
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Master's Theses Graduate College

12-1993

Design and Development of a Heterogeneous Parallel Computing Design and Development of a Heterogeneous Parallel Computing

System System

Eruch R. Rustomji

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Rustomji, Eruch R., "Design and Development of a Heterogeneous Parallel Computing System" (1993).
Master's Theses. 4248.
https://scholarworks.wmich.edu/masters_theses/4248

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/4248?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4248&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

,I

DESIGN AND DEVELOPMENT OF A HETEROGENEOUS PARALLEL

COMPUTING SYSTEM

by

Eruch R. Rustomji

A Thesis

Submitted to the

Faculty of The Graduate College

in partial fulfillment of the

requirements for the

Degree of Master of Science

Department of Computer Science

Western Michigan University

Kalamazoo, Michigan

December 1993

)

ACKNOWLEDGMENTS

Firstly, I would like to thank my major advisor, Dr. Ajay Gupta, who

has been my mentor and friend throughout my thesis project. His suggestions

stimulated new ideas and added a creative touch to the thesis. To the members of

my committee, Dr. Thomas F. Piatkowski and Dr. Elise deDoncker, I extend my

sincere appreciation for their guidance and support throughout the entire thesis

project.

Secondly, I thank my family, for their support in all my endeavours. I

extend my sincere thanks to my colleagues, Mr. Winston Anand-Kumar, Mr.

Siddharth Bhingarde, Mr. Arun Shanbhag and Mr. Omprakash Mishra for their

never-ending support.

Finally, I dedicate this thesis to my Lord Ahura Mazda, for giving me

strength, motivation and determination in all my work.

Eruch R. Rustomji

11

DESIGN AND DEVELOPMENT OF A HETEROGENEOUS PARALLEL
COMPUTING SYSTEM

Eruch R. Rustomji, M.S.

Western Michigan University, 1993

A parallel and distributed processing environment can be defined as one

where a set of workstations is configured in a certain topology (such as completely

connected linear chain) to simulate the working of a particular parallel architec

ture. Such an environment provides an extremely useful means of experimenting

with parallel algorithms, without the use of expensive dedicated parallel machines.

Several parallel and distributed processing environments exist, such as

Parallel Virtual Machine, The Condor System and the Reactive Kernel Sys

tem/ Cosmic Environment System. Each of these systems has some unique features

and limitations. Other systems include p4, Hermes, Linda and Express.

This thesis describes the HPCS system and its three modes of operation

with examples and briefly discusses future expansion potentials

In this thesis, we describe the design, development and features of the

Heterogeneous Parallel Computing System, a parallel and distributed processing

environment, which allows program development given a limited set of resources

and in a reasonable amount of time. It employs three modes of operation to suit

the user's needs; the central-server mode and distributed-server mode are client

server models and the client-serve mode of HPCS is a serverless model. The

HPCS system has been conceptually designed to overcome limitations posed by

the well-known systems (e.g. PVM, RK/CE, Condor).

ACKNOWLEDGMENTS

LIST OF TABLES .

LIST OF FIGURES

CHAPTER

I. INTRODUCTION

TABLE OF CONTENTS

11

vi

Vll

1

The Problem . . 1

Parallel and Distributed Processing Environments 2

The Reactive K�rnel/Cosmic Environment (RK/CE) . 3

The Condor System 4

The Parallel Virtual Machine (PVM) 4

Heterogeneous Parallel Computing System 6

HPCS v/s PVM, RK/CE and Condor . 8

II. THE UNDERLYING MECHANISM . . . 10

The OSI Model and Networking Standards 10

The Open Systems Interconnection Model (OSI) 10

Protocol Suites 11

TCP /IP - The Internet Protocols . 11

Transport Layer - TCP and UDP 12

III. CENTRAL SERVER MODE . . . 17

System Setup and Configuration 17

Server Mechanism Description 18

Mechanism Involved . 20

lll

,I

Table of Contents - Continued

CHAPTER

The Reduction Program

IV. DISTRIBUTED SERVER MODE

System Setup and Configuration

Mechanism Involved

Finding Fundamental Cycle Set in a Graph

Observations . .

V. CLIENT-SERVE MODE

System Setup and Configuration

Mechanism Involved

Finding Co-Occurrence Values of an Image

VI. HPCS SOFTWARE LIBRARY .

Library Calls

Simple Example Using HPCS Primitives

VII. X-WINDOW GUI

The HPCS Process Monitor

VIII. FUTURE EXPANSIONS . .

Future Expansions to the GUI

Future Expansions to HPCS

IX. CONCLUSION

lV

20

22

22

22

23

25

26

26

27

27

29

29

30

33

33

34

34

34

35

.

Table of Contents - Continued

APPENDICES

A. Central-Server Mode Example Program

B. Distributed-Server Mode Example Program

C. Client-Serve Mode Example Program .

REFERENCES

V

36

39

45

49

LIST OF TABLES

1. Comparison of Protocol Features for XDP, UDP ·and TCP .

vi

14

LIST OF FIGURES

1. Example Configuration of a Parallel and Distributed Environment. 2

2. Skeleton of Host and Node Programs in HPCS. 7

3. OSI Seven-Layer Model. 11

4. Layering in the Protocol Suite .. 12

5. Four-Layer Model Showing TCP, UDP and IDP. 13

6. TCP /IP Communication Example Between Two Machines. 16

7. HPCS Central Server Mode Configuration. 17

8. Socket System Calls for Connection-Oriented Protocol. 19

9. HPCS Distributed Server Mode Configuration .. 23

10. HPCS Client-Serve Mode Configuration. 26

Vll

.. . . .

CHAPTER I

INTRODUCTION

The Problem

A parallel/distributed application program is one which performs a func

tional task in a parallel manner (simultaneous execution) by distributing any given

set of data which is divided into several parts and the functions are executed si

multaneously on each individual part. The individual results obtained are then

combined together to get the final result. The parallel program is usually run on

a parallel machine [1, 13, 15, 16, 17].

Recently a new trend has developed called Heterogeneous Computing. It

involves a parallel program and/or distributed application running on a cluster

of workstations. A common computing environment consists of workstations of

different architectural bases, connected together by a high-speed network. These

workstations have grown in power over the past few years and represent a signifi

cant computing resource [14, 16, 17, 18, 19, 21]

The main goal is to use any given set of already available workstations

(an example configuration is shown in Figure 1) as a resource pool and to speed

up the computational ppwer by pooling in the workstations together to provide a

parallel and distributed environment. If p processors are available, then in paral

lel/ distributed computation, the ideal goal is to execute the application on these p

hetero-processors pseudo parallel machine, such that the application runs atleast

p times faster than the fastest known solution on the slowest hetero-processor.

The figure on the next page shows an example configuration where four different

types of workstations are connected by a network along with a network manager.

1

I

I

1
Work.rtation I Work.rtation 2

i [VDU) [VDU)

:
! c::==J c=:::::::::J

: C] CJ C] c::JCJ
I C] CJ CJ OCJ :::

==

CJ CJ CJ
CJ CJ CJ

CJ CJ
CJ CJ

i __ _...._ ___ N_• .. tw ... ork .. U .. ·11.;.., _____ __ --+ :
!
!
!
,,!

VDU

==

CJ CJ CJ CJ CJ
CJ CJ D OCJ

Workstation 3

VDU

==

CJ CJ CJ CJ CJ
CJ CJ CJ CJ CJ

Work.rwtion 4

N,twork
Managu

Simulated Parallel Machine with 4 Node.,

.:: :

i
! :
.

I
.

!
:
!
,

i
-- I

Figure 1. Example Configuration of a Parallel and Distributed Environment.

For such a configuration of a system we need to provide a set of software prim

itives to the user to easily develop a coarse-grain parallel program without the

availability of a parallel machine. The primitives should be robust and have in

corporated features such as error detection, fault tolerance, timeout etc. One of

the main objectives here is to develop software library which is easily portable for

a similar network of workstations, presenting a parallel and distributed processing

heterogeneous environment to the user.

Parallel and Distributed Processing Environments

A Parallel Processing Environment (PPE) is a network of workstations

(homogeneous or heterogeneous) configured together as a resource pool alongwith

a software package which as a whole offers the equivalent power of computation,

as that of a similar parallel machine. In effect, it simulates a parallel machine

using the set of already available workstations. The software developed to offer

2

[J

I

![_]
' I
I
!

-1

[_______..)l I 6~1
(_)]

this parallel and distributed power to the user is called a Parallel Simulator and

the HPCS system which we describe here suits the purpose.

PPE's can be developed on any network of machines and PPE's can be

implemented using a variety of system software available. This includes Berkeley

Socket calls which is part of the Berkeley Socket Distribution (BSD), Transport

Layer Interface (TLI) provided by IBM and SUN Remote Procedure Calls (RPC).

There have been several such development environments available to use

namely, the Reactive Kernel/ Cosmic Environment System [2], the Parallel Virtual

Machine [12], the Condor System [6], the p4 system, the Hermes PPE language,

the Linda System and Parasoft's Express. We describe briefly the first three

systems.

The Reactive Kernel/Cosmic Environment (RK/CE)

The RK/CE system wa.s developed by C. Seitz, Jakov Seizovic and Wen

King Su at the California ln:,titute of Technology [2]. A program written in

RK/CE can run on an actual parallel machine (such as Simult 2010, Cosmic

IPCS II, Intel IPSC 8/60) without modification.

It can be configured a:, a ghost cube or a non-cube.1 The host program

running on the host machine of the user, makes the node program ready to run

on the PE's(nodes), allocates the data to the nodes and spawns processes at

every node in the cube. The results are then received by the host from the

nodes when the tasks are completed. Each node has its own local memory, and

nodes communicate among themselves through messages. A set of message passing

primitives is given to the user as a library call. These primitives include standard

C binding calls and they are archived in the RK/CE library. All paths used by the

1For a definition of the commonly used fixed interconnection architectures for parallel
machines, the reader is referred to [15].

3

RK/CE system for the user, should have world executable access. RK/CE uses

Unix Datagram Protocol (UDP) and Berkeley Sqcket calls as its base structure.

The Condor System

The Condor System developed by by M. Litzkow, M. Livny and M. Mutka

at the University of Wisconsin, Madison [3, 6]. It is the result of an attempt to

make use of idle cycles on workstations by monitoring the activity on all partici

pating workstations in the local network. Those machines which are determined

to be idle, are placed into a resource pool or "processor bank". Machines are then

allocated from the bank for the execution of jobs. The bank is a dynamic entity,

workstations enter the bank when they become idle, and leave the bank when

they become busy [3, 4, 5].

No special programming is required to use Condor. The local execution

environment is preserved for remotely executing processes. It takes care of data

file movements for remote execution of programs. It uses a special algorithm to

locate and allocate idle workstations. If a job is stopped when a user returns to

his /her workstation the Condor system will eventually checkpoint. and restart the

job on another workstation. It runs outside the UNIX kernel, and is compatible

with BSD 4.2 and 4.3.

The Condor system basically has been oriented towards idle time resource

utilization and effective location and allocation of jobs on such workstations.

The Parallel Virtual Machine (PVM)

Parallel Virtual Machine (PVM) was developed by A. Begeulin and C.A.

Geist at Oak Ridge National Laboratory, J. Dongarra and R. Manchek at Uni

versity of Tennessee and by V. Sunderam at Emory University [12]. It is a

software package that enables concurrent computing on loosely coupled networks

of processing elements.

4

PVM may be implemented on a hardware base consisting of different ma

chine architectures, including single CPU syste1-p.s, vector machines, and mul

tiprocessors. These computing elements may be interconnected by one or more

networks, which may themselves be different (e.g. Ethernet and Internet, MCinet,

ATTnet and UUnet). Thes_e computing elements are accessed by applications via

a library of standard interface routines. These routines allow the initiation and

termination of processes across the network as well as communication and syn

chronization between processes.

Application programs a.re composed of components that are subtasks at a

moderately large level of granularity. During execution, multiple instances of each

component may be initiated.

Application programs view PVM as a general and flexible parallel com

puting resource that supports a message-passing model of computation. This

resource may be accessed at three different levels: the transparent mode in which

component instances are automatically located at the most appropriate sites, the

architecture-dependent mode in which the user may indicate specific architectures

on which particular components are to execute, and the low-level mode in which

a particular machine may be specified. Such layering permits flexibility while re

taining the ability to exploit particular strengths of individual machines on the

network. The PVM user interface is strongly typed; support for operating in

a heterogeneous environment is provided in the form of special constructs that

selectively perform machine-dependent data conversions where necessary.

Application programs under PVM may possess arbitrary control and de

pendency structures. In other words, at any point in the execution of a concurrent

application, the processes in existence may have arbitrary relationships between

each other and, further, any process may communicate and/or synchronize with

any other. This is the most unstructured form of crowd computation, but in prac

tice a significant number of concurrent applications are more structured. Two

5.

typical structures are the tree and the "regular crowd" structure. We use the

latter term to denote parallel computations in which all processes are identical;

frequently such applications also exhibit regular communication and synchroniza

tion patterns. Any specific control and dependency struct,ure may be implemented

under the PVM system by .appropriate use of PVM constructs and host language

control-flow statements.

The PVM system is client-server model, which uses both Unix Datagram

Protocol (UDP) and TCP (Transmission Control Protocol) for communication

purposes. PVM daemons are run on a set of host machines, each co-ordinating

control and data traffic. The pvmd daemons use UDP with each other and client

to-client communication is done using TCP sockets.

Heterogeneous Parallel Computing System

The Heterogeneous Parallel Computing System (HPCS) was designed and

developed by A. Gupta, E. Rustomji and R. Kamenine at Western Michigan Uni

versity. An attempt has been made here to present a parallel and distributed

processing environment to develop a parallel program on a network of worksta

tions. The environment provides most of functionalities existing on dedicated

parallel machines such as nCube, IPSC 860, BBN Butterfly.

A parallel progiam can be viewed as a set of tasks, each task running on a

workstation (node) of the parallel machine. Furthermore, at any instant of time,

during the execution of the task, the node is either performing some computation

or is engaged in communication with another node. We view the parallel program

development in a MIMD (Multiple Instruction Multiple Data) environment. Any

user program implemented on a parallel machine may be abstractly viewed to

consist of two sets of sub-programs, a host program and a node program. An

example setup is shown in Figure 2. The host program is the user-level data

6

JI

Host Program

• Establish Connection with HPCSServer
• Spawn Node Program onWorkstations
• Distribute Data to Node Programs
• Receive partial results from theNode Programs
• Re-organize collected data
• Print Results to output device

Node I

·-----------·

Node2

I

I

I

I

I

I

I

I

I

Node Program

• Establish Connectionwith HPCS server
• Receive partial datasetfrom Host Program
• Perform Functional Task

: • Communication with other
I I •-----------'-._ node programs

Node n

I

I

I

I

I

I

I

I

I

I

I

I I

, _ ---------_,

\.........
• Send data to Host Program

� ------------------------

Figure 2. Skeleton of Host and Node Programs in HPCS.

7

I
I

' I
' t
I

' ' ' I
' ' ' I
I

' t
t
I
t
I
I
I
I
I
I
I
I
I

' I
I
I
I
I
I
I

' I I
I
I
I
I
I

~---------

---------------:
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ---------'

-----i
I
I
I
I
I
I
I
I
I
I
I

... -------., : ,
.' I

.' I
: I

.' I

/ :
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-- -----,
I

' I
' ' I
I

' ' I
I
I

' ' I
I

' I
' I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

controlling program, which spawns a copy of the node program on several proces

sors of the parallel machine, breaks up the original data into several subsets and

passes each of the subsets to the spawned node programs. The node programs

now work on their individual subsets in parallel, compute the results and pass the

results back to the host program. The host program then combines these results

to calculate the overall solution to the problem. HPCS provides primitives to

spawn the node program on the several workstations. These primitives are used

in the host program prepared by the user. HPCS also provides communication

primitives to distribute the <la.ta to the spawned node programs, and to receive

the data(results) from them.

All communication takes place through the underlying mechanism which

controls data flow and connection control. The HPCS uses TCP /IP. It has been

implemented using Berkeley Socket Calls.

The HPCS system is configurable into three modes of operation namely,

Single Server Mode, Distributed Server Mode, and Client-Serve Mode. The en

sueing chapters describe these three modes and how the host task and node tasks

behave in each particular configuration.

An X-window GUI has been developed for process monitoring. Future

expansion potentials are discussed in the later chapters.

HPCS v/s PYM, RK/CE and Condor

From the above sections, we have observed the various features, each of

the parallel and distributed environments offer us. In this section, we compare

our newly developed HPCS system with PYM, RK/CE and Condor.

We note that the RK/CE environment mainly views the parallel machine

with the hypercube model in mind. It operates only on homogeneous environ

ments.

8.

The PYM system uses a mix of the UDP and TCP protocols, and it pro

vides its own mechanisms of 1eliability when using UDP. This type of reliability

mechanism is system dependent and comes under layer 6 and 7 of the 7-layer OSI

model . The Condor system is actually an idle workstation hunter, which is its

primary job.

Our goal here is to present, a PPE, which provides system level reliabil

ity using strictly TCP (a very reliable, efficient protocol and widely available

protocol) using a given set of workstations as a resource pool which should be

configurable with any parallel model in mind and has the potential to perform

load balancing (idle workstation hunting).

The HPCS system is oriented towards presenting such a system and is in

the process of continously adding more features to it, in order to surpass not equal

the capabilities of other similar systems we may encounter.

9

CHAPTER II

THE UNDERLYING MECHANISM

The OSI Model and Networking Standards

In this chapter, factors have been presented which contribute to the devel

opment of the HPCS system. Firstly, the goal of all protocol designs is to find the

fundamental abstractions that can be reused in multiple applications. In most

UNIX based systems, the complete network system follows the Open Systems

Interconnection model (OSI).

There are many different organizations involved in the development of net

working standards. Both the organizations and standards are referred to by

acronyms in most networking literature. The International Standards Organi

zation (ISO), was founded in 1946 and develops standards on a wide variety of

subjects. The members of ISO, are the national standards organizations from the

member countries. The American National Standards Institute (ANSI), is the

U.S. member of ISO. The Open Systems Interconnection model was adopted by

ISO in 1984 [7, 8].

The Open Systems Interconnection Model (OSI)

The OSI model provides a detailed standard for describing a network. Most

computer networks are described today using the OSI model as a reference. From

the seven-layer OSI model shown in Figure 3, the lowest of the seven layers which

provides reliable data transfer between any two systems is the transport layer.

Error detection, checksums, retransmission and flow control are handled by the

transport layer.

10

Application

System

Protocol

Transport

Network

Data Link

Physical

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer I

Figure 3. OSI Seven-Layer Model.

Protocol Suites

There are many protocol suites used in most major networking systems

today. Some of the them are listed here : (a) TCP /IP protocol suite (the Internet

protocols), (b) Xerox Networking Systems (Xerox NS or XNS), (c) IBM's Systems

Network Architecture (SNA), (d) IBM's NetBIOS, (e) The OSI protocols and(!)

Unix-to-Unix Copy (UUCP).

Figure 4 demonstrates the relationship of the protocols in the Internet

protocol suite. In this chapter we will mainly examine the TCP and UDP protocols

of the Internet Protocol family.

TCP /IP - The Internet Protocols

The family of Internet protocols consist of many members. We examine

two members which are referred to as the Transmission Control Protocol/Internet

Protocol (TCP /IP) and Unix Datagram Protocol (UDP). OSI layers 5-7 comprise

of the user process, which include those developed by the programmer. The HPCS

system lies within these layers. OSI layer 4, which is the Transport layer, consists

of TCP or UDP. OSI layer 3 which is the Network layer consists oflnternet Control

11

User Process

ICMP

ARP

User Process

UDP

Hardware

Interface

Figure 4. Layering in the Protocol Suite.

Message Protocol(ICMP), the protocol to handle error and control information

between gateways and hosts. ICMP messages are transmitted using IP datagrams.

The IP is the protocol that provides a packet delivery service for TCP, UDP

and ICMP. The Address Resolution Protocol (ARP) maps an Internet address into

a hardware address. The Reverse Address Resolution Protocol (RARP) maps the

hardware address into an Internet address. The ARP and RARP are not used on

all networks. OSI layer 1 and 2 are the Physical and Data link layers, wh�ch is

together considered as the hardware interface is shown in Figure 4 .

Transport Layer - TCP and UDP

The Application layer user processes communicate with each other by send

ing and receiving TCP data or UDP data. Let us simplify the relationship into

a 4-layer model showing TCP, UDP and IP, as shown in Figure 5. These two

protocols are sometimes referred to as TCP /IP and UDP /IP. TCP provides a

TCP]
.____

IP

Hardware
Interface

User Process Process Layer

UDP Transport Layer

Network Layer

Data-Li11k Layer

Figure 5. Four-Layer Model Showing TCP, UDP and IDP.

connection-oriented service. It also provides reliable message broadcasting, full

duplex communication lines and a byte-stream service to an application program.

On the other hand, UDP provides an unreliable, connection-less datagram

service. Since HPCS assumes that the c01mi1unication between its clients (host

and node programs) are reliable and secure, and these clients have to be connected,

TCP /IP was chosen as the protocol and the Internet Address Family (AF .JNET)

was chosen as the means of communication for the channel through which HPCS

server communicates.

Table 1 compares TCP, UDP and IP. Note that the IP layer provides an

unreliable, connectionless message delivery service but it is the TCP module which

contains the necessary logic to provide a reliable virtual circuit to the user process.

TCP handles the esta-blishment and termination of connections between processes,

the sequencing of data, the end-to-end reliability (checksums, timeouts, acknowl

edgements) and end-to-end flow control. On the other hand, UDP provides only

i3

User Process]

Table 1

Comparison of Protocol Features for IDP, UDP and TCP

Protocol Feature IP UDP TCP

connection oriented ? no no yes

message boundaries ? yes yes no

data checksum ? no opt yes

positive ack. ? no no yes

timeout and rexmit ? no no yes

duplicate detection ? no no yes

sequencing ? no no yes

flow control ? no no yes

two features that are not provided by IP: port numbers and checksum verification

for the contents of the UDP datagram. Thus if a user process uses UDP instead

of IP directly, then it can operate in a connection-less, unreliable environment

presented here by UDP. TCP /IP was the chosen one, as it is connection-oriented,

provides re-transmission control, data checksum, duplicate detection, sequencing,

flow control and positive acknowledgement.

The port number service provided by UDP and TCP allow a client process

to contact and identify a server process residing on a particular host system. Port

numbers distinguish different servers and given the host IP address and the port

number through which a particular server accepts requests, a client can establish

a connection with the server. A client-server application like HPCS can specify

a particular port number used, from the list of ephemeral port numbers available

for program development. Note that the X-window system which is a Network

Transparent Window System, also makes use of these port-numbers. A similar

14

layout is shown in the Figure 6. It is also noted that TCP ports are independent

of UDP ports. TCP port 1890, for example is independent of UDP port 1890.

User Process

Host I

Berkeley Sockets

/TLI

TCP

IP-ICMP-ARP

-RARP

Hardware

Interface

'-tayer 7

Layer 5,6

Layer 4

Layer 3

Layer 1,2

High-speed

Network

User Process

Host 2

Berkeley Sockets

/TLI

TCP

IP-ICMP-ARP

-RARP

Hardware

Interface

Figure 6. TCP /IP Communication Example Between Two Machines.

16

CHAPTER III

CENTRAL SERVER MODE

System Setup and Configuration

The HPCS system is a client-server model, which can be configured in three

modes of operation, the Central Server Mode, the Distributed Server Mode and

the Client-Serve Mode. The first mode of operation is called the Central Server

mode. In this mode, the host program spawns the node program on several nodes

(workstations) using the Central Server running on the host node. A typical pro

gram usually establishes a connection with the Central Server and spawns the

node programs on however many nodes as required. To support these operations

the PPE should allow spawning of processes on nodes, handle communication be

tween different processes etc. The HPCS supplies the user with a set of primitives

donald.cs.wmic/1.edu

SUN Spare IPC

HPCS Client

Host Program

HPCS Client

Node Progrc,m

NeXTStation

nOCJ.lc,b.cx. wmicli.edu

sol.c.r. wmiclr.edu

HPCS SERVER

.d04.cs.wmicl1.edu

SUN 3/60

HPCS Client

Node Program

HPCS Client

Node Program

V AX/UltrixStation

gumby.n·. wmic/1.edu

Figure 7. HPCS Central Server Mode Configuration.

17

to perform such functions. The important point to be noted about this mode

of operation is that the Central Server (or one of supporting child processes) is

involved in all the communication. This can be viewed as a fully interconnected

architecture. In this chapter using the reduction problen� as en example, we have

shown how we can apply the HPCS primitives in this mode of operation and get

the end results. Figure 7, shows that there exists one single HPCS server and

client programs (both host and node programs of the user) runnning on a given

set of nodes and which communicate via the central server. The HPCS central

server is first setup to run as a daemon process1 on one of the workstations. Then

the server listens for connections on an available port, via the select() system call,

where the port number is set up at the time of installation.

Server Mechanism Description

On a connection requtst, the server stores the client's information (e.g.

client's IP address, client's name, client's file descriptor). It then proceeds to fork

a slave process, for the connection request, which handles all I/0 associated with

that client, using the client's fd, as the I/0 channel (See Figure 8.)

In this manner, the server forks several slave processes, which indepen

dently handle the client connections. Before a client exits, the user program uses

a HPCS primitive to send a message to this slave process to indicate termination

which in turn terminates. In this manner, the parent server process, basically,

awaits connection requests, processes client information and forks a slave process,

and returning back to await the next connection request.

1 For further details about daemon processes, the reader is referred to [7, 8]

1$

HPCS Server

connection-oriented protocol

socket()

bind()

listen()

select() and accept(]

create slave proces:J

fork()

hpcs_write()

---------------,

hpcs_read() - hpcs_ write()

I

I

I

I

I

I

I

I

I

________________ Slave process_ .. ______________ J

Client

(Host or Node Program)

socket()

connect()

hpcs_read()

Figure 8. Socket System Calls for Connection-Oriented Protocol.

19

blocks until connection ftom client

Mechanism Involved

The mechanism used by the server process to await a connection request

is made very simple using Berkeley socket calls. The step-by-step process is de

scribed below (See Figure 8.):

1. Server creates a communication socket, using AF J:NET (Address Family

- Internet for TCP /IP). This socket returned is the listening port.

2. Server binds its Internet address and an available port number to the

socket.

3. The server listens for connections using the listen() system call ..

4. Upon a connection request, the server accepts the connection by issuing

an accept() call, to setup a unique communication channel.

5. The server creates a slave process, passing the client's communication

channel fd, returned by accept(), to allow it to handle any 1/0 associated with

that particular connection.

20

In this manner the server follows the design of a connection-oriented (TCP /IP),

concurrent (slave processes) server. It can set itself up as a daemon process which

is a non-tty attached process. This allows the server to dis-associate itself from

the terminal and become login session leader.

The Reduction Program

In order to further understand this first mode of operation, let us take an

example which can show us how to develop a program under HPCS and use its

provided software primitives.

A good example for this mode of operation is the Reduction problem.

Given is a set of n numbers and we need to find the number which has the

maximum value among this set of numbers. We are also given a set of p hetero

processors under HPCS. In this example the host program divides then numbers

into p parts and sends each individual part to each node program executing on each -

node (a.k.a. workstation). Now each node program receives the data and performs

its own internal sort and computes the maximum value from its individual dataset.

Each node sends that maximum value to the host progr_am via the central server

and the host accumulates these individual max values into an array. The host

calculates the max value among the values it received and outputs the result.

The· code for the above example is given in Appendix A. A set of HPCS

software primitives used in the code are briefly described here:

1. hpcsinit() - Establishes connection with the central server.

2. hpcs....spawn() - Spawns node programs on workstations.

3. hpcs_read() - Reads received data into a buffer.

4. hpcs_write() - Sends the contents of the buffer to the designated node

program.

5. hpcs_close() - Closes the communication channel and inform the central

server that connected node program has ended.

The reader is referred to Chapter VI for further details of these primitives.

2U.·

CHAPTER IV.

DISTRIBUTED SERVER MODE

System Setup and Configuration

In this mode, instead of having a single server running on a single worksta

tion, several servers will be running; one on each workstation. Each node program

on individual machines communicate only with the local server. If the program

on some node i wants to communicate with another program on node j, it merely

talks to its local server. The local server then establishes a connection with the

local server on node j and sends it the data which is passed to the node program

on that node (See Figure 9). The main advantage of this mode of operation is

that there is no congestion on a single port. Since all the communication overhead

is distributed among all nodes in the network, the time spent for such commu

nication is significantly reduced. However the intertask communication between

the local server and the local node program, within a machine is increased. In the

first mode of operation if the Central Server node crashes, the whole system comes

to a halt. Another important advantage of this mode of operation is that even if

some nodes crash, the system can still function. This does, however, require that

status tables should all be kept up to date and consistent on all nodes.

Mechanism Involved

With reference to Figure 9, each client maintains a set of fd's (file descrip

tors) for each connection it makes with each server residing on a workstation. In

this manner, the I/0 is not concentrated in the central server as described in the

first mode of operation. The servers in this case, each maintain a set of fd's, sim

ilar to the central server in the first mode of operation. Testing can be done for

22

dcmlllti.l'.f. wmic/1.edu

�------------------------,

I

I

1-IPCS Clicnl :

HPCS Server

HPCS Server

1-1 PCS Cl ienl

1109.lab.c:c. wmid1.t'dt1

.f304.c.f. wmic/r.edu

IIPCS Client

HPCS Server

HPCS Server

1-IPCS Client

I

I

I

I

I

I

I

I

I

I

I

------------------------�

gumby.cc. wmid1.ed11

Figure 9. HPCS Distributed Server Mode Configuration.

this mode, to observe whether it reduces congestion of data flow over the Ethernet

lines between workstations using Ethernet communication control programs.

Finding Fundamental Cycle Set in a Graph

Let us take an example suited to this mode of operation. We will use this

example to show how to use the same set of HPCS software primitives to find

the fundamental cycle set in a graph. A fundamental cycle exists in a graph or

sub-graph if there exists a path in that vertice-set.

Let G = (V, E) be a graph with n = IVI vertices and m = IEI edges,

without self-loops or parallel edges. For completeness sake, we next define a few

graph theory terminologies.

Subgraph: A subgraph of G is a graph whose vertices and edges are in G.

23

I

' ' • ' ' ' .
' I
I
I

' ' ' ' I
I I I
________________________ J

I
I
I

!
I
I
I
I

l
I

' I
' ----------~------~

Connected Component: A graph is connected of there is a path between

any pair of vertices in G. A maximal connected subgraph of G is called connected

component.

· Tree: A tree is a connected graph without cycle!3. A subgraph of a con

nected graph G is a spa1111ing tree of G if it is a tree containing all the vertices of

G. A Spanning Forest of a disconnected graph G is a collection of spanning trees,

one for each connected component.

CoTree: A cotree in a connected graph G with respect to a spanning tree

T = (V, ET) is the subgraph with a vertex-set V and the edge set E - ET.

Fundamental Cycle Set: Adding an edge of a cotree to T creates a funda

mental cycle. The set of all m - n+ 1 cycles forms a fundamental cycle set in a

connected graph with n vertices and m edges.

Bridge: An edge of a connected graph G is a bridge if its removal leads to

the disconnection of G.

Bipartite Graph: A graph is said to be Bipartite if its vertex-set V can be

partitioned into two subsets Vi and ½ such that none of the edges in E has both

of its end-vertices in either Vi or ½.

We first construct a co-tree of G edges, such that each of its edges forms a

fundamental cycle. In effect the forming of the co-trees from the output obtained

from the Spanning_Forest_Global procedure described in [30, 31], makes us find

the fundamental cycle by merely checking if a path exists from that vertice-set,

using the following steps:

1. Using the procedure Spanning Forest Global, we identify the co-tree

edges.

2. The host program divides the list of edges into p parts and sends each

individual p part to each node program running on each node.

3. Next each node program examines its list of edges and finds if a particular

edge belongs to the co-tree, if it does it finds its associated fundamental cycle.

24-

4. Each node program then sends its result to the host program.

5. The host program accumulates these re�ults sent by the individual node

programs and outputs the total result.

Observations

The time complexity of the algorithm used in [30, 31] is calculated as

O(n(logp + m/p)). These set of algorithms use simple data structures, such as

an unordered list of edges and they achieve optimal speedups for dense as well as

sparse graphs. All these type of algorithms are optimally scalaple up to a large

number of processors depending on the graph density.

The code for the above example is shown in Appendix B. The primitives

used in the code are described in Chapter VI.

25

CHAPTER V

CLIENT-SERVE MODE

System Setup and Configuration

This mode of operation is unique in the existing Parallel Processing En

vironments in that the host spawns a process to act as a temporary server and

also spawns the node programs on different workstations. The slave process now

awaits connections from all node programs. Each spawned node program estab

lishes a connection with the slave server an also with other n_ode programs. After

storing all the parameters for the connection in a global table, the slave server

kills itself. At this point we have a fully interconnected system. This mode has

the advantage that no intertask communication takes place between a machine

itself, however, the disadvantage is that the user program is burdened with taking

care of fault tolerance. The configuration diagram is shown in Figure 10.

Jonaldcs.14'trtich.rdu

HPCS Client

Host Pro1ram

HPCS Slave Server

Process

"19. lab.cc. 14•mich.rdu

HPCS Client --�

Nod, Proxram

sJlH.cs. 14-mich..,Ju

HPCS Client

Nodr Pro1rum

HPCS Client

Nodt' /'ro1rum

Figure 10. HPCS Client-Serve Mode Configuration.

26

&umby.r:c. wniich.~Ju

The dashed lines, indicate that it is a temporary connection, whose param

eters are passed back to the calling program (hos� program). The host program

then uses these connection parameters, and uses it for communication purposes

(shown by solid. lines).

Mechanism Involved

The step-by-step process is described below:

1. The host program initiates the server slave process via a fork() call, and

this server waits till all clients have made their connections.

2. The host then spawns, the client program on the workstations and the

client programs in turn establish connection with the server slave process.

3. After all connections are stored in a global fd table, the server slave

process exits.

4. At the same time, the client programs connect with each other.

5. The host program then distributes the data to each client.

6. The node programs in turn perform the algorithm to their individual

data set and send their results to the host program.

7. The host program gathers the received data and outputs the overall

results.

Finding Co-Occurrence Values of an Image

The third mode of operation is a serverless model allowing node programs

to communicate directly with each other, if needed. To suit this mode of operation

let us take an example which deals with large amounts of data.

Let us take the example of finding the co-occurrence values of a given

image where the image has been defined in a N x N array. Each node program

will receive one row of the array, assuming there are P processors where P = N.

-27-

The host program gets the data stored in a file into a N x N array and sends each

row of the array to each node program running on. each node.

The node program in turn stores the received data into a !-dimensional

array and finds the co-occurrence values. The node program then sends the cal

culated co-occurence values .back to the host in a similar manner it receives it.

The host accumulates the received co�occurrence values, assimilates them

and outputs the result.

The code for the above example is shown in Appendix C. The primitives

used in the code are described in Chapter VI.

28-

CHAPTER VI

HPCS SOFTWARE LIBRARY

The HPCS interface library is a set of primitives provided which can enable

a user to develop his/her parallel program. In this chapter a detail description of

the HPCS software primitives i:; given.

Library Calls

1. hpcs_ini t (_hostname) - used in all three modes, where the hostname of

the server to be contacted is supplied as an input parameter. Returns a fd to the

caller which is used as a reference I/ 0 channel.

2. hpcs_spawn(program_.name, hostname, no_nodes) - In Central Server

mode (i.e. mode 1), this primitive spawns node 'program_name', with 'hostname'

specified as server machine to connect, 'no_nodes' times. In Distributed Server

mode (i.e. mode 2), this primitive spawns 'program_name' on workstation, and

node program establishes connection with server on local workstation. The Client

Serve mode (i.e. mode 3) is similar to the Central Server mode, except that

temporary server is the same as host program which accepts connections through

its slave server process.

3. hpcs_read(fd, buffer) - Used in all three modes and for client pro

grams, to perform data I/0. The fd is the I/0 fd (channel) obtained from the

hpcsJnit(hostname) call. This call reads the incoming data into 'buffer'. Max

imum buffer length is set to a default of 255 bytes which can be changed at

installation time.

4. hpcs_write(fd, buffer) - Used in all three modes and for client pro

grams, to perform data I/0. The fd is the I/0 fd (channel) obtained from the

29

hpcsinit(hostname) call. This call writes the data in 'buffer'. Maximum buffer

length is 255 bytes, which can be changed at installation time.

5. hpcs_close (fd) - Called by client programs, to send a message to as

sociated server, to shutdown connection. This message allows the slave processes

in single-server mode and distributed-server mode to exit, thus terminating the

connection, with the associated client.

6. hpcs_connect_all(num_oLclnts) - Used only in mode 3. It connects

caller client, with all other clients, if present in the resource data file.

Note: The buffer message for hpcs_read() and hpcs_write() consists of:

< desLid, message >

where,

o In central server mode (mode 1) and client-serve mode (mode 3), if the destid

= �1, then the server sends the message back to the sender, else it checks the client

id in the client fd table, and sends it to the respective client.

o In the case of distributed server mode (mode 2), the server either sends it to

the caller if destid = -1, else it sends the message to the client on its workstation.

Simple Example Using HPCS Primitives

Let us take a simple example to show the control flow of a parallel program

written using HPCS primitives.

Assume that the hpcs server is running in on the workstation described

as 'localhost'. The host program initially, establishes a connection with the hpcs

server. It then spawns the node program using 'hpcs_spawn', giving the total

number of node programs to be spawned. The 'hpcs....spawn' program in turn read

the resource pool data file (which contains the workstation names, usernames and

architecture type) and remotely executes the corresponding binary copy of the

node program on the workstation specified.

30

The host program then writes to each of the node program some data in

the "buffer". It then awaits a data receive from each of the node programs, till all

data is received.

The node program in turn reads the data received from the host program

into its local buffer. It then performs its functional task, and sends its results

back to the host program.

Sample Host Program

#include <hpcs/hpcs_defs.h>
rnain(argc, argv)
int argc;
char *argv[];

{

}

I* Establish Connection with HPCS server. *I

fd = hpcs_init(localhost);
I* Spawn node programs *I

hpcs_spawn(program_name, localhost, nurnber_of_nodes);
for(i=O; i < nurnber_of_nodes; i++) {

}

sprintf(snd_buf,"%d %s", i, buffer);
hpcs_write(fd, snd_buffer);

for(i=O; i < nurnber_of_nodes; i++)
hpcs_read(fd, recv_buffer);

--

--

Sample Node Program

#include <hpcs/hpcs_defs.h>
rnain(argc, argv)
int argc;
char *argv[];

{

I* Establish Connection with HPCS server. *I

rnyfd = hpcs_init(host_name);
hpcs_read(rnyfd, buffer);
I* Perform functional task *I

hpcs_write(rnyfd, buffer);

31

}

The details of the primitives used in the above code are described in the

previous section of this chapter.

· 32

CHAPTER VII

X-WINDOW GUI

The HPCS Process Monitor

The HPCS process monitor was designed to allow the user to have a view

of the activity that takes place for his/her program running on the set of work

stations.

Currently, it uses the UNIX (uptime' command to show the load average,

and eventually later, will evolve into a performance meter with added tools.

It has been written using Xview, and Xt toolkits available on SUN Sparc's.

In the future, a NeXTStep and Motif based monitor will be implemented for use

on NeXTStations and DEC UltrixStations.

The menu system is quite simple. One can open a process monitoring

connection, by specifying the node IP address and it in turn opens up a tty sub

window with the (uptime' command running in it. Closing a connection will kill

that sub-window specified.

33

CHAPTER VIII

FUTURE EXPANSIONS

Future Expansions to the GUI

Some suggestions include:

1. Create a time-dependent graph which shows disk I/O, CPU usage,

Buffered I/O, Non-buffered I/O usage.

2. Create a Graph Log Analysis option, to allow user to later analyze the

performance times of his/her program on the set of workstations.

3. Be able to start the user program through the GUI, observe changes in

overall performance times using Line, Bar Graphs.

Future Expansions to HPCS

1. Assign a logical id, to the set of workstations, and configure them with

a particular parallel machine model in mind, e.g. Hypercube, Butterfly Network,

Token Ring network, 2-D Mesh, de Bruijn Network.

2. Employ proximity analysis and configure workstations to the above par

allel models. Here the IP address of the workstations is taken and sorted. The

logical id's are then assigned in a serial order to the sorted workstations. Over

a Ethernet configuration where the workstations were physically located on the

ethernet in the order of their IP address, this method provides a useful means of

reducing traffic over the Ethernet communication lines.

3. Employ queues at each server in Central Server Mode (mode 1) and

Distributed Server (mode 2), to allow non-blocking sending and receiving of data.

34

,,

CHAPTER IX

CONCLUSION

HPCS is totally built with a Heterogeneous set of platforms in mind. In

this chapter we list briefly the features of HPCS and the advantages in using it:

1. HPCS is based on a connection-oriented protocol (TCP /IP), thus allow

ing the host and node programs of the user to reside on any workstation in the

world, with Internet access.

2. HPCS employs concurrent server mechanisms for the Central Server and

Distributed Server modes, increasing response time for each client's request.

3. Employing TCP /IP, allows a HPCS user to assume, that the under

lying protocol is a reliable connection-oriented, stream-byte service, which uses

timeouts, re-transmission, checksums, error detection mechanisms.

4. All accounts used on the set of workstations, have access defined to allow

the host program to spawn the node program on the set of workstations specified.

5. Provides three modes of configuration which can be setup depending on

the users needs. The central server and distributed server modes, are client-server

models. The client-serve mode is a serverless model.

The Client-Serve mode has the feature of a serverless operation, and clients

can communicate directly with each other, without any external controlling mech

amsm.

35

Appendix A

Central Server Mode Example Program

36

I* HPCS Sample host program for the Reduction problem. *I

#include <hpcs/hpcs_defs.h>
main(argc, argv)
int argc;
char *argv[];

{

}

I* Establish connection with the HPCS central server *I

int array[16], in_array[4];
int fd, i, j=O;
fd = hpcs_init(argv[1]);
hpcs_spawn("hpcs_node", argv[1], 4);

I* initialize array contents *I

I* Data distribution part by host program *I

sprintf (buffer, "i,d ", j);
for(i=O; i < 4; i++) {

if(i % 4 == o I I i !=O) {
hpcs_write(fd, buffer);

}

j++; I* Send next partition to next node id *I

sprintf (buff er, "%d ", j);

strcat(buffer, (char *)&array[i]);

}

I* Data collection part by host program *I

for(i=O; i < 4; i++) {
hpcs_read(fd, buffer);
in_array[i] = atoi(buffer);

}

I* re-arrangement of data, find max among four numbers *I

I* Max value is now in in_array[O], print results on screen *I

printf ("max = i,d \n", in_array [OJ) ;

I* HPCS Sample node program for the Reduction problem. *I

#include <hpcs/hpcs_defs.h>

main(argc, argv)

37

-- --------------------------------

int argc;
char *argv[];
{

}

I* Establish connection with the HPCS central server *I

int in_array[4];
int my_fd, k,
char buffer[MAX_BUF]; I* MAX_BUF defined in hpcs_defs.h *I

my_fd = hpcs_init(argv[1]);

hpcs_read(fd, buffer);
I* Scan data in buffer, to in_array[] *I

I* Perform internal sort, on in_array[] *I

I* Send in_array[O], containing internal max value,
back to host program *I

hpcs_write(fd, (char *)&in_array[O]);

hpcs_close(fd); I* Close connection with server *I

'

38

Appendix B

Distributed-Server Mode Example Program

39

\

I* Program name: cycle_host *I

I* Algorithm: Find a Fundamental Cycle Set in a Graph
given by its Minimum Cost Spanninf Forest

*I

#include <stdio.h>
#include <hpcs/hpcs_defs.h>
#define CUBE_DIM 2

main(argc, argv)
int argc;
char *argv[];

{

int fd;
FILE *fp, *fopen();
int number_of_edges, edge_number, total_edges;
char buffer[MAX_BUF];
int i,k;
int RET[5] [MAX_BUF];
int *DATA, *START, *END, *LISTA;

if((fp = fopen(argv[2], "r")) -- NULL)

{

}

printf (stderr, "ERROR: Input file not found");
return(-1);

fd = hpcs_init(argv[1]);

Step1: I* Get Spanning Forest Output from the data file *I
fscanf(fp, "%d %d\n", &number_of_edges, &total_edges);
DATA= (int *)malloc(2 * sizeof(int));
LISTA= (int *)malloc(number_of_edges * sizeof(int));
START= (int *)malloc(number_of_edges * sizeof(int));
END= (int *)malloc(number_of_edges * sizeof(int));

for(k=O; k < number_of .. edges; k++)

{

fscanf(fp, 1
1%d %d %d\n 11 , &vert1, &vert2, &edge_number);

START[k] = vert1;
END[k] = vert2;
LISTA [k] = edge_numbE?r;

}

DATA[O] = number_of_edges;
DATA[1] = total_edges;

40

Step2: I* Send the data to
I* Assuming 2 * CUBE_DJM
for(i=O; i < 2 * CUBE_DIM
{

the PE's *I
PE's *I

i++)

sprintf (buffer, 11%d 11
,

i);
strcat(buffer, (char *)&DATA)
hpcs_write(fd, DATA);

sprintf (buff er, 11%d 11

,
i);

strcat(buffer, (char *)&START)
hpcs_write(fd, START);
sprintf (buffer, 11%d 11

,
i);

strcat(buffer, (char *)&END)
hpcs_write(fd, END);
sprintf (buffer, 11%d 11

,
i);

strcat(buffer, (char *)&LISTA)
hpcs_write(fd, LISTA);
}

Step3: I* Get results back from the PE's *I

for(k=O; k < 2 * CUBE_DIM ; k++)
hpcs_read(fd, (char *)&RET[k]);

}

I* Program: cycle_node *I

I* HPCS node program for fundamental cycle set algorithm *I

#include <stdio.h>
#include <rnath.h>
#include <hpcs/hpcs_defs.h>

int number_of_edges=O;
int ADJ_MAT[SIZE] [SIZE];
#define CUBE_DIM 2

rnain(argc, argv)
int argc;
char *argv[];
{

int fd;
int *ret_val;
char buffer[MAX_BUF];

41

====================-==-===·===

int COTREE[SIZE];
int i, k ;
int number_of_procs,total_edges;
int ret, index, length;
int path[2], size;
int •DATA, •START, •END, •LISTA;
DATA= (int •)malloc(2 * sizeof(int)');
LISTA= (int •)malloc(number_of_edges * sizeof(int));
START= (int •)malloc(number_of_edges * sizeof(int));
END= (int *)malloc(number_of_edges * sizeof(int));

Step1: I• Connect to Server •I
fd = hpcs_init(localhost);

Step2: /• Read data sent by HOST program *I
hpcs_read(fd, (char *)&DATA) ;
hpcs_read(fd, (char *)&START)
hpcs_read(fd, (char •)&END) ;
hpcs_read(fd, (char •)&LISTA)

number_of_procs = 2 * CUBE_DIM;
number_of_edges = DATA[O];
total_edges = DATA[1];

Step3: I• Form the adjacency matrix from data received •I
init_array(COTREE, SIZE);
init_adj_mat();
length= sizeof(START)/sizeof(int) - 1 ;
for(k=O ; k < length; k++)
{

}

put_in_matrix(START[k], START[k]);
put_in_matrix(END[k], END[k]);
put_in_matrix(START[k], END[k]);
put_in_matrix(END[k], START[k]);

Step4: I• Identify the local co-tree edges •/
ret = (int)ceil((double)total_edges/(double)number_of_procs);
for(i=index * ret; i <index * ret + ret; i++)

COTREE[i] = YES;

for(i=O; i < number_of_edges; i++)
{

42

}

if((index * ret + 1) <= LISTA[i] &&
LISTA[i] <= (index * ret + ret))
COTREE[LISTA[i] - 1] = NO;

Step5: I* Find the fundamental cycle *I
for(i= index * ret; i < index * ret + ret; i++)

{

if(COTREE[i] == YES)

{

}

}

find_path(i, path, &size);
print_path(i+1, path, size);

ret_val = (int *)malloc(sizeof(int));
ret val = (int *)&path;

Step6: I* Send results back to HOST program *I
sprintf(buffer, "O %s", (char *)&ret_val);
hpcs_write(fd, buffer);
exit(O);

}

print_path(id, path, size)
int id, *path, size;

{

}

if (size ! = 0)
fprintf(stderr, "Edge %d : Forms a F-cycle", id);

else
fprintf(stderr, "Edge %d : No existing edge or no path", id);

find_path(vt1, path, size)
int vt1, *path, *size;

{

int h;
for(h=O; h < number_of_edges; h++)

{

if(ADJ�MAT[vt1] [h] -- TRUE)

{

path[O] = vt1 + 1;
path [1] = h + 1;

43

}

}

*size = 2;
break;

else *size = O;
}

init_adj_mat()

{

}

int m, n;
for(m=O; m < SIZE; m++)
for(n=O; n < SIZE; n++)

ADJ_MAT[m][n] = O;

put_in_matrix(vert1, vert2)
int vert1, vert2;

{

ADJ_MAT[vert1-1] [vert2-1] = TRUE;

}

print_array(array, size)
int *array, size;
{

}

int k;

for(k=O; k < size; k++)
printf(11elem[%d] = %d 11 , k, array[k]);

init_array(array, size)
int *array, size;

{

}

int k;

for(k=O; k <
array [k] =

size;
O·
,

k++)

44

Appendix C

Client-Serve Mode Example Program

45

I* Program: HPCS host program for computing the
horizontal Co-occurence values for an image, from
left to right
*I
#include <stdio.h>
#include <hpcs/hpcs_defs.h>

#define NPROCS 8 I* Number of PE's *I

#define SZIMG 8 I* Size of Image 8 x 8 *l

main(argc, argv)
int argc;
char *argv [] ;
{

int fd;
char buffer[MAX_BUF];
FILE *fopen(), *fp;
int image[SZIMG] [SZIMG];

if((fp = fopen(argv[2], "r")) == NULL) {
fprintf(stder,"HOST: Input file not found\n");
exit(-1);

}

Step1: I* Connect to local slave server *I

fd = hpcs_init(localhost);

Step2: I* Spawn node programs on nodes *I

hpcs_spawn("hpcs_node", argv[1], NPROCS);

Step3: I* Read Image file into image_array[] [] *I

for(i=O; i < SZIMG; i++)
for(j=O; j < SZIMG; j++)

fscanf (fp, "%d", &image_array[i] [j]);

Step4: I* Send image array to PE's *I

for(j=O; j < NPROCS; j++) {

}

sprintf(buffer,"%d %s", j+1, (char *)&image_array[j]);
hpcs_write(fd, buffer);

Step5: I* Read co-occurence values from PE's into array *I

for(j=O; j < NPROCS; j++)

46

hpcs_read(fd, (char *)&image_array[j]);

Step6: I* Write to standard output results *I

for(i=O; i < SZIMG; i++) {

}

}

for(j=O; j < SZIMG; j++)

fprintf (std out, "%d II image_array [i] [j]);

fprintf(stdout, 11 \n");

I* Program: HPCS node program for computing the
horizontal Co-occurence values for an image, from
left to right
*I

#include <stdio.h>
#include <hpcs/hpcs_defs.h>

#define NPROCS 8 I* Number of PE's *I

#define SZIMG 8 I* Size of Image 8 x 8 *I

main(argc, argv)
int argc;
char *argv[];

{

int fd;
char buffer[MAX_BUF];
FILE *fopen(), *fp;
int image[SZIMG];

Step1: I* Connect with host slave server running on argv[1] *I

fd = hpcs_init(argv[1]);

Step2: I* Connect with all other clients, gets FD_TABLE[] *I

hpcs_connect_all((atoi(argv[2));
hpcs_read(fd, (char *)&image);

Step3: I* Compute Co-occurence values for each pixel *I

for(i=O; i < SZIMG; i++) {
for(j=O; j < SZIMG; j++)

image[i] += image[j];

47

--

image[i] = image[i] / SZIMG;
}

Step4: I* Send Co-occurence values values to host *I
hpcs_write(fd, (char *)&image);
hpcs_close(fd);

}

48

REFERENCES

[1] Aki, S., The Design and Analysis of Parallel Algorithms, Prentice Hall, 1989.

[2] Seitz, C., Jakov Seizovic and Wen-King Su, "The C Programmer's Abbrevi
ated Guide to Multicomputer Programming", Technical Report Caltech-CS
TR-88-1, Department of Computer Science, California Institute of Technol
ogy, Pasadena, CA, Jan 1988

[3] Mutka, M. and Livny, M., Profiling Workstations' Available Capacity For
Remote Execution, Proceedings of Performance-87, The 12th IFIP W.G.7.3
International Symposium on Computer Performance Modeling, Measurement
and Evaluation Brussels, Belgium, December 1987

[4] Litzkow, M., Remote Unix - Turning Idle Workstations Into Cycle Servers,
Proceedings of the Summer 1987 Usenix Conference Phoenix, Arizona, June
1987

[5] Mutka, M., Sharing in a Privately Owned Workstation Environment, Ph.D.
Dissertation, University of Wisconsin, Madison, May 1988

[6] Litzkow, M., Livny, M. and Mutka, M., Condor - A Hunter of Idle Work
stations, Proceedings of the 8th International Conference on Distributed
Computing Systems. San Jose, Calif. June 1988

[7] Stevens, R., UNIX Network Programming, Prentice-Hall, 1989

[8] Stevens, R., Advanced UNIX Network Programming, Prentice-Hall, 1991

[9] Stevens, R., Comer, P., Jnternetworking with TCP /IP, Volume I, Prentice
Hall, 1988

[10] Stevens, R., Comer, P., Internetworking with TCP /IP, Volume II, Prentice
Hall, 1990

[11] Stevens, R., Comer, P., Internetworking with TCP /IP, Volume III, Prentice
Hall, 1992

[12] Begeulin, A., Dongarra, J., Geist, C., Manchek, R., Sunderam, V., The Par
allel Virtual Machine, Proceedings of the Conference on Distributed Com
puting, Baton Rouge, Lousiana, 1992

49

[13] Bertsekas, D. and Tsitsiklis, J ., Paral lel and Distributed Computation : Nu

merical Methods, Prentice-Hall, 1989

[14] Mano, M., Computer Systems Architecture, Prentice-Hall, 1993

[15] Leighton, T., Introduction to Parallel Algo_rithms and Architectures: Arrays,

Trees and Hypercubes, Morgan Kaufman Publishers, 1992

[16] JaJa, J., Introduction to Parallel Algorithms, Addison-Wesley, 1992

[17] Akl, S. and Lyons, K., Parallel Computational Geometry, Prentice-Hall,
1993

[18] Lakshmivarahan, S. and Dhall, S., Analysis and Design of Paral lel Algo

rithms : Arithmetic and Matrix Problems, McGraw-Hill, 1990

[19] Harrison, R., Portable Tools and Applications for Paral lel Computers

Prentice-Hall, 1991

[20] Birrel, A., and Nelson, B., Implementation Remote Procedure Calls ACM
Transactions on Computer Systems, Vol 2, No. 1, Feb. 1984

[21] Zahn, L., et al. Network Computing Architecture Prentice-Hall, 1990

[22] Kruskal, J., On the Shortest Spanning Subtree of a Graph and the Traveling

Salesman Problem, Proceedings of American Mathematics Society, Vol. 7,
No. 1, pp. 48-50, 1956.

[23] Nath, D., S.N. Maheshwari and Bhatt, P.C.P., Efficient VLSI Networks for

Parallel Processing Based on Orthogonal Trees, IEEE Trans. on Computing.,
IEEE, New York, Vol. C-32. No. 6, pp. 569-581, June 1983.

[24] Sollin, M., An Algorithm Attributed to Sollin in Programming, Games and

Transportation Networks, by C. Berge, and A. Choulia-Houri, Wiley, New
York, 1965.

[25] Prim, R., Shortest Connection Networks and Some Generalizations, Bell
Systems Technical Journal, Vol. 36, pp. 1389-1401, Nov. 1957.

[26] Dijkstra, E.W., A Note on Two Problems in Connection With Graphs, Nu
merisch Math, Vol. 1, No. 5, pp. 269-271, 1981.

[27] Nath, D. and Maheshwari, S. N., Paral lel Algorithms for the Connected

Components and Minimal Spanning Tree Problems, Information Processing
Letters, Vol. 14, No. 1, pp. 7-11, March 1982.

50

[28] Tsin, Y., and Chin, F., Efficient Parallel Algorithms for a Class of Graph

Theoretic Problems, SIAM Journal on Computing, Vol. 13, pp. 580-599, Aug.
1984.

[29] Chin, F., Lam, J. and Chen, I., Efficient Parallel Algorithm For Some Graph

Problem, Communications of ACM, Vol. 25, pp. 659:-665, Sept. 9, 1982.

[30] Quinn, M. J., Designing £'fficient Algortihms for Parallel Computers,

McGraw-Hill Publications, 1987

[31] Das, S. K., Deo, N., Prasad, S., Parallel Graph Algorithms for Hypercube

Computers, Journal of Parallel Computing, 1990

51

	Design and Development of a Heterogeneous Parallel Computing System
	Recommended Citation

	tmp.1558703969.pdf.g1Nvp

