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INSTANCE SEGMENTATION-BASED DEPTH COMPLETION 

USING SENSOR FUSION AND ADAPTIVE CLUSTERING 

 FOR AUTONOMOUS VEHICLE PERCEPTION 

 

 

Mohammad Z. El-Yabroudi, Ph.D. 

Western Michigan University, 2022 

Depth sensing is critical for safe and accurate maneuvering in robotics and self-driving car 

(SDC) applications. Most recent LiDAR sensors, such as Ouster and Velodyne, offer 360 degrees 

of scanning at the rate of ten frames per second, making them very appropriate for autonomous 

driving applications. However, LiDAR point cloud data  show many shortcomings, especially its 

data sparsity and unassigned nature, making it very challenging to utilize in applications such as 

perception, 3D object detection, 3D scene reconstruction, and simultaneous localization and 

mapping.  

In this study, a novel framework using instance image segmentation and the raw LiDAR 

data for the goal of depth completion is developed. The framework uses a custom-trained two-

stage instance segmentation architecture to focus on target objects (e.g., cars, pedestrians, and 

cyclists) and a fusion-based two-branch guided depth completion encoder-decoder deep neural 

network to generate accurate dense depth information. Results from the extensive experimental 

work using the KITTI depth completion dataset indicate that the proposed method achieves better 

performance than the baseline model. Moreover, to address the raw unassigned nature of LiDAR



   

 

 point cloud data, an adaptive estimation for the tuning parameters of the Density-Based Clustering 

of Application with Noise (DBSCAN) algorithm in SDC applications is proposed. This method 

utilizes a field-of-view division scheme and local insights about the LiDAR point cloud   data to 

automate the estimation of the tuning parameters: epsilon and min_points. Experimental 

simulations using the KITTI object detection dataset achieved excellent clustering performance 

while waiving the need to the brute force tuning of parameter values.  

Aiming to handle the challenges of the sparse and unassigned nature of LiDAR depth data, 

the key contributions of this dissertation include the development of a depth completion framework 

utilizing image instance segmentation features, the integration of object type within the depth 

completion deep neural networks, the development of an adaptive DBSCAN parameters-

estimation technique, and the implementation of the instance segmentation-based depth-

completion using sensor fusion framework. However, the overarching contribution is the 

introduction of a fundamental sensor fusion framework that fuses features and information from 

image instance segmentation and critical SDCs sensors such as LiDARs, RADARs, and cameras, 

and results in better perception and scene understanding. 
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CHAPTER 1 

INTRODUCTION 

Overview 

Self-Driving Cars (SDCs), also known as Autonomous Vehicles (AVs) or driverless cars, 

have been envisioned since the middle of the 1980s. However, they have recently reached the 

implementation and testing phase. This is due to the significant improvements in essential 

technologies such as sensors and real-time computing, which made accurate real-time decisions 

possible. The SDC architecture consists of four modules: navigation system, environmental 

perception, path planning, and car control. The environmental perception module is designed to 

process information collected by various sensors such as cameras, radio detection and ranging 

(Radar), light detection and ranging (LiDAR), Sonar, Global Positioning System (GPS), and 

Inertial Measurement Unit (IMU). The environmental perception module also receives 

information from other road cars or infrastructure devices. The entire bag of information is then 

forwarded to the planning module, which guides the control module to drive the vehicle safely and 

correctly. This architecture is depicted in Figure 1, which shows the leading technologies, modules, 

and their interactions [1]–[4]. To control the advances in SDCs, the Society of Automotive 

Engineering (SAE) published classification criteria to define the levels of autonomy in 

autonomous cars, primarily concerned with the level of human interaction in the driving process. 

Figure 2 depicts the six SAE levels, which range from 0 as the basic car system wherein a human 

driver is essential, and five, where no human driver is needed in all circumstances [5]. The United 

States is still at level 2 of the SAE classification system; the vehicle provides one or more 
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automated systems while the motorist does the rest [6]. The slow development from one level to 

the next is due to many factors, such as regulations, testing, and technology. From a technological 

perspective, the performance of many critical systems within the SDCs is still not elevated to the 

completeness and perfection needed by higher levels of autonomous driving, such as levels 3, 4 

and 5, or it requires huge computing resources that are not yet technically feasible, cost-effective 

or commercially available. For example, the depth completion process within the perception 

module of many recently published works still performs poorly in scenarios such as when objects 

are small, far, occluded, when severe weather conditions exist, or where they require high-

performance computing resources and large datasets as well as extended training time[7] [8].  

Sensors play a vital role in SDCs, and they vary in their technology, the range they span, 

and their immunity to external effects like lighting and weather conditions. LiDAR uses laser beam 

technology to measure the distance from objects. LiDAR provides three-dimensional (3D) 

information, essential to many SDCs tasks such as 3D object detection, collision prediction, and 

obstacle avoidance. LiDAR is very good in night scenarios as well as in inclement weather 

conditions. RADAR uses radio waves technology; standard systems are either 77 GHz or 24 GHz. 

Depending on the frequency, RADAR can be distinguished as short, medium, or long-range radar 

[9], [10]. Ultrasonic sensors use sound waves technology to emit high-frequency signals that 

measure the distance from objects after reflection. Ultrasonic sensors have a limited coverage area, 

usually a few meters; thus, their applications are limited to low-speed applications like automatic 

parking assistance systems. The camera’s technologies are based on light reflection from the 

environment; images from the camera vary in quality based on different external conditions like 

weather and illumination. GPS systems utilize satellites for the instantaneous measurements of 

position and time, which are often used for navigation or geolocation. An inertial measurement 
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unit (IMU) is a combination of two technology: Micro Electro Mechanical Systems (MEMS) and 

Gyroscopes, and it provides information like acceleration forces and angular rates [3], [11].  

 

 

Figure 1. Self-driving car architecture shows the perception module and its interaction with other 

modules and information sources[1], [4] 

 

Each sensor has its strength and weakness for application in SDCs.  For instance, Camera 

sensors are affordable and very efficient in classification tasks, but they require high computational 

power, and their performance degrades in severe weather conditions. On the other hand, LiDAR 

is an expensive sensor that provides information in 3D format. RADAR is handy in bad weather 

conditions but has less angular accuracy and provides less information than cameras and LiDAR. 

These differences in performance capabilities between different sensors encouraged researchers to 

utilize the complementary properties of each sensor by combining them in a process usually called 

sensor fusion or data fusion. Data/sensor fusion benefits multiple tasks like object detection, 
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occupancy grid mapping, and object tracking [2]. More information will be provided in the 

background section.  

The perception module is responsible for critical tasks like object detection and 

classification, semantic segmentation, and localization. The perception module uses single or 

multiple sensors to acquire the surrounding environment information and then apply different 

detection and classification algorithms to process the data and generate detections and 

classifications. Recently, 3D information has become a significant clue for applications like 

robotics, self-driving cars, 3D modeling, and augmented reality. Depth information can be 

captured by two general methods: active and passive. In passive methods, two cameras are used to 

generate depth information by utilizing parallax, intrinsic and extrinsic camera specs, and stereo-

matching techniques. In active methods, structured light, shape from shading, shape from texture, 

and time of flight methods are used to estimate the depth of a given scene. LiDAR is a commonly 

used sensor within the active depth generation methods which rely on the time of flight to measure 

the depth of objects within a scene [10], [12]. Unfortunately, even with high-quality LiDARs, the 

produced depth maps are extraordinarily sparse and noisy. Therefore, a depth completion process 

is usually conducted to recover denser maps from sparse, noisy ones. To that end, a wide range of 

techniques have been proposed, which can be categorized by the modalities they use or the 

technology they exploit. In the first category, single or multiple sensors are used, where the former 

is usually referred to as non-guided depth completion, and the latter is guided depth completion. 

In the second category, pure image processing or artificial neural network are typically utilized. 

Recent solutions are based on deep convolutional networks [13]. 
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Motivation  

Self-driving cars have been designed to reduce road fatalities and fuel consumption by 

eliminating human errors. Although industrial progress of automation is at level 3, commercially 

available vehicles in the USA are still at level 2 of automation. Moving forward toward higher 

levels requires improvements in different technological aspects. Accurate and rich 3D information 

plays a critical role in advancing SDCs. The current state-of-the-art techniques that enhance 3D 

knowledge are promising and produce good results. However, the training requirement is very 

resource-intensive and time-consuming, and the performance on object edges or distant objects 

still suffers from high errors. Most current work focuses on the entire scene and does not treat 

objects of interest individually or separately. Additionally, applications such as robotics and self-

driving cars require both fast training mechanisms and fast inference because in some scenarios, 

training could be needed in real-time while the SDCs or robots are on site. Moreover, using a vast 

number of resources and requiring long training time could limit other researchers’ ability to study 

and improve the current state of the art. 

This dissertation focuses on the perception module of SDCs, specifically on the sparse LiDAR 

point cloud depth completion and clustering, which are essential in many perception tasks, such as 

3D object detection and classification. The dissertation has two main parts: in the first part, a sensor 

fusion and instance segmentation-based object depth completion framework is introduced, and in 

the second part, the LiDAR point cloud is clustered using DBSCAN with an adaptive and 

automatic parameters selection. 
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Problem Statement, Challenges, and Goals 

This research aims to investigate a novel guided depth completion methodology and 

LiDAR point cloud clustering using density-based spatial clustering of applications with noise 

(DBSCAN) with automatic tuning parameters selection in a self-driving context. 

Depth completion is a widely investigated technique in vast research areas like machine 

vision and image processing. It deals with methods that generate dense depth maps from sparse 

measurements. Although strategies that tackle this problem are vast, they generally fall into two 

main categories: guided and non-guided. In guided depth completion methods, a high-resolution 

color image is usually fused into the system to provide complementary information to the primary 

sensor (LiDAR). In contrast, in the non-guided depth completion methods, only LiDAR data is 

used to generate a dense depth map. Most of the current state of art is Deep Neural Network (DNN) 

based solutions. Still, they focus on the entire LiDAR point cloud without concentrating on the 

objects of interest like cars, pedestrians, or cyclists. As a result, DNN training usually requires a 

large amount of data and computing resources. As an alternative, this work will utilize image 

instance segmentation which provides exciting information like pixel-level object boundaries and 

object class, among others. This information can significantly help depth completion to focus on 

the objects of interest and thus provide higher accuracy.  

The dense depth map is then consumed by different applications like 3D object detection 

and 3D object classification, which commonly apply point cloud clustering; deep neural networks 

and custom clustering algorithms are usually used. DBSCAN is a viral density-based clustering 

algorithm used in many applications. None of the previous works tackle the scenario when the 

LiDAR is installed on a moving car, like in SDCs or mobile robotics applications. In these 



   

 

7 

 

applications, the relation between the LiDAR points and the SDC. e.g., Euclidean distance or the 

LiDAR points interrelation can be considered. Furthermore, no previous works evaluated 

DBSCAN improvements on available SDCs datasets like the KITTI dataset. Therefore, this 

dissertation proposes an adaptive and automatic estimation for DBSCAN parameters in SDCs 

applications and evaluates the proposed work on the SDCs KITTI dataset. 

The following challenges have been observed regarding the depth completion frameworks: 

• Requires a lot of computing resources, especially for training.  

• Applies algorithm on the entire sparse depth without focusing on objects of interest. 

• Need hundreds of thousands of annotated training data files. 

• Even with good computing resources, the training time is long. 

 

The following challenges have been observed regarding LiDAR point cloud clustering: 

• Manual selection for clustering parameters is not practical in dynamic environments like 

SDCs. 

• Most current clustering works are based on deep learning techniques that require a long 

training time and an extensive dataset. 

• Clustering objects that are very close to each other is still an issue. 

 

This dissertation aims to introduce a new depth completion framework that focuses on the 

objects of interest by utilizing image instance segmentation and multi-level sensor fusion. 

Moreover, this dissertation provides an automated technique to estimate tuning parameters of the 

DBSCAN algorithm for LiDAR point cloud clustering in SDCs applications.  

The goals for this work are:  
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Goal 1: Implement and evaluate a depth completion framework that utilizes image instance 

segmentation and sensor fusion to generate dense depth information for the objects of interest. 

Goal 2: Develop a framework based on the DBSCAN algorithm to cluster LiDAR point clouds, 

focusing on automating the estimate of DBSCAN tuning parameters. 

The goals of this work have been achieved through the following contributions: 

Depth completion work: 

i. Customized an instance segmentation framework to generate accurate object masks and 

object classes.  

ii. Implemented a data structure and encoding scheme to combine instance segmentation 

features into a single 2D one-channel array.  

iii. Fused information from different sensor modalities alongside instance segmentation 

features. 

iv. Customized a depth completion framework that accepts interesting features like 

instance segmentation masks and object classes and generates dense depth 

measurements.  

v. A comprehensive evaluation of the implemented framework the KITTI depth dataset. 

LiDAR Point cloud clustering work: 

i. Implemented a SDC field-of-view division scheme. 

ii. Clustered LiDAR point cloud using DBSCAN but with automatic parameter selection, 

and for this purpose:  

iii. Proposed equations that can estimate the DBSCAN tuning parameters automatically 

and dynamically. 

iv. Evaluated the proposed work on the KITTI object detection dataset 

 

.  



   

 

9 

 

Organization 

The dissertation is organized as follows. 

 In Chapter 1, a general introduction to the topic of Self Driving Cars with emphasis on the 

perception module is provided. Chapter 2 presents a comprehensive background survey for the 

perception module alongside typical SDCs sensors. In chapter 3, the very related work is presented 

and discussed. The Proposed methods are presented in chapter 4, while chapter 5 provides the 

experimental results. Chapter 6 provides conclusions and future works. 
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CHAPTER 2 

BACKGROUND 

In 2021, in the United States of America, 42915 people died from car accidents, about 117 

people per day [14]. Reducing car accidents on the roads and boosting driving efficiency are among 

the most critical objectives for advancing autonomous driving technology. Self-driving cars have 

been in the vision of many academia and industrial sectors since the 1980s, well-known examples 

from the 1990s are the Navlabs mobile platform, University of Pavia’s and University of Parma’s 

car “ARGO”, and UBM’s two vehicles: “VaMoRs” and “VaMP”.  Many challenges have been 

launched to advance autonomous vehicle technology, like those organized by the Defense 

Advanced Research Projects Agency (DARPA): DARPA Grand Challenge and DARPA Urban 

Challenge. Since then, many other competitions have also occurred [2]. SDCs have the same 

transportation capabilities as traditional vehicles but can also perceive their surroundings and self-

navigating with little or no human interaction.  

The J3016 "Levels of Driving Automation" standard was introduced in 2014 by SAE 

International, formerly known as the Society of Automotive Engineers (SAE), and it is 

continuously updated. The J3016 standard specifies six levels of driving automation, ranging from 

SAE level 0 (complete driver control of the vehicle) to SAE level 5 (full control of all aspects of 

dynamic driving activities without human intervention). Figure 2 depicts a high-level overview of 

these levels, frequently quoted and referenced by industry in the safe design, development, testing, 

and deployment of highly automated vehicles (HAVs). 
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Figure 2. Automation levels published by the Society of Automotive Engineers J3016 standard [5] 

 

This background section focuses on the perception module and provides an overview of 

the most common sensors available for autonomous vehicles. Also, it gives a brief overview of the 

main perception tasks like object detection and classification, depth completion, and instance 

segmentation. This section also provides an overview of the DBSCAN algorithm.  

Sensors in Self-Driving Cars 

Sensors are electronic-mechanical devices usually attached to autonomous cars to detect 

events or changes in the surrounding environment and report these detections to subsequent 

processing units for proper safe driving. Sensors can be classified in different ways; from an 

operational perspective, sensors fall into two categories: internal and external state sensors [9], 

[15]. Examples of internal state sensors are IMU, encoders, and positional sensors; this category 

measures internal dynamic values like 3D acceleration, angular rate, wheel speed, and load. 

Examples of external state sensors are Cameras, RADARs, and LiDARs. These sensors measure 

external information like specific distances and color image information about the surrounding 
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environment [8]. The following subsections will provide comprehensive information about 

popular sensors usually installed in SDCs.  

Camera 

Camera technologies are widely adopted to perceive the surrounding environment. 

Cameras detect light reflected off or emitted from the surrounding objects through a lens and 

project it onto a photosensitive surface. From a cost perspective, cameras are inexpensive, and they 

can detect moving and static objects; however, for moving objects, extra software and processing 

are needed to correlate multiple images (frames). Cameras are suitable for applications that need 

to identify road signs, traffic lights, and road lane markings, all color/intensity-related tasks. Figure 

3 shows examples of camera applications with respect to the mount location. Camera systems can 

be either monocular (single camera) or binocular (multi cameras). Usually, AVs utilize both types. 

Single cameras provide rich color information but cannot provide depth information. On the other 

hand, multi-cameras can be installed side by side to form a stereo camera that can provide both 

color and depth information. Stereo cameras consist of at least two image sensors, separated from 

each other by a known distance, and they employ the same depth perception process used by 

animals; images from two cameras for the same scene implies slight differences, and these 

difference are used to calculate depth by exploiting a disparity map and epipolar geometry and 

triangulation methods [3], [11], [16]–[18]. 
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Figure 3. Camera applications with respect to the mount location on self-driving cars [18] 

 

LiDAR 

LiDAR is an external sensing device that works on the principle of producing laser light 

pulses that reflect off target objects. The equipment detects these reflections, and the time between 

emission and reception of the light pulse allows for distance estimation. LiDAR sensors can be 

categorized based on the information they deliver; three main categories can be identified: 1D, 2D, 

and 3D LiDARs. The most commonly used LiDAR type is the 3D LiDAR sensors. Their output 

usually consists of four values: x, y, and z coordinates and the intensity information of the objects 

within the surrounding environment. For autonomous driving applications, LiDAR sensors 

internally consist of multiple layers (channels) of emitting sensors; 64 or 128 channels are 

commonly employed to generate LiDAR images (or point cloud data) for self-driving context. On 

the other hand, 1D LiDARs only measure the distance of the surrounding environment using one 
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single coordinate, e.g., x coordinates. 2D LiDAR provides information about the angle, aka x and 

y coordinates. Figure 4 depicts a basic operation of the LiDAR.  

 

Figure 4. LiDAR operation mechanism illustration [19] 

 

In general, due to their reliability and ability to provide high-quality perception in both day 

and night settings, 3D spinning LiDAR is the most popular LiDAR in the autonomous context [2], 

[18]. Figure 5 depicts a typical 360-degree LiDAR sweep. LiDAR beams are emitted at all 360-

degree horizontal angular directions and then collected back. The sensor specification defines how 

far a laser beam can travel. For example, the KITTI dataset [16] uses Velodyne HDL-64E [20], 

which has 64 channels and can emit and measure beams up to 120 meters in distance. Velodyne 
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HDL-64E has a 360° horizontal and 26.9° vertical field of view with 0.08° angular resolution 

(azimuth) and around 0.4° vertical resolution. 

 

Figure 5. LiDAR point cloud sweep example [16] 

 

RADAR 

RADARs work on emitting periodic Electromagnetic (EM) waves within the region of 

interest and receiving reflected waves from targets for signal processing and determining range 

information. It can determine the relative speed and position of identified obstacles using the 

Doppler property of EM waves. The Doppler effect describes how relative motion between a wave 

source and its targets causes variations or shifts in wave frequency. When the target travels toward 

the radar system's direction, the frequency of the detected signal rises. Different operational 

frequencies are available in the market, 24 Gigahertz (GHz), 60 GHz, 77 GHz, and 79 GHz; the 
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lower the frequency, the lower the range, velocity, and angle resolution the RADAR provides. 

Radar can operate day or night in foggy, snowy, or cloudy situations because the propagation of 

EM waves (radar) is somewhat immune to unfavorable weather conditions and the function of 

radar is independent of the ambient illumination conditions. The misleading identification of metal 

objects around the perceived surroundings, such as road signs or guardrails, is one of the downsides 

of radar sensors, as are the difficulties in differentiating static, stationary objects [18]. Radar 

sensors are often mounted on multiple locations within SDCs, such as on the roof, around the top 

of the windshield, and behind the vehicle bumpers. Maintaining the precision of mounting 

positions and orientations of radars is critical since any angular misalignment could result in 

incorrect vehicle operation and lead to inaccurate or late detections of hazards around the vehicle. 

The three major types of automotive radar systems are Medium-Range Radar (MRR), Long-Range 

Radar (LRR), and Short-Range Radar (SRR). SRR is used for parking assistance and collision 

proximity warning, MRR is used for side/rear collision avoidance and blind-spot recognition, and 

LRR is used for adaptive cruise control and early detection[11], [18], [21], [22].  

It is noteworthy that each sensor has its advantages and disadvantages; for example, 

LiDAR provides depth information and is immune to light variation; however, its data lacks color 

information. On the other hand, a Camera provides color information but is very sensitive to light 

variation and weather conditions. Sensor fusion combines data from multiple sensors and thus can 

provide a richer representation. Table 1 provides a comparison between the three primary sensors: 

Camera, LiDAR, and RADAR, from different factors and applications.  
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Table 1. Comparison between different sensors' capabilities with respect to different factors or 

applications, x means the sensor is not appropriate for this application or factor, * means the sensor can 

work well with this task or factor, ** means the sensor is aptly performing with this task or application 

Factor Camera  LiDAR RADAR 

Range  * ** * 

Resolution  ** * x 

Distance accuracy  * ** ** 

 Velocity  * x ** 

Color Perception ** x x 

Weather conditions x * ** 

Illumination 

Conditions  

x ** ** 

Application  Camera  LiDAR RADAR 

Object detection  ** * x 

Object classification  ** * x 

Lane detection  ** x x 

Depth completion  * * x 

 

Perception Module 

In a process very analogous to human visual cognition, the perception module examines 

raw sensor data and other information from other vehicles and infrastructure to generate an 

environmental understanding which is very important to many other modules like the planning 

module. Examples of the main tasks related to the perception module are object detection and 

classification, object tracking, semantic segmentation, and depth completion, among others. 
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Perception technologies in the state-of-the-art can be divided into two categories: computer vision-

based and machine learning-based. The former tackles visual perception issues by defining them 

with explicit projective geometry models and utilizing optimization techniques to discover an 

optimal solution. On the other hand, Machine learning technologies depend on data to drive 

solutions, problems usually modeled like regression or classification problems. In classification 

problems, data are generally assigned into multiple classes (multi-class classification); for 

example, car, bicycle, or van. Alternately there may be two classes (binary classification); for 

instance, a LiDAR point is either a foreground or background point. In regression problems, values 

such as object heading and angles are regressed. In the subsequent sections, three important 

perception tasks are discussed: depth completion, object detection/classification, and instance 

segmentation [23]–[25]. 

Depth completion  

Depth completion is a critical task in machine vision and robotics. LiDAR sensors can only 

provide sparse depth information, and when projecting these depth values to the image coordinate 

system, many pixels are left without depth information. For example, on the well-known and 

widely used autonomous driving dataset KITTI [16], only 5-7% of pixels have a valid depth 

measurement. Figure 6 shows an example generated from the KITTI dataset; the bottom image is 

the sparse LiDAR point cloud, while the top image provides the Camera 2D image for reference. 

On the other hand, applications like 3D object detection and classification can only work properly 

if there are enough valid depth points. To that end, depth completion is usually performed where 

a dense depth map is generated from a sparse set of measurements. This process can be done with 

or without the guidance of other modalities like camera data. Techniques that utilize camera data 

benefit from the structure information available within the images; thus, their performance usually 
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surpasses other methods. An example of the expected completed depth maps is shown in Figure 

7. 

 

 

Figure 6. Sparse LiDAR point cloud (bottom) and the corresponding reference camera image (Top) [16]  
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Figure 7. Example of the expected completed depth map image (bottom image), pixels with whiter color 

belonging to the far objects, and the camera image for reference (top image) [16] 

 

a) Non-guided depth completion 

In non-guided depth completion, methods only utilize LiDAR data. Examples of 

approaches include [26] used bilateral filtering in a non-guided depth completion framework to 

maintain the edges information, while [27] proposed a complete deep neural framework with 

sparse convolution layers which take into account the location of missing data to tackle the depth 

completion problem and only rely on the sparse LiDAR information. Moreover,  [28] proposed 

CNNs that focus on the uncertainty of depth data in both the input and the output; the work uses 

an input confidence estimator to identify distributed measurements in the information; meanwhile, 

a normalized convolutional neural network is utilized to produce an uncertainty measure for the 

final output. [29] used compressed sensing techniques and Alternating Direction Neural Networks 
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(ADNN) to tackle the depth map completion problem. The adoption of ADNNs enabled the 

implementation of a deep recurrent encoder-decoder framework. Figure 8 shows a simplified 

framework for a non-guided depth completion framework where the only input is the sparse 

LiDAR depth map.  

 

 

Figure 8. Simplified depiction of the non-guided depth completion framework [30] 

 

b) Guided depth completion 

Combining information from different but related sensors has led to remarkable 

performance improvement in many applications. Many fusion strategies have been proposed, and 

the field is still wide open for additional contributions. Different works suggest combining data 

from various sensors like LiDAR and Camera for depth completion problems. Figure 9 shows a 

simplified framework for a guided depth completion framework. [31] consider the depth 

completion a regression problem and utilize a single convolutional neural network that takes both 

RGB images and a sparse depth measurement as input and produces a dense depth map. The 

proposed network is an encoder-decoder style wherein the encoder is a resNet CNN followed by 

a convolutional layer. On the decoder side, upsampling layers are followed by bilinear upsampling. 

The work examined different loss functions and reported that L1 loss (2-1) produced better 

performance. [32] proposed a deep regression network with encoder-decoder style, where data 
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from LiDAR and Camera are fused within the network. Skip connections are used to pass features 

from encoding layers to the corresponding decoding layers. 

 𝐿1 =  |𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑| (2-1) 

Where 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 are the ground truth and the predicted value, respectively. 

 

 

Figure 9. Simplified depiction of the guided depth completion framework [30] 

 

Figure 10 depicts a general structure of an autoencoder deep neural network with skip 

connections. These connections can send the features map from the encoder layers directly to the 

corresponding decoder layers; this process is beneficial to provide the decoder layers with 

additional information that might be degraded during the encoding process. In addition, the authors 
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also proposed a self-supervised training framework that relies only on a sequence of RGB images 

and sparse depth images; that is, no ground truth is needed. The existence of nearby data is used 

to provide supervision signals. [33]  provided two branches encoder/decoder framework with 

geometric encoding and multiple levels and modalities fusion. The authors fuse RGB and LiDAR 

data in one branch and fuse the generated semi-depth with the depth in another branch. Moreover, 

features are fused at different levels and between the two branches. [34] introduced DeepLiDAR 

framework, which consists of two separate pipelines, the first pipeline is used to generate surface 

normal from the sparse set of measurements, then the second pipeline is used to obtain a semi-

depth map from RGB images. Finally, both surface normal as well as semi depth maps are fused 

and fed into another network which is trained to produce the final depth map. [35] proposed 

FusionNet, a two-branch framework, one branch for local features and the second for global 

features; for proper fusion. FusionNet generates a confidence map to fuse information from 

different branches adaptively. [36] suggest a more accurate sampling strategy and propose a deep 

neural network with a graph convolution module to overcome the limitations of the traditional 

square kernel.  
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Figure 10. Autoencoder deep neural network with skip connections [30]  

Object detection and classification  

Milestones in Object detection and classification can be divided into two main categories: 

Conventional object detection and classification approaches and deep neural networks-based 

object detection and classification approaches. The first category piece together all approaches 

before the revolution of the deep neural network, while the second category conjoins all deep 

neural network-related approaches [24], [37]. 

 

a) Conventional object detection and classification approaches 

Conventional object detection and classification approaches started emerging in 2001 and 

have depended on handcrafted features. In 2001, Viola and M. Jones [38] introduced the first real-

time human faces detection approach, which has been generalized for different objects like cats 
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and dogs. The method is named the VJ detector and has three main techniques: integral image, 

feature selection, and detection cascades. Figure 11 shows the different shapes of the features used 

to detect faces.  In 2005 Another critical milestone was the Histogram of Oriented Gradients 

(HOG) [39], which was considered a significant improvement for incorporating scale invariant 

feature transforms and shape contacts. In 2008, the Deformable Part-based Model (DPM) [40] was 

introduced based on the divide and conquer approach, wherein the training is considered the proper 

way for decomposing while the inference is regarded as an ensemble of detection.  

 

Figure 11. Viola and Jones features and usage example [38] 

 

b) Deep neural-based object detection and classification approaches 

Due to the recent advancements in computing capabilities and the tremendous 

improvements in machine learning and deep neural networks, object detection and classification 

have been developed and enhanced dramatically. Deep neural networks have been utilized to learn 

high-level features from images, and since 2012 many object detection and classification works 

have been published. Object detection and classification methods fall into two main groups: two-

stage and single-stage detectors. Where the former relies on two stages to accomplish the task, one 
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for proposals generation and the other one for refinement. However, the latter performs the 

detection and classification in one single stage.  

i. Two-stage object detection and classification  

Great examples for the two-stage group are Region-Based Convolutional Neural (RCNN) 

[41], wherein a selective search technique is used to generate proposals regions. Then the proposals 

are fed into a CNN for feature learning. A Support Vector Machine (SVM) is used to predict the 

object's presence and class within the proposed region. Spatial Pyramid Pooling Networks 

(SPPNet) [42] advanced the field by introducing the Spatial Pyramid Pooling layer, which allows 

different input images or region sizes. Fast RCNN [43] allows for simultaneous detection and 

regression, Fasters RCNN [44] was introduced after Fast RCNN, and it is considered the first near 

real-time detector, which utilizes a separate Region Proposal Network which generates proposals 

with a minimal amount of computation resources. Feature Pyramid Networks (FPN) [45] were 

introduced after faster RCNN and had a top-down architecture to create high-level semantics at all 

scales.  
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Figure 12. Summary of the available one-stage and two-stage object detectors [24] 

 

ii. One stage object detection and classification  

An excellent example of the one-stage group is: You Only Look Once (YOLO) (Redmon 

et al., 2016), which utilizes one network to localize and recognize objects within images. Other 

examples include: [46] introduced Single Shot MultiBox Detector (SSD), a multi-reference and 

multi-resolution detection technique to overcome the drawback of YOLO in detecting small 

objects. RetinaNet [47] is a single stage with a new loss function called focal loss, which was 

introduced and used to overcome the extravagant background and foreground instances imbalance. 

Figure 12 shows a summary of the available object detectors, while Figure 13 highlights 

the main differences between one and two-stage object detectors. 
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Figure 13. Object detectors architecture -  Two (top) and one (bottom) stage object detectors [48] 

 

Instance segmentation 

Image segmentation is considered a fundamental problem in computer vision. It is an 

essential visual understanding element in many applications like medical image analysis, self-

driving cars, and video surveillance. Under the Image segmentation umbrella, three main subfields 

are available: semantic segmentation, instance segmentation, and panoptic segmentation [49]. In 

semantic segmentation, image pixels are classified with semantic labels but without distinguishing 

between different objects within the scene. On the other hand, instance segmentation extends the 

concept of semantic segmentation by providing accurate object detection capabilities at a pixel 

level, thus providing a precise mask for each object within the scene. Therefore, the instance 

segmentation process solves two problems together: object detection and semantic segmentation. 

Panoptic segmentation combines the characteristics of both semantic and instance segmentation 

[50]. Figure 14shows the different segmentation techniques applied into randomly selected frames 

from the KITTI dataset. 
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Algorithms that tackle image segmentation task are numerous and can be grouped into two 

main categories: early non-deep learning methods like thresholding, region growing graph cuts, 

and active contours; and deep learning methods, which in recent years have produced impressive 

performance enhancements and a paradigm shift in image segmentation field. 

Since 2014 many deep neural network-based image segmentation algorithms have been 

proposed, the most popular ones fall into two categories: two-stage and one-stage. In the two-stage 

category, algorithms perform two subtasks: detection and segmentation. Depending on the order 

of these 

 

Figure 14. Different image segmentation techniques: a) reference RGB image b) semantic segmentation 

c) Instance segmentation d) Panoptic segmentation [16] 
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subtasks, two-stage instance segmentation can further be divided into two methods: top-

down methods and bottom-up methods. The former is a detection-based instance segmentation 

method wherein top-level bounding boxes are first generated, then a foreground segmentation is 

conducted, while the latter is a segmentation-based method that starts with pixel-level 

segmentation and then uses clustering to group similar pixels. Implementations for top-down 

methods can be grouped into four categories: dense sliding windows, multi-level features, R-CNN, 

and contour information. Regional Convolutional Neural Networks (R-CNN) and its improved 

versions fast, and faster RCNN have achieved good performance. R-CNN algorithms detect 

objects by providing bounding boxes and class information; inspired by the R-CNN method, many 

instance segmentation methods have been proposed. For example, Mask R-CNN, which is based 

on the faster R-CNN architecture, instead of bounding boxes Mask R-CNN generates a high-

quality segmentation mask while also detecting all objects in the scene [51].  

In the one-stage category, algorithms consider the relationship between detection and 

segmentation within one DNN, this technique has faster performance, but the network is complex. 

Methods within this category are either anchor-based methods or anchor-free methods. 

Representative examples of the anchor-based methods are InstanceFCN, FCIS, TensorMask and 

YOLACT. On the other hand, representative anchor-free methods are SOLO, SOLOv2 and 

CenterMask [49], [51], [52]. For example, SOLO divides the camera image into multiple grids; 

these grids encode the relative position of the potential instances; the network consists of two main 

branches: the category branch, which is used to generate the semantic category, and the mask 

branch, which is used to predict the instance mask.  
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Autonomous Driving Datasets 

Data is considered the fuel of deep neural networks and machine learning algorithms. Data 

plays a vital role in generating accurate nonbiased models. However, data collection is costly in 

terms of time and money and requires careful labeling and calibration, especially in autonomous 

driving applications, wherein multiple sensors are utilized and must be synchronized and logged 

carefully. Fortunately, many research and industrial companies are currently releasing their 

datasets for public use; some of these datasets focus on a single sensor, while others provide a bag 

of information from multiple sensors. Also, datasets are application specific, and some datasets 

are prepared for object detection, tracking, and classification, while others are for lane detection 

localization and behavioral analysis. A summary of the publicly available datasets that can be 

utilized for different applications, including instance segmentation, depth completion, object 

detection, and object classification tasks, is presented as follows: 

▪ The Apollo open platform (Apollo, 2018) prepared by baidu Inc. and released in 2018, contains 

data from camera and LiDAR as well as vehicle data.  

▪ Argoverse [53], prepared by Argo AI and released in 2019, data were collected in the USA 

and specifically in Miami and Pittsburgh; the data are for Camera, GPS, and LiDAR.  

▪ Deep drive dataset [54] released by UC Berkeley. Dataset was collected in San Francesco Bay 

area and New York using a camera only but collected in diverse traffic conditions like urban, 

rural, and highways. It is also recorded in different daytime like night and non-night situations. 

▪ Cam vid [55] is also a Camera only generated dataset recorded in the UK by the university of 

Cambridge in 2009.  
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▪ Cityscapes [56] is collaboration between multiple companies from multiple cities. The dataset 

mainly concerns vision algorithms, specifically semantic-related algorithms like scene labeling 

and object detection.  

▪ Diamler de Ag, MPI-IS, and TU Darmstadt worked together to prepare the dataset recorded in 

Germany, Switzerland, and France. The dataset has information from the camera and other 

sensors. However, LiDAR was not used in this dataset.  

▪ Elektra [57] was collected in Spain and Barcelona by the autonomous university of Barcelona 

and polytechnic university of Catalonia, and they only used a camera and infrared to collect 

the dataset.  

▪ JAAD dataset [58] was collected in Ukraine and Canada in 2016 by York University, and it 

only utilizes Camera sensors.  

▪ KAIST [17] multi-spectral dataset collected in 2015 by KAIST university, data collected from 

Camera, LiDAR, GPS, and Infrared for a scene in South Korea for both night and non-night 

scenarios and with a focus on pedestrians.  

▪ KITTI (ccfv et al., 2013) Was released in 2011 and collected by Karlsruhe institute of 

technology and Toyota technological institute, the data were collected in Germany – Karlsruhe; 

Camera, LiDAR, and GPS are the primarily used sensors, and the dataset is suitable for a wide 

range of applications like object detection and classification(2D and 3D), and semantic 

segmentation and instance segmentation, and this dataset is the one that will be used in this 

dissertation and more information about it will be provided later in this section.  
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▪ NuScenes [59] dataset collected by Nu Tonomy  Inc. and Aptiv for scenes in Boston, USA, 

and Singapore. It uses Camera, LiDAR, and GPS. It is recorded in different weather and light 

conditions.   

▪ Udacity dataset [60] was released in 2016 for scenes in Mountain View, USA. The dataset was 

collected by different sensors like Camera, LiDAR, and GPS.  

▪ Caltech Ped [61] is another camera-generated dataset collected by the California Institute of 

Technology in Los Angeles, USA, and released in 2009.   

▪ NightOwls [62] was released in 2018 and collected by Oxford University, Max Planck 

Institute, and Continental Corp. The dataset was collected at different UK, Netherlands, and 

German sites.  

▪ TUD-Brussels Ped [63] was collected in 2009 for pedestrian detection applications and was 

collected by Max Planck Institute for informatic in Belgium.  

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

Clustering algorithms can fall into nine categories: partition, hierarchy, fuzzy theory, 

distribution, density, graph theory, grid, fractal theory, and model-based [64]. Density-based 

clustering algorithms are handy for data that are separable by density level, wherein clusters 

assemble data in dense regions with different shapes [65], [66]. This is a typical scenario in mobile 

robotics and SDCs wherein surrounding objects like cars, trucks, and pedestrians have different 

characteristics. Density-based spatial clustering of applications with noise (DBSCAN) [67] is a 

density-based clustering algorithm that is very appropriate for clustering in applications in which 

the number of clusters is unknown, data is noisy and data dimensions are high. DBSCAN is 
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controlled by two critical fixed, global parameters ε (epsilon), which is the point neighborhood 

search distance (also defined as a cluster radius), and minPts, which is the minimum number of 

neighboring points needed to form a cluster from a given point. The user selects these parameters’ 

values, which may vary from one dataset to another and are applied globally to the entire dataset. 

Moreover, slight changes in these values will affect the clustering performance and a minute 

change may result in merging two or more neighboring objects into one cluster or producing some 

noise points as legitimate clusters. 

DBSCAN defines core point, border point, and noise point expressions to distinguish the 

data points. A core point is a point in the dataset with minPts neighborhood points within the ε 

radius. A border point is a point within a core point neighborhood but has fewer points than the 

minPts within the ε radius. A noise point is a point that neither satisfies the core point definition 

nor the border point definition. Figure 15 shows the main point types. 
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Figure 15. DBSCAN points types: red points are core points, the gray point is a border point, and the 

black point outside the circles is a noise point [67] 

 

Important relations in DBSCAN concerning ε and minPts are the directly density-

reachable, the density-reachable, and the density-connected relations. The directly density 

reachable relation can be defined as follows: for any two points p and q, a point p is directly density 

reachable from point q if p belongs to the q points neighborhood and q is a core point. However, 

density reachable relations relax the restriction in the directly density reachable relation by 

allowing for a chain of connectivity; that is, a point p is density reachable from point q if there is 

a chain of points where each consecutive points are directly density reachable. Finally, point p is 

density connected to point q if there is another point m which is density reachable from both p and 

q. 
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CHAPTER 3 

RELATED WORK 

This dissertation deals with the LiDAR point cloud depth completion and clustering. Many 

works have been done to improve the performance of these tasks, and solutions usually fall into 

two main categories: machine learning and deep neural network techniques. In the following sub-

sections, related works to these topics will be discussed. 

Depth Completion-Related Work  

Deep neural networks-based depth completion 

Many works have been published to improve the depth completion task for self-driving 

cars. [33] proposed strong networks for efficient depth completion, namely ENet and PENet; the 

backbone network consists of two main branches: color–dominant branch and depth dominant 

branch; the former accept both the LiDAR sparse depth map and the color Depth map but the 

branch focus on color information throughout an encoder/decoder like network, the later accept 

both the semi-dense depth map generated from the first branch alongside the sparse depth map. 

Both branches generate confidence arrays that combine the depth generated from each branch in 

an adaptive way. Extra refinement is also proposed using an improved implementation of [68] 

work. Although [33] work achieved outstanding results, the proposed work is very complex. It 

requires extensive computing resources (the GitHub repository mentioned  4 GPUs), and the 

training process is very long and could take several days. 

Moreover, the results have been achieved after using around 86K annotated frames.  [69] 

proposed a generative adversarial network (GAN) based for depth completion purposes. This work 

https://en.wiktionary.org/wiki/adaptiveness
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considers the unguided depth completion problem wherein only sparse depth information is 

available. The final goal is to train a generator with a minimum loss and obtain the model 

parameters. Equation (3-1) show the main equation to solve.  

 

𝜃𝑔̂ = arg min
1

𝑁
∑ 𝐿𝐺

𝑁

𝑛=1

 (𝐺𝜃𝐺
(𝐼𝑛

𝑆𝑃), 𝐼𝑛
𝐷𝑁) 

(3-1) 

 

where, 𝐿𝐺  is the generator loss function, 𝐼𝑛
𝑆𝑃 the training sparse depth samples, 𝐼𝑛

𝐷𝑁 dense depth 

samples, 𝜃𝑔 are the CNN parameters to solve for the best minimum loss. It worth noting that 𝐿𝐺   is 

a combination of different loss functions like adversarial loss, normal loss, and pixel loss. The 

network consists of three main parts: dense residual blocks, hourglass attention mechanism, and 

residual in residual dense blocks. [70] proposed a multitask generative adversarial network that 

works for both semantic segmentation and depth completion; they used the semantic segmentation 

output as input to improve the depth prediction accuracy. This work is guided as it uses the RGB 

images alongside the sparse LIDAR depth information. The authors introduced multi-scale pooling 

blocks within the network to extract features from different levels. The architecture has two main 

branches, one for semantic segmentation and the other for depth completion. Which yields two 

generators and two discriminators. [71] proposed a fully convolutional neural network for depth 

completion task; the network architecture is GAN and only utilizes sparse LiDAR information. 

The network comprises six convolutional layers, and ReLU follows all middle layers.  
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Image processing-based depth completion work  

Work focusing on depth completion task using image processing is limited, [72] proposed 

a depth completion framework that depends entirely on image processing techniques and can run 

on CPU only. The framework consists mainly of several image processing operations like dilation, 

morphological operation, and filtering. At the time of publication, the performance of the proposed 

work was very promising; however, recently published work that utilizes deep neural networks 

and sensor fusion surpasses this image processing approach.  [72]  work utilizes LiDAR point 

cloud only. [73] also works on depth images super-resolution, wherein they focus on the 3D points 

and use repetitive structures to recognize similar patches throughout different levels.  

 

Clustering Related Work  

The related work discussion is divided into two main parts. The first part focuses on some 

promising generic DBSCAN improvements. In contrast, the second part focuses on the DBSCAN 

related works in the domain of mobile robotics and SDCs LiDAR data processing. 

 

DBSCAN is a well-known density-based clustering technique that has been used in various 

fields and applications [74]–[78]. However, due to the DBSCAN limitations in handling sparse 

data and variable densities, many DBSCAN variants have been proposed to overcome these 

limitations and improve performance. Surveying all of these variants is beyond the scope of this 

work; however, some of the recent works that suggest ideas to automate the process of estimating 

DBSCAN tuning parameters are highlighted. In A-DBSCAN [79] Kth-Nearest Neighbor (K-NN) 

graph is used to select data core samples. Instead of ε and minPts, A-DBSCAN uses k values and 
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noise presence. They proposed ADBSCAN using three main steps; in the first step, the algorithm 

splits the dataset into disjointed subgraphs, then in the second step, it filters any subgraph that does 

not lie in the dense area; and finally, it assigns subgraphs into clusters where close subgraphs are 

assigned to the same cluster. In Approximate Adaptive DBSCAN [80] a quadtree-based density 

layer tree was used to partition the dataset equally without the need for an extra parameter or 

merging process. The same work also uses (K-NN) to further improve the AADBSCAN by solving 

the static ε drawback of AADBSCAN. [81] proposed a generic Adaptive DBSCAN which first 

starts with a random value for ε and then evaluates the performance; if no clusters are detected, 

then it increases ε by 0.5, and this process will repeat until 95% of the data has been exhausted. 

The proposed method requires an assignment for the expected number of clusters which is not 

practical in many applications. [82] proposed method to estimate the value of ε and minPts, the 

method requires another parameter K to draw K-dist graph required to find the knees that 

corresponds with the density changes. Knees also used to estimate a set of ε values which then 

used to estimate the minPts. 

Although DBSCAN is widely utilized in a wide range of clustering applications, minimal 

work has been done to automatically and adaptively estimate DBSCAN tuning parameters within 

applications like robotics and self-driving cars. [83] proposed an estimation approach based on the 

average K-NN. Their process consisted of the following steps: 1) it normalizes the data, and this 

step is only needed if the LiDAR data combines both coordinates and color information, 2) it builds 

a spatial index and uses both the spatial index and different distances calculations it estimates the 

clustering parameters, and 3) clustering takes place using the different estimated ε. [84]  proposed 

an Adaptive Searching-DBSCAN which starts with initial values and is updated in each clustering 

iteration. The authors suggested equations to estimate both initial and subsequent values. The 
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proposed equations consider different parameters like expected target width and number of points 

per location. However, none of the equations considered the location of the LiDAR nor the relative 

distance of the points to the LiDAR.  

[85] uses the infrastructure LiDARs to detect and track pedestrians at intersections, to 

improve DBSCAN and automatically select the tuning parameters, they took into consideration 

the properties of the installed LiDAR. They introduced two equations to find both the minimum 

horizontal and minimum vertical distance between LiDAR points; also, three zones division 

scheme was introduced to change the values of the tuning parameters based on the object’s 

locations. 
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CHAPTER 4 

METHODOLOGY  

This work focusses on the perception module of self-driving vehicles and utilizes 

information from two sensor modalities: LiDAR and Camera. The first part of the thesis addresses 

the depth completion problem wherein missing depth information in the sparse LiDAR point cloud 

data is estimated. An instance segmentation-based guided depth completion method is proposed 

that utilizes both LiDAR point cloud and raw camera images. The second part of this thesis 

addresses the clustering of the LiDAR point cloud problem. A density-based clustering algorithm 

is investigated and enhanced by adding an adaptive and automated technique to estimate clustering 

parameters. 

Instance Segmentation-Based Depth Completion Framework Using Sensor 

Fusion 

Depth completion aims to obtain dense depth maps from sparse depth measurements. It is 

a critical component in many vision applications and has rapidly growing significance for 

autonomous driving. Accurate depth is essential for many perception tasks such as 3D object 

detection and shape recognition, 3D mapping, and localization. These tasks are at the heart of 

many applications, including augmented reality, SDCs, and robotics. Due to the limited detection 

range, environmental interference, and cost considerations, frequently used depth sensors such as 

LiDAR, RGB-D sensor cameras, and Time-of-Flight (TOF) cameras produce sparse depth 

measurements. For example, the top-of-the-line Velodyne HDL- 64E LiDAR sensor costs around 

$75,000 but can only deliver sparse data with vertical resolution/angular resolution of 0.4/0.08 

[86]. On the other hand, dense depth maps are required in many high-level applications such as 
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3D object detection, 3D scene reconstruction, and simultaneous localization and mapping 

(SLAM). Depth completion or generating dense depth maps from sparse depth data has become a 

popular technique to bridge the gap between sparse and dense depth maps. 

Depth completion techniques fill in the gaps in a sparse depth map either without or with 

the help of a reference image. The latter uses structure information from the guidance image to 

improve performance, attracting increased study attention. However, the input depth map is 

irregular, sparse, and noisy. Moreover, the color image and the depth map are from two different 

sensor modalities; therefore, the image-guided depth completion task has unique challenges. As a 

result; various sparse invariant convolutions, uncertainty exploration, and multi-modality fusion 

algorithms have been developed to overcome these challenges. In addition, several modern 

approaches use multi-scale characteristics, surface normal, semantic information, or context 

affinity to further increase performance [87]. 

 Most of the recent work in the domain of depth completion is deep neural networks based; 

although the current state of the art achieved very good performance, the generated depth at object 

boundaries or for distant objects still suffers from inaccurate depth values. In addition, none of the 

previous works provided a customized approach to completing selected objects instead of the 

entire scene. Many factors can degrade depth completion process performance at objects 

boundaries or for distant objects, such as the lack of sufficient point cloud and when some objects 

are very close or even occluding each other. Figure 16 shows selected images from the KITTI 

dataset [16] wherein objects (cars) close and occlude each other.  
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Figure 16. Selected images from KITTI dataset showing scenarios where objects like cars are very close 

to each other or occluding each other [16] 

 

Most of the recent depth completion work [33], [68], [70], [88] applies algorithms to the 

entire sensors data without paying attention to the object’s boundaries and object’s types. Accurate 

objects boundaries and objects types are valuable features and can guide depth completion 

frameworks more accurately. In the last few years, instance segmentation has gained huge interest 

from the industry and academia, because it combines both object detection and segmentation 

capabilities in a pixel level accuracy, and provides different unique scene insights like the number 

of objects, pixel-level object boundaries, type of object and distinguish between objects that fall 

into the same type; making it an up-and-coming technology to guide the depth completion process. 

Using Instance segmentation in depth completion has many benefits, for example:  

- Accurate pixel-level object boundaries. 

- Accurate object detection, especially for far objects. 

- Accurate object classification. 
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Using instance segmentation in depth completion will allow for objects level depth 

completion, thus performing the depth completion for the objects of interest instead of depth 

completion on the entire scene. 

In this dissertation, an object-based depth completion framework is proposed and 

implemented. Figure 17 shows a high-level presentation of the implemented framework. 

 

 

Figure 17. Proposed Instance Segmentation-based Depth Completion Framework 

 

 The framework consists of the following steps: 

1- Input Data Preparation 

The proposed framework uses two leading sensing technologies: remote LiDAR sensing 

and optical image sensing (Camera). These modalities are from different coordinate systems and 

have a non-identical field of view. For example, the used LiDAR device can capture 360° of the 

surrounding environment with a 26.9° vertical field of view, 0.08° angular resolution (azimuth), 

and around 0.4° vertical resolution [89]. On the other hand, the camera sensor can only sense the 

vehicle's front view. Therefore, the LiDAR point cloud is cropped to match the camera field of 

view and projected from the LiDAR coordinate system into the camera coordinate system. Figure 
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18 shows the raw LiDAR point cloud, the cropped LiDAR point cloud, and the LiDAR point cloud 

projected into the camera 2D coordinate system. It is worth mentioning that LiDAR points in 

Figure 18-d are colorless but colored and enlarged for better visualization.  

 

Figure 18. LiDAR point cloud in different FOV and projection a) LiDAR raw point cloud with 360° field 

of view b) LiDAR point cloud cropped to match camera sensor field of view c) camera sensor reference 

image d) LiDAR point cloud projected into optical sensor 2D coordinate system and color-coded (cold 

color for far objects while warm colors for near objects) [16] 

 

To project a 3D point 𝑥 = (𝑥, 𝑦, 𝑧, 𝐼)𝑇 from the LiDAR coordinate system into a 2D point 𝑦 =

(𝑢, 𝑣, 𝐼)𝑇 in the i'th camera sensor coordinates system, equation (4-1) [16] is used.  

 𝒚 =  𝑃𝑟𝑒𝑐𝑡
𝑖 𝒙 (4-1) 

 

Where 𝑷𝒓𝒆𝒄𝒕
𝒊  is the rectifying rotation matrix, and I is the intensity of the LiDAR point. 
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2-  Instance Segmentation  

For Instance Segmentation, the Mask R-CNN architecture has been selected. Although 

there are many other alternatives in the literature, Mask R-CNN is unique for different reasons. 

First, it is based on a stable and supported R-CNN object detection architecture. Second, Mask R-

CNN provides mask information and inherits information from the R-CNN like object bounding 

boxes, detection scores, and object types. Finally, Mask R-CNN is common and has been trained 

on many big generic datasets like COCO [90], which make the process of generalizing it to other 

tasks faster. Mask R-CNN is a two-stage instance segmentation framework; the first stage is used 

to scan the input image and generate proposals which are objects potential areas. The second stage 

performs object classification, bounding boxes regression, and mask generation. Figure 19 depicts 

a high-level representation of the Mask R-CNN instance segmentation framework.  

Mask R-CNN uses a backbone network to extract features wherein an RGB camera image 

is converted into a feature map and further feed into a feature pyramid network (FPN). Deep neural 

network computer vision literature has many strong feature extraction backbones like AlexNet 

[91], VGG-16 [92] GoogLeNet [93] and ResNets [94],  

The resulting feature map is forwarded into a region proposal network (RPN). The primary 

purpose of this network is to find areas in the feature map that contain potential objects. RPN uses 

a sliding window technique that scans anchors with different sizes and aspect ratios. For each 

anchor, the RPN generates two outputs: anchor class and a bounding box. The anchor class 

classifies each box into foreground or background, where foreground means a potential object 

exists.  The content of each proposed region is classified, and an accurate bounding box for each 

classified object is regressed.  
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It is worth mentioning that all of the previous operations belong to the faster R-CNN 

architecture [43], but the next step is the unique part of Mask R-CNN [95], wherein a segmentation 

mask is generated in parallel with the classification and bounding boxes regression operation. 

Figure 19 depicts the instance segmentation process. 

 

 

Figure 19. Instance segmentation main processes [95] 

Mask R-CNN is already pre-trained on a wide range of big public datasets like COCO [90]. 

However, to make it more suitable for the self-driving domain, a transfer learning approach has 

been adopted to add more data from the KITTI instance segmentation dataset [16] while preserving 

knowledge from the COCO dataset [90]. Transfer learning is the ability to transfer already acquired 

knowledge from a previous task to a new related task. This approach is prevalent in image 

knowledge-based tasks due to the underlying shared initial processes like detecting edges, colors, 

and brightness, among others. Figure 20 depicts the concept of transfer learning; task 2 is similar 

to task 1; e.g., task 1 is to detect people in a generic setting, while task 2 is to detect cyclists on the 

road. Task 1 dataset is usually bigger than task 2, contains more genetic information, and requires 

more training time; on the other hand, task 2 dataset is generally smaller than task 1 and requires 

less training time.  
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Figure 20. Transfer learning concept, knowledge from task 1 used to facilitate task 2 [96] 

 

Transfer learning can be performed in two ways. The first way is to allow all model layers 

to update and adjust weights based on the new training dataset. The second way is to freeze all 

layers except the last layers (heads) and only train and adjust the final layers [96]. The second 

approach is adopted in this dissertation since the similarity between the two tasks is very big, and 

thus the previously learned weights are reasonable to preserve. During training, the original Mask 

R-CNN loss functions have been used, which are: classification loss, bounding box regression loss, 

Mask loss (binary cross-entropy loss), and combined loss [95],  which are formulated in equations 

(4-2), (4-3), (4-4) and (4-14), respectively. 

 𝐿𝑐𝑙𝑠(𝑝𝑖,  𝑝̂𝑖) = −𝑙𝑜𝑔 (𝑝𝑖
𝑐)  (4-2) 
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Where 𝑝̂  is the predicted probability for the proposed region belonging to class c. 

 𝐿𝑏𝑜𝑥 =  𝑙1
𝑠𝑚𝑜𝑜𝑡ℎ(𝑡𝑖 − 𝑡̂𝑖) (4-3) 

Where 𝑡𝑖  ,  𝑡̂𝑖 are the ground truth coordinate of the bounding box and the predicted coordinate, 

and 𝑙1
𝑠𝑚𝑜𝑜𝑡ℎ is a combination of Least Absolute Deviations and Least Square Errors. 

 
𝐿𝑚𝑎𝑠𝑘 = −

1

𝑚2
 ∑ [𝑦𝑖𝑗 𝑙𝑜𝑔 𝑦̂𝑖𝑗

𝑘 + (𝑖 − 𝑦𝑖𝑗)𝑙𝑜𝑔(1 − 𝑦̂𝑖𝑗
𝑘 )]

1≤𝑖,𝑗≤𝑚

 
(4-4) 

 

𝑤h𝑒𝑟𝑒 𝑦𝑖𝑗 is the groundtruth lable of pixel at i, j location  𝑎𝑛𝑑 𝑦̂𝑖𝑗
𝑘  is the predicted label of pixel 

at i, j. 

 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑙𝑜𝑠𝑠 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 (4-5) 

 

The output of the instance segmentation step contains the following meta information: 

• Objects ids: a list contains all detected objects in the given input image: {3, 3, 3, 3, 2, 1} 

where here these number corresponds to different objects, e.g., cars, pedestrians, or 

cyclists. 

• Detection scores: a list contains confidence scores for all detected objects: {0.99, 0.97, 

0.99, 0.91, 0.85, 0.25}. 

• Region of Interest ROI array: an array consists of the dimensions of bounding boxes for 

each detected object. [[Object 1 ROI], [Object 2 ROI], …, Object n ROI] 

• Masks array: an array consists of the object's mask. Pixels belonging to a legitimate object 

are assigned a value of 1, while pixels outside a legitimate object are assigned a value of 

0.  
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Figure 21. Instance segmentation example that applied into a randomly selected KITTI frame with all 

results’ attributes shown; each object has a type, confidence score, bounding box, and mask [16] 

 

An Example of all information resulting from the instance segmentation module is 

provided in Figure 21; each object has a class name, e.g., car, score, e.g., 0.95, bounding box 

(dashed rectangle), and mask (the overlayed color on each object).  

Instance segmentation output is huge, especially the instance segmentation masks; because 

it increases the storage requirement dramatically (if a 1D mask array needs 1 MB of storage, then 

an image with five objects needs 5 MB). Therefore, we designed a data structure and encoding 

scheme to solve this problem that dramatically reduced storage requirements. The proposed 

technique embeds all essential information into one array consisting of object ids, scores, and 

object indexes within the mask array. The proposed technique is presented in  Algorithm 1 which 

describes the main operation of this encoding scheme. This algorithm will generate a small 

footprint of the needed instance segmentation information. In training, instance segmentation 

information is prepared in the shape of a 2D image where pixels corresponding to potential objects 

are assigned the object class id value. In contrast, other pixels will have a zero value. Figure 22 
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depicts the encoded instance segmentation feature masks and object types into a single 2D 1-

channel array. 

 

Figure 22. Instance segmentation objects’ masks and types encoded into a single 2D 1-channel array 

 

ALGORITHM 1: ALGORITHM TO COMPRESS INSTANCE SEGMENTATION MASKS 

AND OBJECTS TYPE 

Function Compress instance(i) 
 

Input i: array - RGB image with size (w,h,c) 
Output  r: array with size (w,h,1) 

 
1: 
2: 
 
3: 
4: 
5: 
 
6: 
7: 
8: 
9: 
 
10: 
11: 
12: 
13: 
 
14: 
15: 
 
 
16: 
17: 
 
18: 
 

//calling instance segmentation model 
R = instance_segmentation_Detect(i) 
 
//Create empty arrays to hold the output 
Fram_instance_seg_info = [] 
masks_idx = [] 
 
//append all class ids to the output array    
fram_instance_seg_info.append(R['class_ids']) 
//append all detection scores to the output array 
fram_instance_seg_info.append(R['scores']) 
 
//loop over all detected objects 
for j in range(len(R['class_ids'])): 
    obtain indexes of the pixels belonging to objects 
    mask_idx = np.where(R['masks'] [j] == True) 
     
    //append indexes to the array     
    masks_idx.append(mask_idx) 
 
 
//append the full masks indexes array to the output array         
fram_instance_seg_info.append(masks_idx) 
   
return fram_instance_seg_info 
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3- Depth Completion 

 Depth completion deals with the problem of estimating a dense set of depth measurements 

from a sparse input. Let us assume the dense output is D and the sparse input S, then D can be 

estimated using a network N with parameters 𝜃 as formulated in equation (4-6). 

 𝐷 = 𝑁(𝑆, 𝜃) (4-6) 

Equation  (4-6) applies to non-guided depth completion problems where only a sparse 

LiDAR point cloud is used. However, accurate dense depth maps can be obtained by combining 

multi-sensor information. A commonly used method is fusing data from RGB cameras and LiDAR 

in early or late fusion mechanisms. This technique is formulated in equation (4-7) for RGB image 

I: 

 𝐷 = 𝑁(𝑆, 𝐼, 𝜃) (4-7) 

In this research, we updated this formula and added another exciting piece of infor-mation 

to improve the guided depth completion performance. Instance segmentation pipelines provided 

useful information like object types, objects locations in a bounding box format, and pixel-level 

mask for detected objects. This information is very beneficial in guiding the DNN. Thus we 

revisited equation (4-7) and included the instance segmentation information: object type and object 

mask, as in equation (4-8): 

 𝐷 = 𝑁(𝑆, 𝐼, 𝑀, 𝑇, 𝜃) (4-8) 
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Where M and T represent the object’s pixel level mask, and object types, respectively. 

The parameter θ is optimized during the training by minimizing the loss function given a ground 

truth sample gt as in equation (4-9) 

 𝜃 = argmin ℒ (𝐷, gt) (4-9) 

Instance segmentation will generate accurate information about all objects of interest 

within the camera field of view. The generated segmentation mask and the classification results of 

the objects of interests will be used to accuretyly guided the depth estamtion network.  

 

Figure 23. High-level presentation of the proposed depth completion DNN with the inputs and output  

   

Figure 23 depicts a high-level presentation of the depth completion DNN. The DNN will 

accept the depth information, object types, object boundaries (masks), and RGB color information 

and learn through a convolutional layer organized in an encoder-decoder-like framework to predict 

the depth of the missing pixels for each object. The input for the network is an array of five 
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channels where the first three channels represent the RGB information, the fourth channel holds 

the depth information, and the fifth channel contains the mask and object type.  

Table 2. Example of, the shape of the input of the depth DNN, please be informed that these entries are 

not adjacent and are selected for illustration purposes only

Pixel 

number 

RGB camera information 

Depth 

information 

Mask and 

object type 

R G B D (m) Mask_object 

0 120 115 33 10 3 

1 110 100 30 0 3 

2 200 120 100 25 3 

3 30 200 110 70 2 

4 60 90 130 3 0 

5 55 33 20 1 0 

6 40 120 200 1.5 2 

 

Table 2 shows an example of the shape of the input for the depth DNN. For example, the 

second pixel has the value of (110, 100, 30) for the color information and 0 for the depth, and 3 

for the mask_object (3 represents the class of the car) channel, which means this entry belongs to 
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a legitimate point but miss the depth value. In contrast, pixel numbers 4 and 5 belong to pixels 

outside objects of interest because mask_object is 0 (0 represents background).  

 

a. Network architecture 

To evaluate the effectiveness of instance segmentation in guiding the depth completion 

process, a two-branch convolutional neural network backbone similar to [33], [88] is used. The 

network consists of two branches; the first accepts three different input information: RGB image, 

depth map, and instance segmentation mask and objects of interest types. Each branch implements 

an encoder-decoder network with symmetric skip connections. Autoencoder architecture is a well-

known DNN architecture with a proven performance record in solving noise reduction and data 

improvement problems[97]. The depth completion process aims to fill in the gap between the 

sparse LiDAR point cloud points by estimating this missing information from the available sparse 

information. The encoder consists of one convolutional layer and ten basic residual blocks [94]. 

The decoder comprises five deconvolutional layers and one convolutional layer. Each 

convolutional layer is followed by batch normalization and relu activation layers. In this network, 

information is fused in different levels. Initially, input data is fused following an early fusion 

approach, and then another step of fusion is also conducted between two branches. Features from 

the first branch's decoder part are also fused into the encoder part of the second branch. A final 

late fusion process is also conducted by fusing the two semi depth maps into a final dense depth 

with the help of confidence values generated by each branch. The fused depth map 𝐷̂𝐹𝑢𝑠𝑒𝑑(𝑢, 𝑣) 

is calculated unising equation (4-10). Figure 24 provided more details about the network 

architecture.  
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𝐷̂𝐹𝑢𝑠𝑒𝑑(𝑢, 𝑣) =  

𝑒𝐶𝐵1(𝑢,𝑣). 𝐷̂𝐵1(𝑢, 𝑣) +  𝑒𝐶𝐵2(𝑢,𝑣). 𝐷̂𝐵2(𝑢, 𝑣)

𝑒𝐶𝐵1(𝑢,𝑣) +  𝑒𝐶𝐵2(𝑢,𝑣)
 

(4-10) 

 

 Where 𝐶𝐵1(𝑢, 𝑣), 𝐶𝐵1(𝑢, 𝑣), 𝐷̂𝐵2(𝑢, 𝑣) , 𝐷̂𝐵2(𝑢, 𝑣) represent the confidence map from the first 

branch, the confidence map from the second branch, the estimated depth from the first branch, and 

the estimated depth from the second branch, respectively. (𝑢, 𝑣) represents the pixel location.  

 

 



5
7
 

Figure 24. Proposed network architecture, the top part depicts the first branch, which takes the instance segmentation as input, while the lower 

part represents the second branch which takes branch one depth and the sparse depth as an input 
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A DBSCAN LiDAR Point Cloud Clustering Framework  

Light Detection and Ranging (LiDAR) technology is used in applications like urban road 

detection, planning, robotics, and Self-Driving Cars (SDCs). In robotics and SDCs, LiDAR is used 

for environment perception and understanding [98], [99]. However, LiDAR data is unordered and 

sparse. Grouping LiDAR data based on some criterion benefits many LiDAR-based real-time 

applications like object detection and classification [100],[83], [101]. 

DBSCAN clustering was built based on the assumption that the data has a consistent 

density; thus, using fixed global parameters seems appropriate. However, density is not uniform 

in real-world scenarios, so setting these parameters to constants should be addressed. The 

autonomous vehicle is immersed in a very dynamic environment, and the data from the LiDAR is 

very sparse and non-uniform. Accurate object detection in a LiDAR sweep demands an adaptive 

estimation of both ε and minPts. 

In this work, I propose to model the system's dynamics and automatically and adaptively 

estimate the DBSCAN parameters ε and minPts using empirical equations and the FOV division 

scheme.  

• Foreground Points Extraction 

Extracting foreground points from the entire LiDAR point cloud is vital to the success of 

any LiDAR data clustering process; it reduces the number of points dramatically, thus simplifying 

the clustering task and making it much faster. To distinguish LiDAR foreground points from 

background points, I followed the same approach of [102] in removing background points and 

reducing the total number of points using DNN. That is, all LiDAR 3D point clouds are fed into 
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encoder/decoder DNN to learn discriminative features, saving the resulting features into a vector, 

and then fed to a classification head; the classification head classify the points into two groups: 

foreground and background points, that is label: ‘0’ for background points and label: ‘1’ for 

foreground points. For training, the ground truth objects bounding boxes within KITTI have been 

used to distinguish foreground points from background points. Using the following assumption: 

All points inside the ground truth bounding boxes are considered foreground points, and the 

remaining points are considered background points. The same parameters proposed by (Shi et al., 

2018) have been adopted for training. Figure 25 shows the foreground segmentation framework 

where the output of the segmentation head is either foreground points (orange points) or 

background points (gray points).  

Figure 25. Foreground segmentation framework, the final output on the right shows orange points as the 

foreground, while gray points are the background [16] 

Additionally, Figure 26 provides another example of the segmentation process. Figure 20-

a is the original point cloud, while Figure 26-b shows the resulting foreground points from the 

camera  FOV perspective bounded by the white lines. The segmentation process marks all 

irrelevant points as a background, such as trees, walls, and road infrastructure. 
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As shown in Figure 26, the camera FOV was used as a reference. It is worth noting that the 

original LiDAR data size in Figure 26-a is 18,876 points. After background removal, it drops to 

5,158 points, which is almost a 75% reduction, which is very beneficial to any clustering algorithm. 

 

 

Figure 26. a)  Raw 3D LiDAR point cloud b) Foreground point cloud [16] 

 

• Adaptive Density and Ego Vehicle Location Aware DBSCAN (ADEVLA-DBSCAN) 

DBSCAN can be applied to LiDAR point cloud clustering, but using global fixed tuning 

parameters ε and minPts will negatively impact the overall performance. They may cause it to be 

unusable in real-time critical applications like SDCs and mobile robotics. Different clustering 

simulation experiments have been performed using DBSCAN with different tuning parameters to 

elaborate more on this. And visually and manually examined the results. Figure 27 shows the effect 
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of using different ε and minPts on the same LiDAR sweep, a wide range of ε and minPts, has been 

used. However, the values shown in  Figure 27 are (0.5, 1, 1.5, 2) and (9, 8,15) for ε and minPts, 

respectively. ε has a significant impact on the final points per cluster; for example, in Figure 27-b 

and Figure 27-e, changing the ε value from 0.5 to 2.0 allowed DBSCAN to detect and cluster the 

far object pointed by the white arrow, however, due to this change in ε, extra noise added to the 

orange cluster and two objects have merged together as a single object. Similar scenarios also exist 

in Figure 27- a, d, c, and f. 

Figure 27. DBSCAN with different Eps and minPts [16] 

To reduce computations and to get insights from the LiDAR sweep locally, the LiDAR 

FOV is divided into regions and the regions into cells. The number of regions and cells is selected 

by considering the LiDAR and camera FOV and the objects/lanes expected length and width. Road 

lanes width can be up to about 3.5m [103], and vehicles length is usually between 3 ~ 5 meters for 

mid-size vehicles [104]; therefore, taking into consideration the LiDAR FOV, dividing the ego 
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vehicle FOV into eight regions and eight cells is very reasonable. Figure 28 depicts the division 

scheme and the main parameter definitions. 

 

Figure 28. Proposed FOV division and parameters definitions 

 

Based on the division scheme and different simulation experiments, two equations are also 

proposed that can estimate the values of ε and minPts for each LiDAR point individually and 

locally. Equation 4-3 calculates Eps while equation 4-4 calculates minPts. 

 

𝐸𝑝𝑠 =
(
𝑐𝑒𝑙𝑙_𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙_𝑙𝑒𝑛 

𝐹𝑂𝑉_𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙
∗ 100)    ∗  (

𝑑𝑖𝑠𝑡
𝑚𝑎𝑥𝑑𝑖𝑠𝑡

)  ∗   𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝑑

sqrt(𝑑𝑒𝑛𝑠𝑖𝑡𝑦)
 

(4-11) 
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𝑀𝑖𝑛𝑃𝑡𝑠 =
𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑔𝑖𝑜𝑛𝑠 ∗  (

𝐸𝑝𝑠
𝑚𝑖𝑛𝑃𝑡𝑠𝐷𝑖𝑠𝑡[𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝑑]

) 

𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝑑

(4-12) 

Where 𝑑𝑖𝑠𝑡 is the Euclidean distance between the point and the LiDAR(origin), 𝑚𝑎𝑥𝑑𝑖𝑠𝑡 

is the LiDAR max depth. It is  70.2 m for the used LiDAR in the KITTI dataset, 𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑔𝑖𝑜𝑛𝑠 is 

the total number of regions,  𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝑑 is the id of the region where the point is located, and 

𝑐𝑒𝑙𝑙_𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙_𝑙𝑒𝑛  is the diagonal distance within cells and 𝐹𝑂𝑉_𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 the diagonal distance 

within the entire FOV. Also, the 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 is the density of points per cell and is calculated in 

equation (4-13) as follows: 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
#𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙

𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎

(4-13) 

And 𝑚𝑖𝑛𝑃𝑡𝑠𝐷𝑖𝑠𝑡 is the minimum horizontal distance between LiDAR points, and it is 

calculated with reference to the middle of each region using the equation (4-14) below: 

𝑚𝑖𝑛𝑃𝑡𝑠𝐷𝑖𝑠𝑡 [regionId] =  2 ∗ tan (
𝐿𝑖𝐷𝐴𝑅𝐻𝑅

2
)  ∗  𝑟𝑒𝑔𝑖𝑜𝑛𝑀𝐷

(4-14) 

Where LiDAR𝐻𝑅
is the LiDAR horizontal resolution and  tan (

𝐿𝑖𝐷𝐴𝑅𝐻𝑅

2
) is the tan of the half

horizontal LiDAR resolution, which is 0.4 degrees for the used LiDAR in the KITTI dataset, 

𝑟𝑒𝑔𝑖𝑜𝑛𝑀𝐷 is the distance between the middle of the region and the LiDAR. The equation applies 

triangle relations to find 𝑚𝑖𝑛𝑃𝑡𝑠𝐷𝑖𝑠𝑡, and Figure 29 provides more parameters’ illustrations for 

equation (4-14). 
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Figure 29. MinPtsDist parameters illustration 
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CHAPTER 5 

 EXPERIMENTAL RESULTS 

Dataset 

In this dissertation, the well-known KITTI Vision Benchmark Suite [16] has been selected 

and used to evaluate the proposed methodology and to generate different visual and numerical 

results. KITTI raw data are transformed, customized, and processed to support various research 

areas like stereo, flow, scene flow, depth prediction, depth completion, object detection, object 

classification, object tracking, road lane detection, and semantic segmentation. KITTI contains 

about six hours of driving in various set-ups, like driving in rural areas, highways, and urban areas.  

The dataset is well-calibrated, synchronized, and labeled. The dataset was captured in Karlsruhe, 

Germany, by a moving VW station wagon equipped with four Camera sensors (colored and 

monochrome), a LiDAR scanner (Velodyne HDL-64E), and high-precision GPS/IMU (OXTS 

RT3003). The raw data is divided into five main categories: Road, City, Residential, Campus, and 

person. Data are also saved into three folders: Images containing images captured by the four 

cameras. OXTS includes the GPS and IMU values and Velodyne, which has the LiDAR data 

points.  The proposed work is related to object detection and depth completion; thus, in section 

5.1.1, detailed information about KITTI object detection is provided, in section 5.1.2, detailed 

information about the depth completion dataset is provided. At the same time, in section 5.1.3, 

detailed information about the instance segmentation dataset is also provided.  
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KITTI object detection dataset  

The KITTI Object detection dataset contains around 7481 training images and 7518 testing 

images. The total number of labeled objects is 80256. Objects include cars, pedestrians, cyclists, 

trams, people sitting, and misc. Another essential piece of information is the level of occlusion and 

truncation for each labeled object. Each label contains the following interesting information: frame 

id, track id, truncation level (from 0 to 2) and occlusion level (from 0 to 3), object angle, bounding 

box information in 2D format or 3D format, location, and rotation around the y-axis. For the three 

major object types of KITTI: cars, pedestrians, and cyclists, Table 3 provides the total number of 

labels for each object type distinguished by the level of complexity.  

Table 3. KITTI dataset main classes statistics for the training split 

Class  Total instances  Easy Moderate  Hard 

Cars 11017 3153 4893 2971 

Pedestrians 2113 1186 653 274 

Cyclists  597 378 179 40 

 

In the clustering work, the 2D KITTI object detection dataset is used, wherein bonding 

boxes are provided in the form of 2D rectangles. LiDAR data are raw and provided in a 360-degree 

range. Thus, the LiDAR data is also cropped and aligned with the Camera's field of view. Figure 

30 shows an example from the KITTI object detection dataset. Figure 30-a shows the camera frame 
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with 2D bounding boxes, Figure 30-b shows the camera frame with 3D bounding boxes, and 

finally, Figure 30-c shows LiDAR point cloud from the camera point of view with both 3D 

bounding boxes and labels. 

 

Figure 30. KITTI object detection dataset example  a) camera image with 2D bounding boxes b) camera 

image with 3D bounding boxes c) LiDAR point cloud with 3D bounding boxes and labels from camera 

FOV [16] 
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KITTI depth completion dataset 

The KITTI depth completion dataset is a large-scale dataset created based on the raw KITTI 

dataset. which consists of 85,898 training data frames from RGB cameras and LiDAR; the dataset 

also has 1K validation data frames. We observed that the RGB images are extracted from two 

cameras positioned to capture the car’s front view. To reduce the training time, we used only one 

camera data, which reduced the number of frames to 42,949, and further, we applied a ¼ random 

sampling, resulting in a final training dataset size of 10,737 frames. Each training sample consists 

of four main entities: (1) RGB frame with a resolution of 1216x352, (2) Sparse LiDAR depth map, 

(3) Ground truth depth map, and (4) Instance segmentation information encoded using our 

encoding algorithm. It is worth noting that the sparse depth maps have about 5% valid depth 

information, and the ground truth depth maps have about 16% valid depth information. 

The dataset creators automated the noise and artifacts removal process available in the 

KITTI raw dataset due to different sources like occlusions and reflection. The automated cleaning 

process is done by correlating the LiDAR scans to the depth maps generated using the stereo 

reconstruction approach. They accumulate eleven laser beams to increase the density of the 

generated depth maps. And finally, evaluate the generated dataset by comparing it with the 

manually cleaned stereo dataset [105]. Figure 31 shows an example from the KITTI depth 

completion dataset. Figure 31-a shows the Camera sensor image. Some work only uses the camera 

data for referencing purposes (non-guided depth completion) and do not use it in their pipeline. 

In contrast, other works apply a guided depth completion approach that combines multiple 

sensor information like camera and LiDAR. Figure 31-b shows the sparse LiDAR depth map, and 

Figure 31-c shows the dense LiDAR depth map (the ground truth in the dataset). For both Figure 
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31-b and Figure 31-c, LiDAR depth information has been projected into the camera 2D plan and 

color-coded based on the depth range for easier understanding and better visualization. 

 

Figure 31. KITTI depth dataset a) Camera image b) Sparse LiDAR depth map in the 2D domain c) 

LiDAR ground truth in the 2D domain [16] 

*Depth maps have been colored for easier visual understanding 
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KITTI instance segmentation dataset 

KITTI also provides a dataset for instance segmentation work [52]. The dataset consists of 

200 training images and another 200 validation images, combining real and synthetic data. Figure 

32 depicts an example of the instance segmentation dataset and shows the wide range of 

semantically labeled objects in a self-driving context.  

 

Figure 32. KITTI Instance Segmentation Dataset [52] Example a) reference camera image b) Instance 

segmentation of the image objects, wherein each color is assigned to a unique object, e.g., dark blue for 

cars 
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Experimental Setup 

Environment 

The simulation and analysis have been carried out in two environments; the development 

and prototyping have been done in a local server located in DISPLY lab. The server is Intel(R) 

Xeon(R) CPU E5-1620 0 @ 3.60GHz equipped with 32GiB of RAM and a GTX 1080 TI GPU. 

The operating system is Ubuntu, and the primary programming language is Python. Both 

TensorFlow and Pytorch frameworks have also been used. The long training and simulation have 

been done on google Colab environment with Pro membership which provides Tesla P100 or Tesla 

T4 GPU with 25.4 GB graphic RAM and 32GB of machine RAM and 167GB SSD storage. Table 

4 provides additional specification information about the local development environment. 

Table 4. DISPLY lab Development Environment Specifications 

Item    Specification   

Processor  Intel(R) Xeon(R) CPU E5-1620 0 @ 3.60GHz 

Number of cores  8 

RAM 32836MB 

GPU GTX 1080 TI 

GPU RAM 11 GiB 

Machine Type Tower 

Operating System Ubuntu 20.04.2 LTS 

Programming language 1  Python3 V 3.8.10 
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Tabel 4 - continued  

Programming language 2 Pytorch V 1.2.0 

Environment control  Anaconda  

Nvidia toolkit  Driver Version: 470.103.01 

CUDA  Version: 11.4 

Instance Segmentation Based Depth Completion Framework Using Sensor 

Fusion 

Performance metrics  

In this research, for instance segmentation, the standard COCO metrics: AP, AP0.5 and 

AP0.75, where AP stands for average precision and 0.5 and 0.75 represent the area overlap threshold 

is used. Instead of the general intersection over Union (5-10), the Mask IOU to evaluate the 

generated masks' quality is used. As for depth completion,  the KITTI benchmark and other 

existing methods [33], [69], [70] are used as well as the five standard metrics: Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), inverse Depth Root Mean Squared Error (iRMSE), 

inverse depth Mean Absolute Error (iMAE) and the Mean Squared Error (MSE). These metrics 

are as given in equations (5-1), (5-2), (5-3), (5-4), (5-5), respectively:  

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
 ∑(𝑑̂𝑖 −  𝑑𝑖)2

𝑁

𝑖

         (5-1) 

 𝑀𝐴𝐸 =
1

𝑁
 ∑ |(𝑑̂𝑖 −  𝑑𝑖)|𝑁

𝑖     (5-2) 
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(5-3) 

𝑖𝑀𝐴𝐸 =  
1

𝑁
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1

𝑑̂𝑖

−  
1

𝑑𝑖
|

𝑁

1

 (5-4) 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑑̂𝑖 −  𝑑𝑖)

2

𝑁

𝑖

(5-5) 

where 𝑑̂𝑖 , 𝑑𝑖 are the predicted pixel depth value and ground truth pixel depth value, respectively, 

and N is the number of pixels. 

Instance segmentation results 

The instance segmentation network has been trained on the KITTI instance segmentation 

dataset for 42 epochs. Figure 33, Figure 34, Figure 35, and Figure 36 show four primary loss 

performances over the epoch’s interval: the combined loss, bounding box loss, class loss, and mask 

loss, respectively. Losses values were recorded for both the training subset and validation subset. 

All losses decrease significantly within the first 30 epochs. For example, the mask loss was around 

0.06 at epoch 30 and stayed around the same value for the remaining training process. The 

validation loss is generally small and very close to the training loss, which means that the model 

is not over-fitted and can be generalized well for new unseen data. Equations (5-6), (5-7), (5-8), 

and (5-9) show the mathematical equations used to calculate classification loss, bounding box loss, 

mask loss, and combined loss [43], [95], respectively.  
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 𝐿𝑐𝑙𝑠(𝑝𝑖,  𝑝̂𝑖) = −𝑙𝑜𝑔 (𝑝𝑖
𝑐)  (5-6) 

where, 𝑝𝑖
𝑐 is the predicted probability for the proposed region belonging to class c 

 𝐿𝑏𝑜𝑥 =  𝑙1
𝑠𝑚𝑜𝑜𝑡ℎ(𝑡𝑖 − 𝑡̂𝑖) (5-7) 

 

where 𝑡𝑖  ,  𝑡̂𝑖 are the ground truth coordinate of the bounding box and the predicted coordinate, and 

𝑙1
𝑠𝑚𝑜𝑜𝑡ℎ is a combination of Least Absolute Deviations and Least Square Errors. 

 
𝐿𝑚𝑎𝑠𝑘 = −

1

𝑚2
 ∑ [𝑦𝑖𝑗 𝑙𝑜𝑔 𝑦̂𝑖𝑗

𝑘 + (𝑖 − 𝑦𝑖𝑗)𝑙𝑜𝑔(1 − 𝑦̂𝑖𝑗
𝑘 )]

1≤𝑖,𝑗≤𝑚

 
(5-8) 

𝑤h𝑒𝑟𝑒 𝑦𝑖𝑗 is the ground truth label of the pixel at i, j location  𝑎𝑛𝑑 𝑦̂𝑖𝑗
𝑘  is the predicted label of 

the pixel at i,j. 

 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑙𝑜𝑠𝑠 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 (5-9) 

Figure 37 shows the performance of the instance segmentation model on a randomly 

selected frame from the KITTI dataset. The top left image shows the frame with the instance mask 

placed on each object. The figure also shows the LiDAR sparse point cloud and instances 

examples. Interestingly, instance segmentation masks precisely identify each object's boundaries 

especially occluded and small objects such as those in examples 4 and 5.  

 Depth completion neural network can work either on each instance individually or the 

entire scene with preliminary information about instance masks and types. 
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Figure 33. Instance segmentation combined loss on both training and validation subsets over different 

epochs 

 

Figure 34. Instance segmentation bounding box loss on both training and validation subsets over 

different epochs 
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Figure 35. Instance segmentation classification loss on both training and validation subsets over different 

epochs 

 

Figure 36. Instance segmentation mask loss on both training and validation subsets over different epochs 
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Figure 37. Performance of the trained instance segmentation model on a randomly selected frame from 

the KITTI dataset [16] 

 

Although the KITTI instance segmentation dataset is small, using the transfer learning 

technique, a very close performance measures to those generated from the official Mask- RCNN 

work. Table 5 summarizes the performance measures for the custom-trained Mask-RCNN and the 

official trained Mask-RCNN.  

 

Table 5. Performance metrics of the custom-trained Mask-RCNN 

 AP AP50 AP75 

Custom trained Mask-RCNN  32.1% 51.4% 34.6% 

Official  Mask-RCNN  37.1% 60% 39.4% 
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Depth completion results 

Several experiments have been done to evaluate the impact and usefulness of instance 

segmentation in the depth completion problem. It is worth mentioning that depth completion 

training is a resource and time-consuming process. Most recent works reported days or weeks of 

training time. Our Baseline model is the ENet [33] model. Since we are using a subset of the KITTI 

dataset, we first retrained the ENet on the prepared subset and used it as our baseline. The 1K 

validation images supplied by the KITTI dataset have been used for validation purposes. Figure 

38 shows the validation RMSE for both the proposed instance segmentation-based depth 

completion and the baseline model; the RMSE decreases as the epoch increases, indicating that 

the models are improving and that the proposed method surpasses the baseline model. It is also 

clear that at early epochs, the proposed method starts with a lower RMSE than the baseline model, 

which is about 20K RMSE less than the baseline model.  

 

Figure 38. RMSE for both the proposed method and the baseline model over different epochs 
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Figure 39 shows the validation MAE for both the proposed instance segmentation-based 

depth completion and the baseline model; the MAE decreases as the epoch increases, indicating 

that the models are improving and that the proposed method surpasses the baseline model. It is 

also clear that at early epochs, the proposed method starts with a lower MAE than the baseline 

model, which is about 10K MAE less than the baseline model.  

 

 

Figure 39. MAE for both the proposed method and the baseline model over different epochs 

 

Figure 40 shows the validation MSE for both the proposed instance segmentation-based 

depth completion and the baseline model; the MSE decreases as the epoch increases, indicating 

that the models are improving and that the proposed method MSE is less than the baseline model 
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by a good factor. It is also clear that at early epochs, the proposed method starts with a lower MSE 

than the baseline model, which is about 150M MSE less than the baseline model. 

 

 

Figure 40. MSE for both the proposed method and the baseline model over different epochs 

  

Figure 41 and Figure 42 shows RMSE and MAE but on during the training phase. The 

figures show that the proposed method outperforms the baseline model and starts with lower errors 

at the initial stages.  
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Figure 41. RMSE over different epochs for both the proposed method and the baseline model at the 

training phase  

 

Figure 42. MAE over multiple epochs for both the proposed method and the baseline model at the 

training phase  
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Table 6 shows the validation performance measure for the proposed method and the baseline 

model at the last trained epoch. All listed metrics are the lower is the better. The proposed method 

outperforms the baseline model by 0.35 %, 0.64%, 1.85%, 1.32%, 0.37% and 4.74% for RMSE, 

iRMSE, MAE, iMAE and MSE, respectively.  

 

Table 6. Performance measures on the validation dataset at the last epoch for both the proposed method 

and the baseline model  

Metric Baseline Proposed method 

RMSE ↓ (mm) 882.636 879.525 

iRMSE ↓(1/KM) 3.178 3.1585 

MAE ↓(mm) 266.933 261.991 

iMAE ↓(1/KM) 1.279 1.262 

 

 

Table 7. Performance measures on the training dataset at the last epoch for both the proposed method 

and the baseline model  

Metric Baseline Proposed method 

RMSE ↓ (mm) 773.704 764.626 

 

iRMSE ↓(1/KM) 3.373 3.327 

 

MAE ↓(mm) 239.695 240.602 

 

iMAE ↓(1/KM) 1.268 1.290 

 

MSE ↓ 623970.8 613420.5 
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Table 7 shows the training performance measure for the proposed method and the baseline 

model at the last trained epoch. The proposed method outperforms the trained model in the training 

RMSE, and iRMSE and was very close in performance in the remaining.  

 

Figure 43 shows three examples of the quality of the proposed method compared to the 

baseline model. For each example, we are providing the RGB image as a reference, the depth map 

of the proposed method, and the depth map from the baseline model, and the instance segmentation 

mask. We are also highlighting interesting areas that are easy to focus on to see the strength of the 

proposed method compared to the baseline model. Finally, we also provide the RMSE and MAE 

for each example. The proposed method in the three examples revealed an outstanding 

performance when focusing on objects and their boundaries. 

In Figure 43, In example 1, the white rectangle highlights how the proposed method could 

distinguish between the two cars and the area between them. In the baseline model, the area was 

considered part of one of the vehicles. In example 2, the white rectangle highlights how the 

proposed method was able to distinguish between the right side of the cyclist while the baseline 

model included part of the background area to the same depth level as the right side of the cyclist. 

Finally, in example 3, the white rectangle highlights how the proposed method was able to 

distinguish between the two adjacent pedestrians while the baseline model merges them. 

 

In summary, experimental results proved the ability of instance segmentation clues in 

guiding depth completion tasks. The proposed framework achieved superior performance 

compared to the baseline model. Both quantitative and qualitative measures have been addressed. 

Quantitatively the framework surpasses the baseline in all related metrics like RMSE, MAE, and 
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MSE. Additionally, in earlier training epochs, the proposed framework showed smaller error 

values than the baseline model, proving the ability of instance segmentation clues to efficiently 

guide the depth completion task. 



8
5
 

Figure 43. Qualitative comparison between the baseline model and the proposed method [16] 
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LiDAR Point Cloud Clustering Results 

Performance metrics 

An evaluation framework has been developed to evaluate the clustering performance that 

compares the ground truth 2D bounding boxes from the dataset with the 2D bounding boxes 

resulting from the clustering process. Clusters are considered correct if the intersection over union 

between the ground truth bounding box and the bounding box generated from the clustering 

process is less than a specific threshold. As a final metric, the total number of correct clusters vs. 

the total number of incorrect clusters is used. The flowchart in Figure 44 depicts the entire 

evaluation process.  

Figure 44. Proposed DBSCAN-based clustering evaluation flowchart 
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A graphical representation from the real dataset is also depicted in Figure 45. The 2D image 

is used for illustration and evaluation purposes only. LiDAR Data as shown in Figure 45-b, is 

processed by removing the background points. Clusters of the foreground points are projected as 

a 2D image as in Figure 45-c, each cluster colored with a unique color to make the visual evaluation 

easier. In the last step, as shown in Figure 45-e, a  bounding box for the clusters is generated (green 

box) and compared with the ground truth 2D bounding box (white box) provided by the KITTI 

dataset. The intersection is calculated (the black area), and the two bounding boxes are correlated 

using the Intersection Over Union (IOU) as shown in equation (5-10)  [25], and assessed based on 

a specific threshold. 

Figure 45. Clustering evaluation on a selected KITTI frame a) raw camera image, b) raw LiDAR data, c) 

generated clusters in a 2D domain, d) generated clusters in a 3D domain, e) ground truth and generated 

2D initial bounding boxes and intersections [16] 
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𝐼𝑂𝑈(𝑏, 𝑏𝑔) =  

𝑎𝑟𝑒𝑎 (𝑏 ∩ 𝑏𝑔)

𝑎𝑟𝑒𝑎 (𝑏 ∪ 𝑏𝑔)
 

(5-10) 

where 𝑏 and 𝑏𝑔 are the generated bounding box and the ground truth bounding box, respectively.  

It is worth noting that the IOU has been used since the dataset does not provide cluster 

information explicitly. In fact, we utilize the bounding boxes to find points association; thus, IOU 

can provide a good indicator of accuracy for the proposed clustering method.  

 

Clustering qualitative and quantitative results 

Using the same LiDAR sweep of Figure 27, clustering simulation was repeated using the 

proposed method. As shown in Figure 46, all objects were successfully clustered without assigning 

specific ε or minPts. The results also show that all potential objects were identified without 

merging adjacent objects. 

 

Figure 46. Qualitative clustering results of the proposed method, all objects have been appropriately 

clustered, especially those that are very close to each other [16] 
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Applying the evaluation process depicted in Figure 44 to the entire evaluation portion of 

KITTI dataset yields improvements when compared to DBSCAN. It is worth mentioning that for 

DBSCAN, extensive simulation experiments have been done to estimate the best tuning 

parameters. The results presented in the second column of Table 5 are the values that delivered the 

best performance. 

In Table 8, the proposed algorithm achieved relatively similar performance to the original 

DBSCAN with the brute-forced parameters. The proposed equations consider LiDAR specs; thus, 

the proposed algorithm can be used in applications with different LiDAR specs.  

Table 8. Quantitative results of the proposed clustering method compared to the original DBSCAN 

Performance Indicator  DBSCAN 

(ε = 1, minPts =10) 

ADEVLA-DBSCAN 

Total Ground truth samples 14385 14385 

Total Number of correctly 

detected samples 

12170 12114 

Total number of not 

detected samples 

2215 2271 

Accuracy 84.6% 84.2% 

In summary, the experimental results using the KITTI object detection dataset indicated the ability 

of the automated DBSCAN parameter selection framework to achieve a similar accuracy level 

compared to the manual selection approach. Reveling the framework's ability to cancel the need 

to brute force search for the proper tuning parameter values.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

Self-driving cars are a promising technology not only it will reduce fatalities of humans 

and wild life, curb or end emissions and fuel consumption, but also it will revolutionize public 

transportation by increasing traffic efficiency and better travel experiences specifically for the 

physically and visually impaired. However, without artificial intelligence and machine learning 

advancements and stringent testing, AV will not be as planned and by 2030. Hence, developing 

high-quality, accurate, and real-time algorithms is of utmost importance. This dissertation focuses 

on the perception module of self-driving vehicles, wherein two key challenges have been 

addressed: depth completion and LiDAR point cloud clustering. Both are critical to self-driving 

cars' enablement as they are the primary source of 3D information, which is an essential for many 

perception tasks like 3D object detection, 3D instance segmentation, localization, simultaneous 

localization and mapping, and 3D object tracking.   

For depth completion, a guided depth completion with a multi-level sensor fusion 

framework has been proposed. The framework utilizes and fuses the image instance segmentation 

features, such as object type and objects pixel-level locations, alongside the sparse depth 

measurement and the color image information to guide the depth completion process. For efficient 

training, a data structure and encoding scheme are developed to combine the objects' location-

masks and object types into a 2D 1-channel array. Experimental results on the KITTI dataset 

indicated the ability of the proposed framework to generate accurate depth information and exceed 

the baseline performance. In addition, in earlier training epochs, the proposed framework starts 

with smaller errors than the baseline work, which eventually allows the model to reach a faster 
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convergence state. We demonstrated that instance segmentation clues are very valuable in guiding 

the depth completion process successfully.  

For LiDAR point cloud clustering, a framework that is based on the DBSCAN algorithm 

to cluster LiDAR point cloud is proposed, wherein DBSCAN tuning parameters are adaptively 

and automatically estimated. The framework uses a felid of view division scheme and points cloud 

statistics to calculate tuning parameters for each frame. Experimental results using the KITTI 

dataset revealed the framework's ability to achieve relative accuracy to DBSCAN while 

eliminating the need for brute force search for the best tuning parameters to make the clustering 

algorithm more robust in SDCs environment. 

Aiming to avoid the perceptual limitations of single sensor modality and to generate 3D 

far-reaching global scene understanding and high redundancy, this dissertation presents a sensor 

fusion framework that combines information from different sensor modalities and preprocessing 

techniques. In this dissertation, a thorough investigation of the advantages of fusing image instance 

segmentation features for a better depth completion pipeline is presented. Many other promising 

directions can be explored in the future. For example, panoptic segmentation can be used instead 

of instance segmentation since it provides richer information. However, it has a higher 

computation complexity and hence careful computing optimization is a must. Other works can use 

this dissertation’s framework to include various feature fusion strategies maximizing benefits from 

the many AV deployed sensors to propel perception and scene understanding.  
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