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A FRAMEWORK FOR ASSESSING THE 4TH RANK DISPERSIVITY TENSOR 

UNDER ANISOTROPIC AXIAL SYMMETRIES 

Xiang Fan, Ph.D.

Western Michigan University, 2022 

Multi-dimensional expansion of the advection-dispersion equation necessitated the 

representation of dispersivity as a 4th rank tensor. This tensorial form of dispersivity has 81 

terms in three-dimensions with a maximum of 36 independent terms that may be used to 

describe Fickian spreading of a dissolved contaminant plume according to intrinsic properties 

of a porous medium. The complexity of the 4th rank tensor has led to the common practice of 

simplifying the tensor to only 2 or 3 independent terms by assuming isotropic conditions, 

although isotropic porous media are uncommon in nature as many natural geologic systems 

exhibit pronounced anisotropy. A broad set of crystallographic symmetries are investigated 

for application to the dispersivity tensor. Listed in order of high to low symmetry, these 

symmetries include isotropic, hexagonal, tetragonal, orthorhombic, monoclinic, and triclinic. 

A framework is developed for each of these symmetries to identify and quantify connections 

between individual dispersivity terms with principal values of the 2nd rank dispersion tensor. 

A sensitivity analysis is performed to determine the influence of individual terms of 

dispersivity on principal components of dispersion. A numerical method allowing for 

visualization of resultant multi-Gaussian densities for any of these axial symmetries is also 

presented. Conservative particle transport in lattice networks is used to parameterize the full 

dispersivity tensor for hexagonal, tetragonal, and orthorhombic symmetries. 
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CHAPTER I 

INTRODUCTION 

Solute transport in groundwater flow systems is governed by the processes of 

advection and dispersion, which describe a dissolved solute moving at the rate of the average 

groundwater velocity, and solute spreading in a porous medium due to the combined effects 

of velocity variations and pathway tortuosity, respectively. These processes are 

mathematically defined in the advection-dispersion equation (ADE) (Scheidegger, 1957; 

Bear, 1961): 

𝜕𝐶

𝜕𝑡
= −𝛻 · (𝑣𝐶) + 𝛻 · (𝐷𝛻𝐶)  (1) 

where C is solute concentration [M/L3], D is the Fickian dispersion coefficient [L2/T], v is 

groundwater velocity [L/T], and t is time [T]. Velocity and dispersion coefficients are both 

2nd rank tensors.  

Derivations of the multi-dimensional form of the ADE posed some challenges in how 

to mathematically model dispersion. For example, in one-dimensional forms of the ADE, a 

relationship was proposed to connect velocity to the dispersion coefficient (Scheidegger, 

1954, 1958; Day, 1956; Rifai et al, 1956): 

𝐷 = 𝑎 · 𝑣 (2) 

where a [L] is dispersivity and describes the intrinsic spreading properties of the porous 

media. All parameters in Eq. 2 are scalar in one-dimension, yet are tensors in multi-

dimensional form. Specifically, since velocity and dispersion are 2nd rank tensors in Eq. 1, 

dispersivity, which is defined in Eq. 2 as a linear function of velocity and dispersion, must 

also be a tensor of 4th rank (Bear, 1961; Scheidegger, 1961). 
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Bear (1961) defined the multi-dimensional form of Eq. 2: 

𝐷𝑖𝑗 = 𝑎𝑖𝑗𝑘𝑙
𝑣𝑘𝑣𝑙

𝑣
 (3) 

where aijkl is the 4th rank dispersivity tensor, and vkvl is the inner (dyadic) product of velocity 

vector v (a 2nd rank tensor), and Dij is the 2nd rank dispersion tensor: 

𝐷𝑖𝑗 = |
𝐷11 𝐷12 𝐷13
𝐷12 𝐷22 𝐷23
𝐷13 𝐷23 𝐷33

|.  (4) 

Dij should be positive definite matrix (Fel and Bear, 2009). It has following constraint 

conditions: 

{

𝑑𝑒𝑡 |𝐷11|  > 0

𝑑𝑒𝑡 |
𝐷11 𝐷12
𝐷12 𝐷22

|  > 0

𝑑𝑒𝑡 |
𝐷11 𝐷12 𝐷13
𝐷12 𝐷22 𝐷23
𝐷13 𝐷23 𝐷33

| > 0

. 

This constraint conditions can also be expressed as: {

𝜆1 > 0
𝜆2 > 0
𝜆3 > 0

, where λ1, λ2, λ3 are the 

eigenvalues of matrix 4. 

Combining Eq. 1 and 3 results in (Bear, 1961, 1972): 

𝜕𝐶

𝜕𝑡
= −𝑣𝑖

𝜕𝐶

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑖
𝑎𝑖𝑗𝑘𝑙  

𝑣𝑙 𝑣𝑚

𝑣

𝜕𝐶

𝜕𝑥𝑗
 . (5) 

A 4th rank tensor on a Cartesian coordinate system contains 34 = 81 terms. However, the 4th 

rank dispersivity tensor aijkl belongs to the symmetry group [V2]2 because of its inherent 

symmetries and has two pairs of indices: (Scheidegger, 1961):

 𝑎𝑖𝑗𝑘𝑙 = 𝑎𝑗𝑖𝑘𝑙 = 𝑎𝑖𝑗𝑙𝑘.  (6) 

Hence, dispersivity can be simplified to a 6 x 6 matrix with 36 components: 



3 

 

 𝑎𝑝𝑞 ≅ 𝑎𝑖𝑗𝑘𝑙 =
|

|

𝑎11 𝑎12 𝑎13 𝑎14 𝑎15 𝑎16
𝑎21 𝑎22 𝑎23 𝑎24 𝑎25 𝑎26
𝑎31 𝑎32 𝑎33 𝑎34 𝑎35 𝑎36
𝑎41 𝑎42 𝑎43 𝑎44 𝑎45 𝑎46
𝑎51 𝑎52 𝑎53 𝑎54 𝑎55 𝑎56
𝑎61 𝑎62 𝑎63 𝑎64 𝑎65 𝑎66

|

|
   (7) 

where apq ≌ aijkl, ij « p = 1,2,3,4, kl « q = 1,2,3,4.  Values of aijkl should satisfy the constraint 

conditions in matrix 4. Matrix 7 represents the most general case of the dispersivity tensor.   

The use of 4th rank tensor is relatively uncommon in science and engineering. One 

similar example to the dispersivity tensor is Hooke's law:  

 𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙  (8)  

where σij is the 2nd rank stress tensor, cijkl is the 4th rank elasticity tensor, and ekl is the 2nd rank 

strain tensor. Dispersivity and elasticity also share a similar one-dimension linear relationship: 

F= - k · x, where k is spring constant, F is force, and x is change in length. However, one 

major difference between the elasticity cijkl and dispersivity tensors aijkl is that the elasticity 

tensor has higher inherent symmetries and follows the symmetry group [[V2]2]. This leads to 

two pairs of indices under permutation (Sirotin and Shaskolskaia, 1982): 

 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑗𝑖𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 = 𝑐𝑘𝑙𝑖𝑗. (9)  

Thus, the elasticity tensor may contain a maximum 21 independent terms in three-

dimensions, while the dispersivity tensor may contain up to 36 independent terms.  

Components of the dispersivity tensor can be defined for various axial symmetries 

adopted from crystallography (Sirotin and Shaskolskaia, 1982). Presented in the order of 

higher to lower axial symmetry, these axial symmetries include isotropic, hexagonal, 

tetragonal, orthorhombic, monoclinic, and triclinic cases. In general, the complexity of the 

tensor is represented by the number of non-zero terms. The dispersivity tensor was first 

investigated by assuming isotropic symmetry (Bear, 1961): 
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𝑎𝑝𝑞 ≅ 𝑎𝑖𝑗𝑘𝑙 = 

|

|

𝑎11 𝑎12 𝑎12 0 0 0
𝑎12 𝑎11 𝑎12 0 0 0
𝑎12 𝑎12 𝑎11 0 0 0

0 0 0
1

2
(𝑎11 − 𝑎12) 0 0

0 0 0 0
1

2
(𝑎11 − 𝑎12) 0

0 0 0 0 0
1

2
(𝑎11 − 𝑎12)

|

|

.  (10)       

where a11 is defined as longitudinal dispersivity and a12 is transverse dispersivity which 

describe the spreading of a three-dimensional Gaussian plume both along and transverse to 

the average direction of groundwater flow, respectively. With only 2 independent 

components, matrix 10 is can be expressed in Einstein notation: 

 𝑎𝑝𝑞 ≅ 𝑎𝑖𝑗𝑘𝑙 = 𝑎𝑇𝛿𝑖𝑗𝛿𝑘𝑙 +
(𝑎𝐿−𝑎𝑇)

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (11) 

where δij is the Kronecker delta function: δij =  {
1, 𝑖𝑓 𝑖 = 𝑗
0, 𝑖𝑓 𝑖 ≠ 𝑗

. 

While isotropic symmetry is an ideal condition, it rarely occurs in geologic systems 

which often exhibit pronounced asymmetry. Examples include unconsolidated aquifers 

comprised of sediment deposited in horizontal or near-horizontal layers with different 

characteristic grain sizes and permeabilities that lead to vertical anisotropy (Pickup et al, 

1994); disordered systems such as rock fracture networks and alluvial aquifers where 

permeability has a directional dependence (Oda et al, 1987; Lee et al, 2007; Klimczak et al, 

2010); and fault damage zones in crystalline or metamorphic rock which focus fluid flow and 

solute transport parallel to the fault (Bruhn et al, 1994; Caine et al, 1996; Johri et al, 2014).  

Most recently, Fel and Bear (2009) recognized limitations of the symmetric 

dispersivity tensor and developed a cursory framework that incorporates hexagonal and 

tetragonal axial symmetries in the dispersivity tensor. For hexagonal symmetry in three-

dimensions, the dispersivity tensor has 6 non-zero elements (Sirotin and Shaskolskaia, 1982): 
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 𝑎𝑝𝑞 ≅ 𝑎𝑖𝑗𝑘𝑙 =

|

|

𝑎11 𝑎12 𝑎13 0 0 0
𝑎12 𝑎11 𝑎13 0 0 0
𝑎31 𝑎31 𝑎33 0 0 0
0 0 0 𝑎44 0 0
0 0 0 0 𝑎44 0

0 0 0 0 0
1

2
(𝑎11 − 𝑎12)

|

|

. (12)  

The dispersivity tensor in the case of tetragonal symmetry is slightly more complex than the 

hexagonal case, and contains 7 non-zero elements (Sirotin and Shaskolskaia, 1982): 

 𝑎𝑝𝑞 ≅ 𝑎𝑖𝑗𝑘𝑙 =
|

|

𝑎11 𝑎12 𝑎13 0 0 0
𝑎12 𝑎11 𝑎13 0 0 0
𝑎31 𝑎31 𝑎33 0 0 0
0 0 0 𝑎44 0 0
0 0 0 0 𝑎44 0
0 0 0 0 0 𝑎55

|

|
 .        (13)         

Bear et al (2009) utilized eigenvectors to denote directions of the symmetry axes and 

eigenvalues to describe the rates of spreading along the eigenvectors. Using this methodology, 

the hexagonal case of the dispersivity tensor can be expressed as (Fel and Bear, 2009): 

𝑎𝑝𝑞 ≅ 𝑎𝑖𝑗𝑘𝑙 = 𝑎1𝛿𝑖𝑗𝛿𝑘𝑙 +
𝑎2

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + 𝑎3𝑒𝑖𝑒𝑗𝛿𝑘𝑙 + 𝑎4𝑒𝑘𝑒𝑙𝛿𝑖𝑗 +

𝑎5

2
(𝑒𝑖𝑒𝑘𝛿𝑗𝑙 + 𝑒𝑗𝑒𝑘𝛿𝑖𝑙 + 𝑒𝑖𝑒𝑙𝛿𝑗𝑘 + 𝑒𝑗𝑒𝑙𝛿𝑖𝑘) + 𝑎6𝑒𝑖𝑒𝑗𝑒𝑘𝑒𝑙    (14) 

where a1 to a6 represent tensor values for a11 to a44 in matrix 12, ei, ej, ek, el are eigenvalues, 

and δij is the Kronecker delta function. Similarly, the tetragonal symmetry case can be 

represented in eigenvector and eigenvalue form as (Fel and Bear, 2009): 

 𝐷𝑖𝑗 . 𝑣 = (𝑎1((𝛼𝑘𝑉𝑘)
2 + (𝛽𝑘𝑉𝑘)

2)) + 𝑎2𝑣
2)𝛿𝑖𝑗 + (𝑎3((𝛼𝑘𝑉𝑘)

2 + (𝛽𝑘𝑉𝑘)
2)) +

𝑎4𝑣
2)(𝛼𝑖𝛼𝑗 + 𝛽𝑖𝛽𝑗) + 𝑎5 ((𝛼𝑘𝑉𝑘)(𝛼𝑖𝑉𝑗 + 𝛼𝑗𝑉𝑖) + (𝛽𝑘𝑉𝑘)(𝛽𝑖𝑉𝑗 + 𝛽𝑗𝑉𝑖)) +

𝑎6(𝛼𝑘𝑉𝑘)(𝛽𝑘𝑉𝑘)(𝛼𝑖𝛽𝑗 + 𝛼𝑗𝛽𝑖) + 𝑎7𝑉𝑖𝑉𝑗   (15) 

where a1 to a7 represent tensor values for a11 to a55 in matrix 13, and α, β, γ are vectors in the 

x- and y-axes, and γ = α × β. 
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As the geometric symmetries decrease beyond hexagonal and tetragonal cases, it 

becomes increasingly difficult to build relationships between dispersion and dispersivity 

using this method. Fel and Bear (2009) also proposed a linear algebraic approach to identify 

individual components of the dispersivity tensors but did not provide a general methodology 

to solve these components, nor relate the sensitivity and influence of individual dispersivity 

tensor terms to principal dispersion values. 

Currently the contaminant transport problems in hydrogeology, including numerical 

models used in legal cases, are primarily based on the Gaussian model of dispersion with an 

isotropic dispersivity tensor. However, isotopic symmetry is an insufficient model of 

dispersion, more complicated asymmetric models are needed, and can be justified by the 

geology. Bear, who first recognized that dispersivity tensor is 4th rank, stated over 50 years 

ago that dispersivity is not isotropic and needs to be further explored (Bear, 1972).  In this 

study, a different approach is proposed to study the form of the dispersivity tensor and 

resultant principal dispersion values for a broader set of axial symmetries. Specifically, a 

framework is presented that is applicable for any crystallographic axial symmetry, and 

connects diagonal components of the dispersion tensor to independent terms of the 

dispersivity tensor. Sensitivity and contribution of each individual dispersivity term on the 

resultant dispersion tensor is assessed, and synthetic particle plumes generated using lattice 

networks are used to parameterize the dispersivity tensor for hexagonal-tetragonal and 

orthorhombic symmetries. Visualizations of resultant two-dimensional and three-dimensional 

Gaussian densities for the axial symmetries are also presented.  
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CHAPTER 2 

BUILDING RELATIONSHIPS AMONG DISPERSION, DISPERSIVITY AND 

VELOCITY 

In this chapter, relationships between dispersion, dispersivity, and the velocity tensors 

are defined. The analyses performed are intentionally simplified by focusing on how changes 

in dispersivity affect dispersion. Tensorial forms of dispersivity are provided for isotropic, 

hexagonal, tetragonal cases in matrices 10, 12, and 13, respectively. For orthorhombic, 

monoclinic, and triclinic symmetries, the three-dimensional dispersivity tensor can be 

expressed as (Sirotin and Shaskolskaia, 1982):  

 𝑎𝑝𝑞 ≅ 𝑎𝑖𝑗𝑘𝑙 =
|

|

𝑎11 𝑎12 𝑎13 0 0 0
𝑎21 𝑎22 𝑎23 0 0 0
𝑎31 𝑎32 𝑎33 0 0 0
0 0 0 𝑎44 0 0
0 0 0 0 𝑎55 0
0 0 0 0 0 𝑎66

|

|
 .   (16)       

       

 𝑎𝑝𝑞 ≅ 𝑎𝑖𝑗𝑘𝑙 =
|

|

𝑎11 𝑎12 𝑎13 0 0 𝑎16
𝑎21 𝑎22 𝑎23 0 0 𝑎26
𝑎31 𝑎32 𝑎33 0 0 𝑎36
0 0 0 𝑎44 𝑎45 0
0 0 0 𝑎54 𝑎55 0
𝑎61 𝑎62 𝑎63 0 0 𝑎66

|

|
,    (17)  

 𝑎𝑝𝑞 ≅ 𝑎𝑖𝑗𝑘𝑙 =
|

|

𝑎11 𝑎12 𝑎13 𝑎14 𝑎15 𝑎16
𝑎21 𝑎22 𝑎23 𝑎24 𝑎25 𝑎26
𝑎31 𝑎32 𝑎33 𝑎34 𝑎35 𝑎36
𝑎41 𝑎42 𝑎43 𝑎44 𝑎45 𝑎46
𝑎51 𝑎52 𝑎53 𝑎54 𝑎55 𝑎56
𝑎61 𝑎62 𝑎63 𝑎64 𝑎65 𝑎66

|

|
 .   (18)       
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The number of non-zero elements for orthorhombic (matrix 16), monoclinic (matrix 

17), and triclinic (matrix 18) cases are 12, 20, and 36, respectively. Triclinic is the most 

general case; all other symmetry cases can be considered as a special case of triclinic.  

Fig. 1 provides a summary example of crystal symmetries. Sides a, b and c 

correspond to x-, y- and z-axes in a Cartesian coordinate system, and α, β, γ are interaxial 

angles. The primary differences between the crystal systems are the edge lengths and the 

interaxial angles. For instance, the difference between hexagonal, tetragonal, and 

orthorhombic system is the X-Y plane. The shape of the X-Y plane in hexagonal, tetragonal, 

and orthorhombic system is rhombus, square, and rectangle, respectively. Also note that 

orthorhombic and monoclinic systems are equivalent if restricted to the X-Y plane. Plume 

growth according to dispersivity tensors defined for each of these crystallographic systems 

has different characteristics. This will be addressed in the next chapters.  
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Figure. 1: Example of crystal system:(1) hexagonal system (2) tetragonal system (3) 

orthorhombic system (4) monoclinic system (5) triclinic system. Notice that a, b and c are 

edge lengths, and α, β and γ are interaxial angles. 

2.1 Prerequisites 

Eq. 3 provides a basis for relating dispersion, dispersivity, and velocity. From this 

point on, the notation used to denote the dispersion tensor is simplified to D1 = D11, D2 = D22, 

D3 = D33, D4 = D12, D5 = D23, D6 = D13, and the 2nd rank dyadic velocity tensor is represented 

as a one-dimension column vector: 
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  𝑉𝑘𝑉𝑙 =  
|

|

𝑉1
𝑉1
𝑉2
𝑉2
𝑉3
𝑉3

|

|
.                (19) 

Expressions in three-dimensions for the isotropic, hexagonal, tetragonal, and 

orthorhombic symmetries are provided below.  

For the isotropic case, Dij can be expressed as: 

|𝑣|𝐷𝑖𝑗 = |𝑣|
|

|

𝐷1
𝐷2
𝐷3
𝐷4
𝐷5
𝐷6

|

|
=

|

|

𝑎11 𝑎12 𝑎12 0 0 0
𝑎12 𝑎11 𝑎12 0 0 0
𝑎12 𝑎12 𝑎11 0 0 0

0 0 0
1

2
(𝑎11 − 𝑎12) 0 0

0 0 0 0
1

2
(𝑎11 − 𝑎12) 0

0 0 0 0 0
1

2
(𝑎11 − 𝑎12)

|

|

×
|

|

𝑉1
𝑉1
𝑉2
𝑉2
𝑉3
𝑉3

|

|
 (20) 

 ⇒ 𝐷𝑖𝑗 =

|

|

𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎12𝑉2
𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎12𝑉2

𝑎11𝑉2 + 2𝑎12𝑉1
1

2
(𝑎11 − 𝑎12)𝑉2

1

2
(𝑎11 − 𝑎12)𝑉3

1

2
(𝑎11 − 𝑎12)𝑉3

|

|

  (21) 

 ⇒ 𝐷𝑖𝑗 = |
|

𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎12𝑉2
1

2
(𝑎11 − 𝑎12)𝑉2

1

2
(𝑎11 − 𝑎12)𝑉3

1

2
(𝑎11 − 𝑎12)𝑉2 𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎12𝑉2

1

2
(𝑎11 − 𝑎12)𝑉3

1

2
(𝑎11 − 𝑎12)𝑉3

1

2
(𝑎11 − 𝑎12)𝑉3 𝑎11𝑉2 + 2𝑎12𝑉1

|
|  (22) 

where |v| is the magnitude of v. Using the same steps used in Eqs. 20, 21 and 22, Dij for 

hexagonal, tetragonal, and orthorhombic symmetries are expressed as: 
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𝐷𝑖𝑗 = |

𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎12𝑉2 𝑎44𝑉2
1

2
(𝑎11 − 𝑎12)𝑉3

𝑎44𝑉2 𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎12𝑉2 𝑎44𝑉3
1

2
(𝑎11 − 𝑎12)𝑉3 𝑎44𝑉3 2𝑎31𝑉1 + 𝑎33𝑉2

|,  (23) 

𝐷𝑖𝑗 = |

𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎13𝑉2 𝑎44𝑉2 𝑎55𝑉3
𝑎44𝑉2 𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎13𝑉2 𝑎44𝑉3
𝑎55𝑉3 𝑎44𝑉3 2𝑎31𝑉1 + 𝑎33𝑉2

| ,  (24) 

and 

 𝐷𝑖𝑗 = |

𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎13𝑉2 𝑎44𝑉2 𝑎66𝑉3
𝑎44𝑉2 𝑎21𝑉1 + 𝑎22𝑉1 + 𝑎23𝑉2 𝑎55𝑉3
𝑎66𝑉3 𝑎55𝑉3 𝑎31𝑉1 + 𝑎32𝑉1 + 𝑎33𝑉2

| .   (25) 

If the problem is simplified to two-dimensions to limit the number of dispersivity 

terms to 16, the most general expression for the dispersivity tensor for triclinic symmetry is: 

𝑎𝑖𝑗𝑘𝑙 = |

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

|.  (26) 

Similarly, dispersion for the two-dimensional triclinic case can be expressed as: 

𝐷𝑖𝑗 = |
𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎13𝑉2 + 𝑎14𝑉2
𝑎41𝑉1 + 𝑎42𝑉1 + 𝑎43𝑉2 + 𝑎44𝑉2

  𝑎31𝑉1 + 𝑎32𝑉1 + 𝑎33𝑉2 + 𝑎34𝑉2
  𝑎21𝑉1 + 𝑎22𝑉1 + 𝑎23𝑉2 + 𝑎24𝑉2

|. (27)
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2.2 Expressions and Validations 

The expression of Dij in three-dimensions is rewritten as Dij =  |
𝐷1 𝐷4 𝐷6
𝐷4 𝐷2 𝐷5
𝐷6 𝐷5 𝐷3

|  and 

then aligned along principal directions of a Euclidean coordinate system to diagonalize the 

matrix, such that Dij = |

𝐷𝑥𝑥 0 0
0 𝐷𝑦𝑦 0

0 0 𝐷𝑧𝑧

|. A two-dimensional case is used to simplify the 

triclinic symmetry, where Dij = |
𝐷𝑥𝑥 0
0 𝐷𝑦𝑦

| along principal directions. Relationships between

dispersion, dispersivity, and velocity for any symmetry case can be analytically derived using 

general expressions:

𝐷𝑥𝑥 = 𝛼𝑎𝑥𝑥𝑉1 + 𝛽𝑎𝑦𝑦𝑉1 + 𝛾𝑎𝑧𝑧𝑉1  

𝐷𝑦𝑦 = 𝛼𝑎𝑥𝑥𝑉2 + 𝛽𝑎𝑦𝑦𝑉2 + 𝛾𝑎𝑧𝑧𝑉2  (28)  

𝐷𝑧𝑧 = 𝛼𝑎𝑥𝑥𝑉3 + 𝛽𝑎𝑦𝑦𝑉3 + 𝛾𝑎𝑧𝑧𝑉3  

where α, β, γ are coefficients. 

Validation of the analytical derivations for each of the symmetries consists of the 

following procedure:  

1. Calculate Dij = 𝑎𝑖𝑗𝑘𝑙
𝑉𝑘𝑉𝑙

𝑣
  directly. Mark the result as Dij1. 

2. Calculate Dij from the derived analytical expressions. Mark the result as Dij2.

3. Subtract Dij1 from Dij2. The difference between the two terms should closely approach or

equal 0 if the derived expressions are correct.
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2.3 Calculation 

Dispersivity is a parameter that describes the characteristic spreading of a solute 

within a porous medium. Our purpose in studying the dispersivity tensor is to understand the 

connection between aijkl and Dij for each symmetry case and evaluate the overall contribution 

of each dispersivity term. The full tensor form of Dij is first derived and eigenvalues are used 

to solve for the diagonal components D11, D22 and D33. Using a Euclidean coordinate system, 

these diagonal components can be expressed Dxx, Dyy, and Dzz. 

2.3.1 Two-Dimensional General Case (Triclinic) 

Triclinic is the most general case with all 36 non-zero terms in three-dimensions. In 

the two-dimensional case, the number of unknown values is reduced to 16, which greatly 

simplifies the calculation.  

Dij is diagonalized by taking the eigenvalues of matrix 27 according to the following 

steps: 

|
𝜆 − (𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎13𝑉2 + 𝑎14𝑉2)
−𝑎41𝑉1 − 𝑎42𝑉1 − 𝑎43𝑉2 − 𝑎44𝑉2

−𝑎31𝑉1 − 𝑎32𝑉1 − 𝑎33𝑉2 − 𝑎34𝑉2
𝜆 − (𝑎21𝑉1 + 𝑎22𝑉1 + 𝑎23𝑉2 + 𝑎24𝑉2)

|  (29)      

⇒ (𝜆 − (𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎13𝑉2 + 𝑎14𝑉2))(𝜆 − (𝑎21𝑉1 + 𝑎22𝑉1 + 𝑎23𝑉2 +

𝑎24𝑉2)) − (𝑎31𝑉1 + 𝑎32𝑉1 + 𝑎33𝑉2 + 𝑎34𝑉2)(𝑎41𝑉1 + 𝑎42𝑉1 + 𝑎43𝑉2 + 𝑎44𝑉2) = 0   (30)      

The two roots of this equation λ1 and λ2 are the dispersion values. 

𝐷𝑖𝑗 = |
𝜆1
0

0
𝜆2
| .  (31) 

and can be solved according to the relationships provided in Appendix A. 
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2.3.2 Hexagonal 

From matrix 23, let: 

{

𝑎 = 𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎12𝑉2
𝑏 = 2𝑎31𝑉1 + 𝑎33𝑉2

𝑐 = 𝑎44𝑉2
𝑑 = 𝑎44𝑉3

𝑒 =
1

2
(𝑎11 − 𝑎12)𝑉3

.   (32) 

Then matrix 23 becomes: 

𝐷𝑖𝑗 = |
𝑎 𝑐 𝑒
𝑐 𝑎 𝑑
𝑒 𝑑 𝑏

| .  (33)      

Finding eigenvalues for Dij: 

|
𝜆 − 𝑎 −𝑐 −𝑒
−𝑐 𝜆 − 𝑎 −𝑑
−𝑒 −𝑑 𝜆 − 𝑏

|=0  (34)      

⇒ (𝜆 − 𝑎)(𝜆 − 𝑎)(𝜆 − 𝑏) − 𝑐2(𝜆 − 𝑏) − 𝑑2(𝜆 − 𝑎) − 𝑒2(𝜆 − 𝑎) = 0.  (35)   

The three roots of this equation λ1, λ2 and λ3 are the dispersion values. 

𝐷𝑖𝑗 = |

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

|. (36)      

and can be solved according to the relationships provided in Appendix A. 

2.3.3 Tetragonal 

From matrix 24, let: 
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{

𝑎 = 𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎13𝑉2
𝑏 = 2𝑎31𝑉1 + 𝑎33𝑉2

𝑐 = 𝑎44𝑉2
𝑑 = 𝑎44𝑉3
𝑒 = 𝑎55𝑉3

.  (37)      

Similarly, solving for equation: 

(𝜆 − 𝑎)(𝜆 − 𝑎)(𝜆 − 𝑏) − 𝑐2(𝜆 − 𝑏) − 𝑑2(𝜆 − 𝑎) − 𝑒2(𝜆 − 𝑎) = 0  (38) 

Results are presented in Appendix A.      

2.3.4 Orthorhombic 

From matrix 25, let: 

{

𝑎 = 𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎13𝑉2
𝑏 = 𝑎21𝑉1 + 𝑎22𝑉1 + 𝑎23𝑉2
𝑐 = 𝑎31𝑉1 + 𝑎32𝑉1 + 𝑎33𝑉2

𝑑 = 𝑎44𝑉2
𝑒 = 𝑎55𝑉3
𝑓 = 𝑎66𝑉3

(39)  

Similarly, solving for equation: 

(𝜆 − 𝑎)(𝜆 − 𝑏)(𝜆 − 𝑐) − 2𝑑𝑒𝑓 − 𝑓2(𝜆 − 𝑏) − 𝑑2(𝜆 − 𝑐) − 𝑒2(𝜆 − 𝑎) = 0   (40) 

Results are presented in Appendix A.      

The expressions derived for the hexagonal, tetragonal, orthorhombic, and triclinic 

symmetries are validated according to the methodology in Chapter 2.2. Appendix A also 

provides an example of the validation of the derivation for the two-dimensional general 

triclinic case. 
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CHAPTER 3 

SENSITIVITY ANALYSIS 

In one-dimension, dispersion is a linear product of dispersivity and velocity, where D 

= a · v and all variables are scalar. In higher dimensions, relations between these variables are 

less clear: dispersion and velocity are both 2nd rank tensors, and dispersivity is a 4th rank 

tensor that can have up to 36 independent, non-zero terms. Each non-zero dispersivity term, 

or groups of dispersivity terms according to tensor symmetry, should have distinct 

contributions to the principal components (diagonal values) of the dispersion tensor. To 

determine the influence of individual terms of dispersivity on principal components of 

dispersion, a sensitivity analysis is performed for hexagonal, tetragonal, and orthorhombic 

symmetries. The impact of the velocity tensor is generalized by applying the condition v = 1 

to facilitate direct study of the influence of aijkl on Dij. The x-axis is manually set to represent 

the main plume transport direction such that Dxx is the dominant dispersion term for all 

symmetries. 

3.1 Hexagonal, Tetragonal, and Orthorhombic Symmetry 

Hexagonal, tetragonal, and orthorhombic systems have 6, 7, and 12 independent terms, 

respectively. Each of these terms must have some impact on the resultant dispersion tensor, 

yet defining the overall contribution is challenging to understand and cannot be determined 

from visual methods. A sensitivity analysis is performed where the dispersivity term of 

interest is allowed to vary over the interval a ∈ [0,10], while all other dispersivity terms are 
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assigned a value of unity. All values should satisfy the constraint conditions in matrix 4. The 

corresponding principal values of the dispersion tensor (Dxx, Dyy, Dzz) are then computed as 

eigenvalues. The relative influence of each dispersivity term in the hexagonal symmetry is 

shown in Fig. 2a, 2b and 2c. The relative influence of each dispersivity term in the tetragonal 

symmetry is shown in Fig. 2d, 2e and 2f. Fig. 2g, 2h and 2i illustrate the relative influence of 

each dispersivity term in the orthorhombic symmetry. The impact of each single dispersivity 

term is classified as major, minor, no impact, or limited in Table 1. 
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Table 1: Impact of each single dispersivity variable to dispersion value for (1a) hexagonal 

symmetry, (1b) tetragonal symmetry, and (1c) orthorhombic symmetry. 

(a) 

Dispersion 

Impact 

Major Minor None Converge to Limits  

Dxx a11 a12, a13, a31, a33 a44 N/A 

Dyy a44 a12 N/A a11, a13, a31, a33 

Dzz a11, a13, a44 a12 N/A a31, a33 

   

(b)  

Dispersion 

Impact  

Major Minor None Converge to Limits   

Dxx a31, a44 a33, a55 N/A a11, a12, a13  

Dyy a11, a12, a13 a55 a31, a33, a44 N/A  

Dzz a11, a12, a13, a44 N/A N/A a31, a33, a55  

  

 

 

(c)  

Dispersion 

Impact  

Major Minor None Converge to Limits   

Dxx Major and minor changes with different interval setting.  

Dyy a44, a55, a66 N/A 

a11, a12, a13, a21 

a22, a23, a31, a32, a33 

 N/A 

 

Dzz N/A N/A N/A All  

 

In the hexagonal system, 4 out of 6 terms (a11, a12, a13, a31) exert major influence on 

Dxx, a33 exerts a minor influence on Dxx, and a44 has no impact on Dxx. Both a12 and a44 exert 

major influence on Dyy, and Dyy asymptotically converges to a limit when a11, a13, a31, a33 are 

sufficiently large. For Dzz, a11, a12, a13 and a44 are the major terms. Similar to the results 

observed for Dyy, Dzz converges to a limit when a31 and a33 are sufficiently large. These trends 

indicate that plume growth according to hexagonal symmetry is concentrated along a 

dominant axis (x-axis), and restricted along the y- and z-axes. When the value of a13 is greater 
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than 
3√2

2
 (due to the constraint conditions), Dzz is proportional to a13. This trend is dissimilar 

to the isotropic symmetry case where dispersivity and dispersion are always linearly 

proportional. 

Values assigned to a31 and a44 in the tetragonal system exert major influence on Dxx, 

while a33 and a55 exert only minor influence. Unlike the hexagonal system, Dxx converges to 

an upper limit when a11, a12, a13 are sufficiently large. Terms a11, a12, a13 have major impact 

on Dyy, a55 has minor impact, and a31, a33, a44 have no impact. Terms a11, a12, a13, a44 exert 

major influences on Dzz. Similar to the hexagonal system, Dzz converges to an upper limit 

when a31, a33, a35 are sufficiently large. The influence of the 12 dispersivity terms on Dxx, Dyy, 

and Dzz can all be classified into two groups for the orthorhombic system: a11, a12, a13, a21, a22, 

a23, a31, a32, a33, and a44, a55, a66. In each group, all terms have the same contribution to 

dispersion, whereas the impact of different groups vary according to the interval tested. Over 

the interval (0,1), a11, a12, a13, a21, a22, a23, a31, a32, a33 exert significant influence on Dxx with 

only minor contributions from a44, a55, a66. When the interval is greater than 1, a44, a55, a66 

more significantly affect Dxx than a11, a12, a13, a21, a22, a23, a31, a32, a33. Only a44, a55, a66 

affect Dyy, with a11, a12, a13, a21, a22, a23, a31, a32, a33 having no impact on Dyy. For Dzz, both 

groups converge to upper limits when dispersivity variables are sufficiently large.  

3.2 Generalization to All Symmetries 

To explore reasons why some dispersivity terms: (1) have major, minor, or no impact 

on dispersion, (2) contribute equally to dispersion, or (3) result in the convergence to a 

constant when sufficiently large, these symmetries are further examined. For comparison 

purposes, all symmetries discussed in the paper can be considered as special cases of triclinic 
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system. In hexagonal, tetragonal, and orthorhombic systems, only 12 out of a possible 36 

terms are non-zero. Of these 12 terms, only 6 and 7 terms, respectively, in hexagonal and 

tetragonal systems are independent due to symmetry relations, e.g., a11 = a22, a12 = a21, a13 = 

a23. For these two symmetries, there is a dependence where some terms influence values of 

other terms, e.g., a11, a12 and a13 influence values of a22, a21 and a23, respectively.  

However, unlike the hexagonal and tetragonal systems, all 12 non-zero terms are 

independent in an orthorhombic system. For higher symmetries with more axes of rotation 

(e.g., hexagonal and tetragonal), each term exerts greater influence on dispersion than lower 

symmetry systems with fewer axes of rotation (e.g., orthorhombic, monoclinic, triclinic) 

where groups of terms have similar influence. 

For instance, changing the value of one term will change at least one additional term 

among those 12 non-zero terms in the hexagonal and tetragonal system, e.g., changes to a13 

and a23 are interconnected since a13 = a23. Conversely, in the orthorhombic system, changing 

the value of a13 will not lead to the change of any other variables other than a13 itself. This 

explains why many terms exert a major influence on dispersion in a hexagonal system, while 

at the same time some terms like a33 only exert minor impact to Dxx. In this case, a33 is the 

only term in the first defined group that does not pair to any other terms. Using the most 

general expression (matrix 18): 

 𝑎𝑝𝑞 ≅ 𝑎𝑖𝑗𝑘𝑙 =
|

|

𝑎11 𝑎12 𝑎13 𝑎14 𝑎15 𝑎16
𝑎21 𝑎22 𝑎23 𝑎24 𝑎25 𝑎26
𝑎31 𝑎32 𝑎33 𝑎34 𝑎35 𝑎36
𝑎41 𝑎42 𝑎43 𝑎44 𝑎45 𝑎46
𝑎51 𝑎52 𝑎53 𝑎54 𝑎55 𝑎56
𝑎61 𝑎62 𝑎63 𝑎64 𝑎65 𝑎66

|

|

individual dispersivity terms can be organized into four groups, where group 1 = {
𝑝 = 1,2,3
𝑞 = 1,2,3

, 

group 2 = {
𝑝 = 1,2,3
𝑞 = 4,5,6

, group 3= {
𝑝 = 4,5,6
𝑞 = 1,2,3

, and group 4 = {
𝑝 = 4,5,6
𝑞 = 4,5,6

. Note that a44 is 
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located in a different group other than a11, a12, a13, a31 and a33 in the hexagonal system 

(Matrix 12). This organization explains why a44 is the only variable that exerts a zero impact 

on Dxx, yet is the only variable that exerts a major influence on Dyy.  

In a broader sense, the combination of the dependence structure and grouping are 

responsible for the impact of the dispersivity terms on dispersion. Term location within the 

tensor first decides if a group of variables will influence dispersion, and tensor dependence 

(based on individual symmetries) determines which terms will have either major or minor 

influence on dispersion. For instance, only terms in group 1 can influence Dxx in the 

hexagonal system. Among those terms in group 1, a33 is the only independent term, and 

consequently exerts a minor impact on Dxx. The other terms in group 1 (a11, a12, a13 and a31) 

all exert a similar major influence on Dxx. Similarly, only terms in group 4 can influence Dyy, 

as a12 and a44 (note that a66 = (a11 – a12)/2, but a11 did not influence Dyy) are the two terms 

that exert major influence on Dyy. Both groups 1 and 4 influence Dzz. Due to the restriction of 

plume growth along the minor axes, Dzz converges to a constant value when a12, a31 and a33 

are sufficiently large.  

Since all 12 non-zero terms in the orthorhombic system are independent, all terms in 

the same group have the same influence on dispersion. However, the relative influence of 

each dispersivity term on Dxx, Dyy, and Dzz depends on group location.  Both group 1 (a11, a12, 

a13, a21, a22, a23, a31, a32, a33) and group 4 (a44, a55, a66) contribute to Dxx, whereas group 4 

exclusively controls Dyy.  

The primary difference between hexagonal and tetragonal symmetries is that a55 in the 

tetragonal symmetry does not equal (a11 – a12)/2 (Matrices 12 and 13). Both groups 1 (a11, a12, 

a13, a31 and a33) and 4 (a44 and a55) control Dxx. Here a33 and a55 are the only two independent 

variables in the tetragonal system and thus they exert only minor impacts on Dxx. In the most 
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general case of triclinic, all 36 terms are non-zero and independent. Due to the lack of 

dependence, all terms within the same group contribute equally to dispersion. Thus, as 

symmetries become more generalized and less ordered, dispersion is not controlled by 

individual dispersivity terms, but rather by the contributions of each of the four groups. 

Lastly, the impact of dispersivity terms on Dzz warrants further explanation. 

Transitions from higher (isotropic) to lower (orthorhombic) symmetries, lead to plume 

growth that becomes more focused along a single major direction and restricted along the 

other two minor directions. This is shown in Fig. 2c, 2f, 2i, which describe dispersion along 

the z-axis. In Fig. 2c, only 2 of 6 dispersion values which correspond to dispersivity variables 

converge to the constants. In Fig. 2f, 3 of the 7 dispersion values which correspond to 

dispersivity converge to the constants.  This means that only a subset of dispersivity terms in 

the hexagonal and tetragonal symmetries lead to principal dispersion coefficients that reach 

asymptotic limits, and consequently plume growth along the z-axis is not fully restricted. 

However, in Fig. 2i, all 12 dispersion values which correspond to dispersivity reach 

asymptotic limits, restricting plume growth along the z-axis. These restrictions on plume 

growth do not exist in monoclinic and triclinic system. These details will become clearer in 

the next chapter.   
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CHAPTER 4 

MULTIVARIATE GAUSSIAN VISUALIZATION AND TENSOR APPLICATION 

Resultant two-dimensional and three-dimensional Gaussian densities for each of the 

axial symmetries represent the transport solution of a non-reactive contaminant in a 

groundwater flow system (as described in Eq. 1) given a Dirac delta impulse representing an 

instantaneous, point injection into an initially clean aquifer. Fig. 3 provides a useful 

illustration of a three-dimensional plume resulting from an instantaneous injection at point (x0, 

y0, z0) with concentration C0. The plume migrates to point (ξ, η, ψ) after a certain time. The 

probability of solute concentration at a certain point follows a trivariate Gaussian distribution 

with the following expression (Bear, 1961): 

𝐶(𝑥, 𝑦, 𝑧; 𝑥′, 𝑦′, 𝑧′)=
𝐶0

2𝜎𝑥𝜎𝑦𝜎𝑧√2𝜋
· 𝑒𝑥𝑝 (−

(𝑥−𝑥′)
2

2𝜎𝑥
2 −

(𝑦−𝑦′)
2

2𝜎𝑦
2 −

(𝑧−𝑧′)
2

2𝜎𝑧
2 ),  (41) 

where: 

𝜎𝑥 = √𝐷𝑥𝑥, 𝜎𝑦 = √𝐷𝑦𝑦, 𝜎𝑧 = √𝐷𝑧𝑧 .

Eq. 41 is applicable for either plotting resultant plumes or calculating concentrations 

at any point. 
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Figure. 3: Three-dimensional plume (multi-Gaussian density) after some elapsed time 

resulting from an instantaneous point injection of a conservative solute. Point (x, y, z) are the 

coordinates of the point at a certain moment, and m p and n are the distance of the point (x, y, 

z) to the plume center (ξ, η, ψ), respectively, and L is the mean displacement of the center of

plume mass.

4.1 Plume Visualization for Axial Symmetries 

To date, field-scale contaminant plumes have not been used to define dispersivity 

terms for the symmetry cases studied. Alternatively, multi-Gussian densities are illustrated 

for each of the symmetry cases by randomly assigning dispersivity terms within the interval 

[0,10] (must satisfy constraint conditions in matrix 4), computing Dij, and plotting the 

corresponding density using Eq. 41. To control the variables, the same elements in different 

symmetries (e.g., a11, a12, a13, a31, a33 and a44 in hexagonal and tetragonal symmetry, matrix 

12 and 13) were assigned the same values. The plume is centered at (0, 0, 0) for convenience, 

and velocity is simplified according to Eq. 19. These steps are executed using the Maple 

software suite, although the procedure itself is software independent. 
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4.1.1 Isotropic 

An isotropic dispersivity tensor is defined in accordance with matrix 10: 

  𝑎𝑖𝑗𝑘𝑙 =
|

|

2 1 1 0 0 0
1 2 1 0 0 0
1 1 2 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5

|

|
 (42) 

and generates dispersion tensor: 

𝐷𝑖𝑗 = |
3.5 0 0
0 5 0
0 0 3.5

|.  (43)

4.1.2 Hexagonal 

Similarly, a hexagonal dispersivity tensor is defined in accordance with matrix 12:  

𝑎𝑖𝑗𝑘𝑙 =
|

|

4 1 3 0 0 0
1 4 3 0 0 0
2 2 5 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 1.5

|

|
.  (44)         

and generates dispersion tensor: 

𝐷𝑖𝑗 = |
13.38 0 0
0 7.02 0
0 0 4.60

|. (45)
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4.1.3 Tetragonal 

Like previous examples, a tetragonal dispersivity tensor is defined in accordance with 

matrix 13: 

𝑎𝑖𝑗𝑘𝑙 =
|

|

4 1 3 0 0 0
1 4 3 0 0 0
2 2 6 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 6

|

|
.  (46)  

and generates dispersion tensor:

𝐷𝑖𝑗 = |
16.61 0 0
0 2.47 0
0 0 5.92

|.  (47)  

4.1.4 Orthorhombic 

An orthorhombic dispersivity tensor is defined in accordance with matrix 16: 

𝑎𝑖𝑗𝑘𝑙 =
|

|

2 3.5 6 0 0 0
2.5 1.5 5.5 0 0 0
0.5 3 7 0 0 0
0 0 0 8 0 0
0 0 0 0 9 0
0 0 0 0 0 10

|

|
.  (48)  

𝐷𝑖𝑗 = |
28.58 0 0
0 2.44 0
0 0  0.48

|.  (49)  

4.1.5 Monoclinic 

A monoclinic dispersivity tensor is defined in accordance with matrix 17: 
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𝑎𝑖𝑗𝑘𝑙 =
|

|

8.9 3.2 5.9 0 0 2
8.5 8 0.2 0 0 7.1
9.3 1.9 3 0 0 2.3
0 0 0 7 6.7 0
0 0 0 7.5 5.1 0
3.3 1.8 4.3 0 0 1.2

|

|
 (50)  

𝐷𝑖𝑗 = |
 45.18 0 0
0 8.12 0
0 0 6.99

|.  (51)  

4.1.6 Triclinic 

A triclinic dispersivity tensor is defined in accordance with matrix 18: 

𝑎𝑖𝑗𝑘𝑙 =
|

|

8.9 3.2 5.9 2.4 5.8 2
8.5 8 0.2 5.2 3.7 7.1
9.3 1.9 3 3.5 4.4 2.3
0.6 2.9 0.8 7 6.7 2.1
2.1 4.1 0.7 7.5 5.1 5
3.3 1.8 4.3 1.6 0.4 1.2

|

|
 (52)  

𝐷𝑖𝑗 = |
67.50 0 0
0 14.88 0
0 0 2.92

|.  (53)  

Multi-Gaussian densities (plumes) for each set of Dij, are shown as Fig. 4. 
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(a) (b) (c) 

(d) (e) (f) 

Figure. 4: Shape of the plume in: (a) isotropic system (b) hexagonal system (c) tetragonal 

system (d) orthorhombic system (e) monoclinic system (f) triclinic system. 

4.2 Application of Anisotropic Tensor to Numerical Data 

Lattice networks are used to generate synthetic particle plumes for application of the 

anisotropic dispersivity tensors to geologic analogues. Lattice networks are ideal for testing 

the full range of symmetries encompassing isotropic, hexagonal, tetragonal, orthorhombic, 

monoclinic and triclinic symmetries by incorporating specific combinations of grid spacing 

between nodes (which can be anisotropic), the degree of connection of the line segments to 

these nodes, and transmissivity (e.g., Sahini et al., 1994). Transmissivity has a base value of 

0.0001 m2/s and may be isotropic or anisotropic. Fluid flow within the lattice bond networks 

is first simulated using a linear hydraulic gradient that establishes a flow direction from the 
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top of the model domain to the bottom, followed by advective transport of non-reactive solute 

particles. These modeling exercises are restricted to two-dimensions for both computational 

and mathematical (for parameterization of tensor values) simplicity to investigate: (1) 

resultant plume spreading behavior in the context of different axial symmetries, and (2) 

possible correlations between characteristics or features of the geologic/lattice systems and 

the resultant dispersivity and dispersion tensors.  

The discrete fracture network methodology described by Parashar and Reeves (2012) 

is used to solve for fluid flow within the model:  

 𝑄 = −𝑇
𝑑ℎ

𝑑𝑙
  (54)       

where Q is the volumetric flow through each line segment per unit thickness [L2/T], T is the 

transmissivity [L2/T], h is the hydraulic head at each node [L], and l is distance [L]. For two-

dimensional networks, nodes represent intersections between two orthogonal sets of segments 

(Fig. 5a, 5b, 6a, 6b). Each line segment is assigned a constant transmissivity value and the 

resultant solute spreading is always a function of network geometry, and anisotropic 

transmissivity when applied. Flow through the networks is expressed as a linear set of 

equations to solve for h: 

 𝐴ℎ = 𝑏  (55)       

where A is the coefficient matrix of dimension n × n, n is the number of nodes, and b is a 

constant head condition applied to the boundary nodes (Parashar and Reeves, 2012). A 

minimum residual (MINRES) iterative method is used to determine h for all internal nodes 

given a head solver criterion of 1.0×10-6 (Parashar and Reeves, 2012). 

A total of 10,000 particles is released into the upgradient portion of the flow field 

solution and a Lagrangian particle tracking method simulates independent particle trajectories 

(Reeves et al., 2012). Particle positions are output at selected times for the computation of the 
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dispersion tensor according to mean plume position and variance in the longitudinal and 

transverse directions. A Monte Carlo framework is used to generate ensemble particle plumes 

comprised of results for 100 individual realizations to account for structural uncertainty 

associated with the network structures.  

The lattice network simulations are used to generate plumes with hexagonal-

tetragonal (hexagonal and tetragonal symmetries are equivalent in the horizontal direction, 

e.g., Fig. 1-1 and 1-2) and orthorhombic symmetries. These symmetries are represented by

varying node spacing, the degree of line segment connection using a total segment density 

criterion, and longitudinal and transverse transmissivity. This allows for a systematic 

evaluation of how directional anisotropy in the lattice networks influences solute spreading 

and the correspondence to different axial symmetries. 

The horizontal cross-section of a hexagonal/tetragonal symmetry along the x-y plane 

is a rhombus. To simulate solute transport consistent with a rhombus geometry, a 1m × 1m 

grid spacing is applied to the longitudinal and transverse directions (Table 2). To incorporate 

additional realism and application to geological systems, a spatial density of 0.7 (70% of the 

nodes are connected to each other) is applied and transmissivity in the longitudinal direction 

is five times greater than in the transverse direction (Table 2). This system, for example, 

could represent a moderately connected fracture network where segments in the longitudinal 

direction are optimally aligned within the stress field for aperture dilation and enhanced flow 

(Ferrill et al., 1999). Applying a similar concept, orthorhombic symmetries have a rectangular 

horizontal cross-section along the x-y plane. An unequal grid spacing of 2m × 1m along the 

longitudinal and transverse directions, respectively, is assigned to the lattice networks along 

with isotropic transmissivity and 0.7 spatial density. The unequal spacing could represent a 

fracture system with a dominant fracture set direction that has twice the density as the non-

dominant set. 
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Table 2: Parameter sets used to generate lattice networks for hexagonal-tetragonal and 

orthorhombic systems 

Symmetry Type Domain (m × m) Grid Spacing (m × m) Spatial Density Tl:Tt
a 

Hexagonal-Tetragonal 100 × 100 1 × 1 0.7 5 

Orthorhombic 100 × 100 2 × 1 0.7 1 

a ratio of longitudinal and transverse transmissivity 

4.2.1 Hexagonal/Tetragonal 

A hexagonal-tetragonal system was generated by using the parameter settings in 

Table 2. Fig. 5a (Fig 5b is a zoom in view of Fig.5a) shows a representative lattice network. 

Fig. 5c shows an ensemble lattice network particle plume at time 1.45 × 107 s with 

longitudinal and transverse variance of 159.23 m2 and 28.09 m2, respectively, and Fig. 5d 

shows the best-fit bivariate Gaussian density. All six non-zero terms in the two-dimensional 

hexagonal-tetragonal dispersivity tensor are parameterized using the relationship in Eqs. 2, 

12, 13: 

 {
𝑎11 + 𝑎22 =

𝜎𝑥
2+𝜎𝑦

2

2𝑉1

𝑎33 =
𝜎𝑦
2−𝜎𝑥

2

2𝑉2

.  (56)   

Setting V1=1 and V2=1.5 gives rise to the expression: 

 {
𝑎11 + 𝑎22 = 93.66
𝑎33 = 43.71

.  (57)   

The sum of a11 and a12 is constant, and when scaled correctly, any arbitrary value can be 

input for a12. Setting a12 = 30 results in a11 = 93.66 – 30 = 63.66, and leads to the full tensor 

expression: 
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𝑎𝑖𝑗𝑘𝑙 = |

63.66 30 0 0
30 63.66 0 0
0 0 43.71 0
0 0 0 43.71

|.  (58) 

Using the method in Chapter 4.1, values of aijkl in matrix 58 were calculated, and the Maple 

software suite was used to visualize the calculated Multi-Gaussian densities of the generated 

plumes (Fig. 5d), to be compared with the original data (Fig 5c).  

4.2.2 Orthorhombic 

Similarly, an orthorhombic system was generated by using the parameter settings in 

Table 2. The representative lattice network was shown in Fig. 6a (Fig 6b is a zoom in view of 

Fig.6a). Fig. 6c shows an ensemble lattice network particle plume at time 1.18 × 107 s with 

longitudinal and transverse variance of 200.40 m2 and 21.18 m2, respectively.  Fig. 6d shows 

the best-fit bivariate Gaussian density. All six non-zero terms in the two-dimensional 

hexagonal-tetragonal dispersivity tensor are parameterized using the relationship in Eqs. 2, 

12, 16: 

{
𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎21𝑉1 + 𝑎22𝑉1 = 𝜎𝑥

2 + 𝜎𝑦
2

(𝑎11 + 𝑎12)(𝑎21 + 𝑎22)𝑉1
2 − 𝑎33𝑎44𝑉2

2 = 𝜎𝑥
2𝜎𝑦

2,  (59) 

and: 

{
𝑎11𝑉1 + 𝑎12𝑉1 ∈ (𝜎𝑥

2, 𝜎𝑦
2)

𝑎21𝑉1 + 𝑎22𝑉1 ∈ (𝜎𝑥
2, 𝜎𝑦

2)
,  (60) 

Setting V1=1 and V2=1.5, the above expression becomes: 
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{
𝑎11 + 𝑎12 + 𝑎21 + 𝑎22 = 221.58

(𝑎11 + 𝑎12)(𝑎21 + 𝑎22) −
9

4
𝑎33𝑎44𝑉2

2 = 4244.472
.  (61)  

Similarly, setting a11 = 10.5, a12 = 26.8, a21 = 68, a22 = 116.28, a33 = 24, a44 = 48.69. Then, 

𝑎𝑖𝑗𝑘𝑙 = |

10.5 26.8 0 0
68 116.28 0 0
0 0 24 0
0 0 0 48.69

|.  (62) 

Calculated bivariate Gaussian densities of the generated plumes (Fig. 6d) can be 

compared with the original data (Fig 6c). 
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Figure. 5: Numerical simulation of particle transport through hexagonal-tetragonal system 

where (a) is the lattice network, (b) is a zoomed in view of the selected area in (a), (c) is the 

bivariate Gaussian density of the synthetic plume, and (d) is the best-fit bivariate Gaussian 

density. 
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Figure. 6: Numerical simulation of particle transport through orthorhombic system where (a) 

is the lattice network, (b) is a zoomed in view of the selected area in (a), (c) is the bivariate 

Gaussian density of the synthetic plume, and (d) is the best-fit bivariate Gaussian density.  
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(d) (c) 
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CHAPTER 5 

DISCUSSION 

Visual inspection of the three-dimensional densities provides additional insight on 

how these axial symmetries influence solute transport. The random selection of dispersivity 

values in the interval [0,10] further demonstrates differences between lower and higher 

symmetries denoted in the sensitivity analysis. Lower symmetry cases like orthorhombic, 

monoclinic, and triclinic contain a greater number of non-zero terms which lead to greater 

dispersion. For instance, comparing matrices 42 and 44, the only difference is the increase 

from two to six non-zero terms; however, Dxx, Dyy, Dzz increase from 3.5, 5.0, 3.5 to 13.38, 

7.02, 4.60, respectively. This is an artifact of the random parameterization. In application, the 

amount of dispersion observed in the field will serve as a constraint when fitting each of the 

axial symmetry models to a contaminant plume. As noted in Chapter 3, this fitting exercise 

will need to account for both the dependence structure of the dispersivity terms (particularly 

for hexagonal and tetragonal) and the organization of these terms into groups. Given the 

greater number of non-zero terms, lower axial symmetries will likely utilize lower values of 

dispersivity than higher axial symmetries to yield the same values of dispersion.  

Another difference between lower and higher axial symmetries is observed when the 

symmetry of the system reduces from isotropic to orthorhombic. This results in enhanced 

plume growth along a single primary transport direction while restricting plume growth along 

the other two directions. Fig. 4a - d illustrate how plume growth along the x-axis is enhanced 

as compared to growth along the y- and z-axes, during the progression from isotropic to 

orthorhombic symmetry. This pattern, however, does not exist in monoclinic and triclinic 

systems where plume growth can be significant along all axes (Fig. 4e and 4f). This is 
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explained by both the matrix structure and the organization of dispersivity terms into groups. 

In an orthorhombic system, all dispersivity terms in groups 2 and 3 are zero which 

concentrates dispersion along a single primary growth direction (Matrix 16). However, in 

monoclinic and triclinic cases non-zero terms are presented in the matrix for all four groups 

(Matrices 17 and 18).  

The application of the framework to hexagonal-tetragonal and orthorhombic systems 

provides a pathway toward application of anisotropic tensors to geological systems. These 

two examples serve as a template for solving all non-zero tensorial dispersivity terms when 

constrained to plume variance. To our knowledge, this is the first instance in the literature 

where anisotropic dispersivity tensors are fully parameterized to a dataset. The strong 

correspondence between the numerical particle plumes (Fig. 5c, 6c) and best-fit bivariate 

Gaussian densities (Fig. 5d, 6d) further confirms the accuracy of the framework. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

A proposed framework for assessing the 4th rank dispersivity tensor under anisotropic 

axial symmetries is detailed in this study. This framework, which consists of analytic 

expressions, visualization of multi-dimensional Gaussian densities, and application of 

anisotropic tensor to numerical data, defines connections between dispersion, dispersivity, 

and velocity for non-isotropic dispersivity tensors. Analytic expressions are derived for 

triclinic (the most general case) in two-dimensions, and hexagonal, tetragonal, and 

orthorhombic in three-dimensions. Additional insight on the influence of individual 

dispersivity terms on dispersion for each of the axial symmetries were identified via 

sensitivity analyses and visualization of resultant multi-Gaussian densities. These findings 

include: (1) the influence of individual dispersivity terms on dispersion based on dependence 

of dispersivity terms, i.e., how the value of one term is connected to another term elsewhere 

in the tensor; (2) the structure of the matrix, which defines the number of non-zero values 

present in each of the four defined groups and how these groups contribute to Dxx, Dyy, and 

Dzz; and (3) plume growth becomes increasingly concentrated along the primary plume 

direction as symmetries progress from isotropic to orthorhombic, but is not present for the 

most general cases of monoclinic and triclinic. Numerical simulations of particle transport 

through hexagonal-tetragonal and orthorhombic symmetries systems are used to demonstrate 

the application of this framework to geological systems.  A future study should utilize a 

broader range of parameter sets to generate synthetic data for evaluation and parameterization 

over the full range of axial symmetries presented in this work. 
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6.2 Future Work 

The future work will utilize this framework to solve more real geological application 

problems.  

6.2.1 Numerical Simulation on Hexagonal, Monoclinic and Triclinic Symmetries 

Chapter 4.2 utilized lattice networks to generate plumes for application of the 

anisotropic dispersivity tensors to hexagonal-tetragonal and orthorhombic symmetries by 

incorporating. In the future, a broader range of parameter sets will be utilized to generate 

synthetic data for evaluation and parameterization over the full range of axial symmetries 

presented in this work. 

6.2.2 Borden Landfill 

Another potential future work is the Borden Landfill plume. Borden Landfill is one of 

the best-known subsurface contaminant transport test fields, which is located on the Canadian 

Forces Base in Borden, Ontario (Fetter, 1999). Mackay et al. (1986) conducted a natural 

gradient slug injection field experiment, and observed the concentration distribution of the 

chloride ion and carbon tetrachloride after a period of time. After that, a lot of studies have 

been performed to simulate the plume transports. The framework developed in this 

manuscript can be applied to this Borden Landfill plume study. The solute concentration at a 

certain point is described by Eq. 41: 

   𝐶(𝑥, 𝑦, 𝑧; 𝑥′, 𝑦′, 𝑧′)= 
𝐶0

2𝜎𝑥𝜎𝑦𝜎𝑧√2𝜋
· 𝑒𝑥𝑝 (−

(𝑥−𝑥′)
2

2𝜎𝑥
2 −

(𝑦−𝑦′)
2

2𝜎𝑦
2 −

(𝑧−𝑧′)
2

2𝜎𝑧
2 ). 
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After identifying the most suitable symmetry case, dispersion (σ) in this equation can be 

solved by using the method in Chapter 2.3. The shape of the plume can be predicted by the 

method used in Chapter as well. This provides a different approach to simulate the plume 

transports in the field. 
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Appendix A 

DISPERSION VALUES 

For two-dimensional Triclinic case, 

𝜆1= 
1

2
(𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎13𝑉2 + 𝑎14𝑉2 + 𝑎21𝑉1 + 𝑎22𝑉1 + 𝑎23𝑉2 + 𝑎24𝑉2) +

1

2
(𝑎11

2 𝑉1
2 +

2𝑎11𝑎12𝑉1
2 + 2𝑎11𝑎13𝑉1𝑉2 + 2𝑎11𝑎14𝑉1𝑉2 − 2𝑎11𝑎21𝑉1

2 − 2𝑎11𝑎22𝑉1
2 − 2𝑎11𝑎23𝑉1𝑉2 −

2𝑎11𝑎24𝑉1𝑉2 + 2𝑎12
2 𝑉1

2 + 2𝑎12𝑎13𝑉1𝑉2 + 2𝑎12𝑎14𝑉1𝑉2 − 2𝑎12𝑎21𝑉1
2 − 2𝑎12𝑎22𝑉1

2 −

2𝑎12𝑎23𝑉1𝑉2 − 2𝑎12𝑎24𝑉1𝑉2 + 𝑎13
2 𝑉2

2 + 2𝑎13𝑎14𝑉2
2 − 2𝑎13𝑎21𝑉1𝑉2 − 2𝑎13𝑎22𝑉1𝑉2 −

2𝑎13𝑎23𝑉1
2 − 2𝑎13𝑎24𝑉2

2 + 𝑎14
2 𝑉2

2 − 2𝑎14𝑎21𝑉1𝑉2 − 2𝑎14𝑎22𝑉1𝑉2 − 2𝑎14𝑎23𝑉2
2 −

2𝑎14𝑎24𝑉2
2 + 𝑎21

2 𝑉1
2 + 2𝑎21𝑎22𝑉1

2 + 2𝑎21𝑎23𝑉1𝑉2 + 2𝑎11𝑎24𝑉1𝑉2 + 𝑎22
2 𝑉1

2 +

2𝑎22𝑎23𝑉1𝑉2 + 2𝑎22𝑎24𝑉1𝑉2 + 𝑎23
2 𝑉2

2 + 2𝑎23𝑎24𝑉2
2 + 𝑎24

2 𝑉2
2 + 4𝑎31𝑎41𝑉1

2 + 4𝑎31𝑎42𝑉1
2 +

4𝑎31𝑎43𝑉1𝑉2 + 4𝑎31𝑎44𝑉1𝑉2 + 4𝑎32𝑎41𝑉1
2 + 4𝑎32𝑎42𝑉1

2 + 4𝑎32𝑎43𝑉1𝑉2 + 4𝑎32𝑎44𝑉1𝑉2 +

4𝑎33𝑎41𝑉1𝑉2 + 4𝑎33𝑎42𝑉1𝑉2 + 4𝑎33𝑎43𝑉2
2 + 4𝑎33𝑎44𝑉2

2 + 4𝑎34𝑎41𝑉1𝑉2 + 4𝑎34𝑎42𝑉1𝑉2 +

4𝑎34𝑎43𝑉2
2 + 4𝑎34𝑎44𝑉2

2)
1

2  

𝜆2 = 
1

2
(𝑎11𝑉1 + 𝑎12𝑉1 + 𝑎13𝑉2 + 𝑎14𝑉2 + 𝑎21𝑉1 + 𝑎22𝑉1 + 𝑎23𝑉2 + 𝑎24𝑉2) −

1

2
(𝑎11

2 𝑉1
2 + 2𝑎11𝑎12𝑉1

2 + 2𝑎11𝑎13𝑉1𝑉2 + 2𝑎11𝑎14𝑉1𝑉2 − 2𝑎11𝑎21𝑉1
2 − 2𝑎11𝑎22𝑉1

2 −

2𝑎11𝑎23𝑉1𝑉2 − 2𝑎11𝑎24𝑉1𝑉2 + 2𝑎12
2 𝑉1

2 + 2𝑎12𝑎13𝑉1𝑉2 + 2𝑎12𝑎14𝑉1𝑉2 − 2𝑎12𝑎21𝑉1
2 −

2𝑎12𝑎22𝑉1
2 − 2𝑎12𝑎23𝑉1𝑉2 − 2𝑎12𝑎24𝑉1𝑉2 + 𝑎13

2 𝑉2
2 + 2𝑎13𝑎14𝑉2

2 − 2𝑎13𝑎21𝑉1𝑉2 −

2𝑎13𝑎22𝑉1𝑉2 − 2𝑎13𝑎23𝑉1
2 − 2𝑎13𝑎24𝑉2

2 + 𝑎14
2 𝑉2

2 − 2𝑎14𝑎21𝑉1𝑉2 − 2𝑎14𝑎22𝑉1𝑉2 −

2𝑎14𝑎23𝑉2
2 − 2𝑎14𝑎24𝑉2

2 + 𝑎21
2 𝑉1

2 + 2𝑎21𝑎22𝑉1
2 + 2𝑎21𝑎23𝑉1𝑉2 + 2𝑎11𝑎24𝑉1𝑉2 + 𝑎22

2 𝑉1
2 +

2𝑎22𝑎23𝑉1𝑉2 + 2𝑎22𝑎24𝑉1𝑉2 + 𝑎23
2 𝑉2

2 + 2𝑎23𝑎24𝑉2
2 + 𝑎24

2 𝑉2
2 + 4𝑎31𝑎41𝑉1

2 + 4𝑎31𝑎42𝑉1
2 +

4𝑎31𝑎43𝑉1𝑉2 + 4𝑎31𝑎44𝑉1𝑉2 + 4𝑎32𝑎41𝑉1
2 + 4𝑎32𝑎42𝑉1

2 + 4𝑎32𝑎43𝑉1𝑉2 + 4𝑎32𝑎44𝑉1𝑉2 +

4𝑎33𝑎41𝑉1𝑉2 + 4𝑎33𝑎42𝑉1𝑉2 + 4𝑎33𝑎43𝑉2
2 + 4𝑎33𝑎44𝑉2

2 + 4𝑎34𝑎41𝑉1𝑉2 + 4𝑎34𝑎42𝑉1𝑉2 +

4𝑎34𝑎43𝑉2
2 + 4𝑎34𝑎44𝑉2

2)
1

2  
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For three-dimensional Hexagonal case,  

𝜆1 =
1

3 √2
3 ((−2𝑎3 + 6𝑎2𝑏 + (4(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2)3 + (−2𝑎3 + 6𝑎2𝑏 −

6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 + 54𝑐𝑑𝑒)2)
1

2 −

6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 + 54𝑐𝑑𝑒)
1

3) −

(√2
3
(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2))/(3(−2𝑎3 + 6𝑎2𝑏 + (4(−𝑎2 + 2𝑎𝑏 − 𝑏2 −

3𝑐2 − 3𝑑2 − 3𝑒2)3 + (−2𝑎3 + 6𝑎2𝑏 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 +

9𝑏𝑑2 + 9𝑏𝑒2 + 54𝑐𝑑𝑒)2)
1

2 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 +

9𝑏𝑒2 + 54𝑐𝑑𝑒)
1

3) +
2𝑎+𝑏

3
  

𝜆2 = −
1

6 √2
3 (1 − 𝑖√3)((−2𝑎3 + 6𝑎2𝑏 + (4(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2)3 +

(−2𝑎3 + 6𝑎2𝑏 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 +

54𝑐𝑑𝑒)2)
1

2 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 +

54𝑐𝑑𝑒)
1

3) + ((1 + 𝑖√3)(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2))/(3√4
3
(−2𝑎3 + 6𝑎2𝑏 +

(4(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2)3 + (−2𝑎3 + 6𝑎2𝑏 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 −

9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 + 54𝑐𝑑𝑒)2)
1

2 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 +

2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 + 54𝑐𝑑𝑒)
1

3) +
2𝑎+𝑏

3
  

𝜆3 = −
1

6 √2
3 (1 + 𝑖√3)((−2𝑎3 + 6𝑎2𝑏 + (4(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2)3 +

(−2𝑎3 + 6𝑎2𝑏 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 +

54𝑐𝑑𝑒)2)
1

2 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 +

54𝑐𝑑𝑒)
1

3) + ((1 − 𝑖√3)(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2))/(3√4
3
(−2𝑎3 + 6𝑎2𝑏 +

(4(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2)3 + (−2𝑎3 + 6𝑎2𝑏 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 −
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9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 + 54𝑐𝑑𝑒)2)
1

2 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 +

2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 + 54𝑐𝑑𝑒)
1

3) +
2𝑎+𝑏

3
     

For three-dimensional Tetragonal case,  

𝜆1 =
1

3 √2
3 ((−2𝑎3 + 6𝑎2𝑏 + (4(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2)3 + (−2𝑎3 + 6𝑎2𝑏 −

6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 + 54𝑐𝑑𝑒)2)
1

2 −

6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 + 54𝑐𝑑𝑒)
1

3) −

(√2
3
(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2))/(3(−2𝑎3 + 6𝑎2𝑏 + (4(−𝑎2 + 2𝑎𝑏 − 𝑏2 −

3𝑐2 − 3𝑑2 − 3𝑒2)3 + (−2𝑎3 + 6𝑎2𝑏 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 +

9𝑏𝑑2 + 9𝑏𝑒2 + 54𝑐𝑑𝑒)2)
1

2 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 +

9𝑏𝑒2 + 54𝑐𝑑𝑒)
1

3) +
2𝑎+𝑏

3
  

𝜆2 = −
1

6 √2
3 (1 − 𝑖√3)((−2𝑎3 + 6𝑎2𝑏 + (4(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2)3 +

(−2𝑎3 + 6𝑎2𝑏 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 +

54𝑐𝑑𝑒)2)
1

2 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 +

54𝑐𝑑𝑒)
1

3) + ((1 + 𝑖√3)(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2))/(3√4
3
(−2𝑎3 + 6𝑎2𝑏 +

(4(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2)3 + (−2𝑎3 + 6𝑎2𝑏 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 −

9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 + 54𝑐𝑑𝑒)2)
1

2 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 +

2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 + 54𝑐𝑑𝑒)
1

3) +
2𝑎+𝑏

3
  

𝜆3 = −
1

6 √2
3 (1 + 𝑖√3)((−2𝑎3 + 6𝑎2𝑏 + (4(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2)3 +

(−2𝑎3 + 6𝑎2𝑏 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 +

54𝑐𝑑𝑒)2)
1

2 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 +



45 

 

54𝑐𝑑𝑒)
1

3) + ((1 − 𝑖√3)(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2))/(3√4
3
(−2𝑎3 + 6𝑎2𝑏 +

(4(−𝑎2 + 2𝑎𝑏 − 𝑏2 − 3𝑐2 − 3𝑑2 − 3𝑒2)3 + (−2𝑎3 + 6𝑎2𝑏 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 −

9𝑎𝑒2 + 2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 + 54𝑐𝑑𝑒)2)
1

2 − 6𝑎𝑏2 + 18𝑎𝑐2 − 9𝑎𝑑2 − 9𝑎𝑒2 +

2𝑏3 − 18𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 + 54𝑐𝑑𝑒)
1

3) +
2𝑎+𝑏

3
    .     

For three-dimensional Orthorhombic case,  

𝜆1 =
1

3 √2
3 ((2𝑎3 − 3𝑎2𝑏 − 3𝑎2𝑐 + (4(−𝑎2 + 𝑎𝑏 + 𝑎𝑐 − 𝑏2 + 𝑏𝑐 − 𝑐2 − 3𝑑2 − 3𝑒2 −

3𝑓2)3 + (2𝑎3 − 3𝑎2𝑏 − 3𝑎2𝑐 − 3𝑎𝑏2 + 12𝑎𝑏𝑐 − 3𝑎𝑐2 + 9𝑎𝑑2 − 18𝑎𝑒2 + 9𝑎𝑓2 + 2𝑏3 −

3𝑏2𝑐 − 3𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 − 18𝑏𝑓2 + 2𝑐2 − 18𝑐𝑑2 + 9𝑐𝑒2 + 9𝑐𝑓2 + 54𝑑𝑒𝑓)2)
1

2 −

6𝑎𝑏2 + 9𝑎𝑐2 − 9𝑎𝑑2 + 2𝑏3 − 9𝑏𝑐2 + 9𝑏𝑑2 + 54𝑑𝑒𝑓)
1

3) − (√2
3
(−𝑎2 + 2𝑎𝑏 + 𝑎𝑐 − 𝑏2 +

𝑏𝑐 − 𝑐2 − 3𝑑2 − 3𝑒2 − 3𝑓2))/(3(2𝑎3 − 3𝑎2𝑏 − 3𝑎2𝑐 + (4(−𝑎2 + 𝑎𝑏 + 𝑎𝑐 − 𝑏2 + 𝑏𝑐 −

𝑐2 − 3𝑑2 − 3𝑒2 − 3𝑓2)3 + (2𝑎3 − 3𝑎2𝑏 − 3𝑎2𝑐 − 3𝑎𝑏2 + 12𝑎𝑏𝑐 − 3𝑎𝑐2 + 9𝑎𝑑2 −

18𝑎𝑒2 + 9𝑎𝑓2 + 2𝑏3 − 3𝑏2𝑐 − 3𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 − 18𝑏𝑓2 + 2𝑐2 − 18𝑐𝑑2 + 9𝑐𝑒2 +

9𝑐𝑓2 + 54𝑑𝑒𝑓)2)
1

2 − 6𝑎𝑏2 + 9𝑎𝑐2 − 9𝑎𝑑2 + 2𝑏3 − 9𝑏𝑐2 + 9𝑏𝑑2 + 54𝑑𝑒𝑓)
1

3) +
𝑎+𝑏+𝑐

3
  

λ2 = −
1

6 √2
3 (1 − 𝑖√3)((2a3 − 3a2b − 3a2c + (4(−𝑎2 + 𝑎𝑏 + 𝑎𝑐 − 𝑏2 + 𝑏𝑐 − 𝑐2 − 3𝑑2 −

3𝑒2 − 3𝑓2)3 + (2a3 − 3a2b − 3a2c − 3ab2 + 12abc − 3ac2 + 9ad2 − 18ae2 + 9af2 +

2b3 − 3b2c − 3bc2 + 9bd2 + 9be2 − 18bf2 + 2c2 − 18cd2 + 9ce2 + 9cf2 + 54def)2)
1

2 −

6ab2 + 9ac2 − 9ad2 + 2b3 − 9bc2 + 9bd2 + 54def)
1

3) + ((1 + 𝑖√3)(−a2 + 2ab + ac −

b2 + bc − c2 − 3d2 − 3e2 − 3f2))/(3√4
3
(2a3 − 3a2b − 3a2c + (4(−𝑎2 + 𝑎𝑏 + 𝑎𝑐 − 𝑏2 +

𝑏𝑐 − 𝑐2 − 3𝑑2 − 3𝑒2 − 3𝑓2)3 + (2a3 − 3a2b − 3a2c − 3ab2 + 12abc − 3ac2 + 9ad2 −

18ae2 + 9af2 + 2b3 − 3b2c − 3bc2 + 9bd2 + 9be2 − 18bf2 + 2c2 − 18cd2 + 9ce2 +

9cf2 + 54def)2)
1

2 − 6ab2 + 9ac2 − 9ad2 + 2b3 − 9bc2 + 9bd2 + 54def)
1

3) +
a+b+c

3
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𝜆3 = −
1

6 √2
3 (1 + 𝑖√3)((2𝑎3 − 3𝑎2𝑏 − 3𝑎2𝑐 + (4(−𝑎2 + 𝑎𝑏 + 𝑎𝑐 − 𝑏2 + 𝑏𝑐 − 𝑐2 − 3𝑑2 −

3𝑒2 − 3𝑓2)3 + (2𝑎3 − 3𝑎2𝑏 − 3𝑎2𝑐 − 3𝑎𝑏2 + 12𝑎𝑏𝑐 − 3𝑎𝑐2 + 9𝑎𝑑2 − 18𝑎𝑒2 + 9𝑎𝑓2 +

2𝑏3 − 3𝑏2𝑐 − 3𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 − 18𝑏𝑓2 + 2𝑐2 − 18𝑐𝑑2 + 9𝑐𝑒2 + 9𝑐𝑓2 +

54𝑑𝑒𝑓)2)
1

2 − 6𝑎𝑏2 + 9𝑎𝑐2 − 9𝑎𝑑2 + 2𝑏3 − 9𝑏𝑐2 + 9𝑏𝑑2 + 54𝑑𝑒𝑓)
1

3) + ((1 −

𝑖√3)(−𝑎2 + 2𝑎𝑏 + 𝑎𝑐 − 𝑏2 + 𝑏𝑐 − 𝑐2 − 3𝑑2 − 3𝑒2 − 3𝑓2))/(3√4
3
(2𝑎3 − 3𝑎2𝑏 − 3𝑎2𝑐 +

(4(−𝑎2 + 𝑎𝑏 + 𝑎𝑐 − 𝑏2 + 𝑏𝑐 − 𝑐2 − 3𝑑2 − 3𝑒2 − 3𝑓2)3 + (2𝑎3 − 3𝑎2𝑏 − 3𝑎2𝑐 −

3𝑎𝑏2 + 12𝑎𝑏𝑐 − 3𝑎𝑐2 + 9𝑎𝑑2 − 18𝑎𝑒2 + 9𝑎𝑓2 + 2𝑏3 − 3𝑏2𝑐 − 3𝑏𝑐2 + 9𝑏𝑑2 + 9𝑏𝑒2 −

18𝑏𝑓2 + 2𝑐2 − 18𝑐𝑑2 + 9𝑐𝑒2 + 9𝑐𝑓2 + 54𝑑𝑒𝑓)2)
1

2 − 6𝑎𝑏2 + 9𝑎𝑐2 − 9𝑎𝑑2 + 2𝑏3 −

9𝑏𝑐2 + 9𝑏𝑑2 + 54𝑑𝑒𝑓)
1

3) +
𝑎+𝑏+𝑐

3
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Appendix B 

VALIDATION PROCESS 

Based on calculation: 

D11 = (
a11v1

2
+
a12v1

2
+
a13v2

2
+
a14v2

2
+
a21v1

2
+
a22v1

2
+
a23v2

2
+
a24v2

2
) +

1

2
(a11
2 v1

2 +

2a11a12𝑣1
2 + 2a11a13𝑣1𝑣2 + 2a11a14𝑣1𝑣2 − 2a11a21𝑣1

2 − 2𝑎11𝑎22𝑣1
2 − 2𝑎11𝑎23𝑣1𝑣2 −

2𝑎11𝑎24𝑣1𝑣2 + 𝑎12
2 𝑣1

2 + 2𝑎12𝑎13𝑣1𝑣2 + 2𝑎12𝑎14𝑣1𝑣2 − 2𝑎12𝑎21𝑣1
2 − 2𝑎12𝑎22𝑣1

2 −

2𝑎12𝑎23𝑣1𝑣2 − 2𝑎12𝑎24𝑣1𝑣2𝑎13
2 𝑣2

2 + 2𝑎13𝑎14𝑣2
2 − 2𝑎13𝑎21𝑣1𝑣2 − 2𝑎13𝑎22𝑣1𝑣2 −

2𝑎13𝑎23𝑣2
2 − 2𝑎13𝑎24𝑣2

2 + 𝑎14
2 𝑣2

2 − 2𝑎14𝑎21𝑣1𝑣2 − 2𝑎14𝑎22𝑣1𝑣2 − 2𝑎14𝑎23𝑣2
2 −

2𝑎14𝑎24𝑣2
2 + 𝑎21

2 𝑣1
2 + 2𝑎21𝑎22𝑣1

2 + 2𝑎21𝑎23𝑣1𝑣2 + 2𝑎21𝑎24𝑣1𝑣2 + 𝑎22
2 𝑣1

2 +

2𝑎22𝑎23𝑣1𝑣2 + 2𝑎22𝑎24𝑣1𝑣2 + 𝑎23
2 𝑣2

2 + 2𝑎23𝑎24𝑣2
2 + 𝑎24

2 𝑣2
2 + 4𝑎31𝑎41𝑣1

2 + 4𝑎31𝑎42𝑣1
2 +

4𝑎31𝑎43𝑣1𝑣2 + 4𝑎31𝑎44𝑣1𝑣2 + 4𝑎32𝑎41𝑣1
2 + 4𝑎32𝑎42𝑣1

2 + 4𝑎32𝑎43𝑣1𝑣2 + 4𝑎32𝑎44𝑣1𝑣2 +

4𝑎33𝑎41𝑣1𝑣2 + 4𝑎33𝑎42𝑣1𝑣2 + 4𝑎33𝑎43𝑣2
2+4𝑎33𝑎44𝑣2

2 + 4𝑎34𝑎41𝑣1𝑣2 + 4𝑎34𝑎42𝑣1𝑣2 +

4𝑎34𝑎43𝑣2
2 + 4𝑎34𝑎44𝑣2

2)
1

2  

D22 = (
a11v1

2
+
a12v1

2
+
a13v2

2
+
a14v2

2
+
a21v1

2
+
a22v1

2
+
a23v2

2
+
a24v2

2
) −

1

2
(a11
2 v1

2 +

2a11a12𝑣1
2 + 2a11a13𝑣1𝑣2 + 2a11a14𝑣1𝑣2 − 2a11a21𝑣1

2 − 2𝑎11𝑎22𝑣1
2 − 2𝑎11𝑎23𝑣1𝑣2 −

2𝑎11𝑎24𝑣1𝑣2 + 𝑎12
2 𝑣1

2 + 2𝑎12𝑎13𝑣1𝑣2 + 2𝑎12𝑎14𝑣1𝑣2 − 2𝑎12𝑎21𝑣1
2 − 2𝑎12𝑎22𝑣1

2 −

2𝑎12𝑎23𝑣1𝑣2 − 2𝑎12𝑎24𝑣1𝑣2𝑎13
2 𝑣2

2 + 2𝑎13𝑎14𝑣2
2 − 2𝑎13𝑎21𝑣1𝑣2 − 2𝑎13𝑎22𝑣1𝑣2 −

2𝑎13𝑎23𝑣2
2 − 2𝑎13𝑎24𝑣2

2 + 𝑎14
2 𝑣2

2 − 2𝑎14𝑎21𝑣1𝑣2 − 2𝑎14𝑎22𝑣1𝑣2 − 2𝑎14𝑎23𝑣2
2 −

2𝑎14𝑎24𝑣2
2 + 𝑎21

2 𝑣1
2 + 2𝑎21𝑎22𝑣1

2 + 2𝑎21𝑎23𝑣1𝑣2 + 2𝑎21𝑎24𝑣1𝑣2 + 𝑎22
2 𝑣1

2 +

2𝑎22𝑎23𝑣1𝑣2 + 2𝑎22𝑎24𝑣1𝑣2 + 𝑎23
2 𝑣2

2 + 2𝑎23𝑎24𝑣2
2 + 𝑎24

2 𝑣2
2 + 4𝑎31𝑎41𝑣1

2 + 4𝑎31𝑎42𝑣1
2 +

4𝑎31𝑎43𝑣1𝑣2 + 4𝑎31𝑎44𝑣1𝑣2 + 4𝑎32𝑎41𝑣1
2 + 4𝑎32𝑎42𝑣1

2 + 4𝑎32𝑎43𝑣1𝑣2 + 4𝑎32𝑎44𝑣1𝑣2 +

4𝑎33𝑎41𝑣1𝑣2 + 4𝑎33𝑎42𝑣1𝑣2 + 4𝑎33𝑎43𝑣2
2+4𝑎33𝑎44𝑣2

2 + 4𝑎34𝑎41𝑣1𝑣2 + 4𝑎34𝑎42𝑣1𝑣2 +

4𝑎34𝑎43𝑣2
2 + 4𝑎34𝑎44𝑣2

2)
1

2  
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𝐷𝑖𝑗 = |
𝜆1
0

0
𝜆2
| . 

Following the validation process, first step is calculating Dij = 𝑎𝑖𝑗𝑘𝑙
𝑉𝑘𝑉𝑙

𝑣
  directly. 

Mark the result as Dij1. 

Defining a two-dimensional triclinic dispersivity tensor in accordance with matrix 26:

  

 𝑎𝑖𝑗𝑘𝑙 = |

13 14 15 16
9 10 11 12
5 6 7 8
1 2 3 4

|.   (63) 

And velocity tensor: 

 𝑉𝑘𝑉𝑙 = |

1
1
1
1

|.   (64) 

 ⇒ 𝐷𝑖𝑗1 = |
58 26
10 42

|.   (65) 

Rewriting to:  

 𝐷𝑖𝑗1 = |
68 0
0 32

|.   (66) 

Second step is calculating Dij from the derived analytical expressions. Mark the result 

as Dij2. 

a11 = 16, a12 = 15, a13 = 14, a14 = 13, a21 = 12, a22 = 11, a23 = 10, a24 = 9, a31 = 8, a32 = 7, a33 

= 6, a34 = 5, a41 = 4, a42 = 3, a43 = 2, a44 = 1, vk = 1, vl = 1 (matrices 54 and 55). 

Putting aijkl, vk, vl value back to D11 and D22: 

 
𝐷11 = ⌈50 +

√1296

2
⌉ = 68

𝐷22 = ⌈50 −
√1296

2
⌉ = 32

  (67) 
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 ⇒ 𝐷𝑖𝑗2 = |
68 0
0 32

|.   (68) 

Lastly, subtract Dij1 from Dij2: 

 

 𝐷𝑖𝑗1 − 𝐷𝑖𝑗2 = |
68 − 68 0 − 0
0 − 0 32 − 32

| =   |
0 0
0 0

|.  (69) 

Since it equals 0, the calculation is correct.  

Running another round of test.  

Defining a two-dimensional triclinic dispersivity tensor in accordance with matrix 26:

  

 𝑎𝑖𝑗𝑘𝑙 = |

23 5 25 26
19 20 31 22
12 15 17 9
3 1 7 6

|.   (70) 

Velocity tensor: 

 𝑉𝑘𝑉𝑙 = |

2
2
3
3

|.   (71) 

 ⇒ 𝐷𝑖𝑗1 = |
303 0
0 143

|.   (72) 

Calculating Dij2: a11 = 23, a12 = 5, a13 = 25, a14 = 26, a21 = 19, a22 = 20, a23 = 31, a24 = 

22, a31 = 12, a32 = 15 a33 = 17, a34 = 9, a41 = 3, a42 = 1, a43 = 7, a44 = 6, vk = 2, vl = 3 (matrices 

61 and 62). Result is: 

 
𝐷11 = 223 +

√25600

2
= 303

𝐷22 = 223 −
√25600

2
= 143

  (73) 

 

 ⇒ 𝐷𝑖𝑗2 = |
303 0
0 143

|.   (74) 
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Subtracting Dij1 from Dij2: 

 

 𝐷𝑖𝑗1 − 𝐷𝑖𝑗2 =  |
0 0
0 0

|.  (75) 

Result equals 0. 
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