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ON NEAR-LINEAR CELLULAR AUTOMATA OVER NEAR SPACES

Abdul-Rahman M. Nasser, Ph.D.

Western Michigan University, 2024

Cellular Automata can be considered as examples of massively parallel machines. They are compu-

tational mathematical objects consisting of a grid of cells, each of which can exist in a finite number

of states. These cells evolve over discrete time steps according to a set of predefined rules based on

the states of neighboring cells. The notion of cellular automata was first introduced by Ulam and von

Neumann and then popularized by John H. Conway in the 1970s with one of the most famous examples

being The Game of Life.

This research builds on and generalizes the work of Tullio Ceccherini-Silberstein and Michel Coornaert,

who in 2010 studied cellular automata over vector spaces inspired by the works of Mikhael Gromov

regarding the endomorphisms of symbolic algebraic varieties. In this framework, the configuration space

hom(G,V ) = V G, where G is a group and V is a vector space over a field K, naturally forms a vector

space over K. Cellular automata are endomorphisms of this vector space, which are continuous and

invariant under the natural G action on V G.

In this body of work, we investigate cellular automata whose alphabets are Dn×1, where D is a

near-field or an Abraham Adrian Albert (A.A.A) division algebra. Near fields, discovered by Leonard

E. Dickson in 1905, generalize both fields and division rings. Hans Zassenhaus noted that finite near

fields were "sharply 2-transitive groups". Since then, near fields have been intensively studied in the guise

of sharply 2-transitive groups. Specifically, we focus on the structure of near-linear cellular automata,

which are cellular automata over groups whose alphabets are near vector spaces, Dn×1 for D a near field

or A.A.A division algebra. These cellular automata exhibit near linearity with respect to the induced

near space structure on the set of mappings hom(G,Dn×1).

The main results of this work consist of developing a near-linear analog for the Curtis-Hedlund

Theorem, exploring a Garden of Eden-type theorem for near vector spaces, and lastly exploring the

correlation between sofic groups and the property of near-linear surjectivity.
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Chapter 1

Statement on Main Results

In this dissertation, we generalize and expand upon the works of Tulio Ceccherini-Silberstein and

Michel Coornaert. Specifically, we build on the concept of linear cellular automata presented in Chapter

8 of their monograph, Cellular Automata and Groups [2]. Within this framework, the configuration

space, Hom(G,V ) = V G, where G is a group and V is a vector space over a field K, naturally forms a

vector space over K. Cellular automata are then endomorphisms of this vector space.

The primary focus of this dissertation is to introduce and conceptualize mathematical objects known

as G-equivariant D-endomorphisms of Near Vector Space configuration spaces, where G is any group

and D is a near-field or an A.A.A. division algebra. We refer to these objects as Near-Linear Cellular

Automata over Near Spaces.

The main results of this dissertation can be categorized into three areas. First, we conduct a detailed

study of the algebraic properties of near-linear cellular automata over near spaces (Chapter 4). Second,

we extend the Garden of Eden Theorem for linear cellular automata to a Garden of Eden Theorem

for near-linear cellular automata (Chapter 5). Lastly, we extend a property of all sofic groups within

the context of near-linear cellular automata, specifically proving that all sofic groups are near-linearly

surjunctive (Chapter 6).

1.1 Main Results from Chapter 4

We provide a near-linear analog to the Curtis-Hedlund Theorem [11] , which gives a necessary and

sufficient condition for a self-mapping between configuration spaces to be a cellular automaton. In

particular, we give a sufficient and necessary condition for a self-mapping between near spaces to be a

near-linear cellular automaton.

Theorem 4.1.4. Let G be a group and let V be a near space over D where D is a near-field or an A.A.A

1



2

finite division algebra. Let τ : V G → V G be a G-equivariant and D-linear map. Then the following

conditions are equivalent:

(a) the map τ is a near-linear cellular automaton;

(b) the map τ is uniformly continuous (with respect to the prodiscrete uniform structure on V G);

(c) the map τ is continuous (with respect to the prodiscrete topology on V G);

(d) the map τ is continuous (with respect to the prodiscrete topology on V G) at the constant config-

uration x = 0.

The following propositions outline fundamental properties of near-linear cellular automata that are

heavily referenced in later chapters.

Proposition 4.2.4. Let G be a group and let V = Dn×1 be a near space over D where D is a near-field

or an A.A.A finite division algebra. Then, NLCA(G,V ) is a subalgebra of EndD(V G).

Note that in the proposition above NLCA(G,V ) refers to the set of all near-linear cellular automata

over a group G and near space V

Proposition 4.3.2. Let G be a group and let V be a near space over D where D is a near-field or an

A.A.A finite division algebra. Then V [G], the space of configurations with finite support, is a subspace

of V G.

Proposition 4.3.7. If τ ∈ NLCA(G,V ) then the restriction map τ |V [G]: V [G]→ V [G] is D-linear. In

other words, τ |V [G]∈ EndD(V [G]).

Proposition 4.3.12. Let τ ∈ NLCA(G,V ). Then the following are equivalent:

(1) τ is pre-injective.

(2) τ |V [G] : V [G]→ V [G] is injective.

1.2 Main Results from Chapter 5

We provide a near-linear analog to the Garden of Eden Theorem, which gives a sufficient and necessary

condition for a cellular automaton over an amenable group to be surjective.

In order to prove such a theorem, we first establish a closed-image property for near-linear cellular

automata over near spaces. Specifically,

Theorem 5.2.1. Let G be a group and let V = Dn×1 be a finite-dimensional near space over a near-field

or A.A.A. division algebra D. Then every near-linear cellular automaton τ : V G → V G has the closed

image property with respect to the prodiscrete topology on V G.
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Given a set X and a topological space Y , one says that a map f : X → Y has the closed image

property if the set f(X) is closed in Y [2]. The closed image property is often used to establish the

surjectivity of mappings. In fact, to prove that a map f : X → Y with the closed image property is

surjective, it suffices to show that f(X) is dense in Y .

This leads to the following result.

Theorem 5.3.15. Let V = Dn×1 be a finite-dimensional near space over a near-field or A.A.A. division

algebra D and let G be a countable amenable group. Let τ : V G → V G be a near-linear cellular

automaton. Then the following conditions are equivalent:

(a) τ is surjective.

(b) mdim(τ(V G)) = dim(V ).

(c) τ is pre-injective.

1.3 Main Results from Chapter 6

Analogous to when cellular automata have finite alphabets, we introduce the following definition.

Definition 6.2.1. A group G is said to be near-linearly surjunctive (NL-surjunctive) if, for any near-field

or A.A.A. division algebra D and any finite-dimensional near space V = Dn×1 over D, every injective

near-linear cellular automaton τ : V G → V G is surjective.

We then use results from Chapters 4 and 5 to prove the following.

Theorem 6.2.6. Every sofic group is NL-surjunctive.

We note that Theorem 6.2.6 calls upon work established in chapters 4 and 5. In particular the results

from theorems 5.2.1 and 5.3.15 are used.



Chapter 2

Introduction

In this chapter, we present the notion of a cellular automaton. We fix a group and an arbitrary set,

termed the alphabet. A configuration is defined as a mapping from the group to the alphabet, essentially

assigning an alphabet element to each group element. The group naturally acts on the configuration set

through the shift action. A cellular automaton is a self-mapping of the configuration set, constructed from

local rules that commute with the shift. We equip the configuration set with the prodiscrete topology,

representing pointwise convergence associated with the discrete topology on the alphabet. It’s notable

that every cellular automaton is continuous with respect to the prodiscrete topology. Additionally, in the

finite alphabet case, any continuous self-mapping of the configuration space that commutes with the shift

qualifies as a cellular automaton. Another significant observation in the finite alphabet scenario is that

every bijective cellular automaton is invertible; its inverse map also constitutes a cellular automaton.

2.1 Cellular Automata over a Group

Cellular automata over groups extend the concept of traditional cellular automata by incorporating

group structures into the evolution rules. In this framework, the cells are associated with elements from

a group, and the dynamics of the automaton are determined by group operations.

Let (G, ·) be a group, also referred to as a universe, and let A be a set, also referred to as an alphabet.

Definition 2.1.1. For a fixed g ∈ G the mapping

Lg : G×G→ G

(g, g′) 7→ g · g′

4



5

for all g′ ∈ G, is called the left multiplication by g in G.

Remark 2.1.2. We note that for any g, g′, h ∈ G, we have that

(Lg ◦ Lh)(g′) = Lg(Lh(g′)) = Lg(h · g′) = g · (h · g′) = g · h · g′ = Lg·h(g′).

Hence, we have that

Lg ◦ Lh = Lg·h (2.1)

Definition 2.1.3. Let A be a set and let G be a group. Denote by AG, the space of configurations which

consists of all mappings x from G to A. i.e

AG = {x : G→ A}.

Remark 2.1.4. For a given set A and group G, we can express AG as both the Cartesian product of

the set A with itself |G| times, denoted as
∏

g∈G A, and as the set of morphisms from the group G into

the set A, denoted as hom(G,A). Hence

AG =
∏
g∈G

A = hom(G,A).

Definition 2.1.5. Let G be a group and A a set. Given g ∈ G and a mapping (configuration) x ∈ AG,

we define a mapping (configuration) gx ∈ AG by the following,

gx = x ◦ Lg−1 (2.2)

Remark 2.1.6. For all h ∈ G, it follows that

gx(h) = (x ◦ Lg−1)(h) = x(Lg−1(h)) = x(g−1 · h).

Theorem 2.1.7. For (G, ·) a group and A a set, the mapping

G×AG → AG

(g, x) 7→ gx

is a left group action on the space of configurations AG.
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Proof. For any g, h ∈ G, and x ∈ AG, it follows that

(g · h)(x) = x ◦ L(g·h)−1

= x ◦ Lh−1·g−1

= x ◦ Lh−1 ◦ Lg−1 by (1.1)

= g(x ◦ Lh−1)

= g(hx).

(2.3)

Moreover, if 1 ∈ G is the identity element of G and IG : G→ G is the identity mapping, it follows that

1x = x ◦ L1−1 = x ◦ L1 = x ◦ IG = x. (2.4)

Hence by (1.3) and (1.4) we conclude that the mapping

G×AG → AG

(g, x) 7→ gx

is a left group action on the space of configurations AG.

Definition 2.1.8. The left action of group G on the set AG is called the G-Shift on AG.

We next impose a topology on the space of configuration AG.

Definition 2.1.9 ([2]). For a group G and a set A, the prodiscrete topology on the space of configurations

AG is the product topology when each factor A is given the discrete topology.

Remark 2.1.10 ([2]). The prodiscrete topology is the smallest topology on the space of configurations,

AG, such that the projection mapping,

πg : AG → A

πg(x) = x(g)

is continuous for every g ∈ G.

Given a subset F of a group G and a mapping x ∈ AG, let x |F ∈ AF denote the restriction of the

mapping x to F . In other words, x |F : F → A defined by x |F (g) = x(g) for all g ∈ F .

Remark 2.1.11. If x ∈ AG, a neighborhood base of x is given be the sets

V (x, F ) = {y ∈ AG : x |F = y |F } =
⋂

g∈F

C(g, x(g)).
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Here F runs over all finite subsets of the group G and C(g, a) denotes the elementary cylinders

C(g, a) = π−1
g ({a}) = {x ∈ AG : x(g) = a} (g ∈ G, a ∈ A).

Theorem 2.1.12 ([2]). For a group G and a set A, the space AG is Hausdorff and totally disconnected.

Theorem 2.1.13 ([2]). The action of G on AG is continuous with respect to the prodisrecete topology

imposed on AG.

We next give the formal definition of a Cellular Automata over an arbitrary group (universe) and set

(alphabet). It is worth noting that in this setting, the elements of the universe are occasionally referred

to as cells and the elements of the alphabet are occasionally referred to as states.

Definition 2.1.14 ([2]). A Cellular Automaton over a group G and set A is a map τ : AG → AG which

satisfies the following property:

there exists a finite subset M ⊂ G and a mapping µ : AM → A such that

τ(x)(g) = µ((g−1x)|M ) (2.5)

for all x ∈ AG, g ∈ G, where (g−1x)|M denotes the restriction of the configuration g−1x to M .

Remark 2.1.15. Equation (1.5) above can be expressed, by (1.2), in the following way

τ(x)(g) = µ((x ◦ Lg) |M ). (2.6)

Proposition 2.1.16. For any set A and for a group G and a finite subset M ⊆ G. The restriction

mapping φ : AG → AM , x 7→ x |M is surjective.

Proof. For any mapping x : M → A, we want to find a mapping f : G→ A such that φ(f) = x. Define

f : G→ A as follows:

f(y) =


x(y) if y ∈M

a if y ∈ G \M

where a is some fixed element in A. Since M is finite, this is a well-defined function.

Now, let’s verify that φ(f) = x. For y ∈ M , φ(f)(y) = f(y) = x(y) by definition. For y ∈ G \M ,

φ(f)(y) = f(y) = a, but this does not affect the restriction on M since y /∈M . Therefore, φ(f) = x, and

we have found a function f : G→ A such that φ(f) = x for any arbitrary x : M → A. This establishes

the surjectivity of the restriction mapping φ : AG → AM .
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Remark 2.1.17. The proposition above shows that if M is a memory set for the cellular automaton τ ,

then there is a unique map µ : AM → A which satisfies equation (1.5) or (1.6). Hence, one can say that

there exists a map µ that is the local defining map of the cellular automata τ that is associated with the

memory set M .

We now describe some nontrivial examples of cellular automatons.

Example 2.1.18. Let G be any group, A a finite set, and f : A → A a mapping from A into itself.

Then the map

τ : AG → AG

x 7→ f ◦ x

is a cellular automaton with finite memory set M = {e} where e denotes the identity element on G and

local defining map

µ : AM → A

y 7→ f(y(e)).

To see that this is indeed the case, we verify that equation (1.5) is held. We have that

τ(x)(g) = (f ◦ x)(g) = f(x(g))

for all x ∈ AG, g ∈ G. On the other hand, we have that

µ((x ◦ Lg)|e) = µ(x(ge)) = µ(x)(g) = f(x(g)).

Hence τ(x)(g) = µ((g−1x)|M ) for all x ∈ AG, g ∈ G as desired.

The next example is considered the classical example of a cellular automaton, Conways’s Game of

Life [18].

Example 2.1.19. Let G = (Z2,+) ∼= (Z × Z,+) and take M = {−1, 0, 1}2 ⊂ G. Moreover, let the set

(alphabet) A = {0, 1}. Consider a mapping

µ : {0, 1}{−1,0,1}2
→ {0, 1}
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µ(y) =



1 if



∑
m∈M y(m) = 3

or∑
m∈M y(m) = 4 and y((0, 0)) = 1,

0 if otherwise

for all y ∈ {0, 1}{−1,0,1}2 . The mapping

τ : AG → AG

τ : {0, 1}Z
2
→ {0, 1}Z

2

with a memory set M and local defining map µ is Cellular Automaton for the Game of Life.

2.2 Fundamental Properties of Cellular Automata Over Groups

In this section we give an overview of some classical results of cellular automata over groups.

Definition 2.2.1. Let CA(G,A) be the set of all cellular automata τ : AG → AG.

Theorem 2.2.2. The set CA(G,A) is a monoid for the composition of maps with the identity mapping

IdAG be the identity element in the monoid.

The following theorem give us a characterization of τ ∈ CA(G,A) provided that A is finite.

Theorem 2.2.3. (Curtis-Hedlund theorem [2]). Let G be a group and let A be a finite set. Let

τ : AG → AG be a mapping and equip AG with its prodiscrete topology. Then, the following are

equivalent.

(a) τ is cellular automata.

(b) τ is G-equivariant and continuous.

We can see the utility of such a theorem in the following example.

Example 2.2.4. Let G be a group and A be a finite set. Let f : A→ A be a mapping from A into itself

(A is endowed with the discrete topology, hence f is always continuous). Then, the mapping

τ : AG → AG

τ(x) = f ◦ x

is a cellular automata since τ is continuous (since τ = πg◦f, where πg and f are continuous) and for all
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h ∈ G we have that

τ(gx)(h) = f ◦ (gx)(h) = f(x(g−1h)) = g( f ◦ x(h)) = gτ(x)(h).

The finiteness in the Curtis-Hedlund theorem is paramount. Infact, if we suppress the hypothesis

that A is finite, then it is possible to construct a mapping from AG → AG which is G-equivariant and

continuous with respect to the prodisrcete topology, but fails to be a cellular automata.

Example 2.2.5 ([2]). Let G be an arbitary infinite group and let A, the alphabet set be equal to G.

Consider the mapping

τ : AG → AG

τ(x)(g) = x(g · x(g))

for all x ∈ AG and g ∈ G. Then, τ if G-equivariant and continuous with respect to the prodiscrete

topology on AG. However, τ is not a cellular automata.

The following theorem allows for the generalization of the Curtis-Hedlund theorem to an infitie

alphabet which utilizes the prodiscrete uniform structure on a shift space.

Definition 2.2.6 ([2]). Let G be a group and let A be a set. The prodiscrete uniform structure on AG

is the product uniform structure obtained by taking the discrete uniform structure on each factor AG.

Theorem 2.2.7 ([2]). Let A be any set and let G be a group. Let τ : AG → AG be a mapping and

equip AG with its prodiscrete uniform structure. Then, the following are equivalent.

(a) τ is cellular automata.

(b) τ is G-equivariant and continuous.

The following theorems address the notion of invertibilty or reversibility of a cellular automata.

Definition 2.2.8 ([2]). Let τ ∈ CA(G,A). τ is invertible (reversible) ) if τ is bijective and the inverse

map τ−1 : AG → AG is also a cellular automaton. This is equivalent to the existence of a cellular

automaton σ : AG → AG such that τ ◦ σ = σ ◦ τ = IdAG .

Theorem 2.2.9 ([2]). Let A be a set and let G be a group. Let τ : AG → AG be a map and equip AG

with its prodiscrete uniform structure. Then the following conditions are equivalent:

(a) τ is an invertible cellular automaton;

(b) τ is a G-equivariant uniform automorphism of AG.

Remark 2.2.10. Bijective cellular automata over finite alphabets are always invertible.
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Theorem 2.2.11 ([2]). Let G be a group and let A be a finite set. Then every bijective cellular

automaton τ : AG → AG is invertible.

Theorem 2.2.12 ([2]). Let G be a group and let A be a set. Let H be a subgroup of G and let

τ ∈ CA(G,H;A). Let τH ∈ CA(H;A) denote the cellular automaton obtained by restriction of τ to H.

Then the following conditions are equivalent:

(a) τ is invertible;

(b) τH is invertible.



Chapter 3

Near-Fields, A.A.A Divsion

Algebras and Near Spaces

In 1905, Dickson introduced in his book "Linear Groups with an Exposition of the Galois Field

Theory" [4], the revolutionary concept of near-fields. These emerged from his deep dive into field axioms,

defining sets with two operations meeting specific criteria, notably distributivity. It’s a well-known fact

that every field or skew field is a near-field [10].

In 1937, Hans Zassenhaus embarked on an ambitious quest, classifying all finite near-fields, including

those first discovered by Dickson. Along the way, he uncovered seven additional "exceptional" cases [10]

and established a profound link between finite near-fields and finite sharply double transitive groups. His

student, Kalscheuer added to this work by classifying near-fields over the real numbers in 1940.

Meanwhile, in the 1950’s, A. Adrian Albert researched the realm of finite division algebras for finite

protective planes, which gave rise to the A.A.A Division Algebras.

Drawing inspiration from the construction of vector spaces over fields, we extend this idea to near-

fields and A.A.A division algebras. We define a near vector space, or more eloquently, a near space,

formed by taking the Cartesian product of a near-field or an A.A.A division algebra with itself n times.

3.1 Near-Fields

Let D be a set that admits an addition, multiplication, and has distinct additive ,{0}, and multi-

plicative, {1} identities. D is a near-field if D# = D \ {0} is a group and D has only 1 distributive law

[5].

Definition 3.1.1 ([5]). (L, ◦) is a loop if and only if L is a non-empty set and ◦ : L×L → L such that

12
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(1) The equation a ◦ x = b and y ◦ a = b have unique solutions in L for each a, b ∈ L.

(2) There is a 1 in L such that a ◦ 1 = a = 1 ◦ a for all a ∈ L.

Definition 3.1.2 ([5]). (G, ◦) is a group if and only if

(1) (G, ◦) is a loop

(2) a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ G.

Definition 3.1.3 ([5]). (D,+, ◦) is a near field if (D,+) is an abelian group, (D#, ◦) is a group, and for

all x, y, z ∈ D, we have that x ◦ (y + z) = x ◦ y + x ◦ z.

K is called the kernel of D if K = K(D), where

K(D) := {x ∈ D | (y + z) ◦ x = y ◦ x+ z ◦ x ∀ y, z ∈ D}.

Z is called the center of D if Z = Z(D), where

Z(D) := {x ∈ D | x ◦ y = y ◦ x ∀ y ∈ D}.

Z is called the center of K if

Z := {x ∈ K | x ◦ y = y ◦ x ∀ y ∈ K}.

Furthermore, set V := Dn×1, U := Kn×1, and T := Zn×1 for some n ∈ N.

Remark 3.1.4. We can differentiate between a left near-field and a right near-field. The definition in

2.1.4 is that of a left near-field. To obtain a right near-field we reqiure (D,+) to be an abelian group,

(D#, ◦) be a group and for all x, y, z ∈ D we have that (y + z) ◦ x = y ◦ x+ z ◦ x.

Theorem 3.1.5 ([5]). If D is a near field, then

a) Z ⊆ Z ⊆ K, Z is a field, and K is an associative division algebra;

b) D is a vector space over Z and is a right vector space over K;

c) V is a vector space over Z and is a right vector space over K.

Definition 3.1.6 ([5]). Let D be a near-field. Set V = Dn×1 for some n ∈ N. The list

A = A1, A2, · · · , Ah

in V is called a bases of V if

(1) A =
∑
xiAi for xi ∈ D and for every A ∈ V.

(2) If A = 0, then xi = 0 for i = 1, · · · , h.
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In the list above, h is called the length of A. The dimension of V is the length of a bases of V . The

xi’s are called the coordinates of A with respect to A. A is called a list of generators of V if (1) holds. If

(2) holds we call A a linearly independent list. We call a basis of V an X-basis of V if the elements of

the list A are in X where X is a subset of V .

Example 3.1.7. Let D be near-field. Let Ei be the n × 1 matrix whose ith coordinate is 1 and every

other coordinate is 0. Take

E = E1, · · · , En.

Then E is a T -basis of V where T is defined as an n-tuple of element of the center of D.

We now look at a few examples of near-fields.

Example 3.1.8. Let F denote any field or any skew-field, then F is a near-field.

Example 3.1.9. Consider the polynomial x2 + 1 which is irreducible modulo 3. We may therefore use

it to generate the Galois Field of order 32, GF(32). In this GF(32), we denote a solution to the equation

x2 + 1 = 0 by j. Then, the elements of the field may be denoted by x + yj where x and y are integers

in Z3. We take the same symbols x+ yj to denote the elements in N = LED(32) (Named after Leonard

E. Dickson). (i.e setwise, LED(32) = GF(32)). To force LED(32) to not be GF(32)) algebraically, we

keep the same notion of addition but twist the multiplication in the following way: x ◦N y = x ◦ y if x is

square in GF(32), else, x ◦N y = x ◦ y3 for all x, y ∈ LED(32). Then, (LED(32),+, ◦N ) is a near-field.

Example 3.1.10. The Kalscheuer Near-Fields [13], denoted Nr, are defined by twisting the multiplica-

tion on the quaternions, H, in the following way: For a given r ∈ [0,∞) and for all a ∈ H# define

ϕr(a) := ei·r·ln(|a|) ∈ H#.

Now, define the multiplication, ◦, on Nr, by deforming the multiplication on H by:

0 ◦ x = 0 ∀x ∈ H

a ◦ x := a · ϕr(a)−1 · x · ϕr(a) ∀a, x ∈ H

With this twisted multiplication Nr forms a left near-field.

3.2 A.A.A Division Algebras

A division algebra is algebra over a field in which division( either left or right), except by zero, is

always possible.
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Definition 3.2.1 ([5]). (D,+, ◦) is a division algbera over a field F if (D,+, ◦) is an algebra which is a

vector space over F and (D#, ◦) is a loop.

Definition 3.2.2. Let D be a division algebra. The set

Nλ(D) = {a ∈ D | a(xy) = (ax)y for all x, y ∈ D}

is called the left nucleus of D. The set

Nµ(D) = {a ∈ D | x(ay) = (xa)y for all x, y ∈ D}

is called the middle nucleus of D. And the set

Nρ(D) = {a ∈ D | x(ya) = (xy)a for all x, y ∈ D}

is called the right nucleus of D, and

N = Nλ ∩Nµ ∩Nρ

is called the center of D.

Definition 3.2.3. Let (D,+, ◦) be a division algebra. K is called the kernel of D if K = K(D) where

K(D) := {x ∈ D | (y + z) ◦ x = y ◦ x+ z ◦ x, x ◦ (y + z) = x ◦ y + x ◦ z ∀ y, z ∈ D}.

Z is called the center of K if

Z := {x ∈ K | x ∈ N and x ◦ y = y ◦ x ∀ y ∈ D} ∪ {0}.

Furthermore, set V := Dn×1, U := Kn×1, and T := Zn×1 for some n ∈ N.

For the purposes of this paper, we will focus on a specific class of division algebras known as A. A.

Albert Algebras [9], A.A.A for short, which were first coined by mathematician Abraham Adrian Albert.

Definition 3.2.4 ([9]). Let p be an odd prime. Let r > 1 be an odd integer. Define (D,+, ◦) by

(D,+) = (GF (pr),+). First define □ on D as x□y = 2−1(xyP + xpy). Then (D#,□) is a quasi group.

Now Define α, a permutation of D#, by α(x) := u if x = u□1. We finally define x ◦ y = α(x)□α(y). We

note that α(1) = 1, hence (D#, ◦) is a loop with unity 1. As (GF (p)#,□) is a subloop of (D#,□), we

have that (D,+, ◦) = A.A.A(pr) is a division algebra over GF (p) which is never is never isomorphic to

GF (pr).
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Remark 3.2.5. When D is an A.A.A division algebra, the center of D is Zp, the fixed field of the

Frobenius automorphism.

Definition 3.2.6 ([5]). Let D be an A.A.A divsion algebra. Set V = Dn×1 for some n ∈ N. The list

A = A1, A2, · · · , Ah

in V is called a bases of V if

(1) A =
∑
xiAi for xi ∈ D and for every A ∈ V.

(2) If A = 0, then xi = 0 for i = 1, · · · , h.

In the list above, h is called the length of A. The dimension of V is the length of a bases of V . The

xi’s are called the coordinates of A with respect to A. A is called a list of generators of V if (1) holds. If

(2) holds we call A a linearly independent list. We call a basis of V an X-basis of V if the elements of

the list A are in X where X is a subset of V .

Example 3.2.7. Let D be an A.A.A division algebra. Let Ei be the n× 1 matrix whose ith coordinate

is 1 and every other coordinate is 0. Take

E = E1, · · · , En.

Then E is a T -basis of V where T is defined as an n-tuple of element of the center of D.

3.3 Near Spaces

Definition 3.3.1. Let D be a near-field or an A.A.A. division algebra. Then (V,+, ·) is called a Near

Space over D if and only if the following conditions hold:

1. V =
∏

i∈I D = DI , where I is a finite or infinite indexing set.

2. The operation + : V × V → V is defined point-wise, that is, for A,B ∈ V ,

(A+B)(i) = A(i) +B(i) for all i ∈ I.

3. The operations · : D × V → V and · : V ×D → V are defined point-wise, that is, for x ∈ D and

A ∈ V ,

(x ·A)(i) = x ·A(i) and (A · x)(i) = A(i) · x for all i ∈ I.

Definition 3.3.2. Let M be a nonempty subset of V .
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1. M is called an L-subspace of V if (M,+) is an abelian subgroup of (V,+) and x · A ∈ M for any

x ∈ D and A ∈M .

2. M is called a subspace of V if (M,+) is an abelian subgroup of (V,+), x · A ∈ M , and A · x ∈ M

for any x ∈ D and A ∈M .

We next focus on the notion of a mapping between near spaces that preserve the structure of the

space. We will refer to these mappings as near-linear mappings or near-linear transformations.

Definition 3.3.3. Let V and W be near spaces over some near-field or A.A.A. division algebra D. A

near-linear map from V to W is a function T : V →W with the following properties:

1. Additivity:

T (u+ v) = T (u) + T (v) for all u, v ∈ V ;

2. Left homogeneity:

T (av) = aT (v) for all a ∈ D, v ∈ V ;

3. Right homogeneity:

T (va) = T (v)a for all a ∈ D, v ∈ V.

Remark 3.3.4. If T is a near-linear map from a near space V over D into itself, we call T a D-

endomorphism of V denoted EndD(V ).

Example 3.3.5. Let T be a linear transformation form a vector space V to a vector space W , then T

is a near-linear transformation.

We next look at some examples of near spaces which are not vector spaces

Example 3.3.6. Let D = LED(32) as in example 2.1.9. Set V = Dn for some integer n. Then V is a

finite dimensional near space over D which is in fact not a vector space.

Example 3.3.7. Let D = A.A.A(pr) which is a division algebra over GF (p) (see definition 2.2.3). Set

V = Dn for some integer n. Then V is a finite dimensional near space over D which is in fact not a

vector space.



Chapter 4

Near Space Near-Linear Cellular

Automata

Within this chapter, we investigate the realm of near-linear cellular automata, where the alphabet

is structured as a near space and exhibits near-linearity within the induced near vector space structure

on configuration sets. When the alphabet near vector space and the underlying group are established,

the set of near-linear cellular automata forms a subalgebra within the endomorphism algebra of con-

figuration spaces. A notable trait of near-linear cellular automata is their capacity to produce results

with finite support when applied to configurations with finite support. Additionally, a near-linear cel-

lular automaton’s behavior is fully determined by its actions on finitely-supported configurations, and

it is pre-injective if and only if its operations on such configurations are injective. A characterization

of near-linear cellular automata is also given. For this Chapter, let D denote either a near-field or an

A.A.A finite division algebra.

4.1 Near-Linear Cellular Automata

Theorem 4.1.1. Let G be a group and let V = Dn×1 be a near space over D. The set

V G := {x : G→ V = Dn×1} =
∏
g∈G

V

consisting of all configurations (maps) x : G → V over G and alphabet V has a natural structure of a

near space over D in which addition and scalar multiplication are defined below:

(x+ y)(g) = x(g) + y(g); (dx)(g) = d · x(g); (xd)(g) = x(g) · d

18
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for all x, y ∈ V G, d ∈ D, g ∈ G.

Proof. Let I = {1, · · · , n} for some natural number n. Then we have that

V G = (DI)G =
∏
g∈G

(
∏
i∈I

D) =
∏
g∈G

∏
i∈I

D =
∏

(g,i)∈G×I

D = D|I|×|G|.

Hence, V G, alongside the operations

(x+ y)(g) = x(g) + y(g), (dx)(g) = d · x(g), (xd)(g) = x(g) · d

for all x, y ∈ V G, d ∈ D, and g ∈ G, forms a near space.

Definition 4.1.2. A Near Space Cellular Automata, near-linear cellular automata, over a group G and

alphabet V = Dn×1 is cellular automata τ : V G → V G which is D-linear i.e

τ(x+ y) = τ(x) + τ(y); τ(dx) = d · τ(x); τ(xd) = τ(x) · d

for all x, y ∈ V G, d ∈ D.

Proposition 4.1.3. Let G be a group and let V = Dn×1 be a near space over D. Let τ : V G → V G be

a cellular automata with a finite memory set S ⊂ G and local defining map µ : V S → V . Let K denote

the kernel of D and Z denote the center of K. Then

(a) τ is a near-linear cellular automata if and only if µ is D-linear.

(b) If τ is a near-linear cellular automata, then τ is right linear over K with the same µ.

(c) If τ is a near-linear cellular automata, then τ is linear over Z with the same µ.

Proof. (a) Suppose that τ is a near-linear cellular automata. Let y, y′ ∈ V S and let d ∈ D. Let x, x′ be

two mappings in V G that extend y and y′ respectively. In other words x |S= y and x′ |S= y′. Recall

that

τ(x)(g) = µ((g−1x) |S)

can be written in the following way

τ(x)(g) = µ((x ◦ Lg) |S)

for all g ∈ G. Hence the equation above yields that

τ(x)(1G) = µ(x |S)
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Thus it follows that

µ(y + y′) = µ(x |S +x′ |S)

= τ(x+ x′)(1G)

= (τ(x) + τ(x′))(1G) (as τ is D − linear)

= τ(x)(1G) + τ(x′)(1G)

= µ(x |S) + µ(x′ |S)

= µ(y) + µ(y′)

(4.1)

Moreover, as

(dx) |S= dy; and (xd) |S= yd

for any d ∈ D. Hence we have that

µ(dy) = µ((dx) |S) = τ(dx)(1G) = d · τ(x)(1G) = d · µ(x |S) = d · µ(y).

And

µ(yd) = µ((xd) |S) = τ(xd)(1G) = τ(x)(1G) · d = µ(x |S) · d = µ(y) · d.

This shows that µ is D-linear, as desired.

On the other hand, suppose that µ D-linear. Then, for all x, x′ ∈ V G, d ∈ D, g ∈ G,

τ(x+ x′)(g) = µ(g−1(x+ x′) |S)

= µ(g−1(x) |S +g−1(x′) |S)

= µ(g−1(x) |S) + µ(g−1(x′) |S)

= τ(x)(g) + τ(x′)(g)

= (τ(x) + τ(x′))(g)

(4.2)

Moreover, we have that

τ(dx)(g) = µ(g−1(dx) |S)

= µ(d(g−1x) |S)

= d · µ((g−1x) |S)

= d · τ(x)(g)

(4.3)
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and

τ(xd)(g) = µ(g−1(xd) |S)

= µ((g−1x)d |S)

= µ((g−1x) |S) · d

= τ(x)(g) · d

(4.4)

Therefore we can conclude that τ is D- linear as desired. □

(b) Let τ be a near space linear cellular automata. Since K ⊂ D, it follows that τ restricted to K

is right linear over K. □

(c) Let τ be a near space linear cellular automata. Since Z ⊂ K ⊂ D, it follows that τ restricted

to Z is linear over Z.

Our next result will show the near linear analogue of the Curtis-Hedlund theorem (2.2.3).

Theorem 4.1.4. Let G be a group and let V be a near space over D. Let τ : V G → V G be a

G-equivariant and D-linear map. Then the following conditions are equivalent:

(a) the map τ is a near-linear cellular automaton;

(b) the map τ is uniformly continuous (with respect to the prodiscrete uniform structure on V G);

(c) the map τ is continuous (with respect to the prodiscrete topology on V G);

(d) the map τ is continuous (with respect to the prodiscrete topology on V G) at the constant config-

uration x = 0.

Proof.

(a =⇒ b)

Assume that τ : V G → V G is a near linear cellular automaton with memory set S and local defining

map µ : V S → V such that

τ(x)(g) = µ((g−1x) |S) = µ((x ◦ Lg) |S)

for all x ∈ V G and g ∈ G. By assumption τ is D- linear and τ is also G-equivariant (τ(gx) = gτ(x) for

all g ∈ G and x ∈ V G). We note that τ(x)(g) depends only on the restriction of the mapping x to the

set gS since (g−1x)(s) = x(gs) for all s ∈ S. Let x,∈ V G such that

x |gS = y |gS



22

for some g ∈ G. Hence

τ(x)(g) = µ((g−1x)|S) = µ((g−1y)|S) = τ(y)(g).

Now, suppose that x and y coincide on ΩS for some subset Ω ⊂ G. That is, for all g ∈ Ω and s ∈ S, we

have (g−1x)(s) = (g−1y)(s). It follows then that τ(x) and τ(y) coincide on Ω. To see this, we need to

show that for all g ∈ Ω, we have τ(x)(g) = τ(y)(g). Let g ∈ Ω. Since gS ⊆ ΩS, we know that x and y

coincide on gS, and therefore τ(x)(g) = τ(y)(g) by the argument above. Thus, we have shown that τ(x)

and τ(y) coincide on Ω.

We note that ΩS is a finite set whenever Ω and S are finite, since it is the Cartesian product of two

finite sets. Recall that a base of entourages for the prodiscrete uniform structure on V G is given by the

sets WΩ ⊂ V G × V G, where

WΩ = {(x, y) ∈ V G × V G | x |Ω= y |Ω}

and Ω runs over all finite subsets of G. Hence we have that

(τ × τ)(WΩS ⊂WΩ)

for every finite subset Ω of G. Since the sets WΩ, such that Ω runs over all finite subsets of G, form

a base of entourages for the prodiscrete uniform structure, we can conlcude that τ is uniformly continuous.

(b =⇒ c)

We have that the topology associated with the prodiscrete uniform structure is the prodiscrete topology

and moreover, every uniformly continuous map is continuous.

(c =⇒ d)

Clear.

(d =⇒ a)

Suppose that the mapping τ is continuous at 0. Consider the map V G → V defined by x 7→ τ(x)(1G). We

claim that this mapping is continuous at 0. To see this we note that for any g in G, the map that assigns

to each configuration in V G its value at g, i.e., x → x(g), is continuous with respect to the prodiscrete

topology on V G. This topology is generated by the sets of the form U = {x ∈ V G | x(g) ∈ V } for

some g in G and some open subset of V. To see why this is true, note that if U is such a set, then its
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preimage under the projection map x → x(g) is the set {x ∈ V G | x(g) ∈ V }, which is open in the

product topology on V G. Therefore, the projection map is continuous. Now, using the G-equivariance

of τ , we can write

τ(x)(g) = τ(g−1x)(1G)

for all x in V G and g in G. This shows that the map x → τ(x)(1G) can be expressed as a composition

of continuous maps, namely the projection maps x → x(g) followed by the map g−1x → τ(g−1x)(1G).

Since the composition of continuous maps is continuous, we can conclude that the map is also continuous.

Now, by the continuity of this mapping, we have that there exits a finite subset S ⊂ G such that if

x ∈ V G satisfies x(s) = 0 for all s ∈ S, then τ(x)(1G) = 0.

Now, as τ is D-linear, we have that if two configurations x and y coincide on S then

τ(x)(1G) = τ(y)(1G).

Thus there exists a D-linear map µ from V S to V such that

τ(x)(1G) = µ(x |S)

for all x in V G. Since τ is G-equivariant, we have that

τ(x)(g) = τ(g−1x)(1G) = µ((g−1x) |S)

for all x ∈ V G and g ∈ G. Hence the map τ is a near linear cellular automaton cellular with memory set

S and local defining map µ.

Example 4.1.5. Let G be a group, and let V = Dn×1 be a near space over D. Let f ∈ EndD(N). Then

the mapping

τ : V G → V G

f ◦ x

for all x ∈ V G is a near-linear cellular automata.

Example 4.1.6. Let G be a group and let V = Dn×1 be a near space over D. Moreover, let f ∈

EndD(V ). Consider the mapping τ : V G → V G defined in the following way; τ(x) = f ◦ x for all

configuration x ∈ V G. Then it follows that τ is a near-linear cellular automata.
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4.2 The Algebra of Near-Linear Cellular Automata

Recall that if F is a field, and A is a vector space over F equipped with an additional binary operation

from A × A to A, denoted here by ·, then A is an algebra over F , also known as an F -algebra, if the

following identities hold for all elements x, y, z ∈ A and all elements a, b ∈ F :

1. Right distributivity: (x+ y) · z = x · z + y · z

2. Left distributivity: z · (x+ y) = z · x+ z · y

3. Compatibility with scalars: (ax) · (by) = (ab)(x · y)

Recall that if B is a subset of A and F -Algebra such that B is a sub vector space and a sub ring of

A, then B is a subalgerba of A. We now wish to naturally extend these definition to our notion of near

spaces and near fields.

Definition 4.2.1. Let D be a near-field or an A.A.A. division algebra and let V = Dn×1 be the near

space over D equipped with an additional binary operation from V × V to V , denoted here by ·. Then

V is a near algebra over D, also known as a D-algebra, if the following identities hold for all elements

x, y, z ∈ V and all elements a, b ∈ D:

1. Left distributivity: z · (x+ y) = z · x+ z · y

2. Compatibility with scalars on the left: (ax) · (by) = (ab)(x · y)

3. Compatibility with scalars on the right: (xa) · (yb) = (x · y)(ab)

Definition 4.2.2. Let B be a subset of a D-algebra A. Then B is called a subalgebra of A if B is both

a subspace and a subring (with only left distribution) of A.

Let V = Dn×1 be a near space over the near field D. Let EndD(V ) denote the set of endomorphisms

(structure preserving maps from V to V ). We note that EndD(V ) admits a natural near space structure

of a D-algebra where

(φ+ φ′)(v) = φ(v) + φ′(v),

(φφ′)(v) = (φ ◦ φ′)(v) = φ(φ′(v))

and

(dφ)(v) = dφ(v); (φd)(v) = φ(v)d

for all φ,φ′ ∈ EndD(V ), d ∈ D, and v ∈ V . We note that the identity mapping acts as the unit element

ind EndD(V ).
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Let G be a group and let V = Dn×1 be a near space over D. We denote by NLCA(G,V ) the set

of all near linear cellular automata with respect to the group G and near space V . It follows from

definition 7 that

NLCA(G,V ) ⊂ EndD(V G).

Before we state our next Proposition, consider the following lemma.

Lemma 4.2.3. Let G be a group and let A be a set. Let τ1 and τ2 be cellular automta over G and A

with memeory sets S1 and S2 respectively. Then S = S1 ∪ S2 is a memory set of the cellular automata

τ1 + τ2.

Proof. Let τ1 and τ2 be two cellular automata with memory sets S1 and S2 respectively. We want to

show that S = S1 ∪ S2 is a memory set for the addition of these automata.

Let µ1 : AS1 → A and µ2 : AS2 → A be the maps defined on the restricted configurations for τ1

and τ2 respectively, as per the given definition of a cellular automaton.

We define a new map µ : AS → A as follows:

µ(y) =


µ1(y|S1) if y|S1 is defined

µ2(y|S2) if y|S1 is not defined

where y|S1 and y|S2 denote the restrictions of y to S1 and S2 respectively.

For any x ∈ AG and g ∈ G, we have:

(τ1 + τ2)(x)(g) = τ1(x)(g) + τ2(x)(g) (Addition of two automata)

= µ1((g−1x)|S1) + µ2((g−1x)|S2)

Now, consider the restriction (g−1x)|S :

• If (g−1x)|S1 is defined, then (g−1x)|S1 = (g−1x)|S , because S1 ⊆ S. In this case, we have:

µ((g−1x)|S) = µ1((g−1x)|S1) (By definition of µ)

= τ1(x)(g) (By definition of µ1)
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• If (g−1x)|S1 is not defined, then (g−1x)|S1 ̸= (g−1x)|S , because S1 ⊈ S. In this case, we have:

µ((g−1x)|S) = µ2((g−1x)|S2) (By definition of µ)

= τ2(x)(g) (By definition of µ2)

Therefore, in both cases, we have τ1(x)(g) + τ2(x)(g) = µ((g−1x)|S), which satisfies the property

required for a memory set.

Hence, we have shown that S = S1∪S2 is a memory set for the addition of the two cellular automata

τ1 and τ2, as the map µ defined on the restricted configurations satisfies the required property.

Proposition 4.2.4. Let G be a group and let V be a near space over D. Then, NLCA(G;V ) is a

subalgebra of EndD(V G).

Proof. Let τ1, τ2 ∈ NLCA(G,V ) with finite memory sets S1 and S2 respectively. Then S = S1 ∪ S2 is

a memory set of the cellular automata τ1 + τ2 by lemma 12.Now, let µ1 : V S → V and µ2 : V S → V

be the corresponding local defining maps of τ1 and τ2 respectively and set µ = µ1 + µ2. Note that by

proposition 8(a), µ1 and µ2 is D-linear and hence µ is D-linear. For all x ∈ V G and g ∈ G we have

(τ1 + τ2)(x)(g) = τ1(x)(g) + τ2(x)(g)

= µ1(g−1x|S) + µ2(g−1x|S)

= µ(g−1x|S).

Hence τ1 + τ2 is a neaer cellular automaton with memory set S and local defining map µ. Since the map

1 + 2 is D-linear, we have that τ1 + τ2 ∈ NLCA(G;V ).

Moreover, let d ∈ D and let τ ∈ NLCA(G,V ) with a finite memory set S and D-linear local defin-

ing map µ. Then it follows that

(dτ)(x)(g) = dτ(x)(g) = dµ(g−1x|S) = (dµ)(g−1x|S)

and

(τd)(x)(g) = τ(x)(g)d = µ(g−1x|S)d = (µd)(g−1x|S).

Thus the D-linear mappings dτ and τd are cellular automaton with memory set S and local defining

map dµ and µd respectively. It follows that dτ, τd ∈ NLCA(G,V ).

Lastly, we note that the identity configuration on V G is in NLCA(G,V ). Moreover, since the composition
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of two CA’s is a CA, we have that τ1 ◦ τ2 = τ1τ2 ∈ NLCA(G,V ). So we conclude that NLCA(G;V ) is a

subalgebra of EndD(V G).

4.3 Configurations of Finite Support For NLCA

Let G be a group and let V be a near space over D.

Definition 4.3.1. The support of a mapping x ∈ V G is the set

{g ∈ G | x(g) ̸= 0V }.

We denote by V [G] the subset of V G consisting of all mappings with finite support.

Proposition 4.3.2. Let G be a group and let V be a near space over D. Then V [G] is a subspace of

V G.

Proof. We first note that the set V [G] is non empty as the zero mapping, 0(g) = 0V for all g ∈ G, is

clearly in V [G].

Now, let x, y ∈ V [G] such that S is the support of x and T is the support if y where |S| < ∞ and

|T | <∞. Let’s denote the union of their supports as S ∪T , which is also a finite subset of G because it’s

a union of two finite sets. Now, consider the sum x+ y, which is also a configuration in V G, defined as

(x+ y)(g) = x(g) + y(g) for all g in G, where x(g) and y(g) denote the values of x and y at the element

g in G, respectively.

To show that x + y has finite support, we need to show that the set of elements of G where (x + y) is

nonzero is finite. Now, for any element g in G, we have two cases to consider:

Case 1: g ∈ S ∪ T . This means that g is in the union of the supports of x and y, i.e., g ∈ S or

g ∈ T . Without loss of generality, let’s say g ∈ S. This implies that x(g) ̸= 0V , because g is in the

support of x, which is a finite set. Therefore, (x+ y)(g) = x(g) + y(g) ̸= 0V , because x(g) is nonzero.

Case 2: g /∈ S ∪ T . This means that g is not in the union of the supports of x and y, i.e., g /∈ S

and g /∈ T . This implies that x(g) = 0V and y(g) = 0V , because g is not in the support of x or y, which

are finite sets. Therefore, (x+ y)(g) = x(g) + y(g) = 0V + 0V = 0V , which is the zero vector in V .

In both cases, we can see that (x + y)(g) is either nonzero for finitely many elements g in G (Case
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1) or zero for all other elements g in G (Case 2). Therefore, the set of elements of G where (x + y) is

nonzero is finite. Hence (x+ y) ∈ V [G].

Now, Let x be a configuration in V [G] and let d be a scalar in D. We need to show that ax is also

a configuration in V [G].

Since x is a configuration in V [G], it has finite support, denoted as S, which is a finite subset of G.

This means that there are only finitely many elements in G where x is nonzero, i.e., x(g) ̸= 0V , for

finitely many g in G.

Now, consider the scalar multiplication dx, which is also a configuration in V G, defined as (dx)(g) =

d · x(g) for all g in G, where x(g) denotes the value of x at the element g in G.

To show that dx has finite support, we need to show that the set of elements of G where (dx) is

nonzero is finite.

Now, for any element g in G, we have two cases to consider:

Case 1: g ∈ S This means that g is in the support of x, i.e., g ∈ S. Therefore, x(g) ̸= 0V , be-

cause g is in the support of x, which is a finite set. This implies that d · x(g) is nonzero, because d is a

nonzero scalar in D. Therefore, (dx)(g) = d · x(g) ̸= 0V , because d · x(g) is nonzero.

Case 2: g /∈ S This means that g is not in the support of x, i.e., g /∈ S. This implies that x(g) = 0V ,

because g is not in the support of x, which is a finite set. Therefore, (dx)(g) = d · x(g) = d · 0V = 0V ,

which is the zero vector in V .

In both cases, we can see that (dx)(g) is either nonzero for finitely many elements g in G (Case 1)

or zero for all other elements g in G (Case 2). Therefore, the set of elements of G where (dx) is nonzero

is finite. Since dx has finite support, we can conclude that dx belongs to V [G].

A similar argument shows that xd ∈ V [G]. Hence V [G] is a subspace of V G as desired.

Proposition 4.3.3. V [G] is dense in V G for the prodiscrete topology.
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Proof. In the prodiscrete topology, if x ∈ V G, a neighborhood base of x is given by the set

W = {y ∈ V G | y |Ω= x |Ω}

for Ω a finite subset of G. Let y ∈W and define

ȳ(g) =


0 if g /∈ Ω

y(g) if g ∈ Ω

Hence ȳ(g) ∈ V [G] so V [G] is dense in V G.

Definition 4.3.4. Two mappings x, x′ ∈ V G are almost equal if and only if the set

{g ∈ G | x(g) ̸= x′(g)}

is finite.

Proposition 4.3.5. Let G be a group and let V be a near space over the near field D. Let x, x′ ∈ V G.

Then x, x′ are almost equal if and only x− x′ ∈ V [G].

Proof. Let x, x′ ∈ V G. Then by definition Let x, x′ are almost equal if and if the set

{g ∈ G | x(g) ̸= x′(g)}

is finite. However, it follows that

{g ∈ G | x(g) ̸= x′(g)} = {g ∈ G | (x− x′)(g) ̸= 0V }

Hence, x, x′ are almost equal if and only x− x′ ∈ V [G].

Proposition 4.3.6. Let G be a group and let V be a near space over D. Let τ be a nearl linear cellular

automata over G and V . Then one has that τ(V [G]) ⊂ V [G].

Proof. Let x ∈ V [G] with support T . Note that for any x ∈ V [G] with support T , the definition of τ

tells us that τ(x)(g) = µ((g−1x)|S), where S is a finite subset of G and µ : V S → V is the corresponding

local defining map for τ .

Now, since x has finite support, we can let T be the support of x, which is also a finite subset of G. Then,

for any g ∈ G, if g−1T ∩ S = ∅, we have (g−1x)|S = 0. This is because g−1x has support contained
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in g−1T , which does not intersect S. Therefore, we can write τ(x)(g) = µ((g−1x)|S) = 0 if g−1T ∩S = ∅.

Since S is finite, there are only finitely many g ∈ G for which g−1T ∩ S ̸= ∅. Let U be the set of

such g, i.e., U = g ∈ G : g−1T ∩ S ̸= ∅. Then, we have shown that τ(x)(g) = 0 for all g ∈ G \ U .

Therefore, the support of τ(x) is contained in U .

Finally, we note that U is a finite set because both T and S are finite, so g−1T intersects S for only

finitely many g. Therefore, we can write U = TS−1, the product of two finite sets. This shows that the

support of τ(x) is contained in a finite set, so τ(x) ∈ V [G].

Hence, we have shown that τ(V [G]) ⊆ V [G] as required.

Remark 4.3.7. If τ ∈ NLCA(G,V ) then the restriction map

τ |V [G]= V [G]→ V [G]

is D-linear. In other words τ |V [G]∈ EndD(V [G]).

Proof. To show that τ |V [G] is D-linear, we need to verify three properties:

1. For any u, v ∈ V [G], we have τ |V [G](u+ v) = τ |V [G](u) + τ |V [G](v).

2. For any α ∈ D and u ∈ V [G], we have τ |V [G](αu) = ατ |V [G](u).

3. For any α ∈ D and u ∈ V [G], we have τ |V [G](uα) = τ |V [G](u)α.

Let u, v ∈ V [G] be arbitrary. Since u, v ∈ V [G], they are configurations in V G with finite support.

Therefore, τ(u), τ(v) ∈ V G as well, since τ is defined on V G.

Now, consider τ |V [G](u + v). By definition, this is τ(u + v) restricted to V [G]. Using the definition

of τ as a near linear cellular automaton, we have:

τ |V [G](u+ v) = τ(u+ v)V [G]

= (τ(u) + τ(v))|V [G] by additivity of τ

= τ(u)|V [G] + τ(v)|V [G] by restriction of V [G]

= τ |V [G](u) + τ |V [G](v).
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So, we have shown that τ |V [G] is additive.

Let α ∈ D and u ∈ V [G] be arbitrary. Again, since u ∈ V [G], it is a configuration in V G with fi-

nite support. Therefore, τ(u) ∈ V G as well.

Now, consider τ |V [G](αu). By definition, this is τ(αu) restricted to V [G]. Using the definition of τ

as a near linear cellular automaton, we have:

τ |V [G](αu) = τ(αu)|V [G]

= (ατ(u))|V [G] by homogeneity of τ

= α(τ(u)|V [G]) by restriction of V [G]

= ατ |V [G](u).

Similarly, let α ∈ D and u ∈ V [G] be arbitrary. Again, since u ∈ V [G], it is a configuration in V G with

finite support. Therefore, τ(u) ∈ V G as well.

Now, consider τ |V [G](uα). By definition, this is τ(uα) restricted to V [G]. Using the definition of τ

as a near linear cellular automaton, we have:

τ |V [G](uα) = τ(uα)|V [G]

= (τ(u)α)|V [G] by homogeneity of τ

= (τ(u)|V [G])α by restriction of V [G]

= τ |V [G](α).

So, we have shown that τ |V [G] is homogeneous. Since τ |V [G] satisfies both the additivity and homogeneity

properties, it is a D-linear map. Therefore, τ |V [G] ∈ EndD(V [G]).

Definition 4.3.8. Let N and M be two near algebras over D. A map F : N →M is called a D-algebra

homomorphism if F is both a near space homomorphism (i.e., a D-linear map) and a ring homomorphism.

Proposition 4.3.9. Let G be a group and let V = Dn×1 be a near space over a near field D. The map

Λ : NLCA(G,V )→ EndD(V [G]) defined by Λ(τ) = τ |V [G] is an injective D-algebra homomorphism.

Proof. It suffices to show that Λ is injective as F is a D-algebra homomorphism by virtue of the struc-

tures on NLCA(V,G) and EndD(V [G]).
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To show that Λ is injective, we need to prove that if Λ(τ1) = Λ(τ2) for some τ1, τ2 ∈ NLCA(G,V ),

then τ1 = τ2. In other words, if the restrictions of τ1 and τ2 to V [G] are equal, then τ1 and τ2 themselves

are equal.

Let τ1, τ2 ∈ NLCA(G,V ) such that Λ(τ1) = Λ(τ2). This means that τ1|V [G] = τ2|V [G] as maps from

V [G] to V [G].

To show that τ1 = τ2, we need to show that they are equal on all configurations x ∈ V G, i.e., τ1(x) = τ2(x)

for all x ∈ V G.

Let x ∈ V G be an arbitrary configuration. Since x ∈ V G, we can write x as a function from G to

V with finite support, i.e., x : G→ V such that x(g) = 0 for all but finitely many g ∈ G.

Now, let’s consider the action of τ1 and τ2 on x. By definition of Λ, we know that τ1|V [G] = τ2|V [G],

which means that both τ1 and τ2 act the same way on the configurations in V [G]. Since x ∈ V G, we

know that x is also in V [G] because x has finite support.

Thus, we have τ1(x) = τ1|V [G](x) = τ2|V [G](x) = τ2(x). Since x was an arbitrary configuration in

V G, we have shown that τ1(x) = τ2(x) for all x ∈ V G, which implies that τ1 = τ2.

Therefore, we have proved that Λ is an injective D-algebra homomorphism, as desired.

Definition 4.3.10. Let X be a Cartesian product. A function f : X → X is pre-injective if it sends

distinct, almost equal elements into distinct elements.

Let G be a group and let A be a set. Given a subset X ⊂ AG a set Z and a map f : X → Z is called

pre-injective if it satisfies the following conditions: if x1, x2 ∈ X are almost equal and f(x1) = f(x2),

then x1 = x2.

Remark 4.3.11. If f is in injective then f is pre-ijective. Moreover, if the cardinality of the group G is

finite, then pre-injectivity of f implies injectivity.

Proposition 4.3.12. Let τ ∈ NLCA(G,V ). Then the following are equivalent.

(1) τ is pre-injective.

(2) τ |V [G] : V [G]→ V [G] is injective.

Proof.

(1 =⇒ 2)
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Let τ be pre-injective. Let x ∈ ker(τ |V [G]). Then it follows that x ∈ V [G] and τ(x) = τ |V [G](x) = 0.

We note that the zero configuration, 0(g) = 0 for all g ∈ G, and x are almost equal. More over, by the

D-linearity of τ we have that τ(0) = 0. Hence, by our assumption that τ is pre-injective, this the implies

that x = 0. Therefore the τ |V [G] has a trivial kernel and thus is injective.

(2 =⇒ 1)

Suppose that τ |V [G] injective. Let x, x′ ∈ V G be two mappings which are almost equal and such that

their images under τ agree. i.e τ(x) = τ(x′). Then by proposition 18, we have that x− x′ ∈ V [G] and

τ |V [G](x− x′) = τ(x− x′) = τ(x)− τ(x′) = 0.

Since τ |V [G] is injective, this implies then that x − x′ = 0. So x = x′. Hence τ is pre-injective as

desired.

4.4 Restriction and Induction of Near-Linear Ceulluar Automata

In this section, we show that the processes of restriction and induction for cellular automata preserve

near-linearity properties.

Definition 4.4.1. Let G be a group and let V = Dn×1 be a near space over D. We denote by

NLCA(G,H;V ) = NLCA(G;V )∩CA(G,H;V ) the set of all near-linear cellular automata τ : V G → V G

admitting a memory set S such that S ⊂ H.

Proposition 4.4.2. Let τ ∈ CA(G,H;V ). Then, τ ∈ NLCA(G,H;V ) if and only if τH ∈ NLCA(H;V ).

Proof. It follows from the definitions of restriction and induction that a cellular automaton τ ∈ CA(G,H;V )

is near-linear if and only if τH ∈ CA(H;V ) is near-linear.

Remark 4.4.3. Let A and B be two near algebras over a near-feild or division algebra D. A map

F : A → B is called a D-algebra isomorphism if F is a bijective D-algebra homomorphism. It is clear

that if F : A → B is a D-algebra isomorphism, then its inverse map F−1 : B → A is also a D-algebra

isomorphism.

Proposition 4.4.4. The set NLCA(G,H;V ) is a subalgebra of NLCA(G;V ). Moreover, the map τ 7→ τH

is a D-algebra isomorphism from NLCA(G,H;V ) onto NLCA(H;V ) whose inverse is the map σ 7→ σG.

Proof. Let τ1, τ2 ∈ NLCA(G,H;V ) with memory sets S1, S2 ⊂ H respectively. Then the near-linear

cellular automaton τ1 + τ2 admits S1 ∪ S2 as a memory set. As S1 ∪ S2 ⊂ H, we have τ1 + τ2 ∈
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NLCA(G,H;V ). If d ∈ D and τ ∈ NLCA(G,H;V ), with memory set S ⊂ H, then S is also a memory

set for dτ and therefore dτ ∈ NLCA(G,H;V ). Similarly, if d ∈ D and τ ∈ NLCA(G,H;V ), with memory

set S ⊂ H, then S is also a memory set for τd and therefore τd ∈ NLCA(G,H;V ). This shows that

NLCA(G,H;V ) is a subspace of NLCA(G;V ). Since NLCA(G,H;V ) is a submonoid of NLCA(G;V ),

we deduce that NLCA(G,H;V ) is a subalgebra of NLCA(G;V ).

For simplicity’s sake, denote by Φ : NLCA(G,H;V ) → NLCA(H;V ) and Ψ : NLCA(H;V ) →

NLCA(G,H;V ) the maps defined by Φ(τ) = τH and Ψ(σ) = σG respectively. It is clear from the

definitions that Ψ ◦Φ : NLCA(G,H;V )→ NLCA(G,H;V ) and Φ ◦Ψ : LCA(H;V )→ NLCA(H;V ) are

the identity maps. Therefore, Φ is bijective with inverse Ψ. It remains to show that Φ is a D-algebra

homomorphism.

Let τ1, τ2 ∈ NLCA(G,H;V ) and d1, d2 ∈ D. Let x ∈ V H and let x′ ∈ V G extending x. We have

Φ(d1τ1 + d2τ2)(x)(h) = (d1τ1 + d2τ2)(x′)(h) = d1τ1(x′)(h) + d2τ2(x′)(h)

for all h ∈ H. Moreover, we have that

Φ(τ1d1 + τ2d2)(x)(h) = (τ1d1 + τ2d2)(x′)(h) = τ1d1(x′)(h) + τ2d2(x′)(h)

for all h ∈ H.

We deduce that Φ(d1τ1 + d2τ2)(x) = (d1Φ(τ1) + d2Φ(τ2))(x) and Φ(τ1d1 + τ2d2)(x) = (Φ(τ1)d1 +

Φ(τ2)d2)(x) for all x ∈ V H , that is, Φ(d1τ1 + d2τ2) = d1Φ(τ1) + d2Φ(τ2) and Φ(τ1d1 + τ2d2) = Φ(τ1)d1 +

Φ(τ2)d2. This shows that Φ is D-linear.

Lastly, it follows that Φ(IdV G) = IdV H and Φ(τ1τ2) = Φ(τ1)Φ(τ2) for all τ1, τ2 ∈ NLCA(G,H;V ).

We have shown that Φ is a D-algebra isomorphism.



Chapter 5

The Garden of Eden Theorem for

Near-Linear Cellular Automata

The Garden of Eden theorem, also recognized as the Moore-Myhill theorem, represents a fundamental

principle in cellular automata theory. It asserts that a cellular automaton achieves surjectivity if and

only if it adheres to a weakened form of injectivity termed pre-injectivity. Moore and Myhill initially

formulated this theorem in the early 1960s, focusing on cellular automata with finite alphabets operating

over the Zd groups. Moore’s work, presented in [15], demonstrated that surjectivity implies pre-injectivity

for such automata, while shortly thereafter, Myhill’s contribution [16] established the converse. These

seminal works, each published in 1963 as separate papers, laid the foundation for this significant theorem.

The biblical allusion associated with the Moore-Myhill theorem arises from the terminology adopted:

configurations outside the cellular automaton’s image are referred to as Garden of Eden configurations.

These configurations, discernible only at time 0 in the sequence of consecutive automaton iterations,

underscore the theorem’s essence. Thus, the surjectivity of a cellular automaton aligns with the absence

of Garden of Eden configurations. In this chapter we prove a near-linear analog to the Garden of Eden

theorem for amenable groups.

5.1 Reversibility of Near-Linear Cellular Automata

When G is an arbitrary group and V = Dn×1 is a finite-dimensional near space, we show that every

bijective near-linear cellular automaton τ : V G → V G is reversible (invertible) i.e there exist an inverese

mapping which also a near-linear cellular automata. We call upon the following lemma from Mittag and

Leffler [12] in order to proceed.

35
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Lemma 5.1.1. [Mittag-Leffler Lemma]. Let (Xn, fnm) be a projective sequence of non-empty sets such

that for each n ∈ N, there exists m ∈ N, with m ≥ n, such that fnh(Xh) = fnm(Xm) for all h ≥ m.

Then its projective limit X = lim←−Xn is non-empty.

Theorem 5.1.2. Let G be a group and let V = Dn×1 be a finite-dimensional vector space over a near-

field or A.A.A division algebra D. Then every bijective near-linear cellular automaton τ : V G → V G is

reversible.

Proof. Let τ : V G → V G be a bijective near-linear cellular automaton. We aim to demonstrate the

reversibility of τ by splitting the proof into two steps.

Firstly, suppose the group G is countable. Since τ is near-linear and G-equivariant, its inverse map

τ−1 : V G → V G is also near-linear and G-equivariant. We shall establish the following local property for

τ−1: there exists a finite subset N ⊂ G such that

(∗) for y ∈ V G, the element τ−1(y)(1G) depends solely on the restriction of y to N.

This verifies the reversibility of τ . Specifically, if (∗) holds for a finite subset N ⊂ G, then there exists

a unique map ν : V N → V satisfying τ−1(y)(1G) = ν(πN (y)). Utilizing the G-equivariance of τ−1, we

then derive

τ−1(y)(g) = g−1τ−1(y)(1G) = τ−1(g−1y)(1G) = ν(πN (g−1y)).

for all y ∈ V G, implying that τ−1 is the cellular automaton with memory set N and local defining map

ν.

Assuming by contradiction that no finite subset N ⊂ G satisfies condition (∗), let M be a memory

set for τ with 1G ∈ M . As G is countable, we can find a sequence (An)n∈N of finite subsets of G such

that G =
⋃

n∈N An, M ⊂ A0, and An ⊂ An+1 for all n ∈ N . Define Bn = {g ∈ G : gM ⊂ An}. Note

that G =
⋃

n∈N Bn, 1G ∈ B0, and Bn ⊂ Bn+1 for all n ∈ N .

Given the absence of a finite subset N ⊂ G satisfying (∗), for each n ∈ N , we can find two configura-

tions y′n and y′′n in V G such that y′n|Bn
= y′′n|Bn

and τ−1(y′n)(1G) ̸= τ−1(y′′n)(1G). By the near-linearity

of τ−1, the configuration yn = y′n − y′′n in V G satisfies

yn|Bn
= 0 and τ−1(yn)(1G) ̸= 0.

This implies that if x and x′ are elements in V G such that they coincide on An, then the configurations

τ(x) and τ(x′) coincide on Bn. Consequently, given xn ∈ V An and denoting by x̃n ∈ V G a configuration

extending xn, the element

un = τ(x̃n)|Bn
∈ V Bn
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does not depend on the particular choice of the extension x̃n of xn. Thus, we can define a map τn :

V An → V Bn by setting τn(xn) = un. We note that τn is D-linear.

Consider, for each n ∈ N, the subset Xn ⊆ V An consisting of all xn ∈ V An such that xn ∈ Ker(τn)

and xn(1G) ̸= 0. Note that Xn is not empty since (τ−1(yn))|An ∈ Xn by (4.1). Now observe that, for

m ≥ n, the restriction map ρnm : V Am → V An is D-linear and induces a map fnm : Xm → Xn. Indeed,

if u ∈ Xm, then u|An ∈ Xn since τn(u|An) = (τm(u))|Bn = 0 and (u|An)(1G) = u(1G) ̸= 0. Note

that (Xn, fnm) is a projective sequence of nonempty sets. Let us show that (Xn, fnm) also satisfies the

Mittag-Leffler condition.

For allm ≥ n, the set fnm(Xm) ⊆ Xn ⊆ V An . By definition, we have that fnm(Xm) = ρnm(Ker(τm))∩

Xn. Now, if n ≤ m ≤ m′, then ρnm′(Ker(τm′)) ⊆ ρnm(Ker(τm)). Therefore, if we fix n, the sequence

ρnm(Ker(τm)), where m = n, n + 1, . . ., is a non-increasing sequence of near space subspaces of V An .

As the near space V An is finite-dimensional, this sequence stabilizes. Thus, for each n ∈ N, there exists

an integer m ≥ n such that fnk(Xk) = fnm(Xm) if k ≥ m. This demonstrates that the Mittag-Leffler

condition is satisfied. Consequently, we deduce from Lemma 4.1.1 that the projective limit X = lim←−Xn

is non-empty. Let (zn) ∈ X. Then, there exists a unique z ∈ V G such that πAn(z) = zn for all n ∈ N.

However, τ(z) = 0 since πBn
(τ(z)) = τn(zn) = 0 for all n, and z(1G) = z0(1G) ̸= 0. This contradicts

the injectivity of τ . Thus, there must exist a finite subset N ⊆ G satisfying (∗), and consequently, τ is

reversible.

Now, we drop the countability assumption on G and prove the theorem in the general case. We

choose a memory set M ⊂ G for τ and denote by H the subgroup of G generated by M . Note that

H is countable since M is finite. Observing that the restriction cellular automaton τH : V H → V H is

near-linear and bijective, we can apply the previous step to conclude that τH is reversible, implying that

the inverse map (τH)−1 : V H → V H is a cellular automaton. Thus, we establish the reversibility of τ in

the general case as well.

Remark 5.1.3. For a non-periodic group G and a near-field or A.A.A. division algebra D, consider an

infinite-dimensional near space V over D. Then, it is guaranteed that there exists a bijective near-linear

cellular automaton τ : V G → V G that lacks reversibility.

Furthermore, when dealing with an infinite set A, it is always feasible to find a near space with a

cardinality equivalent to that of A. One approach is to construct the D near space utilizing A as its

basis.
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5.2 The Closed Image Property for Near-Linear Cellular Au-

tomata

When G is an arbitrary group and V = Dn×1 is a finite-dimensional near space, we show that

τ : V G → V G is closed in V G for the prodiscrete topology, where τ ∈ NLCA(G,V ). We call upon the

Mittag and Leffler [12] lemma in order to proceed.

When considering a set X and a topological space Y , a map f : X → Y is said to possess the

closed image property if the set f(X) forms a closed subset of Y . This property proves instrumental

in establishing surjectivity results. Specifically, to demonstrate that a map f : X → Y with the closed

image property is surjective, it suffices to establish that f(X) densely covers Y .

In scenarios where the alphabet A is finite, every cellular automaton τ : AG → AG inherently exhibits

the closed image property (considering the prodiscrete topology), owing to the compactness of AG. In

the near-linear context, the following holds:

Theorem 5.2.1. Let G be a group and let V = Dn×1 be a finite-dimensional near space over a near-field

or A.A.A division algebra D. Then every near-linear cellular automaton τ : V G → V G has the closed

image property with respect to the prodiscrete topology on V G.

Proof. Let τ : V G → V G be a near-linear cellular automaton. We aim to show that τ has the closed

image property with respect to the prodiscrete topology on V G. We split the proof into two steps as in

the proof of Theorem 4.1.2.

Suppose first that the group G is countable. Choose, as in the first step of the preceding proof

of Theorem 4.1.2, a sequence (An)n∈N of finite subsets of G such that G =
⋃

n∈NAn, M ⊂ A0, and

An ⊂ An+1 for all n ∈ N. Consider, for each n ∈ N, the D-linear map τn : V An → V Bn , where

Bn = {g ∈ G : gM ⊂ An}, and τn is defined by τn(xn) = (τ(x̃n))|Bn for all xn ∈ V An and x̃n ∈ V G

extending xn.

Let y ∈ V G and suppose that y is in the closure of τ(V G). Then, for all n ∈ N, there exists zn ∈ V G

such that

πBn
(y) = πBn

(τ(zn)) (5.1)

Consider, for each n ∈ N, the subspace Xn ⊂ V An defined by

Xn = τ−1
n (πBn

(y)).

We have Xn ̸= ∅ for all n by (4.1). For m ≥ n, the restriction map V Am → V An induces a map

fnm : Xm → Xn. Note that (Xn, fnm) is a projective sequence.
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We claim that (Xn, fnm) also satisfies the Mittag-Leffler condition. Indeed, consider, for allm ≥ n, the

subspace fnm(Xm) ⊂ Xn. We have fnm′(X ′m) ⊂ fnm(Xm) for all n ≤ m ≤ m′ since fnm′ = fnm ◦ fmm′ .

As the sequence fnm(Xm) (m = n, n + 1, . . .) is a non-increasing sequence of finite-dimensional affine

subspaces, it stabilizes, i.e., for each n ∈ N there exists an integer m ≥ n such that fnk(Xk) = fnm(Xm)

if k ≥ m. Thus, the condition is satisfied. It follows from the Mittag-Leffler lemma that the projective

limit lim
←
Xn is nonempty.

We choose an element (xn)n∈N ∈ lim
←
Xn. We have that xn+1 coincides with xn on An and that

xn ∈ V An for all n ∈ N. As G = ∪n∈NAn, we deduce that there exists a unique configuration x ∈ V G

such that x|An = xn for all n. We have τ(x)|Bn = τn(xn) = yn = y|Bn for all n. Since G = ∪n∈NBn,

this shows that τ(x) = y. This completes the proof in the case that G is countable.

Let us treat now the case of an arbitrary (possibly uncountable) group G. As in the second step of

the preceding proof of Theorem 4.1.2, choose a memory set M ⊂ G for τ and consider the countable

subgroup H of G generated by M . By the previous step, we have that the restriction cellular automaton

τH : V H → V H has the closed image property, that is, τH(V H) is closed in V H for the prodiscrete

topology. We can then deduce that τ(V G) is also closed in V G for the prodiscrete topology. Thus τ

satisfies the closed image property.

Remark 5.2.2. Let G be a non-periodic group and let D be a near-field or A.A.A division algebra.

Let V be an infinite-dimensional near space over D. Then there exists a near-linear cellular automaton

τ ′ : V G → V G such that τ ′(V G) is not closed in V G with respect to the prodiscrete topology.

5.3 A Garden of Eden Theorem for Near-Linear Cellular Au-

tomata

In this section, we give a near-linear analogue to the Garden of Eden Theorem [3]. That is to say,

we provide a suffiecnt and nessasry condtion for a near-linear cellular automata to be surjective over an

amenable group.

To proceed we need the concept of mean dimension, which takes on the role that entropy played in the

scenario of finite alphabets. We proceed by outlining some fundamental properties of mean dimension.

In this definition, the dimension of finite-dimensional near spaces takes the place of the cardinality of

finite sets.

But first, let’s recall some basic facts about amenable groups. There are gonna be the groups in

question that serve as our universe.

Definition 5.3.1. Let G be a countable group (e.g., a finitely generated group) and let P (G) denote
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the set of all subsets of G. The group G is said to be amenable if there exists a right-invariant mean,

that is, a map µ : P (G)→ [0, 1] satisfying the following conditions:

1. µ(G) = 1 (normalization);

2. µ(A ∪B) = µ(A) + µ(B) for all A,B ∈ P (G) such that A ∩B = ∅ (finite additivity);

3. µ(Ag) = µ(A) for all g ∈ G and A ∈ P (G) (right-invariance).

Remark 5.3.2. It’s noteworthy that if G is amenable, meaning it possesses a right-invariant mean,

then it also harbors left-invariant means, and notably, bi-invariant means as well. The category of

amenable groups encompasses finite groups, solvable groups, and finitely generated groups exhibiting

subexponential growth. This category remains invariant under several operations, including subgroup

formation, factorization, extension, and directed unions. Notably, the free group F2 generated by two

elements, and consequently, any groups housing non-abelian free subgroups, fall outside the amenable

classification.

Now, in [6], Følner showed that a countable group G is amenable if and only if it admits a Følner

sequence, i.e. a sequence (Ωn)n∈N of non-empty finite subsets of G such that

lim
n→∞

|∂E(Ωn)|
|Ωn|

= 0 for all finite subsets E ⊂ G. (5.2)

With E = {1, g−1}, where g ∈ G, one has Ω−E = Ω ∩ gΩ and Ω+E = Ω ∪ gΩ, so that ∂E(Ω) = Ω△ gΩ,

where △ denotes the symmetric difference and (4.2) above gives

lim
n→∞

|Ωn△gΩn|
|Ωn|

= 0 for all elements g ∈ G,

which shows that the Følner sequence is asymptotically left-invariant.

The following statement is proved in [14], Theorem 6.1, and [8] Theorem 1.3.A. It can be deduced

from a result of Ornstein and Weiss [17].

Lemma 5.3.3 (Ornstein–Weiss lemma). Let G be a countable amenable group and let F (G) denote the

set of all finite subsets of G. Let ϕ : F (G)→ [0,∞) be a function satisfying the following properties:

(a) ϕ(Ω) ≤ ϕ(Ω′) for all Ω,Ω′ ∈ F (G) such that Ω ⊂ Ω′ (monotonicity);

(b) ϕ(Ω ∪ Ω′) ≤ ϕ(Ω) + ϕ(Ω′) for all Ω,Ω′ ∈ F (G) such that Ω ∩ Ω′ = ∅ (subadditivity);

(c) ϕ(gΩ) = ϕ(Ω) for all g ∈ G and Ω ∈ F (G) (left-invariance).
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Then there is a real number λ = λ(G,ϕ) ≥ 0 depending only on G and ϕ such that

lim
n→∞

ϕ(Ωn)
|Ωn|

= λ

for any Følner sequence (Ωn)n∈N of G.

Definition 5.3.4. Let G be a group. Let E and F be subsets of G. A subset N ⊂ G is called an

(E,F )-net if it satisfies the following conditions:

(i) the subsets (gE)g∈N are pairwise disjoint, i.e. gE ∩ g′E = ∅ for all g, g′ ∈ N such that g ̸= g′;

(ii) G =
⋃

g∈N gF .

Note that if N is an (E,F )-net then it is also an (E′, F ′)-net for all E′, F ′ such that E′ ⊂ E and

F ⊂ F ′ ⊂ G.

Lemma 5.3.5. LetG be a group. Let E be a non-empty subset ofG and let F = EE−1 = xy−1 : x, y ∈ E.

Then G contains an (E,F )-net.

Proof. The set of S ⊂ G such that the subsets (gE)g∈S are pairwise disjoint is clearly inductive. Hence,

by the Zorn lemma, it admits a maximal element. This element is an (E,F )-net.

For the remainder of this section let G denotes a countable amenable group, while V = Dn×1

represents a finite-dimensional near space over a near-field or A.A.A division algebra D.

It is assumed that a Følner sequence (Ωn)n∈N for G has been chosen once and for all. Given a near

subspace X of V G and a subset Ω ⊂ G, we denote by XΩ the projection of X on V Ω, that is, the subspace

of V Ω defined by

XΩ = {x|Ω : x ∈ X},

where, as above, x|Ω denotes the restriction of x to Ω.

Definition 5.3.6. Let X be a near subspace of V G. The mean dimension of X (with respect to the

Følner sequence (Ωn)n∈N) is the non-negative number

(X) = lim inf
n→∞

dim(XΩn)
|Ωn|

. (5.3)

Note that it immediately follows from this definition that (V G) = dim(V ) and that (X) ≤ dim(V )

for every subspace X of V G. More generally, one has (X) ≤ (Y ) if X and Y are subspaces of V G such

that X ⊂ Y .
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Proposition 5.3.7. Suppose that X is a G-invariant subspace of V G (e.g. X = τ(V G) where τ : V G →

V G is a near-linear cellular automaton). Then one has

(X) = lim
n→∞

dim(XΩn
)

|Ωn|
.

Moreover, (X) does not depend on the choice of the Følner sequence (Ωn)n∈N.

Proof. Let F (G) denote the set of finite subsets ofG. Let us verify that the function ϕ : F (G)→ N defined

by ϕ(Ω) = dim(XΩ) satisfies the hypotheses of the Ornstein–Weiss lemma. Let Ω,Ω′ ∈ F (G). Property

(a) of the Ornstein–Weiss lemma follows from the fact that, if Ω ⊂ Ω′, then there is a surjective linear

map (hence near-linear) XΩ′ → XΩ given by restriction. If Ω∩Ω′ = ∅, then there is a natural embedding

XΩ∪Ω′ ⊂ XΩ ×XΩ′ . This gives property (b). Finally, property (c) follows from the G-invariance of X,

which implies that the map x 7→ xg induces an isomorphism of near spaces XgΩ → XΩ.

Lemma 5.3.8. Let E and F be finite subsets of G and let N ⊂ G be an (E,F )-net. Let N−n ⊂ N denote

the set of g ∈ N such that gE ⊂ Ωn. Then there exist α ∈ (0, 1] and n0 ∈ N such that |N−n | ≥ α|Ωn| for

all n ≥ n0.

Proof. We can assume E ⊂ F . Let N+
n denote the set of g ∈ N such that gF meets Ωn. Since Ωn is

covered by the sets gF , g ∈ N+
n , we have |Ωn| ≤ |F | · |N+

n |. Now observe that N+
n \N−n ⊂ ∂F (Ωn). Thus,

setting α = |F |−1 we get

|N−n | ≥ α|Ωn| − |∂F (Ωn)|

for all n ≥ 0. This shows the lemma, by the Ornstein–Weiss lemma.

Proposition 5.3.9. Let X be a subspace of V G. Suppose that there exist finite subsets E and F of G,

and an (E,F )-net N ⊂ G such that XgE ⊊ V gE for all g ∈ N . Then mdim(X) < dim(V ).

Proof. Let us set as above N−n = {g ∈ N : gE ⊂ Ωn} and let Ω∗n = Ωn\
⊔

g∈N−
n
gE. By hypothesis, we

have dim(XgE) ≤ dim(V gE)− 1 for all g ∈ N so that

dim(XΩn
) ≤ dim(XΩ∗

n
) +

∑
g∈N−

n

dim(XgE)

≤ dim(V Ω∗
n) +

∑
g∈N−

n

(dim(V gE)− 1)

= dim(V Ωn)− |N−n |

= |Ωn|dim(V )− |N−n |.
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Since, by Lemma 4.3.8, we can find α > 0 and n0 ∈ N such that |N−n | ≥ α|Ωn| for all n ≥ n0, this gives

us mdim(X) ≤ dim(V )− α < dim(V ).

Corollary 5.3.10. Let X be a G-invariant subspace of V G. Suppose that there exists a finite subset

Ω ⊂ G such that XΩ ⊊ V Ω. Then mdim(X) < dim(V ).

Proof. Let E = Ω and F = EE−1. By Lemma 4.3.5, there exists an (E,F )-net N ⊂ G. Since X is

G-invariant and XΩ ⊊ V Ω, we have XgE ⊊ V gE for all g ∈ N . This implies mdim(X) < dim(V ) by

Proposition 4.3.9.

Lemma 5.3.11. Let τ : V G → V G be a near-linear cellular automaton. Suppose that τ is not surjective.

Then (τ(V G)) < dim(V ).

Proof. Let X = τ(V G) and consider an element y ∈ V G\X. By the closed image property for near-linear

cellular automata, we can find a finite subset Ω ⊂ G such that y|Ω /∈ XΩ. Therefore we have XΩ ⊊ V Ω.

This implies mdim(X) < dim(V ) by Corollary 4.3.10

Proposition 5.3.12. Let τ : V G → V G be a near-linear cellular automaton and let X be a subspace of

V G. Then (τ(X)) ≤ mdim(X).

Proof. Let us set Y = τ(X). Let M ⊂ G be a memory set for τ . We can assume 1G ∈ M . For each

subset Ω ⊂ G, the automaton τ induces a surjective linear map from XΩ onto YΩ−M . As YΩ is a subspace

of YΩ−M × YΩ\Ω−M ⊂ YΩ−M × V Ω\Ω−M , this yields

dim(YΩ) ≤ dim(YΩ−M ) + |Ω\Ω−M |dim(V )

≤ dim(XΩ) + |∂M (Ω)|dim(V ).

Therefore, we have
dim(YΩn

)
|Ωn|

≤ dim(XΩn
)

|Ωn|
+ |∂M (Ωn)|

|Ωn|
dim(V )

for all n ∈ N. Taking the limit as n→∞ and invoking equation (4.2), we get mdim(Y ) ≤ mdim(X).

Lemma 5.3.13. Let τ : V G → V G be a near-linear cellular automaton. If τ is pre-injective then

(τ(V G)) = dim(V ).

Proof. Let us set Y = τ(V G). LetM be a memory set for τ such that 1G ∈M . Suppose, by contradiction,

that mdim(Y ) < dim(V ). As YΩ+M
n

is a subspace of YΩn
× V Ω+M

n \Ωn , we have

dim(YΩ+M
n

) ≤ dim(YΩn
) + |Ω+M

n \Ωn|dim(V )

≤ dim(YΩn) + |∂M (Ωn)|dim(V ).
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It follows from eqautaion (4.2) that we can find n0 ∈ N such that dim(YΩ+M
n0

) < |Ωn0 |dim(V ). Let Z

denote the (finite-dimensional) near subspace of V [G] consisting of the elements of V G whose support is

contained in Ωn0 . Observe that τ(x) vanishes outside Ω+M
n0

for every x ∈ Z. Thus we have

dim(τ(Z)) = dim(τ(Z)Ω+M
n0

) ≤ dim(YΩ+M
n0

) < |Ωn0 |dim(V ) = dim(Z).

This shows that the restriction of τ to Z is not injective. Therefore τ is not pre-injective.

Lemma 5.3.14. Let τ : V G → V G be a near-linear cellular automaton. Suppose that τ is not pre-

injective. Then mdim(τ(V G)) < dim(V ).

Proof. Since τ is not pre-injective, we can find an element x0 ∈ V G with non-empty finite support Ω ⊂ G

such that τ(x0) = 0. Let M be a memory set for τ such that 1G ∈ M and M = M−1. Let E = Ω+M2 .

By Lemma 4.3.5, we can find a finite subset F ⊂ G such that G contains an (E,F )-net N . Note that

for each g ∈ G, the support of xg
0 is g−1Ω ⊂ g−1E. Let us choose, for each g ∈ N , a hyperplane

Hg ⊂ V g−1Ω which does not contain the restriction to g−1Ω of xg
0. Consider the subspace X ⊂ V G

consisting of all x ∈ V G such that the restriction of x to g−1Ω belongs to Hg for each g ∈ N . We claim

that τ(V G) = τ(X). Indeed, let z ∈ V G. Then, for each g ∈ N , there exists a scalar λg ∈ D such that

the restriction to g−1Ω of z+λgx
g
0 belongs to Hg. Let z′ ∈ V G be such that z′|g−1Ω = (z+λgx

g
0)|g−1Ω for

each g ∈ N and z′ = z outside
⊔

g∈N g−1Ω. We have z′ ∈ X by construction. On the other hand, since z′

and z coincide outside
⊔

g∈N g−1Ω, we have τ(z′) = τ(z) outside
⊔

g∈N g−1Ω+M . Now, if h ∈ g−1Ω+M

for some g ∈ N , then hM ⊂ g−1Ω+M2 = g−1E and therefore τ(z′)(h) = τ(z + λgx
g
0)(h) = τ(z)(h) since

xg
0 lies in the kernel of τ . Thus τ(z) = τ(z′) and the claim follows. Thus we have

mdim(τ(V G)) = mdim(τ(X)) ≤ mdim(X) < dim(V ),

where the first inequality follows from Proposition 4.3.12and the second one from Proposition 4.3.9.

We are now ready to give and prove the near-linear analog of the Garden of Eden Theorem.

Theorem 5.3.15. Let V = Dn×1 be a finite-dimensional near space over a near-field or A.A.A division

algebra D and let G be a countable amenable group. Let τ : V G → V G be a near-linear cellular

automaton. Then the following conditions are equivalent:

(a) τ is surjective;

(b) mdim(τ(V G)) = dim(V );

(c)τ is pre-injective.
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Proof. Condition (a) implies (b) since mdim(V G) = dim(V ). The converse implication follows from

Lemma 4.3.11 On the other hand, condition (c) implies (b) by Lemma 4.3.13. and, conversely, (b)

implies (c) by Lemma 4.3.14.

We wrap up this section by giving an example that the theorem above fails to hold when the near

space V is infinite-dimensional, in particular we will take V to be an infinite dimensional vector space.

Example 5.3.16. Let V denote an infinite-dimensional vector space over a field K, and let G be any

group. Suppose we select a basis B for V . Any mapping α : B → B uniquely extends to a linear map

α̃ : V → V . Consider the product map τ = α̃G : V G → V G, which constitutes a linear cellular automaton

with a memory set M = {1G} and a local defining map α̃. Since B is infinite, it is possible to find a

mapping α : B → B that is surjective but not injective (or injective but not surjective). Clearly, the

associated linear cellular automaton τ is surjective but not pre-injective (or injective but not surjective).



Chapter 6

Sofic Groups and Near-Linear

Surjunctivity

Gromov (1999) [7] introduced the concept of sofic groups, initially referred to as initially subamenable

groups, to offer a unified framework encompassing both residually finite and amenable groups. The term

"sofic," derived from Hebrew meaning "finite," was coined by Weiss [20]. Sofic groups attract significant

attention due to their role in confirming several fundamental conjectures in group theory. One notable

example is Gromov’s proof (1999) of Gottschalk’s surjunctivity conjecture. A major unresolved question

in this area pertains to whether all countable groups are sofic. These groups can be characterized in

three equivalent manners: through their local resemblance to finite symmetric groups using the Ham-

ming distance, by their local resemblance to finite labeled graphs in their Cayley graphs, and by their

embeddability into ultraproducts of finite symmetric groups (this characterization is credited to Gábor

Elek and Endre Szabó). Sofic groups represent the most extensive known category of surjunctive groups.

In this chapter we introduce the notion of a group being near-linearly surjunctive. We use this defini-

tion and the characterizations of sofic groups to show that all sofif groups are near-linearly surjunctive.

6.1 Sofic Groups

Definition 6.1.1 ([2]). Let G and C be two groups. Given a finite subset K ⊂ G, a map ϕ : G→ C is

called a K-almost-homomorphism of G into C if it satisfies the following conditions:

(K-AH-1)]ϕ(k1k2) = ϕ(k1)ϕ(k2) for all k1, k2 ∈ K;

[(K-AH-2)] the restriction of ϕ to K is injective.

Remark 6.1.2. Note that in the preceding definition, the map φ is not required to be a homomorphism
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nor to be globally injective.

Let F be a nonempty finite set and consider the symmetric group Sym(F ). For α ∈ Sym(F ),

we denote by Fix(α) the set {x ∈ F : α(x) = x} of fixed points of α. The support of α is the set

{x ∈ F : α(x) ̸= x} = F \ Fix(α), so that we have

|{x ∈ F : α(x) ̸= x}| = |F | − |Fix(α)|.

Consider the map dF : Sym(F )× Sym(F )→ R defined by

dF (α1, α2) = |{x ∈ F : α1(x) ̸= α2(x)}|
|F |

for all α1, α2 ∈ Sym(F ). Observe that the set {x ∈ F : α1(x) ̸= α2(x)} = {x ∈ F : x ̸= α−1
1 α2(x)} is the

support of α−1
1 α2, so that the equation above gives us

dF (α1, α2) = 1− |Fix(α−1
1 α2)|
|F |

.

Remark 6.1.3. Let F be a nonempty finite set. Then dF is a bi-invariant metric on Sym(F ).

Definition 6.1.4 ([2]). Let F be a nonempty finite set. The bi-invariant metric dF is called the (nor-

malized) Hamming metric on Sym(F ).

Definition 6.1.5 ([2]). Let G be a group, K ⊂ G a finite subset, and ε > 0. Let F be a nonempty

finite set. A map ϕ : G → Sym(F ) is called a (K, ε)-almost-homomorphism if it satisfies the following

conditions:

((K, ε)-AH-1) for all k1, k2 ∈ K, one has dF (ϕ(k1k2), ϕ(k1)ϕ(k2)) ≤ ε;

((K, ε)-AH-2) for all k1, k2 ∈ K, k1 ̸= k2, one has dF (ϕ(k1), ϕ(k2)) ≥ 1− ε,

where dF denotes the normalized Hamming metric on Sym.

Definition 6.1.6 ([2]). A group G is called sofic if it satisfies the following condition: for every finite

subset K ⊂ G and every ε > 0, there exist a nonempty finite set F and a (K, ε)-almost-homomorphism

ϕ : G→ Sym(F ).

Theorem 6.1.7 ([2]). Every finite group is sofic.

Theorem 6.1.8 ([2]). Every subgroup of a sofic group is sofic.

Theorem 6.1.9 ([2]). Every locally sofic group is sofic..

Theorem 6.1.10 ([2]). Every amenable group is sofic.
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Theorem 6.1.11 ([2]). Let (Gi)i∈I be a family of sofic groups. Then, their direct product G =
∏

i∈I Gi

is sofic.

Theorem 6.1.12 ([2]). Let (Gi)i∈I be a family of sofic groups. Then their direct sum G =
⊕

i∈I Gi is

sofic.

Theorem 6.1.13 ([2]). The limit of a projective system of sofic groups is sofic..

Theorem 6.1.14 ([2]). Every group which is locally embeddable into the class of sofic groups is sofic.

Theorem 6.1.15 ([2]). Let G be a group. Suppose that G contains a normal subgroup N such that N

is sofic and G/N is amenable. Then G is sofic.

We know describe an alternate characterization of sofic groups.

Definition 6.1.16 ([20]). Let G be a finitely generated group, and S ⊆ G a fixed finite, symmetric (i.e.,

S = S−1) generating set. The Cayley graph of G is a directed graph Cay(G,S), whose edges are labeled

by the elements of S: the set of vertices equals G, and the edges with label s ∈ S are the pairs (g, sg)

for all g ∈ G. Let Br(1) denote the r-ball around 1 ∈ Cay(G,S) (it is an edge-colored graph, and also a

finite subset in G).

Theorem 6.1.17. Let G be a finitely generated group and let S be a finite symmetric generating subset

of G. The following conditions are equivalent:

(a) The group G is sofic;

(b) For all ϵ > 0 and r ∈ N, there exists a finite S-labeled graph Q = (Q,E) such that

|Q(r)| ≥ (1− ϵ)|Q|,

where Q(r) ⊂ Q denotes the set consisting of all vertices q ∈ Q for which there exists an S-labeled graph

isomorphism ψq,r : BS(r)→ B(q, r) from the ball BS(r) in the Cayley graph CS(G) of G with respect to

S onto the ball B(q, r) in Q satisfying ψq,r(1G) = q.

6.2 Near-Linear Surjunctivity

Definition 6.2.1. A group G is said to be near-linearly surjunctive, NL-surjunctive if, for any near-field

or A.A.A division algebra D and any finite-dimensional near space V = Dn×1 over D, every injective

near-linear cellular automaton τ : V G → V G is surjective.

Proposition 6.2.2. Every subgroup of an NL-surjunctive group is NL-surjunctive.
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Proof. Suppose that H is a subgroup of an NL-surjunctive group G. Let V = Dn×1 be a finite-

dimensional near space over a near-field or A.A.A division algebra D, and let τ : V H → V H be an

injective near-linear cellular automaton over H. Consider the cellular automaton τG : V G → V G over

G obtained from τ by induction. The fact that τ is injective implies that τG is injective. Also, τG is

near-linear. Since G is NL-surjunctive, it follows that τG is surjective. Hence we may deduce that τ is

surjective. This shows that H is NL-surjunctive.

Proposition 6.2.3. Let G be a group. Then the following conditions are equivalent:

(a) G is NL-surjunctive;

(b) every finitely generated subgroup of G is L-surjunctive.

Proof. (a =⇒ b) Suppose that G is NL-surjunctive, then it follows from proposition 5.2.2 that every

finitely generated subgroup of G is NL-surjunctive.

(b =⇒ a) Conversely, let G be a group all of whose finitely generated subgroups are NL-surjunctive.

Let V = Dn×1 be a finite-dimensional near space over a near-field or A.A.A division algebra A, and

let τ : V G → V G be an injective near-linear cellular automaton with memory set S. Let H denote the

subgroup of G generated by S, and consider the near-linear cellular automaton τH : V H → V H obtained

by restriction of τ . The fact that τ is injective implies that τH is injective. As H is finitely generated,

it is NL-surjunctive by our hypothesis on G. It follows that τH is surjective. We have that τ is also

surjective. Hence (b) implies (a).

Remark 6.2.4. The proposition mentioned above can be restated as follows: a group is NL-surjunctive

if and only if it exhibits local NL-surjunctivity.

Remark 6.2.5. Every finite group is NL-surjunctive. Indeed, if G is a finite group and V is a finite-

dimensional near space, then the near space V G is also finite-dimensional and therefore every injective

endomorphism of V G is surjective. As such, we have the following result, which is a near-linear analogue

to the fact that all sofic groups are surjunctive.

Theorem 6.2.6. Every sofic group is NL-surjunctive.

Proof. Let G be a sofic group. Let V = Dn×1 be a finite-dimensional near space over a near-field of A.A.A

division algebra D of dimension dimD(V ) = d ≥ 1, and let τ : V G → V G be an injective near-linear

cellular automaton. We wish to show that τ is surjective.

We first note that by proposition 5.1.8, every subgroup of a sofic group is sofic. On the other hand,

it follows from Proposition 5.2.3 that a group is NL-surjunctive if all its finitely generated subgroups are

NL-surjunctive. Thus, we can assume that G is finitely generated.
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Let then S ⊂ G be a finite symmetric generating subset of G. In other words for any g in G, there

exist s1, s2, . . . , sk in S and their inverses such that g = se1
1 ·s

e2
2 · . . . ·s

ek

k , where ei = ±1 for all i. Now, for

r ∈ N, we denote by BS(r) ⊂ G the ball of radius r centered at 1G in the Cayley graph associated with

(G,S). We set Y = τ(V G). Note that Y is a G-invariant subspace of V G. On the other hand, it follows

from the closed image property for near-linear cellular automata that Y is closed in V G with respect to

the prodiscrete topology. Moreover, since τ is an injective near-linear cellular automaton, there exists a

near-linear cellular automaton σ : V G → V G such that

σ ◦ τ = IdV G .

We next choose an r0 large enough so that the ball BS(r0) is a memory set for both τ and σ. Let

µ : V BS(r0) → V and ν : V BS(r0) → V denote the corresponding local defining maps for τ and σ

respectively.

By way of contradiction, suppose that τ is not surjective, that is, Y ⊊ V G. Then, since Y is closed

in V G, there exists a finite subset Ω ⊂ G such that Y |Ω ⊊ V Ω. It is not restrictive, up to taking a larger

r0, again if necessary, to suppose that Ω ⊂ BS(r0). Thus, Y |BS(r0) ⊊ V BS(r0).

Let ϵ > 0 be such that

ϵ <
1

d|B(2r0)|+ 1 . (6.1)

Note that from (5.1) we have

1− ϵ > 1− 1
d|B(2r0)|+ 1 ,

which gives us

(1− ϵ)−1 < 1 + 1
d|B(2r0)| . (6.2)

Since G is sofic, we can find a finite S-labeled graph (Q,E, λ) such that |Q(3r0)| ≥ (1− ϵ)|Q|, where

we recall that Q(r), r ∈ N, denotes the set of all q ∈ Q such that there exists an S-labeled graph

isomorphism ψq,r : BS(r) → B(q, r) satisfying ψq,r(1G) = q by theorem 5.1.17. We note the following

inclusions

Q(r0) ⊃ Q(2r0) ⊃ · · · ⊃ Q(ir0) ⊃ Q((i+ 1)r0) ⊃ · · · . (6.3)

Also we note that B(q, r0) ⊂ Q(ir0) for all Q((i+ 1)r0) and i ≥ 0. For each integer i ≥ 1, we define the

map µi : V Q(ir0) → VQ((i+1)r0) by setting, for all u ∈ V Q(ir0) and q ∈ Q((i+ 1)r0),

µi(u)(q) = µ(u|B(q,r0) ◦ ψq,r0(1G)), (6.4)
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where ψq,2r0 is the unique isomorphism of S-labeled graphs from BS(r0) ⊂ G to B(q, r0) ⊂ Q sending

1G to q. Similarly, we define the map νi : V Q(ir0) → V Q((i+1)r0) by setting, for all u ∈ V Q(ir0) and

q ∈ Q((i+ 1)r0),

νi(u)(q) = ν(u|B(q,r0) ◦ ψq,r0(1G)). (6.5)

From the fact that τ−1 ◦τ is the identity map on V G, we deduce that the composite νi+1 ◦µi : V Q(ir0) →

V Q((i+2)r0) is the identity on V Q((i+2)r0). More precisely, denoting by ρi : V Q(ir0) → V Q((i+2)r0) the

restriction map, we have that νi+1 ◦ µi = ρi for all i ≥ 1. In particular, we have ν2 ◦ µ1 = ρ1. Thus,

setting Z = µ1(V Q(r0)) ⊂ V Q(2r0), we deduce that ν2(Z) = ρ1(V Q(r0)) = V Q(3r0). It follows that

dim(Z) ≥ d|Q(3r0)|

Let Q′ ⊂ Q(3r0) such that

|Q′| ≥ |Q(3r0)|
|B(2r0)|

and set Q̂′ =
⋃

q∈Q B(q, r0). Note that Q̂′ ⊆ Q(2r0) so that

|Q(2r0)| = |Q′| · |BS(r0)|+ |Q(2r0) \ Q̂′| (6.6)

Now observe that, for all q ∈ Q(2r0), we have a natural isomorphism of near spaces Z|B(q,r0) → Y |BS(r0)

given by u 7→ u ◦ ψq,r0 , where ψq,r0 denotes as above the unique isomorphism of S-labeled graphs from

BS(r0) to B(q, r0) such that ψq,r0(1G) = q. Since Y |BS(r0) ⊊ V BS(r0), this implies that

dim(Z|B(q,r0)) = dim(Y |BS(r0)) ≤ d · |BS(r0)| − 1, (6.7)

for all q ∈ Q′. Thus we have

dim(Z) ≤ dim(Z|Q̂′) + dim(Z|Q(2r0)\Q̂′)

≤ |Q′| · (d · |BS(r0)| − 1) + d · |Q(2r0) \ Q̂′|

= d

(
|Q(2r0)| − |Q

′|
d

)
,

where the last equality follows from (5.6). Comparing this with (5.7), we obtain

|Q(3r0)| ≤ |Q(2r0)| − |Q
′|
d
.
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Thus,

|Q| ≥ |Q(2r0)| ≥ |Q(3r0)|+ |Q
′|
d

≥ |Q(3r0)|+ |Q(3r0)|
d|B(2r0)|

= |Q(3r0)|
(

1 + 1
d|B(2r0)|

)
> |Q(3r0)|(1− ϵ)−1

where the last inequality follows from (5.2). This yields

|Q(3r0)| < (1− ϵ)|Q|,

which contradicts the fact that |Q(3r0)| ≥ (1 − ϵ)|Q|. This shows that τ(V G) = Y = V G, that is, τ is

surjective. It follows that the group G is NL-surjunctive.



Chapter 7

Conclusion and Future Directions

In this dissertation, we have successfully extended the theory of linear cellular automata into the

realm of near-linear cellular automata over near spaces. By building upon the foundational work of

Ceccherini-Silberstein and Coornaert, we have introduced the concept ofG-equivariantD-endomorphisms

and explored their algebraic properties.

Key achievements include:

1. Establishing a near-linear analog of the Curtis-Hedlund Theorem.

2. Proving a Garden of Eden Theorem for near-linear cellular automata.

3. Demonstrating that all sofic groups are near-linearly surjunctive.

These results not only deepen our understanding of cellular automata in abstract algebraic settings

but also pave the way for future investigations into more complex structures.

7.1 Future Work

Recent efforts have been made to further generalize the notion of a cellular automata over a group.

In particular, the existence and structure of automata from a configuration space AG to a configuration

space AH where A is a finite alphabet and G and H are arbitrary groups.

The following are results obtained by the efforts from A. Castillo-Ramirez, M. Sanchez-Alvarez, A.

Vazquez-Aceves, and A. Zaldivar-Corichi in [1].

Definition 7.1.1. Let A be a finite set, and let G and H be groups. Denote by Hom(H,G) the set of

all group homomorphisms from H to G. For any ϕ ∈ Hom(H,G), a ϕ-cellular automaton from AG to

AH is a function τ : AG → AH such that there is a finite subset S ⊆ G, called a memory set of τ , and a

53
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local function µ : AS → A satisfying

τ(x)(h) = µ((ϕ(h−1) · x)|S), ∀x ∈ AG, h ∈ H.

This definition is line with the classical definition of cellular automata over the same group. It still

gives the fundamental characteristic that cellular automata over groups must adhere to a local defining

principle.

The following are examples of a ϕ-cellular automaton.

Example 7.1.2. Every cellular automaton from AG to AG is an idG-cellular automaton, where idG is

the identity function on G. However, note that we may define ϕ-cellular automata from AG to AG, where

ϕ is a nontrivial element of End(G) := Hom(G,G).

Example 7.1.3. Let G = Z, H = Z2 and S = {−1, 0, 1} ⊆ Z. Recall that a configuration x ∈ AZ may

be seen as a bi-infinite sequence x = . . . x−1, x0, x1, . . . .

Consider the homomorphism ϕ : Z2 → Z given by ϕ(a, b) = a + b, for all (a, b) ∈ Z2. Then, for any

function µ : AS → A, the ϕ-cellular automaton τ : AZ → AZ2 with memory set S and local function µ is

given by

τ(x)(a, b) = µ(xa+b−1, xa+b, xa+b+1).

for all x ∈ AZ and (a, b) ∈ Z2.

Classical cellular automata possess the crucial trait of being G-equivariant, meaning that for every

g ∈ G and x ∈ AG, the transformation τ(g · x) equals g · τ(x). On the other hand, ϕ-cellular automata

exhibit a broader form of this property.

Definition 7.1.4. Let ϕ ∈ Hom(H,G). A function τ : AG → AH is called ϕ-equivariant if

h · τ(x) = τ(ϕ(h) · x), ∀x ∈ A, h ∈ H.

Theorem 7.1.5. Every ϕ-cellular automaton is ϕ-equivariant.

Theorem 7.1.6. Every ϕ-cellular automaton is continuous.

As a result, the following is then generalized version of Curtis-Hedlund Theorem.

Theorem 7.1.7. Let ϕ ∈ Hom(H,G). A function τ : AG → AH is a ϕ-cellular automaton if and only if

τ is continuous and ϕ-equivariant.

The current inquiry pertains to the scenario wherein set A does not possess finiteness. Specifically,

we endeavor to discern the feasibility of extending the definition and implications of ϕ-cellular automata
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to instances where the alphabet comprises elements of a finite-dimensional vector space. Furthermore,

an exploration into the possibility of extending the definition and implications of ϕ-cellular automata to

situations involving a nearspace as the alphabet is warranted.
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