: Safer and

More Efficient Future Driving, D. Watzenig and M. Horn, Eds. Cham: Springer

International Publishing, 2017, pp. 245–261.

[22] F. Nobis, M. Geisslinger, M. Weber, J. Betz, and M. Lienkamp, “A Deep Learning-based

Radar and Camera Sensor Fusion Architecture for Object Detection,” 2019 Symp. Sens.

Data Fusion Trends, Solut. Appl. SDF 2019, 2019, doi: 10.1109/SDF.2019.8916629.

[23] C. Badue et al., “Self-driving cars: A survey,” Expert Syst. Appl., vol. 165, no. August 2020,

p. 113816, 2021, doi: 10.1016/j.eswa.2020.113816.

[24] A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja, “Deep learning for object detection

and scene perception in self-driving cars : Survey , challenges , and open issues,” Array,

vol. 10, no. February, p. 100057, 2021, doi: 10.1016/j.array.2021.100057.

[25] L. Liu et al., “Deep Learning for Generic Object Detection: A Survey,” Int. J. Comput. Vis.,

vol. 128, no. 2, pp. 261–318, 2020, doi: 10.1007/s11263-019-01247-4.

[26] C. Premebida, L. Garrote, A. Asvadi, A. P. Ribeiro, and U. Nunes, “High-resolution

LIDAR-based Depth Mapping using Bilateral Filter,” pp. 2469–2474, 2016.

[27] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger, “Sparsity Invariant

CNNs,” Proc. - 2017 Int. Conf. 3D Vision, 3DV 2017, pp. 11–20, 2018, doi:

10.1109/3DV.2017.00012.

[28] M. Felsberg and M. Persson, “Uncertainty-Aware CNNs for Depth Completion :

Uncertainty from Beginning to End,” pp. 12014–12023, 2020.

[29] N. Chodosh, C. Wang, and S. Lucey, “arXiv : 1803 . 08949v1 [cs . CV] 23 Mar 2018 Deep

Convolutional Compressed Sensing for LiDAR Depth Completion,” Asian Conf. Comput.

Vis., no. 1, pp. 1–16, 2018.

[30] M. A. U. Khan et al., “A Comprehensive Survey of Depth Completion Approaches,”

Sensors, vol. 22, no. 18, pp. 1–18, 2022, doi: 10.3390/s22186969.

[31] F. Ma and S. Karaman, “Sparse-to-Dense : Depth Prediction from Sparse Depth Samples

and a Single Image,” pp. 4796–4803, 2018.

[32] F. Ma, G. V. Cavalheiro, and S. Karaman, “Self-Supervised Sparse-to-Dense : Self-

95

Supervised Depth Completion from LiDAR and Monocular Camera,” pp. 3288–3295, 2019.

[33] M. Hu, S. Wang, B. Li, S. Ning, L. Fan, and X. Gong, “PENet: Towards Precise and

Efficient Image Guided Depth Completion,” pp. 13656–13662, 2021, doi:

10.1109/icra48506.2021.9561035.

[34] J. Qiu et al., “DeepLiDAR : Deep Surface Normal Guided Depth Prediction for Outdoor

Scene from Sparse LiDAR Data and Single Color Image,” Proc. IEEE/CVF Conf. Comput.

Vis. Pattern Recognit., pp. 3313–3322, 2019.

[35] D. Neven and K. U. Leuven, “Sparse and noisy LiDAR completion with RGB guidance and

uncertainty,” Int. Conf. Mach. Vis. Appl., pp. 1–6, 2019.

[36] X. Xiong, H. Xiong, K. Xian, C. Zhao, Z. Cao, and X. Li, “Sparse-to-Dense Depth

Completion Revisited : Sampling Strategy and Graph Construction,” Comput. Vision–

ECCV 2020 16th Eur. Conf. Glas., pp. 1–18, 2018.

[37] Z. Zou, Z. Shi, Y. Guo, J. Ye, and S. Member, “Object Detection in 20 Years : A Survey,”

pp. 1–39, 2019.

[38] P. Viola and M. Jones, “Rapid Object Detection using a Boosted Cascade of Simple

Features,” 2001.

[39] N. Dalal, B. Triggs, and D. Europe, “Histograms of Oriented Gradients for Human

Detection,” 2005.

[40] P. Felzenszwalb, D. Mcallester, and D. Ramanan, “A Discriminatively Trained , Multiscale

, Deformable Part Model,” 2008.

[41] R. Girshick, J. Donahue, T. Darrell, J. Malik, U. C. Berkeley, and J. Malik, “Rich feature

hierarchies for accurate object detection and semantic segmentation,” Proc. IEEE Comput.

Soc. Conf. Comput. Vis. Pattern Recognit., vol. 1, p. 5000, 2014, doi:

10.1109/CVPR.2014.81.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional

networks for visual recognition,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 8691 LNCS, no. PART 3, pp. 346–361, 2014,

doi: 10.1007/978-3-319-10578-9_23.

96

[43] R. Girshick, “Fast R-CNN,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2015 Inter, pp. 1440–

1448, 2015, doi: 10.1109/ICCV.2015.169.

[44] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

39, no. 6, pp. 1137–1149, 2017, doi: 10.1109/TPAMI.2016.2577031.

[45] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid

networks for object detection,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition,

CVPR 2017, vol. 2017-Janua, pp. 936–944, 2017, doi: 10.1109/CVPR.2017.106.

[46] W. Liu et al., “SSD: Single shot multibox detector,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9905 LNCS, pp. 21–37,

2016, doi: 10.1007/978-3-319-46448-0_2.

[47] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object

detection,” arXiv, pp. 2980–2988, 2017.

[48] R. Padilla, S. L. Netto, and E. A. B. Da Silva, “A Survey on Performance Metrics for Object-

Detection Algorithms,” Int. Conf. Syst. Signals, Image Process., vol. 2020-July, no. July,

pp. 237–242, 2020, doi: 10.1109/IWSSIP48289.2020.9145130.

[49] A. Mueed Hafiz and G. Mohiuddin Bhat, “A Survey on Instance Segmentation,” Int. J.

Multimed. Inf. Retr., vol. 9, pp. 171–189, 2020.

[50] Y. Furletov, V. Willert, and J. Adamy, “Auditory scene understanding for autonomous

driving,” IEEE Intell. Veh. Symp. Proc., vol. 2021-July, pp. 697–702, 2021, doi:

10.1109/IV48863.2021.9575964.

[51] W. Gu, S. Bai, and L. Kong, “A review on 2D instance segmentation based on deep neural

networks,” Image Vis. Comput., vol. 120, p. 104401, 2022, doi:

10.1016/j.imavis.2022.104401.

[52] H. Abu Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, and C. Rother, “Augmented

Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes,” Int.

J. Comput. Vis., vol. 126, no. 9, pp. 961–972, 2018, doi: 10.1007/s11263-018-1070-x.

[53] M. F. Chang et al., “Argoverse: 3D tracking and forecasting with rich maps,” Proc. IEEE

97

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 8740–8749, 2019,

doi: 10.1109/CVPR.2019.00895.

[54] F. Yu et al., “BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask

Learning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 2633–2642,

2020, doi: 10.1109/CVPR42600.2020.00271.

[55] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation and recognition using

structure from motion point clouds,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5302 LNCS, no. PART 1, pp. 44–57,

2008, doi: 10.1007/978-3-540-88682-2_5.

[56] M. Cordts et al., “The Cityscapes Dataset for Semantic Urban Scene Understanding,” Proc.

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 3213–

3223, 2016, doi: 10.1109/CVPR.2016.350.

[57] Elektra, “Elektra Datasets,” 2016. http://adas.cvc.uab.es/.

[58] A. Rasouli, I. Kotseruba, and J. K. Tsotsos, “Are They Going to Cross? A Benchmark

Dataset and Baseline for Pedestrian Crosswalk Behavior,” Proc. - 2017 IEEE Int. Conf.

Comput. Vis. Work. ICCVW 2017, vol. 2018-Janua, pp. 206–213, 2017, doi:

10.1109/ICCVW.2017.33.

[59] H. Caesar et al., “Nuscenes: A multimodal dataset for autonomous driving,” Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., no. March, pp. 11618–11628, 2020,

doi: 10.1109/CVPR42600.2020.01164.

[60] Udacity, “Udacity Dataset,” 2016, [Online]. Available: https://github.com/udacity/self-

driving-car.

[61] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A benchmark,” 2009

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work. CVPR Work. 2009, vol.

2009 IEEE, pp. 304–311, 2009, doi: 10.1109/CVPRW.2009.5206631.

[62] L. Neumann et al., “NightOwls: A Pedestrians at Night Dataset,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11361 LNCS,

pp. 691–705, 2019, doi: 10.1007/978-3-030-20887-5_43.

98

[63] C. Wojek, S. Walk, and B. Schiele, “Multi-Cue onboard pedestrian detection,” 2009 IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work. CVPR Work. 2009, vol. 2009

IEEE, pp. 794–801, 2009, doi: 10.1109/CVPRW.2009.5206638.

[64] D. Xu and Y. Tian, “A Comprehensive Survey of Clustering Algorithms,” Ann. Data Sci.,

vol. 2, no. 2, pp. 165–193, 2015, doi: 10.1007/s40745-015-0040-1.

[65] W. K. Loh and Y. H. Park, “A survey on density-based clustering algorithms,” Lect. Notes

Electr. Eng., vol. 280 LNEE, pp. 775–780, 2014, doi: 10.1007/978-3-642-41671-2_98.

[66] M. Rapp, M. Barjenbruch, M. Hahn, J. Dickmann, and K. Dietmayer, “Probabilistic ego-

motion estimation using multiple automotive radar sensors,” Rob. Auton. Syst., vol. 89, pp.

136–146, 2017, doi: 10.1016/j.robot.2016.11.009.

[67] X. Ester, M., Kriegel, H. P., Sander, J., & Xu, “A density-based algorithm for discovering

clusters in large spatial databases with noise,” Kdd, vol. 96, no. 34, pp. 226–231, 1996.

[68] X. Cheng, P. Wang, C. Guan, and R. Yang, “CSPN++: Learning context and resource aware

convolutional spatial propagation networks for depth completion,” AAAI 2020 - 34th AAAI

Conf. Artif. Intell., pp. 10615–10622, 2020, doi: 10.1609/aaai.v34i07.6635.

[69] M. F. F. Khan, N. D. Troncoso Aldas, A. Kumar, S. Advani, and V. Narayanan, Sparse to

Dense Depth Completion using a Generative Adversarial Network with Intelligent Sampling

Strategies, vol. 1, no. 1. Association for Computing Machinery, 2021.

[70] C. Zhang, Y. Tang, C. Zhao, Q. Sun, Z. Ye, and J. Kurths, “Multitask GANs for Semantic

Segmentation and Depth Completion with Cycle Consistency,” IEEE Trans. Neural

Networks Learn. Syst., vol. 32, no. 12, pp. 5404–5415, 2021, doi:

10.1109/TNNLS.2021.3072883.

[71] Y. Tsuji, H. Chishiro, and S. Kato, “Non-Guided Depth Completion with Adversarial

Networks,” IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC, vol. 2018-Novem, pp.

1109–1114, 2018, doi: 10.1109/ITSC.2018.8569389.

[72] J. Ku, A. Harakeh, and S. L. Waslander, “In defense of classical image processing: Fast

depth completion on the CPU,” Proc. - 2018 15th Conf. Comput. Robot Vision, CRV 2018,

pp. 16–22, 2018, doi: 10.1109/CRV.2018.00013.

99

[73] M. Hornacek, C. Rhemann, M. Gelautz, and C. Rother, “Depth super resolution by rigid

body self-similarity in 3D,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

pp. 1123–1130, 2013, doi: 10.1109/CVPR.2013.149.

[74] H. A. Wafa, R. Aminuddin, S. Ibrahim, N. N. A. Mangshor, and N. I. F. A. Wahab, “A Data

Visualization Framework during Pandemic using the Density-Based Spatial Clustering with

Noise (DBSCAN) Machine Learning Model,” 2021 IEEE 11th Int. Conf. Syst. Eng.

Technol. ICSET 2021 - Proc., no. November, pp. 1–6, 2021, doi:

10.1109/ICSET53708.2021.9612563.

[75] Z. Guo, H. Liu, L. Pang, L. Fang, and W. Dou, “DBSCAN-based point cloud extraction for

Tomographic synthetic aperture radar (TomoSAR) three-dimensional (3D) building

reconstruction,” Int. J. Remote Sens., vol. 42, no. 6, pp. 2327–2349, 2021, doi:

10.1080/01431161.2020.1851062.

[76] D. Sheng, J. Deng, and J. Xiang, “Automatic Smoke Detection Based on SLIC-DBSCAN

Enhanced Convolutional Neural Network,” IEEE Access, vol. 9, pp. 63933–63942, 2021,

doi: 10.1109/ACCESS.2021.3075731.

[77] X. He, Y. Jiang, B. Wang, H. Ji, and Z. Huang, “An Image Reconstruction Method of

Capacitively Coupled Electrical Impedance Tomography (CCEIT) Based on DBSCAN and

Image Fusion,” IEEE Trans. Instrum. Meas., vol. 70, 2021, doi:

10.1109/TIM.2021.3056739.

[78] M. J. Sumnall et al., “Effect of varied unmanned aerial vehicle laser scanning pulse density

on accurately quantifying forest structure,” Int. J. Remote Sens., vol. 43, no. 2, pp. 721–750,

2022, doi: 10.1080/01431161.2021.2023229.

[79] H. Li, X. Liu, T. Li, and R. Gan, “A novel density-based clustering algorithm using nearest

neighbor graph,” Pattern Recognit., vol. 102, 2020, doi: 10.1016/j.patcog.2020.107206.

[80] J. H. Kim, J. H. Choi, K. H. Yoo, and A. Nasridinov, “AA-DBSCAN: an approximate

adaptive DBSCAN for finding clusters with varying densities,” J. Supercomput., vol. 75,

no. 1, pp. 142–169, 2019, doi: 10.1007/s11227-018-2380-z.

[81] M. M. R. Khan, M. A. B. Siddique, R. B. Arif, and M. R. Oishe, “ADBSCAN: Adaptive

100

density-based spatial clustering of applications with noise for identifying clusters with

varying densities,” 4th Int. Conf. Electr. Eng. Inf. Commun. Technol. iCEEiCT 2018, pp.

107–111, 2019, doi: 10.1109/CEEICT.2018.8628138.

[82] K. Sawant, “Adaptive Methods for Determining DBSCAN Parameters,” IJISET -

International J. Innov. Sci. Eng. Technol., vol. 1, no. 4, pp. 329–334, 2014, [Online].

Available: www.ijiset.com.

[83] C. Wang, M. Ji, J. Wang, W. Wen, T. Li, and Y. Sun, “An improved DBSCAN method for

LiDAR data segmentation with automatic Eps estimation,” Sensors (Switzerland), vol. 19,

no. 1, 2019, doi: 10.3390/s19010172.

[84] M. Cao and J. Wang, “Obstacle Detection for Autonomous Driving Vehicles With Multi-

LiDAR Sensor Fusion,” J. Dyn. Syst. Meas. Control, vol. 142, no. 2, 2020, doi:

10.1115/1.4045361.

[85] J. Zhao, H. Xu, H. Liu, J. Wu, Y. Zheng, and D. Wu, “Detection and tracking of pedestrians

and vehicles using roadside LiDAR sensors,” Transp. Res. Part C Emerg. Technol., vol.

100, no. January, pp. 68–87, 2019, doi: 10.1016/j.trc.2019.01.007.

[86] M. Elhousni and X. Huang, “A Survey on 3D LiDAR Localization for Autonomous

Vehicles,” IEEE Intell. Veh. Symp. Proc., no. Iv, pp. 1879–1884, 2020, doi:

10.1109/IV47402.2020.9304812.

[87] A. Atapour-Abarghouei and T. P. Breckon, “A comparative review of plausible hole filling

strategies in the context of scene depth image completion,” Comput. Graph., vol. 72, pp.

39–58, 2018, doi: 10.1016/j.cag.2018.02.001.

[88] T. M. Nguyen and M. Yoo, “Wasserstein Generative Adversarial Network for Depth

Completion with Anisotropic Diffusion Depth Enhancement,” IEEE Access, vol. 10, pp. 1–

1, 2022, doi: 10.1109/access.2022.3142916.

[89] J. Lambert, E. Takeuchi, and K. Takeda, “Optimizing learned object detection on point

clouds from 3D lidars through range and sparsity information,” 2019 Asia-Pacific Signal

Inf. Process. Assoc. Annu. Summit Conf. APSIPA ASC 2019, no. November, pp. 407–413,

2019, doi: 10.1109/APSIPAASC47483.2019.9023145.

101

[90] G. T. U. A. Colleges et al., “Microsoft COCO,” Eccv, no. June, pp. 740–755, 2014.

[91] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” Adv. Neural Inf. Process. Syst., vol. 25, 2012.

[92] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv Prepr. arXiv, 2014.

[93] C. Szegedy et al., “Going deeper with convolutions,” 2015.

[94] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[95] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 42, no. 2, pp. 386–397, 2020, doi: 10.1109/TPAMI.2018.2844175.

[96] F. Zhuang et al., “A Comprehensive Survey on Transfer Learning,” Proc. IEEE, vol. 109,

no. 1, pp. 43–76, 2021, doi: 10.1109/JPROC.2020.3004555.

[97] M. P. Hosseini, S. Lu, K. Kamaraj, A. Slowikowski, and H. C. Venkatesh, Deep Learning

Architectures, vol. 866. 2020.

[98] A. Asvadi, C. Premebida, P. Peixoto, and U. Nunes, “3D Lidar-based static and moving

obstacle detection in driving environments: An approach based on voxels and multi-region

ground planes,” Rob. Auton. Syst., vol. 83, pp. 299–311, 2016, doi:

10.1016/j.robot.2016.06.007.

[99] C. Jiang et al., “A practical method for employing multi-spectral LiDAR intensities in

points cloud classification,” Int. J. Remote Sens., vol. 41, no. 21, pp. 8366–8379, 2020, doi:

10.1080/01431161.2020.1775323.

[100] M. El Yabroudi, K. Awedat, R. C. Chabaan, O. Abudayyeh, and I. Abdel-Qader, “Adaptive

DBSCAN LiDAR Point Cloud Clustering For Autonomous Driving Applications,” IEEE

Int. Conf. Electro Inf. Technol., vol. 2022-May, pp. 221–224, 2022, doi:

10.1109/eIT53891.2022.9814025.

[101] B. Xiang, J. Yao, X. Lu, L. Li, R. Xie, and J. Li, “Segmentation-based classification for 3D

point clouds in the road environment,” Int. J. Remote Sens., vol. 39, no. 19, pp. 6182–6212,

2018, doi: 10.1080/01431161.2018.1455235.

102

[102] S. Shi, X. Wang, and H. Li, “PointRCNN: 3D object proposal generation and detection from

point cloud,” arXiv, pp. 770–779, 2018.

[103] X. Chang, H. Li, J. Rong, X. Chen, and Y. Wang, “Determining the appropriate lane width

at urban signalised intersections - A case study in Beijing,” IET Intell. Transp. Syst., vol.

13, no. 12, pp. 1785–1791, 2019, doi: 10.1049/iet-its.2018.5401.

[104] D. Hawley, “Dimensions and Weights of Common SUVs,” 2021.

https://www.jdpower.com/cars/shopping-guides/dimensions-and-weights-of-common-

suvs.

[105] M. Menze, C. Heipke, and A. Geiger, “Joint 3D estimation of vehicles and scene flow,”

ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. 2, no. 3W5, pp. 427–434, 2015,

doi: 10.5194/isprsannals-II-3-W5-427-2015.

	Instance Segmentation-based Depth Completion Using Sensor Fusion and Adaptive Clustering for Autonomous Vehicle Perception
	Recommended Citation

	ElYabroudi

