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With the advancements in data collection technologies, researchers in various fields

such as epidemiology, chemometrics, and environmental science face the challenges of

obtaining useful information from more detailed, complex, and intricately-structured

data. Since the existing methods often are not suitable for such data, new statistical

methods are developed to accommodate the complicated data structures.

As a part of such efforts, this dissertation proposes Functional Generalized Linear

Mixed Model (FGLMM), which extends classical generalized linear mixed models to

include functional covariates. Functional Data Analysis (FDA) is a rapidly developing

area of statistics for data which can be naturally viewed as smooth curves or functions.

FDA methods exploit the natural smoothness that characterizes the data and achieves

greater statistical efficiency compared to multivariate methods.

After introducing the FGLMM, parameter estimation methods using both Fre-

quentist and Bayesian approaches are discussed. The simulation settings of a random

intercept model are used to show the performance of the two estimation schemes.

Also, the higher prediction performance of FGLMM will be shown compared to the



Functional Generalized Linear Model (FGLM) and the Generalized Linear Mixed Model

(GLMM). Also, an application of the FGLMM to EEG brainwave data is discussed.
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Chapter 1

Introduction

1.1 Motivation

Functional Data Analysis (FDA) is a field of statistics that obtains information

from functions, curves, surfaces, or anything else that varies over a continuum (Ramsay

and Silverman, 2005; Horváth and Kokoszka, 2012; Wang et al., 2016; Kokoszka and

Reimherr, 2017). When one of the variables of interest is smooth over a continuum

domain, then it can be considered as functional. Examples include temperature curves

(Zhang and Chen, 2007), growth curves (Chen and Müller, 2012), or brainwaves (Tian,

2010). With the development of data collection technology, such data over continuum

are observed widely in various fields.

As researchers are interested in investigating the relationship between these func-

tional variable(s) and other variables, the functional regression methods have been

developed. Functional linear models include scalar-on-function regression (scalar re-

sponse and functional predictor), function-on-scalar regression (functional response

and scalar predictor), and function-on-function regression (functional response and

functional predictor). Functional Generalized Linear Models (James, 2002a; Müller and

1
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Stadtmüller, 2005; McLean et al., 2014) are developed to deal with scalar-on-function

regressions where the response variable is non-Gaussian. Functional Mixed Models are

developed to deal with the cases where repeated measurements are made on the same

units or measurements are made on clusters of related statistical units, but most of the

functional mixed models concern functional responses (Guo, 2002; Morris and Carroll,

2006b; Antoniadis and Sapatinas, 2007b; Zhu et al., 2011; Chen and Wang, 2011; Ma

et al., 2021).

In this dissertation, we take a further step in these developments and propose a

Functional Generalized Linear Mixed Models (FGLMM). FGLMM concerns a non-

Gaussian scalar response and functional predictor(s) with random effects. FGLMM

is an extension of Generalized Linear Mixed Models (GLMM) in functional settings

which is often used to analyze data when the observations or the statistical units are

grouped or clustered. We take brainwave data Wang et al. (2013) as a motivation and

example of our analysis. The data contains the brainwaves of 10 college subjects on

10 different videos and a binary measure of whether a subject was confused or not

while watching a given video. Through our model, we will be able to analyze how the

brainwave relates to the confusion of the subject.

1.2 Contribution

Functional Generalized Linear Mixed Models (FGLMM) will allow a new avenue of

analysis of data over continuum that are observed repeatedly or observed on clusters

of related statistical units. We can investigate how the functional predictor affects the

non-Gaussian scalar response with the presence of random effects. Also, by treating the

data over continuum as functional objects, we can deal with the high dimensionality of

data and exploit the innate smooth correlated structure of data. We also provide a
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general framework of FGLMM so that it can be extended into different specific models.

In this manuscript, we introduce two models of FGLMM – random intercept model

and random functional slope model.

In parameter estimation, we use both Frequentist approach and Bayesian approach,

making our work one of few examples that deals with both pillars in statistics. Through

simulation and real data analysis, the results from Frequentist approach and the results

from Bayesian approach will be compared. There are increasing interests in using

Bayesian methods in FDA framework, and our work will be a good example for such

efforts.

Furthermore, our work on FGLMM allows further research on random effects with

the functional data. For example, our model can be extended to spatial functional

models or spatio-temporal models where the random effects are spatially correlated.

1.3 Organization

Chapter 2 discusses the related literature and background that are required to give

support to the building blocks of the proposed model. This includes Functional Data

Analysis, Functional Principal Component Analysis, and Linear Models.

Chapter 3 formally introduces the proposed model, Functional Generalized Linear

Mixed Model (FGLMM) together with analogous examples from GLMM such as the

random intercept model and random functional slope model. Parameter estimation

procedures using both the Frequentist and Bayesian approaches are presented here.

Chapter 4 discusses the process of simulating FGLMM data and uses it to implement

the estimation procedures mentioned in chapter 3. It seeks to compare the results

yielded from the two estimation procedures, Frequentist and Bayesian approaches.

Chapter 5 provides key insights in the application of FGLMM on the EEG dataset.



Chapter 2

Background and Literature Review

2.1 Functional Data Analysis

2.1.1 Functional Data Analysis

Functional Data Analysis (FDA) deals with the analysis and theory of data that

are in the form of functions, images and shapes, or more general objects. It arises

when one of the variables or units of interest in a data set can be naturally viewed as a

smooth curve or function. FDA can be thought of as a statistical analysis of samples

of curves.

Kokoszka and Reimherr (2017) cites that implementing FDA comes along with

various reasons for its usage: (1) to represent the data in ways that aid further analysis,

(2) to display the data so as to highlight various characteristics, (3) to study important

sources of pattern and variation among the data, (4) to explain variation in an outcome

or dependent variables by using input or independent variable information, and (5) to

compare two or more sets of data with respect to certain types of variation, where two

sets of data can contain different sets of replicates of the same functions, or different

4
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functions for a common set of replicates.

Ramsay (2009) provides an example for which FDA is very much applicable.

Figure 2.1: Girls’ Growth

The above plot illustrates the heights of 10 girls measured at a set of 31 ages in the

Berkeley Growth Study. The important observation to make for this particular study

is that the height may be modelled using a smooth function and in effect, the data

could be instead seen as having 10 functional observations even though it was taken

from a finite set of points. Moreover, this can be extended to inspecting the changes in

height, as it would be done so with differentiation.

2.1.2 Basis Expansion

With the nature of functions having infinite dimensionality, the best way to address

it is by applying basis expansion. The main idea of basis expansion is to approximate

the observed functions as linear combinations of some basic shapes. From Ramsay
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(1997), it is

x(t) ≈
K∑

k=1
ckϕk(t),

where the basis functions are ϕk and the coefficients are ck.

2.1.2.1 Fourier Series

One method for basis expansion is the Fourier Series, which is given by

x̂(t) = c0 + c1 sinωt+ c2 cosωt+ c3 sin 2ωt+ c+ 4 cos 2ωt+ · · ·

It is defined by the periodic basis ϕ0(t) = 1, ϕ2r−1(t) = sin rωt, and ϕ2r(t) = cos rωt.

Its period of 2π
ω

is defined by the parameter ω. The Fourier basis is also known to be

orthogonal since
∫
ϕi(t)ϕj(t)dt = 1 for i = j and

∫
ϕi(t)ϕj(t)dt = 0 otherwise.

2.1.2.2 B-Spline

A common option for representing non-periodic functional data or parameters

would be by using splines. A spline function is mainly characterized by the order of its

polynomial segments and its knots. The simplest description of a spline is that it is a

method of approximating segments of observed functions on each subinterval.

2.1.2.3 Wavelet

Morris and Carroll (2006a) describes Wavelets as families of orthonormal basis func-

tions that represents other functions. For any square-integrable function in (−∞,∞),

an orthogonal wavelet basis can be determined by dilating and translating a mother

wavelet ψ as

ψjk(t) = 2j/2ψ(2jt− k)
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for integers j and k. Hence, a function g(t) may be expressed as

g(t) =
∑

j,k ∈ T
djkψjk(t),

where the coefficients are

djk =
∫
g(t)ψjk(t)dt.

2.1.3 Estimating Smooth Functions

The concepts from the two previous sections combines to allow for estimation of

smooth functions. The graph illustrates the annual mortality hazards of boys born in

1960.

Cleophas and Zwinderman (2018) provides the above plot and it illustrates 23 observed

hazards from 1960 to 2014. If each hazard function can be represented using a linear

combination of coefficients and a choice of basis function (e.g. Fourier, B-Spline) then

xn(t) ≈
k∑

k=1
cnkBk(t), n = 1, . . . , 23, t ∈ T .
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Golub et al. (1979) discussed a method to estimating the coefficients. This is achieved

by minimizing

23∑
n=1

54∑
j=1

(
xnj −

K∑
k=1

cnkBk(tj)
)2

+ λ
∫
L

[(
K∑

k=1
cnkBk(tj)

)]2

dt.

The function L(·) measures the roughness of the xn(t)’s and the smoothing (or penalty)

parameter λ must be estimated from the data or may be chosen by implementing

generalized cross validation (GCV).

2.2 Functional Principal Component Analysis

From Rencher (2012), the goal of Principal Component Analysis (PCA) is to

maximize the variance of a linear combination of variables. It serves as a dimension

reduction tool for cases when the number of independent variables is relatively larger

than the number of observations; or when the independent variables are strongly

correlated. The multivariate PCA method follows these steps:

1. Determine the principal component weight vector ξ1 = (ξ11, . . . , ξp1)⊤ for which

the principal components scores

fi1 =
∑

j

ξj1xij = ξ1xi

maximize ∑
i
f 2

i1 subject to

∑
j

ξ2
j1 = ∥ξ1∥2 = 1.

2. Compute the weight vector ξ2 with components ξj2 and principal component
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scores maximizing ∑
i
f 2

i2, subject to the constraint ∥xi2∥2 = 1 and the additional

constraint ∑
j

ξj2ξj1 = ξ⊤
2 ξ1 = 0.

3. Repeat the process, as required.

Functional Principal Component Analysis (FPCA) is the analog of PCA in the

functional setting. The transition from multivariate PCA to FPCA simply changes the

summations into integrals in the aforementioned procedure.

1. Determine the principal component weight function ξ1(s) = (ξ11, . . . , ξp1)⊤ for

which the principal components scores

fi1 =
∫
ξ(s)xi(s)ds

maximize ∑
i
f 2

i1 subject to

∫
ξ1(s)2ds = ∥ξ1∥2 = 1.

2. Compute the weight function ξ2(s) with components and principal component

scores maximizing ∑
i
f 2

i2, subject to the constraint ∥ξ2∥2 = 1 and the additional

constraint ∫
ξ2(s)ξ1(s)ds = 0.

3. Repeat the process, as required.
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2.3 Linear Model

2.3.1 Linear Model

The Linear Model (LM) aims to model a linear relationship between the yi’s and

xij ’s given by a sample of n observations. The Linear Model is commonly written as an

equation that relates the response vector Y
n×1

with the design matrix X
n×(p+1)

associated

with the explanatory variable/s through the parameter vector β
(p+1)×1

. In symbols, it is

Y = Xβ + ε,

where n and p+ 1 are the respective number of observations and number of parameters.

The parameter vector is also called the vector of regression coefficients. The additional

vector ε
n×1

accounts for the errors in the model - these are collectively called as the

error terms. With that given structure comes with the following assumptions:

1. The error terms have zero mean, i.e., E(ε) = 0.

2. The error terms have constant variance (called homoscedastic) and are uncorre-

lated, i.e., Cov(εε⊤) = σ2I where σ2 > 0 and I is the identity matrix.

3. The design matrix X is of full rank, i.e. rank(X) = p+ 1.

4. The error terms follows a normal distribution, where ε ∼ N(0, σ2I).

5. The error terms and explanatory variables are independent, i.e., ε | X ∼ N(0, σ2I).

A well-known approach to estimating the parameters is by minimizing the Sum of

Squared Errors (SSE). It begins by writing the SSE as a function of β and applying
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matrix calculus to get the least squares estimator. A brief derivation of the estimator

is shown below.

SSE = ε⊤ε

= (Y − Xβ)⊤(Y − Xβ)

= Y⊤Y − 2Y⊤Xβ + β⊤X⊤Xβ

∂

∂β
SSE = −2X⊤Y + 2X⊤Xβ

−2X⊤Y + 2X⊤Xβ = 0

β̂ = (X⊤X)−1X⊤Y.

The above setup of the Linear Model is specifically called the Multiple Linear

Regression Model (MLRM). When p = 1, it becomes a Simple Linear Regression Model

(SLRM).

2.3.2 Functional Linear Model

The Functional Linear Model (FLM) considers either one of the response or the

explanatory variables to be a curve and the other one would be scalar. Another case

would be when both variables are curves. This is commonly called as Functional

Regression and its three cases are Scalar-On-Function Regression, Function-On-Scalar

Regression, and Function-On-Function Regression. Kokoszka and Reimherr (2017)

defined and provided outlines for each of the aforementioned FLMs.

2.3.2.1 Scalar-On-Function Regression

The Scalar-On-Function Regression (SOFR) is when the response Yi is scalar, the

regressor Xi(s) is a curve, and the parameter is a regression function β(s). Its equation
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form is taken as

Yi =
∫
β(s)Xi(s)ds+ εi, i = 1, 2, . . . , n.

With the inclusion of an intercept, the model will be

Yi = α +
∫
β(s)Xi(s)ds+ εi, i = 1, 2, . . . , n.

By applying basis (e.g. fourier basis, bspline basis) expansion on β, the above model

would be equivalent to an LM. Assume that

β(t) =
K∑

k=1
ckBk(t),

then

∫
β(t)Xi(t)dt =

K∑
k=1

ck

∫
Bk(t)Xi(t)dt

≈
K∑

k=1
xikck.

From there, it will become an LM where the parameter vector c = [α, c1, c2, . . . , cK ]⊤

will be estimated in the same way as that from LM, i.e. ĉ = (X⊤X)−1X⊤Y.

2.3.2.2 Function-On-Scalar Regression

The Function-On-Scalar Regression (FOSR) takes curves Yi(t) for responses and

scalars xik for regressors, with the coefficient functions βk(t) as the parameters. It is

written as

Yi(t) =
q∑

k=1
xikβk(t) + εi(t).
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The least squares estimator approach may also be applied to estimate β(t). Note that

in this case, the least squares estimator would be the value of β that minimizes

n∑
i=1

∣∣∣∣∣
∣∣∣∣∣Yi −

q∑
k=1

xikβk

∣∣∣∣∣
∣∣∣∣∣
2

=
∫ n∑

i=1
e2

i (β, t)dt

. Similarly,
n∑

i=1
e2

i (β, t) is minimized when

β̂ = (X⊤X)−1X⊤Y(t),

where

e2
i (β, t) =

(
Yi(t) −

q∑
k=1

xikβk(t)
)2

.

2.3.2.3 Function-On-Function Regression

The Function-On-Function Regression (FOFR) has both the responses Yi(t) and

regressors Xi(s) as curves. And β(t, s) is the kernel parameter. In equation form, it is

Yi(t) =
∫
β(t, s)Xi(s)ds+ εi(t).

2.4 Generalized Linear Model

2.4.1 Generalized Linear Model

The Generalized Linear Model (GLM) is an extension to the Linear Model (LM),

where the main difference between the two is that GLM is used when the response

variable is non-normal. As discussed by Agresti (2015) and McCullagh and Nelder

(2019), the GLM can be broken down into three components:
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• The Random Component that identifies the probability distribution of the response

variable Y
n×1

. The observations Y1, Y2, . . . , Yn are assumed to be independent.

• The Linear Predictor Xβ, where X
n×p

is the matrix of p explanatory variables

from the n observations and β
p×1

is the parameter vector.

• The Link Function g(·) such that g[E(Y)] = Xβ. This is usually denoted by η

and the expected value is denoted by µ so that η = g(µ).

In the most basic cases of GLM, there is the assumption that Y comes from the

exponential family. The probability density (or mass) function for Yi takes the form

f(yi; θi, ϕ) = exp
[
yiθi − b(θi)

a(ϕ) + c(yi, ϕ)
]
,

where θi is the natural parameter and ϕ is the dispersion parameter. Additionally, the

link function g(·) may be a monotonic twice differentiable function. Then, µ = g−1(η).

2.4.1.1 Exponential Family

Using the likelihood approach for estimating the parameters, the GLM likelihood

equations are

∂L(β)
∂βj

=
n∑

i=1

(yi − µi)xij

Var(yi)
∂µi

∂ηi

= 0, j = 1, 2, . . . , p,

where ηi =
p∑

j=1
βjxij = g(µi). Equivalently, the likelihood equations are

X⊤DV−1(y − µ) = 0,
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where D = diag
(
∂µi

∂ηi

)
. Agresti (2015) discussed the Newton-Raphson and Fisher

Scoring methods for estimation. Here, the generalized least squares estimate for β is

(X⊤V−1X)−1X⊤V−1z,

where V = Cov(ε) and the general linear model is z = Xβ + ε. Using the derived

likelihood equations above, the score equations can be expressed as

u = X⊤WD(y − µ).

Then the Fisher scoring equations would be

(X⊤W(t)X)β(t+1) = X⊤W(t)z(t),

and its solution is

β(t+1) = (X⊤W(t)X)−1X⊤W(t)z(t).

2.4.1.2 Quasi-Likelihood

An alternative approach presented in Agresti (2015) and McCullagh and Nelder

(2019) makes use of a form similar to that in the likelihood equations for the exponential

family assumption. However, in this method, there is no distributional assumption

for the response Y. To simplify the notation, the construction of the quasi-likelihood

function begins with

U = u(µ;Y ) = Y − µ

σ2V (µ) ,
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where

E(U) = 0

Var(U) = 1
σ2V (µ)

−E
(
∂U

∂µ

)
= 1
σ2V (µ) .

If the integral

Q(µ; y) =
µ∫

y

y − t

σ2V (t)dt,

then it should behave like a log-likelihood function for µ under certain assumptions.

The function Q(µ; y) is referred to as the quasi-likelihood (or log quasi-likelihood).

Since the responses are independent, then the quasi-likelihood for the whole data would

be

Q(µ; y) =
∑

i

Qi(µi; yi).

And the quasi-deviance function is

D(y;µ) = −2σ2Q(µ; y) = 2
y∫

µ

y − t

V (t) dt.

The parameter estimation procedure is similar to before as it would still undergo

differentiation to obtain the quasi-score function given by

U(β) = 1
σ2 D⊤V−1(Y − µ).

The quasi-score equation

U(β̂) = 0
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can be solved applying the Newton-Raphson with Fisher scoring, i.e. choosing a value

for β̂0 that is close to β̂ so that through a number of iterations a convergence will

occur and

β̂1 = β + (D⊤V−1D)−1D⊤V−1(y − µ).

2.4.2 Functional Generalized Linear Model

In the Functional Generalized Linear Model (FGLM), the explanatory variable X

is replaced with a function X(t). One of the earliest documentations on FGLM is by

James (2002b). In their model, the predictor becomes functional so that

g(µ) = β0 +
∫
ω1(t)X(t)dt.

With their choice of cubic spline, a parametrization would use

X(t) = s(t)⊤γ, γ ∼ N(µγ,Γ),

where s(t) is the q-dimensional spline basis at time t, γ is the q-dimensional spline

coefficients for the predictor. With that parametrization, the model becomes

g(µi) = β0 +
∫
ω1(t)s(t)⊤γidt

= β0 + β⊤
1 γi.

It is also assumed that

x(t) = X(t) + e(t),

where e(t) is a zero-mean Gaussian process that represents errors.
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Another take on FGLM is by Müller and Stadtmüller (2005), where they consider

the functional quasi-likelihood model:

Yi = g
(
α +

∫
β(t)Xi(t)dw(t)

)
+ ei, i = 1, . . . , n,

where

E(e|X(t), t ∈ T ) = 0,

Var(e|X(t), t ∈ T ) = σ2(µ) = σ̃2(η).

In a similar fashion to how estimation is performed in FLM, basis expansion is used.

Assuming an orthonormal basis ρj, j = 1, 2, . . . , then the predictor X(t) and the

parameter function β(t) can be expressed as

X(t) =
∞∑

j=1
εjρj(t), β(t) =

∞∑
j=1

βjρj(t),

where

εj =
∫
X(t)ρj(t)dw(t),

βj =
∫
β(t)ρj(t)dw(t).

By orthonormality, ∫
β(t)X(t)dw(t) =

∞∑
j=1

βjεj.

Due to the infinite dimensionality of the predictors, a series of models would be used to

approximate the given model in which the number of predictors is truncated at p = pn.
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The truncation is done by letting

Up = α +
p∑

j=1
βjεj, Vp =

∞∑
j=p+1

βjεj.

Additionally, if ε(i)
j =

∫
Xi(t)ρj(t)dw(t) where the e′

i are the standardized errors, the

model becomes

Yi = g

α +
∞∑

j=1
βjε

(i)
j

+ e′
iσ̃

α +
∞∑

j=1
βjε

(i)
j

 , i = 1, . . . , n.

Introducing truncated linear predictors η and means µ as such

ηi = α +
p∑

j=1
βjε

(i)
j , µi = g(ηi),

then the p-truncated model is

Y
(p)

i = gp

α +
p∑

j=1
βjε

(i)
j

+ e′
iσ̃p

α +
p∑

j=1
βjε

(i)
j

 , i = 1, . . . , n.

Since the errors vanish asymptotically, the model that could be used would be

Y
(p)

i = g

α +
p∑

j=1
βjε

(i)
j

+ e′
iσ̃

α +
p∑

j=1
βjε

(i)
j

 , i = 1, . . . , n.

In the estimation procedure, the score equation

U(β) = 0

must be solved, where

U(β) =
n∑

i=1

(Yi − µi)g′(ηi)ε(i)

σ2(µi)
.
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The following matrices would be key to solving the score equation

D = Dn,p =
g′(ηi)ε(i)

k

σ(µi)


1≤i≤n, 0≤k≤p

,

V = Vn,p = diag
(
σ2(µ1), . . . , σ2(µn)

)
1≤i≤n

.

From which, the score equation would be equivalent to

D⊤V −1/2(Y − µ) = 0,

where it can be solved by applying the iterated least squares method, as that from

GLM.

2.5 Linear Mixed Model

2.5.1 Linear Mixed Model

The Linear Mixed Model (LMM) incorporates a random effect to the already

existing linear predictor, Xβ. The linear predictor becomes Xβ + ZU, where Z
n×q

is

the design matrix associated with the random effects vector, U
q×1

. The model would

now be:

Y = Xβ + ZU + ε.

As outlined by Fahrmeir (2013), with the Gaussian model assumption, the random

effects and errors are both normal and independent. Their joint distribution may be

expressed as U

ε

 ∼ N
q+n


0

0

 ,
G 0

0 R


 ,



21

where G and R are block diagonal covariance matrices given by

G = blockdiag(Q, . . . ,Q, . . . ,Q)

R = blockdiag(σ2Σn1 , . . . , σ
2Σni

, . . . , σ2Σnm).

With the introduction of the random effects, it must be emphasized that the variances of

these random effects are to be estimated alongside the intercept and slopes designated

to the fixed effects. Common approaches to estimating the variance and covariance

parameters are by maximization of either the profile log-likelihood lP or the restricted

log-likelihood lR given by

lP (v) = −1
2
[
log |V(v)| + (y − Xβ̂(v))⊤V(v)−1(y − Xβ̂(v))

]
,

lR(v) = lP (v) − 1
2 log |X⊤V(v)−1X|,

where v is the vector of unknown parameters. Note that V = R + ZGZ⊤ whenever the

parameters in G and R are known. Otherwise v will be estimated through the use of

either of the above log-likelihood functions. The estimated fixed and random effects are

β̂ = (X⊤V̂X)−1X⊤V̂−1y,

Û = ĜZ⊤V̂−1(y − Xβ̂).

2.5.2 Functional Linear Mixed Model

2.5.2.1 Functional Linear Mixed Model

The Functional Linear Mixed Model (FLMM) considers either (or both) the fixed

or random effects to be functions.
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Morris and Carroll (2006a) introduces the FLMM in the form

Y(t) = XB(t) + ZU(t) + E(t),

where Y(t)
N×1

is the vector of observed functions, B(t)
p×1

is the vector of fixed effect

functions, and U(t)
m×1

is the vector of random effect functions, while X
N×p

and Z
N×m

are their

respective design matrices. And E(t)
N×1

is the vector of functions representing the residual

processes. Important assumptions for this model includes that U(t) ∼ MGP(P,Q)

and E(t) ∼ MGP(R, S) are independent, where both of them follow a multivariate

Gaussian process (MGP).

Antoniadis and Sapatinas (2007a) writes the model as

Yij = Xijβ(tij) + Zijα
(i)(tij) + εij, i = 1, . . . , n; j = 1, . . . ,mi,

where β(t)
p×1

is a vector of fixed functions α(i)(t)
q×1

is a vector of stochastically independent

random functions, which are modelled as realizations of zero-mean Gaussian processes.

2.5.2.2 Functional Additive Mixed Model

Scheipl et al. (2016) elaborates on the use of Generalized Functional Additive Mixed

Model (GFAMM). The model is structured as

yil = F(µil,ν)

g(µil) =
R∑

r=1
fr(Xri, til),

where i = 1, . . . , n, l = 1, . . . , Ti, f(t) is the vector of values upon evaluating the entries

in t, and f(x, t) is the vector of evaluations for all combinations of rows in x and t.
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Similar to how it had been done in every functional model, basis functions would be

used to approximate the terms of fr(Xr, t). This is done so by using tensor product of

marginal bases evaluated on Xr and t. For this structure,

fr(Xr, t) ≈ (Φxr ⊙ Φtr)θr = Φrθr,

where Φxr is the matrix of evaluations of a suitable marginal basis for the covariates

in Xr and Φtr is the matrix that contains the evaluations of a marginal basis in t,

provided their respective basis functions Kxr and Ktr.

2.6 Generalized Linear Mixed Model

2.6.1 Generalized Linear Mixed Model

The Generalized Linear Mixed Model (GLMM) is an extension to GLM, which

now includes random effects. As a result, the GLMM combines the ideas of GLM and

LMM, where the link function g(·) is such that

g(E(Y)) = Xβ + ZU.

The linear predictor will be η

η = Xβ + ZU,

so that

µ = E(Y) = g−1(η).

To accommodate correlated random effects (Fahrmeir, 2013), the assumption that

U ∼ N(0,G) is imposed, where G is a positive definite covariance matrix.
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2.6.1.1 Estimation in GLMM

2.6.1.1.1 Known Variance-Covariance Parameters

Under this assumption, Fahrmeir (2013) showed that the estimation procedure

would be similar to that outlined for in LMM, where the joint likelihood

L(β,U) = p(y|β,U)p(U)

would be utilized. It suffices to calculate the posterior mode since

p(β,U|y) ∝ p(y|β,U)p(U).

The penalized log-likelihood would then be

lpen(β,U) = l(β,U) − 1
2 U⊤G−1 U.

By the method of iteratively weighted least squares, the estimator would then have a

similar form to that of LMM. It is given by


ˆβ(t+1)

Û(t+1)

 = (C⊤W(t)C + B)−1C⊤W(t)ỹ(t),

where C = ( X Z ), B =

0 0

0 G−1

, and

W = DΣ−1D

ỹ = Xβ̂ + ZÛ + D−1(y − µ),
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where D = diag
(
. . . ,

∂h(ηi)
∂η

, . . .

)
and Σ = diag(. . . , σ2

i , . . . ).

2.6.1.1.2 Unknown Variance-Covariance Parameters

In this scenario, the covariance structure for the random effects is instead a function

of θ, which is a vector of parameters, so that G = G(θ). Breslow and Clayton (1993)

showed that the fixed effects β and random effects U can be simultaneously estimated

by using the integrated quasi-likelihood function (IQLF)

exp [Q(β,θ)] ∝ |G|−1/2
∫

exp
[
− 1

2ϕ

n∑
i=1

di(yi;µi) − 1
2U⊤G−1U

]
dU,

where

di(y, µ) = −2
µ∫

y

y − u

aiVar(u)du

is the deviance measure of fit. If the IQLF is rewritten as

exp [Q(β,θ)] ∝ c|G|−1/2
∫

exp [−κ(U)] dU

for some constant c and Laplace’s integral approximation is applied, then

Q(β,θ) ≈ −1
2 log |D| − 1

2 log |κ′(Ũ)| − κ(Ũ),

where Ũ is the solution to

κ′(U) = −
n∑

i=1

(yi − µi)Zi

ϕaiVar(µi)
g′(µi) + G−1U = 0
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which minimizes κ(U). Taking the second partial derivative yields

κ′′(U) ≈
n∑

i=1

ZiZ⊤
i

ϕaiVar(µi) [g′(µi)]2
+ G−1 = Z⊤WZ + G−1,

where W is the diagonal matrix with terms Wi =
(
ϕaiVar(µi) [g′(µi)]2

)−1
that are

same as that of the iterated weights in GLM. The quasi-likelihood could then be

approximated as

Q(β,θ) ≈ −1
2 log |I + Z⊤WZG| − 1

2ϕ

n∑
i=1

di(yi, µi) − 1
2Ũ⊤G−1Ũ,

where the goal is to find Ũ that maximizes the total of the last two terms. And

differentiation with respect to β and U gives the following score equations:

n∑
i=1

(yi − µi)Xi

ϕaiVar(µi)g′(µi)
= 0

n∑
i=1

(yi − µi)Zi

ϕaiVar(µi)g′(µi)
= G−1U.

Using iterated weighted least squares (IWLS), the solution to the above would be

equivalent to that for

X⊤WX X⊤WZG

Z⊤WX I + Z⊤WZG


β

ν

 =

X⊤WY

Z⊤WY

 ,
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where U = Gν and combining with the normality assumptions in LMM would yield

the solutions:

β̂ = (X⊤V−1X)−1X⊤V−1Y

Û = GZ⊤V−1(Y − Xβ̂).

2.6.2 Functional Generalized Linear Mixed Model

The Functional Generalized Linear Mixed Model (FGLMM) accommodates a GLMM

in the functional setting, where the rows of the design matrices in GLMM are now

curves, and the fixed and random effects become functions. The responses are still

scalar and the model is generally constructed as

g[E(Y)] = ⟨X,β⟩ + ⟨Z,U⟩.

When the design matrices and effects are scalar, the model is GLMM. If either effects are

treated as functions, then the model is FGLMM. More of this model will be discussed

in Section 3.1.



Chapter 3

Methodology

3.1 Functional Generalized Linear Mixed Model

Functional Generalized Linear Mixed Model (FGLMM) is an extension of Gener-

alized Linear Mixed Model (GLMM) in functional setting. For each ith subject or

sampling unit, we observe (Yi, {tl, Xil}) for i = 1, . . . , n, l = 1, . . . , L where L number

of measurements has been taken over the domain T where tl ∈ T. These {tl, Xil}

are observed values of functional objects Xi(t). Thus, our data can be viewed as

(Yi, {Xi(t), t ∈ T}) for i = 1, . . . , n. We assume that the data form an i.i.d. sample.

The dependent variable Yi is a real-valued random variable that can be either continu-

ous or discrete. The predictor variable Xi(t), t ∈ T is a random curve that is square

integrable over T. If we concern a logistic regression, then Yi will be a binary variable,

and if we concern a Poisson regression, then Yi will be a count variable.

We write our FGLMM model as

g[E(Y)] = ⟨X,β⟩ + ⟨Z,U⟩. (3.1)

28
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The link function g(·) is assumed to be monotone and twice continuously differentiable

function with bounded derivatives and thus invertible. We use inner product notation

⟨·, ·⟩ to denote that this inner product can either be in R or in L2(t), depending on the

corresponding X or Z being scalar or functional variable. If X is functional, the inner

product ⟨X,β⟩ =
∫
T

X(t)⊤β(t)dt, and if X is scalar, the inner product ⟨X,β⟩ = X⊤β.

3.1.1 Random Intercept Model

As an example of FGLMM, we introduce a random intercept model. For this model,

we take X = (1, X(t))⊤, and Z = 1. The resulting form would be

g[E(Y)] = β0 + u0 +
∫
T
β1(t)X(t)dt. (3.2)

With Karhunen–Loéve exapnsion with basis system {ϕk(t)}∞
k=1, we can represent

the functional predictor variable and the functional coefficient as

X(t) =
∞∑

k=1
xkϕk(t),

β1(t) =
∞∑

k=1
b1kϕk(t).

Assuming that {ϕk(t)}∞
k=1 are orthonormal basis of functional space L2(t), t ∈ T,

meaning that ⟨ϕk1 , ϕk2⟩ =
∫
T
ϕk1(t)ϕk2(t)dt = 1 if k1 = k2 and 0 if k1 ̸= k2, we can have

∫
T
β1(t)X(t)dt =

∞∑
k=1

b1kxk.

We will approximate the model by a series of models with the expansion truncated

at K. We assume that with large enough K, the remainder ∑∞
k=K+1 b1kxk becomes
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negligible.

g[E(Yik)] ≈ β0 + u0 +
K∑

k=1
b1kxk.

3.1.2 Random Functional Slope Model

We also introduce a random functional slope model.

g[E(Y)] = β0 +
∫
T
β1(t)X(t)dt+

∫
T
u1(t)X(t)dt. (3.3)

In this model, u1(t) is a random functional slope. We can consider X = (1, X(t))⊤ and

Z = X(t) from Equation 3.1. We assume that u1(t) follows random stochastic process,

for example a Gaussian process. This means that if we take any finite observations of

u1(t), {u1(tj); tj ∈ T, j = 1, . . . , J} will follow Gaussian distribution.

Here also, we take an orthonormal basis system {ϕk(t)}∞
k=1. Then we can represent

the functional objects as

X(t) =
∞∑

k=1
xkϕk(t),

β1(t) =
∞∑

k=1
b1kϕk(t),

u1(t) =
∞∑

k=1
u1kϕk(t).

We assume that any finite collection of u1k will follow Normal distribution. With this

representation and truncation at K, Equation 3.3 becomes

g[E(Yik)] ≈ β0 +
K∑

k=1
b1kxk +

K∑
k=1

u1kxk

where u1k are taken as random effects.
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3.2 Parameter Estimation

Both the Frequentist and Bayesian approaches to parameter estimation will be

considered in fitting the FGLMM.

3.2.1 Frequentist Approach

The maximum likelihood estimator is considered for the Frequentist approach. We

assume that Y follows an exponential family and the link function g is known and

invertible. If we do not know the link function, then we should consider a quasi-

likelihood model. We assume the random effect also follows Gaussian distribution.

For illustration, we use a random slope model with a binary response variable.

We assume that there are q groups each with n observations. For i = 1, . . . , n and

j = 1, . . . , q,

Yij|uj
ind∼ Bernoulli(pij)

log
(

pij

1 − pij

)
= β0 + uj +

∫
T
β1(t)X(t)dt

uj
iid∼ N(0, σ2)

With the truncation K where K → ∞, we will use
∫
T β1(t)Xi(t)dt = ∑∞

k=1 b1kxik ≈∑K
k=1 b1kxik with appropriate basis {ϕk}K

k=1. Thus,

Yij|uj
ind∼ Bernoulli(pij)

log
(

pij

1 − pij

)
= β0 + uj +

∫
T

K∑
k=1

b1kxikdt

uj
iid∼ N(0, σ2)
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And we write the truncated functional parameter as β1;K(t) = ∑K
k=1 b1kϕk(t).

Then the likelihood function will look like

L(β0, {b1k}K
k=1, σ

2|Y = y) = P (Y = y|β0, {b1k}K
k=1, σ

2)

=
∫
P (Y = y|β0, {b1k}K

k=1, σ
2,u)f(u|σ2)du

=
∫
P (Y = y|β0, {b1k}K

k=1,u)f(u|σ2)du

=
∫ n∏

i=1

q∏
j=1

P (Yij = yij|β0, {b1k}K
k=1,u)f(u|σ2)du

=
q∏

j=1

∫ n∏
i=1

P (Yij = yij|β0, {b1k}K
k=1, uj)f(uj|σ2)duj

=
q∏

j=1

∫ n∏
i=1

P (Yij = yij|β0, {b1k}K
k=1, uj)f(uj|σ2)duj.

As

pij = exp(β0 + uj +∑K
k=1 b1kxik)

1 + exp(β0 + uj +∑K
k=1 b1kxik)

and

P (Yij = yij|pij) =
(

pij

1 − pij

)y

ij

(1 − pij),

L(β0, {b1k}K
k=1, σ

2|Y = y)

=
q∏

j=1

∫ n∏
i=1

exp(β0yij + ujyij +∑K
k=1 b1kxikyij)

1 + exp(β0 + uj +∑K
k=1 b1kxik)

f(uj|σ2)duj

=
q∏

j=1

∫ exp(∑n
i=1 β0yij + ujyij +∑K

k=1 b1kxikyij)∏n
i=1(1 + exp(β0 + uj +∑K

k=1 b1kxik))

(
1√

2πσ2
e

(
− 1

2(uj
σ )2

))
dui.

The score of the likelihood function (i.e. s(θ) = ∂ log L(θ)
∂θ

) for the above case

will contain integration which can sometimes be numerically solved, sometimes not.

Therefore, we use the Gauss-Hermite quadrature or the adaptive Gauss-Hermite
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quadrature to approximate the integration (Jin and Andersson, 2020). It seeks to

numerically compute integrals of the form

I =
∫

exp [p l(t)] dt,

where p is scalar and l(t) is a unimodal function that does not depend on p. When t

is assumed to be a K × 1 vector, the Adaptive Gauss-Hermite quadrature (AGHQ)

approximation with m quadrature points per dimension is given by

IAGHQ = 2K/2 det
(
L̂
)
p−K/2

m∑
j1,...,jK=1

{
K∏

i=1
wji

exp(zji
)
}

exp
{
p l
(
21/2L̂zj1,...,jK

+ t̂
)}
,

where zj1 , . . . , zjK
= (zj1 , . . . , zjK

)⊤, t̂ is the mode of l(t) and L̂ is the Cholesky decom-

position of the inverse of −∂2
(
t̂
)
/
(
∂t ∂t⊤

)
. It follows that the AGHQ approximation

is evaluated to the log-likelihood.

Using adaptive Gauss-Hermite quadrature will give b̂11, . . . , b̂1K , or in general,

b̂1, . . . , b̂K . We can create our truncated estimator β̂K from these estimates by β̂K(t) =∑K
k=1 b̂1kϕk(t). We’ll show the consistency of this estimator.

Theorem 1 (Consistency for Frequentist Estimator) Our Frequentist estimator

β̂K converges in probability to the true parameter β as n → ∞ and K → ∞.

Proof. First, we fix the truncation number K. As in Proposition 3.2.1 of Bianconcini

(2014), consistency of maximum likelihood estimators using adaptive Gauss-Hermite

quadrature is established, b̂1k
P→ b1k for every k = 1, . . . , K as n → ∞. And this means
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that the truncated β̂K
P→ βK as n → ∞. Also, we have β̂K

P→ β as K → ∞.

P
(
∥β̂K − β1∥2 ≥ ϵ

)
≤ P

(
∥β̂K − βK∥2 + ∥βKn − β1∥2 ≥ ϵ

)
≤ P

(
∥β̂K − βK∥2 ≥ ϵ

2

)
+ P

(
∥βK − β∥2 ≥ ϵ

2

)
→ 0 + 0

as n → ∞ and K → ∞. □

3.2.2 Bayesian Approach

The Bayesian approach rewrites the GLMM as

b11, . . . , b1K
iid∼ MVN (θ,Σ)

p (Y | Xi, b0,b1, uj) =
n∏

i=1
p
(
yij | β0,b⊤

1 Xi, uj

)
,

where the observations from different groups are conditionally independent (Hoff, 2009).

With θ and Σ being only the typical parameters that may have full conditional

distributions in GLMMs, the Metropolis-Hastings algorithm is used to approximate

the posterior distribution of the parameters. It combines Gibbs steps to update (θ,Σ)

and Metropolis steps to update all b1k.

In Gibbs sampling, the full conditional distributions of θ and Σ depend only on

the b11, . . . , b1K , which implies that p(yij | b⊤
1 Xi) has no effect on the full conditional

distributions of θ and Σ. By that, their respective full conditional distributions will

always be multivariate normal and inverse-Wishart.

The Metropolis step updates b1k by proposing a new value b∗
1k based on the current

parameter values, then decides to accept or reject it with appropriate probability. A
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proposed distribution here would be multivariate normal, with a mean being the current

b
(s)
1k value and a proposal variance, V (s)

1k . The procedure works as follows:

1. Sample b∗
1k from a MVN

(
b

(s)
1k , V

(s)
1k

)
.

2. Calculate the acceptance ratio by using the formula:

r =
p (yij | Xi, b

∗
1k) p

(
b∗

1k | θ(s),Σ(s)
)

p
(
yij | Xi, b

(s)
1k

)
p
(
b

(s)
1k | θ(s),Σ(s)

)

3. Sample u from U(0, 1).

4. If u < r, then assign b
(s+1)
1k to b∗

1k. Otherwise, assign b
(s)
1k .

Joining the two sampling procedures above, the Metropolis-Hastings algorithm for

approximating the posterior p(b11, . . . , b1K ,θ,Σ | X1, . . . ,Xn,Y) is given by:

1. Sample θ(s+1) from its full conditional distribution.

2. Sample Σ(s+1) from its full conditional distribution.

3. For every j ∈ {1, . . . , q}, follow the Metropolis steps.

From MCMC, we get {b(m)
1k }m∈N where m represents the number of Markov chain.

Using them, we can obtain our estimator β̂(m)
K (t) = ∑K

k=1 b̄
(m)
1k ϕk(t) where b̄

(m)
1k =

1
m

∑m
l=1 b

(l)
1k , the mean from the chain. We’ll show the consistency of this estimator.

We’ll note them as {b(m)
k }m∈N and β̂

(m)
K to address the general case.

Theorem 2 (Consistency for Bayesian Estimator) Our Bayesian estimator β̂(m)
K

converges in probability to the true parameter β as n → ∞, K → ∞, and m → ∞.
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Proof. The proof follows Kang et al. (2023). First we fix K. Since {b(m)
k }m∈N is an

ergodic and stationary Markov chain, we have their mean b̄
(m)
k

P→ bk as m → ∞ using

the law of large numbers. As

P
(

∥β̂(m)
K − βK∥2 ≥ ϵ

2

)
= P

(
∥b̄(m)

K − bK∥2
RK ≥ ϵ

2

)
→ 0,

we have β̂(m)
K

P→ βK as m → ∞ for every K ∈ N.

Since βK is the truncated version of β, we have βK
P→ β as K → ∞ and this gives

P
(
∥βK − β∥2 ≥ ϵ

2

)
→ 0.

P
(
∥β̂(m)

K − β∥2 ≥ ϵ
)

≤ P
(
∥β̂(m)

K − βK∥2 + ∥βK − β∥2 ≥ ϵ
)

≤ P
(

∥β̂(m)
K − βK∥2 ≥ ϵ

2

)
+ P

(
∥βK − β∥2 ≥ ϵ

2

)
→ 0 + 0

as n → ∞, K → ∞, and m → ∞. □

3.3 Computation

Before applying either of the two approaches, we modify the dataset. As we observe

(Yi, {tl, Xil}) for i = 1, . . . , n, l = 1, . . . , L, we need to turn {tl, Xil} into functional

objects. Using basis system {ϕk(t)}K
k=1, we find

xik = arg min
xik

n∑
i=1

(Xil −Xi;K(tl))2 + λ
∫

[LXi;K(t)] dt

where Xi;K(t) = ∑K
k=1 xikϕk(t). Xi;K(t) is a truncated approximation of true Xi(t).

The choice of K and λ can be determined using the generalized cross-validation score
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(GCV). If ϕk are not orthonormal or if K is too large, we can do FPCA to reduce the

dimension and obtain orthonormal eigenbasis. Then we can use the basis coefficients xik

in our analysis as with orthonormal basis,
∫
T β1(t)Xi(t)dt = ∑∞

k=1 b1kxik ≈ ∑K
k=1 b1kxik.

Here are the steps.

1. Creation of Functional Data Objects

The desired variables in the dataset are converted to functional data objects by

smoothing the data using a roughness penalty. This requires appropriate selection

of basis expansion and number of basis functions.

2. Application of FPCA on the Functional Data Objects

With emphasis on the importance and helpfulness of dimension reduction, FPCA

is performed. Carrying out FPCA allows for the number of independent variables

to be lessened and might make the overall parameter estimation less complex.

3. Recreate the dataset.

The recreated dataset includes the functional coefficients computed from the first

step, but only the ones that were selected based on FPCA.

4. Use appropriate estimation scheme.

4-1. Frequentist approach.

The AGHQ approximation is the method used for GLMM estimation in

the R function glmer from the lme4 package. It is specified through the

argument nAGQ, which is the number of quadrature points. If that number

is 1, the AGHQ approximation becomes the Laplace integral approximation.

If it is 0, it uses a faster but less exact form of parameter estimation and it
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optimizes the random and fixed effects in the penalized iteratively reweighted

least squares. Any value larger than 1 computes at a higher accuracy but

will take more time. For the random intercept models fitted in Section 4,

nAGQ was set to 1 for the binary response data, and 0 for the count response

data.

4-2. Bayesian approach.

The jags.model and coda.samples are the primary R functions from the

rjags package that allows for the Bayesian approach to GLMM estimation.

It requires the input prior distributions and data to be written in the

(Bayesian inference Using Gibbs Sampling) BUGS-language description.



Chapter 4

Simulation Studies

This section discusses the results of simulating and fitting a GLMM over different

functional settings.

4.1 Random Intercept Model

4.1.1 Simulation Setting

The outline of the GLMM data simulation is given below. We run the simulation

100 times. We have tried our simulation setting for the combinations of sample

size N = 25, 50, 100, 200, the number of repetitions q = 10, 15, 25, and number of

basis generating functional variables nb = 3, 5, 7. Our scalar response Yij will be

with i = 1, . . . , N , and j = 1, . . . , q. Our functional variables X(t) are observed at

tk, k = 1, . . . , K = 100 equally spaced points over domain [0, 1].

1. Determine the Functional Coefficient, β(t).

We create β(t) coefficients of the predictors X(t)’s that would be estimated in the

usual GLMM setting. We generate β(t) as linear combinations of three Fourier

39
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basis functions and their coefficients are taken as β = (1,−1, 1).

2. Generate Functional Predictor Observations (tk, Xik).

We first generate the true X(t) using Fourier basis functions with coefficients

following multivariate normal. We specify the number of basis generating (nb)

functions to be used when generating an N × nb samples from the multivariate

normal distribution. Then we evaluate the functions at each time points tk; k =

1, . . . , K with K = 100 and we add a Gaussian error to this. Therefore, our

observations Xik = Xi(tk) + eik where eik ∼ N(0, 0.12).

3. Generate the Response Yij.

We now generate the response Yij where i = 1, . . . , N , and j = 1, . . . , q. We

first calculate the regression lines for random intercept model gij = β0 + u0,j +∫ 1
0 β1(t)Xi(t)dt. Here, we generate the random intercept u0,j times following

N(0, 22), j = 1, . . . , q. We approximate
∫ 1

0 β1(t)Xi(t) by the trapezoidal rule.

We note that here we use the true functions Xi(t), not the measurements Xik.

Then we generate Yij ∼ Binom

(
1, exp[gij]

1 + exp[gij]

)
for binary response and Yij ∼

Pois(exp(gij)) for count response.

After the generation of data, we get {Yij}, {(tk, Xik)} where i = 1, . . . N , j = 1, . . . q,

and k = 1, . . . , K.

In the beginning of estimation, we turn these observations (tk, Xik) into functional

objects X̂i(t). We used Fourier basis for expansion. The number of basis functions

is determined generalized cross validation (GCV), and penalty term is taken as the

integrated squared second derivative.

Table 4.1 is a snapshot of binary response with settings N = 25, q = 10, and nb = 3.

Since the number of basis given through GCV was also 3, (X1, X2, X3) represent the
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coefficients for linear combinations of those three Fourier basis for X̂i(t). Table 4.1 will

be used as an input for Frequentist or Bayesian estimation.

Table 4.1: Pre-processed Binary Response Data (N = 25, q = 10, nb = 3) For Model
Fitting

Subject Item Y X1 X2 X3
1 1 1 1 1.0177 2.1211 2.3085
2 1 2 1 1.0177 2.1211 2.3085
3 1 3 1 1.0177 2.1211 2.3085
4 1 4 1 1.0177 2.1211 2.3085
5 1 5 1 1.0177 2.1211 2.3085
6 1 6 1 1.0177 2.1211 2.3085
7 1 7 1 1.0177 2.1211 2.3085
8 1 8 1 1.0177 2.1211 2.3085
9 1 9 1 1.0177 2.1211 2.3085
10 1 10 1 1.0177 2.1211 2.3085
11 2 1 1 0.5896 -2.6545 -2.5715
12 2 2 1 0.5896 -2.6545 -2.5715
13 2 3 0 0.5896 -2.6545 -2.5715
14 2 4 1 0.5896 -2.6545 -2.5715
15 2 5 1 0.5896 -2.6545 -2.5715
16 2 6 1 0.5896 -2.6545 -2.5715
17 2 7 1 0.5896 -2.6545 -2.5715
18 2 8 1 0.5896 -2.6545 -2.5715
19 2 9 1 0.5896 -2.6545 -2.5715
20 2 10 1 0.5896 -2.6545 -2.5715
... ... ... ... ... ... ...

241 25 1 0 2.1115 1.0890 -4.0833
242 25 2 0 2.1115 1.0890 -4.0833
243 25 3 0 2.1115 1.0890 -4.0833
244 25 4 1 2.1115 1.0890 -4.0833
245 25 5 0 2.1115 1.0890 -4.0833
246 25 6 1 2.1115 1.0890 -4.0833
247 25 7 0 2.1115 1.0890 -4.0833
248 25 8 1 2.1115 1.0890 -4.0833
249 25 9 0 2.1115 1.0890 -4.0833
250 25 10 0 2.1115 1.0890 -4.0833



42

4.1.2 Binary Response Results

The relevant metrics that describe and summarize the estimates for the Binary

Response Random Intercept Model are shown in Tables 4.2 to 4.8. The Bayesian

approach performed better when estimating the fixed intercept. Both approaches did

good in estimating the functional coefficient. There seems to be opportunities in the

estimation of the random intercept standard deviation for both methods.

Table 4.2: Binary Response Data MSE decreases as q increases for (N = 25, nb = 3)
for both approaches.

MSE Random Intercept Standard Deviation
Frequentist Bayesian

N nb q = 10 q = 15 q = 25 nb q = 10 q = 15 q = 25

25
3 0.3448 0.2263 0.1505 3 0.2682 0.0556 0.0027
5 0.4388 0.2788 0.1203 5 0.6164 0.0014 0.1116
7 0.3773 0.2714 0.1176 7 1.4727 0.0799 0.1232

50
3 0.3017 0.1611 0.1109 3 0.0006 0.0877 0.2128
5 0.2165 0.1843 0.1246 5 0.0048 0.0011 0.0045
7 0.2684 0.1588 0.1056 7 0.0001 0.0229 0.0352

100
3 0.2581 0.1516 0.0828 3 0.0041 0.0005 0.0003
5 0.2027 0.1287 0.0860 5 0.0026 0.0034 0.0023
7 0.2480 0.1636 0.1026 7 0.0045 0.0002 0.0003

200
3 0.2031 0.1689 0.0906 3 0.4257 0.0006 0.0008
5 0.2733 0.1693 0.0946 5 0.0181 0.0106 0.0060
7 0.2166 0.1611 0.1079 7 0.0009 0.0018 0.0003

4.1.3 Count Response Results

The relevant metrics that describe and summarize the estimates for the Count

Response Random Intercept Model are shown in Tables 4.9 to 4.15. Both approaches

appeared to have good estimates for the functional coefficient. The Frequentist approach

seemed to have better estimates for the random intercept standard deviation and fixed

intercept.
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Table 4.3: Binary Response Data Majority of the average random intercept standard
deviations are higher for Bayesian.

Mean Random Intercept Standard Deviation
Frequentist Bayesian

N nb q = 10 q = 15 q = 25 nb q = 10 q = 15 q = 25

25
3 2.4655 1.7311 2.0297 3 2.5178 1.7642 2.0515
5 2.6773 1.9061 2.2929 5 2.7851 1.9625 2.3341
7 3.0181 2.1987 2.2927 7 3.2136 2.2827 2.3510

50
3 1.9750 1.8778 2.2801 3 2.0244 2.2962 1.5387
5 1.2266 1.3140 1.9576 5 2.0692 1.9668 1.9326
7 1.9360 1.9055 1.7225 7 2.0094 2.1512 1.8124

100
3 1.3226 1.9373 1.9197 3 1.9361 1.9785 2.0160
5 1.9011 2.0039 1.9962 5 1.9486 1.9416 1.9525
7 2.1250 2.3310 2.0470 7 1.9326 1.9862 2.0177

200
3 1.2705 1.7301 1.9349 3 1.3476 1.9751 2.0283
5 1.7843 1.7226 1.8998 5 1.8654 1.8968 1.9222
7 1.3504 1.8332 1.6478 7 1.9702 1.9573 1.9828

Table 4.4: Binary Response Data All of the median random intercept standard
deviations for Bayesian are closer to the actual standard deviation of 2, than Frequentist.

Median Random Intercept Standard Deviation
Frequentist Bayesian

N nb q = 10 q = 15 q = 25 nb q = 10 q = 15 q = 25

25
3 2.4375 1.7181 2.0353 3 2.4942 1.7574 2.0505
5 2.6395 1.8963 2.2651 5 2.7208 1.9502 2.3036
7 2.9080 2.1523 2.2752 7 3.1102 2.2336 2.3261

50
3 1.9493 1.8512 2.2605 3 1.9967 2.2848 1.5243
5 1.2049 1.2963 1.9657 5 2.0658 1.9602 1.9039
7 1.9328 1.9035 1.6998 7 1.9771 2.1266 1.7954

100
3 1.3263 1.9346 1.8925 3 1.8912 1.9875 2.0625
5 1.8923 2.0008 1.9909 5 1.9176 1.9096 1.9545
7 2.1240 2.2941 2.0520 7 1.8966 1.9394 1.9923

200
3 1.2732 1.7382 1.9318 3 1.3506 1.9356 2.0014
5 1.7884 1.7211 1.9318 5 1.8473 1.8356 1.9310
7 1.3632 1.8333 1.6458 7 1.8973 1.9591 1.9288

4.1.4 Model Comparison

The relevant metrics that describe and summarize the estimates for the comparison

of the three models, FGLM, GLMM, and GLMM are shown in Tables 4.16 to 4.25. For
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Table 4.5: Binary Response Data At N = 100 & N = 200, the Frequentist
approach performed better for N = 25, 50 while the Bayesian approach did well when
N = 100, 200.

MSE Fixed Intercept
Frequentist Bayesian

N nb q = 10 q = 15 q = 25 nb q = 10 q = 15 q = 25

25
3 0.5778 0.3493 0.2656 3 0.9936 0.0581 0.4523
5 0.6072 0.3697 0.2146 5 0.2200 0.0001 0.0256
7 0.7422 0.4326 0.2315 7 0.0080 0.3268 0.7005

50
3 0.3632 0.2450 0.1221 3 0.0135 0.8679 0.0218
5 0.4076 0.2471 0.1323 5 0.0001 0.0437 0.5595
7 0.6347 0.3585 0.1994 7 0.4758 0.1227 0.2312

100
3 0.4543 0.2918 0.2035 3 0.0034 0.0004 0.0026
5 0.3643 0.2518 0.1521 5 0.0024 0.0000 0.0034
7 0.4445 0.2813 0.1340 7 0.0008 0.0001 0.0000

200
3 0.4000 0.2146 0.1437 3 0.3269 0.0025 0.0021
5 0.3232 0.2362 0.1655 5 0.0006 0.0004 0.0007
7 0.4249 0.3295 0.1430 7 0.0006 0.0079 0.0003

Table 4.6: Binary Response Data At q = 10, most of the average of the fixed
intercepts from Bayesian are close to the actual value of 1.

Mean Fixed Intercept
Frequentist Bayesian

N nb q = 10 q = 15 q = 25 nb q = 10 q = 15 q = 25

25
3 0.0091 1.2020 1.6434 3 0.0032 1.2411 1.6725
5 0.4825 0.9669 1.1298 5 0.5309 1.0078 1.1599
7 0.8366 0.4001 1.7772 7 0.9104 0.4283 1.8370

50
3 0.8620 0.8483 0.3257 3 0.8837 1.9316 0.8525
5 0.1128 0.4767 1.1597 5 0.9928 0.7909 0.2520
7 1.0878 1.2227 1.1280 7 1.6898 1.3503 1.4808

100
3 0.9413 1.0938 1.3269 3 1.0584 0.9811 1.0514
5 2.4728 1.0938 1.3269 5 1.0494 1.0039 1.0584
7 0.7472 0.8731 0.6069 7 1.0287 0.9891 0.9961

200
3 1.5622 0.9954 0.8153 3 1.5717 0.9500 0.9543
5 0.4218 0.0844 0.3984 5 1.0249 1.0200 0.9914
7 2.0119 1.1519 1.1426 7 0.9750 0.9113 0.9833

the count response data, due to the large values that influence MSE, the logarithmic
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Table 4.7: Binary Response Data For N = 100, the medians for the Frequentist
approach decrease as q increases when nb is either 5 or 7.

Median Fixed Intercept
Frequentist Bayesian

N nb q = 10 q = 15 q = 25 nb q = 10 q = 15 q = 25

25
3 0.0044 1.2028 1.6415 3 -0.0034 1.2476 1.6562
5 0.5031 0.9872 1.1164 5 0.5379 1.0177 1.1476
7 0.8251 0.3540 1.7763 7 0.8920 0.3922 1.8450

50
3 0.8703 0.8528 0.3342 3 0.8787 1.9061 0.8485
5 0.1262 0.4692 1.1551 5 0.9929 0.7887 0.2487
7 1.0823 1.2325 1.1312 7 1.6585 1.3457 1.4738

100
3 0.9409 1.0996 1.3305 3 1.0377 0.9100 1.0358
5 2.4803 1.7494 1.6273 5 0.9954 0.9924 1.1113
7 0.7340 0.8789 0.6037 7 0.9758 1.0592 1.0316

200
3 1.5549 0.9999 0.8156 3 1.5726 0.8653 0.9018
5 0.4283 0.0861 0.3996 5 1.0402 1.0050 0.9314
7 2.0200 1.1508 1.1442 7 0.9743 0.9509 1.0353

Table 4.8: Binary Response Data Based on the MSE’s for the functional coefficient
estimates, both approaches seem to work well for N = 50, N = 100, N = 200.

MSE Functional Coefficient, β1(t)
Frequentist Bayesian

N nb q = 10 q = 15 q = 25 nb q = 10 q = 15 q = 25

25
3 0.1052 0.0761 0.0484 3 0.1403 0.0917 0.0652
5 0.2265 0.1225 0.0703 5 0.2578 0.1432 0.0892
7 0.3213 0.1662 0.0987 7 0.5730 0.2250 0.1275

50
3 0.0471 0.0279 0.0153 3 0.0498 0.0377 0.0171
5 0.0729 0.0373 0.0264 5 0.0766 0.0451 0.0262
7 0.1032 0.0650 0.0356 7 0.1418 0.0713 0.0371

100
3 0.0224 0.0148 0.0092 3 0.0244 0.0155 0.0097
5 0.0320 0.0184 0.0122 5 0.0355 0.0195 0.0129
7 0.0378 0.0265 0.0159 7 0.0416 0.0284 0.0168

200
3 0.0103 0.0065 0.0043 3 0.0118 0.0067 0.0044
5 0.0158 0.0092 0.0053 5 0.0166 0.0094 0.0053
7 0.0188 0.0130 0.0081 7 0.0195 0.0133 0.0083

score given by the formula below

Logarithmic Score = − log
(
PY

(
Y = Yij | λ = Ŷij

))
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Table 4.9: Count Response Data Based on the MSE’s, the Frequentist approach
performed better in estimating the random intercept standard deviation.

MSE Random Intercept Standard Deviation
Frequentist Bayesian

N nb q = 10 q = 15 q = 25 nb q = 10 q = 15 q = 25

25
3 0.2139 0.1318 0.0902 3 0.4298 0.1434 1.0406
5 0.1962 0.1134 0.0735 5 1.3161 0.6396 0.4405
7 0.2752 0.1532 0.0759 7 1.0432 0.0168 0.5162

50
3 0.2358 0.1487 0.0859 3 0.8461 0.5609 0.6357
5 0.1606 0.1274 0.0981 5 0.4975 0.1989 0.1940
7 0.2292 0.1394 0.0783 7 0.4242 0.2885 0.6813

100
3 0.2021 0.1435 0.0717 3 0.8494 0.7093 1.2520
5 0.1739 0.1185 0.0813 5 1.3664 0.1155 0.5092
7 0.2304 0.1487 0.0827 7 0.6921 1.0550 0.3314

200
3 0.1874 0.1461 0.0778 3 1.0205 0.9232 1.2728
5 0.2450 0.1555 0.0964 5 0.8928 1.0328 1.0019
7 0.2021 0.1404 0.0944 7 0.8894 0.9734 1.1339

Table 4.10: Count Response Data Aside from when nb = 3 and q = 10 the mean
values of the estimated random intercept standard deviation using the Frequentist
approach are very close to the actual value of 2, for N = 100.

Mean Random Intercept Standard Deviation
Frequentist Bayesian

N nb q = 10 q = 15 q = 25 nb q = 10 q = 15 q = 25

25
3 2.3429 1.7065 2.0256 3 2.6555 2.3787 3.0201
5 1.9975 2.0678 1.7995 5 3.1472 2.7997 2.6637
7 1.7095 1.6829 2.1980 7 3.0214 2.1297 2.7185

50
3 1.9129 1.8677 2.2670 3 2.9198 2.7489 2.7973
5 1.2147 1.2837 1.9329 5 2.7053 2.4460 2.4405
7 1.8604 1.8328 1.6870 7 2.6513 2.5371 2.8254

100
3 1.3254 1.9685 1.9229 3 2.9216 2.8422 3.1189
5 1.8738 1.9955 1.9726 5 3.1689 2.3399 2.7136
7 2.0925 2.2751 2.0480 7 2.8319 3.0271 2.5757

200
3 1.2632 1.7167 1.9192 3 3.0102 2.9609 3.1282
5 1.7774 1.7293 1.8855 5 2.9449 3.0162 3.0010
7 1.3254 1.8275 1.6386 7 2.9431 2.9866 3.0648

was instead used as a metric to compare the prediction performance of the three models.

Whereas for the binary response data, the accuracy was calculated as the proportion

of 1’s upon assigning 1 for when the predicted pij ≥ 0.5 and 0 otherwise.
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Table 4.11: Count Response Data Except for when N = 25, q = 15, and nb = 7, the
median values of the estimated random intercept standard deviation by the Bayesian
approach are way above the actual value of 2.

Median Random Intercept Standard Deviation
Frequentist Bayesian

N nb q = 10 q = 15 q = 25 nb q = 10 q = 15 q = 25

25
3 2.3407 1.7034 2.0253 3 2.4329 2.0083 2.8103
5 1.9939 2.0676 1.7976 5 2.8450 2.5524 2.5276
7 1.7070 1.6757 2.1963 7 2.8914 1.8649 2.5276

50
3 1.9113 1.8689 2.2642 3 2.7188 2.5415 2.6945
5 1.2159 1.2856 1.9332 5 2.4846 2.3075 2.2092
7 1.8607 1.8333 1.6876 7 2.4378 2.3022 2.7378

100
3 1.3243 1.9665 1.9236 3 2.8635 2.7167 3.0099
5 1.8741 1.9955 1.9724 5 2.9752 2.1399 2.5583
7 2.0919 2.2750 2.0479 7 2.6281 2.8339 2.4258

200
3 1.2628 1.7168 1.9186 3 2.7710 2.7774 2.9421
5 1.7768 1.7294 1.8854 5 2.6712 2.8737 2.7725
7 1.3253 1.8275 1.6381 7 2.7358 2.7059 2.8498

Table 4.12: Count Response Data The Frequentist approach clearly performed
better in estimating the fixed intercept.

MSE Fixed Intercept
Frequentist Bayesian

N nb q = 10 q = 15 q = 25 nb q = 10 q = 15 q = 25

25
3 0.5330 0.3255 0.2099 3 3.4073 2.6885 3.0421
5 0.4233 0.2743 0.1897 5 2.9118 1.5879 3.7211
7 0.5238 0.3395 0.1571 7 4.2994 2.3088 1.6623

50
3 0.3408 0.2317 0.1147 3 5.3675 7.4139 3.5561
5 0.3249 0.2308 0.1245 5 0.5673 6.9103 0.6145
7 0.5091 0.3054 0.1662 7 6.0907 4.0310 4.6020

100
3 0.4380 0.2884 0.1956 3 7.1555 2.2410 5.2155
5 0.3245 0.2494 0.1324 5 0.8140 3.7209 0.9523
7 0.3970 0.2671 0.1296 7 0.2207 3.9783 2.4589

200
3 0.3886 0.2273 0.1380 3 4.5950 4.1096 4.9630
5 0.3167 0.2309 0.1605 5 4.1742 4.8064 4.3998
7 0.4135 0.3170 0.1351 7 3.2567 3.7199 4.3455
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Table 4.13: Count Response Data For the Frequentist approach, the combination
of N = 50 and nb = 7 appear to have the mean estimated fixed intercepts be close to
actual value of 1.

Mean Fixed Intercept
Frequentist Bayesian

N nb q = 10 q = 15 q = 25 nb q = 10 q = 15 q = 25

25
3 0.0106 0.7312 1.4093 3 -0.8459 -0.6397 -0.7442
5 1.6969 1.5060 0.9732 5 -0.7064 -0.2601 -0.9290
7 1.4418 0.4727 0.9722 7 -1.0735 -0.5195 -0.2893

50
3 0.8486 0.8417 0.3182 3 -1.3168 -1.7228 -0.8858
5 0.0966 0.4501 1.1592 5 0.2468 -1.6287 0.2161
7 1.0742 1.1877 1.1002 7 -1.4679 -1.0077 -1.1452

100
3 0.9548 1.0905 1.3233 3 -1.6750 -0.4970 -1.2838
5 2.4387 1.7489 1.6140 5 0.0978 -0.9290 0.0241
7 0.7294 0.8507 0.6119 7 1.4698 -0.9948 -0.5681

200
3 1.5521 0.9892 0.8025 3 -1.1436 -1.0272 -1.2278
5 0.4237 0.0837 0.3938 5 -1.0431 -1.1923 -1.0976
7 1.9947 1.1404 1.1413 7 -0.8046 -0.9287 -1.0846

Table 4.14: Count Response Data Majority of the median of the estimated fixed
intercepts when q = 25 are quite near the actual value of 1, under the Frequentist
approach.

Median Fixed Intercept
Frequentist Bayesian

N nb q = 10 q = 15 q = 25 nb q = 10 q = 15 q = 25

25
3 0.0073 0.7291 1.4108 3 -0.6856 -0.3454 -0.6078
5 1.6968 1.5048 0.9739 5 -0.4844 -0.0896 -0.9071
7 1.4450 0.4755 0.9704 7 -1.0331 -0.2886 -0.2585

50
3 0.8483 0.8423 0.3183 3 -1.2292 -1.6143 -0.8807
5 0.1003 0.4526 1.1612 5 0.2344 -1.6465 0.2693
7 1.0722 1.1874 1.1097 7 -1.3399 -0.8822 -1.1724

100
3 0.9534 1.0891 1.3246 3 -1.6969 -0.5260 -1.2472
5 2.4372 1.7501 1.6132 5 0.1298 -0.7982 -0.0635
7 0.7296 0.8501 0.6112 7 1.6402 -0.9383 -0.5971

200
3 1.5519 0.9875 0.8020 3 -1.1173 -1.0750 -1.1815
5 0.4233 0.0830 0.3948 5 -0.9360 -1.1444 -1.0655
7 1.9951 1.1404 1.1423 7 -0.9977 -0.7274 -1.0326
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Table 4.15: Count Response Data Both approaches performed well in estimating
the functional coefficient.

MSE Functional Coefficient, β1(t)
Frequentist Bayesian

N nb q = 10 q = 15 q = 25 nb q = 10 q = 15 q = 25

25
3 0.0004 0.0002 0.0002 3 0.0018 0.0003 0.0052
5 0.0006 0.0004 0.0003 5 0.0047 0.0012 0.0247
7 0.0015 0.0011 0.0005 7 0.0067 0.0278 0.0262

50
3 0.0002 0.0001 0.0001 3 0.0048 0.0002 0.0004
5 0.0002 0.0002 0.0001 5 0.0002 0.0003 0.0058
7 0.0003 0.0002 0.0002 7 0.0008 0.0032 0.0062

100
3 0.0001 0.0001 0.0001 3 0.0001 0.0001 0.0001
5 0.0001 0.0001 0.0001 5 0.0001 0.0001 0.0001
7 0.0001 0.0001 0.0001 7 0.0005 0.0001 0.0001

200
3 0.0000 0.0000 0.0000 3 0.0000 0.0000 0.0000
5 0.0001 0.0001 0.0001 5 0.0001 0.0001 0.0001
7 0.0001 0.0001 0.0001 7 0.0001 0.0001 0.0001
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Table 4.16: Count Response Data The assumed underlying distribution is poisson,
so the logarithmic score takes the negative log of the assigned probability using the
poisson pmf to an observed response given that the mean is the estimated response. It
means that that the closer the estimate is to the actual value, the higher the probability,
and the lower the logarithmic score. In any case, FGLMM performed best.

Log Score Predicted Y (Ŷ )
Frequentist, 1000 Simulations

N nb Model q = 10 q = 15 q = 25

25

3
FGLM 2729.5229 2857.2455 2769.7430
GLMM 2448.4714 2171.1622 2112.2923

FGLMM 2.0273 2.0378 2.0383

5
FGLM 1607.5917 1701.5307 2686.0154
GLMM 1490.2607 1664.1315 1930.9377

FGLMM 2.0251 2.0339 2.0375

7
FGLM 2356.8517 2556.1595 2519.4851
GLMM 2307.2538 2211.2136 2072.2850

FGLMM 2.0072 2.0189 2.0170

50

3
FGLM 1881.8495 2140.5976 2554.0509
GLMM 2037.3829 2233.3366 2263.0955

FGLMM 2.0541 2.0586 2.0640

5
FGLM 2662.7187 2766.0124 3091.1086
GLMM 2791.5692 2436.6150 2308.2403

FGLMM 2.0468 2.0410 2.0401

7
FGLM 1512.7567 2530.9869 2680.9133
GLMM 2028.6597 2400.8565 2493.0049

FGLMM 2.0360 2.0367 2.0439

100

3
FGLM 1928.3181 2103.1492 2485.6178
GLMM 2707.5405 2701.2378 2822.2093

FGLMM 2.0886 2.0888 2.0969

5
FGLM 3919.7225 3726.5886 3527.0234
GLMM 2715.6362 2807.7284 2867.8125

FGLMM 2.0728 2.0702 2.0798

7
FGLM 3843.9564 3637.3017 3388.4254
GLMM 4642.6298 4043.1137 3476.9340

FGLMM 2.0591 2.0599 2.0574

200

3
FGLM 2526.6866 2631.5458 2878.5550
GLMM 3702.5964 3531.1081 3444.3256

FGLMM 2.1221 2.1237 2.1180

5
FGLM 3318.2945 3499.2631 3466.5280
GLMM 3298.2110 3580.4438 3549.6687

FGLMM 2.0776 2.0892 2.0993

7
FGLM 3311.0659 3352.1753 3131.6957
GLMM 3622.5830 3569.8599 3389.6367

FGLMM 2.1005 2.0908 2.0976
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Table 4.17: Binary Response Data FGLMM appears to be the best model among
the three for the binary response data, since accuracy values calculated for it are at
minimum around 0.86 and the best accuracy for either FGLM or GLMM is about 0.79.

Accuracy Predicted Y (Ŷ )
Frequentist, 1000 Simulations

N nb Model q = 10 q = 15 q = 25

25

3
FGLM 0.7857 0.7835 0.7810
GLMM 0.7572 0.7583 0.7582

FGLMM 0.8757 0.8750 0.8744

5
FGLM 0.7895 0.7856 0.7828
GLMM 0.7564 0.7564 0.7574

FGLMM 0.8780 0.8758 0.8746

7
FGLM 0.7911 0.7854 0.7831
GLMM 0.7555 0.7577 0.7562

FGLMM 0.8799 0.8776 0.8762

50

3
FGLM 0.7880 0.7837 0.7815
GLMM 0.7485 0.7492 0.7494

FGLMM 0.8703 0.8695 0.8694

5
FGLM 0.7894 0.7851 0.7822
GLMM 0.7486 0.7480 0.7480

FGLMM 0.8717 0.8701 0.8697

7
FGLM 0.7901 0.7862 0.7830
GLMM 0.7498 0.7492 0.7494

FGLMM 0.8728 0.8718 0.8709

100

3
FGLM 0.7860 0.7823 0.7802
GLMM 0.7448 0.7457 0.7463

FGLMM 0.8663 0.8671 0.8665

5
FGLM 0.7857 0.7821 0.7811
GLMM 0.7454 0.7454 0.7465

FGLMM 0.8673 0.8665 0.8668

7
FGLM 0.7860 0.7827 0.7798
GLMM 0.7446 0.7451 0.7455

FGLMM 0.8679 0.8669 0.8667

200

3
FGLM 0.7861 0.7834 0.7807
GLMM 0.7438 0.7443 0.7436

FGLMM 0.8651 0.8653 0.8646

5
FGLM 0.7866 0.7842 0.7813
GLMM 0.7418 0.7426 0.7432

FGLMM 0.8648 0.8646 0.8646

7
FGLM 0.7860 0.7833 0.7803
GLMM 0.7441 0.7438 0.7447

FGLMM 0.8654 0.8652 0.8655
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Table 4.18: Count Response Data Here, FGLMM is still the clear winner among
the three models since its MSE values across the board are well lower than that of the
other two models and these values are all even smaller than 1. It is also observed that
it gets better with the increasng values of q.

Mean Fixed Intercept (Actual: β0 = 1)
(MSE) Frequentist, 1000 Simulations
N nb Model q = 10 q = 15 q = 25

25

3

FGLM 2.4763 2.6259 2.7101
(3.1180) (3.3406) (3.3993)

GLMM 3.1979 3.2164 3.2164
(8.0662) (7.9731) (7.9344)

FGLMM 0.9822 1.0004 1.0014
(0.4409) (0.2873) (0.1776)

5

FGLM 2.4733 2.5878 2.7017
(3.0537) (3.1776) (3.4054)

GLMM 3.2365 3.2468 3.2502
(8.1070) (8.0626) (8.0357)

FGLMM 1.0165 1.0265 1.0301
(0.3993) (0.2755) (0.1746)

7

FGLM 2.4341 2.5789 2.6877
(2.9113) (3.1527) (3.3496)

GLMM 3.2080 3.2227 3.2084
(8.2564) (8.1857) (7.9923)

FGLMM 0.9887 1.0055 0.9913
(0.3944) (0.2597) (0.1586)

50

3

FGLM 2.4523 2.5785 2.7120
(2.9333) (3.1550) (3.4165)

GLMM 3.3312 3.3394 3.3416
(11.1046) (11.1169) (10.8174)

FGLMM 0.9822 0.9907 0.9924
(0.4051) (0.2664) (0.1397)

5

FGLM 2.4543 2.5409 2.6555
(3.0108) (3.0317) (3.1862)

GLMM 3.3518 3.3382 3.3314
(11.9179) (11.7692) (11.5712)

FGLMM 1.0076 0.9940 0.9872
(0.4181) (0.2745) (0.1561)

7

FGLM 2.4503 2.5728 2.7079
(2.9900) (3.2083) (3.4627)

GLMM 3.3437 3.3347 3.3459
(12.1834) (12.0274) (12.0883)

FGLMM 1.0021 0.9939 1.0060
(0.4176) (0.2760) (0.1713)
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Table 4.19: Count Response Data Upon observation, the pattern continues for
FGLMM, the MSE decreases with increasing q.

Mean Fixed Intercept (Actual: β0 = 1)
(MSE) Frequentist, 1000 Simulations
N nb Model q = 10 q = 15 q = 25

100

3

FGLM 2.4958 2.6141 2.7430
(3.1053) (3.2994) (3.5366)

GLMM 3.6946 3.6878 3.7000
(8.8768) (8.7193) (8.6912)

FGLMM 1.0069 1.0003 1.0120
(0.3705) (0.2530) (0.1536)

5

FGLM 2.4833 2.6041 2.7232
(3.0574) (3.2247) (3.4595)

GLMM 3.6933 3.6849 3.7036
(8.9080) (8.7346) (8.7763)

FGLMM 1.0054 0.9968 1.0155
(0.3789) (0.2520) (0.1596)

7

FGLM 2.5190 2.6451 2.7385
(3.2831) (3.4636) (3.5533)

GLMM 3.6789 3.6829 3.67772
(8.9313) (8.7734) (8.6053)

FGLMM 0.9879 0.9921 0.9862
(0.4022) (0.2724) (0.1601)

200

3

FGLM 2.4610 2.5949 2.6919
(3.0085) (3.1788) (3.3234)

GLMM 3.7559 3.7653 3.7528
(10.6122) (10.5246) (10.3156)

FGLMM 0.9975 1.0071 0.9946
(0.4038) (0.2654) (0.1547)

5

FGLM 2.3890 2.5170 2.6451
(2.7347) (2.9141) (3.1758)

GLMM 3.7254 3.7434 3.7524
(10.4892) (10.4911) (10.3944)

FGLMM 0.9621 0.9805 0.9895
(0.3804) (0.2566) (0.1639)

7

FGLM 2.4873 2.5794 2.7141
(3.0934) (3.1924) (3.3992)

GLMM 3.7728 3.7546 3.7706
(10.9242) (10.7252) (10.7452)

FGLMM 1.0114 0.9934 1.0092
(0.3970) (0.2711) (0.1565)
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Table 4.20: Count Response Data The two models that have a random intercept
are only GLMM and FGLMM and it appears here that both models performed just as
good as each other and have relatively very low MSE values.

Mean Random Intercept SD (Actual: SD(u0) = 2)
(MSE) Frequentist, 1000 Simulations
N nb Model q = 10 q = 15 q = 25

25

3
GLMM 1.8643 1.9208 1.9460

(0.2195) (0.1422) (0.0766)

FGLMM 1.8646 1.9211 1.9462
(0.2198) (0.1424) (0.0766)

5
GLMM 1.8355 1.8861 1.9225

(0.2202) (0.1456) (0.0896)

FGLMM 1.8357 1.8863 1.9228
(0.2204) (0.1457) (0.0898)

7
GLMM 1.8384 1.8977 1.9390

(0.2222) (0.1432) (0.0887)

FGLMM 1.8387 1.8980 1.9393
(0.2226) (0.1434) (0.0888)

50

3
GLMM 1.8440 1.9019 1.9493

(0.2109) (0.1521) (0.0859)

FGLMM 1.8441 1.9020 19495
(0.2110) (0.1521) (0.0861)

5
GLMM 1.8284 1.8775 1.9262

(0.2367) (0.1616) (0.0866)

FGLMM 1.8286 1.8776 1.9264
(0.2368) (0.1617) (0.0867)

7
GLMM 1.8452 1.9022 1.9454

(0.2284) (0.1499) (0.0861)

FGLMM 1.8452 1.9023 1.9455
(0.2284) (0.1500) (0.0861)
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Table 4.21: Count Response Data Even with increased N , the two models GLMM
and FGLMM performed just as good as each other.

Mean Random Intercept SD (Actual: SD(u0) = 2)
(MSE) Frequentist, 1000 Simulations
N nb Model q = 10 q = 15 q = 25

100

3
GLMM 1.8516 1.9135 1.9591

(0.2155) (0.1453) (0.0793)

FGLMM 1.8517 1.9136 1.9592
(0.2157) (0.1454) (0.0794)

5
GLMM 1.8582 1.9121 1.9457

(0.2092) (0.1330) (0.0840)

FGLMM 1.8583 1.9122 1.9458
(0.2092) (0.1331) (0.0840)

7
GLMM 1.8619 1.9176 1.9580

(0.2395) (0.1526) (0.0826)

FGLMM 1.8620 1.9177 1.9581
(0.2397) (0.1597) (0.0827)

200

3
GLMM 1.8428 1.8978 1.9360

(0.2205) (0.1414) (0.0830)

FGLMM 1.8428 1.8978 1.9360
(0.2205) (0.1414) (0.0830)

5
GLMM 1.8205 1.8719 1.9215

(0.2178) (0.1397) (0.0852)

FGLMM 1.8205 1.8719 1.9215
(0.2178) (0.1397) (0.0852)

7
GLMM 1.8491 1.9017 1.9517

(0.2170) (0.1396) (0.0813)

FGLMM 1.8491 1.9017 1.9517
(0.2170) (0.1397) (0.0813)
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Table 4.22: Binary Response Data On the contrary, FGLMM performs better on
the estimated random intercept for this type of data. The MSE values also appear to
improve with increasing combinations of N and q.

Mean Random Intercept SD (Actual: SD(u0) = 2)
(MSE) Frequentist, 1000 Simulations
N nb Model q = 10 q = 15 q = 25

25

3
GLMM 1.0307 1.0594 1.0773

(1.0727) (0.9849) (0.9120)

FGLMM 1.9282 1.9598 1.9694
(0.3602) (0.2469) (0.1285)

5
GLMM 1.0136 1.0366 1.0571

(1.1075) (1.0228) (0.9515)

FGLMM 1.9363 1.9430 1.9526
(0.3908) (0.2571) (0.1449)

7
GLMM 1.0053 1.0470 1.0627

(1.1264) (1.0023) (0.9422)

FGLMM 1.9633 1.9842 1.9791
(0.4056) (0.2388) (0.1445)

50

3
GLMM 1.0239 1.0583 1.0889

(1.0487) (0.9568) (0.8761)

FGLMM 1.8720 1.9164 1.9632
(0.2765) (0.1870) (0.1130)

5
GLMM 1.0202 1.0491 1.0769

(1.0661) (0.9755) (0.8974)

FGLMM 1.8833 1.9203 1.9512
(0.3137) (0.2019) (0.1100)

7
GLMM 1.0266 1.0573 1.0849

(1.0472) (0.9538) (0.8829)

FGLMM 1.9028 1.9385 1.9722
(0.2893) (0.1855) (0.1121)
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Table 4.23: Binary Response Data The pattern continues with increased N , but
this time the observed MSEs for N = 100, 200 are relatively smaller than that for when
N = 25, 50.

Mean Random Intercept SD (Actual: SD(u0) = 2)
(MSE) Frequentist, 1000 Simulations
N nb Model q = 10 q = 15 q = 25

100

3
GLMM 1.0414 1.0778 1.1027

(0.9998) (0.9053) (0.8386)

FGLMM 1.8597 1.9268 1.9643
(0.2440) (0.1588) (0.0897)

5
GLMM 1.0450 1.0780 1.0968

(0.9905) (0.9012) (0.8511)

FGLMM 1.8751 1.9231 1.9543
(0.2371) (0.1474) (0.0958)

7
GLMM 1.0480 1.0801 1.1040

(0.9965) (0.9066) (0.8388)

FGLMM 1.8898 1.9336 1.9709
(0.2721) (0.1757) (0.0955)

200

3
GLMM 1.0423 1.0742 1.0948

(0.9940) (0.9081) (0.8498)

FGLMM 1.8481 1.9030 1.9382
(0.2391) (0.1519) (0.0871)

5
GLMM 1.0279 1.0573 1.0868

(1.0157) (0.9353) (0.8638)

FGLMM 1.8309 1.8777 1.9259
(0.2282) (0.1455) (0.0871)

7
GLMM 1.0445 1.0748 1.1053

(0.9859) (0.9048) (0.8311)

FGLMM 1.8567 1.9107 1.9576
(0.2308) (0.1463) (0.0858)
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Table 4.24: Count Response Data The functional treatment on the coefficient
appears to be better than the conventional scalar, with MSE values of both the FGLM
and FGLMM being all very close to 0.

MSE Coefficient (β1: Scalar, β1(t): Functional)
Frequentist, 1000 Simulations

N nb Model q = 10 q = 15 q = 25

25

3
FGLM 0.0003 0.0003 0.0002
GLMM 2.5455 2.5444 2.5452

FGLMM 0.0003 0.0003 0.0002

5
FGLM 0.0007 0.0005 0.0003
GLMM 2.5314 2.5312 2.5306

FGLMM 0.0007 0.0005 0.0003

7
FGLM 0.0015 0.0008 0.0006
GLMM 2.5451 2.5454 2.5453

FGLMM 0.0015 0.0008 0.0006

50

3
FGLM 0.0002 0.0001 0.0001
GLMM 2.6620 2.6720 2.6661

FGLMM 0.0002 0.0001 0.0001

5
FGLM 0.0002 0.0002 0.0001
GLMM 2.7377 2.7423 2.7430

FGLMM 0.0002 0.0002 0.0001

7
FGLM 0.0003 0.0002 0.0002
GLMM 2.7830 2.7859 2.7909

FGLMM 0.0003 0.0002 0.0002

100

3
FGLM 0.0001 0.0001 0.0001
GLMM 2.2224 2.2224 2.2224

FGLMM 0.0001 0.0001 0.0001

5
FGLM 0.0001 0.0001 0.0001
GLMM 2.2215 2.2214 2.2214

FGLMM 0.0001 0.0001 0.0001

7
FGLM 0.0001 0.0001 0.0001
GLMM 2.2189 2.2189 2.2189

FGLMM 0.0001 0.0001 0.0001

200

3
FGLM 0.0001 0.0001 0.0001
GLMM 2.3175 2.3178 2.3175

FGLMM 0.0001 0.0001 0.0001

5
FGLM 0.0001 0.0001 0.0001
GLMM 2.3181 2.3182 2.3181

FGLMM 0.0001 0.0001 0.0001

7
FGLM 0.0001 0.0001 0.0001
GLMM 2.3394 2.3400 2.3397

FGLMM 0.0001 0.0001 0.0001
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Table 4.25: Binary Response Data The MSE values for GLMM appear to be
relatively at the same level as with the count data. Still, the functional coefficients
appear to be the better choice over scalar.

MSE Coefficient (β1: Scalar, β1(t): Functional)
Frequentist, 1000 Simulations

N nb Model q = 10 q = 15 q = 25

25

3
FGLM 0.3655 0.3680 0.3721
GLMM 2.2080 2.2063 2.2061

FGLMM 0.1195 0.0782 0.0448

5
FGLM 0.3647 0.3633 0.3609
GLMM 2.2062 2.2063 2.2062

FGLMM 0.2008 0.1169 0.0675

7
FGLM 0.3831 0.3827 0.3682
GLMM 2.2113 2.2079 2.2032

FGLMM 0.3088 0.1766 0.0990

50

3
FGLM 0.3433 0.3637 0.3723
GLMM 2.1980 2.1986 2.1938

FGLMM 0.0521 0.0316 0.0184

5
FGLM 0.3417 0.3490 0.3631
GLMM 2.1970 2.1967 2.1958

FGLMM 0.0733 0.0466 0.0265

7
FGLM 0.3539 0.3597 0.3679
GLMM 2.1981 2.1957 2.1958

FGLMM 0.1006 0.0624 0.0361

100

3
FGLM 0.3468 0.3600 0.3730
GLMM 2.1921 2.1908 2.1892

FGLMM 0.0220 0.0155 0.0088

5
FGLM 0.3482 0.3662 0.3698
GLMM 2.1912 2.1908 2.1898

FGLMM 0.0312 0.0195 0.0116

7
FGLM 0.3483 0.3629 0.3743
GLMM 2.1928 2.1917 2.1918

FGLMM 0.0394 0.0255 0.0151

200

3
FGLM 0.3419 0.3546 0.3636
GLMM 2.1888 2.1870 2.1881

FGLMM 0.0110 0.0072 0.0040

5
FGLM 0.3314 0.3440 0.3610
GLMM 2.1882 2.1877 2.1893

FGLMM 0.0149 0.0094 0.0057

7
FGLM 0.3461 0.3553 0.3728
GLMM 2.1889 2.1875 2.1878

FGLMM 0.0184 0.0122 0.0074



Chapter 5

Real Data Analysis

5.1 Data Description

Electroencephalogram (EEG) signal data (Wang et al., 2013) were collected from 10

college students as they watched Massive Open Online Courses (MOOC). Videos came

in two categories – those assumed to be not confusing and those that are expected to

be confusing for college students. Videos assumed to be not confusing included topics

from basic algebra or geometry; whereas the ones that are expected to be confusing

talked about Quantum Mechanics or Stem Cell Research. Each video had a 2-minute

duration and they were taken in the middle of the discussion, to add confusion. Ten

videos were prepared for each category. Students wore an apparatus called MindSet,

which measured frontal lobe activity. After every session, the student rated his/her

confusion level based on a scale of 1 to 7, with one being least confusing and seven

being most confusing. These ratings are normalized and tagged as either confusing or

not confusing and recorded as self-labelled confusion. This is on top of the study’s

predefined label of confusion.

The EEG dataset contains 12811 observations taken from 10 students. It also has

60



61

Table 5.1: EEG Dataset Variables
SubjectID Student ID
VideoID Video ID
Attention Proprietary measure of mental focus

Meditation Proprietary measure of calmness
Raw Raw EEG signal
Delta 1-3 Hz of power spectrum
Theta 4-7 Hz of power spectrum

Alpha 1 Lower 8-11 Hz of power spectrum
Alpha 2 Higher 8-11 Hz of power spectrum
Beta 1 Lower 12-29 Hz of power spectrum
Beta 2 Higher 12-29 Hz of power spectrum

Gamma 1 Lower 30-100 Hz of power spectrum
Gamma 2 Higher 30-100 Hz of power spectrum

Predefined Label Predefined label of confusion
User-defined Label User-defined label of confusion

15 variables.

5.2 Analysis Results

Upon inspection of the dataset, it was found that there were varying number of

observations per subject, per video. There were 10 subjects and 10 videos. A snapshot

of the responses of and observations on subject 0 are summarized in Table 5.2. It

shows there that subject 0 was not confused with videos 0, 3, 4, 7, and 9. There were

144 observations on video 0 for subject 0, which means that 144 measurements were

recorded from him by the MindSet apparatus (i.e. 144 observations of each: Attention,

Meditation, Raw, Delta, Theta, Alpha 1, Alpha 2, Beta 1, Beta 2, Gamma 1, and

Gamma 2). The predefined label is assigned 1 for confusing and 0 for not confusing.

These values were predetermined, as the study was designed. The user-defined label is

the normalized (or categorized) value related to how the subject rated the video on

how confusing it is.
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Table 5.2: Subject 0, Count of Observations
VideoID Predefined Label User-defined Label Number of Observations

0 0 0 144
1 0 1 140
2 0 1 142
3 0 0 122
4 0 0 116
5 1 1 123
6 1 1 116
7 1 0 112
8 1 1 124
9 1 0 122

The succeeding step in the analysis requires that the observations be made into

functional data objects. The desired output here are curves, which are represented

through the use of an appropriate basis expansion procedure. The ideal choice here

was a B-spline basis expansion because the functions are not perceived to be periodic.

The Beta 1 signal was the selected variable because Beta rhythms were associated

with focused attention (Kropotov, 2009). Functions like coordination among multiple

representations in the cortex; inhibition of movement and motor planning; preservation

of the status quo; and signaling of decision making.

After having decided which basis expansion procedure would be used, the data

smoothing process presented a minor challenge in the creation of the functional data

objects since it was illustrated previously that there are varying number of observations

per subject, per video. This meant that the respective argument values to the observa-

tions will naturally vary. The situation was remedied by choosing a common domain

of [0, 1] for all curves, but with different lengths based on the number of observations

per subject, per video. For reference, Figure 5.1 is a plot of the functional data object

created for subject 0 at video 0.

Thereafter, Functional Principal Component Analysis (FPCA) was performed
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Figure 5.1: Subject 0 was not confused with Video 0. Since the total time of a video
is 2 minutes or 120 seconds, the time domain of 0.2 could be interpreted as the 24th

second of the video and 0.4 is the 48th. With the value of the function being at a high
level in that interval, it means that the Beta 1 signals are also high, indicating a high
focused attention from the subject.
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Table 5.3: The estimated fixed intercept and random intercept standard deviation
values are higher for the Bayesian approach.

Parameter Frequentist Bayesian
Fixed Intercept 0.0487 0.0648

Random Intercept SD 0.3790 0.6590

on the created functional data objects. The chosen number of basis functions in

the creation of the functional data objects was 15. It follows that there were 15

functions that underwent the FPCA. The resulting total variation for the first four

eigencomponents was 80% and it was 90% for the first seven eigencomponents. The

first four eigencomponents were selected, with centered coefficients.

A portion of the reconstructed data for the GLMM fitting is shown in Table 5.4.

Both the Frequentist and Bayesian approaches were used to fit a random intercept

model to the data. It is represented as

g[E(Yij)] = β0 + u0j + b11X1 + b12X2 + b13X3 + b14X4.

The response variable here is whether the subject was confused or not, so the link

function g(·) is logit. Both Frequentist and Bayesian approaches to estimation were

explored in the GLMM fitting. The important estimates that can be quickly compared

are those for the fixed intercept and random intercept standard deviation, which are

summarized in Table 5.3

Finally, these estimates were used to create functional coefficients data, which were

centered and plotted. With the goal of fitting an FGLMM, the comparison of the

estimates for the GLMM coefficients were best illustrated by plotting the functional

coefficients data, as seen in Figure 5.3.

We show the plots of selected Xij(t)β(t) for the i-th subject and j-th video in Figure

5.4 to 5.6, and give the value of
∫
Xij(t)β(t)dt.
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Table 5.4: The coefficients calculated for the first four principal components are merged
with the Subject ID, Video ID, and Confused indicator (based on the user-defined
label).
Subject ID VideoID X1 X2 X3 X4 Confused

0 0 -846.25929 1008.8372 6320.5328 4238.446 0
0 1 -946.48103 217.9511 -1187.2162 -1591.009 1
0 2 -84.30612 -1886.6392 5262.4712 8388.714 1
0 3 2120.19043 -703.5000 -178.2416 4223.297 0
0 4 1838.20018 1787.8160 1112.8336 2482.846 0
0 5 -4041.64312 -6126.0397 -2940.4154 -4274.564 1

Figure 5.2: The functional coefficients plots for both approaches appear to be similar.
The curves being alike indicates that the estimates from either approach are close with
each other.
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Figure 5.3: The Mean Plot suggests that on average, subjects tend to be more focused
at the onset of watching the video, which happens within the first 30 seconds.

The accuracy of the predicted probability of getting confused or not per subject

across the ten videos they watched has been summarized in Table 5.5. The predicted

probability of confusion is assigned 1 when its estimated value is at least 0.5 and 0

otherwise. The calculated accuracy for each subject here is the combined number of

assigned 1’s and 0’s that correctly matched the observed 1’s and 0’s in the User-defined

label divided by 10 videos.
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Figure 5.4: Subject 0 was not confused upon watching video 0. The calculated value of∫
X00(t)β(t)dt is −36.55859. Recall that the inverse logit takes exp(gij)

1+exp(gij) ; as a result, if
we put −36.55859 in there, the value would be essentially zero, which means that the
prediction is that subject 0 would not be confused when watching video 0.
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Figure 5.5: Subject 9 was not confused upon watching video 6. The calculated value of∫
X96(t)β(t)dt is −348.1599. Recall that the inverse logit takes exp(gij)

1+exp(gij) ; as a result, if
we put −348.1599 in there, the value would be essentially zero, which means that the
prediction is that subject 9 would not be confused when watching video 6.
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Figure 5.6: Subject 8 was confused upon watching video 4. The calculated value of∫
X84(t)β(t)dt is 527.4457. Recall that the inverse logit takes exp(gij)

1+exp(gij) ; as a result, if
we put 527.4457 in there, the value would be almost equal to 1, which means that the
prediction is that subject 8 would be confused when watching video 4.
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Table 5.5: The overall accuracy of the predicted probability of confusion is 0.63. It
was only for subject 3 that the proportion of the prediction of being confused or not is
below half. Our random intercept model did best for subjects 5 and 6.

Subject ID Accuracy
0 0.60
1 0.70
2 0.60
3 0.40
4 0.60
5 0.80
6 0.80
7 0.50
8 0.60
9 0.70

Overall 0.63



Chapter 6

Conclusion and Future Work

6.1 Conclusion

I. We proposed a framework for Functional Generalized Linear Mixed Models

(FGLMM) and gave the Random Intercept Model as an example.

II. The Frequentist approach performed better in parameter estimation for the

count response data, while the Bayesian approach performed better in parameter

estimation for the binary response data.

III. The predictive performances of FGLMM were better than that of FGLM and

GLMM for both the binary and count response data.

IV. We fitted an FGLMM to real data (EEG) to show where it can be applied and

used the functional data plots to interpret the findings.

6.2 Future Work

I. We plan to simulate and estimate Random Functional Slope model data.
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II. We plan to try Random Functional Slope model to EEG data, where each Video

ID has a random functional slope.
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