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Alternative Adjacency Matrices and Spatial Analysis

Jaeseong Hwang, Ph.D.

Western Michigan University, 2024

Spatial analysis is essential for comprehending the spatial distribution of diseases

and various phenomena across geographic regions. This study investigates the

utilization of alternative adjacency matrices in spatial analysis, with a speci�c

focus on implementing Poisson regression models. This study intricately explores

the methodology behind constructing alternative weight matrices, specifying

weight matrices, and comparing the performance of Poisson models using �ve

di�erent weight matrices.

The popular Poisson model model is described, and �ve di�erent de�nitions of

weight matrices are de�ned, which are the following: binary weight matrix, inverse

distance weight matrix using Euclidean distance, Graph distance matrix, Path

matrix, and the combination matrix of Graph distance matrix and Path matrix.

The �rst two weight matrices are commonly used in spatial analysis, and the last

three weight matrices are introduced in the study.

In particular, we introduce three new weight matrices for spatially correlated

random e�ects; Graph distance matrix, Path matrix, and the combination of

Graph distance matrix and Path matrix. We investigate the performance of these

new weight matrices via simulation study. Using the generated spatially correlated



random e�ects, the three di�erent kinds of data sets are generated, each

representing a di�erent underlying spatial structure. The models are evaluated

using the standard error and the mean square error of estimated parameters. In

result, Graph distance matrix, Path matrix, and the combination matrix of Graph

distance matrix and Path matrix perform well and the models using these new

weight matrices have better performance than binary weight matrix and inverse

distance weight matrix using Euclidean distance in the simulated data. We also

apply new weight matrices for the real data analysis. The opioid-related drug

overdose deaths data collected by the Michigan Death Certi�cates are used for

the real data analysis. In result of the real data analysis, the Poisson model with

the combination matrix of Graph distance matrix and Path matrix has the best �t.

In conclusion, the speci�cation of the spatial weight matrices signi�cantly

in�uences both model �t and parameter estimation. The simulation results

provide some evidence that all weight matrices that generated in the study have a

good �t of the simulated data and the combination matrix of Graph distance

matrix and Path matrix is the best choice for the real data analysis.
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Chapter 1

Introduction

1.1 Background

Spatial statistics is the area of research that focuses on statistical techniques

incorporating spatial elements and relationships, such as distance, in their math-

ematical calculations. Due to the rapid rise in the availability of spatial data and

advancements in computing technology, there is a notable increase in interest in

spatial analysis. When we analyze spatial data, it is important to account for spa-

tial autocorrelation for producing reliable and interpretable results when analyzing

spatial data. It allows for more accurate inference, better understanding of spa-

tial patterns, and informed decision-making in various �elds such as public health,

environmental science, urban planning, and criminology, among others. The Condi-

tional Auto-Regressive (CAR) model was introduced in 1974 to account for spatial

autocorrelation with a weight matrix which controls the behavior and degree of

spatial smoothing meaning that data points are averaged with their neighbors. In

this study, we used the intrinsic conditional autoregressive (ICAR) model which is

a special case of CAR models. While both the CAR and ICAR models are used

to model spatial dependence in data, they di�er in how they specify the spatial
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structure and the associated conditional distributions. The CAR model relies on an

explicit de�nition of neighbor relationships, while the ICAR model captures spatial

dependence implicitly through a spatial structure, making it more �exible in certain

situations. The weight matrix is involved in the ICAR model. For a set of N sub-

regions, the size of the weight matrix is N � N. The weight matrix is utilized to

describe the spatial relationships between observations. The binary weight matrix

is the most commonly used weight matrix for the ICAR model. In spatial analysis,

the creation of a new weight matrix is important as it helps to measure the spatial

relationships between various locations or elements in a dataset. The choice of

weight matrix impacts the results of spatial analyses, so it's essential to explore

di�erent options and assess their impact on your speci�c research question. The

purpose of this study is to review the commonly used speci�cations of weight ma-

trix, introduce new speci�cations of weight matrix, and using these speci�cations,

assess the e�ect on model performance.

1.2 Literature review

The mapping of disease incidence and prevalence has long been a part of public

health, epidemiology, and the study of disease in human populations. The most

famous example is John Snow's studies of the cholera epidemic in the Golden

Square area of London in 1854. Usually the object of the disease mapping is to

estimate the true relative risk of a disease of interest across a geographical study

area normally using generalized linear mixed models (GLMMs). The term disease

mapping derives from Clayton and Kaldor (1987), who de�ned Bayesian methods

building from Poisson regression.

Suppose we observe counts of disease cases yi for a set of regions i = 1; : : : ; N
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partitioning the study region. We model the counts as Poisson random variables in

generalized linear models, using a logarithm. In some cases we may also have ob-

served values of region-speci�c covariates ~X i with associated parameters ~�. Other

data often include the number of cases expected, denoted ei . We assume the values

ei are �xed and known.

Poisson model in its most basic, �xed e�ects-only form is

yi s Poisson(eiexp( ~X i
~�)); i = 1; : : : ; N; (1.1)

This method operates under the assumption that including all known and observ-

able confounding variables will yield a map devoid of artifacts, accurately depicting

the true excess risk surface. However, it's important to recognize that unobserved

e�ects may also be present in the data. Incorporating these e�ects into the analy-

sis is crucial, and they are commonly referred to as random e�ects In the mapping

context, a random e�ect is an extra variation and it is important to distinguish two

basic forms of extra variation in spatial applications. First, as in the non-spatial sce-

nario, there is a type of independent and spatially uncorrelated additional variation

that can be considered. This is commonly known as uncorrelated heterogeneity.

Another type of random e�ect comes from a model where it is believed that the

spatial unit is correlated with neighboring spatial units. This is often referred to as

correlated heterogeneity. Essentially, this indicates that there is spatial autocorre-

lation among the spatial units. In the model for relative risks, random e�ects are

decomposed into a component that models the e�ects that vary in an unstructured

way between areas (uncorrelated random e�ect) and a component that takes into

account the e�ects that vary in a structured manner in areas (correlated random

e�ect).

One commonly used spatial model is the Besag-York-Mollié (BYM) model, de-
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veloped by Besag, York, and Mollié in 1991. This model considers the spatial

correlation of data, recognizing that observations in neighboring areas are likely to

be more similar than those in more distant areas. This model includes both the

uncorrelated random e�ect and the correlated random e�ect formulated as follows:

yi s Poisson(�i); i = 1; : : : ; N (1.2)

log(�i) = �+ ~X i
~� + vi + ui ; i = 1; : : : ; N; (1.3)

where �i = ei�i , �i is the relative risk in the ith area, vi is the spatially uncorrelated

random e�ect, and ui is the spatially correlated random e�ect.

The distribution model for the uncorrelated random e�ect is

vi s N(0; �
2

v): i = 1; : : : ; N (1.4)

For the correlated random e�ect, the intrinsic conditional autoregressive (ICAR)

model is used

ui j u�i s N(
1∑

j2�i
wi j

∑
j2�i

wi juj ;
1∑

j2�i
wi j

�2u); i = 1; : : : ; N; (1.5)

In 2012 Changping Zhang introduced binary weight and distance decay weight

for spatial weight matrix W in his study. The binary weight W is represented as

follows:

wi j =


1 if areas i and j are neighbours;

0 otherwise

(1.6)

where neighbours are de�ned to be areas which share a common boundary or vertex.
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The distance decay weight W is usually expressed as follows:

wi j =
1

di j
; (1.7)

where di j is the Euclidean distance from the center of units i to the neighboring

units j . In this papar, we use the binary weight and the distance decay weight as

traditional weight matrices.

1.3 Limitation

In this section, we discuss the disadvantage of commonly used weight matrices.

The binary weight matrix provides the same weight 1 even if the distances from

the centroids of counties are di�erent. For example, in the Michigan Counties,

the distance between Charlevoix County and Antrim County is 16.3 miles and the

distance between Charlevoix County and Cheboygan County is 30.4 miles. Even

if Cheboygan County is farther from Charlevoix County than Antrim County, the

weight for Charlevoix County and Antrim County and the weight for Charlevoix

County and Cheboygan County are the same. For this disadvantage of the binary

weight, Distance decay weight is also commonly used for a weight matrix. The

weight needs to decrease with a growing distance for a weight matrix. But some-

times Euclidean distances can be di�erent from the distances we actually use..

For example, from Figure 1.1, the Euclidian distance between Iosco County and

Huron County is 47.4 miles, buy there is Saginaw Bay between Iosco County and

Huron County, so the trip distance between Iosco County and Huron County is

much longer. For these limitations of common weight matrices, we consider the

alternative weight matrices.
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Figure 1.1: Graph distance between Iosco County and Huron County

1.4 Alternative weight matrices

One of the purpose of this study is to create new speci�cations of weight ma-

trix. For this purpose, we bring some de�nitions from Graph Theory. Appendix A

contains de�nitions of graph distance and shortest path, and a theorem for calcu-

lating the number of shortest paths. The set of areas of a map can be represented

as a (undirected) graph that has a vertex for each area and an edge for every pair

of areas that share a boundary. The graph distance between two counties is the

number of boundaries in a shortest path connecting them. In other word, the graph

distance between two counties is the minimum number of counties connected in one

line between the two counties plus one. Figure 1.1 shows Graph distance between

Iosco County and Huron County. The Graph distance between Iosco County and

Huron County is 4 since there are four boundries between Iosco County and Huron

County. We can de�ne the weight matrix K using Graph distance as follows:

wi j =
1

di j
; (1.8)

6



where di j is the Graph distance between county i and county j . Generally, there

are more paths between more distant areas. We can de�ne another weight matrix

using the number of paths. Let si j be the number of the shortest paths between

county i and j . Then we can de�ne a weight matrix as

wi j =
1

si j
: (1.9)

The value si j tells us that some pairs of areas, have multiple ways of reaching

other areas to which they are not directly connected using shortest paths. If there

are two areas with the same distance from a certan area and one area has more

number of the shortest paths from the certan area than the other area, then the

area that has more number of the shortest paths from the certan area might have

more weights. Having concept of it, we can �ne another weight matrix as

wi j =
1

di j � (1� 1

si j
)
; (1.10)

where di j is the Graph distance between county i and county j . When di j is �xed

in equation, as si j is increasing, wi j is increasing as well.
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Chapter 2

Methodology

In the realm of disease mapping, where visualizing the spread of a disease across

di�erent geographic regions is crucial, the Bayesian model developed by Besag,

York, and Mollié, known as BYM and represented by Equation (1.3), stands out as

the predominant method for estimating relative risks in small areas. Relative risk

is calculated by dividing the death or disease risk in a speci�c population area by

the risk of people from all other areas. In the following, we assume that our region

of interest is divided into N disjoint areas. This chapter primarily delves into the

model utilized in this paper. The models used in this chapter require specifying prior

distributions for the model's coe�cients and random e�ects. Later in this chapter,

we provided �ve di�erent weight matrix speci�cations for simulation studies and

analysis. To evaluate the e�ectiveness of our model, we compared the proposed

models with the di�erent weight matrices.

2.1 Poisson regression model

Suppose that there are N small areas in the target region. Let �i denote the

relative risk and ei denote the expected number of cases or deaths in the ith area,

8



i = 1; : : : ; N. These expected numbers ei are commonly calculated as

ei =

∑N

i=1 yi∑N

i=1 Popi
Popi ; (2.1)

where Popi is the population over the ith area. Let yi denote the number of

observed cases or deaths in the ith area. When the disease is non-contagious

and rare, it is usually reasonable to assume that yi has the following a Poisson

distribution, i.e,

yi s Poisson(�i); i = 1; : : : ; N; (2.2)

where �i = ei�i .

When we assume that there are J covariates and coe�cients, the log-relative

risk log(�i) is de�ned as

log(�i) = �+ ~X i
~� + vi + ui ; i = 1; : : : ; N; (2.3)

where � is the intercept that represents the overall risk of the log-relative risk,

~X i = (xi1; : : : ; xiJ) is the covariate vector of the size of 1 � J for the ith area,

~� = (�1; : : : ; �J)
T is the coe�cient vector of the size of J � 1 of ~X i . The vi is the

spatially uncorrelated random e�ect, and the ui is the spatially correlated random

e�ect.

We assume that the uncorrelated random e�ects are independently and iden-

tically distributed (iid) and each of spatially uncorrelated random e�ects of ~v =

(v1; : : : ; vN)
T has the following distribution,

vi s N(0; �
2

v); i = 1; : : : ; N (2.4)
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Assuming that spatially correlated random e�ects arise from a Gaussian random

�eld (GRF) is a common choice in spatial statistics for several reasons. The �rst

reason is that Gaussian random �elds have well-understood statistical properties,

making them convenient for modeling spatial dependence. They are fully character-

ized by their mean and covariance functions, allowing for �exible modeling of spatial

correlation structures. Another reason is that Gaussian random �elds provide in-

terpretable measures of spatial correlation, such as the spatial range and strength

of dependence. These measures can inform decisions about the appropriate scale

of spatial smoothing or the degree of spatial autocorrelation in the data.

The spatially correlated random e�ects ~u are assumed to have arisen from a

Gaussian random �eld which is consistent with the assumtion that neighbouring

areas have similar spatial e�ects. This spatial dependence is formalized by applying

the intrinsic conditional autoregressive (ICAR) model on the spatially correlated

random e�ect. The spatially correlated random variable ~u = (ui ; : : : ; uN)
T follows

the intrinsic conditional autoregressive (ICAR) distribution the the following,

ui j u�i s N(
1∑

j2�i
wi j

∑
j2�i

wi juj ;
1∑

j2�i
wi j

�2u); i = 1; : : : ; N; (2.5)

where u�i denotes all spatially correlated random e�ects except ui , �i is the set

of neighbors of the ith area, and wi j is the entry of a symmetric weight matrix W

corresponding to row i and column j .

2.2 Weights matrix speci�cations

According to the purpose of this paper, �ve di�erent weights matrix speci�ca-

tions were selected for the analysis.

10



The weight matrix WB is de�ned as follows:

wi j =


1 if counties i and j are neighbours;

0 otherwise

(2.6)

The weight matrix W E is de�ned as follows:

wi j =
1

di j
; (2.7)

where di j is the Euclidean distance from the center of county i to the neighboring

county j . Suppose that the longitude and the latitude of the county i are �i and �i

and the longitude and the latitude of the county j are �j and �j and the latitude and

longitude coordinates on maps are expressed in radians. The Euclidean distance di j

formula is given by

di j = R
√
(��)2 + (cos(�m)��)2 (2.8)

where R is the radius of the Earth, 3,958.761 miles, �m is the average of �i and

�j , �� = �i � �j , and �� = �i � �j .

The weight matrix W G is de�ned as follows:

wi j =
1

di j
; (2.9)

where di j is the Graph distance between county i and county j .

The weight matrix W P is de�ned as follows:

wi j =
1

si j
; (2.10)
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Figure 2.1: Map of Southwest Michigan including Berrien County and Calhoun

County

Table 2.1: Weights between Berrien County and Calhoun County
Weight speci�cation Weight

WB binary, 0

W E, Euclidean dist. 0.013

W G, Graph dist. 0.33

W P , num. of paths 0.25

W C, Graph dist. with Paths 0.44

where si j is the number of the shortest paths between county i and county j .

The weight matrix W C is de�ned as follows:

wi j =
1

di j � (1� 1

si j
)
; (2.11)

where di j is the Graph distance between county i and county j and si j is the number

of the shortest paths between county i and county j .

According to Equation (2.8), the distance between Berrien County and Calhoun

County is around 75 miles when calculated using the Euclidean method. The Figure

2.1 shows that the Graph distance between Berrien County and Calhoun County is

3 and the number of the shortest paths Berrien County and Calhoun County is 4.

The denominator di j � (1� 1

si j
) in Equation (2.10) is 3� (1� 1

4
) = 9

4
:

Table 2.1 shows the distinct weights between Berrien County and Calhoun

County. The binary weight between these counties is 0 since they are not adjacent.
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The Euclidean weight, measuring 0.013, is notably smaller than the new weights.

Let's take Kalamazoo County and Calhoun County as neighboring examples. The

Euclidean distance weight between them is calculated as 1/59, which equals 0.016,

given that the distance between them is approximately 59 miles. Consequently,

when considering distance decay, the new weights seem to be more advantageous

than the Euclidean distancer weight.

2.3 Prior distributions

Since our models are implemented in the Bayesian setting we assign prior dis-

tributions for each parameter. For the intercept � and the coe�cents �j ,

� s N(0; �2�) (2.12)

�j
i.i.d.
� N(0; �2�j

); j = 1; : : : ; J; (2.13)

where the hyperparameters ��; ��1; : : : ; ��j
were assumed to have a Uniform(0,10)

distribution. Suitable prior distributions for the spatially correlated random variable

e�ect and associated variance are

vi
i.i.d.
� N(0; �2v); i = 1; : : : ; N; (2.14)

�v s Unif (0; 10) (2.15)

We assume that ui follows the intrinsic conditional autoregressive (ICAR) distribu-

tion discussed in Equation (2.5) and the hyperparameter �u for ICAR distribution

is following gamma distribution:

�u s Gamma(0:01; 0:01); (2.16)
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Let ~ be a vecter of the prior and the hyperprior parameters, (�; �1; : : : ; �J; ��; ��1;

: : : ; ��J
; �v ; �u)

T : Then we propose a join prior for ~ to be of the form

p(~ ) = p(�; �1; : : : ; �J; ��; ��1; : : : ; ��J
; �v ; �u)

= p(�)p(�1) � � � p(�J)p(��)p(��1) � � � p(��J
)p(�v)p(�u)

_

1

�; �1; � � � ; �J
exp(�

�2

2��
�

1

2

J∑
j=1

�2j

�2�j

)� (�2u)
�0:99exp(�

�2u
0:01

)

=
(�2u)

�0:99

�; �1; � � � ; �J
exp(�

�2

2��
�

�2u
0:01

�
1

2

J∑
j=1

�2j

�2�j

):

(2.17)

Let ~y be a vecter of (y1; : : : ; yN)
T . Then the likelihood function for ~y given ~ 

based on Equation (2.2) and Equation (2.3) is given by

L(~y j~ ) =

N∏
i=1

[eiexp(�+
∑J

j=1 �jXj + vi + ui ]
yiexp[�eiexp(�+

∑J

j=1 �jXj + vi + ui ]

(yi)!
:

(2.18)

The posterior density of ~ given ~y for our study is given by

P (~ j~y j) _ L(~y j~ )� p(~ ); (2.19)

where p(~ ) is the prior in Equation (2.17) and L(~y j~ ) is the likelihood function in

Equation (2.18).

The posterior was simulated via MCMC chains, which converges to the desired

posterior distribution. We used a Metropolis-Hastings algorithm to generate MCMC

chains. Algorithm consists of the following steps repeated T iterations of the chain.

We obtain the chain values for each parameters, which we summarize to get the

posterior mean. A model was run for 100000 iterations, the �rst 50000 being

discarded as burn-in.
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2.4 Convergence diagnostics

Generally, convergence is assessed �rst informally using visual examination of

the trace plots. Also, we use the potential scale reduction factor, R̂. If the chains

have converged to the target posterior distribution, then R̂ should be close to 1.

Brooks and Gelman (1997) have suggested that if R̂ < 1:2 for all model parameters,

we can be fairly certain that convergence has been reached. Even more reassuring

is applying the more stringent condition R̂ < 1:1. We construct two chains from

the remaining iterations after discarding the burn-in.

2.5 Goodness of �t

We choose the models from BYM models with di�erent weight matrices. We

use the deviance information criterion (DIC) proposed by Spiegelhalter et al (2002)

as the model selection criteria. DIC is widely used in Bayesian modeling and DIC

is a hierarchical modeling generalization of the Akaike information criterion (AIC).

The parameters degrees of freedom (pD) re�ect the model complexity, which is

considered in the DIC calculations, higher pD indicating a more complex model.

Models with smaller DIC should be preferred to models with larger DIC.
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Chapter 3

Simulation Study

In this chapter, we will introduce the Poisson model for our simulation study,

incorporating speci�cations regarding the weights matrix. Additionally, we will ex-

plore techniques for generating spatially correlated variables and datasets for the

simulation study, assessing the e�cacy of the model. Finally, the chapter concludes

with an analysis of the simulation outcomes.

3.1 Simulation setting

We chose the county map of the lower peninsula of Michigan as our target

regions, USA which has 68 areas (counties). Hence, we consider the 68 counties

in the lower peninsula as the spatial domain and let i = (1, . . . , 68) be the county

set.

We assume that the outcomes yi , i = 1; : : : ; 68 follow Poisson distributions:

yi s Poisson(�i); i = 1; : : : ; 68; (3.1)

where �i = ei�i . We �x ei = 1 for all weights matrix speci�cations. For the log
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relative risk, it is calculated by

log(�i) = �+ ~X i
~� + vi + ui ;

where � is the overall �xed e�ect, ~� is the e�ect of the covariate ~X i , and vi and

ui are spatially uncorrelated and correlated random e�ects respectively.

We considered two simulation scenarios, in the �rst one we included three co-

variates, ~X i = (xi1; xi2; xi3)
T , the truth intercept � = 1 and the truth coe�cients

~� = (�1; �2; �3)
T = (1; 1; 1)T , while in the second scenario we included three co-

variates ~X i = (xi1; xi2; xi3)
T , the true intercept � = 0:7 and the true coe�cients

~� = (�1; �2; �3)
T = (0:7; 0:7; 0:7)T .

3.2 Spatially correlated random e�ect

We assumed that the initial u = (u1; : : : ; u68) follows Normal distribution.

Speci�cally,

ui s N(0; 1); i = 1; : : : ; N; (3.2)

Let ri be a row vector of a weight matrix W . Then hri ;~1i is the sum of all weights

between i th county and its neighbors, where h�; �i is the inner product of two vectors.

We assume that �u is the following gamma distribution:

�u s Gamma(0:01; 0:01); (3.3)

We choose ui as the following Normal distribution:

ui j u�i s N(
1

hri ;~1i
hri ; ui;

1

hri ;~1i
�2u); i = 1; : : : ; N; (3.4)
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Figure 3.1: Map of simulated spatially correlated random e�ects using Weight

matrix W G over the lower peninsula of Michigan

We replaced the new ui with the ith element of u. We repeat the process un-

til u convergences. The R package, mclcar, o�ers various tools for the simula-

tion of di�erent kinds of the spatial random variable. We used the R function,

CAR:simWmat from R package, mclcar, to generate the spatially correlated ran-

dom e�ects u.

Figure 3.1 is the map of the spatially correlated random e�ects generated by

the R function, CAR:simWmat with the Weight matrix speci�cation W G. Based

on the simulated map, by checking the deepness of color of each region, we can

�nd there is a variation of the spatially structured covariates in the lower penin-

sula Michigan and the regions in deep dark indicate spatial clusters. Figure 3.2 is

the map of the spatially correlated random e�ects generated by the R function,

CAR:simWmat with the Weight matrix speci�cation W P and it shows that the

spatial clusters are located in eastern and northern regions of the state. Figure 3.3

is the map of the spatially correlated random e�ects generated by the R function,

CAR:simWmat with the Weight matrix speci�cation WC and it shows that the
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Figure 3.2: Map of simulated spatially correlated random e�ects using Weight

matrix W P over the lower peninsula of Michigan

Figure 3.3: Map of simulated spatially correlated random e�ects using Weight

matrix W C over the lower peninsula of Michigan
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spatial clusters are located in western region and southen region of the state.

3.3 Simulated datasets

A shape�le is a simple format for storing the geometric location and attribute in-

formation of geographic features. We have a Michigan shape�le from DATA.GOV

website to create datasets. We generated 200 datasets over the raster of the

lower peninsula of Michigan that was created by reading shape�le. We simu-

lated 68 standard Normal random numbers with mean 0 and standard deviation

1 for each covariate xi1, xi2, and xi3, i = 1; : : : ; 68. Also, we simulated 68

standard Normal random numbers with mean 0 and standard deviation 1 for spa-

tially uncorrelated random e�ect vi , i = 1; : : : ; 68. We simulated 68 observed

counts yi , i = 1; : : : ; 68, from Poisson distribution with mean exp(� + �1xi1 +

�2xi2 + �3xi3 + ui + vi), where (�; �1; �2; �3)
T = (1; 1; 1; 1)T for scenario 1 and

(�; �1; �2; �3)
T = (0:7; 0:7; 0:7; 0:7)T scenario 2 and ui is the simulated spatially

correlated random e�ect.

3.4 Model evaluation

After �tting the simulated data with the created variables, we evaluated the

performance o fthe models by checking the accuracy of the estimated coe�cients

though mean square error (MSE). The MSE is calculated as

MSEj =

∑n

k=1(�̂jk � �jk)
2

n
; (3.5)

where n is the number of simulated data.
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3.5 Simulation results

In this section, we will examine how well the models perform on datasets created

by speci�c weight matrices W G, W P , and W C. We will compare the model per-

formances by analyzing the mean square error and standard deviation of estimated

intercepts and coe�cients. It is anticipated that the model utilizing a particular

weight matrix will exhibit the highest performance on the dataset generated by

that weight matrix.

3.5.1 Weight matrix speci�cation W G

We compared the performance of the models with �ve distinct weight matrices

and the model without a spatially correlated random e�ect for the datasets gener-

ated by the spatially correlated random variables and the weight matrix W G. Table

3.1 shows the results from the �rst simulation scenario, which the truth value of

the intercept and the coe�cients were set to 1. We displayed the mean square

error (MSE) for estimated intercept and each coe�cient to �t the models in Table

3.1.

The lower MSE value indicates a better estimate. We found that the model

with the weight matrix speci�cation W G has better estimates based on the value

of the MSE of the intercept and each coe�cient. Table 3.1 presents the standard

deviation of estimated intercept and each coe�cient respectively from scenario 1.

We found that the standard deviation of the estimated intercepts and coe�cients

for W G is smaller than the standard deviations of the intercepts and coe�cients

for the other weight matrices.

Table 3.2 displays the results from the second simulation scenario, which the

truth value of the coe�cients were set to 0.7. We displayed the mean square error
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Table 3.1: MSE and Standard deviation of estimated intercept and coe�cients

from scenario 1 using W G for simulated data
Weight speci�cation �̂(= 1) �̂1(= 1) �̂2(= 1) �̂3(= 1)

WB

MSE 0.1223 0.0453 0.0654 0.0567

SD 0.1796 0.1915 0.2068 0.1983

W E

MSE 0.1788 0.0678 0.0642 0.0963

SD 0.2588 0.2467 0.2683 0.2178

W G

MSE 0.0569 0.0214 0.0155 0.0190

SD 0.1567 0.1357 0.1166 0.1574

W P

MSE 0.1455 0.0523 0.0542 0.0490

SD 0.2178 0.2678 0.1896 0.2246

W C

MSE 0.1364 0.0422 0.0490 0.0436

SD 0.1811 0.1890 0.1996 0.1899

No

random e�ect

MSE 0.1890 0.0473 0.0795 0.0679

SD 0.2102 0.1815 0.2684 0.2190

Table 3.2: MSE, Mean, and Standard deviation of estimated intercept and coe�-

cients from scenario 2 using W G for simulated data
Weight speci�cation �̂(= 0:7) �̂1(= 0:7) �̂2(= 0:7) �̂3(= 0:7)

WB

MSE 0.0456 0.0413 0.0398 0.0456

SD 0.1246 0.1374 0.1567 0.1865

W E

MSE 0.0518 0.0467 0.0511 0.0413

SD 0.1256 0.1663 0.1845 0.1796

W G

MSE 0.0199 0.0231 0.0298 0.0311

SD 0.1132 0.1411 0.1521 0.1134

W P

MSE 0.0459 0.0413 0.0524 0.0313

SD 0.1555 0.1735 0.1588 0.1519

W C

MSE 0.0211 0.0467 0.0516 0.0422

SD 0.1579 0.1979 0.1674 0.1590

No

random e�ect

MSE 0.0689 0.0535 0.0669 0.0314

SD 0.1956 0.1607 0.2001 0.1745
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Table 3.3: Potential scale reduction factors, R̂, of estimated intercept and coe�-

cients from scenario 1, 2 using W G for simulated data
Weight speci�cation �̂ �̂1 �̂2 �̂3

WB

scenario 1 1.0981 1.0203 1.0267 1.0279

scenario 2 1.0223 1.0411 1.0238 1.0224

W E

scenario 1 1.0230 1.0752 1.0780 1.0223

scenario 2 1.0212 1.0211 1.0239 1.0279

W G

scenario 1 1.0376 1.0725 1.0716 1.0779

scenario 2 1.0228 1.040 1.0204 1.0233

W P

scenario 1 1.0746 1.0748 1.0112 1.0920

scenario 2 1.0238 1.0291 1.0133 1.0401

W C

scenario 1 1.0756 1.0722 1.0761 1.0811

scenario 2 1.0232 1.0221 1.0227 1.0231

No

random e�ect

scenario 1 1.0326 1.0222 1.0521 1.0711

scenario 2 1.0331 1.0341 1.0215 1.0267

(MSE) for estimated intercept and each coe�cient to �t the models in Table 3.2.

Also, Table 3.2 presents the standard deviation of estimated intercept and each

coe�cient respectively from scenario 2.

Table 3.3 shows the maximums of the estimated potential scale reduction fac-

tors (R̂) for all model parameters from scenario 1 and 2 respectively. As suggested

by Brooks and Gelman (1997), we can be reasonably con�dent that convergence is

reached if R̂ < 1.2 for all model parameters. According to Table 3.3, we can assume

that every estimated intercept or coe�ciant from scenario 1 and 2 is convergent.

3.5.2 Weight matrix speci�cation W P

We evaluated how well the poisson model with weight matrix speci�cation W P

performed compared to poisson models with four other unique weight matrices and

a model without a spatially correlated random e�ect. The datasets were created

using spatially correlated random variables and the weight matrixW P . In Table 3.4,

the results from the initial simulation scenario are presented, where the intercept
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Table 3.4: MSE and Standard deviation of estimated intercept and coe�cients

from scenario 1 using W P for simulated data
Weight speci�cation �̂(= 1) �̂1(= 1) �̂2(= 1) �̂3(= 1)

WB

MSE 0.0966 0.0577 0.1569 0.0486

SD 0.1998 0.2167 0.2126 0.1812

W E

MSE 0.0956 0.0578 0.1356 0.0411

SD 0.2176 0.2678 0.1891 0.1973

W G

MSE 0.0745 0.0498 0.1130 0.0451

SD 0.1988 0.2604 0.2862 0.1972

W P

MSE 0.0402 0.0333 0.0441 0.0132

SD 0.1346 0.1613 0.1811 0.1212

W C

MSE 0.0811 0.0375 0.1431 0.0513

SD 0.2145 0.1864 0.1945 0.2303

No

random e�ect

MSE 0.0786 0.0394 0.1963 0.0456

SD 0.1980 0.1932 0.2267 0.1896

and coe�cients were set to a truth value of 1. The table displays the mean square

error (MSE) for the estimated intercept and each coe�cient to assess the model

�ts.

We discovered that the model utilizing the weight matrix speci�cation W P pro-

vides more accurate estimates, as indicated by the MSE values of the intercept

and coe�cients. Additionally, Table 3.4 displays the standard deviations of the

estimated intercept and coe�cients from scenario 1. It was observed that the

standard deviation of the estimated intercepts and coe�cients for W P is lower

compared to the standard deviations of the intercepts and coe�cients for the other

weight matrices.

Table 3.5 displays the results from the second simulation scenario, which the

truth value of the coe�cients were set to 0.7. We displayed the mean square error

(MSE) for estimated intercept and each coe�cient to �t the models in Table 3.5.

Also, Table 3.5 presents the standard deviation of estimated intercept and each

coe�cient respectively from scenario 2.
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Table 3.5: MSE and Standard deviation of estimated intercept and coe�cients

from scenario 2 using W P for simulated data
Weight speci�cation �̂(= 0:7) �̂1(= 0:7) �̂2(= 0:7) �̂3(= 0:7)

WB

MSE 0.0353 0.0432 0.0563 0.0245

SD 0.1467 0.1679 0.1786 0.1321

W E

MSE 0.0345 0.0196 0.0478 0.0511

SD 0.1578 0.1467 0.1597 0.1532

W G

MSE 0.0214 0.0256 0.0389 0.0261

SD 0.1386 0.1545 0.1533 0.1667

W P

MSE 0.0143 0.0133 0.0243 0.0145

SD 0.1208 0.1255 0.1455 0.1232

W C

MSE 0.0452 0.0321 0.0311 0.0352

SD 0.1374 0.1488 0.1581 0.1678

No

random e�ect

MSE 0.0489 0.0435 0.0648 0.0356

SD 0.1503 0.1752 0.1660 0.1678

Table 3.6: Potential scale reduction factors, R̂, of estimated intercept and coe�-

cients from scenario 1, 2 using W P for simulated data
Weight speci�cation �̂ �̂1 �̂2 �̂3

WB

scenario 1 1.0671 1.0578 1.0807 1.0669

scenario 2 1.0233 1.0140 1.0238 1.0824

W E

scenario 1 1.0760 1.0702 1.0380 1.0623

scenario 2 1.0288 1.0414 1.0407 1.0299

W G

scenario 1 1.0776 1.0485 1.0506 1.0879

scenario 2 1.0218 1.0808 1.0804 1.0273

W P

scenario 1 1.0759 1.0548 1.0512 1.0820

scenario 2 1.0858 1.0551 1.0253 1.0246

W C

scenario 1 1.0536 1.0822 1.0661 1.0116

scenario 2 1.0201 1.0251 1.0757 1.0238

No

random e�ect

scenario 1 1.1755 1.0728 1.1721 1.0821

scenario 2 1.0358 1.0351 1.0257 1.0267
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Table 3.6 shows the maximums of the estimated potential scale reduction fac-

tors (R̂) for all model parameters from scenario 1 and 2 respectively. According

to Table 3.6, we can assume that every estimated intercept or coe�ciant from

scenario 1 and 2 is convergent since R̂ < 1.2 for all model parameters.

3.5.3 Weight matrix speci�cation W C

We conducted a comparative assessment of the Poisson model's performance

using the weight matrix speci�cation Wc against four other distinct weight matrices

and a model without a spatially correlated random e�ect, utilizing datasets gener-

ated by spatially correlated random variables and the weight matrix Wc. Table 3.7

presents the �ndings from the �rst simulation scenario, where the intercept and

coe�cients were set to a truth value of 1. Mean square error (MSE) values for

the estimated intercept and each coe�cient were provided in Table 3.7, with lower

MSE values indicating superior estimates. Our analysis suggests that the model

incorporating the weight matrix speci�cation Wc produced better estimates, as in-

dicated by the MSE values for the intercept and coe�cients. Additionally, Table 3.7

presents the standard deviation of estimated intercept and each coe�cient from

scenario 1. We discovered that the standard deviation of the estimated intercepts

and coe�cients for weight matrix W C is less than the standard deviations of the

intercepts and coe�cients for the remaining weight matrices.

In Table 3.8, we present the results from the second simulation scenario, where

the truth value of the coe�cients was set to 0.7. Mean square error (MSE) val-

ues for the estimated intercept and each coe�cient are displayed in Table 3.8,

along with the standard deviation of estimated intercept and each coe�cient from

scenario 2.

Table 3.9 shows the maximum estimated potential scale reduction factors (R̂)
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Table 3.7: MSE and Standard deviation of estimated intercept and coe�cients

from scenario 1 using W C for simulated data
Weight speci�cation �̂(= 1) �̂1(= 1) �̂2(= 1) �̂3(= 1)

WB

MSE 0.1341 0.0786 0.0438 0.0839

SD 0.1743 0.1563 0.1632 0.1527

W E

MSE 0.1783 0.0731 0.0561 0.0676

SD 0.1656 0.1463 0.1585 0.1741

W G

MSE 0.1420 0.0413 0.0316 0.0411

SD 0.1563 0.1689 0.1833 0.1836

W P

MSE 0.1467 0.0313 0.0465 0.0466

SD 0.1642 0.1887 0.1909 0.2362

W C

MSE 0.0212 0.0221 0.0145 0.0315

SD 0.1247 0.1156 0.1264 0.1342

No

random e�ect

MSE 0.1673 0.0563 0.0485 0.0466

SD 0.1875 0.1861 0.1977 0.1679

Table 3.8: MSE and Standard deviation of estimated intercept and coe�cients

from scenario 2 using W C for simulated data
Weight speci�cation �̂(= 0:7) �̂1(= 0:7) �̂2(= 0:7) �̂3(= 0:7)

WB

MSE 0.0347 0.0415 0.5872 0.0768

SD 0.1365 0.1955 0.3475 0.3531

W E

MSE 0.0622 0.0788 0.0999 0.0780

SD 0.1466 0.1898 0.2567 0.3145

W G

MSE 0.0291 0.0412 0.0556 0.0578

SD 0.1377 0.1890 0.2996 0.2784

W P

MSE 0.0285 0.0787 0.0556 0.0784

SD 0.1378 0.1883 0.2453 0.2731

W C

MSE 0.0142 0.0216 0.0241 0.0311

SD 0.1298 0.1733 0.2114 0.2327

No

random e�ect

MSE 0.0356 0.0463 0.0818 0.0759

SD 0.1787 0.1985 0.2678 0.2931
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Table 3.9: Potential scale reduction factors, R̂, of estimated intercept and coe�-

cients from scenario 1, 2 using W C for simulated data
Weight speci�cation �̂ �̂1 �̂2 �̂3

WB

scenario 1 1.0681 1.0703 1.0747 1.0149

scenario 2 1.0543 1.0664 1.0748 1.0154

W E

scenario 1 1.0570 1.0782 1.0850 1.0653

scenario 2 1.0224 1.0241 1.0247 1.0235

W G

scenario 1 1.0746 1.0585 1.0746 1.0759

scenario 2 1.0224 1.0258 1.0235 1.0843

W P

scenario 1 1.0779 1.0478 1.0412 1.0720

scenario 2 1.0288 1.0791 1.0241 1.0214

W C

scenario 1 1.0736 1.0752 1.0861 1.0611

scenario 2 1.0235 1.0241 1.0257 1.0801

No

random e�ect

scenario 1 1.1726 1.082 1.884 1.0421

scenario 2 1.0531 1.0481 1.0247 1.0267

for all model parameters from scenarios 1 and 2. As suggested by Brooks and Gel-

man, convergence can be reasonably assumed if R̂ < 1.2 for all model parameters.

Analysis of Table 3.6 suggests that every estimated intercept or coe�cient from

scenarios 1 and 2 has converged.

Figure 3.4, 3.5, and 3.6 include include the spatially structured random variable

maps for all models discussed with the weight speci�cation W G, W P , and W C. We

�nd that the estimated spatially correlated random e�ect is consistent in all models

discussed and that the major cluster is located in the northwestern region of the

state. By comparing the estimated spatially structured random variable maps for

all models discussed with the generated spatially correlated structure variable, we

found that estimations are close to the simulated values that the maps look similar.

Graphical methods are also used for convergence diagnosis. Figures 3.7, 3.8,

3.9, 3,10, and 3,11 show the trace plots which show the realizations of the Markov

chain at each iteration against the iteration numbers for the estimated coe�cients

and deviances for the all models discussed. We observe a stable, dense cloud of
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Figure 3.4: Spatially structured random variable map for the weight speci�cation

W G

Figure 3.5: Spatially structured random variable map for the weight speci�cation

W P
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Figure 3.6: Spatially structured random variable for the weight speci�cation W C

points with no systematic trends. The two chains in each trace plot are well mixed

which indicates a good convergence.

We anticipated that the model utilizing a speci�c weight matrix would exhibit

superior performance on the dataset produced by that same weight matrix. For

the datasets created by weight matrices W G, W P , and W C, we found that mod-

els incorporating spatially random e�ects generated by the corresponding weight

matrices would perform best.
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Figure 3.7: Trace plots for the weight speci�cation WB

Figure 3.8: Trace plots for the weight speci�cation W E
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Figure 3.9: Trace plots for the weight speci�cation W G

Figure 3.10: Trace plots for the weight speci�cation W P
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Figure 3.11: Trace plots for the weight speci�cation W C
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Chapter 4

Applied project-The spatial

distribution of opioid overdose death

in Michigan

4.1 Introduction

Opioids refer to a group of compounds that act on opioid receptors (Trescot,

Datta, Lee and Hansen, 2008) in nerve cells within the body and brain (National

Institute on Drug Abuse, 2019). These compounds can be categorized into several

chemical classes: Phenanthrenes, Benzomorphans, Phenylpiperidines, Diphenylhep-

tanes, and Phenylpropanolamines. Opioids encompass a powerful class of medica-

tions used for short-term management of acute pain following injuries or surgeries.

These drugs include Morphine, Oxycodone, Hydrocodone, Hydromorphone, Fen-

tanyl, and the illegal drug heroin. Opioid prescriptions are only useful for treating

some forms of chronic pain temporarily. Opioids include side e�ects that include

addiction, sleepiness, sedation, and overdose when used for extended periods of

time. Since the brain adjusts to repeated exposure to opioids, regular treatment
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under a doctor's prescription can result in dependence and addiction. This can

a�ect anyone. The National Survey on Drug Use and Health report's �ndings

indicate that over 2.1 million people had either abused or were dependent on opi-

oids. Drug overdoses are the leading cause of death for individuals under 50. Over

the past two decades, there has been a steady increase in opioid overdose deaths,

peaking in 2013. In comparison to 1999, the incidence of drug overdose deaths

related to prescription opioids has multiplied by �ve in 2017. Notably, 80 percent

of heroin users had previously misused prescription opioids before turning to the

illicit narcotic. Michigan has been signi�cantly impacted by the opioid epidemic,

with overdose deaths increasing 17-fold between 1999 and 2016. In 2015, Michigan

ranked 10th in the number of opioid prescriptions written, while the state's opioid

overdose death rate stood as the 15th highest in the United States. Astonishingly,

Michigan's annual opioid prescriptions reached 11 million in both 2015 and 2016,

surpassing an average of one prescription per person. Furthermore, each year, an

average of 84 opioid pills are consumed per person. Simultaneously, Michigan's

drug overdose deaths have surged since 2012. In 2015, the Michigan Department

of Health and Human Services reported that drug overdose deaths had exceeded

fatalities from gun-related incidents and tra�c accidents. The objectives of this

study were to identify the spatial distribution of opioid overdose death in the lower

peninsula of Michigan and also the focus of the present study was the comparison

of alternate weight matrices for the analysis.

4.2 Data

The study region, which has an area of 40,162 sq.miles, is the the lower penin-

sula of Michigan. The opioid-related drug overdose deaths data was collected by
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the Michigan Death Certi�cates, speci�cally the Division for Vital Records and

Health Statistics/MDHHS. The opioid-related deaths include overdose deaths re-

lated to Hydrocodone, Hydromorphone, Morphine, Codeine, Fentanyl, and heroin.

These drug overdose deaths encompass fatalities resulting from unintentional or

intentional overdose of a drug, administration of the wrong drug, drug consump-

tion errors, or inadvertent drug intake. Only cases meeting all overdose de�nitions

and involving at least one type of opioid from the list above were counted. To

calculate the expected value of opioid overdose deaths in each county, the popu-

lation of Michigan was necessary. The data available at the Annual Estimates of

the Resident Population from the U.S. Census Bureau, Population Division was

used. For the opioid overdose and population data, the information from 2017 was

utilized. All data were aggregated at the county level, with consideration given to

the counties located in the lower peninsula of Michigan due to missing values in the

upper peninsula.

Covariates for regression analysis to identify potential risk factors of the opioid

overdose deaths are restricted by those available from the 2017 Census. Totally,

three covariates related to socioeconomics were tested: 1) poverty rate; 2) educa-

tion rate; 3) unemployment rate. The values are expressed as percentages.

4.3 Modeling methods

We used Bayesian spatial approach including prior distributions and several al-

ternate speci�cations of the spatial weights matrix. We brie�y describe the two

Poisson regression models used in this study: 1) a standard Poission model with

uncorrelated random e�ects(nonspatial model) and 2) Poisson Regression Model

with uncorrelated random e�ects and correlated random e�ects with di�enrent
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weight matrix for ICAR distribution(BYM model). For all approaches it was as-

sumed that, the number of opioid overdose deaths in each of the 68 counties of

the lower peninsula of Michigan, y1; : : : ; y68, follows Poisson distribution with mean

�i , where �i = ei�i , �i is the relative risk in i th county, and ei is the expected

count of opioid overdose deaths in i th country calculated by the equation 2.1. Let

x1i be the Poverty rate (Persons below 150% of poverty) in i th county, x2i be the

Education rate (percent high school graduate or higher) in i th county and x3i be

the Unemployment rate in i th county.

4.3.1 Nonspatial Poisson model

A nonspatial Poisson model for the number of opioid overdose deaths can be

speci�ed as

yi s Poisson(�i); i = 1; : : : ; 68; (4.1)

log(�i) = log(ei) + �+ �1x1i + �2x2i + �3x3i + vi ; i = 1; : : : ; 68; (4.2)

where � is an intercept term, �1; �2; �3; are regression coe�cients, x1i ; x2i ; x3i are a

set of covariates, and vi is uncorrelated random e�ects speci�ed by vi s N(0; �
2

v).

4.3.2 BYM model

The BYM model take the following form:

yi s Poisson(�i); i = 1; : : : ; 68; (4.3)

log(�i) = log(ei) + �+ �1x1i + �2x2i + �3x3i + vi + ui ; i = 1; : : : ; 68; (4.4)

37



where ui is correlated random e�ects which follows the intrinsic conditional autore-

gressive (ICAR) distribution speci�ed by

ui j u�i s N(
1∑

j2�i
wi j

∑
j2�i

wi juj ;
1∑

j2�i
wi j

�2u); i = 1; : : : ; N: (4.5)

The u�i denotes all spatially correlated random e�ects except ui , �i is the set of

neighbors of the ith area, and wi j is the entry of a symmetric weight matrix W

corresponding to row i and column j .

We used �ve di�enrent weight matrices for ICAR distribution: 1) binery weight

matrix WB speci�ed by Equition 1.6; 2) inverse distance weight matrix with Eu-

clidean distance WD speci�ed by Equition 1.7; 3) inverse distance weight matrix

with Graph distanceW G speci�ed by Equition 1.8; 4) weight matrix of number

of Paths between two counties W P speci�ed by Equition 1.9; 5) inverse distance

weight matrix with Graph distance and the number of Paths between two counties

W C speci�ed by Equition 1.10.

For each of �, �1, �2, and �3, we use Gaussian prior distributions N(0; �2�),

N(0; �2�1), N(0; �
2

�3
), and N(0; �2�j

) , respectively, where the hyperparameters ��,

��1, ��2, and ��3 were assumed to have a Uniform(0,10) distribution. The hyper-

parameters �v and �u follow Unif (0; 10) and Gamma(0:01; 0:01), respectively.

4.4 Model evaluation

The models with the alternative weight matrices were assessed for goodness-

of-�t with the observed data and the criterion employed for assessment was the

Deviance Information Criterion (DIC) developed by Spiegelhalter et al., (2002). DIC

provides the measure of complexity and �t of the models which are developed from

same sample size. A smaller DIC indicates a better model �t. DIC is computed
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as the sum of the posterior mean deviance and estimated e�ective number of

parameters:

DIC = �D + PD; (4.6)

where �D is the sum of the posterior mean deviance which measures how well the

model �ts the data and PD represents the e�ective number of parameters utilized

for model building. The data was processed in R version 4.0.3 and the Bayesian

analyses were performed in WinBUGS 1.4.3.

4.5 Results

In our research, we examined two distinct models Nonspatial Poisson model

included covariates and uncorrelated random e�ects. BYM model included covari-

ates, uncorrelated random e�ects, and spatially correlated random e�ects which

follows ICAR distribution with the weight matrix speci�cation WB, WD, W G, W P ,

and W C respectively.

Table 4.1 shows that the BYM model with W C has the lowest DIC (442.375)

among the models that we examined in this research.

Convergence was monitored by visual examination of the trace plots of the

samples for each chain and the Gelman-Rubin convergence statistics. Convergence

occurred by 100,000 iterations.

Figure 4.1 shows the estimated relative risk map based on the result of the

model under inverse distance weight matrix with Graph distance and the number

of Paths between two counties, W C. In the map, we found that there is spatial

variation of opioid overdoes death in the lower peninsula of Michigan. Deeper color

explains higher variation. The spatial clusters of high overdose deathes are located
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Table 4.1: Camparision DIC
Model Var Mean SD 95%CI DIC

Nonspatial

int. 1.161 0.386 (0.681, 1.066) 447.72

Pov. 0.014 0.013 (-0.011, 0.039)

Ed. -0.021 0.008 (-0.039, -0.005)

Unemp. 0.046 0.025 (-0.054, 0.142)

WB

int. 1.457 0.619 (0.472, 1.768) 446.319

Pov. 0.013 0.018 (-0.022, 0.049)

Ed. -0.022 0.010 (-0.043, -0.000)

Unemp. 0.006 0.069 (-0.135, 0.143)

WD

int. -0.039 0.707 (-1.595, 1.309) 447.584

Pov. 0.021 0.021 (-0.018, 0.070)

Ed. -0.018 0.012 (-0.042, 0.008)

Unemp. 0.051 0.067 (-0.082, 0.179)

W G

int. 1.227 0.602 (0.256, 1.543 ) 445.920

Pov. 0.014 0.020 (-0.024, 0.053)

Ed. -0.022 0.011 (-0.047, -0.002)

Unemp. 0.045 0.062 (-0.067, 0.178)

W P

int. 1.329 0.712 (0.285, 1.955 ) 446.710

Pov. 0.011 0.021 (-0.033, 0.053)

Ed. -0.025 0.013 (-0.055, -0.002)

Unemp. 0.0512 0.069 (-0.084, 0.189)

W C

int. 1.123 0.553 (0.267, 1.400) 442.375

Pov. 0.016 0.017 (-0.0189, 0.049)

Ed. -0.021 0.011 (-0.044, -0.000)

Unemp. 0.051 0.061 (-0.065, 0.173)
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Figure 4.1: Mapping based on the model under inverse distance weight matrix with

graph distance and the number of paths between two counties, W C:

in eastern and northern regions of the state.

The trace plots in Figure 4.2 generated for the monitored intercept, coe�cient

and deviance across the two chains. From the trace plots, we observe that the

chains appear to mix rapidly, which is an indication of convergence.

Figure 4.3 shows the Gelman-Rubin Convergence Statistic Diagnostic Plots,

which indicates a good convergence. We found that R̂, which is the red line in

Figure 4.3 is close to 1. A sample of 100,000 iterations with two chains was

obtained after the burn-in period of 10,000 samples.
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Figure 4.2: Trace Plots for the monitored intercept and deviance for the model 6

Figure 4.3: Gelman-Rubin Convergence Statisti Diagnostic Plots for the monitored

intercept and deviance for the model 6
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4.6 Discussion

For the spatial distribution of opioid overdose deaths, we performed a standard

Poission model with uncorrelated random e�ects (nonspatial model) and a Poisson

Regression Model with uncorrelated random e�ect and correlated random e�ect

which follows ICAR distribution with �ve di�erent weight matix speci�cations (BYM

model). The selected model contains the spatially correlated random e�ect with

the weight matrix created by Graph distance and the number of paths between

counties. We found that there is spatial variation of opioid overdose death in the

lower peninsula of Michigan. Speci�cally, counties in eastern and northern Michigan

experience higher levels of such fatalities. The counties located in those regions

are recommended to be targeted to create opioid prevention strategies, such as

recovery services, and increasing the supply of overdose-reversing drugs.

43



Chapter 5

Conclusions

In this paper, we performed Hierarchical Poisson models for spatial count data

with di�erent speci�cation of weight matrices that control the behaviour and degree

of spatial smoothing meaning that data points are averaged with their neighbours.

The simulation results indicated that all models that we performed in this paper have

a good �t of the simulated data with spatially correlated random e�ect. Especially

the Poisson models with a spatially correlated random errect which follows CAR

distribution with the weight matrix speci�catrions W G, W P , and W C had better

performance than the Poisson models with a spatially correlated random errect

which follows CAR distribution with the binary adjacency wight matrix or the inverse

Euclidean distance matrix in the simulated data based on the competing methods by

checking the accuracy of the estimated coe�cients though mean and mean square

error (MSE). Hence, the weight matrix speci�catrions W G, W P , and W C appear

to a good choice for implementing spatial smoothing and generally perform quite

well and o�er similar parameter interpretations.. For future work, we can perform

a di�erent version of the model in Equation (2.3) using the Laplace distribution

instead of Normal distribution in Equation (2.5). For the CAR Laplace prior, we
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have

ui j u�i s L(
1∑

j2�i
wi j

∑
j2�i

wi juj ;
1∑

j2�i
wi j

�2u); i = 1; : : : ; N (5.1)

, where u�i denotes all spatially correlated random e�ects except ui , �i is the set

of neighbors of the ith area, and wi j is the entry of a symmetric weight matrix W

corresponding to row i and column j using the following probability density function,

L(x j�; b) =
1

2b
exp(�

jx � �j

b
): (5.2)

Here � is a location parameter and b > 0 is a scale parameter. Also, we can create

a distance based weight matrix of estimated driving distance between two counties

using GPS or Google Maps Platform APIs.
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Appendix A

Background for Graph Theory

One of the purpose of this study is create new speci�cations of weight matrix.

For this purpose, we bring some de�nitions from Graph Theory. The set of areas

of a map can be represented as a (undirected) graph that has a vertex for each

area and an edge for every pair of areas that share a boundary. Figure A.1 shows

the county map of the lower peninsula of Michigan and the corresponding graph in

red.

De�nition 1. A walk is de�ned as a sequence of edges which joins a sequence of

vertices. A path is a walk in which all edges and vertices are distinct. The total

number of edges covered in a walk is called as length of the walk. A shortest path

is a path which has least number of edges. The distance between two vertices in a

graph is the length of a shortest path between them.

By De�nition 1, every path is a walk but every walk is not a path.

Theorem 1. Every walk between two vertices contains a path between them (West,

D. B 2000).

De�nition 2. For a graph with vertex set U = fu1; : : : ; ung, the adjacency matrix

is a square n � n matrix A such that its (i ; j)th entry ai j is one when there is an
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Figure A.1: County map of the lower peninsula of Michigan and the corresponding

graph in red

edge from vertex ui to vertex uj , and zero when there is no edge.

Theorem 2. The (i ; j)th entry akij of A
k , where A the adjacency matrix, counts

the number of walks of length k betwean vertex ui and vertex uj (Andrew Duncan

2004).

Theorem 3. If k is the distance betwean vertex ui and vertex uj , then the (i ; j)th

entry akij of A
k , where A the adjacency matrix, counts the number of shortest paths

betwean vertex ui and vertex uj .

Proof. By Theorem 2, there are k walks between vertex ui and vertex uj . We want

to prove that the k walks are paths. To prove it by contradiction assume that there

is a walk but not a path among the k walks between vertex ui and vertex uj . Then

the walk contains a path between vertex ui and vertex uj and its length is shorter

than k . Then the distance between vertex ui and vertex uj is shorter than k . Then

we arrive to a contradiction.
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Appendix B

WinBUGS Codes

B.1 Poisson model without random e�ect

model

{

for( i in 1 : m ) {

y[i] ~ dpois(mu[i])

mu[i] <- rr[i]

log(rr[i]) <- beta0+beta1*x1[i]+ beta2*x2[i]+ beta3*x3[i]

r[i]<-(y[i]-mu[i])

}

sdbeta0~dunif (0 ,10)

varbeta0 <-sdbeta0*sdbeta0

taubeta0 <-1/varbeta0

beta0~dnorm(0,taubeta0)

sdbeta1~dunif (0 ,10)

varbeta1 <-sdbeta1*sdbeta1
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taubeta1 <-1/varbeta1

beta1~dnorm(0,taubeta1)

sdbeta2~dunif (0 ,10)

varbeta2 <-sdbeta2*sdbeta2

taubeta2 <-1/varbeta2

beta2~dnorm(0,taubeta2)

sdbeta3~dunif (0 ,10)

varbeta3 <-sdbeta3*sdbeta3

taubeta3 <-1/varbeta3

beta3~dnorm(0,taubeta3)

B.2 Poisson model with random e�ects

model

{

for( i in 1 : m ) {

y[i] ~ dpois(mu[i])

mu[i] <- rr[i]

log(rr[i]) <- beta0+beta1*x1[i]+ beta2*x2[i]+ beta3*x3[i]+u[i]

r[i]<-(y[i]-mu[i])

}

u[1:m] ~ car.normal(adj[], w[], num[],tau.u)

sdbeta0~dunif (0 ,10)

varbeta0 <-sdbeta0*sdbeta0

taubeta0 <-1/varbeta0
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beta0~dnorm(0,taubeta0)

sdbeta1~dunif (0 ,10)

varbeta1 <-sdbeta1*sdbeta1

taubeta1 <-1/varbeta1

beta1~dnorm(0,taubeta1)

sdbeta2~dunif (0 ,10)

varbeta2 <-sdbeta2*sdbeta2

taubeta2 <-1/varbeta2

beta2~dnorm(0,taubeta2)

sdbeta3~dunif (0 ,10)

varbeta3 <-sdbeta3*sdbeta3

taubeta3 <-1/varbeta3

beta3~dnorm(0,taubeta3)

tau.u ~ dgamma (0.01, 0.01)
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Appendix C

R Codes for graph distance and the

number of paths

We created the matrix of Graph distance between counties in Michigan and the

matrix of the number of paths between counties in Michigan using the adjacent

matrix for counties in Michigan. Therefore, the input of the R functions below is

the adjacent matrix for Michigan.

C.1 Graph distance

interm <- function(x){

x1 <- x

for (j in 1:nrow(x)){

for(i in 1:nrow(x)){

a <- which(x1[i,]>j-1)

b <- as.numeric(sapply(apply(cbind(x[,a],NULL),

1, sum), as.logical ))

b[i]<-0

b[which(x1[i,]>0)] <-0
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b[a] <- 0

x1[i,] <- x1[i,]+(j+1)*b

}

if(all(x1[!diag(nrow(x1))] != 0)){ break}

}

x1

}

C.2 The number of paths

npath <- function(y){

interm <- function(x){

x1 <- x

for (j in 1:nrow(x)){

for(i in 1:nrow(x)){

a <- which(x1[i,]>j-1)

b <- as.numeric(sapply(apply(cbind(x[,a],NULL),

1, sum), as.logical ))

b[i]<-0

b[which(x1[i,]>0)] <-0

b[a] <- 0

x1[i,] <- x1[i,]+(j+1)*b

}

if(all(x1[!diag(nrow(x1))] != 0)){ break}

}

x1

}

c <- interm(y)

j = 1
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t = rep(0,length(c[upper.tri(c, diag = FALSE )]))

for (i in c[upper.tri(c, diag = FALSE )]){

a <- y %^% i

t[j] <- a[upper.tri(a, diag = FALSE )][j]

j <- j+1

}

c[upper.tri(c, diag = FALSE )] = t

c[lower.tri(c)] <- t(c)[lower.tri(c)]

print(c)

}

53



References

Besag, J. (1974), Spatial Interaction and the Statistical Analysis of Lattice Sys-

tems. Journal of the Royal Statistical Society: Series B (Methodological),

36: 192-225. https://doi.org/10.1111/j.2517-6161.1974.tb00999.x

Besag, J., York, J., & Mollié, A. (1991). Bayesian image restoration, with two

applications in spatial statistics. Annals of the Institute of Statistical Math-

ematics, 43, 1-20.

Besag, J., & Kooperberg, C. (1995). On conditional and intrinsic autoregressions,

Biometrika, Volume 82, Issue 4, Pages 733 746, https://doi.org/10.1093

/biomet/82.4.733

Bivand, Roger. (2014). SPDEP: Spatial Dependence: Weighting Schemes,

Statistics and Models.

Bloom, J. (2017). Comparison of frequentist and Bayesian inference.

Brownstein, J. S., Green, T. C., Cassidy, T. A., & Butler, S. F. (2010). Geo-

graphic information systems and pharmacoepidemiology: using spatial cluster

detection to monitor local patterns of prescription opioid abuse. Pharma-

coepidemiology and drug safety, 19(6), 627�637.

54



Cai, B., Lawson, A. B., Hossain, M., Choi, J., Kirby, R. S., & Liu, J. (2013).

Bayesian semiparametric model with spatially-temporally varying coe�cients

selection. Statistics in medicine, 32(21), 3670�3685.

Carroll, R., Lawson, A. B., Faes, C., Kirby, R. S., Aregay, M., & Watjou, K.

(2015). Comparing INLA and OpenBUGS for hierarchical Poisson modeling

in disease mapping. Spatial and spatio-temporal epidemiology, 14-15, 45�54.

Carroll, R., Lawson, A. B., Faes, C., Kirby, R. S., Aregay, M., & Watjou, K.

(2016). Bayesian model selection methods in modeling small area colon can-

cer incidence. Annals of epidemiology, 26(1), 43�49.

Carroll, R., Lawson, A. B., Faes, C., Kirby, R. S., Aregay, M., & Watjou, K.

(2018). Spatially-dependent Bayesian model selection for disease mapping.

Statistical methods in medical research, 27(1), 250�268.

Choi, J., & Lawson, A. B. (2018). Bayesian spatially dependent variable selection

for small area health modeling. Statistical methods in medical research, 27(1),

234�249. https://doi.org/10.1177/0962280215627184

Choi, J., & Lawson, A. B. (2019). A Bayesian two-stage spatially dependent

variable selection model for space-time health data. Statistical methods in

medical research, 28(9), 2570�2582.

Clayton, D., & Kaldor, J. (1987). Empirical Bayes estimates of age-standardized

relative risks for use in disease mapping. Biometrics, 43(3), 671�681.

Dellaportas, P., Forster, J. J., & Ntzoufras, I. (2002). On Bayesian model and

variable selection using MCMC. Statistics and computing, 12(1), 27-36.

De Oliveira, Victor. (2012). Bayesian analysis of conditional autoregressive

55



models. Annals of the Institute of Statistical Mathematics. 64. 107-133.

10.1007/s10463-010-0298-1.

Duncan, A.J. (2004). Powers of the adjacency matrix and the walk matrix.

Duncan, E. W., White, N. M., & Mengersen, K. (2017). Spatial smoothing in

Bayesian models: a comparison of weights matrix speci�cations and their

impact on inference. International journal of health geographics, 16(1), 47.

https://doi.org/10.1186/s12942-017-0120-x

Efroymson, M. A. (1960). Multiple regression analysis. Mathematical methods

for digital computers, 191-203.

Getis, A. (2009). Spatial weights matrices. Geographical Analysis, 41(4), 404+.

Getis, A. and Aldstadt, J. (2004), Constructing the Spatial Weights Matrix Using a

Local Statistic. Geographical Analysis, 36: 90-104. https://doi.org/10.11

11/j.1538-4632.2004.tb01127.x

Gill, Gurdiljot & Sakrani, T. & Cheng, W. & Zhou, J.. (2017). COMPARISON

OF ADJACENCY AND DISTANCE-BASED APPROACHES FOR SPATIAL

ANALYSIS OF MULTIMODAL TRAFFIC CRASH DATA. ISPRS - Interna-

tional Archives of the Photogrammetry, Remote Sensing and Spatial Infor-

mation Sciences. XLII-2/W7. 1157-1161.

Ginestet, Cedric. (2011). Bayesian Decision-theoretic Methods for Parameter

Ensembles with Application to Epidemiology.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrika, 82(4), 711-732.

56



Law J. (2016). Exploring the Speci�cations of Spatial Adjacencies and Weights

in Bayesian Spatial Modeling with Intrinsic Conditional Autoregressive Priors

in a Small-area Study of Fall Injuries. AIMS public health, 3(1), 65�82.

https://doi.org/10.3934/publichealth.2016.1.65

Lawson, A. B. (2013). Statistical methods in spatial epidemiology. John Wiley &

Sons.

Lawson, A. B., Browne, WJ., & Vidal Rodeiro, CL. (2003). Disease mapping

with WinBUGS and MLwiN. Wiley-Blackwell.

Lawson, A. B., Song, H. R., Cai, B., Hossain, M. M., & Huang, K. (2010). Space-

time latent component modeling of geo-referenced health data. Statistics in

medicine, 29(19), 2012�2027. https://doi.org/10.1002/sim.3917

Markus J. Fülle & Philipp Otto. (2023) Spatial GARCH models for unknown

spatial locations � an application to �nancial stock returns. Spatial Economic

Analysis 0:0, pages 1-14.

Modarai, F., Mack, K., Hicks, P., Benoit, S., Park, S., Jones, C., Proescholdbell,

S., Ising, A., & Paulozzi, L. (2013). Relationship of opioid prescription sales

and overdoses, North Carolina. Drug and alcohol dependence, 132(1-2),

81�86. https://doi.org/10.1016/j.drugalcdep.2013.01.006.

NIDA. 2021, June 1. Prescription Opioids DrugFacts. Retrieved from https://

nida.nih.gov/publications/drugfacts/prescription-opioids on 2024,

February 13

Onicescu, G., & Lawson, A. B. (2018). Bayesian cure-rate survival model with

spatially structured censoring. Spatial statistics, 28, 352�364.

57



Onicescu, G., Lawson, A., Zhang, J., Gebregziabher, M., Wallace, K., & Eberth,

J. M. (2018). Spatially explicit survival modeling for small area cancer data.

Journal of applied statistics, 45(3), 568�585.

Onicescu, G., Lawson, A. B., Zhang, J., Gebregziabher, M., Wallace, K., &

Eberth, J. M. (2019). Spatially-explicit survival modeling with discrete group-

ing of cancer predictors. Spatial and spatio-temporal epidemiology, 29, 139�148.

https://doi.org/10.1016/j.sste.2018.06.001

Otto, P., & Steinert, R. (2023). Estimation of the Spatial Weighting Matrix

for Spatiotemporal Data under the Presence of Structural Breaks. Journal of

Computational and Graphical Statistics, 32(2), 696�711. https://doi.org/

10.1080/10618600.2022.2107530

Shen, Y. (2019). A Two-Stage Bayesian Variable Selection Method with the

Extension of Lasso for Geo-Referenced Count Data. Dissertations. 3471.

Sillanpää, M. J., & Bhattacharjee, M. (2005). Bayesian association-based �ne

mapping in small chromosomal segments. Genetics, 169(1), 427�439.

Sillanpää, M. J., & Corander, J. (2002). Model choice in gene mapping: what

and why. Trends in genetics : TIG, 18(6), 301�307.

Sommer, S., & Wade, T. (2006). A to Z GIS: an illustrated dictionary of geo-

graphic information systems. Esri Press.

Sturtz, S., Ligges, U., & Gelman, A. (2005). R2WinBUGS: A Package for Run-

ning WinBUGS from R. Journal of Statistical Software, 12(3), 1�16.

Trescot, A. M., Datta, S., Lee, M., & Hansen, H. (2008). Opioid pharmacology.

Pain physician, 11(2 Suppl), S133�S153.

58



Waller, L. A. (2005). Bayesian thinking in spatial statistics. Handbook of Statis-

tics, 25, 589-622.

West, Douglas. (2000). Introduction to Graph Theory (2nd Edition).

Xia, H., Carlin, B. P., & Waller, L. A. (1997). Hierarchical models for mapping

Ohio lung cancer rates. Environmetrics: The o�cial journal of the Interna-

tional Environmetrics Society, 8(2), 107-120.

Yokoi, Takahisa & Ando, Asao. (2008). Spatial structures in a spatial autoregres-

sive model and one-directional adjacency matrices. The Japanese Journal of

Real Estate Sciences. 21. 115-125.

Zhang, C. (2015). Spatial Weights Matrix and its Application.

Zhang, Xinyu & Yu, Jihai. (2017). Spatial weights matrix selection and model

averaging for spatial autoregressive models. Journal of Econometrics. 203.

10.1016/j.jeconom.2017.05.021.

Zou, H. (2005). Some perspectives of sparse statistical modeling. Stanford Uni-

versity.

59


	Alternative Adjacency Matrices and Spatial Analysis
	Recommended Citation

	tmp.1724866433.pdf.tgLFi

