
Western Michigan University Western Michigan University 

ScholarWorks at WMU ScholarWorks at WMU 

Master's Theses Graduate College 

8-2001 

Development of an Arc View™ Extension to Measure Local Fractal Development of an Arc View™ Extension to Measure Local Fractal 

Dimension Dimension 

Christopher Page Caird 

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses 

 Part of the Geography Commons 

Recommended Citation Recommended Citation 
Caird, Christopher Page, "Development of an Arc View™ Extension to Measure Local Fractal Dimension" 
(2001). Master's Theses. 3935. 
https://scholarworks.wmich.edu/masters_theses/3935 

This Masters Thesis-Open Access is brought to you for 
free and open access by the Graduate College at 
ScholarWorks at WMU. It has been accepted for inclusion 
in Master's Theses by an authorized administrator of 
ScholarWorks at WMU. For more information, please 
contact wmu-scholarworks@wmich.edu. 

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F3935&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/354?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F3935&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/3935?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F3935&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/


DEVELOPMENT OF AN ARC VIEW™ EXTENSION 
TO MEASURE LOCAL FRACTAL DIMENSION 

by 

Christopher Page Crnrd 

A Thesis 
Submitted to the 

Faculty of The Graduate College 
in partial fulfillment of the 

requirements for the 
Degree of Master of Arts 
Department of Geography 

Western Michigan University 
Kalamazoo, Michigan 

August 2001 

-



Copyright by 

Christopher Page Caird 

2001 



ACKNOWLEDGMENTS 

I would like to express my deepest appreciation to Ernest Anderson. Without 

Mr. Anderson's assistance, the completion of this thesis_ would not have been feasible. 

Without his unending patience and time, the development of the algorithm known as 

MWFDTPM would never have existed and I would not have completed the goals set 

out in my thesis. I cannot express the depth of my gratitude. 

Secondly, I would like to recognize Gregory Anderson and the GIS Research 

Center at Western Michigan University for the set of orthophotos of Holland, MI used 

in the analysis. Greg provided much more than just the data set. He permitted 

significant use of his machines to run the program and obtain the results. He also 

provided invaluable and vast expertise on the use of GIS as well as continual 

friendship and humor to get me through the hard parts associated with the 

development of this application. It is absolutely inconceivable that I could have 

accomplished this work without Greg's help. 

With Charles 'Jay' Emerson as my advisor, I was able to see this thesis 

materialize and take the necessary form that would lead to the completion of this 

project. I really want to thank Jay for his patience and guidance throughout this 

project from beginning to end. Since he first introduced me to the concept of fractals, 

Jay has inspired and motivated me towards setting and meeting the necessary goals. 

I would also like to thank Changchun Yang a computer science master's 

student at Western Michigan University. Throughout my struggle to understand the 

A venue scripting language, he was always available to provide fresh insight and 

technical assistance towards meeting my desired objectives. 

11 

.. 



Acknowledgments-continued 

In conclusion, I would like to dedicate this thesis to my mom and dad, Donald 

and Judith Caird. Thank you dad and mom for pushing me to study so hard when I

was a kid. None of the success I have experienced would be possible without such 

strong loving parents. I owe you both such a debt of gratitude that is difficult to 

express and impossible to ever repay. 

Christopher Page Caird 

iii 



DEVELOPMENT OF AN ARCVIEW™ EXTENSION 
TO MEASURE LOCAL FRACTAL DIMENSION 

Christopher Page Caird 

Western Michigan University, 2001 

Texture is defined as the visible cue suggesting the smoothness or coarseness 

associated with image tone or color (Emerson, 1999). Fractal dimension (D) offers 

insight towards understanding texture in the spatial as well as spectral context of an 

image (Mandelbrot, 1982). Fractal dimension is best understood as a range of values 

between two and three that are used to quantitatively describe a surface. (D) values 

near 2.0 represent a uniform area containing similar pixel values. In contrast, (D) 

values near 3.0 represent a domain that is spectrally complex. This complexity stems 

from light and dark pixels in close proximity to one another. The Triangular Prism 

Method (Clarke, 1986) was originally designed to compute a fractal dimension for an 

entire image. By applying a moving window to the triangular prism method, a local 

filter is created thus allowing grid images to be generated that are composed entirely 

of fractal dimensions. These images show recognizable areas that have high and low 

complexity. The results of this technique have shown that using the triangular prism 

method to compute the fractal dimension aids in characterizing the texture of an 

image. 



TABLE OF CONTENTS 

ACKNOWLEDGMENTS...................................................................................... 11 

LIST OF T ABLES .. ... .. ... .. ... .. ... .. . .. . .. ...... ... ...... ..... ... ... .. ... .. . .. .. ... .. .. .. . .. .. ... .. ... .. . ... ... v1 

LIST OF FIGURES................................................................................................ Vll 

CHAPTER 

I. INTRODUCTION................................................................................ 1 

I I. TEXTURE MEASUREMENT METHODS........................................ 4 

Explanation of Texture................................................................... 4 

Gray Level Co-Occurrence Matrix................................................. 6 

Fourier Transforms......................................................................... 8 

Local V ariance . .. . .. .. . .. . .. .. . .. . .. . .. . .. . .. .. . .. . .. . .. .. . .. .. .. . .. .. . .. .. .. . .. .. . .. .. . .. . .. 13 

III. FRACTAL DIMENSION .................................................................... 15 

Fractal Background........................................................................ 15 

IV. TEXTURE MEASUREMENT USING FRACTAL DIMENSION..... 20 

Variogram....................................................................................... 20 

Isarithm. .. .. ... ... ... ... ... ... ........... ... .. . ... ..... ... .. ... .. ... .. .. ... .. ..... .. ... ..... ...... 22 

Triangular Prism............................................................................. 23 

Local Fractals................................................................................. 26 

Purpose Statement.......................................................................... 27 

V. METHODS........................................................................................... 29 

Methods Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

Summary of Software Flow ............ ........ ................. ....... ..... ... ... .... 30 

IV 



VI. RESULTS............................................................................................. 37 

Valid ation 
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 37 

Simulated Fractal Surfaces............................................................. 37 

Holland, Michig an  Ch ar acteri stic s................................................. 44 

Di sc u s sion...................................................................................... 50 

VII. CONCLUSIONS.................................................................................. 52 

APPENDICES 

Final Comment s . . .. ... .. ... ... . .. ...... ... ... ... .. ... ... .. ... .. .. ..... .. ... .. .. . .. ... ... ... . 52 

Fur ther Research............................................................................. 53 

A. A venue Source Code................................................................................... 55 

B. C Progr a mmi ng Source Code...................................................................... 69 

BIBLIOGRAPHY.................................................................................................. 120 

V 



LIST OFT ABLES 

1. Table of Parameters Used During Analysis .................................................. 38 

VI 



LIST OF FIGURES 

1. Horizontal Nearest Neighbor Pixel Cells...................................................... 7 

2. 4 x 4 Matrix of a Digital Image..................................................................... 8 

3. Gray-Tone Spatial-Dependence Matrix ........................................................ 9 

4 .. General Co-occurrence Matrix Using 1 Gray-Tone...................................... 9 

5. Digital Numbers Plotted Against Each Row of Numbers Within an
Image............................................................................................................. 10 

6. Fourier Transform Using the Wedge Block Filter ........................................ 12 

7. Variance of Lake Charles, Louisiana Band 3................................................ 14 

8. Estimated Fractal Dimension of a Line......................................................... 17 

9. Crumbled Paper as Complex Surface............................................................ 18 

10. Cantor Set...................................................................................................... 18 

11. Log-Log Regression of Isarithm Method...................................................... 23 

12. Three Dimensional Triangular Prism Method .............................................. 24 

13. Top View Calculation of Triangular Prism Method ..................................... 25 

14. Flow Diagram of Fractex .............................................................................. 32 

15. Beginning Position of Window..................................................................... 34 

16. Moving Window Using a Window Gap of One............................................ 34 

17. Moving Window Beginning New Row Lower by Window Gap.................. 35 

18. Simulated Fractal Surfaces Generated by the Sheer Displacement
Method .......................................................................................................... 40 

19. Average Fractal Grid Output from H0l ........................................................ 41 

20. Average Fractal Grid Output from HOS........................................................ 42 

Vil 



List of Figures - continued 

21. Average Fractal Grid Output from H09 ........................................................ 42 

22. Average Fractal Dimension of Simulated Surfaces ...................................... 43 

23. Holland, Michigan......................................................................................... 46 

24. Resampled Images of Holland, Michigan ............. :....................................... 47 

25. Fractal Grid Output from Holland, Michigan at 15 Meter Resolution.......... 49 

26. Average Fractal Dimension for Holland, Michigan...................................... 50 

Vll 

.. 



CHAPTER I 

INTRODUCTION 

With the advent of earth orbiting satellites, scientists have been able to study 

the earth's patterns and its associated processes at greater area detail then ever 

thought possible. As aerial and space technology advances, the precision and 

accuracy available from earth orbiting satellites and aerial photography require 

similar advances in interpretation techniques. The type of information challenges 

professionals to devise new methods or improve upon old ones in order to analyze the 

recognition elements associated with image interpretation. As microcomputers 

develop a greater capacity to handle larger volumes of data at multiple resolutions, 

automated analysis techniques are sought to resolve the increasing complexity. 

The amount of detail shown within an aerial photograph or satellite image 

depends heavily upon scale. Scale is the ratio of the distance on an image to that of 

the real world. One of the central arguments surrounding scale is that data may carry 

different information when presented at different scales (Bian, 1997). Within the 

context of remote sensing, many processes and patterns may appear homogeneous at 

one spatial scale and heterogeneous at another (Quattrochi, 1993). Changes in spatial 

scale often result in new and significant changes in the spatial properties of an image. 

This can result from aggregation or disaggregation of data when used with single data 

sets as well as multiple data sets. The information obtained from spatial data is well 

defined for some types of digital data while it may not be well defined for other types 

(Quattrochi & Goodchild, 1997). This problem of scale presents significant obstacles 

for the assessment of complexity within an image. As the science of interpretation 

l



2 

advances, there is a growing need for automated tools and procedures that will bridge 

the gap to allow researchers and analysts to use techniques that can operate at 

multiple scales and multiple resolutions. 

Within the past 20 years, the emergence and widespread use of Geographic 

Information Systems (GIS), has prompted interest in scale as well as the assessment 

of image complexity (Quattrochi & Goodchild, 1997). This growing interest 

surrounds fundamental questions regarding accuracy, error modeling, and data 

structures. These issues are largely a result of the increasing availability of remote 

sensing and other spatial data at the local, regional, and global levels. With numerous 

options of earth-imaging satellites and airborne imaging systems, scientists are faced 

with the challenge of effectively combining and analyzing image complexity at 

various spatial, temporal, and spectral resolutions. 

One of the primary problems facing investigators of image intricacy is how to 

properly handle multiscale data to prevent the distribution of erroneous information. 

Undesirable effects can result when analysts routinely rescale and resample complex 

images to appropriate spatial resolutions (Quattrochi et al, 1997). The continual 

merging of multiscale information from various sources has become a critically 

important research obstacle. The changes to information within the image must be 

understood in order to overcome issues surrounding the accuracy and precision of the 

data. 

Analysts must also overcome the problem of determining an appropriate scale 

required for analysis and interpretation of image complexity. Obtaining image 

information from complex landscapes requires distinguishing heterogeneous areas 

from homogeneous structures. Discerning specific areas requires analysts to associate 

the image complexity with the pattern, structure, and function of the landscape. Prior 



to performing landscape analysis, a detailed understanding of image texture is 

required. 

3 



CHAPTER II 

TEXTURE MEASUREMENT METHODS 

Explanation of Texture 

The discussion of image complexity is referred to in terms of the texture and 

pattern of an image. Texture is defined as the visual impression of coarseness or 

smoothness resulting from the variability or uniformity of image tone or color (Avery 

& Berlin, 1992). Pattern is known as the general repetition of characteristic forms 

found within cultural and physical features (Lillesand and Kiefer 1994). It has long 

been possible to distinguish textural features but not quantify many characteristics to 

be used for classification. Prior to the work of Haralick and others (Haralick et al, 

1973; Pratt et al, 1978; Goodchild, 1980), a series of adjectives were often used to 

characterize landscape complexity. The imprecise nature of terms like 'mottled' or 

'stippled' lead to numerous errors and difficulty in conveying image complexity and 

pattern. This subjective method of distinguishing texture differences has progressed 

towards a quantitative means of accurately characterizing different textures and 

patterns. The advances pioneered by Haralick et al (1973), Goodchild (1980), and 

Woodcock and Strahler (1987) have brought about several classification 

improvements designed to quantify the texture within an image via the use of several 

types of textural or contextural information methods (Pesaresi, 2000). 

There are four principal approaches used in image processing to describe the 

pattern elements of texture: statistical, structural, spectral (Gonzalez and Wintz, 1987) 

4 



5 

and the manipulation of the spatial frequency within an image (Lillesand and Kiefer, 

1994). Statistical methods yield characterizations of textures such as smooth, rough, 

etc. through a quantitative assessment. Structural techniques examine the arrangement 

of landscape patterns in an image, which include the distinction between human 

induced physical changes and those of naturally occurring processes. Spectral 

features are used to describe the average tonal variations in various bands (Haralick et 

al, 1973). Spectral processes and algorithms are designed to detect narrow peaks 

associated with tonal changes in the periodic patterns of an image (Gonzalez and 

Wintz, 1987). Spectral filters are designed to observe these tonal changes by blocking 

or passing energy over various spectral ranges. 

Spatial filters act to emphasize or de-emphasize image data at various spatial 

frequencies. Rough areas of an image are defined by high spatial variability over a 

small distance. Low spatial frequency is associated with the smooth fluctuations 

between pixels over a large distance. Low pass filters are designed to emphasize 

changes in brightness over large areas rather then highlight the local detail within an 

image. In contrast, high pass filters are designed to emphasize the detailed high 

frequency elements of an image and de-emphasize the low frequency information 

(Lillesand and Kiefer, 1994). 

Focal functions compute an output grid where the output value at each 

location is a function of the input cell(s) in some specified neighborhood of the 

location. Focal spatial filtering occurs when pixel values in an original image are 

modified on the basis of the gray levels of the surrounding pixels (Lillesand and 

Kiefer, 1994). For example, a simple low pass filter can be instructed to send a 

moving window across an image that results in a second image whose digital 

numbers (DN) at each pixel corresponds to the average value obtained from each of 



the moving window. This will result in a smaller second image resulting from the 

averaging of values within a window. 

6 

In contrast, a high pass filter can be illustrated by subtracting a low pass 

filtered image from the original image (Lillesand and Kiefer, 1994). A high pass filter 

is based upon the notion that a low frequency image smoothes the detail of an original 

while emphasizing areas with high brightness values. The high frequency image is 

associated with enhancing the spatial detail while ignoring the bright areas within an 

image. By subtracting the values of a low pass filter from an original image, the end 

result is a smoothing function with the lighter and darker areas showing less contrast. 

There are several algorithms designed to examine contextural information 

from pictorial features. The following methods represent a few of the most widely 

used techniques to examine image complexity: gray-level co-occurrence matrix 

(GLCO), Fourier Transforms, local variance, and the fractal dimension. 

Gray-Level Co-occurrence Matrix 

The gray-level co-occurrence matrix (GLCO) developed by Haralick et al 

(1973) is based upon repeated occurrences of gray-level patterns in an image. These 

repeated occurrences are rooted in the notion that texture and tone are not 

independent concepts. Haralick proposed decomposing image texture into two basic 

dimensions: tonal primitives and structure (Haralick, 1979). Tonal primitives describe 

the pixel intensities in a localized area while structure refers to the spatial 

organization of the tonal primitives thus allowing tone and structure to completely 

specify the image texture (Haralick, 1979). 



7 

The essential component of GLCO involves the use of arrays termed angular 

nearest neighbor gray-tone spatial dependence matrices for the measurement of 

texture (Haralick et al, 1973). The arrays are defined by the nearest neighbor pixels 

meaning there can only be eight pixels within one computation (Figure 1). The 

matrices that are created are a function of the angular relationship between 

neighboring pixels as well as a function of the differences between them (Figure 2). 

Using the GLCO matrix it becomes possible to detect the presence of given texture 

patterns by the relative frequencies at which two neighboring pixel cells are separated 

by a distance on an image (Gonzalez and Wintz, 1987). This configuration of 

occurrence varies rapidly in fine textures verses much more slowly in coarse textures. 

Co-occurrence matrices are advantageous because they take into consideration spatial 

properties of their neighboring pixels. 

135° 90
°

45°

Figure 1. Horizontal Nearest Neighbor Pixel Cells. 

Emphasis of the explanation of GLCO will be focused upon using the 

horizontal nearest neighbor method. The horizontal nearest neighbor method refers to 

pixels 1 and 5 (Figure 1). An example of a co-occurrence matrix can be described by 



using a 4 X 4 digital image with four gray tones from O to3 (Figure 2). First, the 

number of different pixels are determined followed by ranking the pixel values 

(Figure 3). This arrangement shows the general form of the any gray-tone spatial 

dependence matrix. The element in the (2,1) position of the distance 1 horizontal Po 

0 0 1 1 

M= 0 0 1 1 

0 2 2 2 

2 2 2 3 

Figure 2. 4 x 4 Matrix of a Digital Image. 

8 

matrix of Figure 4 is the total number of times two gray tones of value 2 and 1 

occurred horizontally adjacent to each other (Figure 4). To determine the frequency, 

the pairs of pixels are counted such that the first pixel of the pair has gray tone 2 and 

the second pixel of the pair has gray tone 1. The frequencies are counts which 

describe how often two pixels located at a fixed geometric position relative to one 

another have a particular pair of gray levels. Each entry in M with i rows and j 

columns is a count of how many times a pixel with gray level i is situated a fixed 

distance from, and at a fixed orientation to a pixel with a gray level j in the original 

image (Haralick, 1979). The operator is applied to the image to yield the co­

occurrence matrix. The number of rows or columns in the matrix is equal to the 

number of gray levels in the original image. In this example, every time gray level i is 

immediately to the left of gray level j, M(i,j) is incremented by one. In this example, 



Gray Tone 

0 1 2 3 

0 #(0,0) #(0,1) #(0,2) #(0,3) 
Gray Tone 

1 #(1,0) #(1,1) #(1,2) #(1,3) 

2 #(2,0) #(2,1) #(2,2) #(2,3) 

3 #(3,0) #(3,1) #(3,2) #(3,3) 

Figure 3. General Gray-Tone Spatial-Dependence Matrix. 

the operator is not bi-directional which means that the matrix M(i,j) is not equal to 

M(j,i). 

Po, Horizontal = 

4 

2 

1 

0 

2 

4 

0 

0 

1 

0 

6 

1 

0 

0 

1 

2 

Figure 4. Co-occurrence Matrix Using 1 Gray-Tone. 

Once the pattern is determined, texture classification can be based on criteria 

derived from the gray-tone spatial dependence matrix. GLCO matrix has three major 

weaknesses. It is: computationally demanding, memory intensive, and lacks the 

ability to capture primitive shapes well, particularly if they are large (Carr and 

Mirranda, 1998). 

9 



10 

Fourier Transforms 

The use of the Fourier transform has played a major role in image processing 

for many years due to its ability to solve a wide range of image processing problems. 

The Fourier transform is designed to examine the frequency domain of an image by 

separating it into various spatial frequency components. Conceptually, this type of 

transform operates by fitting a continuous function through the discrete digital 

number values of an image as if they were plotted along each row and column 

(Lillesand and Kiefer, 1994). The light and dark reflectance values along any given 

row or column can be described by combinations of sine and cosine waves with 

various amplitudes, frequencies and phases (Figure 5). 

255 

Digital 
Number 

C 

C Row Numbers X 

Figure 5. Digital Numbers Plotted Against Each Row of Numbers Within an Image. 

The Fourier transform results from the computation of the amplitude and 

phase for each possible spatial frequency in an image (Lillesand and Kiefer, 1994). 

After an image is separated into its component spatial frequencies (Figure 6a), the 



11 

values obtained can be displayed in a two-dimensional scatter plot known as the 

Fourier spectrum (Figure 6b). This output displays the lower frequencies at the center 

and a continual increase in higher frequencies as one moves out from the center. The 

main advantage to this method is its invertibility, which allows the function to 

transform between the Fourier spectrum and the data without the loss of information 

(Lillesand and Kiefer, 1994). 

This invertibility allows the Fourier transform to assist in a number of image 

processing applications. For example, a filter can be applied directly to the power 

spectrum followed by an inverse transform. The results obtained display significant 

image enhancement. 

The reduction of noise within an image is another common application of the 

Fourier transform. It is possible to perform what is known as a wedge block filter 

either in the horizontal or vertical direction (Lillesand and Kiefer, 1994). This method 

allows interpreters to take an original image with significant horizontal noise, 

generate a transform that would likely show a band of frequencies tending in the 

vertical direction. A vertical wedge block filter can be applied to the transform and 

the inverse Fourier transform can be used to regenerate the image with significantly 

less horizontal noise (Figure 6c and 6d). 

The two major disadvantages associated with the Fourier transforms are the 

complicated computations as well as the memory requirements, which slows the 

process significantly (Lillesand and Kiefer, 1994). The number of calculations 

required are proportional to the squared number of sample arrays. Since the most 

general form of the Fourier transforms requires both complex floating point multiples 

and the calculation of sine and cosine functions, it is important to choose the number 

of sample arrays conservatively so that the computation is completed in a reasonable 



Legend. A = Airborne multispectral image, B = Fourier spectrum 

C = Wedge block filter, D = Inverse transform with reduced noise 

Figure 6. Fourier Transform Using the Wedge Block Filter. (Lillesand & Kiefer, 
1994) 

12 



13 

amount of time (Lam and Decola, 1993). 

Local Variance 

An alternative method for quantifying texture that is not as computationally 

intensive as the Fourier transforms is local variance (Woodcock and Strahler, 1987). 

This method is intended to determine the spectral band at which the maximum 

variability occurs in an image within a user specified moving window as it passes 

through an entire image. The logic behind local variance is based on the notion that if 

spatial resolution is finer then the objects in view, then objects are composed of 

several pixels and most pixels will be correlated with their neighbors. This situation 

causes the local variance to be low. When objects in an image are nearly the same 

size as the pixel cell size, the values of adjacent cells tend to be different causing the 

local variance to increase (Figure 7). 

In Figure 7, local variance gives an indication of how typical of a whole 

distribution the mean is within a specified window. In this image, a window size of 

15 X 15 was chosen to determine the dispersion of pixel values. Where the lake meets 

the shore the greatest amount of spread is observed. The dark line indicates the shore 

front while the bright values the left and right indicate the edge that separates the city 

from the lake. 

Local variance is particularly sensitive to the window size, which makes it 

particularly useful during edge detection. An edge detector acts to highlight big 

changes while gradual changes tend to be flattened out. This method is a function of 

the sizes and spatial relationships of the objects within the scene. A larger window 



size will cause the number and size of landscape features to exhibit higher local 

variance. For example, areas containing a mix of urban, suburban, and forested 

Legend. A= Original image, B = Local Variance using a 15 X 15 window 

Figure 7. Variance of Lake Charles, Louisiana Band 3. 

14 

landscapes display high local image variance or bright areas. Knowing which areas 

represent high variance can potentially lead interpreters towards determining what 

may be an appropriate scale or spatial resolution for a particular application. There 

are questions that remain to be answered in order to determine if this method aids in 

image interpretation and can be combined with other spectral or contextural 

applications. It is important to note that local variance works on single image bands at 

a time. 

'!J/# 

,, l ,.-~• "" 



CHAPTER III 

FRACTAL DIMENSION

Fractal Background 

Fractal analysis has been suggested as one of the greatest additions to the 

scientific community because of its potential usefulness for modeling natural 

phenomena at local levels (Jaggi et al, 1993). In 1977, Mandelbrot (1977) first 

introduced the concept of fractals with his essay identifying a family of shapes that 

describe the irregular and fragmented patterns in nature. He stated that fractals are 

described by any function for which the Hausdorff-Besicovich dimension exceeds the 

topological dimension (Mandelbrot, 1977). According to Xia and Clarke (1997), this 

definition was thought to be unsatisfactory early in its conception. The reason for 

disagreement was because it failed to include a number of sets that were regarded as 

fractals. Later, Mandelbrot retracted this definition in favor of an idea that came to be 

known as self-similarity(Xia and Clarke, 1994). Self-similarity exists when both the 

overall shape and the cascade that generates each portion of the shape is 

geometrically similar to the whole (Mandelbrot, 1982). 

The fractal concept gathered substantial attention as a means for 

characterizing remotely sensed images and the applications associated with the 

analysis of spatial and spectral phenomena (Clarke, 1986; Jaggi et al, 1993; De Cola, 

1989; Emerson et al, 1999; Collins& Woodcock, 1999). The use of fractal dimension 

15 



to improve analysis of spectrally and spatially complex images has seen significant 

strides (Lam, 1990; Jaggi et al 1993; Quattrochi et al, 1997; Emerson et al, 1999). 

Topological dimension (D1) and the fractal dimension (D) are not only 

computationally distinct but also provide dissimilar information during analysis of 

texture. Topological dimension is described as the number of distinct coordinates 

needed to specify a position on or within an object (Xia and Clarke, 1997). In 

Euclidean geometry, the topological dimension (D1) has a null, or nothing set. The 

null is assigned the dimension of -1 while countable sets have a value of 0 

representing a point, 1 representing a line, and 2 representing a surface. The 

difference between countable sets and uncountable sets is that countable sets are a 

finite set of integers while those that are uncountable are not. These infinite sets are 

split into the countable and uncountable ones. If a set is countable and infinite, then 

its elements can be listed as: 

Xn = J(n) [1] 

16 

The fact that the elements can always be listed as a countable set means it is 

possible to work with them one at a time. Since the null set has the dimension -1, any 

countable set like a point has the dimension of 0. A line has the dimension of 1 since 

it can be separated by a countable set of two points and a plane is assigned a 

dimension of 2 because three points can separate a surface. These topological 

dimensions, (Dt), are expressed with integer values and remain constant regardless of 

the complexity of the line or surface under scrutiny. 

The extent to which patterns are fragmented and irregular is expressed in 

terms of fractal dimension (D) (Mandelbrot, 1983). One of the more important 



17 

aspects associated with (D) focuses on the idea that it is always greater then it's 

Euclidean counterpart. The fractal dimension (D) of a line can range between 0 and 1 

for shapes that exhibit varied complexity. A line is an example of where the amount 

of complexity exhibited can change within a specified area. In the case of a line, it 

can be between the value of 1 and 2 depending upon its irregularity. The more 

contorted the straight line becomes the more space it fills within the box (Figure 8). 

(a) (b) 

Legend. A = Estimated D = 1.0, B = Estimated D = 1.3, 

C = Estimated D = 1.7 

Figure 8. Estimated Fractal Dimension of a Line. 

(c) 

A surface can display fractal dimension values between 2 and 3 with the 

higher values representing greater surface complexity (Mandelbrot, 1977). 

Examination of a surface that reveals a value of 2.0 indicates the surface is 

completely smooth while a value close to 3.0 suggests extremely coarse. A good 

example of a smooth surface would be a flat sheet of white paper, which would have 

a fractal dimension near 2.0. By crumpling the paper into a ball, a complex surface 



results from the increase of light and dark portions that are in close proximity. The 

fractal dimension value would approach 3.0 (Figure 9). 

Figure 9. Crumbled Paper as Complex Surface. 

18 

The property of self-similarity is defined by the invariance of a shape under 

certain transformations of scale. Self-similarity is explained by the irregular patterns 

that repeat exactly or statistically as the scale of observation varies (Goodchild et al, 

1987). An example of an object that displays exact self-similarity is the fractal shape 

of the Cantor set (Figure 10). 

Figure 10. Cantor Set. 

Although the Cantor set is to be thought of as the "final row" in this picture, the entire 

picture must be considered altogether. It is important to note that at each stage the 

picture is "doubled" into two copies that precisely resemble the whole. However, at 

each stage the new set becomes two-thirds smaller then the original. With these 



properties, the Cantor set exhibits self-similarity at every scale over a uniform 

reduction of scale and qualifies the Cantor set as a fractal with Hausdorf dimension 

given by the equation below where the 2 represents the two remaining pieces when 

one-third is removed from the whole: 

Log2/Log3 = 0.63092973 .... [2] 

19 

Areas and surfaces can be considered self-similar when an object within the 

image lack clues to its scale. Most real world objects are not self-similar at all scales 

and can be modeled by stochastic fractals where self-similar properties have inexact 

patterns (Xia and Clarke, 1997). For example, Mandelbrot introduced the concept of 

fractal curves using a stretch of coastline along Britain (Mandelbrot, 1982). Close 

scrutiny of the English coastline at a scale of 1/100,000 reveals numerous irregular 

and complex inlets (Lam, 1990). Reexamination at 1/10,000 shows more detail of 

similar complexity to that of 1/100,000. This complexity exhibits properties of 

stochastic self-similarity. This fundamental concept when applied to curves and 

surfaces allows for portions to be considered as a reduced scale of the image (Lam, 

1990). Thus, analysts can begin to apply the properties of fractals to those of real 

world spatial questions. 



CHAPTER IV 

TEXTURE MEASUREMENT USING THE FRACTAL DIMENSION 

Variogram 

There are several viable techniques for computing the fractal dimension 

including the variogram, the isarithm, and the triangular prism. These methods utilize 

the fractal dimension as an index of image texture. 

The variogram is a method used to measure image complexity using the 

fractal dimension. Variograms are used to describe how changes in brightness vary 

with distance and have been used significantly in kriging, a spatial interpolation 

technique (Lam and DeCola, 1993). For any continuous surface of dimension 2:::; D::;

3, the expected value of the squared height difference between two points is 

expressed by: 

where Zp and Zq are the brightness values at the points p and q and dpq is known as 

the lag spacing or lag increment. The lag spacing is the distance between successive 

brightness values (lsaaks and Srivastava, 1989). The H parameter in this equation 

describes the complexity and has values between O and 1 (Lam and DeCola, 1993). 

The parameter H describes the complexity of the surface and indicates with large 

20 



21 

values, a strong tendency to return to neighboring pixel values which results in a 

smooth surface (Lam and DeCola, 1993). In contrast, a small H returns a complex 

surface with white and dark pixel values in close proximity. If the variance is 

computed for different distances, the D can be estimated from the slope b of the 

regression between the logarithms of variance and distance so that (Lam and DeCola, 

1993): 

D=3-H=3-b/2 [4] 

The variogram is a plot of incremental variance between two locations along 

the ordinate against the distance between the two locations along the abscissa (Xia 

and Clarke, 1997). The variogram offers insight towards understanding image 

complexity and pattern. There is a single major advantage and two disadvantages to 

using the variogram method. The advantage is that it can be used upon samples of 

regular and irregular grid data to increase processing speed. The major disadvantage 

to the variogram is that it often does not behave linearly in the log-log plot at all 

scales. Often, the ends of the log-log plot will slope downward, which results in D 

being greater then 3.0. The other disadvantage of the variogram is that it is not 

appropriate for detecting scale ranges within images (Lam and Decola, 1993). This 

method requires several complicated computations compared to that of the isarithm 

method. The isarithm technique is rooted in that distance is examined using changes 

in increments between neighboring cells. 



22 

Isarithm 

The isarithm method for measuring fractal dimension is based on the principle that as 

the cartographic scale of a curve increases more detail becomes visible and the length 

of the line increases at a consistent rate (Clarke and Schweizer, 1991). The rate of 

increase is determined by calculating of the slope of the log-log plot of the entire 

length of the line against the length of the measurement instrument or step-size. The 

fractal dimension is equal to 1 minus the slope of the regression line (Figure 11). 

Using the argument that DsuRFACE = D,sARITHM + 1, a modification of the line-divider

technique can be used to measure the D,sARTHM . For example, a technique developed

by Lam and DeCola (1993) requires users to specify an input matrix of pixel values to 

be used as z-values for a surface. This is followed by indicating an isarithmic interval 

to determine the number of isarithms to be examined. The technique concludes by 

requiring a particular number of step sizes. Step sizes are defined by units of grids 

that proceed by the number of grids (1, 2, 4, 8, etc) (Lam and DeCola, 1993). The 

procedure is designed to compare neighboring cells along the rows or columns and 

examines if the pairs are both black or both white. If they are not, an isarithm is said 

to be lying between the two neighboring cells and a boundary counter is incremented. 

Using the total number of boundary pairs, the length of the isarithmic line can be 

approximated. This process is continued until the specified number of walks or step 

sizes has been completed. After the counting of the boundary cells per walk size, the 

rate of increase in line length can be calculated by the slope of the regression line of a 

log-log plot of the entire length of the line against the length of the step size (Figure 

11). This process computes the corresponding D value using 2 - b, where b is the 

slope of the line from the log-log regression (Clarke et al, 1991). The fractal 



23 

dimension of the surface is the average of the D values for those isarithms for which 

R
2 

� 0.9 (Lam and DeCola, 1993).

3.6 

3.2 

Log (length) 2.4

2.0 

·,.

---·-·•-----·----·-.--. 
•• 
-·-·•-·-

0.2 0.6 l.0 1.2 1.4

Log (step size) 

Figure 11. Log-Log Regression of Isarithm Method. 

Triangular Prism 

The triangular prism has also been repeatedly shown to provide fractal 

measures without being overly sensitive to noise within an image (Qiu et al, 1999; 

Jaggi et al, 1993; Clark et al, 1991; Lam, 1990). This method first introduced by 

Clarke (1986) requires that an image be located on a square grid defined by ( x, y) 

coordinates with z-values corresponding to the digital numbers of the pixels using one 

band (Figure 12). From the corners of a specified kernel, reflectance values are 

obtained from the four corners (e.g. AZ,BF,CG,&DH ). These values are used to 

determine the average elevation that is used to determine the z value for the 

interpolated center point (e.g. MO). Drawing a line from each corner to the center 

results in dividing the top into four distinct triangles. The last step requires 



computation of the surface areas of the triangles. By repeating this method, Clarke 

(1986) was able to establish a relationship between the total area of the surface and 

the spacing of the squares. 

24 

The points E, F, G, and Hin the figure are locations at the four comer pixels 

on a grid. The points A, B, C, and D are the ends of the lines that extend in the 'z' 

plane according to the reflectance values of the comer pixels. A vertical line is then 

drawn from the center base of the square and labeled MO. M is the middle 

coordinate (center pixel of square) with a new value O determined from the average 

digital numbers of the four comer pixels (Jaggi et al, 1993) (Figure 13). 

A 

E 

- (- - - -) MO= EA+FB+GC+HD /4

X H 

C 

G 

Figure 12. Three Dimensional Triangular Prism Method. 

[5]



25 

By doing this, we obtain 4 triangular prisms (Figure 13). The area of these surfaces 

can be computed by using trigonometric functions and Heron's formula (Clarke, 

1986). Heron's formula is used to provide a means of calculating the area when only 

the lengths of three sides are known. This method is described by a given triangle 

with sides of lengths a, b, and c the area can be computed by: 

Area= ✓[s(s-a)(s-b)(s-c)] [6] 

Where Sis the semi-perimeter, 

S =((a+b+c)/2) [7] 

Figure 13. Top View Calculation of Triangular Prism Method. 

Clarke and Jaggi used the triangular prism method to compute the fractal 

dimension of entire images (Clarke, 1986; Jaggi et al, 1993). Using this method at the 

global level yields one measurement of fractal dimensions for a whole image or 

specified subsets of an image. 



26 

Local Fractals 

Convolution is a mathematical operation that is fundamental to many common 

image-processing operations. Convolution provides a way of 'multiplying together' 

two arrays of numbers, generally of different sizes, but of the same dimensionality, to 

produce a third array of numbers of the same dimensionality (Fisher et al, 2000). This 

can be used in image processing to implement operators whose output pixel values 

are simple linear combinations of certain input pixel values. 

Convolving an image involves two specific procedures. First, a moving 

window must be established that contains an array of coefficients or weighting 

factors. These arrays are referred to as operators or kernels and are normally an odd 

number of pixels in size (Lillesand and Kiefer, 1994). Second, the kernel must move 

through all the positions where the kernel fits entirely within the boundaries of the 

image. Each kernel position relates to a single output pixel. This value is calculated 

by multiplying together the kernel value and the underlying image pixel value for 

each of the cells in the kernel, and then adds all these numbers together (Fisher et al, 

2000). The digital number at the center of the kernel in a second convoluted output 

image is obtained by multiplying each coefficient in the kernel by the corresponding 

digital number in the original image and adding all the resulting products (Lillesand 

and Kiefer, 1994). The influence convolution may have on an image depends directly 

upon the size of the kernel used and the value of the coefficients contained within the 

kernel. 

In contrast to the global fractal dimension, local fractal dimensions are a 

series of values determined within an overlapping or non-overlapping moving 



27 

window. First, a square window of odd size is specified. A center pixel value is used 

as the peak and requires an odd size window from which to generate the four 

triangles. The fractal dimension is calculated for the window and is then used in an 

output image as a pixel with the assigned value and the process is repeated. By 

combining the set of fractal dimension, the results can be represented in an entirely 

new grid image. It is important to note that the new output image is shorter on all 

sides by: 

# Rows= (Truncate(Image Size-Window Size)/ Window Gap)+l [8] 

#Columns= (Truncate(Image Size-Window Size)/ Window Gap)+l [9] 

The focus of this work centers upon assessing landscape complexity using the 

triangular prism method to determine local fractal dimension for texture 

classification. The advantage of this method is based upon its computational ease as 

well as the simplicity of the graphical output generated from plane geometry. The 

triangular prism method developed by Clarke (1986) was designed to measure natural 

surface area as an alternative to the line-divider method. 

Purpose Statement 

The purpose of this research is to construct a spatial analysis filter using the 

triangular prism method. This method is used to compute the fractal dimension (D) 

that can be used to quantitatively characterize image texture. This filter, titled 

Fractex, is built as an extension to the Geographic Information System Arc View™. 

This local filter is designed to pass a moving window throughout an image and 



28 

compute the fractal dimension values for a specified window size. These values are 

used to generate a second image that is quantitatively and visually assessed in order to 

determine the level at which the image no longer provides viable information. 



CHAPTER V 

METHODS 

Methods Background 

This work describes the alteration of the triangular prism method for 

measuring the fractal dimension of an image. Prior to alteration, this technique has 

been shown to successfully compute the fractal dimensions from remotely sensed 

images of digital terrain data. Jaggi et al (1993) developed an interactive triangular 

prism technique based upon the work done by Clarke (1986). This method is a self 

contained program for use in the Image Characterization and Modeling System 

(ICAMS) (Quattrochi et al, 1997). The program titled triangular.exe was written in C 

and designed to be used through Arc/INFO and Intergraph software packages and 

also as a stand-alone application. 

The extension to Arc View known as Fractex expands upon the work of 

Quattrochi et al (1997) through a series of modifications to the triangular executable 

using an object-oriented scripting language known as Avenue. The modified 

executable is renamed to be MWFDTPM.exe (Moving Window using Fractal 

Dimension of the Triangular Prism Method). Fractex functions on a menu driven 

geographic information system (GIS) software package known as ArcView, versions 

3.0 and higher. Arc View is a Geographic Information System designed and 

distributed by the Environmental Systems Research Institute (ESRI) allowing users to 

perform numerous mapping and spatial analysis functions. An extension is defined as 

a kind of object database that can be used to provide new functionality to Arc View 

29 



30 

without altering existing projects. A venue is designed to simplify the development of 

complete extensions like Fractex. ESRI's window-based software enhances fractal 

analysis significantly with the assistance of numerous spatial analysis tools and 

extensions. 

Summary of Software Flow 

The main objective of this research is to provide a means of characterizing the 

texture of an image using the local triangular prism method in an Arc View 

environment. In order to assess the complexity of an image, it is important to 

understand how the A venue script and C code function together. In order to 

characterize texture, a script was written in an object oriented scripting language 

called A venue. It was designed to accept ten user-input parameters, perform a remote 

procedure call (RPC) to the C code, and display results within an active theme 

window. 

The script begins by checking for critical components required to compute the 

fractal dimension. The first step involves checking to see if the Spatial Analyst 

extension is loaded. The Arc View Spatial Analyst is a tool used for understanding 

spatial relationships within data sets. The main component of the Spatial Analyst is 

the grid theme. The grid theme is the raster equivalent of the image theme displayed 

within a view. The Spatial Analyst is required in order to generate the single band 

grid theme from the original image. The grid theme is required for spatial analysis 

functionality within Arc View. Prior to using Fractex, the original image displayed in 

Arc View must be converted have one band extracted as a grid in order to display the 

output results. 



31 

The script proceeds by gathering a range of attributes associated with the 

newly created grid theme. Information obtained includes the projection, the cell size, 

the extent, the number of rows and columns, the origin, and the upper right 

coordinates of the grid (Figure 14). These parameters will be used for two specific 

tasks. The first task is the creation of two text files. One text file, titled fractal.txt, 

contains a header with the newly appended fractal dimensions. This text file is 

imported into Arc View as a newly created grid theme for image analysis. The second 

text file, titled debug.txt, provides detailed information regarding each window and 

the computations associated with it. The information in debug.txt includes the 

dimensions of the window, the step size, the R-squared value, and the fractal 

dimension for each window. Located at the bottom of the debug.txt file is the average 

fractal dimension for all the windows and the average R-squared value for the entire 

image. When the program is initiated, the two text files known as fractal.txt and 

debug.txt are generated in tandem via the Avenue script. 

The next portion of the script focuses on the creation of ten windows that 

allow the user to tailor the moving window computation. The first input parameter 

includes the path location of the stored file without the image extension (eg: 

a:\hol_15) and the second asks for the extension of that file (eg: gis). Fractex can 

accept four file types: BIL, LAN, GIS, and DAT. BIL stands for band interleaved by 

line. BIL is a form of data storage in which each record in the file contains a scanned 

line (row) of data for one band. All bands of data for a given line are stored 

consecutively with the file. LAN is an image data file, usually with multiple bands, 

containing data file values for a digital image. LAN and GIS files are ERDAS format 

images and usually contain remotely sensed data or a scanned image. GIS stands for a 

geographic information systems file. This is a single band image file that usually 



32 

'I 

Obtain grid attributes for processing: Spatial Analyst, Projection, Units, Cell 

Size, Extent, Origin Coordinates, Upper Right Coordinates, Number of Rows 
and Numher of C,olumns. 

i 
Obtain ten input parameters in Arc View: band, file w/o extension, 

extension, last window column, last window row, step size, method, 

window gap, MWFDTPM location, and path for two text files. 

+ 

Create two text files. (1) 

fractal.txt (2) debug.txtfile 

i 
Send ten parameters to MWFDTPM.exe 

+ 
Executable file computes fractal 

dimension; appends values to text 
file and simultaneously creates a 

log of computations 

• 

Values displayed as grid image 

in Arc View for analvsis 

• 

End 

Figure 14. Flow Diagram of Fractex. 

I I 

I 

[-----] 



33 

contains data file values that correspond to GIS classes. DAT are data files. These are 

provided with ERDAS software and store various types of data. The user is also 

requested to designate the path name for the location of MWFDTPM.exe as well as 

where to place the two text files. 

Subsequent to entering the text file location, Fractex requires the band chosen 

for the analysis. The following two input criteria require the user to select a step size 

and a regression method of arithmetic or logarithmic. The fractal computation method 

is used to compute the fractal dimension at geometrically decreasing square sizes. 

The methods that are available for computing the fractal dimension are either a linear 

or logarithmic method. 

The next two inputs to Fractex specify the window size to be used. The user is 

asked for the upper right and lower left dimension values the window. The moving 

window begins at the upper left comer of the image (Figure 15). The window 

'moves' by maintaining the original size but uses different coordinates to step over 

row major based upon a window gap. Row major is defined by repositioning the 

window along a specified horizontal axis of the grid. 

Fractex requires a specified window gap size to determine the number of 

columns the new window will be located to the right of the first window This pattern 

continues row major until it reaches the end of the row (Figure 16). When the 

algorithm reaches the end of the row and there are not the required rows and columns, 

the algorithm will stop and begin a new row. The new row uses the same window 

parameters directly below the first window at the specified window gap (Figure 17). 

This new row will also continue moving row major to the right until the entire image 

has been analyzed. 



11 

◄ ►

Figure 15. Beginning Position of Window. 

Figure 16. Moving Window Using a Window Gap of One. 

11...... Stop 

34 



Begin New Row II� 

II� Stop 

Figure 17. Moving Window Beginning New Row Lower by Window Gap. 

35 

The final task occurs during the remote procedure call (RPC) associated with 

the computation of the fractal dimension. The remote procedure call (RPC) allows the 

client (A venue script) to trigger procedures running in another program known as a 

server. The C++ program written by Anderson (2001) MWFDTPM.exe acts as the 

server. An RPC server resides on a particular host machine and provides a set of 

services to clients. RPC clients connect to a RPC server either locally or through a 

network and initiate the specified services from that server. Through a local 

connection, multiple events occur in rapid succession. During the computation of 

each fractal dimension for each window, the program is simultaneously appending 

values to the two text files fractal.txt and debug.txt. 

The new program is altered from the original triangular.exe by computing a 

single gain value for the entire image rather then a gain value for each individual 

window. In the original triangular.exe (Quattrochi et al, 1997), a gain value is 

determined from the minimum and maximum values within the specified window. 



36 

Gain values are used to scale the comers of the window such that the values for the 

entire image are stretched from Oto 255. While the MWFDTPM.exe generates a 

series of moving windows, a single gain value is determined for the entire image and 

subsequently used for all individual window computations allowing for a much 

smoother more accurate color stretch observed in the output image (Anderson, 2001). 

This stretch also allows for relative comparisons to be made within an image. 

A minor change to triangular.exe involved some of the calculations that were 

happening on the inside of the loop. A few calculations produced identical results 

every time the program was executed. Movement of a variable calculation was 

determined by inspection of source code. The criteria involved determining whether 

or not a variable calculation was constant for the duration of the loop. Functions were 

moved outside of the loop to clarify the purpose of the function and to speed up 

performance. The number of moved variables was limited and resulted in only a 

slight increase in processing time (Anderson, 2001). 

The second minor alteration involved the display of the results from the 

computation of the fractal dimension. In the original triangular.exe results were 

displayed on the screen. In the altered version, all values were sent to the two text 

files previously discussed. 



CHAPTER VI 

RESULTS 

Validation 

Three test images were examined to test the validity of Fractex as a viable 

extension. The analysis began with a close scrutiny of the generated ideal fractal 

surfaces as a means of testing the precision of this extension. The final site used to 

examine the viability of Fractex was an orthophoto of Holland, Michigan because it 

contained a wide range of land uses. 

All images examined using Fractex used identical window parameters except 

for minor changes in window size (Table 1). The window gap used in the calculations 

was always 1 and the fractal computation method was arithmetic unless otherwise 

noted. The step size of 9 was maintained throughout the program because it is the 

maximum number steps even though most computations will not use all nine. 

Simulated Fractal Surfaces 

Ideal fractal surfaces can be generated using a method known as 'fractional 

Brownian'. Brownian motion is a sophisticated random number generator, based on a 

process in plants discovered by Robert Brown in 1827 (Lee and Hoon, 2001). 

37 



38 

Table 1. 

Table of Parameters Used During Analysis 

Band 1* 

File w/o Extension Variable 
Extension Variable 
Last Window Column Variable 
Last Window Row Variable 
Step-Size 
Method Arithmatic 
Window Gap 1 

* Indicates Analysis of Lake Charles used Band 3

According to Einstein, bodies of microscopic particles are suspended in a 

liquid and perform irregular thermal movements called Brownian molecular motion 

and are easily observable in a microscope (Mandelbrot and Ness, 1968). Chapter 

three introduced how fractal patterns develop when a simple example like the Cantor 

set is transformed continually on smaller and smaller scales. Brownian motion is able 

to produce these fractal patterns based on the property of self-similarity. For example, 

a pen can be used to mark dots at random on a sheet of paper to produce an image. 

However, instead of being completely random, the movement of the pen from one 

location to the next is selected randomly from a set of rules each having a fixed 

probability of being chosen (Lee and Hoon, 2001). As a result, the fractional 

Brownian motion theory can describe naturally occurring rough surfaces by 

combining fractals and Brownian motion to produce fractal patterns. This term is 

given to a class of variograms from: 

y(h) = h2H
(10] 

1 



39 

that have surface fractal dimensions equal to 3 - H (Lam and DeCola, 1993). The H 

parameter represents values from Oto 1. For large H values, the results tend to exhibit 

small differences between neighboring points. In the case of small H values, the 

generated surface tends to be highly irregular. According to Lam and DeCola (1993), 

an H value of 0.5 produces a surface that is statistically self similar. 

Three surfaces were generated using the shear displacement method titled 

SURF _GEN and written in FORTRAN by Lam and DeCola (1993). The shear 

displacement method takes a grid matrix, initializes it to a uniform value (z = 0), and 

generates a succession of random lines across the grid surface (Goodchild, 1980; 

Goodchild, 1982). Across each line, the surface is faulted vertically to form a cliff. 

This method of faulting is repeated until numerous lines are generated between points 

(Emerson et al, 1999). Each cliff's height is determined by the user specified 

parameter (H) so that the variance between two points is proportional to their 

distance. 

The simulated fractal surfaces were the first set of images analyzed using 

Fractex. Three surfaces were generated to test the accuracy and validity of the 

algorithm. The first one uses H0l and an H value of 0.1 represents the most complex 

simulated surface (Figure18A). The surface outcome returned an area with light and 

dark pixels in close proximity to one another. Increasing the H parameter to 0.5 

results in a progressively smoother surface (Figure. 18B). This set shows an even 

transition between high and low reflectance values. The second surface titled H05 

(Figure 18B) is a surface with a known fractal dimension of 2.5. The third image uses 

an H value of 0.7 and returns a known fractal dimension of 2.3. The third image 

resembles a surface of a cloud and is titled H07 (Figure 18C). As a result, these 



generated fractional Brownian surfaces can be used as a null hypothesis in order to 

test fractal techniques as well as a means of comparison against real world images. 

A B 

C 

Legend. A =  H=0.l D = 2.9, B = H=0.5 D=2.5, C = H=0.7 D=2.3 

40 

Figure 18. Simulated Fractal Surfaces Generated by the Sheer Displacement Method. 

A series of grid images were generated from the simulated surfaces based 

upon the local fractal dimension and displayed in ArcView. A mean fractal dimension 

for the whole image is obtained in Fractex by summing the fractal dimension value 

computed for each window and dividing by that number to obtain a singular value for 

the entire grid output. In simulated surface H0l, we observe a high range of values 

that are as low as 2.086 and as high as 3.007 associated with this rough surface at 



window size of 11 X 11 (Figure 19). As the window size increases, two significant 

responses occurred. The first event is observed in the lower right hand comer of the 

image and shows very low fractal dimensions. This was followed by a significant 

decrease in the range of values displayed in the associated theme in Arc View. It is 

important to note the uniformity of the output grids as window size increases. 

A B C 

Legend. A= HOl at 11 X 11, B= HOl at 21 X 21, C= HOl at 49 X49 

Figure 19. Average Fractal Grid Output from HOl. 

41 

Using Figure 18B with a known fractal dimension of 2.5 returned the grid 

output known as HOS. These images showed notable complexity with an even 

distribution of high and low values of fractal dimension in close proximity to one 

another. There is a significant contrast between the expected fractal dimension of 2.5 

and the average fractal dimension that approaches 2.2. Increasing the window size 

causes a reduction in precision of Fractex (Figure 20). The surface displayed several 

significant and easily recognizable pockets of high and low fractal dimensions with a 

reduction in variability and detail when using a window size of 49x49. Using 

progressively larger window sizes the areas of low complexity tend clump together 

and have less uniform distribution. 



A B C 

Legend. A= HOS at 11 X 11, B= HOS at 21 X 21, C= HOS at 49 X49 

Figure 20. Average Fractal Grid Output from HOS. 

42 

H09 returned an average fractal dimension of 2.0 while the known fractal 

dimension was 2.1. The range of values used to obtain this average showed a very 

small spread between the highest and lowest fractal dimension ( <0.043). A unique 

response began to emerge in H09 as a localized region of higher fractal dimensions 

was seen in the middle of the image with a gradual blend of white near the upper right 

and low left of the output 

Legend. A= H09 at 11 X 11, B= H09 at 21 X 21, C= H09 at 49 X49 

Figure 21. Average Fractal Grid Output from H09. 



43 

The outcome obtained form the analysis shows significantly less average 

fractal dimension values when compared to those of the known fractal dimenion 

(Figure 22). The contrast between the expected fractal dimension and the observed is 

a result of using the known global fractal dimension from the simulated surfaces and 

comparing it with an average fractal dimension. These results, however, show that 

even as window size increases the average fractal dimension does not change 

drastically in any of the simulated surfaces. The major result observed is the major 

drop from the known fractal dimension to the average fractal dimension. Even though 

these results are significantly less then expected, comparisons can still be made 

between the other real image. 

3....-----------------------, 

2.9 ;-----

c 2.8 -+----- -,- --------- -- ------f 

C 2.7 -+--- -- - -,�- - - - --- -- ------, 
0 
"iii 
C 
Cl) 

E 
i5 

2.6 

2.5 

2.4 

2.3 

2.2 

2.1 

2 

---2.

2.151 

Known (D) 11 21 

Window Size 

Figure 22. Average Fractal Dimension of Simulated Surfaces. 

49 

�H01 

-HOS

H09



44 

Holland, Michigan Characteristics 

The orthographic photos taken in 1999 of Holland, Michigan were taken by 

GRW. Inc through a contract with the United States Army Corps of Engineers for 

multiple purposes (USACE and GRW, 1999). Orthographic photos resemble photos 

but contain properties of a map. Like maps, they have one scale and like photographs 

they show the terrain in actual detail. These two properties allow analysts to interpret 

the orthophoto but also obtain true distances, angles, and areas. The GIS Research 

Center at Western Michigan University obtained the images from a contract held with 

the United States Army Corps of Engineers in 2000 in order to measure bluff line 

erosion. 

The image of Holland is made up of six one square kilometer tiles 

encompassing the lower southwest portion of Ottawa County and the northwest 

portion of Allegan county (Figure 23). This image of Holland, Michigan was selected 

because it contained a wide variety of land uses with various degrees of complexity. 

This area contains a lake, forest cover, and urban setting as well as several 

agricultural plots. The highway running north and south nearly splitting the image in 

half is US-31 and the highway running east and west is Michigan highway 21. The 

lake just west of US-31 is Lake Macatawa which is fed by the Macatawa River. In the 

Southeastern portion of the image below the urban areas a forest is visible and beyond 

that a few monoculture agricultural tracts can be identified. 

The original six tiles were mosaiced together using the geospatial analysis 

product TNTmips (Microimages, 2000). The original image at 15,183 X 9,685(Figure 

24A) has 0.3 meter resolution. It was resampled to 1 meter at 4555 X 2906 (Figure 

24B), 5 meter 91 lX 581(Figure 24C), 15 meter 304 X 194 (Figure 24D), and 30 



meter resolution 152 X 97(Figure 24E). All of these images were resampled using 

cubic convolution and converted to a single band ERDAS GIS format that would 

allow it to be analyzed in Fractex. 

45 

The resampled 8-bit raster images of Holland allowed for meaningful 

comparisons to be made between images after using Fractex. The changes in 

resolution between images showed significant contrasts between the original and the 

fractal dimension output images. Unlike the ideal fractal surfaces, real world images 

such as Holland, Michigan represent various fractal dimensions at changing 

resolutions. As Holland is resampled towards less clarity, it becomes evident that the 

recognizable visual information obtained from the fractal dimension images becomes 

increasingly difficult to interpret. 

The type and amount of information to be gathered using Fractex becomes 

more difficult to interpret as the window size is increased and the resolution is 

decreased. A general examination of Holland at 15-meter resolution shows the output 

images becoming more homogenous while recognizable features tend to diminish at 

increasing window sizes (Figure 25). Upon closer inspection of Figure 25A, Lake 

Macatawa and US-31 have easily identifiable features because of the low complexity 

of those surfaces. In the lower right hand comer of Figure25A there is a pocket of low 

image complexity where the forest stands and agricultural plots are located. 

Progressing to Figure 25B, Figure 25C, and Figure 25D, the low image complexity of 

agricultural tracts begins to expand. The presence of a new area in the northeast 

portion of the image becomes more dominant as an area if decreasing complexity. 

This area is the Muskegon state game area. In Figure25E and Figure 25F, the game 

area has a substantial smoothing influence throughout the northern portion of the 



0 0.5 1 - � 4 2 3 

- M Kilometers 

Figure 23. Holland, Michigan. 
.j::,.. 
0\ 



47 

A B 

C 

D 

Legend. A= Holland original at 0.3 meter, B= Resampled to 1 meter, C= Resampled 

to 5 meters, D= Resampled to 15 meters, E= Resampled to 30 meters 

Figure 24. Resampled Images of Holland, Michigan. 

E 



48 

image. Overall, the observed average fractal dimension is lower because Fractex is a 

smoothing function. 

The second trend involves the shrinking range of fractal dimension values 

obtained within an image. With small window sizes (l lXl 1), a wide range of values 

(1.92-3.03) is seen in the 15 meter resolution of Holland that used a window size of 

11 x 11. Comparing the 15 meter resolution using 49 x 49 window sizes (15hol_ 49) 

with a range of (2.03 - 2.59) reaffirms the notion that larger window sizes have a 

smoothing effect upon the output grid. In the case of 15hol_l 1, the fractal dimension 

is 2.555 while the dimension for 15hol_ 49 is 2.426. As the window size increases and 

the output grid becomes smaller, the fractal dimension value of an entire image tends 

to shrink and approach a single fractal dimension. For example, window sizes with 

subsequently larger increments in Holland_l5 returned values (Figure 23) that 

approached a value near 2.450. 

A third observed outcome was obtained upon examination of a continuous 

window size of 11 X 11 across three resampled Holland images. As images are 

resampled to include more actual ground area per pixel, the expected result would 

suggest that by maintaining a set window size a smoothing effect would result. 

However, Figure 23 shows that as images are resampled, they tend to exhibit 

properties of higher complexity. It is interesting to point out that Holland_l5m and 

Holland_30m maintain close average fractal dimensions between them at low 

window sizes. As the window size increases to 49 X 49, there is a significant increase 

in the spread of the average fractal dimension between the two images. 



49 

Legend. A= llxll D= 2.596, B= 21x21 D =2.546, C= 35x35 D = 2.528, D= 51x51 D 
= 2.43, E= 75x75 D = 2.454, F= lOlxlOl D = 2.450 

Figure 25. Fractal Grid Output from Holland, Michigan at 15 Meter Resolution. 



50 

2.65 ----

2.6 

2.55 

'iii -+- Holland_5m C: 2.5 
Q) 2.49 

- Holland_ 15m
2.45 _2..454,_; 

Holland_30m
ai 2.426 

2.4 

2.35 

2.3 

11 21 49 

Window Sizes 

Figure 26. Average Fractal Dimension for Holland, Michigan. 

DISCUSSION 

With more than 500,000 users of ArcView GIS worldwide (ESRI, 2001), 

Fractex will possibly experience widespread adoption to assist texture classification. 

The use of this extension is accomplished with only the low cost of Arc View 

compared to that of other more costly expenses associated with other software 

platforms or stand-alone products. It is important to mention that this extension only 

works with versions of Arc View that are 3.0 and higher and must have the Spatial 

Analyst extension. 

The real functionality of this utility is rooted in the simplicity of Fractex. 

Fractex offers users of numerous disciplines the ability to perform complex fractal 

analysis within a simple and easy to understand extension. This current version also 

has the capability to supplement the addition of more features. The incorporation of 

additional features for geospatial analysis, like Geary's C and Morans I (Cliff and 

Ord, 1981), will be easily integrated. Fractex presents an altemitive in the 

c -C 
0 

E 
i5 

0 
Ill ... 
LL 



development and the testing of practical applications of fractal analysis in terms of 

image texture. The potential usefulness of this technique will hopefully reach all 

manor of texture classification experts. 

51 



CHAPTER VII 

CONCLUSIONS 

Final Comments 

The rationale, design, and major functions of the extension Fractex have been 

described as a tool for multiscaled analysis of landscape characteristics. The 

development and distribution of the extension Fractex offers another alternative to 

determining the fractal dimension of an image. The algorithm has shown that it 

functions adequately within Arc View to generate a grid image based upon the fractal 

dimensions of a moving window. The output grid, however, is a smaller area then the 

original and therefore caution is suggested when including target features near the 

edge. The boundary of the new grid is dependent upon the window size, window gap 

and the step size. The program also returned an average fractal dimension for entire 

grid image sets. These grid images and the average fractal dimension were compared 

with known fractal dimensions of simulated surfaces. The results indicated that there 

was a considerable loss of precision between the known and the expected values. 

Even though there was a significant drop, the average fractal dimensions of the 

simulated surfaces maintained a relatively uniform fractal dimension at large and 

small window sizes. 

Based upon the notion that analysis of a real world image would likely 

provide average fractal dimension values lower then a global fractal dimension, 

comparisons were made only upon images of Holland, Michigan. The analysis of 

52 



53 

Holland, Michigan examined the effects resampling of images had upon the fractal 

dimension. The evidence suggested that resampling to coarser resolutions caused the 

fractal dimension to rise. One resampled image of Holland, Michigan was studied to 

examine the effects of increasing window size and the complexity of an image. 

A major difficulty associated with fractal analysis when applied to earth 

system remote sensing stems from the notion that different algorithms return different 

dimension values (Tate, 1998). Often there is variability associated within a single 

method resulting from various input parameters that affect the final fractal dimension. 

This work only examined the use of the triangular prism method at the local level. 

However, Fractex can be expanded to include other methods like the isarithm and 

variogram. Analyses of the output fractal dimensions require expert knowledge of the 

target system especially when attempting to draw major conclusions from the results. 

The emphasis upon expert knowledge is often overlooked in favor of the processes 

surrounding remote sensing and geographic information system research. In the case 

of fractal analysis, expert knowledge cannot be understated. 

Further Research 

There are at least three major areas that need to be examined in future 

research. First, do automation tools improve land cover classification? It is important 

to determine if Fractex aids in the providing real clues to quantifying texture. There 

needs to be further examination of other simulated surfaces to assess image 

complexity. Second, there is the need for further development involving multi-scale 

analysis and the effects it has upon texture classification. It is important that research 



54 

be performed to determine the boundaries of certain characteristics within an image. 

For example, determining quantitatively where the edge of an urban area meets a 

rural area is an important issue in land use management. Third, determining what is 

an optimal scale to perform image analysis upon the system, target or area is useful 

and can be developed. Knowing the resolution that can provides the most information 

to determine the most accurate fractal dimension is needed. 

Perhaps the most limiting factor associated with the fractal dimension is the 

lack of understanding of what is being actually measured and the meanings of these 

values. It is critically important that analysts compare fractal results with results from 

spatial statistics to assess the usefulness and accuracy of the information obtained. 



Appendix A 

A venue Source Code 

55 



'Name: FractalDimensionbyMovingWindow 

'Title: Determine Fractal Dimension using moving windows 

'Topics: Spatial Analyst 

'Christopher Caird 

'Western Michigan University. 

'Requires: a View must be the active document, an integer grid theme must be 

'the active theme. 

'Self: 

'Returns: 

'Check the availability of Spatial Analyst Extension 

test=Extension.Find("Spatial Analyst") 

if (test=NIL) then 

msgbox.error("You must have the spatial analyst extension loaded","Clip by~ 

Moving Windows") 

return nil 

end 

56 



'Get the View and selected Grid 

the View=av .GetActi veDoc 

theGTheme=the View .GetActi veThemes.Get(O) 

if (theGTheme.ls(GTheme).Not) then 

msgbox.error("You must select the grid as the active theme.","Aborting") 

return nil 

end 

'Get the projection information 

theProjection=the View. GetProjection 

theDisplayUnits=theView.GetDisplay.GetUnits 

theUnits=theView.GetUnits 

'Get the attributes of the Grid 

theGrid=theGTheme.GetGrid 

if (theGrid.lslnteger.Not) then 

msgbox.error("You must select the integer grid for this analysis.", "Aborting") 

57 



return nil 

end 

theCellSize=theGrid.GetCellSize 

theCellSize.SetFormat(" d") 

theExtent=theGrid.GetExtent 

ImageRow = theExtent.GetBottom 

ImageColumn = theExtent.GetRight 

theOrigin=theExtent.RetumOrigin 

originx=theOrigin.getx 

originy=theOrigin.gety 

gridrows=theGrid.GetNumRowsAndCols.get(0) 

gridcols=thegrid.GetNumRowsAndCols.get(l) 

theSize=theExtent.RetumSize 

theExtentUR=Point.Make(originx+theSize.Getx,originy+theSize.Gety) 

URx=theExtentUR.Getx 

URy=theExtentUR.Gety 

58 



NODATA_value = -9999 

NODA TA_ value = nodata_ value.AsString 

dftBand=l 

Band=Msgbox.Input("Specify the Band Width of the LAN image (1-

7),"+NL+"Example: 1 ","Image",dftBand.AsString) 

Band 1 =Band.AsStri ng 

if (Band.contains("aString" ))then 

Msgbox.Error("Band must be a Number.","") 

return nil 

end 

'dftfirstRow= 1 

'firstRow=Msgbox.Input("Specify the first row,"+NL+"Example: 

I" ,"Image" ,dftfirstRow.AsString) 

'firstRow 1 =firstRow .AsString 

'if (firstRow.contains("aString" ))then 

' Msgbox.Error("Row must be a Number.","") 

' return nil 

59 



' end 

firstRow = 1 

dftlastRow=lO 

lastRow=Msgbox.Input("Specify the last row,"+NL+"Example: 

50", "Image" ,dftlastRow .AsString) 

lastRow 1 =lastRow .AsString 

if (lastRow.contains("aString" ))then 

Msgbox.Error("Last Row must be a Number.","") 

return nil 

end 

oddlist = { 1,3,5,7,9} 

lastdig = lastRow.right(l).AsNumber 

chkval = oddlist.findbyvalue(lastdig) 

'msgbox.info( chkval.asstring, "") 

if (chkval = -1) then 

msgBox.error("This value is Even","") 

return nil 

end 

lastRow = lastRow.AsNumber 

60 



'dftleftColumn=l 

'leftColumn=Msgbox.Input("Specify the first column,"+NL+"Example:~ 

1 ","Image",dftleftColumn.AsString) 

'leftColumnl=leftColumn.AsString 

'if (leftColumn.contains("aString" ))then 

' Msgbox.Error("Left Column must be a Number.",'"') 

' return nil 

' end 

leftColumn = 1 

dftrightColumn=lO 

rightColumn=Msgbox.Input("Specify the right column for window,"+NL+ ~ 

"Example: 50", "Image" ,dftrightColumn.AsString) 

rightCol umn 1 =rightCol umn.AsString 

if (rightColumn.contains("aString" ))then 

Msgbox.Error("Right Column must be a Number.","") 

return nil 

end 

oddlist = { 1,3,5,7,9} 

lastdig = rightColumn.right(l).AsNumber 

chkval = oddlist.findbyvalue(lastdig) 

61 



'msgbox .info( chkval.asstring," ") 

if ( chkval = -1) then 

msgBox.error("This value is Even","") 

return nil 

end 

rightColumn=rightColumn.AsNumber 

dftstepSize=9 

stepSize=Msgbox.Input("What's the Step Size Needed in Order to Compute 'D'?:"," 

Step Size", dftstepSize.AsString) 

stepSize=stepSize.AsNumber 

dftwinGap = 1 

62 

winGap=Msgbox.Input("What's the Amount of Gap Between Windows : 11+NL+"Gap 

is Defined in Terms of number of Columns Between Successive 

Windows("+theCellSize.AsString+"). 11 ," 11 ,dftwinGap.AsString) 

winGap=winGap.AsNumber 

' Obtain image location 



dftimageLoc= "d:\fractal\h051024a" 

imageLoc=Msgbox.Input("Enter the Name of the Image without the ~ 

Extension"+NL+"and the name of the drive it is stored in."+NL+ ~ 

"Example: a:\lkch84", "Image" ,dftimageLoc.AsString) 

if (Not (imageLoc.contains(":\"))) then 

Msgbox.Error("Location of image must include the drive it is stored in","") 

return nil 

end 

if (imageLoc.contains(".")) then 

Msgbox.Error("lmage Must not have Extension.","") 

return nil 

end 

' Obtain extension 

dftexten = "Ian" 

myList = { "Ian", "gis", "dat", "bil" } 

if (myList = nil) then 

msgbox.info(myList++"Y ou must choose one type."," Aborting") 

end 

63 



my List = MsgBox.Choiceasstring (my List, "Choose the extension of the image.", ~ 

dftexten.AsString) 

' Fractal computation method 

dftimageMethod = 1 

imageMethod=Msgbox.lnput("Chose the method for computing the Fractal ~ 

dimension (0 - exponential, 1 - arithmetic),"+NL+ ~ 

"Must be a O or 1. ","Image",dftimageMethod.AsString) 

imageMethodl =imageMethod.AsS tring 

if ((imageMethodl = "O") or ( imageMethodl = "1" )) then 

msu=O 

else 

Msgbox.Error("Size must be a (1) or (O).","") 

return nil 

end 

'Information changes for text file header 

gridcols = (((gridcols-rightColumn)/winGap.floor) + 1).setformat( "d" ) 

gridrows = (((gridrows-lastRow)/winGap.floor) + 1).setformat( "d" ) 

xorigin = originx+(( 1/2)*lastRow*theCellSize) 

64 



yorigin = originy + ((1/2) * lastRow*theCellSize) 

'Write the text file header 

txtFileName = "d:\fractal\fractal.txt" 

theFN = txtFileName.AsFileName 

theTestFile = TextFile.Make(theFN, #FILE_PERM_ WRITE) 

theList = { "linel" "line2" "line3" "line4" "line5"} ' ' ' ' 

theList = theList.AsString 

theTestFile.Write(theList,0) 

If( theTestFile = nil ) Then 

MsgBox.Error("Cannot open file:"+ theFN.GetFullName, "") 

Exit 

End 

'Write the file header and the Fractal 

Str2 = "ncols" 

Str3 = "nrows" 

Str4 = "xllcomer" 

Str5 = "yllcomer" 

Str6 = "cellsize" 

Str7 = "NODATA_value" 

theTestFile.Write(Str2, 5) 

65 



theTestFile. Write(" " + gridcols.AsString, gridcols.AsString.Count + 1) 

theTestFile. WriteElt(NL) 

theTestFile.Write(Str3, 5) 

theTestFile.Write(" "+ gridrows.AsString, gridrows.AsString.Count + 1) 

theTestFile. WriteEit(NL) 

theTestFile.Write(Str4, 9) 

theTestFile.Write(" " + xorigin.AsString, xorigin.AsString.Count + 1) 

theTestFile.WriteElt(NL) 

theTestFile.Write(Str5, 9) 

theTestFile.Write(" " + yorigin.AsString, yorigin.AsString.Count + 1) 

theTestFile.WriteElt(NL) 

theTestFile.Write(Str6, 8) 

theTestFile. Write(" " + theCeIISize.AsString, theCellSize.AsString.Count + 1) 

theTestFile.WriteElt(NL) 

theTestFile.Write(Str7, 12) 

theTestFile.Write(" "+ NODATA_value.AsString, 6) 

theTestFile.WriteElt(NL) 

theTestFile.Close 

'Msgbox.info("The number of windows in ~ 

66 



longitude:"++vmaxNumx.AsString+NL+"The number of windows in~ 

latitude:"++vmaxNumy.AsString,"Information on window number") 

OriginRow = FirstRow 

OriginColumn = LeftColumn 

Box Width = RightColumn - LeftColumn 

BoxHeight = LastRow - FirstRow 

FirstRow = FirstRow 

'msgbox.info((ury-originy).asstring, (urx-originx).asstring) 

StepV = ((ury-originy)/theCellSize - lastRow ) / WinGap 

StepH = ((urx-originx)/theCellSize - RightColumn) / WinGap 

StepV = StepV + 1 

StepH = StepH + 1 

StepV = StepV.floor 

StepH = StepH.floor 

'StepH will be used as paramter number 10 in our execute file. 

'msgbox.info( stepv .asstring, steph.asstring) 

67 

system.ExecuteSynchronous( "d: \fractal\MWFDTPM_OneGain.exe" +" "+ ~ 

imageLoc.AsString + " " + myList.AsString + " " + Band.AsString + " " + ~ 

stepSize.AsString +" "+ imageMethod.AsString +" "+ StepV.AsString + ~ 



68 

11 11 + StepH.AsString + 11 11 + WinGap.AsString + 11 11 + OriginRow.AsString ~

+ 11 11 + OriginColumn.AsString + 11 11 + BoxHeight.AsString + 11 11 + ~

Box Width.AsString) 



Appendix B 

C Programming Source Code 

69 



70 

The C source code for the Moving Window by Fractal Dimension of 

Triangular Prism (MWFDTPM.exe) is listed below. The executable must contain all 

modules listed below in order operate properly. The modules are numbered and given 

a name for reference. When recompiling the code make sure to delete out the 

numbered rows that are underlined. 

1. globals.cpp

#include <stdio.h> 

// DANGER! This same structure is declared in erdas.h, I copied it here trying to~ 

get the program to compile. 

II Don't leave it this way, fix it!/FIXED IT. 

#define ERDAS_HEAD_SIZE 128 

typedef struct _ERDAS { 

char head[6]; 

unsigned short ipack; 

unsigned short nbands; 

unsigned char unused0[6]; /*unsigned short unused0[3];*/ 

unsigned long icols; 

unsigned long irows; 

long xstart; 



long ystart; 

unsigned char unused1[56]; /* int unused1[14];*/ 

unsigned short maptyp; 

unsigned short nclass; 

unsigned char unused2[20]; 

float xmap; 

float ymap; 

float xcell; 

float ycell; 

} ERDAS; 

ERDAS ers; 

int up,below ,Ieft,right; 

int z_interval, walk,direction; 

int no_is_line; 

float zmin,zmax; 

//unsigned short int zmin,zmax; 

float z_contour[256] ,b[256] ,r[256] ,di men [256]; 

int flag[256]; 

71 



int **a; 

FILE *fp; 

FILE *fout; 

char head[6]; 

unsigned short ipack; 

unsigned short nbands; 

unsigned long icols; 

unsigned long irows; 

long xstart; 

long ystart; 

unsigned short maptyp; 

unsigned short nclass; 

float xmap; 

float ymap; 

float xcell; 

float ycell; 

float xmin; 

float ymin; 

float xmax; 

float ymax; 

72 



unsigned short int **z; 

unsigned char unused0[6]; /*unsigned short unused0[3];*/ 

unsigned char unusedl[56]; /* int unusedl[14];*/ 

unsigned char unused2[20]; 

float *xx, *yy, *zz; 

float *dist, *hvar; 

float *sumzd, *gb; 

int *ncase; 

int num,num_group; 

int np; 

int select_points,band; 

float rang; 

double area[IOO], resolution[IOO]; 

int step_num, method; 

73 



2. MWFDTP.DSW

// This is a profiling version of the main program. It isn't used under normal 

II circumstances, but I wanted to keep it around. 

/* 

* MWFDTPM
*

* Moving Window Fractal Dimension by Triangular Prism Method 

* 

* Revision History: 

* 04/27/2001 EJA Created for Chris Caird from "testtriangular" by Wei Zhao.
* 05/03/2001 EJA Moved to a C++ project.
* 06/06/2001 EJA Did final cleanup for first release.
*/

// If defined, the gain will be calculated for the whole image instead of per-window. 

#define ONEGAIN 

// If defined, progress through the calculation will be shown 

#define SHOWPROGRESS 

char szVersion[] = "1.1.5"; 

#include "triangular.h" 

main (int argc, char *argv[]) 

{ 
long steps; 
long StepV, StepH; 

long WinGap; 

long OriginRow, OriginColumn; 
long BoxHeight, Box Width; 
long Row, Column; 

74 



// Print the banner 
#if def ONEGAIN 

printf("MWFDTPM v%s - Gain calculated once for the whole image.\n", -
szVersion); 

#else 
printf("MWFDTPM v%s - Gain calculated for each window.\n", szVersion); 

#endif 
printf("Moving Window Fractal Dimension by Triangular Prism -

Method\nCopyright(c) 2001 Western Michigan University Geography -
Department\nBased upon the algorithim developed by Nina Lam -
(Louisana State University)\n\n"); 

if(argc != 13) 
{ 
printf("USAGE: %s <inputfile> <option> <band> <steps> <method> -

<Step V> <StepH> <Win Gap> <OriginRow> <OriginColumn> -
<BoxHeight> <BoxWidth>\n", argv[0]); 

printf(" <inputfile> is an image file without the extension.\n"); 
printf(" <option> specifies a type to be calculated.\n"); 
printf(" Ian - a Erdas format image.\n"); 
printf(" gis - a Erdas format image.\n"); 
printf(" dat - a ASCII format data.\n"); 
printf(" bil - Band Interleaved by Line.\n"); 
printf(" <band> The band to read from the input file.\n"); 
printf(" <steps> The number of steps to iterate the prism size over.\n"); 
printf(" <method> The method to increase prism size by: -

0 is doubling, anything else is incrementing by l.\n"); 
printf(" <StepV> The number of rows of FDs to calculate.\n"); 
printf(" <StepH> The number of columns of FDs to calculate.\n"); 
printf(" <WinGap> Increment between window edges for each -

FD calculation.\n"); 
printf(" <OriginRow> The starting row.\n"); 
printf(" <OriginColumn> The starting column.\n"); 
printf(" <BoxHeight> The height of the window.\n"); 
printf(" <Box Width> The width of the window.\n"); 
exit(l); 
} 

band=atoi ( argv [3]); 
steps=atoi(argv[ 4]); 
method=atoi(argv[5]); 

//TODO: It should be possible to calculate StepV and StepH from the -

75 

• 



image dimensions, OriginRow, OriginColumn, BoxHeight, ~ 

BoxWidth, and WinGap ... 
StepV = atoi(argv[6]); 
StepH = atoi(argv[7]); 
WinGap = atoi(argv[8]); 

OriginRow = atoi(argv[9]); 
OriginColumn = atoi(argv[lO]); 

BoxHeight = atoi(argv[l 1]); 

BoxWidth = atoi(argv[12]); 

char szDrive[_MAX_DRIVE]; 
char szDir[_MAX_DIR]; 
char *pszFullPath = _fullpath(NULL, argv[l], O); 
if (!pszFullPath) 

{ 
fprintf(stderr, "ERROR: The filename \"%s\" is invalid\n", argv[l]); 

exit(-1); 

} 
_splitpath(pszFullPath, szDrive, szDir, NULL, NULL); 

FILE *pfDebug; 
char szFile[_MAX_PATH]; 

_makepath(szFile, szDrive, szDir, "debug", ".txt"); 
if (!(pfDebug = fopen(szFile, "w"))) 

{ 
fprintf(stderr, "ERROR: The debug file \"%s\" could not be opened ~ 

for writing.\n", szFile); 
exit(-1); 

} 

fprintf(pfDebug, "Run Parameters\n"); 

fprintf(pfDebug, "data file:\t%s\n", pszFullPath); 

fprintf(pfDebug, "data type:\t%s\n", argv[2]); 
fprintf(pfDebug, "band: \t%d\n ", band); 
fprintf(pfDebug, "steps: \t%d\n", steps); 
fprintf(pfDebug, "method: \t%d\n", method); 
fprintf(pfDebug, "StepV: \t%d\n", StepV); 
fprintf(pfDebug, "StepH: \t%d\n", StepH); 

fprintf(pfDebug, "WinGap: \t%d\n", WinGap); 
fprintf(pfDebug, "OriginRow:\t%d\n", OriginRow); 
fprintf(pfDebug, "OriginCol:\t%d\n", OriginColumn); 
fprintf(pfDebug, "BoxWidth: \t%d\n", BoxWidth); 
fprintf(pfDebug, "BoxHeight:\t%d\n", BoxHeight); 
fprintf(pfDebug, "\nup\tbelow\tleft\tright\tNumStps\tR-Sq\tF.D.\n"); 

76 



FILE *pfFractalDimension; 
_makepath(szFile, szDrive, szDir, "fractal", ".txt"); 
if (!(pfFractalDimension = fopen(szFile, "a"))) 

{ 

77 

fprintf(stderr, "ERROR: The fractal dimension file \"o/os\" could not be opened for 
writing.\n", szFile); 

fclose(pfDebug); 
exit(-1); 

} 

double dResultSum = 0.0; 
double dRSquaredSum = 0.0; 
long cResults = 0; 

Open_File(pszFullPath, argv[2], band); 
#if def ONEGAIN 

Find_Z_MINMAX(0, irows - 1, 0, icols - 1); II Only calculate one gain 
#endif 

for (Row= 0; Row< StepV; ++ Row) 

{ 
up= Row * WinGap + (OriginRow - l); 
below = up + BoxHeight; 

#if def SHOWPROGRESS 
putchar('*'); 

#endif 
for (Column = 0; Column < StepH; ++ Column) 

{ 
float fResult; 
float fRSquared; 

left= Column * WinGap + (OriginColumn - 1); 
right = left + Box Width; 

fprintf(pfDebug, "%d\t%d\t%d\t%d\t", up+ 1, below+ 1, left+ 1, right+ 1); 

II Perform calculations for the current window 
#ifndef ONEGAIN 

Find_Z_MINMAX(up, below, left, right); II Calculate one gain per window 
#endif 

Compute_triangular(steps, method); 
Line_Fit(pfDebug, fResult, fRSquared); 



II Update the data that is used to calculate averages 
dResultSum += fResult; 
dRSquaredSum += fRSquared; 
++cResults; 

II Write the current window's information to the output files 
fprintf(pfFractalDimension, "%.3f ", fResult); 
fprintf(ptDebug, "%.3ful", fResult); 
} 

fprintf(pfFracta!Dimension, "\n"); 
} 

#ifdef SHOWPROGRESS 
putchar('\n'); 

#endif 

II Calculate and write averages to the output file(s). 
fprintf(ptDebug, "\nA verage fractal dimension %0.3lful ", dResultSum/cResults ); 
fprintf(ptDebug, "\nAverage R Squared %0.3lf\n", dRSquaredSum/cResults); 

Close_File(); 
fclose(ptDebug); 
fclose(pfFracta!Dimension); 
free(pszFullPath); 

return O; 
} 

3. triangular.h

l*-------------------------------------------------------------

File:triangular.h 
Date: 7126195

Purpose:Computation of Fractal Dimension of remotely-sensed images 
using a modified form of the triangular prism surface area 
method. 

Author: Wei Zhao 
---------------------------------------------------------------*I 

#include <stdio.h> 
#include <math.h> 

78 



#include "isarithm.h" 
#include "variogram.h" 
#include "erdas.h" 

extern double area[lOO], resolution[lOO]; 
extern int step_num, method; 

void Compute_triangular(int steps, int method); 

void Line_Fit(FILE *pfDebug, float& fFractalDimension, float& fRSquared); 

4. erdas.h

/******************************************************* 
File: erdas.h 
Date: July 5, 1995 
Purpose: Erdas LAN/GIS image file head information 

Author: Wei Zhao 
*******************************************************/ 

#define ERDAS_HEAD_SIZE 128 
typedef struct _ERDAS { 

char head[6]; 
unsigned short ipack; 
unsigned short nbands; 

unsigned char unused0[6]; /*unsigned short unused0[3];*/ 

unsigned long icols; 
unsigned long irows; 
long xstart; 
long ystart; 
unsigned char unused1[56]; /* int unused1[14];*/ 
unsigned short maptyp; 
unsigned short nclass; 
unsigned char unused2[20]; 
float xmap; 
float ymap; 
float xcell; 

79 



float ycell; 
} ERDAS; 

extern ERDAS ers; 

extern FILE *fp; 
extern FILE *fout; 
extern char head[6]; 
extern unsigned short ipack; 
extern unsigned short nbands; 
extern unsigned long icols; 
extern unsigned long irows; 
extern long xstart; 
extern long ystart; 
extern unsigned short maptyp; 
extern unsigned short nclass; 
extern float xmap; 
extern float ymap; 
extern float xcell; 
extern float ycell; 

extern float xmin; 
extern float ymin; 
extern float xmax; 
extern float ymax; 
extern unsigned short int **z; 

extern unsigned char unused0[6]; /*unsigned short unused0[3];*/ 
extern unsigned char unusedl[56]; /* int unused1[14];*/ 
extern unsigned char unused2[20]; 

extern int Open_Erdas(char *erdas_path); 
extern int Read_Erdas_HDR(); 
extern int Read_Erdas(int band, unsigned short int **z); 
extern int Close_Erdas(); 
extern unsigned short int **TwoArrayAlloc(int row, int col); 
extern void TwoArrayFree(unsigned short int **x); 
extern int **TwoArrayAlloc_int(int row, int col); 

extern void TwoArrayFree_int(int **x); 

extern float **TwoArrayAlloc_float(int row, int col); 
extern void TwoArrayFree_float(float **x); 
extern char **TwoArrayAlloc_char(int row, int col); 
extern void TwoArrayFree_char(char **x); 

80 



5. fractal_isarithm.c

/*----------------------------------------------------------

File: fractal_isarithm.c 
Date: July 12, 1995 
Purpose: The isarithm method for fractal surface measurement 

Author: Wei Zhao 
----------------------------------------------------------*/ 

#include "isarithm.h" 
#include "variogram.h" 
#include "erdas.h" 

/*---------------------------------------------------------

Find image Z value and calculate the number of isarithm 
lines 
----------------------------------------------------------*/ 

void Find_Z_MINMAX (int up, int below, int left, int right) 
{ 
int i,j; 
float zTemp; 

zmin = 9999.0; 
zmax = -999.0; 

for (j = up; j <= below; j++) 
for (i = left; i <= right; i++) 

{ 
zTemp = zU][i]; 

if (zTemp < zmin) 
zmin = zTemp; 

if (zTemp > zmax) 
zmax = zTemp; 

} 

//SHHH printf("MINIMUM Z = %fm",zmin); 
//SHHH printf("MAXIMUM Z = %f\n",zmax); 

81 



return; 

/*--------------------------------------------------------

Calculate every isarithm 
--------------------------------------------------------*/ 

void Compute_Isarithm(int z_interval, int walk, int direction) 

{ 
int max_walk; 

int i,j,k,ii,jj ,zi,zj; 

int icnt,in_line,out_line; 
double dl ,d2,rl ,bsum,rsum; 
int is_line; 
int no_of_rows, no_of_cols; 
int sum; 
int no_of_ walk; 
char **z_count; 
float x,y,surnx,sumy,sumxy,sqx,sqy; 
float avgbc, average_b,average_r,average_dimen; 

no_is_line = ((zmax-zmin)/z_interval) - .5; 
max_walk=pow(2,walk-1); 
//SHHH printf("NO. OF ISARITHM LINES = %d\n",no_is_line); 
//SHHH printf("MAXIMUM WALK SIZE = %d\n",max_walk); 

no_of_rows=below-up+ 1; 

no_of_cols=right-left+ 1; 

//printf("no_of_rows %ct, no_of_cols %d\n" ,no_of_rows, no_of_cols ); 

z_count=TwoArrayAlloc_char(no_of_rows, no_of_cols); 

a=TwoArray Alloc_int(no_is_line, walk); 

for(is_line=0;is_line<no_is_line;is_line++) 

{ 
z_contour[is_line ]=zmin+(is_line+ 1 )*z_interval; 

for(i=up,zi=0;i<=below,zi<no_of_rows;i++,zi++){ 

for(j=left,zj=0;j<=right,zj<no_of_cols;j++,zj++) 

{ 

} 

} 

if(z[i][j]<=z_contour[is_line]) z_count[zi][zj]=' 1 '; 
else z_count[zi][zj]='0'; 

82 



sumx=sqx=sumy=sumxy=sqy=O; 
for(k=O;k<walk;k++) 

{ 
sum = O; 
no_of_walk=pow(2,k); //sampling method, exponentially! 
if( ( direction==O)I I( direction==2)) 

{ 
for(i=O;i<no_of_rows;i++) 
forU=O;j<no_of_cols;j+=no_of _ walk) 

{ 
jj=j+no_of_ walk; 
ifUj>=no_of_cols) break; 
if(z_count[i]Li] !=z_count[i]Uj]) sum++; 

if( ( direction== 1 )II( direction==2)) 

{ 
forU=O;j<no_of_cols;j++) 
for(i=O;i<no_of_rows;i +=no_of _ walk) { 

ii=i+no_of_ walk; 

} 

} 

if(ii>=no_of_rows) break; 
if(z_count[i]Li] !=z_count[ii]Li]) sum++; 

if(sum==O) 
break; 

else 

switch( direction) 

{ 
case 0: avgbc=(float)sum/no_of_rows;break; 
case 1: avgbc=(float)sum/no_of_cols;break; 
case 2: avgbc=(float)sum/(no_of_rows+no_of_cols );break; 
default: break; 

} 
a[is_line] [k]=sum; 
x=logl O(no_of_ walk); 
y=loglO(avgbc); 
sumx+=x; 
sumy+=y; 
sumxy+=x*y; 
sqx+=x*x; 

83 

} 
} 

l 



sqy+=y*y; 
} 

} 
if(sum==0) 
{ 
flag[is_line ]=0; 
b[is_line ]=0.0; 
r[is_line ]=0.0; 
dimen[is_line]=0.0; 
continue; 

flag[is_line ]=1; 
icnt = 0; 
for(k=0;k<walk;k++) 

if(a[is_line ][0]==a[is_line ][k]) icnt++; 

if(walk!=icnt) 
{ 

} 

dl=sumxy-((sumx*sumy)/walk); 
d2=sqx-((sumx*sumx)/walk); 
rl=dl/sqrt(d2*(sqy-sumy*sumy/walk)); 
b[is_line ]=dl/d2; 
r[is_line]=rl *rl; 
dimen[is_line ]=2-b[is_line]; 

else 
{ 
b[is_line ]=0.0; 
r[is_line ]=0.0; 
dimen[is_line]=0.0; 

} 

} 

bsum=0.; 
rsum=0.; 
in_line=no_is_line; 
//! !we need printf(" ****************************************\n");
//!! we need printf(" Contour Z_value B D RSQ\n"); 

for(is_line=0;is_line<no_is_line;is_line++) 
{ 
//! !we need printf(" %4d %8.2f 
%8.4f%8.4f%8 .4f'\n" ,is_line,z_contour[is_line] ,b[is_line] ,dimen[is_line] ,r[is_line ]); 

84 



// if(flag[is_line] !=0&&r[is_line ]>0. 7 &&r[is_line ]<=1.0) 
if(flag[is_line] !=0&&r[is_line ]>=0.9&&r[is_line ]<=1.0) 

{ 

} 

} 

bsum += b[is_line]; 

rsum += r[is_line]; 

else 
in_line--; 

out_line=no_is_line-in_line; 

85 

//SHHH printf(" ****************************************\n");

//SHHH printf(" NO. OF ISARITHM LINES INCLUDED = %d\n",in_line); 
//SHHH printf(" NO. OF ISARITHM LINES NOT INCLUDED = 

%d\n",out_line); 

if(in_line) { 

} 
else { 

average _b=bsurn/i n_li ne; 
average_r=rsurn/in_line; 
average_dimen=2.-average_b; 
//SHHH printf(" Slope = %f\n",average_b); 
//SHHH printf(" R-SQ = %f\n",average_r); 
//SHHH printf(" Dimension = %f\n",average_dimen); 

//SHHH printf(" Slope = N/A\n"); 

//SHHH printf(" R-SQ = N/A\n"); 
//SHHH printf(" Dimension = N/A\n"); 

//SHHH printf(" ****************************************\n\n");
//printf(" Calculation by = %s\n",argv[4]); 

Close_File(); 

TwoArrayFree_char(z_count); 
return; 

} 

/*----------------------------------------------------------------

Summary the every isarithm the result 
------------------------------------------------------------*/ 

void Summary_Isarithm(int walk_interval) 

{ 
int is_line; 
int k; 
int cell_size[20]; 

} 



for(is_line=O;is_line<no_is_line;is_line+=walk_interval) 
{ 
//SHHH (" Enter isarithm line number ===> %d\n",is_line); 
//SHHH printf(" Total\n"); 
//SHHH printf("lsarithm line No. of boundary cells Walk size\n"); 
//SHHH printf("------------- --------------------- ---------\n "); 

for(k=O;k<walk;k++) 
{ 
cell_size[k]=pow(2,k); 
//SHHH printf(" %8.2f %6d 

% 2d\n" ,z_ contour[ i s_li ne] ,a[ i s_li ne] [k] ,cell_size[k]); 
} 

//SHHH switch(direction) 
//SHHH { 
//SHHH case 0: printf("by columns\n");break; 
//SHHH case 1: printf("by rows\n");break; 
//SHHH case 2: printf("by columns and rows\n");break; 
//SHHH default: break; 

//SHHH} 
//SHHH printf(" D = %6.4f\n",dimen[is_line]); 
//SHHH printf(" R = %8.6f\n",r[is_line]); 
//SHHH printf(" Summary %ct of %d\n", is_line, no_is_line); 

return; 
} 
/*---------------------------------------------------------------

Close_lsarithm 
---------------------------------------------------------------*/ 

void Close_lsarithm() 
{ 
TwoArrayFree_int(a); 
return; 
} 

6. isarithm.h
/*----------------------------------------------------------

File: isarithm.h 

86 



Date: July 12, 1995 
Author: Wei Zhao 

----------------------------------------------------------*/ 

#include <stdio.h> 

#include <math.h> 

#include <ctype.h> 

#include <string.h> 

#include <stdlib.h> 

//#define WIDTE 1 

//#define BlACK 0 

extern int up,below,left,right; 

extern int z_interval, walk,direction; 

extern int no_is_line; 

extern float zrnin,zmax; 

//unsigned short int zrnin,zmax; 

extern float z_contour[256],b[256],r[256],dimen[256]; 

extern int flag[256]; 
extern int **a; 

void Find_Z_MINMAX(int up,int below,int left,int right); 
void Compute_Isarithm(int interval, int walk, int direction); 

void Summary_Isarithm(int walk_interval); 
void Close_Isarithm(); 

7. read_erdas.c

/******************************************************* 

File: read_erdas.c 
Date: July 5, 1995 

Purpose: Read Erdas LAN/GIS format image file 

Author: Wei Zhao 
*******************************************************/ 
#include <stdio.h> 

#include <stdlib.h> 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

#include <ermo.h> 
#include <string.h> 

87 



#include "erdas.h" 
#include "variogram.h" 

//unsigned short int zrnin=999, zmax=0; 
/****************************************************** 
Open_Erdas(): Open Erdas LAN/GIS files 
*****************************************************/ 
int Open_Erdas(char *path) 

{ 
if((fp=fopen(path,"rb"))==NULL){ 

} 

printf("Cannot find the input file: %s.\n",path); 
exit(l); 

return 0; 

} 

/****************************************************** 
Close_Erdas(): Close opened Erdas image file 
*****************************************************/ 
int Close_Erdas() 

{ 
TwoArrayFree(z); 
fclose(fp ); 
return 0; 

/****************************************************** 
Read header information of Erdas Lan/Gis format image 
******************************************************/ 
int Read_Erdas_HDR() 

{ 
fseek(fp,0,SEEK_SET); 
fread(head,sizeof( char),6,fp ); 
//fseek(fp,6,SEEK_SET); 

fread( &ipack,sizeof(short), 1,fp ); 
fread( &nbands,sizeof(short), 1,fp ); 

fread(unused0,sizeof( char),6,fp ); 
//fseek(fp,16,SEEK_SET); 
fread( &icols,sizeof(long), 1,fp ); 
fread(&irows,sizeof(long),l,fp); 
fread(&xstart,sizeof(long), 1,fp ); 

88 

} 



fread( &ystart,sizeof(long), 1,fp ); 

fread( unusedl ,sizeof( char),56,fp ); 
//fseek(fp,88,SEEK_SET); 

fread(&maptyp,sizeof(short), 1,fp ); 

fread(&nclass,sizeof(short), 1,fp ); 

fread( un used2,sizeof (char) ,20, f p); 

//fseek(fp,112,SEEK_SET); 
fread(&xmap,sizeof(float), 1,fp ); 
fread( &ymap,sizeof(float), 1,fp ); 
fread(&xcell,sizeof(float), 1,fp ); 
fread( &ycell,sizeof(float), 1,fp ); 

xmin=xmap; 

ymax=ymap; 

xmax=xmin+xcell *icols; 

ymin=ymax-ycell*irows; 

// !!we need 
printf("The Erdas image head information:\n"); 
switch(ipack) { 

case 1: printf("IPACK:4 bits/pixel\n");break; 

case 2: printf("IP ACK: 16 bits/pixel\n ");break; 

default: printf("IP ACK: 8 bits/pixel\n ");break; 

printf("NBANDS:o/od bands\n" ,nbands); 
printf("ICOLS: %Id pixels\n" ,icols ); 
printf("IROWS:%ld pixels\n",irows); 
printf("xstart:o/old \n",xstart); 
printf("ystart:o/old \n",ystart); 

printf("maptype: o/od \n" ,maptyp ); 

printf("nclass:o/od \n",nclass); 

printf("xmap: o/of \n" ,xmap ); 

printf("ymap:o/of \n",ymap); 

printf("xcell:o/of \n" ,xcell); 
printf("ycell:o/of \n" ,ycell); 
printf("\n "); 

return O; 

} 

89 



//TODO: If the requested band doesn't exist in the file, throw error. 
int Read_Erdas(int band, unsigned short int **z) 

{ 
unsigned int i, nRow; 
unsigned char *buf; 

buf = (unsigned char *)malloc(icols * sizeof(unsigned char)); 

fseek(fp, 128,SEEK_SET); 

int cUnusedBandsAfterDesiredBand = 0; 
int cUnusedBandsBeforeDesiredBand = band - l; 

for (nRow = 0; nRow < irows; nRow++) 

{ 
int cBandsToSkip; 

cBandsToSkip = cUnusedBandsBeforeDesiredBand + 
cUnusedBandsAfterDesiredBand; 

cUnusedBandsAfterDesiredBand = nbands - band; 

fseek(fp, cBandsToSkip * icols, SEEK_CUR); 
fread(buf, 1, icols, fp ); 

for (i = 0; i < icols; i++) 
z[nRow][i] = (int) buf[i]; //Just BYTE not Short, or Float format 

} 

free((unsigned char *)buf); 
return 0; 
} 

/************************************************* 
Allocate dynamic 2-D array 
************************************************/ 
unsigned short int **TwoArrayAlloc(int row, int col) 
{ 
unsigned short int *x, **y; 
int n; 
x=(unsigned short int *)calloc(row*col, sizeof(short int)); 
y=(unsigned short int **)calloc(row, sizeof(short int *)); 
for(n=0;n<row;++n) 

90 



} 

y[n]=&x[col*n]; 
return y; 

void TwoArrayFree(unsigned short int **x) 

{ 
free(x[O]); 
free(x); 

} 

char **TwoArrayAlloc_char(int row, int col) 

{ 

} 

char *x, **y; 

int n; 
x=( char *)calloc(row*col, sizeof( char)); 
y=( char **)calloc(row, sizeof( char *) ); 
for(n=O;n<row;++n) 
y[n]=&x[col*n]; 

return y; 

void TwoArrayFree_char(char **x) 

{ 
free(x[O]); 
free(x); 

} 

int **TwoArrayAlloc_int(int row, int col) 

{ 

} 

int *x, **y; 

int n; 
x=(int *)calloc(row*col, sizeof(int)); 

y=(int **)calloc(row, sizeof(int *)); 
for(n=O;n<row;++n) 
y[n]=&x[col*n]; 

return y; 

void TwoArrayFree_int(int **x) 

{ 
free(x[O]); 
free(x); 

} 

91 



float **TwoArrayAlloc_float(int row, int col) 
{ 

} 

float *x, **y; 
int n; 
x=(float *)calloc(row*col, sizeof(float)); 
y=(float **)calloc(row, sizeof(float *)); 
for(n=0;n<row;++n) 
y[n]=&x[col*n]; 

return y; 

void TwoArrayFree_float(float **x) 
{ 
free(x[0]); 
free(x); 

} 

8. variogram.h
/*----------------------------------------------------------

File: variogram.h 
Date: July 5, 1995 
Purpose: The variogram method for fractal surface measurement 

Author: Wei Zhao - 01/28/95 
----------------------------------------------------------*/ 

extern float *xx, *yy, *zz; 
extern float *dist, *hvar; 
extern float *sumzd, *gb; 
extern int *ncase; 
extern int num,num_group; 
extern int np; 
extern int select_points,band; 
extern float rang; 
extern unsigned short int **z; 

void Open_File(char *input, char *filetype, int band); 
void Sampling_Method_l(int select_points); 
void Sampling_Method_2(int select_points); 
void Sampling_Method_3(int select_points, int sub_numbers); 
void Sampling_Cov(char *outputfile); 
extern void Close_File(void); 
void Dist_ Vari(int num_group); 
void Write_ Variogram(char *outputfile); 

92 



void Vari_Fractal(char *outputfile, int num_group, int break_pointl, ~ 
int break_point2); 

void Vari_Fractal_Max(char *outputfile, int num_group); 
void Close_ Variogram(); 
extern void Read_Dat(char *input); 
extern void Read_Bil(char *input); 

9. Microsoft developer studio_l

Microsoft Developer Studio Workspace File, Format Version 6.00 
# WARNING: DO NOT EDIT OR DELETE THIS WORKSPACE FILE! 

93 

##################################################################### 

########## 

Project: "MWFDTPM"=.\MWFDTPM.dsp - Package Owner=<4> 

Package=<5> 

{ { { 

} } } 

Package=<4> 

{ { { 

} } } 

##################################################################### 

########## 

Global: 

Package=<5> 

{ { { 

} } } 

Package=<3> 

{ { { 

} } } 

##################################################################### 

########## 

10. read_dat



#include <stdio.h> 
#include <stdlib.h> 

#include "variogram.h" 
#include "erdas.h" 

void Read_Dat(char *input) 

{ 
int i,j; 
int zz; 
unsigned char *buf; 

if((fp = fopen(input,"rt"))==NULL) 
{ 

} 

fprintf(stderr,"Cannot find the input file: %d\n",input); 
exit(l); 

fscanf(fp,"%d o/od",&irows,&icols); 
xmin=O.; 
ymax=irows-1; 
I /z=TwoArray Alloc(irows,icols ); 
buf=(unsigned char *)malloc(icols*sizeof(unsigned char)); 
for(j=O;j<irows;j++) { 

for(i=O;i<icols;i++) 
{ 
fscanf(fp,"%d\n",&zz); 
//z[j] [i]=zz; 

// printf("z[o/od] [%d]=%d\n" ,j,i,z[j] [i]); 
buf[i]=(unsigned char)zz; 
} 
fwrite(buf, 1,icols,fout); 

} 

//fclose(fp ); 
return; 

void Read_Bil(char *input) 
{ 
int i,j; 
int zz; 
unsigned char *buf; 

94 



if((fp = fopen(input,"r"))==NULL) 
{ 

} 

fprintf(stderr, "Cannot find the input file: %d\n ",input); 
exit(l); 

I* 

fscanf(fp,"%d %d",&irows,&icols); 
xmin=0.; 
ymax=irows-1; 
*I

l/irows=1600; 
1/icols= 1600; 

buf=(unsigned char *)malloc(icols*sizeof(unsigned char)); 
z=TwoArray Alloc(irows,icols ); 

for(j=0;j<irows;j++) { 
fread(buf,sizeof( char),icols,fp ); 
for(i=0;i<icols;i++) 
{ 
zU][i]=buf[i]; 

II printf("z[%d] [%d]=%d\n ",j,i,zU] [i]); 

} 
} 
fclose(fp ); 
return; 

11. Microsoft developer studio_2
# Microsoft Developer Studio Project File - Name="MWFDTPM" - ~ 

Package Owner=<4> 
# Microsoft Developer Studio Generated Build File, Format Version 6.00 
# ** DO NOT EDIT ** 

# TARGTYPE "Win32 (x86) Console Application" 0x0103 

CFG=MWFDTPM - Win32 Debug 
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE

95 

} 



!MESSAGE NMAKE If "MWFDTPM.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE If "MWFDTPM.mak" CFG="MWFDTPM - Win32 Debug"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "MWFDTPM - Win32 Release" (based on "Win32 (x86) Console
Application")
!MESSAGE "MWFDTPM - Win32 Debug" (based on "Win32 (x86) Console
Application")
!MESSAGE

# Begin Project 
# PROP AllowPerConfigDependencies 0 
# PROP Scc_ProjName "" 
# PROP Scc_LocalPath "" 
CPP=cl.exe 
RSC=rc.exe 

!IF "$(CFO)" == "MWFDTPM - Win32 Release"

# PROP BASE Use_MFC 0 
# PROP BASE Use_Debug_Libraries 0 
# PROP BASE Output_Dir "Release" 
# PROP BASE Intermediate_Dir "Release" 
# PROP BASE Target_Dir "" 
# PROP Use_MFC 0 
# PROP Use_Debug_Libraries 0 
# PROP Output_Dir "Release" 
# PROP Intermediate_Dir "Release" 
# PROP Target_Dir "" 
# ADD BASE CPP /nologo /W3 /GX /O2 ID "WIN32" ID "NDEBUG" -

ID "_CONSOLE" ID "_MBCS" IYX /FD le
# ADD CPP /nologo /GB /W3 /GX- /02 ID "WIN32" ID "NDEBUG" -

ID "_CONSOLE" ID "_MBCS" /FR /YX /FD le
# ADD BASE RSC /1 0x409 Id "NDEBUG" 
# ADD RSC /1 0x409 Id "NDEBUG" 
BSC32=bscmake.exe 
# ADD BASE BSC32 /nologo 
# ADD BSC32 /nologo 
LINK32=link.exe 

96 



# ADD BASE LINK32 kemel32.lib user32.lib gdi32.lib winspool.lib -
eomdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib -
uuid.lib odbe32.lib odbeep32.lib kemel32.lib user32.lib -
gdi32.lib winspool.lib eomdlg32.lib advapi32.lib shell32.lib -
ole32.lib oleaut32.lib uuid.lib odbe32.lib odbeep32.lib -
/nologo /subsystem:eonsole /maehine:1386 

# ADD LINK32 kemel32.lib user32.lib gdi32.lib winspool.lib -
eomdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib -
uuid.lib odbe32.lib odbeep32.lib kemel32.lib user32.lib -
gdi32.lib winspool.lib eomdlg32.lib advapi32.lib shell32.lib -
ole32.lib oleaut32.lib uuid.lib odbe32.lib odbeep32.lib -
/nologo /subsystem:eonsole /maehine:1386 

!ELSEIF "$(CFO)" == "MWFDTPM - Win32 Debug"

# PROP BASE Use_MFC 0 
# PROP BASE Use_Debug_Libraries 1 
# PROP BASE Output_Dir "Debug" 
# PROP BASE Intermediate_Dir "Debug" 
# PROP BASE Target_Dir "" 
# PROP Use_MFC 0 
# PROP Use_Debug_Libraries 1 
# PROP Output_Dir "Debug" 
# PROP Intermediate_Dir "Debug" 
# PROP Target_Dir 1111 

# ADD BASE CPP /nologo /W3 /Gm /GX /ZI /Od ID "WIN32" ID -
"_DEBUG" ID "_CONSOLE" ID "_MBCS" /YX /FD /GZ le

# ADD CPP /nologo /W3 /Gm /GX /ZI /Od ID "WIN32" ID -
"_DEBUG" ID "_CONSOLE" ID "_MBCS" /YX /FD /GZ le

# ADD BASE RSC /I 0x409 /d "_DEBUG" 
# ADD RSC /I 0x409 /d "_DEBUG" 
BSC32=bsemake.exe 
# ADD BASE BSC32 /nologo 
# ADD BSC32 /nologo 
LINK32=link.exe 
# ADD BASE LINK32 kemel32.lib user32.lib gdi32.lib winspool.lib -

eomdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib -
uuid.lib odbe32.lib odbeep32.lib kemel32.lib user32.lib -
gdi32.lib winspool.lib eomdlg32.lib advapi32.lib shell32.lib -
ole32.lib oleaut32.lib uuid.lib odbe32.lib odbeep32.lib -
/nologo /subsystem:eonsole /debug /maehine:1386 /pdbtype:sept 

# ADD LINK32 kemel32.lib user32.lib gdi32.lib winspool.lib -
eomdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib -
uuid.lib odbe32.lib odbeep32.lib kemel32.lib user32.lib -

97 



gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ~ 
ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib ~ 
/nologo /subsystem:console /debug /machine:1386 /pdbtype:sept 

!ENDIF

# Begin Target 

# Name "MWFDTPM - Win32 Release" 

# Name "MWFDTPM - Win32 Debug" 
# Begin Group "Source Files" 

# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat" 
# Begin Source File 

SOURCE=.\fractal_isarithm.cpp 
# End Source File 

# Begin Source File 

SOURCE=.\fractal_triangular.cpp 
# End Source File 
# Begin Source File 

SOURCE=.\fractal_ variogram.cpp 
# End Source File 
# Begin Source File 

SOURCE=.\globals.cpp 
# End Source File 
# Begin Source File 

SOURCE=.\mwfdtpm.cpp 
# End Source File 
# Begin Source File 

SOURCE=.\read_dat.cpp 
# End Source File 
# Begin Source File 

SOURCE=.\read_erdas.cpp 

# End Source File 
#End Group 
# Begin Group "Header Files" 

98 



# PROP Default_Filter "h;hpp;hxx;hm;inl" 
# Begin Source File 

SOURCE=.\erdas.h 

# End Source File 
# Begin Source File 

SOURCE=.\isarithm.h 

# End Source File 

# Begin Source File 

SOURCE=.\Timeout.h 
# End Source File 
# Begin Source File 

SOURCE=.\triangular.h 

# End Source File 

# Begin Source File 

SOURCE=.\variogram.h 
# End Source File 

#End Group 
# Begin Group "Resource Files" 

# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe" 

#End Group 
# End Target 

# End Project 

12. fractal variogram

#include <stdio.h> 
#include <stdlib.h> 

#include <math.h> 
#include <stdlib.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
#include <errno.h> 

#include <string.h> 

#include <time.h> 

#include "variogram.h" 
#include "erdas.h" 

99 



#define nTYPE 6 

void Open_File(char *input, char *filetype, int band) 

{ 
int nFileType; 

char inputfile[lO0]; 

char *TYPE[nTYPE]={"tif" "Ian" "gis" "arc" "<lat" "bil"}· 
' ' ' ' ' ' 

if ((band> 7) II (band< 1)) 

{ 
printf("ERROR: Band number is invalid.\n"); 
exit(l); 

} 

for(nFileType = 0; nFileType < nTYPE; ++nFileType) 

if(!strcmp(filetype, TYPE[nFileType])) 

break; 

strcpy(inputfile,input); 
strcat(inputfile,". "); 
strcat(inputfile,filetype ); 
printf("FILE NAME: %s\n",inputfile); 

switch(nFileType) 

{ 
/* case 0: // tif 

Read_Tif(); 
break;*/ 

case 1: // Ian 
Open_Erdas(inputfile ); 

Read_Erdas_HDR(); 

z=TwoArray Alloc(irows,icols ); 

Read_Erdas(band,z); 

II xcell=l.0; 
// ycell=l.0; 
break; 

case 2: // gis 
Open_Erdas(inputfi le); 
Read_Erdas_HDR(); 
z=TwoArray Alloc(irows,icols ); 
II z=(unsigned short int *)malloc(icols*irows*sizeof(unsigned short int)); 
Read_Erdas(band,z); 

100 



break; 

/*case 3: // arc 
Read_Grid(); 

break;*/ 

case 4: // dat 

xcell=l.0; 
ycell=l.0; 
Read_Dat(inputfi le); 
break; 

case 5: // bil (Band Interleaved by Line?) 

xcell=l.0; 

ycell=l.0; 
printf("Please input rows and columns: for example> 201 346 \n"); 

printf("> "); 

scanf("%d %d",&irows,&icols); 
II irows=icols=1600; 
Read_Bil(inputfile); 
break; 

default: 

} 

printf("ERROR: The file format \"%s\" is unsupported.\n", filetype); 

exit( 1 ); 

return; 

} 

/*--------------------------------------------------------------------

Read X, Y, and Z values of all pixels; Select only a sample of points 

for computing the variogram using a regular sampling method 

---------------------------------------------------------------------*/ 

void Sampling_Method_l(int select_points) 

{ 
int i,j; 
int unit = 1; 
int k = O; 
int matrix; 

num = 0; 
matrix = irows*icols/select_points + 1; 

101 



printf("irows = %d, icols = %d, matrix of points selected = %d\n", irows, 
icols,matrix); 

zz = (float *)calloc(matrix, sizeof(float)); 
xx = (float *)calloc(matrix, sizeof(float)); 
yy = (float *)calloc(matrix, sizeof(float)); 

if( zz == NULL II xx == NULL II yy == NULL) 

{ 
printf("Memory overflow !\n "); 
exit(l); 

} 

forU=O;j<irows;j++) 
for(i=O;i<icols;i++) 

{ 
I I printf("z[%d] [%d]=%d\n" ,j,i,zLi] [i]); 
if(k%select_points==0) 

{ 
zz[num]=zLi][i]; //this is a limited condition!! need to modified! 
xx[num]= xmin + i*xcell; 
yy[num]= ymax - j*ycell; 
num++; 

} 
k++; 

} 

printf("total number of points = %d\n",k); 
printf("Number of points selected = %d\n", num); 

Close_File(); 
return; 

/*--------------------------------------------------------------------

Read X, Y, and Z values of all pixels; Select only a sample of points 
for computing the variogram using a regular sampling method 

---------------------------------------------------------------------*/ 

void Sampling_Method_2(int select_points) 

{ 
int i,j; 
int unit = 1; 
int k=O; 
int matrix; 

102 



num = 0; 
matrix = (irows/select_points + l)*(icols/select_points + 1); 
printf("irows = %d, icols = %d, matrix of points selected = %d\n", ~ 

irows, icols,matrix); 
zz = (float *)calloc(matrix, sizeof(float)); 
xx = (float *)calloc(matrix, sizeof(float)); 
yy = (float *)calloc(matrix, sizeof(float)); 

if( zz == NULL II xx == NULL II yy == NULL) 
{ 
printf("Memory overflow !\n "); 
exit(l); 
} 

for(i=O;j<irows;j++) 
for(i=O;i<icols;i++) 

{ 
if (j %select_poi nts==O&&i %select_poi nts==O) 

{ 
zz[num]=zLi][i]; //this is a limited condition!! need to modified! 
xx[num]= xmin + i*xcell; 
yy[num]= ymax - j*ycell; 
num++; 
} 

k++; 
} 

printf("total number of points = %d\n ",k); 
printf("Number of points selected = %d\n", num); 

Close_File(); 
return; 
} 
/*----------------------------------------------------------------

Read X,Y, and Z values of all pixels; select only a sample of points 
for computing the variogram using a regular and random sampling method 

---------------------------------------------------------------------*/ 

void Sampling_Method_3(int select_points, int sub_numbers) 
{ 
int i,j ,i_random,j_random; 
int unit=l; 
int k; 
int matrix; 
int random_100_1,random_100_2; 

103 



num=0; 
matrix=(irows/select_points+ 1 )*(icols/select_points+ 1 )*sub_numbers; 
printf("irows = %d, icols = %d, matrix of points selected = %d\n", ~ 

irows, icols,matrix); 
zz = (float *)calloc(matrix, sizeof(float)); 
xx = (float *)calloc(matrix, sizeof(float)); 
yy = (float *)calloc(matrix, sizeof(float)); 

if( zz == NULL II xx == NULL II yy == NULL) 
{ 
printf("Memory overflow !\n "); 
exit( 1 ); 
} 

// randomize(); 
for(j=0;j<irows;j+=select_poi nts) 

for(i=0;i<icols;i+=select_points) 
{ 
for(k=0;k<sub_numbers;k++) 

{ 

} 

random_100_l=rand()%select_points; 
random_100_2=rand()%select_points; 
i_random=i+random_l 00_1; 
j_random=j+random_100_2; 
// printf("%d %d %f %f [%d][%d]\n",random_100_1, ~ 

random_l 00_2, rand_fraction_l ,rand_fraction_2, ~ 
j_random,i_random); 

if(i_random<icols&&j_random<irows) 
{ 
zz[num]=z[j_random][i_random]; //this is a limited condition!! Modify! 
xx[num]= xrnin + i_random*xcell; 
yy[num]= ymax - j_random*ycell; 
num++; 
} 

} 

//printf("total number of points = %d\n",k); 
printf("Number of points selected = %d\n", num); 

Close_File(); 
return; 
} 
/*----------------------------------------------------------------

104 



Sampling_Cov(): Write a sampling coverage 
---------------------------------------------------------------*/ 

void Sampling_Cov(char *outputfile) 
{ 
int i; 
FILE *fp_smp; 
char smp_file[50]; 

strcpy( smp_fi le,outputfi le); 
strcat(smp_file,".smp"); 
if ((fp_smp = fopen(smp_file, "wt"))==NULL) 

{ 
fprintf(stderr, "Cannot open output file %s.\n",smp_file); 
return; 
} 

for(i=O;i<num;i++) 
fprintf(fp_smp,"%d %f %f %t\n",i,xx[i],yy[i],zz[i]); 

fprintf(fp_smp, "END\n "); 
fclose(fp_smp ); 
return; 
} 

/*------------------------------------------------------------------

Close_File():Close file 
-----------------------------------------------------------------*/ 

void Close_File(void) 
{ 
Close_Erdas(); 
return; 
} 
/*-------------------------------------------------------------------

Calculate distances and squared z_ value differences between 
any two of the selected points. 

-------------------------------------------------------------------*/ 

void Dist_ Vari(int num_group) 
{ 
int i,j,k=O; 
float sidea,sideb; 
float distance_max=-1.0; 
float distance_min=99999 .O; 
int matrix; 
int npc=O; 
int maxnp; 
int perc,percent; 

105 



matrix = (num-l)*num/2; 
printf("triangular matrix of points selected = %d\nRunning ... ", matrix); 
//putchar('%'); 
//printf("Running ... \n"); 

dist = (float *)calloc(matrix,sizeof(float)); 
hvar = (float *)calloc(matrix,sizeof(float)); 

if( dist == NULL II hvar == NULL ) 
{ 
printf("Memory overflow!\n"); 
exit(l); 
} 

for(j=0;j<num-1 ;j++) 
{ 
/*percent=(float)j/(float)(num-1 )* 50.0+0.5; 
printf("\b\b\b\b"); 
printf("%3d" ,percent); 
putchar('%'); 
*/ 

for(i=j+ 1 ;i<num;i++) 
{ 
/* perc=j%4; 
switch(perc){ 
case 0: printf("\b/");break; 
case 1: printf("\b-");break; 
case 2: printf("\b\\");break; 
case 3: printf("\bl");break; 
} 

printf("\b\b\b\b"); 
printf("%3d" ,percent); 
putchar('%'); 

*/ 
sidea=(xx [i ]-xx[j])*(xx [i ]-xx [j]); 
si deb=(yy[ i ]-yy[j] )*(yy [ i ]-yy[j]); 
dist[k]=sqrt(sidea+sideb ); 
h var[k] =( zz [ i ]-zz [j ])* ( zz [i ]-zz [j]); 
if(dist[k]>distance_max) 

{ 
distance_max=dist[k]; 
maxnp=k; 

106 



} 
else if(dist[k]<distance_min) 

distance_min=dist[k]; 
k++; 
} 

} 

free(yy); 
free(xx); 
free(zz); 

np=k; 

/*if(k!=matrix) 
{ 
printf("Program not good!\n"); 
printf("k=%d\n" ,k); 
exit( 1 ); 
} 
*I

/*-----------------------------------------------------------

Determine the number of distance groups and their boundaries 
------------------------------------------------------------*/ 

rang=(distance_max-distance_min)/num_group; 

sumzd=(float *)malloc((num_group+ l)*sizeof(float)); 
ncase=(int *)malloc((num_group+ l)*sizeof(int)); 
gb=(float *)malloc((num_group+ l)*sizeof(float)); 

for(i=O;i<=num_group;i++) 
{ 
sumzd[i]=O.O; 
ncase[i]=O; 
gb[i]=distance_min+rang*i; 
} 

gb[num_group ]=gb[num_group ]+0.5; 

/*------------------------------------------------------------------

Group the distance array, find out number of cases falling within 
each group, sum up the squared z-value differences. 
------------------------------------------------------------------*/ 

107 



forU=O;j<np;j++) 

{ 
/* percent=(float)j/(float)np*50.0+50.5; 
printf("\b\b\b\b"); 
printf("%3d",percent); 
putchar('%'); 
*I

for(i=O;i<num_group;i++) 

{ 

/* perc=i%4; 
switch(perc ){ 
case 0: printf("\b/");break; 
case 1: printf("\b-");break; 
case 2: printf("\b\ \");break; 
case 3: printf("\bl");break; 

} 
*/ 
//the sort method is not good, please search to a better one. 
if(dist[j]>=gb[i]&&dist[j]<gb[i+ 1)) 

} 

} 

{ 
ncase[i]++; 
sumzd[i]+=hvar[j]; 

} 

for(i=O;i<num_group;i++) 
npc+=ncase[i]; 

//printf("Number of point pairs = %d\n",k); 
printf("\rMinimum distance between two points = %t\n", distance_min); 
//printf("Minimum distance between two points = %t\n", distance_min); 
printf("Maximum distance between two points = %t\n", distance_max); 
printf("point_pairs classified = %d\n" ,npc ); 

return; 

} 

/*-----------------------------------------------------------

Compute the mean variance and mid-point distances for each group. 
Write the result to an output file. 
----------------------------------------------------------------*/ 

void Write_ Variogram(char *outputfile) 

108 



int i,j; 
float middle_point, avezd; 
float *log_distance, *log_ variance; 
float log_dist_min,log_dist_max,log_ vari_min,log_ vari_max; 

FILE *fp_out; 

strcat( outputfi le,". var"); 
if ((fp_out = fopen(outputfile, "wt"))==NULL) 

{ 
fprintf(stderr, "Cannot open output file.\n"); 
return; 

fprintf(fp_out,"Band=%3d, Every Nth point=%3d, ~ 
Number of distance groups=%4d\n",band, select_points, num_group); 

//fprintf(fp_out," Group# # of cases log[dist] log[mean variance]\n"); 

printf(" Group# # of cases log[dist] log[mean variance]\n"); 

Iog_distance=(float *)malloc(num_group*sizeof(float)); 
log_ variance=(float *)malloc(num_group*sizeof(float)); 

if( log_distance == NULL II log_ variance == NULL ) 

{ 
printf("Memory overflow !\n "); 
exit(l); 

} 

Iog_dist_min=9999.; 
log_ vari_min=9999.; 
log_dist_max=O.; 
log_ vari_max=O.; 

for(i=O;i<num_group;i++) 

{ 
middle_point=gb[i]+rang*0.5; 
log_distance[i]=loglO(middle_point); 
if(ncase[i]==O) 

{ 
log_ variance[i]=0.0; 

} 
else 

{ 
avezd=sumzd[i]/ncase[i]; 

109 



log_ variance[i]=loglO(avezd); 

} 
if (I og_ di st_mi n> log_ distance[ i] )log_ dist_mi n=log_distance[ i]; 
if(log_dist_max<log_distance[i])log_dist_max=log_distance[i]; 

if(log_ vari_min>log_ variance[i])log_ vari_min=log_ variance[i]; 

if(log_ vari_max <log_ variance[i])log_ vari_max=log_ variance[i]; 

} 

fprintf(fp_out, 11log_dist_min log_dist_max log_ vari_min log_ vari_max\n 11); 

printf(11log_dist_min log_dist_max log_ vari_min log_ vari_max\n11

); 

fprintf(fp_out,11%10.4f %10.4f %10.4f ~ 
% 10.4f\n 11 ,log_dist_min,log_dist_max,log_ vari_min,log_ vari_max); 

printf("%10.4f %10.4f %10.4f ~ 

% 10.4f\n 11 ,log_dist_min,log_dist_max,log_ vari_min,log_ vari_max); 

fprintf(fp_out," Group# # of cases log[dist] log[mean variance]\n11

); 

printf(" Group# # of cases log[dist] log[mean variance]\n11

); 

for(i=O;i<num_group;i++) 

{ 
fprintf(fp_out,11 %3d %6d %10.4f 

% 10.4f\n 11,i+ 1,ncase[i],log_distance[i],log_ variance[i]); 

printf(11 %3d %6d % 10.4f 

% 10.4f\n1

1 ,i+ 1,ncase[i],log_distance[i],log_ variance[i]); 

} 

free(log_ variance); 
free(log_distance ); 
fclose(fp_out); 
return; 

/*-----------------------------------------------------------

Input the breakpoint number and compute the regression up 

to and including that point 

-----------------------------------------------------------*/ 

110 

void Vari_Fractal(char *outfile, int num_group, int break_pointl, int break_point2) 

{ 
int i,j,l; 

int k=O; 

float sx,sy,sxy,sqx,sqy; 
float dl,d2,d3,beta,alpha,fd,r,rsq; 

float *log_distance, *log_ variance; 

FILE *fp_out, *fp_in; 

char out_var[lOO], out_fct[lOO]; 

} 



char flag[lOO]; 
float xba,yba; 

sx=sy=sxy=sqx=sqy=O.O; 

strcpy( out_ var,outfile ); 
strcat( out_ var,". var"); 
strcpy( out_fct,outfile ); 
strcat( out_fct," .fct"); 

if ((fp_in = fopen(out_ var, "rt"))==NULL) 

{ 
fprintf(stderr, "Cannot open output file %s.\n",out_var); 
return; 

} 

if ((fp_out = fopen(out_fct, "wt"))==NULL) 

{ 
fprintf(stderr, "Cannot open output file %s.\n",out_fct); 
return; 

} 

log_distance=(float *)malloc(num_group*sizeof(float)); 
log_ variance=(float *)malloc(num_group*sizeof(float)); 

fgets(flag,63,fp_in); 
fgets(flag,53,fp_in); 
fgets(flag,51,fp_in); 
fgets(flag,56,fp_in); 
for(i=O;i<=num_group;i++) 

fscanf(fp_in, "%d%d%f%f'\n ",&l,&j,&log_distance[i],&log_ variance[i]); 

for(i=break_pointl ;i<break_point2;i++) 

{ 
if(log_ variance[i]==O.O) continue; 
sx +=log_distance[i]; 
sy+=log_ variance[i]; 
sxy+=log_distance[i] *log_ variance[i]; 
sqx +=log_distance[i] *log_distance[i]; 
sqy+=log_ variance[i]*log_ variance[i]; 
k++; 

} 
dl=k*sxy-sx*sy; 

111 



d2=k*sqx-sx*sx; 

beta=dl/d2; 
fd=3.0-beta/2.0; 

d3=k*sqy-sy*sy; 

r=dl/sqrt( d2*d3); 

rsq=r*r; 

xba=sx/k; 
yba=sy/k; 

alpha=yba-beta*xba; 

fprintf(fp_out," # points included in regression = %d\n11,k); 
fprintf(fp_out,11 regression slope = %f\n11

, beta); 

fprintf(fp_out, 11 fractal dimension= %f\n 11 ,fd); 
fprintf(fp_out," r-square = %f\n11,rsq); 
fprintf(fp_out,11 alpha = %f\n11,alpha); 
fprintf(fp_out, 11 %f %f\n 11 ,xba,yba); 

printf(11# points included in regression = %d\n1

1,k); 
printf(11regression slope=%f\n 11 , beta); 

printf(1

1fractal dimension=%f\n 11 ,fd); 

printf("r-square = %f\n 11 ,rsq); 
printf(" alpha = %f\n 11 ,alpha); 
printf(11 %f %f\n ",xba,yba); 

free(log_ variance); 
free(log_distance ); 
fclose(fp_out); 
fclose(fp_in); 
return; 

/*-----------------------------------------------------------

automatically choose break_point2 based on slope changing 
into negative value and assume between O and this breakpoints 
regression value will be maximum 

-----------------------------------------------------------*/ 

void Vari_Fractal_Max( char *outfile, int num_group) 

{ 

int i,j,l,n; 

int k=O; 
float sx,sy,sxy,sqx,sqy; 
float dl,d2,d3,beta,alpha,fd,r,rsq; 

112 



float *log____distance, *log__ variance; 
FILE *fp_out, *fp_in; 
char out_ var[ 100], out_fct[ 100]; 
char flag[ 100]; 
float xba,yba; 
int break_pointl, break_point2; 
float rrs[lO0],rrs_max; 

sx=sy=sxy=sqx=sqy=0.0; 

strcpy( out_ var,outfile ); 
strcat( out_ var,". var"); 
strcpy( out_fct,outfile ); 
strcat( out_fct," .fct"); 

if ((fp_in = fopen(out_ var, "rt"))==NULL) 
{ 
fprintf(stderr, "Cannot open output file %s.\n" ,out_ var); 
return; 

if ((fp_out = fopen(out_fct, "wt"))==NULL) 
{ 
fprintf(stderr, "Cannot open output file %s.\n",out_fct); 
return; 

log____distance=(float *)malloc(num_group*sizeof(float)); 
log__ variance=(float *)malloc(num_group*sizeof(float)); 

fgets(flag,63,fp_in); 
fgets(flag,53,fp_in); 
fgets(flag,51,fp_in); 
fgets(flag,56,fp_in); 
for(i=0;i<=num_group;i++) 

fscanf (fp_in," %d%d%f%f\n" ,&l,&j ,&log____distance[ i] ,&log__ variance[i ]); 

for(n=0;n<num_group-5;n++){ 
break_point2=n+ 5; 

k=0; 
sx=sy=sxy=sqx=sqy=0.0; 
// for(i=break_pointl ;i<break_point2;i++) 

113 



for(i=0;i<break_point2;i++) 

{ 
if(log_ variance[i]==0.0) continue; 
sx +=log_distance[i]; 
sy+=log_ variance[i]; 
sxy+=log_distance[i]*log_ variance[i]; 
sqx +=log_distance[i] *log_distance[i]; 
sqy+=log_ variance[i]*log_ variance[i]; 
k++; 

} 
dl=k*sxy-sx*sy; 
d2=k*sqx-sx*sx; 
beta=dl/d2; 
fd=3.0-beta/2.0; 

d3=k*sqy-sy*sy; 
r=dl/sqrt(d2*d3); 
rrs[ num_group-6-n ]=r*r; 
printf("rrs[ 1-%2d]=%8.6f, dimension[ 1-%2d]=%8.6f\n" ,n+6,rrs ~ 

[ num_group-6-n] ,n+6,f d); 

/* 

for(n=0;n<num_group-5;n++) { 
printf("rrs[ 1-o/od]=o/of\n" ,num_group-n,rrs[n]); 

} 
*/ 

break_point2=5; 
for(i=2;i<num_group-7;i++) { 

if((rrs[i]>rrs[i-l])&&(rrs[i]>rrs[i+ l])&&(rrs[i]>0.5)) { 
II (rrs[i-1 ]>rrs[i-2])&&(rrs[i+ 1 ]>rrs[i+2])) { 
II if(rrs[i]>=0.6){ 
break_point2=num_group-i-1; 
break; 

} 

} 

printf("break_point2=%d\n" ,break_point2); 

k=0; 
sx=sy=sxy=sqx=sqy=0.0; 
for(i=0;i<break_point2;i++) 

{ 

114 



if(log_ variance[i]==0.0) continue; 
sx+=log_distance[i]; 
sy+=log_ variance[i]; 
sxy+=log_distance[i] *log_ variance[i]; 
sqx+=log_distance[i]*log_distance[i]; 

sqy+=log_ variance[i]*log_ variance[i]; 
k++; 

} 
dl=k*sxy-sx*sy; 
d2=k*sqx-sx*sx; 
beta=dl/d2; 
fd=3.0-beta/2.0; 
d3=k*sqy-sy*sy; 

r=dl/sqrt(d2*d3); 
rsq=r*r; 

xba=sx/k; 
yba=sy/k; 
alpha=yba-beta*xba; 

fprintf(fp_out," # points included in regression = %d\n",k); 
fprintf(fp_out," regression slope = %f\ntl, beta); 
fprintf(fp_out," fractal dimension= %f\n" ,fd); 
fprintf(fp_out,tl r-square = %f\ntl,rsq); 
fprintf(fp_out," alpha = %f\n" ,alpha); 
fprintf(fp_out, ti %f %f\n ti ,xba,yba); 

printf("# points included in regression = %d\n",k); 
printf("regression slope=%f\n", beta); 
printf("fractal dimension=%f\n ",fd); 
printf("r-square = %f\n",rsq); 
printf(" alpha = %f\n" ,alpha); 

printf(" %f %f\n ti ,xba,yba); 

free(log_ variance); 
free(log_distance ); 
fclose(fp_out); 
fclose(fp_in); 
return; 

/*------------------------------------------------------

Close_ Variogram: 

115 



------------------------------------------------------*/ 

void Close_ Variogram() 

{ 
free(gb); 

free( ncase); 

free(sumzd); 

free( dist); 
free(hvar); 
return; 

} 

13. fractal_triangular

#include "triangular.h" 

void Compute_triangular(int steps, int method) 

{ 
int i,j; 
int iter, step=l, no_of_blocks[50]; 
double side, diag, gain; 
double a, b, c, d, e, u, v, x, y, o, p, q, r; 

double sa, sb, sc, sd, aa, ab, ac, ad, surface_area; 

float pixel_size; 

int nrows,ncols; 

step_num = steps; 
nrows = below - up + 1; 
ncols = right - left + 1; 

//pixel_size=xcell; 

pixel_size = 1; 

gain = 255.0 / (zmax - zrnin); 

for(iter=l ;iter<=steps;iter++) 

{ 
surface_area=0.0; 
no_of_blocks[iter]=0; 
side = (float) pixel_size * step; 
diag = (float) side * sqrt(2.0) / 2.0; 

for (i = up; i <= below; i += step) 

{ 
if ((i + step)> below) 

break; 

116 



for(j = left; j <= right; j += step) 

{ 

} 

if ((j +step)> right) 
break; 

a= (z[i][j] - zmin) * gain; 
b = (z[i][j + step] - zmin) * gain; 
d = (z[i + step ][j] - zmjn) * gain; 
c = (z[i + step][j + step] - zmjn) * gain; 

e = 0.25 * (a+ b + c + d); 

double dSideSquared = side * side; 
u = sqrt((a - b) * (a - b) + dSideSquared);
v = sqrt((b - c) * (b - c) + dSideSquared);
x = sqrt((c - d) * (c - d) + dSideSquared);
y = sqrt((a - d) * (a - d) + dSideSquared);

double dDiagSquared = diag * diag; 
o = sqrt((a - e) * (a - e) + dDiagSquared);
p = sqrt((b - e) * (b - e) + dDiagSquared);
q = sqrt((c - e) * (c - e) + dDiagSquared);
r = sqrt((d - e) * (d - e) + dDiagSquared);

sa= 0.5 * (u+p+o); 
sb = 0.5 * (v + p + q); 

sc = 0.5 * (x + q + r); 

sd = 0.5 * (y + o + r); 

aa = sqrt(fabs(sa * (sa - u) * (sa - p) * (sa - o))); 
ab= sqrt(fabs(sb * (sb - v) * (sb - p) * (sb - q))); 
ac = sqrt(fabs(sc * (sc - x) * (sc - q) * (sc - r))); 
ad= sqrt(fabs(sd * (sd - y) * (sd - o) * (sd - r))); 

surface_area += aa +ab+ ac + ad; 
no_of_blocks[iter]++; 
} 

area[ i ter] =surf ace_ area; 
resolution[iter] =side* side; 

if(method ==0) 
step*=2; 

else 

117 



} 

step++; 

if (step >= nrows II step>= ncols) 
{ 
step_num = iter; 
break; 
} 

} 

void Line_Fit(FILE *pfDebug, float& tFractalDimension, float& fRSquared) 
{ 
int n; 
double resavg=0.0,areaavg=0.0,cross=0.0,sumres=0.0,sumarea=0.0; 
double dimension, alpha, beta, r; 

for (n = 1; n <= step_num; n++) 
{ 
resavg += log(resolution[n]); 
areaavg += log(area[n]); 
} 

if (step_num < 3) 
{ 
printf("\n Too few calculated data points for regression\n"); 
exit(0); 
} 

resavg/=(float)step_num; 
areaavg/=(float)step_num; 

for (n=l ;n<=step_num;n++) 
{ 
cross+=((log(resolution[n])-resavg)*(log(area[n])-areaavg)); 
sumres+=((log(resolution[n])-resavg)*(log(resolution[n])-resavg)); 
sumarea+=((log(area[n])-areaavg)*(log(area[n])-areaavg)); 

} 
r=cross/sqrt(sumres*sumarea); 
beta=r* sqrt( sumarea )/ sqrt( sumres); 
alpha=areaavg-(beta*resavg); 
dimension=2.0-beta; 

118 



fprintf(pfDebug, "%d\t%.3f\t", step_num, r*r); 

fFractalDimension = (float)dimension; 

fRSquared = (float)(r * r); 

} 

119 



BIBLIOGRAPHY 

Anderson, E. J. (2001). Moving Window of Fractal Dimension by Triangular 

Prism Method (MWFDTPM-version 1.0.5.) 

Atkinson, P.M. & Tate, N.J. (2000). Spatial Scale Problems and Geostatistical 
Solutions: A Review. Professional Geographer, 52, 607-623. 

Bian, L. (1997). Multiscale Nature of Spatial Data in Scaling Up Environmental 

Models. In D.A. Quattrochi & M.F. Goodchild (Eds.), Scale in Remote 

Sensing and GIS (pp.13-26). Florida: CRC Press. 

Brigham, E. 0. (1988). The Fast Fourier Transform and Its Applications. 
New Jersey: Prentice-Hall. 

Avery, T.A. & Berlin, G.L. (1992). Fundamentals of Remote Sensing and Airphoto 
Interpretation (5th ed.). New York: Macmillan Publishing. 

Cao C. & Lam, N.S.N. (1997). Understanding the Scale and Resolution Effects in 

RemoteSensing and GIS. In D.A. Quattrochi & M.F. Goodchild (Eds.), Scale 

in Remote Sensing and GIS (pp.57-72). Florida: CRC Press. 

Chen, C.-C. & Chen, C.C. (1999). Filtering Methods for Texture Discrimination. 
Pattern Recognition Letters, 20, 783-790. 

Chica-Olmo, M. & Abarca-Hernandez, F. (2000). Computing Geostatistical Image 

Texture for Remotely Sensed Data Classification. Computers & Geosciences, 

26, 373-383. 

Clarke, K.C., & Schweizer, D.M. (1991). Measuring the Fractal Dimension of 

Natural Surfaces using a Robust Fractal Estimator. Cartography and 
Geographic Information Systems, 18, 37-47. 

Clarke, K.C. (1986). Computation of the Fractal Dimension of Topographic 

Surfaces Using the Triangular Prism Surface Area Method. Computers & 

Geosciences, 12, 713-722. 

Cliff, A.D., & Ord, J.K. (1981). Spatial Processes: Models and Applications. 

London: Pion. 

120 



121 

Collins, J.B. & Woodcock, C. E. (1999). Geostatistical Estimation of Resolution­

Dependent Variance in Remotely Sensed Images. Photogrammetric 
Engineering & Remote Sensing. 65, 41-50. 

De Cola, L. (1989). Fractal Analysis of a Classified Landsat Scene. 
Photogrammetric Engineering & Remote Sensing. 55, 601-610. 

Emerson, C. W., Lam, N.S.N., & Quattrochi, D.A. (1999). Multi-Scale Fractal 

Analysis of Image Texture and Pattern. Photogrammetric Engineering & 
Remote Sensing. 65, 51-61. 

Environmental Systems Research Institute. (2001). ESRI GIS & Mapping 

Software. Retrived May 13th 2001 from ESRI Incorporated on the World 

Wide Web: http://www.esri.com/software/arcview/index.html 

Fisher, R., Perkins S., Walker A., & Wolfart E. (2000). Mean Filter-
Convolution. Retrieved June 28th 2001 from Hypermedia Image Processing 
Reference on the World Wide Web: 
http://www.dai.ed.ac.uk/HIPR2/convolve.htm 

Gonzalez, R.C. & Wintz, P. (1987). Digital Image Processing. California: Addison­

Wesley. 

Goodchild, M.F. & Mark, D. M. (1987). The Fractal Nature of Geographic 

Phenomena. Annals of the Association of American Geographers, 77, 265-
278. 

Goodchild, M. F. (1980). Fractals and the Accuracy of Geographical Measures. 
Mathematical Geology. 12, 85-98. 

Goodchild, M. F. (1986). Spatial Autocorrelation. Norwich: Geo Books. 

Haralick, R.M. (1979). Statistical and structural approaches to texture. Proceedings 
of the IEEE, 67, 786-804. 

Haralick, R.M., Shanmugam, K. & Dinstein, I. (1973). Texture Features for Image 
Classification. IEE Transactions on Systems, Man and Cybernetics, 6, 610-
621. 

Isaaks, E. H. & Srivastava, R. M. (1989). An Introduction to Applied Geostatistics. 

New York: Oxford University Press. 

Jaggi, S., Quattrochi, D.A. & Lam, N.S.N. (1993). Implementation and Operation of 
Three Fractal Measurement Algorithms for Analysis of Remote-Sensing Data. 



Computers and GeoSciences, 19, 745-767. 

Lam, N.S.N. & De Cola, L. (1993). Fractals in Geography. New Jersey: Prentice 
Hall. 

Lam, N.S.N. (1990). Description and Measurement of Landsat TM Images Using 
Fractals, Photogrammetric Engineering & Remote Sensing, 56, 187-195. 

Lee, Y.K. & Hoon, K. (2001). Brownian Motion-The Research Goes On. 

122 

Retrieved June 28
th 

2001 from The Department of Computing Imperial
College of Science, Technology and Medicine University of London on the 

World Wide Web: 
http://www.doc.ic.ac. uk/ ~nd/ surprise _9 5/j ournal/vol4/ykl/report.html 

Lillesand, T.M. & Kiefer. R.W. (1994). Remote Sensing and Image Interpretation 

(3rd ed). New York: John Wiley & Sons, Inc. 

Mandelbrot, B.B. (1982). Fractal Geometry of Nature. California: W. H. Freeman 

&Co. 

Mandelbrot, B. B., & Van Ness, J. W. (1968). Fractional Brownian Motions, 
Fractional Noises and Applications. SIAM Review, 10, 422-437. 

Mandelbrot, B.B. (1977). Fractals: Form, Chance and Dimension. California: W. H. 
Freeman & Co. 

Pesariesi, M. (2000). Texture Analysis for Urban Pattern Recognition Using Fine­

resolution Panchromatic Satellite Imagery, Geographical and Environmental 
Modelling, 4, 43-63. 

Pratt, W. K. (1978). Digital Image Processing. New York: John Wiley & Sons. 

Qiu, H., Lam, N.S.N., Quattrochi, D.A. & Gamon, J. A. (1999). Fractal 
Characterizationof Hyperspectral Imagery. Photogrammetric Engineering & 
Remote Sensing, 65, 63-71. 

Quattrochi, D. A., & Goodchild, M. F. (1997). Scale, Multiscaling, Remote Sensing, 

and GIS, In D.A. Quattrochi & M.F. Goodchild (Eds.), Scale in Remote 
Sensing and GIS (pp. 1-11). Florida: CRC Press. 

Quattrochi, D. A., Lam, N. S. N., Qiu, H., & Zhao, W. (1997). Image 
Characterization and Modeling System (!CAMS): A Geographic Information 
System for the Characterization and Modeling of Mulitscale Remote Sensing 



123 

Data. In D.A. Quattrochi & M.F. Goodchild (Eds.), Scale in Remote Sensing 
and GIS (pp. 361-394). Florida: CRC Press. 

Rho, P., (2000). Extract by Moving Windows (extractbymovingwindows.ave). Texas 

A&M University, Texas. 

Sali, E. & Wolfson, H. (1991). Texture Classification in Aerial Photographs and 

Satellite Data. Proceedings of the Seventh Israeli Conference, 494, 325-34. 

Sonka, M., Hlavac, V., & Boyle, R. (1999). Image Processing, Analysis, and 
Machine Vision. Retrived April 14

th 
2001 from Brooks and Cole Publishing, 

on the World Wide Web: 
http://www.icaen.uiowa.edu/~dip/LECTURE/Texturel.html#cooccurrence 

Microlmages Software. (2000). TNTmips - version 6.4. Nebraska. 

Tate, N. J. (1998). Estimating the Fractal Dimension of Synthetic Topographic 
Surfaces. Computers and GeoSciences, 24, 325-334. 

U.S. Army Corps of Engineers & GRW.Inc (USA CE & GRW). (1999). Tracking 
Bluff Line Movement in Southwest Michigan 2000. Conducted by Western 
Michigan University, Geographic Information Systems Research Center, 
Michigan. 

Woodcock, C.E. & Strahler, A.H. (1987). The Factor of Scale in Remote Sensing. 

Remote Sensing of the Environment, 21, 311-332. 

Xia, Z.-G & Clarke, K.C. (1997). Scale, Approaches to Scaling of Geo-Spatial Data. 
In D.A. Quattrochi & M.F. Goodchild (Eds.), Scale in Remote Sensing and 
GIS (pp. 309-360). Florida: CRC Press. 


	Development of an Arc View™ Extension to Measure Local Fractal Dimension
	Recommended Citation

	tmp.1552502844.pdf.0N6nf

