
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Master's Theses Graduate College

8-1995

A Comparison of Methods to Allocate Tasks on a Multiprocessor A Comparison of Methods to Allocate Tasks on a Multiprocessor

System System

Kelly Cousineau

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Cousineau, Kelly, "A Comparison of Methods to Allocate Tasks on a Multiprocessor System" (1995).
Master's Theses. 4245.
https://scholarworks.wmich.edu/masters_theses/4245

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/4245?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4245&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

A COMPARISON OF METHODS TO ALLOCATE TASKS

ON A MULTIPROCESSOR SYSTEM

by

Kelly Cousineau

A Thesis

Submitted to the

Faculty of The Graduate College

in partial fulfillinent of the

requirements for the

Degree of Master of Science

Department of Computer Science

Western Michigan University

Kalamazoo, Michigan

August 1995

ACKNOWLEDGMENTS

Without a doubt, the most important one in my life and hence, in

the completion of this project, is Jesus Christ, my Lord and Savior. It is

because of Him only that I've been able to pursue and accomplish this

goal. Thank you Jesus.

It is here also that I admit Darwin has created an interesting

problem solving method as discussed herein. Nonetheless, I must

emphatically proclaim that the one and only God, the trinity (Father, Son

and Roly Spirit) created me, every other human being and every creature

that walks this earth.

My husband Bill has been extremely loving, patient and

encouraging. Through our entire courting relationship and first year of

marriage he has made significant sacrifices to ensure Lfinish this effort.

Thank you and I love you.

To the professors who have kept me moving, Dr. Gupta, Dr.

Greenwood and Dr. Trenary, thank you for your patience through the lull

times, thanks for your great ideas, and thanks for all the things I've

learned.

Kelly Cousineau

11

AJCOMPARISONJOFJMETHODSJTOJALLOCATEJTASKSJ
ONJAJMULTIPROCESSORJSYSTEMJ

KellyJCousineau,JM.S.J

WesternJMichiganJUniversity,J 1995J

TheJtaskJschedulingJproblemJisJdefinedJasJaJsequentialJalgorithm,J

withJindividualJtasks,Jt
i
,Jt

2
, t

3
, ••• , havingJassociatedJexecutionJtimesJtoJbeJ

portedJtoJaJmultiprocessorJsystem.J ToJdetermineJtheJfastestJparallelJ

implementationJisJknownJtoJbeJanJNP-completeJproblem,JthereforeJ

heuristicJtechniquesJareJemployedJtoJarriveJatJtheJbestJsolution.J

SorneJofJtheJtraditionalJmethodsJusedJtoJsolveJthisJproblem,JareJtheJ

listJschedulingJalgorithmJandJtheJsimulatedJannealingJalgorithm.J

However,J evolutionaryJtechniquesJareJnowJalsoJaJconsiderationJwithJtheJ

increasedJcomputationJpowerJavailable.J

EvolutionaryJtechniques,JbasedJonJtheJpopularJtheoryJofJevolution,J

consistJprimarilyJofJaJsolutionJrepresentedJinJaJchromosomeJdataJ

structure.J MaintainingJaJpopulationJofJchromosomes,JgenerationalJ

transitionsJareJaccomplishedJthroughJreproductionJofJtheJbestJsolutions.J

TheJobjectiveJisJtoJimproveJsolutionsJbyJmakingJsmallJrandomJchangesJ

andJrepeatingJtheJprocess.J

TheJresultsJfoundJinJthisJeffortJconfirmJtheJviabilityJofJtheJ

technique.J AnotherJobservanceJwasJtheJevolutionaryJter.hnique,JasJ

implementedJhere,JhadJmoreJoverheadJandJthereforeJdidJnotJperformJasJ

exceptionallyJasJtheJsimulatedJannealingJmethod.J

TABLE OF CONTENTS

ACKNOWLEDGMENTS... 11

LIST OF TABLES . · · · · · · V

LIST OF FIGURES · · · · · · Vl

INTRODUCTION.. 1

The Problem . 1

Importance of the Problem ·············:······························· 3

Goals.. 4

Observations - Statement ofResults.. 4

BACKGROUND AND RELATED WORK.. 7

Evolutionary Algorithms: Basic Concepts................................... 7

The Chromosome... 8

Fitness .. .,...................... 8

The Operators.. 10

The Variables . 11

Stopping... 13

Selection Criteria and Self Adapting Behavior Are
Specific to Method ... 14

The Genetie Algorithm.. 15

The Evolutionary Strategy ... 17

Variable Population 17

Simulated Annealing .. 19

List Scheduling.. 19

TECHNIQUES USED IN THIS EFFORT ... 21

111

Table of Contents--Continued

The Problem - Burg's Algorithm... 21

Implementation Notes... 22

Fitness and Cost. 22

General .. :. 24

The Chromosome Data Structure... 25

The Opera tors.. 26

List Scheduling Details 29

Simulated Annealing Details ... 30

Genetie Algorithm Details 32

Evolutionary Strategy Details .. 35

Variable Population Details.. 37

CONCLUSIONS.. 41

BIBLIOGRAPHY 49

IV

LIST OF TABLES

1. Summary of Results of Methods Evaluated............................ 5

V

LIST OF FIGURES

1. An Example Depicting the Problem ofTask

Scheduling .. 2

2. The Elements and Flow of Evolutionary Algorithms
as a Problem Solving Method . 9

3. Inter-Chromosome: Recombination of Two Chromosomes

to Create Two New Chromosomes... 10

4. Intra-Chromosome: Mutation of a Gene Within a

Chromosome 11

5. Implementing Probability of Mutation and

Recombination . 13

6. Landscape of Solution Space Illustrating Local
and Global Optima·... 16

7. The Operation/Selection Cycle of the Evolutionary

Strategy... 17

8. Sequential Burg Algorithm for M Data Points and
MAX Reflection Coefficients . 22

9. Burg Algorithm Depicting Task Graph for 3 rd Ortler

Model to Fit Five Data Points.. 23

10. The Chromosome Data Structure.. 26

11. Example Showing Chromosome Data Structure.................... 27

12. Example ofintra-PM Operation Within One

Chromosome 28

13. Example of Inter-PM Operation Within One

Chromosome . 28

Vl

List of Figures--Continued

14. Simulated Annealing Algorithm Using Chromosome
and Operators From Evolutionary Techniques....................... 31

15. The Genetie Algorithm 33

16. Example of Loaded Roulette Wheel............................... 34

17. Evolutionary Strategy Generational Transition..................... 36

18. Life Strategy Calculation in Variable Population 38

19. Generational Flow of Variable Population Method 40

20. Results of All Methods Compared ... 42

21. Results of List Scheduling 43

22. Results of Genetie Algorithm... 43

23 . . Results ofEvolutionary Strategy... 44

24. Results of Evolutionary Strategy With Self Adapting
Factor (Inter-PM Operation on Best Chromoseme in

Population Only Moves 2-5 Tasks Instead of 5-10
Tasks). ... 45

25. Results of Genetie Algorithm With Self Adapting
Factor (Inter-PM Operation on Best Chromosome in
Population Only Maves 2-5 Tasks Instead of 5-10
Tasks).. 46

26. Results of Variable Population .. 46

27. Results of Variable Population With Best Chromosome
Saved... 47

28. Results of Simulated Annealing 48

Vll

INTRODUCTION

The Problem

As computing power has increased, so has the complexity of the

problems we are able to solve. Sorne problems have become so complex,

polynomial time solutions are not believed to be possible. In these cases,

heuristic techniques must be sought to estimate solutions close to optimal.

While increased computing power may have increased problem

complexities, it has also provided generous resources for solving these

problems. One such resource is parallel processing. The limit imposed by

the typical uni-processor machines (processor can perform one operation

at a time) is being removed with the advent of parallel machines (or mul­

tiprocessors) which are able to perform more than one operation simulta-

neously. As we begin developing parallelizable algorithms, however, we

realize the need for assigning tasks to different processors to capitalize on

the multi-computing power available. This is the Task Scheduling prob­

lem. A broad description of all variations of task scheduling is presented

in [4].

Figure 1 presents an example of the task scheduling problem.

Given a sequential algorithm, individual tasks, t
i
, t

2
, t

3
, ••• , have associ­

ated execution times (the computation time necessary to perform that

particular task). In certain instances, tasks may not be performed until

other specific tasks have been completed (precedence constraints). A

graph may be constructed to illustrate the flow of tasks. In the example,

1

Tasks

t1 a=b

li C = d

t
3

e =a/ c

t4 f=c*b

ts g = a+f

1/

1/

Graph

Execution

Time

1

1

4

3

2

Task Allocation

Schedule Length

Sequential Schedule

Execution Time = 1+1+4+3+2 = 11

Parallel Schedule

Execution Time = 1+3+2 = 6

Speedup

11/6 = 1.83

Figure 1. An Example Depicting the Problem of Task Scheduling.

the graph depicts the need to execute task t
2

before task t
4

, and t
4
before

task t
5

• Based on those precedence constraints, tasks are then allocated or

assigned to the multiple processors. Finally, a schedule may be computed

based on the unique allocation of tasks. Again referring to the example,

the parallel schedule length is based on tasks t
2

, t
4

and t
5

since t
1

can be

2

performed at the same time (and has the S!3-me execution time) as t
2

, and

while t
3

takes four time units, there are no tasks waiting for it to com­

plete. The parallel execution of tasks t
4

and t
5

require two and three time

units, respectively, and therefore, the total time of six units is calculated.

Notice that allocating tasks which must be scheduled within prece­

dence constraints, that may be assigned to any of several processors, re­

sulting in the fastest possible schedule, is an NP-complete problem. [7]

Importance of the Problem

Given the nature of the task allocation problem, the impending

availability of multiprocessing machines and the general pace of business

in the world today, it is no wonder that solutions must be produced fast!

The largest advantage of parallel processing is speed. In this context,

speed is measured based on the time between starting and ending a proc­

ess. Those wanting the new parallel processing techriology desire to have

their computing applications produce results in a fraction of the time they

are currently realizing with uni-processors. Ofwhat use will this im­

provement be if a haphazard multiprocessor allocation scheme results in

only a modest increase in speed? This illustrates the need to determine

the best (or estimated best) allocation scheme for an application very

quickly. To this end, a variety of methods are investigated herein.

Solutions for the task scheduling problem developed thus far in­

clude the list scheduling greedy algorithm developed by R. L. Graham

[10]. Simulated annealing has been used to create schedules for use in

3

the simulation of avionics systems [3]. A few variations of genetic algo­

rithms have also been successful as discussed in [2].

Goals

The scope of this work is limited to static scheduling of tasks

wherein a solution is derived before the actual running of the application.

The availability of parallel processing has advanced the use of evolution­

ary techniques for solving this problem. In this paper, several of these

methods are applied to assigning the tasks of Burg's Algorithm to two

processors. The goal herein is to show that evolutionary algorithms pro­

vide viable solutions when applied to the task allocation/scheduling prob­

lem. Popular techniques for task scheduling problems such as list

scheduling and simulated annealing were chosen to compare the evolu­

tionary algorithms against. The evolutionary algorithms, list scheduling

and simulated annealing methods are fully defined irÎ the next section,

Background and Related Work. Burg's algorithm is described in detail in

the section entitled Techniques Used in this Effort.

Observations - Statement of Results

The two measures used in this comparison were speedup and cost.

Speedup is the improvement that parallel processing provides over se­

quential processing. Referring back to Figure 1, the speedup in the ex­

ample was computed as the schedule length on one processor divided by

the schedule length when the tasks have been implemented on two proc­

essors. The significant cost incurred in task scheduling is the time re-

4

quired to arrive at the schedule. Therefore, quoted results include the

number of minutes required to find the speedup listed. Table 1 summa­

rizes the median results of one hundred runs of each of the methods

evaluated. The list scheduling method performed as expected, not an out­

standing speedup, but arrived at very quickly. The genetic algorithm

converged in about a half an hour to that same speedup. The evolution­

�ry strategy searched longer (three quarters of an hour) and found

slightly better speedups. As shown in the Conclusions section later, the

trend in both the genetic algorithm and evolutionary strategy is that the

longer time spent in the search, the better the final speedup obtained.

The simulated annealing method, however, was able to find obviously

high speedup values in only an hour. This cause of this phenomenon is

believed to be the overhead necessary to carry a population in the

Table 1

Summary of Results of Methods Evaluated

Time

Simulated Annealin 58 1.52

5

evolutionary techniques versus maintaining only one solution in the

simulated annealing method.

6

BACKGROUND AND RELATED WORK

Evolutionary Algorithms: Basic Concepts

The basic methodology involved in evolutionary algorithms is based

on the popular defination of evolution (often attributed to Darwin). Sim­

ply stated, in any particular generation, individuals undergo replication

and the resulting offspring con tain some combination of traits from the

parent(s). Initially, individuals are randomly created and then proceed

through reproduction. Any individuals found acceptable repeat the same

cycle in the next generation. Applying this theory to problem solving

minimally involves:

1. Represent solutions to the problem in a manner that is inclusive,

accurate and enables easy implementation and manipulation (the chro­

mosome/individuals).

2. Determine an objective method to evaluate and compare the

goodness of chromosomes (the fitness).

3. Develop a decision criteria to select chromosomes for reproduc­

tion and continued existence (selection criteria).

4. Establish meaningful operators to create new chromosomes

based on slight perturbations within one or between several chromosomes

(the operators).

5. Analyze probabilities for chromosome reproduction operators

and total number of chromosomes within a generation (the variables).

7

6. Devise a measurement scheme to indicate the end of reproduc­

tion cycles and report the best solution (stopping).

These elements are now described in detail and briefly illustrated

in Figure 2.

The Chromosome

Ideally, the chromosome should encode problem parameters in their

entirety. Chromosomes lacking a particular detail of the solution cannot

be compared objectively. Further, the data structure chosen to represent

the solution must be easily manipulatable and enable quick evaluation.

The benefits of reviewing an entire population of chromosomes in every

generation dwindle if computing the fitness of each is too cumbersome.

Binary string representations are often chosen for quick evaluation

and ease of operator manipulation. However, non-binary string solutions

frequently provide a more inclusive representation . .Kdditionally, if bi­

nary solutions must be encoded and decoded, the savings of evaluating

and manipulating are offset. In either case, recognition of the solution

elements is beneficial for intermediate reporting and comparisons during

the developmental stages.

Fitness

Since chromosomes àre representing solutions to a problem, some

objective means must exist to compare the 'goodness' of different chromo­

somes. If comparing solutions having two parameters (such as numbei of

processors required and time to compute), a fitness function comprised of

8

A Generation Having a
Population of
Chromosomes

Chromosome (i)
(A Solution)

Chromosome (i+2)
(A Solution)

Chromosome (i+l)
(A Solution)

Chromosome (i+3)
(A Solution)

Chromosome (i+4)
(A Solution)

Choose
Certain

Chromosomes
for

Reproduction

Compute Fitness
(Evalua te Goodness of Every

Chromosome)

Chromosome (i)
(A Solution)

Operate on
Chromoso.mes

(Simula te
Reproduction)

Chromosome G)
(A Solution)

Chromosome (i+3)
(A Solution)

Decide Which
Chromosomes Continue

Existence

Has Stopping Condition Report
Best

Solution
------ Been Reached?

Chromosome G+l)
(A Solution)

Repeat for
Another

Generation.

Figure 2. The Elements and Flow of Evolutionary Algorithms as a

Problem Solving Method.

9

both parameters would be necessary to objectively evaluate chromosomes.

In the case of schedules, often the fastest schedule is the best.

The Operators

The operators play a crucial role in creating offspring from one or

more parent chromosomes. The following operators are typical in most

evol utionary algorithms.

Inter-Chromosome - Recombination

Relating again to humans, when two parents reproduce, they create

a child having a combination ofboth parents' genes. In evolutionary al­

gorithms this concept is generally accomplished by swapping a small

quantity of genes (details of the solution contained within a chromosome)

between two chromosomes as shown in Figure 3.

Chromosome i

1 2 2 3 2 3 1 2 3

3 2 3

1 1 3

1 2 2 1 1 3 1 2 3

Swap
Details

Chromosome j

3 2 1 1 1 3 2 3 1

1 1 3

3 2 3

3 2 1 3 2 3 2 3 1

Figure 3. Inter-Chromosome: Recombination ofTwo Chromosomes to
Create Two New Chromosomes.

10

Intra-Chromosome - Mutation

In humans, mutation is often the cause of birth defects. Evolution­

ary algorithms are inherently random and consequently the manipulation

of genes within a chromosome has a chance of resulting in a better solu­

tion in addition to the chance of creating a wbrse solution. Figure 4 de­

picts the mutation of a gene within a chromosome solution.

The Variables

The major contributing elements need to have numeric values de­

termined and assigned such as: how many chromosomes should exist in a

given population? Should all chromosomes undergo mutation and re­

combination? Discussion of values for these variables is given below.

Population Size

As in any optimization problem, there is a tradeoff. Here, the more

chromosomes there are in a population, the more solution space that can

Chromosome, Before

1 0 0 1 1 1 0 0 0 1 0 1 1 0

1 0 1 1 1 1 0 0 0 1 0 0 1 0

Chromosome, After

Figure 4. Intra-Chromosome: Mutation of a Gene Within a Chromo­
some.

11

be explored in one generation. Nevertheless, computers are still limited

in speed and memory, and the larger the population in any one genera­

tion, the longer it will take to evaluate and move on.

Traditionally, population size has been a variable that is fixed at

the start of the program run. Later in this paper, it is investigated as a

dynamic variable (also called self-adapting behavior) where the size of the

population reduces or increases based on the goodness of the current gen­

eration and best chromosomes to date. A more detailed discussion of the

purpose and benefits will be provided in the Variable Population part of

this section.

Mutation and Recombination

The common operators discussed previously could be applied to

every chromosome in every generation although this would tend to create

an extremely diverse population increasing the amomit of wandering

around before converging on a good solution. The probabilities typically

used are based on what has been observed in the human equivalents,

namely, probability of mutation is very small (10 - 30%). The probability

of recombination generally rides above 50%. Typically, probability of mu­

tation and probability of recombination add up to one hundred percent.

Implementing the percentages is easily accomplished as shown in Fig­

ure 5.

Additional values related to the mutation and recombination opera­

tors include determining the genes to be swapped. In mutation, one gene

may be moved or two genes may be swapped. In either case, the location

12

of the gene(s) must be selected. Often this is randomly chosen, possibly

within boundaries. Similarly, in recombination, the number of genes to

be swapped, N, from position A in chromosome 1 and position B in chro­

mosome 2, where N, position A and position B must all be selected. In

some cases, N genes may move from one chromosome to the other without

the mutual swapping.

These variables should be analyzed in detail based on the types of

for chromosome = 1 to Population_Size do

(* 0 <= random_number <= 100% *)

if random_number < Probability_Mutation
then mutate chromosome

else
if random_number < Probability _Recombination

then recombine chromosome

end (* for population size *)

· Figure 5. Implementing Probability of Mutation and Recombination.

solutions involved. It may be that in a specific solution representation,

certain mutations could cause chromosomes to become infeasable. This

would lead to establishing the boundaries mentioned above.

Stopping

Another major factor that will affect how long the process runs and

how good the 'best' solution produced is the "stopping" criterion. There

13

are obviously many choices, though some have more merit than others. A

very simple method would be computation time, say 25 minutes. Another

simple method is a pre-defined number of generations, but how many?

Another simple strategy is to wait for the solution to reach a par­

ticular value, (possibly a percent improvement over initial values) but in

the best cases, this could cause premature ending and put a bound on the

result. One of the most logical stopping criteria is to determine a value

for convergence, X, where the process halts when there has been no im­

provement in the result for X generations.

Selection Criteria and Self Adapting Behavior Are Specific to Method

The flow of the evolutionary algorithms is· structured around an­

other aspect of Darwin's philosophy, the fittest individuals survive. Ap­

plying this to problem solving: if a solution is good, it.will most likely re­

produce good solutions. Therefore, good chromosomes should be kept

around for future generations.

The decision of which chromosomes go forward to subsequent gen­

erations is handled differently in the distinct algorithms. Briefly, the ge­

netic algorithm uses a stochastic approach [9] while the evolutionary

strategy applies a deterministic method [23]. The variable population

technique [1] replaces the selection decision with a life strategy thus al­

lowing an age value to systematically remove chromosomes in the appro­

priate generation.

Self adapting behavior is at the forefront of this research today.

Instead of running countless experiments to arrive at the best input vari-

14

ables for the process, why not let the algorithms modify these values

based on the solutions under evaluation? The variable population algo­

rithm has implemented this approach such that the number of chromo­

somes in a generation is based on the current chromosomes' fitness. Ad­

ditional self adapting behaviors are discussed later in this work and many

more are currently under investigation.

The variations presented here will be discussed in greater detail

along with the pioneering efforts in the algorithms' respective sections

coming up next.

The Genetie Algorithm

Most oftoday's work in the genetic algorithm field is based on Hol­

land's work [15] which has been around for over twenty years. In that

work, Rolland used simple binary encodings and dev�loped the funda­

mentals of evolutionary programming. Sorne early distinctions of the ge­

netic algorithm were the use of the cross over (or recombination) operator

and the binary encoded chromosomes.

The selection of 'best' individuals has been primarily a stochastic

approach. Here, chromosomes are given a weighted chance of selection

where the weighting is based on their respective fitness relative to others

in the same population. This allows those with relatively high fitness a

much greater chance of selection, and thereby survival into subsequent

generations. However, even those chromosomes with poor fitness values

still have a chance, although the weighting is very low. Also, to maintain

15

the same population size from generation to generation, selections are

made until the population is complete. This tends to enable selection of

the better chromosomes more than once, and similarly, the lesser chromo­

somes, probably not often, if at all.

This selection criteria typically leads to a quicker convergence to a

good solution. The down side is that the solution could possibly be a local

optimum instead of the global optimum. Observing Figure 6, notice sev­

eral sub-optimal peaks in the solution landscape. These solutions are

obviously better than many of the choices, but not the best. Wh.en 'good'

chromosomes are consistently selected (with greater probability than bad

chromosomes) for reproduction, there is a tendency to climb the hill to the

nearest optimum. The 'worse' solutions, if kept, sometimes will move the

search away from a local optimum allowing it to find the global optimum.

A final characteristic tendency with the genetic algorithm is the

order of selection compared to operation. In general, selection of the

'parents' is made before operating to create offspring chromosomes.

Global

Figure 6. Landscape of Solution Space Illustrating Local and Global

Optima.

16

The Evolutionary Strategy

The evolutionary strategies were developed as a more problem de­

pendent method, beginning primarily with floating point numerical fonc­

tion optimization problems. This is where the chromosome took on forms

more specific to the solution than the binary f:ltring. The operator most

typically used in evolutionary strategies was the mutation operator and

this operation traditionally preceded selection, thereby allowing parents

and children to compete. ln fact, a percentage of the current population is

fully duplicated and all operations occur on this offspring. Finally, the

'best' chromosomes are selected for the next generation. (Refer to Fig-

ure 7 .) This method of selection is deterministic in nature so the bad

chromosomes have no chance of survival. The. parent chromosomes are

also retained such that a duplicated offspring does not replace it in the

event its fitness degrades.

Variable Population

At first it seemed that population size was merely a variable to be

Generation k

e
,

Temporary
Generation

��

,,, Select N be�
M Children

�

Generation k+ 1

Figure 7. The Operation/Selection Cycle of the Evolutionary Strategy.

17

manipulated in either of the genetic algorithm or the evolutionary strat­

egy approaches. However, in actuality, the variable population/life strat­

egy becomes a unique method since the selection criteria is replaced by an

age calculation. The underlying philosophy of this concept is that while

the power of evolutionary algorithms lies in their ability to evaluate a

population worth of chromosomes simultaneously, there is no need to in­

definitely retain and evaluate relatively poor solutions.

Therefore, this method is inherently self adapting in that the

population size varies as the run progresses. In any particular genera­

tion, new chromosomes (created randomly from existing chromosomes) are

assigned a life expectancy (age). This age is initially calculated based on

the chromosome's fitness relative to the current generation as well as all

chromosomes evaluated thus far. In each subsequent generation, the age

is decremented and finally the chromosome is removed when the age is

zero. 'Survival of the fittest' is accomplished by assigning longer life ex­

pectancies to the better chromosomes thereby keeping them around longer

to be the parents of (more of) the randomly created new chromosomes.

The genetic algorithm with Varying Population size (GAVaPS) as

described in [1], compared three different age calculations, one of which is

based merely on the fitness relative to the current generation (typical of

the genetic algorithm). The second age computation is based on the

chromosome's fitness relative to all solutions created thus far. This

method has a drawback when many chromosomes have high fitness: the

assigned ages are all high and the population grows unnecessarily large.

Finally, the authors derived a hybrid calculation which looks at whether

18

the fitness is above or below the average of the current generation, then

line�ly determines age within the upper or lower half of the current gen­

eration based on that result.

Simulated Annealing

"There is a deep and useful connection between statistical mechan­

ics (the behavior of systems with many degrees of freedom in thermal

equilibrium at a finite temperature) and multivariate or combinatorial

optimization (finding the minimum of a given function depending on

many parameters)." [19, page 1] Because of this connection, Kirkpatrick

went on to demonstrate the application of the simulated annealing char­

acteristics to the optimization of complex problems. Here, simulated an­

nealing will be viewed in the light of evolutionary algorithm techniques.

This method holds and evaluates one allocation (schedule) at a

time. Viewing this allocation as a chromosome, a mutation-type operator

is applied to create a new chromosome. If the new chromosome is better

than the original, the new replaces the original. However, if the original

is better, the new replaces the original with a probability that exponen­

tially decreases as the run progresses. The specific probability used in

this work is discussed more fully in the next section.

List Scheduling

Greedy by nature, this algorithmic method creates an allocation of

tasks deterministically. Simply, all tasks with preconditions satisfied are

placed in an available pool. A timing mechanism monitors processors

19

until one is ready for a new task. The available pool is searched for the

"best" task which is then assigned to the open processor. The timing

mechanism continues simulating the start-completion of tasks on the

processors with the available pool consistently updated based on satisfy­

ing pre-conditions. The algorithm stops when all tasks have been as­

signed.

The tailoring of this algorithm to problem instances is mainly found

in the search/selection technique. The original list scheduling algorithm,

developed by R. L. Graham [10], used a criteria that chose the task having

the longest execution time.

Since then, many other search/selection methods have been devel­

oped for significantly more complicated systems. Such systems may have

resources (processors) that perform limited operations, complex prece­

dence constraints between the tasks and even real-time scheduling [13),

[17), [20].

20

TECHNIQUES USED IN THIS EFFORT

The Problem - _Burg's Algorithm

To perform a comparison of different problem solution techniques,

one problem must be chosen. In this effort, an algorithm known as Burg's

Algorithm is used. The purpose of Burg's is to process signals in many

applications such as speech processing and spectral analysis. The algo­

rithm accomplishes this by fitting an autoregressive model to a time series

data set.. The desired autoregressive model would appear as xn + (a)mxn.i

+ ... + (a
m

txx-
m

= (e)m where xn is the autoregressive process, (a)m through

(a
m
t are the process parameters ,and (e)m is white noise. The purpose of

the algorithm is to estimate the coefficients (a)m. The algorithm uses the

fact that the model can be oftwo different forms wher� the autoregressive

coefficients a/s (of direct form II) are related to the reflection coefficients

c/s (from the lattice structure form). Based on this, the forward and

backward prediction errors are estimated and finds the optimal choice of

the reflection coefficients is:

M M

cm+I = -2(Ie�b:-m-1) / (L(e:)
2

+ (b:_m-1)
2

)
n=m+2 n=m+2

In [25), the authors further develop this into sequential algorithm

pseudocode as shown in Figure 8 and proceed to lay out a maximally

parallel graph for a third order model (MAX=3) of a data series containing

five data points (M=5) as shown in Figure 9. The algorithm for this prob

21

INITIALIZATION
for i = 1 to M do

e(i) = x(i)
b(i) = x(i)

THE MAIN LOOP
for n = 1 to MAX do

sl = 0.0

WHERE

s2 = 0.0

for i = n+ 1 to M do

s1 = s1 + e(i). b(i-n)

s2 = s2 + e(i)
2

+ b(i-n)
2

c(n) = -2.0 • sl/s2

if n > 1 then do
for i = 1 to n-1 do

al(i) = a(i) + c(n) • a(n-i)
for i = 1 to n-1 do

a(i) = al(i)

a(n) = c(n)

for i = 1 to M do
temp = e(i) + c(n). b(i-n)
b(i-n) = b(i-n) + c(n) • e(i)
e(i) = temp

a's are the autoregressive coefficients
e's represent white noise
c's are reflection coefficients
b's are used to compute forward and backward prediction

errors

Figure 8. Sequential Burg Algorithm for M Data Points and MAX Re­
flection Coefficients.

lem instance requires 27 different-tasks which are numbered as if per­

formed sequentially. As shown in the graph, all tasks presented on the

22

Figure 9. Burg Algorithm Depicting Task Graph for 3rd Ortler Model to
Fit Five Data Points

same level may be performed in parallel and tasks on levels above must

be performed before tasks on levels below.

To evaluate a more realistic example, the problem size was in­

creased to a third order model of 1,024 data points resulting in 6,140

tasks. Referring again to Figure 8, the 1st level of the plot in the larger

problem instance has 1,023 tasks which must be completed before task

number 1,024. Therefore, the task scheduling problem here is to assign

1,023 tasks to two processors in such a way as to have the quickest exe­

cution time before proceeding to task 1,024.

Implementation Notes

Fitness and Cost

Since the purpose of this work is to compare methods of solving a

problem, objective measurements must be established. To prove the

23

benefits of any particular method over all others would include establish­

ing the best result for the minimum cost. The most commonly measured

result of parallel implementations versus sequential ones is speedup,

therefore, that is the comparable outcome. Speedup is defined to be the

actual schedule length of the sequential implementation divided by the

schedule length of the parallel impl�mentation. Realizing that in the

worst situation, the parallel case would not improve the sequential at all

and speedup would be one. In the best situation ifthere were two proces­

sors versus one, the parallel schedule length would be half the sequential

and speedup would equate to two, the number of processors used. The

most apparent cost, ignoring initial programming overhead, is the latent

computation time (the elapsed time from program start to program end).

To ensure the integrity of the speedup/computation time results,

one hundred runs were performed of each method. T1:e conclusions sec­

tion ofthis paper provides the summary details of the runs of the various

methods.

General

All problem solution techniques were coded in C++ and compiled

with the Gnu g++ compiler in the UNIX operating environment. To the

greatest extent possible, code was duplicated throughout the various

methods to provide comparable results. The discussion of individual

techniques points out those instances where duplicating code was not

possible.

24

At the onset of the project, the sequential algorithm was imple­

mented to record exact time requirements for every task in the 6,140 task

program. These experimentally determined times were then used as in­

put to the program so that task allocation/execution would simulate ac-

tual times. Many tasks performing the same function (i.e. simple addi­

tion) that proved to require approximately the same time were averaged

and assigned equal times.

The data structure used for the chromosome design is nearly iden­

tical in all methods described as are the mutation operators. Therefore,

these are defined separately. The remaining details, such as selection cri­

teria, generational transition, probability of the use of opera tors and

stopping conditions vary with each method and are laid out in each

method's individual section.

The Chromosome Data Structure

As stated previously, the data structure representing the chromo­

some should encode all relevant problem parameters. ln this work, the

chromosome, illustrated in Figure 10, consists of:

1. Two integèr arrays encompassing the allocation: each array

holds the specific task numbers to be executed on one of the two proces­

sors. The order of the tasks in the array is the order the tasks will be exe­

cuted on the processors (left to right as pictured will be first to last when

executed).

2. The schedule length: time required for the allocation repre­

sented in (1).

25

Tasks Assigned to Processor 1

1 1 1 1 1 1 1
Tasks Assigned to Processor 2

1 1 1 1 1 1 1
Ortler ofExecution

Schedule Length Fitness

1 1
Figure 10. The Chromosome Data Structure.

3. The fitness of the chromosome: defined as the sequential sched­

ule length divided by this (chromosome's) allocation schedule (2).

The two arrays that hold task assignments for the two processors

do represent the entire solution, while maintaining the schedule and fit­

ness allows for quick comparisons of chromosomes (recalling there are

6,140 tasks in the schedule). Additionally, the integer arrays provide for

easy manipulation by operators.

Referring back to the example given in the Introduction section,

Figure 11 shows repeats the task graph and illustrates the chromosome

data structure just described.

The Operators

The two most common operators in evolutionary techniques are re­

combination and mutation. Looking at this problem, a schedule of dis­

tinct tasks on two processors, it is apparent that the recombination of two

26

Graph Chromsome

Tasks on Processor 1

1 t, 1 t3 1 1 1 \

Schedule

Length

Fitness

(Speedup)

B
Figure 11. Example Showing Chromosome Data Structure.

chromosomes (task allocations) does not create two complete schedules.

Consequently, the operators created for use in this pr(lblem are referred to

as Intra-Processor Mutation and Inter-Processor Mutation (Intra-PM and

Inter-PM).

Intra-Processor Mutation performs as the typical mutation operator

does. In this case mutation consists of: (a) one of the two processors is

randomly chosen, (b) two candidate task locations are chosen randomly,

and (c) the tasks in the two locations (in the selected processor) are

swapped. Figure 12 presents an example of the Intra-PM operator on the

chromosome data structure used here.

To produce an effect similar to the typical recombination operator,

the Inter-Processor Mutation operator was developed. This Inter-PM op­

erator proceeds ·by: (a) noting the number of tasks on each processor,

27

Intra-Processor Mutation

Tasks on Processor 1

►
►

Tasks on Processor 1

Figure 12. Example oflntra-PM Operation Within One Chromosome.

(b) locating a crossover point (randomly) on each processor, (c) determin­

ing the number of tasks to be moved and the direction of the move, and

(d) reassigning tasks from one processor to the other. Unless specified

otherwise, the number of tasks moved from one processor to the other is a

randomly generated number between five and ten, in�lusively.

Inter-Processor Mutation

Tasks on Processor 1

►
...

Tasks on Processor 1

1 t1 1 t7 1 1 1 1

Tasks on Processor 2

t2 t4

Figure 13. Example of Inter-PM Operation Within One Chromosome.

28

In the methods that use the Inter-PM and Intra-PM operators, the

following fact applies. If the chromosome newly created by the operator

results in an infeasible allocation (primarily due to processor deadlock

caused when precedence constraints are violated), the chromosome is re­

turned to the allocation it held before the mutation.

List Scheduling Details

To have a broad comparison of the evolutionary techniques to other

proven solution derivations, one of the popular methods, list scheduling

was chosen. List scheduling is a greedy algorithm where, in general, at

every iteration, the very best item is selected. In the scheduling problem,

ready tasks, defined as those tasks whose precedence constraints are ac­

complished, are placed in a waiting pool. The execution of tasks on the

two processors is simulated such that when a task coropletes, the avail­

able processor looks to the pool of ready tasks to select the most appropri­

ate task. In the simple case (presented by Graham in [10]), the task re­

quiring the longest amount of time to complete is chosen, thereby remov­

ing it from the ready pool and assigning it to the available processor. Af­

ter every such assignment, the simulated processor clocks are updated

and the precedence constraints of all tasks are again evaluated to deter­

mine if additional tasks can be placed in the ready pool. This execute­

select cycle continuës until there are no remaining tasks to be performed.

Unique implementation details for this method are minimal. The

two integer arrays holding task allocations are used, and obviously the

29

schedule and fitness are maintained. List scheduling creates one alloca­

tion, task by task, therefore, there is no use of operators nor generational

transitions from one population of solutions to another.

Simulated Annealing Details

Moving up one step into heuristic techniques leads to the simulated

annealing method. In this case, the chromosome data structure is used,

and the Inter-PM and Intra-PM operators are involved. Refer to [19] and

[21] for detailed descriptions of the mechanical basis of simulated anneal­

ing and the application to optimization problems. The annealing tech­

nique is adapted from the statistical mechanics field. A typical application

is to find the low temperature state of a material. An example is growing

a single crystal. At first, melt the substance, then lower the temperature

slowly, spending a long time at temperatures in the vicinity of the freez­

ing point. The temperature changes are scheduled to allow sufficient time

spent stabilizing at each temperature to prevent the material from form­

ing only a glass and not a crystal (the optimum).

When this method is used in optimization problems, the tempera­

ture change schedule is implemented as a probability that decreases ex­

ponentially with time. Solutions stabilize, however, relative to the prob­

ability, fluctuations are introduced. As time passes, fewer fluctuations

are allowed and an optimal solution has been formed.

The simulated annealing optimization algorithm used here is

summarized in Figure 14. In an iteration, a new chromosome is created

by first duplicating the current chromosome, then performing either the

30

Intra-PM or Inter-PM operator. Once created, the new chromosome's fit­

ness is compared to the current chromosome's fitness and ifbetter, the

new will always replace the current. However, when the new chromo­

some's fitness is less than the current, it also may replace, but only at ·a

probability less than given by: e·Tu. The n represents the time, or iteration

in the process and therefore provides a significant decreased probability

as time is extended greatly. The T is a carry over from the temperature in

the mechanical model, here it was set at 0.000690. Notice, only one chro­

mosome is maintained from generation to generation.

The number of generations was set to 10,000, to perform a search

lasting approximately one hour. The constant, T, was calculated based on

the probability (e-Tu) of a worse chromosome replacing a better to be only

for n = 1 to MAX_GEN do

temp_chrom = current_chrom

ifrandom_number <= Probability_Mutate then
perform Intra-Processor Mutate on temp_chrom

else
perform Inter-Processor Mutate on temp_chrom

if fitness(temp_chrom) > fitness(current_chrom) then
current_chrom = temp_chrom

else
No_Bads_Accepted = exp·Tu
if random_number <= N o_Bads_Accepted then

current_chrom = temp_chrom

end (* for MAX_GEN *)

Figure 14. Simulated Annealing Algorithm Using Chromosome and Op­
erators From Evolutionary Techniques.

31

0.001 at the end of the search (n=l0,000). This probability proved the

best when compared to 0.01 and 0.001 for the same search time. The

probability of Intra-Processor Mutation was set to 20%, thereby allowing

80% of newly created chromosomes to have the Inter-Processor Mutation

operator applied (using the Inter-PM+ Intra�PM = 100% general rule).

The phenomena of allowing a newly created chromosome, that is

not an improvement (based on fitness value), to replace the current chro­

mosome is intended to move the search around the landscape of solutions,

hopefully landing on the hill with the global optimum (refer back to Fig­

ure 6).

Genetie Algorithm Details

The genetic algorithm is array based and implemented according to

Figure 15.

To begin, a roulette wheel is created by finding the sum of all fit­

ness in the population, then for each chromosome, calculating a percent­

age fitness as the ratio of its respective fitness to that total. Fill the slots

with chromosomes as shown in the example in Figure 16. When selecting

a chromosome from the roulette wheel, generate a random integer number

between O and 100%. Find that slot in the roulette wheel (or number line)

and retrieve the chromosome for duplication.

Once created, a new chromosome will undergo Intra-PM operation

with a probability of 10% or Inter-PM with a probability of 80%. This In­

ter-PM value and the population size of 25 were determined experimen­

tally [11]. Tests compared the effects of Inter-PM settings of 40%, 60%

32

and 80% and in all cases, the 80% value produced higher speedup values.

In the genetic algorithm, the general rule of Inter-PM + Intra-PM = 100%

. is overruled to allow some number of chromosomes to go into subsequent

CONSTRUCT ROULETTE WHEEL BY:

1. find total fitness of each chromosome in population
2. compute the ratio of the fitness of each chromosome

to the total fitness
3. assign slots in number line based on percentage fitness

CREATE NEW POPULATION:

new _chrom[l] = best of(current_chrom)

for index = 2 to Population_Size do

(* find chromosome to duplicate *)

pb = random_number
find location, j, of pb in number line
temp_chrom = current_chrom(j]

case random_number_2
< Prob Inter-PM:

perform Inter-PM on temp_chrom
> Prob Inter-PM < (Prob Inter-PM + Prob Intra-PM):

perform Intra-PM on temp_chrom

new_chrom[index] = temp_chrom

end (* for population size *)

UPDATE CURRENT CHROMOSOME ARRAY:

for i = 1 to Population_Size do

current_chrom[i] = new_chrom[i]

end (* for population size *)

Figure 15. The Genetie Algorithm.

33

Percentage Fitness

Chromosome 1 12

Chromosome 2 26

Chromosome 3 8

Chromosome 4 32

Chromosome 5 22

1 2

0 25

4

50

Figure 16. Example of Loaded Roulette Wheel.

5

75 100

generations unchanged. Therefore, Intra-PM was held to 10% with the

80% Inter-PM probability. Additionally, a comparison of two population

sizes, 50 and 150 proved no appreciable difference in speedup results,

therefore, the small number of 25 was chosen to minimize memory over­

head. To prevent the best chromosome from being lost, the additional step

to load it into the new chromosome array is included.

The second case of the genetic algorithm includes a 'self adapting

factor.' This factor is applied to any chromosomes (other than the 'best'

chromosome which is always included in the new generation) that have a

fitness value equivalent to the best schedule within that particular gen­

eration. It is used in conjunction with the Inter-PM operator by limiting

the number of tasks moved from one processor to the other. This is util­

ized since the best schedules will generally have a reasonably 'balanced'

allocation of tasks (especially in the absence of precedence constraints). If

34

too many tasks are moved from one processor to the other, the balance is

significantly thrown off. The number of tasks moved is therefore held be­

tween two and five while the rest of the chromosomes undergoing Inter­

PM remain between five and ten tasks shifting.

The stopping condition for both cases of the genetic algorithm is to

monitor the best fitness value for every generation. If the fitness does not

improve after 20 generations, stop the process and report the results.

Evolutionary Strategy Details

The evolutionary strategy is also array based. The transition from

one generation of chromosomes to the next is depicted in Figure 1 7. Spe­

cifically, the chromosome data structures is the same as in the other

methods. The Inter-PM and Intra PM operators are applied to every

chromosome in the temporary array of duplicated chr�mosomes at prob­

ability rates of 80% and 20% respectively. These rates were determined

experimentally by varying the two rates, however the two always com­

bined to 100%. The population size of 25 was also used with the evolu­

tionary strategy.

As shown in Figure 17, the best chromosome(s) will always survive

since the selection criteria is deterministic. In the case of the self adapt­

ing factor, the best fitness is found and all chromosomes having that fit­

ness have the limited number of task switch in the Inter-PM operation,

namely between two and five. All other chromosomes switch between five

and ten tasks during Inter-PM.

35

Chromosome 1 Chromosome N + 1
Chromosome 2 Chromosome N+2

- Chromosome 3 Chromosome N +3 -

►

[Step 1]

Duplicate Entire
Population

Chromosome N !Chromosome 2N

[Step 2)

Modify Every l Step 3)
Chromosome via

,, Combine the Intra-PM or
Original and New, Inter-PM Chromosome 1
Modified 1 r

Chromosome 2 Operators
Chromosome 3 Populations

Chromosome N + 1
Chromosome N+2
Chromosome N +3

t'hromosome N
.

Chromosome N+ 1
Chromosome N+2

Chromosome 2N Chromosome N+3

►
Chromosome 1
Chromosome 2

(Step 4) Chromosome 3

Select N BEST

Chromosome 2N Chromosomes

Repeat for Next Generation
(Unless Stopping Condition !Chromosome N

has been met)

Figure 17. Evolutionary Strategy Generational Transition.

36

The stopping criteria here is set the same as the genetic algorithm:

if, after 20 generations, there is no improvement in the best fitness, halt.

Variable Population Details

The variable population method was developed to minimize the

number of chromosomes present in generations and thereby reduce the

number of evaluations made throughout the search. To accomplish this,

the chromosomes are given an age upon creation. This age is based on the

chromosome's fitness relative to the others in the current population, as

well as all the chromosomes created since generation one, and is specifi­

cally between a minimum and maximum age value. A new generation is

started by reproducing p% of the current generation chromosomes and

performing Inter-PM and Intra-PM operations on the new chromosomes

and, again, an age value is assigned to each one. The last step in the gen­

erational transition to reduce the age of all chromosomes in the current

population and remove any whose age has reduced to zero. This process

allows the population to grow as 'good' chromosomes are created (and

have high age values assigned) and decrease when 'bad' chromosomes are

created and need only be kept around a short time (so low age values are

assigned). The calculation of the age is a strategic part of the process.

The authors of the GAVaPS [1] developed and tested three life strategies:

(1) proportional, which assigns the age value proportional to the chromo­

some's fitness; (2) linear, which linearly interpolates the age span based

on chromosome's fitness in current generation; and (3) bi-linear which at­

tempted to sharpen the difference between lifetime values of nearly-the-

37

best, yet still taking into account the maximum and minimum fitness val­

ues found thus far.

The three strategies taken from [1] were tried; however their per­

formance tended to cause the population to grow very quickly (> 1,000

chromosomes in approximately 20 generations). In this problem, the

chromosomes often have the same fitness value, many chromosomes

would likely get the highest age value unnecessarily. Therefore, a fourth

strategy was developed. The intent was to give those chromosomes hav­

ing fitness greater than average (with respect to the current generation),

an age from within the top third of the range of age values. Those chro­

mosomes having fitness less than average, would be assigned age values

from the lower two-thirds of the age range. The life calculation used is

given in Figure 18.

The variable population implementation in this work is a linked

if fitness <= AvgFit then
age= MinLT +((MaxLT-MinLT)/3.

((fitness-MinFit)/(AvgFit-MinFit))
else

age= MinLT + ((MaxLT-MinLT)/3). 2.
((fitness-AvgFit)/(AbsFitMax-AvgFit))

WHERE

fitness = fitness of chromosome
AvgFit = average fitness of chromosomes in this

generation
MinLT = minimum life value assigned
MaxLT = maximum life value assigned
MinFit = minimum fitness value in this generation
AbsFitMax = maximum fitness for all generations

Figure 18. Life Strategy Calculation in Variable Population.

38'

list, as shown in Figure 19, to accommodate the unknown maximum

population size. The pointer to the current generation, Current_HP, indi­

cates a population ofNg. The additional chromosomes created, pointed to

by Aux_HP, total, k which is p% of the cµrrent population size.

Specific parameters used included a minimum life of one genera­

tion and maximum life of seven. Every process began with 20 chromo­

somes and the probability of duplication into the auxiliary population was

p = 40%. These values were taken from the original GAVaPS work [1]

and some variations of each were tested but found less desirable.

All chromosomes created (in the auxiliary population) undergo the

operators: Inter-PM at the rate of 80% or lntra-PM at a rate of 20%. If a

new allocation results in an infeasible schedule (processor deadlock due to

violation of precedence constraints) the chromosome age is set to zero and

the chromosome is removed from the auxiliary list before becoming part of

the current list. The stopping criteria is the same as the other evolution­

ary methods, twenty generations without improvement in best fitness

value stops the system.

An improvement was implemented that saved the best chromosome

similar to the genetic algorithm approach. When current generation

chromosomes undergo the age decrement, if the chromosome happens to

be the best, it will not have its age reduced. Eventually, another chromo­

some will likely become the best. This allowed normal chromosome life­

death spans and prevented early extinction of the population so the 20

generation convergence was always achieved.

39

Current_HP

Chrom 1 Chrom 2 Chrom 3 Chrom 4 Chrom Ng

Age 1 Age2 Age 3 Age 4

Aux_HP

Chrom Ng+l

Age N8+1

Chrom Ng+2

Age Ng+2

1.k=p% ofNgl----....
Chrom Ng+k

Age Ne+k

(Step 1) While visiting evecy chromosome in Current Population,
duplicate k chromosomes (randomly chosen) and modify
duplicates via Inter-PM or lntra-PM. Decrement age of
chromosome in Current Population, removing any
having age O. Track fitness of Auxiliacy Population.

(Step 2) Visit each chromosome in Auxiliacy Population, assign
age to each (based on Current & Auxiliacy Population
and Previous Maximum and Minimum fitness values).

(Step 3) Attach Auxiliacy Population list to end of Current
Population list.

Repeat for N ext Generation
(Unless Stopping Condition)

Figure 19. Generational Flow of Variable Population Method.

40

<p

CONCLUSIONS

Recall the major purpose of task scheduling is to determine a fast

schedule guickly. Each method was tested by performing one hundred

runs on a 70 Mhz Sparcstation 5 with 32 MB memory and the Solaris 2.4

operating system. The results are plotted as the Speedup benefit versus

Time cost. Obviously, it is desirable to have data points in the upper left

quadrant of such a plot. Looking at Figure 20 (median values of 100 runs

except VPB - Variable Population, Best, which had 56 runs), allocations

represented by data points in the lower left quadrant are not fast sched­

ules, but are arrived at quickly. Those in the lower right quadrant have

poor speedup results and take a long time to derive. Finally, those in the

upper right quadrant have meritable speedups, however they may require

a long time to find. This could be acceptable in the st�tic scheduling

realm where an allocation is derived one time then used often. A small

gain in speedup that is realized often may be well worth the overhead

spent once to find the allocation.

The reader should note that the quadrants just described are rela­

tive to the scale of the plot. Figure 20, the comparison of all methods, is

scaled based on their relative median values. However, the remaining

plots depicting individual methods are all on an identical scale, yet differ­

ent from that of Figure 20. Bearing that in mind, keep the quadrants in

perspective as the discussion continues.

41

LS: List Scheduling
ESF:Evolutionary Strategy/Factor
GAF:Genetic Algorithm/Factor
VPB:Variable Population/Best

SA: Simulated Annealing
ES: Evolutionary Strategy
GA: Genetie Algorithm
VP: Variable Population

1.53 -r------------------------�

♦ SA 1.52

1.51

c. 1.50:,
1.49

ES ESF
1.48 - - - - - - - - - - - - - - - - GAF' - • - - - - ♦ - - - - · · · · · · · •- - -

LS ♦ ♦ ::S 1.47

:E 1.46

1.45

1.44

♦ VPB GA,

... VP
1.43 +-".__--+---+----+--'--+----+---4-----l

0 10 20 30 40

Median Run Time (min)

Figure 20. Results of All Methods Compared.

50 60 70

Looking now at the details of the comparison, the list scheduling

method performed very predictably (less than satisfactory). The speedup

obtained was mediocre and found exactly the same value in approxi­

mately the same amount of time, in every run. Figure 21 illustrates the

results.

The genetic algorithm (Figure 22) typically converged relatively

quickly. This is likely due to the selection criteria where the better chro­

mosomes have a higher probability of surviving to future generations. As

the median values suggest, results can be obtained in as little as half an

hour, although the better speedups require longer searches.

42

1.60

1 .58

1 .56

1.54

C. 1 .52

1.50
i

+
(fJ 1 .48

1.46

1 .44

1 .42

1 .40

0

Average:
1 G min. Execution Tim e
1.47 Speedup

Median:
16 min. Execution Tim e
1.47 Speedup

60 120

Run Time (min)

Figure 21. Results of List Scheduling.

1.60

1.58

1.56

1.54

C. 1.52

1.50

(fJ 1 .48

1 .46

•

••
-·

•

•

•
•

•
•

180 240

Avg: 43 min, 1.48

1.44 Median: 32 min, 1.47
1 .42

1.40

0 60 120 180 240

Run Time (min)

Figure 22. Results of Genetie Algorithm.

As expected, the evolutionary strategy's performance (Figure 23)

closely resembled the genetic algorithm. The two methods are very similar

43

1 .60

1 .58

1 .56
A vg : 6 6 m in , 1 . 4 9

1.54

C. 1 .52

1 .50

1 .48

•• t . ..
• •

1.46 1 Median: 43min, 1.48 1
1 .44

1.42

1 .40

0 60 120

Run Time (min)

Figure 23. Results of Evolutionary Strategy.

180 240

in nature with the one difference primarily in the selection method. The

deterministic approach enabled the evolutionary strategy to search longer

before converging on a particular speedup value. Here the median indi­

cates three-quarters to a full hour for the typical value which is slightly

better than that produced in median time for the genetic algorithm.

Modifying the number of tasks swapped in the Inter-PM operation ("the

Factor") seemed to have a greater effect on the evolutionary strategy

(Figure 24) than on the genetic algorithm (Figure 25) although the benefit

of it is not obvious.

One significant trend found in both the genetic algorithm and the

evolutionary strategy that is not present in the variable population

method is that, typically, the longer the search, the better the allocation

found. If there is time available for the overhead of finding the best

schedule, one could simply increase the number of generations used to de

44

1.60

1 .58

1.56

1.54

C. 1 .52

1.50

1.48

1 .46

1.44

1 .42

1.40

0 60

Avg: 82 min, 1.49

1 Median: 64 min, 1.48 1

120 180

Run Time (min)

•

•

240

Figure 24. Results ofEvolutionary Strategy With Self Adapting Factor

(Inter-PM Operation on Best Chromosome in Population Only

Moves 2-5 Tasks Instead of 5-10 Tasks).

tect convergence. In the variable population method, (Figure 26) how­

ever, more search time did not necessarily produce better schedules.

Looking at the case where the best chromosome was not saved (Figure 27)

the search died very quickly with very poor results. In fact, the process

died early (never reaching 20 generations to converge on one result) 80%

of the time and 500 runs were made to get 100 feasible runs. By saving

the best, however, there were still quickly found poor results (convergence

in minutes) and not too many good results after hours of searching.

Finally, the simulated annealing method (Figure 28) worked ex­

ceptionally on this problem instance. The maximum speedup obtained of

all methods, 1.59, was with the simulated annealing method and the

minimum speedups obtained with this method were typically at or above

45

1.60

1.58

1.56
1 .54

a. 1 .52
1 .50

a. 1.48 "'

1.46
1.44
1.42

1.40
0 60

• •
. �

••• •

• •

••
•

••

Avg: 45 min, 1.48

M edian: 29 min, 1.47

120 180
Run Time (min)

240

Figure 25. Results of Genetie Algorithm With Self Adapting Factor

(Inter-PM Operation on Best Chromosome in Population Only

Moves 2-5 Tasks Instead of 5-10 Tasks).

1.48. Simulated annealing consistently found high speedup values in al­

most exactly one hour labeling it 'a good bet.'

1.60

1.58

1.56

1.54

a. 1 .52

1 .50
"' 1 .48 •

1 .46 ••

1 .44

1 .42

1 .40
0 60

A vg: 2 m in , 1 . 4 3 1

Median: 2 min, 1.43 1

120 180
Run Time (min)

Figure 26. Results of Variable Population.

240

46

1.60

1.58

1.56
1 Avg: 68 min, 1.48 I

1.54

0. 1.52 •

1.50

1 .48 •

1.46

1 .44

1.42

1.40

0 60 120 180 240

Run Time (min)

Figure 27. Results of Variable Population With Best Chromosome Saved.

The downfall of the genetic algorithm and the evolutionary algo­

rithm as compared to the simulated annealing method appears to be the

overhead. The actual number of evaluations was fixed for the simulated

annealing method at 10,000 (one chromosome for 10,000 generations).

The genetic algorithm and evolutionary strategies typically used 0.55-0.58

minutes to evaluate a generation of chromosomes. Therefore, all speedup

results requiring more than one hour evaluated only about 2600 chromo­

somes. Those runs using upwards of three hours made over 8,000

evaluations and only those above four hours actually reviewed more than

10,000 allocations. This clearly states that if the genetic algorithm and

evolutionary strategy were allowed to run through the same number of

evaluations as the simulated annealing method, they too would produce

high speedup results.

47

1 .60

1 .58

1.56

1 .54

C. 1 .52

1.50
C.

1 .48

, .1 Avg: 58 min, 1.53

►

•

1 a

1 .46
M edian: 58 min, 1 .52

1 .44

1 .42

1 .40

0 60 120

Run Tlme (min)

Figure 28. Results of Simulated Annealing.

180 240

It seems that in this problem instance, the chromosome data struc­

ture and mutation operators work very well with all three methods. It

may be that a decision must be made on whether to review one chromo­

some at a time or an en tire population. If the population overhead can be

reduced, the potential for good results quickly is apparent. Ironically, the

purpose of the variable population technique is exactly to reduce the

overhead of carrying unnecessary chromosomes from one generation to

the next. However, more development is obviously required to realize

those benefits.

48

BIBLIOGRAPHY

[1] Arabas, J., Z. Michalewicz & J. Mulawka, "GAVaPS - A Genetie Algo­

rithm with Varying Population Size," Proceedings of the IEEE Con­

ference on Evolutionary Computation, Volume 1, 1994, pp. 73-77.

[2] Bae, I. H. "A Systematic Genetie Algorithm for Task Allocation in

Multiprocessor Systems", lnfoscience, 1993, pp. 663-669.

[3] Borriello, G. & D. M. Miles, "Task Scheduling for Real-Time Multi­

Processor Simulations," Proceedings of 11th IEEE Workshop on Real­

Time Operating Systems and Software, 1994, pp. 70-73.

[4] Casavant, T. L., & J. G. Kuhl, "A Taxonomy of Scheduling in General­
Purpose Distributed Computing Systems," IEEE Transactions on

Software Engineering, Vol. 14, No. 2, February 1988, pp. 141-154.

[5] Filho, J. L. R., P. C. Treleaven & C. Alippi, "Genetic-Algorithm Pro­

gramming Environments," (IEEE) Computer, June 1994, pp.28-43.

[6] Galletly, J. E., "An Overview of Genetie Algorithms," Kybernetes, Vol-

ume 21, No. 6, pp. 26-30.

[7] Garey, M. R. & D. S. Johnson, Computers and Intractability: A Guide
to the Theory ofNP-Completeness, W. H. Freeman, 1979.

[8] Gillies, D. W. & J. W. S. Liu, "Greed in Resource Scheduling," Acta In­

formatica 28, 1991, pp. 755-775.

[9] Goldberg, D. E., Genetie Algorithms on Search Optimization, and Ma­

chine Learning. Addison-Wesley Publishing Co., 1987.

[10] Graham, R. L., "Bounds on Multiprocessing timing Anomalies," SIAM
Journal of Applied Mathematics., Vol. 17, No. 2, March 1969, pp.
416-429.

[11] Greenwood, Garrison, A. Gupta & K. Cousineau, "A Comparison of

Evolutionary Techniques for Task Scheduling in Distributed Sys­

tems," (not published) May 1994, pp. 1-21.

49

[12] Greenwood, Garrison, A. Gupta & K. McSweeney, "Scheduling Tasks
in Multiprocessor Systesm Using Evolutionary Strategies, Proceed­
ings of the IEEE Conference on Evolutionary Computation, Volume
1, 1994, pp. 345-349.

[13] Gutberlet, P., H. Kramer, & W. Rosensteil, "CASCH - A Scheduling
Algorithm for "High Level" - Synthesis," EDAC Proceedings of the
European Conference on Design Automation, 1991, pp. 311-315.

[14] Han, B., "A Systematic Genetie Algorithm for Task Allocation in
Multiprocessor Systems," Infoscience, 1993, pp. 663-669.

[15] Rolland, J. H., Adaptation in Natural and Artificial Systems, Uni­
versity of Michigan Press, Ann Arbor, Michigan., 1975.

[16] Hou, E. S., R: Hong & N. Ansari, "Efficient Multiprocessor Schedul­
ing Based on Genetie Algorithms," 16th Annual Conference of IEEE
Industrial Electronics Society, Volume II, 1990, pp. 1239-1243.

[17] Hwang, J.-J., Y.-C. Chow, F. D. Anger, & C.-Y. Lee, "Scheduling
Precedence Graphs in Systems with Interprocessor Communications
Times," SIAM Journal of Computing Vol. 18, No.2, April 1989, pp.
244-257.

[18] Hwang, K., Computer Architecture and Parallel Processing. McGraw
Hill, Inc. 1984.

[19] Kirkpatrick, S. , C. D. Gelatt, Jr. & M. P. Vecchi, "Optimization by
Simulated Annealing," Science, 13 May 1983, Volume 220, Number
4598, pp. 671-680.

[20] Liao, G., E. R. Altman, V. K. Agarwal, G. R. Gao, "A Comparative
Study of Multiprocessor List Scheduling Heuristics," Proceedings of
the Twenty-Seventh Annual Hawaii International Conference on
System Sciences, 1994, pp. 68-77.

[21] Lin, S. C., & J. H. C. Hsueh, "A New Methodology of Simulated An­
nealing for the Optimsation Problems," Physica A 205, 1994, pp. 367-
374.

50

[22] Lucasius, C.B. & G. Kateman, "Understanding and Using Genetie
Algorithms, Part 1. Concepts, Properties and Context," Chemomet­
rics and Intelligent Laboratory Systems, 19, (1993), pp. 1-33.

[23] Michalewicz, Z., Genetie Algorithms + Data Strucures = Evolution
Programs, Springer-Verlag Berlin Heidelberg, 1992.

[24] Nabhan, T. M., "Parallel Computations for a Class of Time Critical
Processes, Ph. D. Dissertation, University of Western Australia,1994.

[25] Sammur, Nidal M., & M. Hagan, "Mapping Signal Processing Algo­
rithms on Parallel Architectures," Journal of Parallel and Distrib­
uted Computing 8, 1990, pp 180-185.

[26] Srinivas, M., & L. M. Patnaik, "Genetie Algorithms: A Survey,"
(IEEE) Computer, June 1994, pp. 17-26.

[27] Whitley, D., T. Starkweather & D. Fuquay, "Scheduling Problems
and Traveling Salesmen: The Genetie Edge Recombination Opera­
tor," ICGA, 1989, pp. 133-140.

51

	A Comparison of Methods to Allocate Tasks on a Multiprocessor System
	Recommended Citation

	tmp.1558705228.pdf.RD8OJ

