
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Masters Theses Graduate College

6-1995

Modeling and Development of a Cellular Micro-Kernel Modeling and Development of a Cellular Micro-Kernel

K. Balaji
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Balaji, K., "Modeling and Development of a Cellular Micro-Kernel" (1995). Masters Theses. 4244.
https://scholarworks.wmich.edu/masters_theses/4244

This Masters Thesis-Open Access is brought to you
for free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for
inclusion in Masters Theses by an authorized
administrator of ScholarWorks at WMU. For more
information, please contact wmu-
scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/4244?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4244&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

MODELING AND DEVELOPMENT OF A CELLULAR MICRO-KERNEL

by

K. Balaji

A Thesis
Submitted to the

Faculty of The Graduate College
in partial fulfillment of the

requirements for the
Degree of Master of Science in Engineering

Department of Electrical and Computer Engineering

Western Michigan University
Kalamazoo, Michigan

June 1995

ACKNOWLEDGEMENTS

I would like to acknowledge my indebtedness to the

people who have contributed in various ways to this study.

First of all, I wish to express my profound gratitude

and sincere thanks to my research adviser Dr. Richard

Taylor, for the inspiration, instruction and invaluable

guidance given to me, for without his help this thesis

would not have been possible. I also like to thank Dr.

Thomas Piatkowski, Dr. John Kapenga and Dr. Garrison

Greenwood for their effective and constructive criticism in

order to make this thesis to the perfection of highest

order.

Second, I express love bounded resp�ct to my father

Sri. P. Karuppiah, mother Smt. K. Ramashwari and my brother

K. Muralidaran, whose foresight, determination and vision

paved the way for all the opportunities that I am getting

throughout my life.

Finally, I dedicate this thesis to Lord Krishna, for

he who undergoes the pleasure and pain, gain and loss,

victory and defeat of this body of mine.

K. Balaji

ii

MODELING AND DEVELOPMENT OF A CELLULAR MICRO-KERNEL

K. Balaji, M.S.E.

Western Michigan University, 1995

A novel cellular load distribution strategy was

designed and implemented on transputers by Dr. Richard

Taylor and Dr. Don Goodeve at the University of York,

United Kingdom. Based upon the above proposed strategy, a

statistical model was developed using the Cellular Automata

Theory. The theoretical model drives the implementation

process of the cellular micro-kernel on the nCUBE 2S

system. The load distribution and the performance charac

teristics for snake and L type transmission modes, and for

uniform and non-uniform distribution of destination

processors of the micro-kernel has been measured and

compared with our theoretical model. The results show good

agreement between experimental and statistical model.

TABLE OF CONTENTS

ACKNOWLEDGMENTS. • • • . . . • . • • • • • • • • • . • . • . . . • • • • • • ii

LIST OF FIGURES. • . . . • v

CHAPTER

I. INTRODUCTION. 1

Cellular Approach to Parallel Computer Design 4

Cellular Automata; The Abstract Mathematical
Madel. 4

The Cellular Paradigam for Parallel
Processing Systems........................... 6

Cellular Logic Machines.................. 7

The Connection Machine................... 7

Cellular Structures of Our Model............. 8

The Test Bed ·�· 11

Hypercube Architecture •........•...••.... 13

nCUBE 2S System Architecture 17

Thes is Outl ine. 19

II. STATISTICAL MODEL AND ANALYSIS .•..........•..... 21

Introduction. 2 2

The Model of Operation 23

The Node. 2 3

The Communication Model•............. 24

The Span. 2 4

Message Generation•••.............. 25

Message Acceptance••.•...........•... 25

iii

CHAPTER

Table of Contents---Continued

Performance Metrics and Parameters •••..•...•. 26

Numerical Analysis and Conclusions ••.•.•••..• 31

III. EXPERIMENTAL VERIFICATION.. . .. • . • . . • • . • 35

IV. DESCRIPTION OF THE FEATURES OF THE MICRO-KERNEL. 66

Functions Used in Building of the
Micro-Kernel. 67

V. CONCLUSIONS AND FURTHER WORK •.••..•............. 71

Summary of Main Results ...•.................. 72

Further Work. 7 2

Conclusions. 7 4

APPENDICES

A. The Source Code of the Micro-Kernel 77

REFERENCES • • • • • • • • • . • • • • • • • • • • • • • • • . • • • • • • • • • • • • . • • • • • 8 5

iv

, , ,.,

LIST OF FIGURES

1. Neighborhoods in a Linear Array................... 10

2. AN x N Toroidal Four Neighbor Mesh............... 12

3. n-cube Graphs for n = 1, 2, 3..................... 15

4. Routing Algorithm at Work......................... 16

5. The Architecture of nCUBE 2S Processor............ 18

6. Relative Time per Byte Versus Message Generation
Rate for the Statistical Model 32

7. Relative Time per Byte Versus Message
Length for the Statistical Model 33

8. Relative Time per Byte Versus Message Generation
Rate for Snake type Transmission, for Uniform
Distribution of Destination Processors 39

9. Relative Time per Byte Versus Message Generation
Rate for Snake type Transmission, for Non
Uniform Distribution of Destination
Processors wi th log

2
() Distribution ... -. 41

10. Relative Time per Byte Versus Message Generation
Rate for Snake type Transmission, for Non
Uniform Distribution of Destination
Processors with log3 () Distribution............... 42

11. Relative Time per Byte Versus Message Generation
Rate for Snake type Transmission, for Non
Uniform Distribution of Destination
Processors wi th log4 () Distribution. 4 3

12. Relative Time per Byte Versus Message Generation
Rate for Snake type Transmission, for Non
Uniform Distribution of Destination
Processors with log5 () Distribution............... 44

13. Relative Time per Byte Versus Message Generation
Rate for Snake type Transmission, for Non
Uniform Distribution of Destination
Processors with log10 () Distribution............... 45

V

List of Figures---continued

14. Relative Time per Byte Versus Message Generation
Rate for L type Transmission, for Uniform
Distribution of Destination Processors •••••••••••• 46

15. Relative Time per Byte Versus Message Generation
Rate for L type Transmission, for Non-Uniform
Distribution of Destination Processors with
log2

() Distribution. 4 7

16. Relative Time per Byte Versus Message Generation
Rate for L type Transmission, for Non-Uniform
Distribution of Destination Processors with
log

3
() Distribution. 48

17. Relative Time per Byte Versus Message Generation
Rate for L type Transmission, for Non-Uniform
Distribution of Destination Processors with
log4 () Distribution. 4 9

18. Relative Time per Byte Versus Message Generation
Rate for L type Transmission, for Non-Uniform
Distribution of Destination Processors with
log5 () Distribution. • . . . • 5 o

19. Relative Time per Byte Versus Message Generation
Rate for L type Transmission, for No�Uniform
Distribution of Destination Processors with
log10() Distribution•..........•.... 51

20. Relative Time per Byte Versus Message Length
for Snake type Transmission, for Uniform
Distribution of Destination Processors........... 52

21. Relative Time per Byte Versus Message Length for
Snake type Transmission, for Non-Uniform
Distribution of Destination Processors
with log2 () Distribution......................... 54

22. Relative Time per Byte Versus Message Length for
Snake type Transmission, for Non-Uniform
Distribution of Destination Processors
with log3 ()Distribution.......................... 55

23. Relative Time per Byte Versus Message Length for
Snake type Transmission, for Non-Uniform
Distribution of Destination Processors
with log4 () Distribution......................... 56

vi

List of Figures---continued

24. Relative Time per Byte Versus Message Length for
Snake type Transmission, for Non-Uniform
Distribution of Destination Processors
with log5 () Distribution......................... 57

25. Relative Time per Byte Versus Message Length for
Snake type Transmission, for Non-Uniform
Distribution of Destination Processors
with log10 () Distribution........................ 58

26. Relative Time per Byte Versus Message Length for
L type Transmission, for Uniform Distribution
of Destination Processors. 59

27. Relative Time per Byte Versus Message Length
for L type Transmission, for Non-Uniform
Distribution of Destination Processors
with log

2 () Distribution......................... 61

28. Relative Time per Byte Versus Message Length
for L type Transmission, for Non-Uniform
Distribution of Destination Processors
with log3 () Distribution......................... 62

29. Relative Time per Byte Versus Message Length
for L type Transmission, for Non-Uniform
Distribution of Destination Processors
with lo�() Distribution......................... 63

30. Relative Time per Byte Versus Message Length
for L type Transmission, for Non-Uniform
Distribution of Destination Processors
wi th lo% () Distribution. 64

31. Relative Time per Byte Versus Message Length
for L type Transmission, for Non-Uniform
Distribution of Destination Processors
wi th log10 () Distribution. 65

vii

CHAPTER I

INTRODUCTION

High speed computers have been traditionally used in

compute intensive application in science and engineering

such as numerical weather forecasting, oil exploration,

seismic data analysis, computational f luid dynamics and

computational physics to name a few. More recently these

computers have been applied to non-traditional fields such

as advertising, animation and industrial computer aided

design. Developments in VLSI technology have enabled

spectacular advances in computer performance thus allowing

scientists not only to study models of novel scientific and

engineering problems, but also to construct larger more

accurate models of existing problems.

Conventional means of increasing the performance of

high speed computers have been through the use of more

advanced techniques, among others, very large scale integra

tion, faster switching circuits and denser packing methods.

While there is still scope for speed enhancement through

these conventional means, future advances are unlikely to

be a spectacular as in the past. Physical and technological

factors bound the maximum performance achievable wi th a

single processor (Mead & Conway, 1980). For instance, in

1

VLSI circuits, the speed of light limits the speed of a

travelling signal. Also computation error may arise due to

electrons 'tunnelling' across the insulation if data lines

are placed too close in integrated circuits.

Despite these limits the demand continues to rise both

for computing power for large app.lications and for cost

efficient computing platforms. Such demands have prompted

research into new architectural approaches to providing more

computer power as opposed to more traditional once above.

An obvious approach that has received a lot of attention is

parallel processing. A system architecture in which large

number of conventional processing elements, communicating

with each other through some interconnection network, and

cooperating with each other in a coordinated way to solve

large problem fast (Almasi & Gottlieb, 198�). Given current

and foreseeable development in hardware technology,

massively parallel processing system are technically and

economically feasible. These systems aim to provide both

increased performance and better price/performance ratios

for wide range of applications.

A major concern is the provision of software support

for effective use of parallel processing systems. Many

crucial problems in parallel systems programming are either

unsolved or partially solved. More difficulties confront a

would-be programmer of parallel hardware than those

encounter in conventional sequential computers. The three

2

key areas of research in parallel programming of parallel

computer systems are (Gajski & Peir; 1985, Haynes, Lau,

Siewiorek & Mizell, 1982; Hwang & Briggs; 1985, Almasi &

Gottleb, 1989; Klietz, Malevsky & Chin-Purcell, 1994):

1. Specification of parallelism where researchers are

concerned with developing parallel languages with special

constructs that allows expression and packaging of paral

lelism, support synchronization and communication between

application modules, and provide support for distributed

data structures. Ideally these languages should shield the

programmer from architectural details.

2. Exploitation of parallelism which embraces a number

of issues in design and used of operating systems and

compilers for parallel processing systems. Briefly these

includes: load decomposition, the partitioning of applica

tions into smaller modules called processes to tasks;

process creation and management; process distribution among

the processors; supervision of process synchronization and

inter-processor communication; and, management of high

bandwidth input/output systems.

3. Support environments and tools which assist in

program de-bugging, run-time profiling and tracing of non

determinism. In addition, they may provide facilities for

performance analysis perhaps through interactive graphical

user interfaces.

We are concerned with the general demain of software

3

tools for effective exploitation of parallelism. More

specifically, in this thesis we will develop and analyze a

strategy that effectively distributes load (Goodeve &

Taylor, 1992) using cellular automata theory in nCUBE 2S

system without incurring large communication and computation

overheads.

Cellular Approach to Parallel Computer Design

Cellular automata theory was first introduced by von

Neumann as a model for biological systems (Codd, 1968,

Burks, 1970). He envisaged this property as being of great

importance in fault tolerant computing systems (Neumann,

1956). Cellular automata (CA) usually consist of an infinite

array of interacting finite state machines. Such automata

can be considered at two levels of com_plexi ty. At the

simple, locally interacting level the automata allow

mathematical analysis. At the more global level, in which

the whole system is considered, they exhibit surprisingly

complex phenomena. Their power and versatility are attrib

utable to these two factors (Wolfram, 1986).

Cellular Automata; The Abstract Mathematical Model

Cellular automata are based on the notion of discrete

space, discrete time and cell states idealized as a finite

set of discrete values. The cellular space is a large,

usually infinite, n-dimensional regular lattice of homoge-

4

neous sites, or cells. Each cell and a small number of

adjacent cells form a local neighborhood set. The cell

interacts exclusively with cells in its neighborhood set.

In addition each cell has a discrete variable whose

value is called the state of the cell. In the (possibly)

infinite cellular space only a finite number of cells will

be active, the rest will be in a non-active state. In

general, a quiescent cell surrounded by similar cells will

remain in a non-active state. Thus, cellular automata theory

generally considers the finite set of active cells and their

boundary with the non-active state regions.

Cells' states are updated synchronously throughout the

cellular space according to a global clock operating in

discrete time intervals or cycles. The state transition

function is a finite set of simple rules . .Jn one cycle the

state depends completely on the state of the cell and its

neighborhood cells from the previous cycle. The intercon

nection graph of the cells are temporally static, the nodes

and their interconnections do not change with time, and are

spatially regular, i.e. the graph has a simple regular

geometry. Extension of these fundamental principles of

cellular automata theory include such features as complex

non-deterministic transition function and novel neighborhood

connection (Wolfram, 1986; Demongeot, Go les & Tchuente,

1985). A number of characteristics are common in simple

cellular automata. Presenting a set of simplifying features,

5

they facilitate analysis and simulation while providing

restrictions on the overall cellular automata system.

The Cellular Paradigm for Parallel Processing Systems

Complex physical, biological and chemical systems have

been modelled by mapping them into cellular automata

(Lindermayer, 1968). The computational properties of

cellular automata have been studied extensively (Codd, 1968;

Burk, 1970; Shannon & McCarthy, 1956). Cellular automata

have been used as a basis for parallel processing computing.

Example include highly parallel sorters, multipliers, prime

number sieves, and pattern recognition in 2-dimensional

arrays (Wolfram, 1986; Hillis, 1984).

Physically, the implication of the ideal mathematical

definition is an infinite regular interconnection of

homogeneous cells. Each node has a small memory unit to

store the cell' s state and a processor to compute the

transfer function and manage the neighborhood information.

In the cellular paradigm two classes of machines may be

identified; cellular logic machines and connectionist

machines. The difference between these two is that while

cellular logical machines simulate the cellular space in

memory, the connectionist machine implement the cellular

space in a physical network of processors.

6

Cellular Logic Machines

Hardware simulation of physical cellular array has

been, until recently, impractical to undertake, hence the

historical attractiveness of cellular logic machines. These

are special purpose machines for emulation of the cellular

automata. They use single (or multiple) high speed proces

sors and user-def ined transition functions to evaluate

sequentially the cell state stored in the memory of an N X

N array. Hence, while net strictly in physical structure,

they are cellular in functionality. Cellular Automata

Machine (CAM) (Toffoli, 1984) is a most recent system. CAM's

design objective was to provide economical, high performance

hardware to permit intensive research in abstract cellular

automata. The CAM can simulate non-uniform, non-determinis

tic cellular automata with transaction functions that may

be both change within a single run for simulation time, or

vary from one region of cellular space to another.

The Connection Machine

Hillis' connection machine (CM) (Hillis, 1985) sprang

from the NETL project, an artificial intelligence system for

the storing of, and performing deductions on, a knowledge

base represented as a semantic network (Fahlman, Hinton &

Sejnowski, 1983). In NETL, noun-like objects were repre

sented on node cells and their inter-relationships by link

7

cells. Each cell has a simple processor and is connected to

a small memory unit.

The connection machine is a more general purpose

machine not only capable of diff erent searching methods, but

also applicable to a wide class of problems; especially

those involving memory interaction computation (Waltz,

1987). The connection machine has up to 64K processing

elements each with a memory unit. Although physically

connected in a simple two dimensional grid, each cell could

be configured by the software to be virtually connected to

all the other by use of message passing scheme.

With simple processors and interconnection hardware

an economically feasible connectionist machine is brought

about to explore parallelism. This is a key connectionist

machines' concept and their major advantag�. Their computa

tional power increases almost linearly with the problem size

because, depending on the availability of processor and

nature of the problem, the execution time is nearly constant

with respect to the size of the problem (Hillis, 1984).

Cellular Structures of Our Model

The cellular space in our model at the network

consists of a static regular topology of interconnected

homogeneous nodes. We use the basic cellular automata theory

as outlined earlier. Each cell is connected by directed

links to a set of cells called its connection set. All

8

interactions between the cells occur via these links.

Each cell has a distinct state from a finite alphabet

of such states. After each time cycle each cell communicates

its state to some or all of the cells connected to it. These

cells belong to its negative neighborhood set. At the same

time, the cell recei ves the states· of all or some of the

cells connected to it. Similarly these cells belong to its

positive neighborhood set. the positive and negative

neighborhood sets are not necessarily identical; in some

models they might be specified nets (Morgan, 1987).

To illustrate the concept of positive and negative

neighborhood, consider two assembly as shown in Figure 1.a

and Figure 1.b. The first, which station A, B, and C, has

load moving from left to right. Thus, in one cycle, the

state at station B will depend on whether A is functional

or not. A is thus in the positive neighborhood of B since

it contributes positively to the next state at B. Converse

ly, B's state affect the next state of c. If B were to

malfunction then there would be no load to c. We say that

c is in the negati ve neighborhood of B. If we have an

assembly, like Figure 1.b, where load flows in both

directions, then both neighbors of E would be in i ts

negative and positive neighborhoods. Status information is

thus passed to all neighbors; both the connectivity and

neighborhood sets are equivalent.

When this cellular automata paradigm is used to model

9

10

a

Figure 1. Neighborhoods in a Linear Array.

load distribution by cellular interactions, the load flow

time depends on the communication time. Since the relative

position at the local level of the neighbors are same with

respect to a particular processor, both positive and

negative neighborhood sets tend to remain the same.

Depending on the neighbor which ever closer to the destina

tion processor, the transmission of the load is considered.

The processor is described using standard cellular

automata mathematical notation. The model closely follows

the works of cellular automata (Burk, 1970; Codd, 1968) and

description of cellular structures for operating systems

(Wendler, 1981) . Though the description applies to n

dimensional cellular structure, the example given, and our

performance model, use 2-dimensional Nl X N2 toroidal (warp

ed around) mesh, like the one shown in Flgure 2.

The Test Bed

In this thesis the theory of load distribution on a

parallel system was modeled using cellular automata theory,

as expressed in the earlier part of this chapter. The

obtained theoretical model is tested by implementing the

model on the nCUBE 2S system which is comprised 128

processors configured as a 7D hypercube, which is used as

our test bed.

11

1 st Dimension

2nd Dimension

..........

.
..___---+-l,

..........
....... .

.

.

..........

.

...........
--:-:-:-:-:-:-:-:-:-::

.

.
...........

.

· . · . · . ·.·.: ... ········
. . c........ . ,---

.

·····-···
.

. ' '

Figure 2. AN x N Toroidal Four Neighbor Mesh.

12

Hypercube Architecture

Massively parallel processor {MPP) is a coordinated

set of hundreds or thousands of computer processors that

share a fast communication network. MPP's can be classified

based on their memory addressability {shared or distributed)

and the manner in which they execute instructions {Single

Instruction Multiple Data {SIMD) or Multiple Instruction and

Multiple Data {MIMD)). Our nCUBE 2S system falls into the

category of MIMD system, in which processors independently

execute different instructions on different data at a given

time cycle. Our nCUBE 2S system follows the hypercube

architecture. Hypercube architecture have much studied

{Almasi & Gottlieb, 1989); several companies, including

Intel, NCUBE and FPS, have marketed machines having this

topology. In a k-dimensional hypercube we have N = 2K nodes,

each of degree K.

The n-cube or n-dimensional hypercube Q0
is defined

recursively in terms of the cartesian product of two graphs

as follow:

Qt = Kz
Qn = Kz X Qn-1 {l. 1)

Thus the n-cube, Q0
may also be defined as a graph whose

node set V
0

consists of the 2° n-dimensional boolean vectors,

i.e., vectors with binary coordinates {Harary, Hayes & Wu,

13

1988). Figure 3 shows the n-cubes for n � 3 with appropriate

boolean vectors as node labels. From the Figure 3, we can

observe that each neighboring node differs by one and only

by one bit with each other. A graph G = (V, E) has p = IVI

nodes and q = IEI edges, and is said to have order p and

size q. Thus, the order of Q
0

is 2° .and its size is n 2°-1•

The n-dimensional hypercube has 2° nodes. To each node

we associate a n-bit binary label; adjacent nodes have

binary labels that differ in one and only one bit position.

Let s = s
0
_1 ••• s1

s
0 and d = �-l ••• d1d0 be the binary label

of the source node and destination node, respecti vely.

Further, let v = v0_1 • • • v1v0 be the label of any node along the

route. Then the routing algorithm (Greenwood, 1995) is

1. compute r = s EB d

2. let v = s and i = 1

3. if ri = 1, route from v to v EB 2i-l

4. i +- i + 1

5. if i � n go to step 3. Else, EXIT.

An example for this algorithm at work is shown in Figure 4

with s = 0110, d = 1101, and n = 4.

1. r = s EB d = r4r3r2
r1

= 1011

2. v = s and i = 1

3. r1 = 1 � route from s to v = s EB 2° = 0111

4. r
2 = 1 � route from v to v EB 21 = 0101

5. r3 = o so skip the next dimension

14

...• · �

15

•

Q1

01 11

CIO 10

101 111

,ao

110

000
010

Figure 3. n-cube Graphs for n = 1, 2, 3.

16

•.1 ...

0110 0111 1110 1111

0010

1101

0000

Figure 4. Routing Algorithm at Work.

6. r4 = 1 � route from v to v EB 23
= 1101 = d.

nCUBE 2S System Architecture

The processing nodes of our nCUBE 2S system are based

on a custom single-chip processor, which combines 64-bit

CPU, 64-bit floating point unit, and a message-routing unit

onto a single 500,000-transistor chip. The nCUBE 2S

processors' architecture is shown in Figure 5. The processor

architecture is VAX-like. With 20MHz clock, the processing

node's performance is 7.5 MIPS and 2.4 MFLOPS (3.5 MFLOPS

single precision). Node memory is between 4 MBytes to 16

MBytes. The maximum configuration is 8192 nodes (a 13D

hypercube). The main philosophy of nCUBE 2S system is to

develop a processor, designed specif ically for parallel

processing, that balances computation wi�h communication.

The nCUBE 2S processor realizes this philosophy by inte

grating communication channels with its processing facili

ties. Each processor includes 14 bidirectional communication

channels: 13 for the interprocessor network - supporting a

hypercube with up to 8192 processor - and one for I/O. When

multiple nCUBE 2S processors are configured in a hypercube

network, the processor architecture provides unmatched

communication bandwidth (Voigt, 1994). And because each

processor includes its own communication facilities, adding

processors to a system increases computation speed,

17

64-bit CPU

Memory

Management

Unit

IEEE

Floating
Point

Processor

Message Routing Unit

14 B1-dlractlonal DMA Channels

Figure 5. The Architecture of nCUBE 2S Processor.

18

communication bandwidth, and I/0 bandwidth. An nCUBE 2S

system supports C and fortran programming. The host computer

runs AXIS, a UNIX-based operating system that manages to

make the whole machine look like one distributed file

system. VERTEX is a small (< 4KB) kernel in each node; its

primary function is internode communication (message routing

and store-and-forward buffering).

Various authors (Voigt, 1994; Gubbala & Singh,1993;

Schmidt, Dick, Forbes, & Tasker, 1992; DeBenedictis &

delRosario, 1992; Palmer, 1988) have studied the communica

tion aspects of nCUBE 2S system. In our thesis we study the

communication aspect using cellular automata theory. During

the implementation processes of the cellular theoretical

model on the nCUBE 2S system, we squash the cubical

architecture of the nCUBE 2S system (of th� used hypercube)

to a toroidal (wrapped-around) 2-dimensional mesh architec

ture to entertain our experimentation.

Thesis Outline

In Chapter II we formulate a statistical model based

upon the system architecture that we are going to use to

perform the experiment with the theory of cellular automata.

The formulated model is numerically analyzed and studied.

Conclusions were drawn about from the numerical results, so

as these results can be compared with the experimental

results. In Chapter III we describe the method, design, and

19

technique by which the experiment is performed in the nCUBE

2S system through the drive of the theoretical model, while

Chapter IV provides a complete description of the features

of the micro-kernel. In Chapter Vwe provide the conclusions

and future work required for further development to the

aspects of the micro-kernel.

20

CHAPTER II

STATISTICAL MODEL AND ANALYSIS

A key issue in performance_ analysis of parallel

systems is the behavior of the interconnection network with

different types and levels of messages traffic. The speed

of the indi vidual components, the type of medium and

strategies used in building the protocol will be obviously

have an impact on the network's communication bandwidth.

However, aside from these implementation characteristics,

the performance of the network depends on the architectural

characteristics; such as the number of neighbors, the

interconnection topology used, the size of the network, and

the load distribution scheme's characteristics; such as the

amount load shared in each cycle, the frequency and the

amount of load exchange.

Therefore an analytical tool is needed to predict the

performance of a target network for the range of communica

tion needs of an intended application. In this chapter we

develop a statistical model for the performance of two

dimensional toroidal mesh networks. Though applicable to

larger neighborhoods, the analysis has been applied to a

four neighbor mesh. The performance of the network is

evaluated in terms of relative time per byte versus the

21

message generation rate and length of the message (Taylor,

1995).

Cellular Load Distribution (CLD) (Goodeve & Taylor,

1992; Macharia, 1990) schemes are a class of dynamic

heuristic load distribution strategies that share load in

a neighborhood of cooperating processors. This analysis

allows us to predict the expected relative time per byte for

different levels of communications traffic due to process

interaction and load transformation.

Introduction

Time delay in the nCUBE 2S system has been analyzed

extensively by Voigt (Voigt, 1994) and others. In this

chapter we develop a statistical model of four neighbor two

dimensional toroidal mesh based on cellular_automata theory.

The goal is to find relationship for relative time between

messages between any two processors with respect to message

generation rate and message length. In our nCUBE 2S system

while designing the two dimensional toroidal mesh, we

consider each intermediate processor as swi tches having

buffers. With this background, in a closed toroidal mesh no

messages can be lost, hence the performance metric is the

message latency or communication time delay, from which

relative time per byte can be calculated. In this case the

bandwidth is the product of the number of messages generated

of message length and the message latency per unit time.

22

The Model of Operation

The mesh is modelled as a regular 2-dimensional planar

'cellular' network consisting of an N1 X N2 array of

identical nodes, or processors, or cells. Each of these

nodes is connected to a fixed number of neighbor d by

dedicated point to point bi-directional links and the edges

of the array are 'warped-around'. Though applicable to other

type of homogeneous 2-dimensional network the analysis here

is specific to four neighbor cellular network. There are

four important properties to this model, which are described

as follow:

The Node

Each processor or node has unique identity and a very

specific spot in the 2-dimensional network. In this model

the node is modelled as a processor /memory device generating

(and accepting) messages at a random rate for (from)

arbitrary destination. The nodes are asynchronous in that

the rate of message generation is non-deterministic and

independent of other nodes. For network implementation

independence, a clock is specified that allows each node to

operate asynchronously in equal discrete time units or

cycle. One cycle is further def ined as the time taken by one

message to traverse one ideal link.

23

The Communication Model

A store and forward scheme is used that works in this

way. When a node receives a message on one of the d links,

i t compares the message' s destination and the current node' s

coordinates; if a match is made the_message is saved in the

processor memory, thus a message has reached the destina

tion. Otherwise the node saves the message and tries to pass

the message on to the neighbor closes to the destination.

After one such routing operation the message is one hop

closer to the destination. More than one intermediate

destination my be valid. Once such link is chosen at random

more than one message to one link in a cycle. If the links

do not have buffers all but one message will be lost. But

in our case it is a network with buffer on it.

The Span

A message traverses one communication link in one

cycle or hop. Hence the hopcount h of a particular message

is the minimum number of hops between its current cells and

its destination cell. The diameter D of a network is the

maximum hopcount possible between any two cells. For example

it is clear that for a Nl X N2 toroidal mesh with d = 4 the

diameter is equal to the dimension of the hypercube used in

construction of the network (Greenwood, 1995). The well

documented weakness of meshes is the high message latency,

24

especially with message broadcasting and hot-spot addressing

(Yalamanchili & Aggarwal, 1987). However, in medium of fine

grain parallel processing a large body of applications

exhibit localized referencing (Ghosal et al., 1989; Wallkqv

ist et al., 1987; Vitanyi, 1984; Sargeant, 1987; Bunt &

Murphy, 1984). To improve performance we exploit this

referential locality to limit the maximum message hopcount.

We constrain the possible destination nodes of a message to

the span of its source cell. Thus the maximum hopcount h
=

.

In this model the toroidal mesh is of dimension 8 X 4 (i.e

SD hypercube), therefore the value for D = 5, and h
=

is 6.

Message Generation

All the cells in the network are identical with

identical maximum hopcount hmax. In this model each processor

generates messages of hopcount i (1 � i � hmax) with random

hopcount probability distribution Yit thus the traffic

received from the neighbors is stochastically identical.

Message Acceptance

The view held here that the processor are connected

to d = 4 links, and our processor has buffers to hold the

messages, each node can accept multiple messages. Thereby

we follow multiple-accepting model (MAM) in one cycle.

25

Performance Metrics and Parameters

The parameters associated with the communication in

2-dimensional toroidal mesh are as follow:

L = Length of the message,

m
8

= Message generation rate per cycle = message acceptance

rate = m
a
,

m = The rate at which the message arrive from a particu

lar neighbor,

26

Pr = The termination probability i.e the probability that a

message received from a neighboring node is to the

destination,

P
a

= The probability that a non-terminal message will be

accepted for re-transmission,

h
max

= The maximum hopcount for a given warped 2D mesh.

d = Number of links,

Yi
= Probability that a generated message has a hopcount i.

Where Yï as used here initially has a uniform random

distribution over 1 � i � h
max

.

By considering that no messages are lost in the 2D

grid of four neighbors, the message generation rate m
8

(message acceptance rate m
a) can be expressed in terms of

number of links, the rate at which the message arrive (send)

from the neighbor, and the termination probability.

Hence,

(2. 1)

Hence from the above equation the rate at which the

message arrive from a particular neighbor can be expressed

as

m
m=�

dPt
(2.2)

A message may not have a hopcount greater that h
max

.

Hence at any time, say cycle i, messages from an arbitrary

node i-1 hops away (0 � i � h
max

) may have hopcount between

O and h
max

-i. Consequently after h
max

cycles the hopcount

distribution reaches a steady state. This distribution is

given by:-

L jdPti+l
P = [honcount=i-1] =�;�·=_l ____ _

I .I:"
h,.,,.xh..ax

L L jdPtk•l
k=l j=k

A message terminates when hopcount = O. Moreover for

our network the value for P
0

= 1. Hence P, is given by:

27

(2.3)

Substituting the above equation in the expression for

m with the values for h
max

we get

(15�+1)
m=mg-----

21d
(2.4)

To evaluate the time delay, the average length of the

buffer must be found. Using the classical solution from the

queuing theory (Kleinrock, 1975; Gray & Odell, 1970;

Edwards, 1971; Abramowitz & Stegun, 1970) and the average

service time of one cycle, the time spent by the message on

the queues is then computed.

Consider a system consisting of just one output line

on the processor. The probability of getting a message on

this link is m[(l - �)/(d - 1)). It is obvious that the

message will not return on the link it arrived on. This

system is said to be in state i with probability bi
when

there are i messages on the queue. Messages come from the

processor (i.e the generated/transaction messages) and from

the neighboring processors. Considering the former case the

probability q(i), of getting i messages at a particular

output line is:

28

q(i) =(d�l) (1
-

m l-Pt) d-1-i (ml-Pt) i

i d-1 d-1
(2. 5)

for o � i < d. The first term is due to the number of

possible ways i messages can be arrive from d-1 links. The

second term is the probability of not getting any messages

for this link from d-1-i links. The last term is the

probability of getting i messages on the link.

Considering the generated messages as well we have

four distinct cases. m
g
/d is the probability of getting a

source processor to generate message for one link. If i =

o, no message is generated for this link and it is in state

q(O). For O < i < d the system will either have been in

state q(i) and get no additional message from the processor,

or have been in the state q(i - 1) and have received one

message from the processor. If i = d, the system must have

been in state q(d -1) before receiving one message, since

at most one message is sent out every cycle. For that same

reason i cannot be greater than d. The probability, au of

getting i messages at an input line is thus given by:

(1 - m
g
/d) q (0)

(1 - m
g
/d) q(i) + m

g
/d q (i-1)

m
g
/d q(d - 1)

if i
if 0

if i
if i

= 0

< i <

= d
> d (2. 6)

Given these arrival rates at the output, the state

29

distribution for the queue will be given by:

j•i
bi =L ajbi-j +aibo

j•O
(2.7)

with this state distribution the mean number of messages in

the queue may be calculated and found to be:

m 2 (d(1-P
2

) -2 (1-P))
E=m+ t t

2 (d-1) (1-m)
(2.8)

Using Little's identity theorem (Little, 1961) the

mean time spent by the message at an intermediate queue is

the product of the mean queue length and the average service

time, i.e.

- E
t=- (2.9)

Now, the average message goes through 1/P, processors.

Thus the delay in reaching the destination takes the form

15
T=-

mPt
(2.10)

This expresses the delay for the one way trip in the

2-dimensional toroidal mesh for communication between any

two processors.

30

Numerical Analysis and Conclusions

Numerical calculations were carried for the above

formulated statistical model. From the calculations, the

relative time between messages between any two processors

in the 8 X 4 2-dimensional toroidal mesh were calculated

from the time delay and message generation equations for

message generation rates of 20000, 40000, 60000, 80000, and

100000 bytes and for message lengths of 8, 16, 32, 64, 128

bytes. The results obtained were graphically interpreted.

Graphs were plotted for relative time per byte against

message generation rate, and message length. In the graph

plotted for relative time per byte against message genera

tion rate, shown in Figure 6, we can observe that as the

message generation rate increases the relative time per byte

increases. This gi ves us a clear picture that more the

message per cycle (traffic) the more the time taken to reach

the destination, hence more the relative time per byte. Also

from the statistical model we can find from B that after

certain value of message generation rate or message length

saturation is expected due to the limitation of buffer size.

In the graph plotted for relative time per byte against

message length, from Figure 7, we can observe that as the

message length increases the relative time per byte

decreases. The decreases in relative timings are due to the

fact that the message length L are broken in to small

31

MESSAGE GENERATION Vs TIME/BYTE
BY STATISTICAL MODEL

0.05

0.045

""

0.04 w

�

"- 0.035 Ill
0

z

0
u 0.03
w
Ill

w

J 0.025
_J

�
\../

w 0.02
�

"-
w

�
0.015

1-

0.01

0.005
20000 40000 60000 80000 100000

MESSAGE GENERATION(BYTES)

D L = 8 + L = 16 ◊ L = 32 !J. L = 64 X L = 128

Figure 6. Relative Time per Byte Versus Message
Generation Rate for the Statistical Model.

32

r"\,

w

�
(D

"
1/1
0

z

0
ü
w
1/1

w

J
...J

�
'---'

w

�
(D

"
w

�
1-

LENGTH OF THE MESSAGE Vs TIME/BYTE

9.1

9

8.9

8,8

8.7

8 16 32 64 128

LENGTH OF THE MESSAGE(BYTES)

D mg = 0.2 + mg = 0.4 ◊ mg = 0.6 6. mg = 0.8 X mg = 1

Figure 7. Relative Time per Byte Versus Message
Length for the Statistical Model.

33

packets and the setup time for communication for the se

packets overlap with that of the transmission time of the

previously transmitted packets, due to this, time is saved

in the initialization process of communication, thereby

decreasing the relative time per byte between any two

processors in the given 2-dimensional mesh.

34

CHAPTER III

EXPERIMENTAL VERIFICATION

Intuitively, in any MPP system the faster the loads

are distributed between the processors the faster the work

gets done. Load distribution schemes thus, aim to move load

as fast as possible from the source processor to the

destination processor through intermediate transmission

processors. Cellular Load Distribution (CLD) schemes allows

load to pass through intermediate processors, one processor

per cycle through the network.

Earlier, in the statistical model we described the

modeled system as a 2-dimensional toroidal network with four

neighbors. In accordance with the cellularautomata theory

each processor can transmit (or receive) messages to (or

from) any processor in the given network, but the transmis

sion (or receiving) of the message can take place only

through any one of the four neighboring processors, which

is chosen dynamically depending on which processor is closer

to the destination processor.

On this basis of cellular automata's allowed mode of

transmission of messages through the network, there are two

distinct kinds of transportation. One is the "snake" type

of transmission and the other is the "L" type of transmis-

35

sion. A snake type of transmission is one in which the

source transmitted messages arrive to the destination

through the intermediate processors in a way that each time

the hop of the message take place dynamically choosing the

neighboring processor such that each hop alternatively

choose the x and y axis directional processors, so as the

path of transmission from the source to the destination look

like a track of a moving snake. On the other hand, the L

type transmission, tends to transmit messages linearly on

any one of the direction (either x or y directional proces

sor) until the a match of that coordinate is made, then the

messages are transmitted on the other direction until the

message reaches the destination processor. Thus the

transmission path looks more or like alphabet "L". But

fortunately, both of these transmission modes take the same

number of hopcount for transmission of messages for any

specific source to the destination in a given 2-dimensional

toroidal mesh. And this aspect provides a better avenue of

applying cellular automata theory for our analysis, as well

as staying with in the assumption that we proposed for our

statistical model.

As our experiment requires a 2-dimensional toroidal

mesh with four neighbors, the hypercubical architecture of

our test bed nCUBE 2S system is first embedded into a 2-

dimensional toroidal grid and then experiment were conduct

ed. In this experimentation we used a toroidal mesh of 8 X

36

4 (i.e hypercube of 5-dimension) of our nCUBE 2S system. The

experiment was performed by transmitting messages of message

lengths of 8, 16, 32, 64, and 128 bytes for both uniform

distribution of destination processors, and non-uniform

distribution of destination processor of log
2

() , log3
() ,

log4 () , log5 () , and log10 () • The delay was noted for each

transmission, from which the relative time per byte were

calculated. In this experimentation we want to find the

round trip timing (i.e the messages are transmitted from the

source to the destination processor by any (both) modes of

transmission. Once the message reaches the destination

processor, the source and the destination processors are

interchanged so as the messages is re-routed back to the

original source processor, from where the message initially

initiator for transmission). This process-appears more or

like a "fork" process in the UNIX system, and such a process

bas tremendous advantage on the system programming aspect

(Schaffer, 1995). On the aspect of MPP, in future this

kernel can be used as a shuttle like vehicle which can carry

the code modules of functional language to get distributed

in the processors of the toroidal mesh to get evaluated, and

then get the evaluated functions to the original processor,

by doing so the efficiency, fault tolerance, and speed of

the system can be improved, this is further discussed in

Chapter V. The whole experimentation were carried for both

37

the mode of transmission, namely worm type and L type. And

the experimentation was carried out for 100000 processes.

As a part of the procedure of the experiment,

initially the hypercubical architecture of the test bed

nCUBE 2S system is embedded into a 2-dimensional toroidal

(warped around) mesh. Then the message length is set so as

the required buffer size is set to transmit messages from

and to any processors. Along with this, the number of the

processes is also set. In this experiment the number of

processes is 100000. Once all the initialization are setup

in the memory of the system including the mode of transmis

sion, distribution of the destination, the kernel is set to

run and the time delay per byte are measured and stored in

a file, which is subjected to graphical analysis.

In the section of the graphical analysis, we plot two

kinds of graph. One relative time per byte versus message

generation rate, and other with relative time per byte

against message length. Figure 8 shows the plot of relative

time per byte versus message generation rate for snake type

mode of transmission, and uniform distribution of destina

tion processors. From the graph we can observe that as the

message generation rate increases the relative time per byte

increases. This gives us typical information that more the

messages are generated the more the time it is going to take

for the messages to reach the destination processors. The

same experiment was performed for non-uniform distribution

38

"
w

�

"'
V)
0

z

0
0
w

V)

w

J
_J

�
\.J

w

�

w

�
1-

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

·, ... -�

MESSAGE GENERATION Vs TIME/BYTE
UNIFORM DISTRIBUTION: SNAKE

20000 40000 60000

MESSAGE GENERATION(BYTES)

80000 100000

D L = 8 + L = 16 ◊ L = 32 t:,, L = 64 X L = 128

Figure 8. Relative Time per Byte Versus Message
Generation Rate for Snake type Transmission,
for Uniform Distribution of Destination
Processors.

39

of destination processors. Figure 9 to Figure 13 are the

plots for relative time per byte versus message generation

rate for log2�(), log3�(), log4�(), log5�(), and log
10 () based non

uniform distribution of destination nodes. From these graphs

one can observe the same kind of representation as seen in

the uniform distribution of processor.

The above experimentation was also carried for the L

type mode of transmission of messages. Figure 14 represents

the plot for the relative time per byte versus message

generation rate for uniform distribution of processors. By

observing the plot one can see the same sort of representa

tion as snake type i.e., increase in relative time per byte

as the message generation rate tends to increase. Figure 15

to Figure 19 represent the non-uniform distribution of the

destination processors. All these graphs §hows and speaks

the same results as the before graphs for both snake type

and L type transmission modes. Hence, it is irresistible to

say that irrespecti ve of the modes of transmission and

distribution of processors the relative time per byte shall

increase as the message generation rate increase.

In the second kind of graph, we plot the relative time

per byte versus message length. Figure 2 O is the graph

plotted for snake type transmission for uniform distribution

of processors. From the graph we can observe that as the

message length increases the relative time per byte

40

r'\

w

�
ID

"'
Vl
0

z

0
u
w
Vl

w

J
_J

2
\../

w

�
ID

w

2

1-

MESSAGE GENERATION Vs TIME/BYTE

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005
20000

D L = 8

NONUNIFORM DISTRIBUTION Log2(): SNAKE

40000 60000 80000 100000

MESSAGE GENERATION(BYTES)

+ L = 16 ◊ L = 32 A L = 64 X L = 128

41

Figure 9. Relative Time per Byte Versus Message
Generation Rate for Snake Type Transmission,
for Non-uniform Distribution of Destination
Processors With log

2
() Distribution.

r,.
w

�

"'
V)
0

z

0
u
w

V)

w

�
\../

w

�

w

�
1-

MESSAGE GENERATION Vs TIME/BYTE

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005
20000

D L=8

NONUNIFORM DISTRIBUTION LO<J3(): SNAKE

40000 60000 80000 100000

MESSAGE GENERATION(BYTES)

+ L = 16 ◊ L = 32 6. L = 64 X L = 128

42

Figure 10. Relative Time per Byte Versus Message
Generation Rate for Snake Type Transmission,
for Non-Uniform Distribution of Destination
Processors With log3 () Distribution.

,,..__
w

�
ID

�
1/)

0

z

0
u
w
1/)

w

J
_J

L
\,J

w

�

�
w

L

1-

MESSAGE GENERATION Vs TIME/BYTE

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

20000

D L=8

NONUNIFORM DISTRIBUTION Log4(): SNAKE

40000 60000 80000 100000

MESSAGE GENERATION(BYTES)

+ L = 16 ◊ L = 32 6 L = 64 X L = 128

43

Figure 11. Relative Time per Byte Versus Message
Generation Rate for Snake Type Transmission,
for Non-Uniform Distribution of Destination
Processors With log

4
() Distribution.

"
w

�
"
V)

0

z

0
u
w

V)

w

J
_J

�
'-./

w

�

w

�
1-

44

MESSAGE GENERATION Vs TIME/BYTE
NONUNIFORM DISTRIBUTION Log5(): SNAKE

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005
20000 40000 60000 80000 100000

MESSAGE GENERATION(BYTES)

D L=8 + L = 16 ◊ L = 32 t:,, L = 64 X L = 128

Figure 12. Relative Time per Byte Versus Message
Generation Rate for Snake Type Transmission,
for Non-Uniform Distribution of Destination
Processors With log5 () Distribution.

r\

w

�
m

"-
1/l

0

z

0
0
w
1/l

w

J
_j

2
\../

w

�
m

"-
w

2

1-

MESSAGE GENERATION Vs TIME/BYTE

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

20000

D L=8

NONUNIFORM DIST RIBUTION Log1 O(): SNAKE

40000 60000 80000 100000

MESSAGE GENERATION(BYTES)

+ L = 16 ◊ L = 32 /J. L = 64 X L = 128

45

Figure 13. Relative Time per Byte Versus Message
Generation Rate for Snake Type Transmission,
for Non-Uniform Distribution of Destination
Processors With log10 () Distribution.

MESSAGE GENERATION Vs TIME/BYTE
UNIFORM DISTRIBUTION: L - TYPE

0.05

0.045

r'\ 0.04 w

�
m

"- 0.035 1/)
0

z

0
u 0.03
w

1/)

w

0.025

�
\.J

w 0.02
�
m

�
1-

0.015

0.01

0.005
20000 40000 60000 80000 100000

MESSAGE GENERATION(BYTES)

D L = 8 + L = 16 ◊ L = 32 Il L = 64 X L = 1 28

Figure 14. Relative Time per Byte Versus Message
Generation Rate for L Type Transmission,
for Uniform Distribution of Destination
Processors.

46

r"\

w

�
m

"'
(/)
0

z

0
ü
w
(/)

w

J
_J

2
\,J

w

�
m

"'
w

2

f--

MESSAGE GENERATION Vs TIME/BYTE

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005
20000

D L=8

NONUNIFORM DISTRIBUTION Log2Q: L-TYPE

40000 60000 80000

MESSAGE GENERATION (BYTES)

+ L = 16 ◊ L = 32 t:,, L = 64

100000

X L = 128

47

Figure 15. Relative Time per Byte Versus Message
Generation Rate for L Type Transmission,
for Non-Uniform Distribution of Destination
Processors With log2 () Distribution.

r'\

w

�

"
(/)
0

z

0
u
w

(/)

w

J
_J

�
'-'

w

�
"
w

1-

48

MESSAGE GENERATION Vs TIME/BYTE
NONUNIFORM DISTRIBUTION Log3Q: L-TYPE

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005
20000 40000 60000 80000 100000

MESSAGE GENERATION(BYTES)

D L=8 + L = 16 ◊ L = 32 t:,, L = 64 X L = 128

Figure 16. Relative Time per Byte Versus Message
Generation Rate for L Type Transmission,
for Non-Uniform Distribution of Destination
Processors With log3 () Distribution.

r..

w

�
m

"'
(/J
0

z

0
ü
w
(/J

w

J
_j

L
......,

w

�
m

"'
w

L

1-

49

MESSAGE GENERATION Vs TIME/BYTE
NON U NIFORM DISTRIBUTION Log4Q: L -lYPE

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005
20000 40000 60000 80000 100000

MESS AGE GENERATION(BYTES)

D L = 8 + L = 16 ◊ L = 32 b. L = 64 X L = 128

Figure 17. Relative Time per Byte Versus Message
Generation Rate for L Type Transmission,
for Non-Uniform Distribution of Destination
Processors With log4 () Distribution.

r,,

w

�
ID

"
1/1

0

z

0
0
w

1/1

w

�
\..J

w

�
ID

w

�
1-

MESSAGE GENERATION Vs TIME/BYTE

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005
20000

D L=8

NON U NIFORM DISTRIBUTION Log5 0: L -TYPE

40000 60000 80000 100000

MESSAGE GENERATION(BYTES)

+ L = 16 ◊ L = 32 6. L = 64 X L = 128

50

Figure 18. Relative Time per Byte Versus Message
Generation Rate for L Type Transmission,
for Non-Uniform Distribution of Destination
Processors With log

5 () Distribution.

"

w

�
[Il

"'
V)
0

z

0
0
w

V)

w

J
_J -
�
'--'

w

�
[Il

"'
w

�
1-

MESSAGE GENERATION Vs TIME/BYTE

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005
20000

D L=8

NONUNIFORM DISTRIBUTION Log10Q: L-TYPE

40000 60000 80000

MESSAGE GENERATION(BYTES)

+ L = 16 ◊ L = 32 /J. L = 64

100000

X L = 128

51

Figure 19. Relative Time per Byte Versus Message
Generation Rate for L Type Transmission,
for Non-Uniform Distribution of Destination
Processors With log10() Distribution.

,,....

w

�

' 1/l
0
z

Qr,.
u

ri
w
U

1/l C
0

ori
Il:'. J
u _g
-1-
L\..I
\../

w

�

'
w

L
i=

'• ,:-·•··

8.9

8.85

8.8

8.75

8.7

8.65

8.6

8.55

8.5

8.45

UNIFORM DESTINATION: SNAKE TYPE

8 16 32 64 128

MESSAGE LENGTH(BYTES)

□ MINIMUM + AVERAGE ◊ MAXIMUM

Figure 20. Relative Time per Byte Versus Message
Length for Snake Type Transmission, for
Uniform Distribution of Destination
Processors.

52

associated with the round trip decreases exponentially. The

decreases in relative time per byte is due to the fact that

the message lengths Lis broken into small packets and the

setup time for communication for these packets overlaps with

that of the transmission time of the previously transmitted

packets so as time is saved in èach of initialization

processes of communication, thereby decreasing the round

trip relative time per byte between any two processors in

a give 2-dimensional toroidal mesh. This behavior of the

nCUBE 2S system provides a hint at the hypothesis proposed

by Voigt (Voigt, 1994), that for larger message length and

increase in the number of packets shall bring the bandwidth

to near channel speed. Figure 21 to Figure 25 are the plots

for snake type transmission mode, but for non-uniform

distribution of processors. In all thes_e plots we can

observe the same effect in the relative time per byte with

respect to message length as what we have seen in the Figure

20.

An experiment was also performed for L type transmis

sion, and uniform distribution of destination processors.

By observing the graph, we can see the similarity to the

results seen in the snake type transmission i.e., relative

time per byte decreases as the message length tends to

increase. The plot is shown in Figure 26. An experiment was

carried for non-uniform distribution of processors with non-

53

"

w

ID

"-
1/)
0

z

0"
0 Il)
wu
1/) C: 0
0 Il)
Ir)
0�
- f
�'-'

'-'
w

ID

"
w

�
ï=

NONUNIFORM DISTINATION log2(): SNAKE

8.9

8.85

8.8

8.75

8.7

8.65

8.6

8.55

8.5

8.45

8 16 32 64 128

MESSAGE LENGTH(BYTES)

□ MINIMUM + AVERAGE ◊ MAXIMUM

Figure 21. Relative Time per Byte Versus Message
Length for Snake Type Transmission, for
Non-Uniform Distribution of Destination
Processors With log2 () Distribution.

54

NONUNIFORM DESTINATION log3(): SNAKE

8.9

8.85

8.8

8.75

8.7

8.65

8.6

8.55

8.5

8.45

8 16 32 64 128

MESSAGE LENGTH(BYTES)

D MINIMUM + AVERAGE ◊ MAXIMUM

Figure 22. Relative Time per Byte Versus Message
Length for Snake Type Transmission, for
Non-Uniform Distribution of Destination
Processors With log

3
()Distribution.

55

NONUNIFORM DESTINATION log4(): SNAKE

8.9

8.85

8.8

8.75

8.7

8.65

8.6

8.55

8.5

8.45

8 16

D MIMIMUM

32 64 128

MESSAGE LENGTH(BYTES)

+ AVERAGE ◊ MAXIMUM

Figure 23. Relative Time per Byte Versus Message
Length for Snake Type Transmission, for
Non-Uniform Distribution of Destination
Processors With log4 () Distribution.

56

r\
w

�
ID
"
Ill
0

z

or\
ü 0
w-o
Ill C

0

0
0

Il'.::,
ü _g
-1--
�\../

\../

w

�
ID
"
w
�
j::

NONUNIFORM DESTINATION log5(): SNAKE

8.9�

8.85�

8.8�

8.75�

8.7�

8.65�

8.6�

8.55�

8.5�

8.45�

8� 16�

□ MINIMUM

32

MESSAGE TYPE(BYTES)

+ AVERAGE

64� 128

◊ MAXIMUM

Figure 24. Relative Time per Byte Versus Message
Length for Snake Type Transmission, for
Non-Uniform Distribution of Destination
Processors With log5 () Distribution.

57

NONUNIFORM DESTINATION log 10(): SNAKE

8.9

8.85

8.8

8.75

8.7

8.65

8.6

8.55

8.5

8.45

8 16 32 64 128

MESSAGE LENGTH(BYTES)

D MIMIMUM + AVERAGE ◊ MAXIMUM

Figure 25. Relative Time per Byte Versus Message
Length for Snake Type Transmission, for
Non-Uniform Distribution of Destination
Processors With log10() Distribution.

58

UNIFORM DESTINATION: L - 1YPE

8.9

8.85

8.8

8.75

8.7

8.65

8.6

8.55

8.5

8.45

8 16 32 64 128

MESSAGE LENGTH(BYTES)

D MIMIMUM + AVERAGE ◊ MAXIMUM

Figure 26. Relative Time per Byte Versus Message
Length for L Type Transmission, for
Uniform Distribution of Destination
Processors.

59

unif ormi ty of log2 () , le% () , log4 () , log5 () , and log10 () •

Figure 27 to Figure 31 represent them. From these graphs we

can once again observe the decrease in relative time per

byte for increase in message length. Hence, in this

experiment of time analysis, irrespective of mode of

transmission, and distribution of the processors, the

relative time per byte decreases with increase in message

length. By closely observing the plots of snake type and L

type modes of transmissions, we fine that snake type is more

efficient than L type. The f act is because of that the snake

type transmission mode has more overlapping time between the

packets at the communication initialization time, where as

the L type has a little less overlapping time.

60

"

w

�
Ill

"'
1/l
0
z

,..,.
0"
Ü"O
w (
1/l 0

"

0)
U 0
- .(

21--
_J\.J

w

�
Ill

"'
w

2
i'.=

NONUNIFORM DESTINATION log2(): L - TYPE

8.9

8.85

8.8

8.75

8.7

8.65

8.6

8.55

8.5

8.45
8 16 32 64 128

MESSAGE LENGTH(BYTES)

□ MINIMUM + AVERAGE ◊ MAXIMUM

Figure 27. Relative Time per Byte Versus Message
Length for L Type Transmission, for
Non-Uniform Distribution of Destination
Processors With log2 () Distribution.

61

NONUNIFORM DESTINATION log3(): L - TYPE

8.9

8.85

8.8

8.75

8.7

8.65

8.6

8.55

8.5

8.45

8 16

D MIMIMUM

32 64 128

MESSAGE LENGTH(BYTES)

+ AVERAGE ◊ MAXIMUM

Figure 28. Relative Time per Byte Versus Message
Length for L Type Transmission, for
Non-Uniform Distribution of Destination
Processors With log3 () Distribution.

62

NONUNIFORM DESTINATION log4(): L - TYPE

8.9�

8.85�

8.8�

8.75�

8.7�

8.65�

8.6�

8.55�

8.5�

8.45�

8� 16 32 64� 128

MESSAGE LENGTH(BYTES)

D MINIMUM + AVERAGE ◊ MAXIMUM

Figure 29. Relative Time per Byte Versus Message
Length for L Type Transmission, for
Non-Uniform Distribution of Destination
Processors With log4 () Distribution.

63

..

"
w

�
(D
"
(/)
0

z

Qr-.
Ü VI

w "tJ
(J) C

0

Q
VI

Il:'. J
ü _g
-1-
�\../
\..1

w

�
(D
"
w

�
j::

NONUNIFORM DESTINATION log5(): L - TYPE

8.9

8.85

8.8

8.75

8.7

8.65

8.6

8.55

8.5

8.45

8 16 32 64 128

MESSAGE LENGTH(BYTES)

□ MINIMUM + AVERAGE ◊ MAXIMUM

Figure 30. Relative Time per Byte Versus Message
Length for L Type Transmission, for
Non-Uniform Distribution of Destination
Processors With log5 () Distribution.

64

"
w

�

"
1/1
0
z
Qr-.
u"
w"O
1/1 C

0

0"
Il'. J
u�
-1-
�V'

V'

w

�

"
w

�
j::

NONUNIFORM DESTINATION log1 O():L - TYPE

8.9

8.85

8.8

8.75

8.7

8.65

8.6

8.55

8.5

8.45

8 16 32 64 128

MESSAGE LENGTH(BYTES)

□ MINIMUM + AVERAGE ◊ MAXIMUM

Figure 31. Relative Time per Byte Versus Message
Length for L Type Transmission, for
Non-Uniform Distribution of Destination
Processors With log

10 () Distribution.

65

CHAPTER IV

DESCRIPTION OF THE FEATURES OF THE MICRO-KERNEL

In this chapter we describe the features associated

with the micro kernel that we used in order to perform the

experiment in the previous chapter. As described in the

previous chapter we implemented the micro kernel using the

theoretical insight obtained from the statistical model.

Where implementation of the statistical model was driven by

cellular automata theory.

The functionality of the micro kernel is the root

that it takes for the kernel to get implemented. Hence,

let's look into to the functionality first. The kernel has

to send and receive messages from any of tne processors in

the given network, as it is implemented with the help of

cellular automata theory, the sending or recei ving of

messages can take place only through the neighboring

processors, moreover the network that we use is a 2-

dimensional toroidal mesh. Apart from above aspects the

kernel has to look on to the communicational aspects, like

buffer allocation for the messages to transmit or receive,

allocate the data bus or channel, which is block until all

the messages get transmitted, and then relieve the bus or

channel for other usage. Along with these activities the

66

kernel also has to take control of the I/0 operations

associated with the computational processes.

As the test bed that we used was nCUBE 2S system, a

class of hypercube architectural MIMD machine, and our

theory requires 2-dimensional toroidal mesh, the kernel

plays a role in getting the hypercube structure to get

embedded into a 2-dimensional toraidal mesh. Moreover by

the mean time setting up of the processes (getting ready to

transmit messages) takes place once the destination proces

sor is known. Buffers are set for the size of the message,

and the channel for transmission are setup, which are

blocked until the transmission gets completed. On the same

time each and every processor tends to find its surrounding

four neighbors. Depending up on the nearness the processor

are with reference to the destination tbe messages get

transmitted through them. The kernel also take care of the

two modes of transmission i.e., the snake type and the L

type mode of transmitting messages, and uniform and non

uniform way of distributing the destination processors.

While these processes tends to initiate, a clock get

triggered to calculate the time taken for the message for

a round trip message travel.

Functions Used in Building of the Micro-Kernel

In this part of the chapter we focus up on the

important library functions, that are used in building the

67

micro-kernel.

In the nCUBE parallel software environment (PSE)

there is a status routine called whoami. It has the

following arguments:

whoami(node, proc, host, dim)

where dim is the dimension of the allocated subcube, node

the identification of the actual processor ranging from o

to 2dim - 1. host is the identification of the front end

which may be used to exchange data between the host and the

subcube. proc is the process/processor ID. It is a 32-bit

integer used by interprocessor communication routines for

identifying a message's source or destination. The low 16

bits are a logical processor identification number (or node

ID) that identifies an nCUBE 2S processor in the current

subcube. When a subcube is allocated, nÇX assigns each

processor a number that uniquely identifies the processor's

position in the subcube. These logical identification

number range from zero to the number of processor in the

subcube minus one. nCX assigns each process running on a

processor a process ID, starting at 1. Ant time a subcube

is allocated, the process ID of the first program loaded is

set to 1. Bit 15 is a flag that is set to o if the proces

sor is an nCUBE 2S processor in the processor array. The

flag is set to 1 if the processor is any processor -an

nCUBE 2S I/0 processor or a processor on the host computer-

68

that is outside the processor array (Almasi & Gottlieb,

1989).

The nCUBE functions nwright an nread can be used for

communication among processors. These routines accept the

following arguments:

nwrite(buffer, length, dest, type)

nread(buffer, length, source, type)

Where buf fer is the address of the f irst byte to be

sent/received, length is the length of the message in

bytes, dest/source the destination/source processor of the

message to be sent/received and type is the type of the

message. The message type is another identifying character

istic of a message. Both whoami and nwrite/nread functions

were used in our kernel for identification of the processor

as well as for the interprocessor communic�tion.

Apart from these routines, one more important routine

was used in building the kernel. As we mentioned before in

order to perform the experiment the hypercube architecture

of the nCUBE 2S system, we have to mapped the hypercube in

to 2-dimensional toroidal mesh. This is performed by

nodetogrid and ngridtonode routines. The arguments for

these functions are as follow:

nodetogrid(proc, dim, ncoords, mask, GDIM, gdimsiz)

ngridtonode(dim, ncoords, mask, GDIM, gdimsiz, warp)

In the above arguments ncoords are the coordinates associ

ated with the processor's position the given 2-dimensional

69

toroidal mesh, mask is a bit mask that specifies which

hypercube neighbors the current node is to be communicate

with. GDIM is the grid dimension, in our case it is 2,

gdimsiz is the grid dimension size that is required for one

to map the hypercube to 2-dimensional network. While warp

is the setting to make warp around network, like the one we

use. The above routines are used effectively to build the

micro-kernel as small as possible. The complete code of the

micro-kernel is place in the Appendix A.

70

CHAPTER V

CONCLUSIONS AND FURTHER WORK

In the first part of the of this chapter, we discuss

the factors that affect the overall performance of our

cellular load distribution schemes, taking an orthogonal

view across the work presented in this thesis. By doing this

as tie in all the resul ts to provide a more complete

picture. In the second section we make some suggestions for

further work. The last section provides some concluding

remarks. First, it is helpful to present the major contribu

tions of this thesis. They are:

1. The study of systems' dynamic behavior under

cellular load distribution strategy. We introduced a novel

message distribution strategy, which distributes messages

over a network of processors. We studied the relative speed

of the message distribution and the factors that it depends

on, namely message generation rate and message length.

2. The analysis of the performance of 'cellular'

network as interconnection network for scalable system. A

frequently noted problem of such network is their less than

spectacular performance in system with message broadcasts.

Using neighborhood based load distribution schemes,

interacting processes are placed few links, or hops, apart.

71

With this type of strategy the message distribution shows

simplicity in the network analysis.

Summary of Main Results

In Chapter II we introduces a statistical model based

up on cellular automata theory and derived an expression for

the performance of a 2-dimensional toroidal network. We also

furnished the relationship between performance with respect

to message length and message generation rate. In Chapter

III we performed the experiment and tested the model on the

test bed nCUBE 2S system. Comparison of the experimental

results with the results of the statistical model, we can

find a very good match on both the aspect of performance of

the system with respect to message generation rate and

message length. The are some variations in_the performance

between the experiment and theory, but the variations are

about 0. 03 to 0. 06 micro seconds i.e. , around 3 to 8 percent

of difference are seen with experimental results on the

uphill. These variations are caused by the re-transmission

due to error correction that takes place while performing

experiment, which the statistical model do not address

because of consideration given to ideal transmission.

Further Work

This micro kernel talks about different modes of

distributing messages and the efficient way of doing it. As

72

mentioned in the Chapter III, the micro kernels' method of

distributing the messages looks more or like "fork"

processes in UNIX system, which opens avenue for further

research. This micro kernel can be used as a transporting

shuttle for functional code modules, so as the modules can

get evaluated at the destination processors and the

evaluated modules can return back to the source processor

for further computation of I/0 operation. Apart from this

it would be more advantageous if the messages are broken to

small packets, and these packets can be transmitted for to

get evaluated in parallel using different nodes, so as the

speed can be improved by two ways, one through the way of

gaining time by overlapping the transmission time at the

initialization process as mentioned in the Chapter III, and

the other by evaluating the small packet (cq9e) in parallel.

It would be an added advantage if the whole kernel is coded

in any one of the functional languages. On the other hand,

statistical model can be improved to study the characteris

tics of snake and L type modes of transmission if quantum

mechanics principles like spin mechanism being introduced

for every hop the message is going to take between source

and destination processors. For example: A 1 hopspin for

messages hoping to the right processor, -1 hopspin for the

messages hoping to the left processor, 1 hopspin for

messages hoping to the top processor, and -1 hopspin for

messages hoping to the down processor can be introduced with

73

respect to the source processor. By doing so the total

hopspin for a gi ven source to destination transportation can

be exactly estimated, which can provide a clear mathematical

picture to determine the relationship between snake and L

type modes of transmission.

Conclusions

The use of the cellular approach in the design and

analysis of parallel processing systems was proposed and

demonstrated. The power of this paradigm stems from four key

factors. Firstly, cellular automata, whose theory underpins

this approach, have a simple load interaction that allows

mathematical analysis, and a complex global behavior that

may be used to model larger physical systems. Secondly,

cellular computing structures takes a radic�l step away from

the traditional von Neumann architectures by incorporating

processing capability in memory thereby avoiding the

cons training processes-memory 'bottle-neck' . Thirdly, a

signif icantly larger domain of important applications exists

that are computer-intensive, and exhibit 'cellular'

characteristics that allow them to be mapped almost directly

onto cellular computing structures. Lastly, cellular

structures are scalable, modularly extensible and be used

of simple nodes and links, economical to extend.

The effectiveness of CLD depends on the characteris

tics of the load, the cellular architecture and the

74

parameters of the CLD scheme used. The key architectural

factors are the network diameter, network size in number of

processors, and the rate of increase span size wi th increase

in span radius.

From both statistical and experimental analysis, we

can conclude that irrespective of distribution of the

destination processors or the mode of transmission, the

relative time between messages decreases with respect to

increase in message length, and increase in relative time

between messages wi th respect to the message generation

rate. By observing the plots made for both statistical and

experimental results for both kinds of transmission modes,

and both kinds of distribution types the results matches

very well with each other. From the close match of the

results between theory and experiment we Cgn conclude that

cellular automata theory can be used as an effective tool

for modeling and development of massive parallel processing

systems. By closely observing the plots of both snake type

mode of transmission and L type model of transmission, we

find that the snake type is more efficient than L type. This

is due to a little less overlapping time takes place in the

case of L type during the initialization processes of

communication when compared with snake type mode of

transmission of messages.

Thus wi th this axis of success wi th this micro kernel,

cellular load distribution (CLD) strategy provides an

75

effective means of distributing load over large scalable

network. CLD has low load distribution overheads directly

due to simple and effective load distribution policies. Thus

it is applicable at all levels of process grain and to a

wide domain of task type (and structures) , resul ting in high

system utilization levels and high speedup.

76

Appendix A

The Source Code of the Micro Kernel

77

DESCRIPTION OF THE CELLULAR MICRO-KERNEL CODE

The cellular micro-kernel code were built by

effective use of nCUBE 2S library routines. Which

facilitates the whole micro-kernel to be as small as

possible.

Due to enormous usage of nCUBE 2S library routines,

the header files associated with them are called. Then the

initialization of the variables, buffer for the messages,

clock for timings, and number of processes were set in so

as the algorithms associated with snake and L type modes of

transmission can be implemented. After the implementation

of the snake and L type algorithms for both uniform and

non-uniform distribution of destination of processors, a

output file is opened to record the timings. Along with the

closing of the output file, the program is terminated. The

C code for both snake and L type modes transmissions of the

cellular micro-kernel are furnished.

78

79

1••···•1

/* */
/* CELLULAR MICRO KERNEL */
/* for */
/* Message Distribution for L type Transmission Mode for Messages, for both Uniform */
/* and Non-Uniform Distribution of Destination of Processors. */
/* */
1••···•1

#include <stdio.h>
#include <ncube/npara_;prt.h>
#include <stdlib.h>

/* Header to Link nCUBE Library Routines */

#include <nself.h>
#define GDIM 2 /* Defining the Grid Dimension */

FILE *fp, *fpt;

main()
{

int me, proc, host, nc_ncube, dest, node,

int length, type, flags, ravl, i, x, y;

char *buf;
int from me, from dest, new node;
int ncoordsl[GDIM];

new_node; /* Declaring the Charactres of the
Nodes */

/* Declaring the Characters of the
Messages */

*/
Destination*/

/* Allocation of Memory
/* Declaring Source and

int ncoords[GDIM], mask[GDIM], gdimsiz[GDIM],
int dcoordsl[GDIM];

warp [GDIM] ;

int dcoords[GDIM];
int destcoords[GDIM];
int ngf, ngd, gnf;
int ngfl, ngdl, gnfl;
int start, elapse;
double single;

gdimsiz [0] • 8;
gdimsiz [1] • 4;

warp[0] • 1;
warp[l] • 1;

whoami(&me, &proc, &host, &nc_ncube);
fflush (stdout);
start • micclk();

for(me • 0; me <• 31; me++)

for(i • 1; i <· 100000; i++)

type • 100;
length • 128; /* lrand48()>>28; */
flags • 0;

x • lrand48()>>29; /* y • time()>>l; */
y • logl0(floor(x));

buf • (char*) malloc(length);

/* Declaring Characters, which are*/
/* Used for Conversion of Grid to */
/* Node and vise-versa. */

/* Setting for Timings */

/* Declaring Grid Size */

/* Getting Warp-Around */

/* Getting to know my Processor */

/* Starting the Clock */

/* Type of the Message
/* Length of the Message

/* Declaring Uniform and
/* Non-Uniform Distribution of

Destination Processors
/* Allotting the Memory

*/
*/

*/

*/
*/

ngf • nodetogrid(me, nc_ncube, ncoords, mask, GDIM, gdimsiz); /* Getting my Grid */

dcoords [0] • ncoords [0] + y;
dcoords[l] • ncoords[l];
dest • ngridtonode(nc_ncube, dcoords, mask, GDIM, gdimsiz, warp); /* Getting my

Destination Node */

while(ncoords[O] I• dcoords[O])

if(ncoords[O] I• dcoords[O])

if(ncoords[O] > dcoords[O])

ncoords[O] • ncoords[O] - 1;

else

ncoords[O] • ncoords[O] + l;

/* Moving the Messages in L Mode
to the Destination

new node • ngridtonode(nc ncube, ncoords, mask, GDIM, gdimsiz, warp);
nwrite(buf, length, new_node, type, &flags);

while (ncoords [1] I • dcoords [1])

if (ncoords [1] I • dcoords [1])

if (ncoords [l] > dcoords [1] l

ncoords[l] • ncoords[l] - l;

else

ncoords[l] • ncoords[l] + 1;
new node • ngridtonode(nc ncube, ncoords, mask, GDIM, gdimsiz, warp);
nwrite(buf, length, new_n�de, type, &flags);

80

*/

if(ncoords[O] •· dcoords[O] 11 ncoords[l] •• dcoords[l]) /* Testing the
Destination Coordinates */

from dest • dest; /* Exchange of Coordinates*/
from:me • me;

ngfl • nodetogrid(from dest, ne ncube, ncoordsl, mask, GDIM, gdimsiz); /* Getting my */
ngdl • nodetogrid(from:me, nc_ncube, dcoordsl, mask, GDIM, gdimsiz); /* Grid for New

Source and
Destination*/

while (ncoordsl [O] I • dcoordsl [O])

if (ncoordsl [O] ! • dcoordsl [O])

if (ncoordsl [O] > dcoordsl [O])

ncoordsl[O] • ncoordsl[O] - 1;

else

ncoordsl[O) • ncoordsl[O] + 1;

new nodel • ngridtonode(nc ncube, ncoordsl, mask, GDIM, gdimsiz, warp);
nwrÎte(buf, length, new_nodel, type, &flags);

while(ncoordsl[l] I• dcoordsl[l])

if(ncoordsl[l] I• dcoordsl[l])

if(ncoordsl[l] > dcoordsl[l])

ncoordsl [l] • ncoordsl [l] - l;

else

ncoordsl[l] • ncoordsl[l] + 1;
new nodel • ngridtonode(nc ncube, ncoordsl, mask, GOIM, gdimsiz, warp);
nwrÎte(buf, length, new_nodel, type, &flags);

81

elapse • micclk() - start; /* End the Clock */
single • (double)elapse/100000;
fpt • fopen("lnu Sd lxr.dat", "w"); /* Saving the Timings in a File */
fprintf (fpt, "\n\n"Î;
fprintf (fpt, "Time to run • 'llf microseconds\n", single);
fclose(fpt);

82

1••··•·1

/* */
/* CELLULAR MICRO KERNEL */
/* for */
/* Message Distribution for SNAKE type Transmission mode of Messages, for both Uniform */
/* and Non-Uniform Distribution of Destination of Processors. */
/* •/
1••···•1

#include <stdio.h>
#include <ncube/npara__prt.h> /* Header to Link nCUBE Library Routines */
#include <stdlib.h>
#include <math.h>
#define GDIM 2 /* Defining the Grid Dimension */

FILE *fpt;

main()
{

int new_node, new_nodel, dest, from_dest,

int me, proc, host, nc_ncube, i, x, y;

int length, type, flags, ravl;

char *buf;

from_me; /*

/*

Declaring
Nodes

Declaring
Node

Source and Destination
*/

the Characters of the

/* Declaring the
Message
Allocation of /*

*/
Characters of the

Memory
*/
*/

int ncoords[GDIM), mask[GDIM], gdimsiz[GDIM), warp[GDIM); /* Declaring Characters,

int dcoords[GDIM);
int ncoordsl[GDIM);
int dcoordsl[GDIM);

int ngf, ngd, gnf;
int ngfl,ngdl,gnfl;
int start, elapse;
double single;

gdimsiz [0) • 8;
gdimsiz [1) • 4;

warp[0) • 1;
warp [1) • 1;

whoami(&me, &proc, &host, &nc_ncube);

start • micclk();

for(me • 0; me <• 31; me++)

for(i • 1; i <• 100000; i++)

length • 128; /*lrand48()>>28; */

type • 100;

flags • 0;
x • lrand48()>>29; /* y • time()>>l; */
y • logl0(floor(x));

/* which are used for
Conversion of Grid to Node
and vise-versa. •/

/* Destination Coordinate */
/* Return Source Çoordinate*/
/* Return Destination

Coordinate

/* Setting for Timings

/* Declaring Grid Size

/* Getting Warp-Around

/* Getting to know my
Processor

/• Starting the Clock

/* Declaring the Message
Length

/* Declaring the Message
Type

*/

*/

•/

*/

*/
*/

*/

*/

/* Declaring Uniform and */
/* Non-Uniform Distribution•/
/* of Destination */
/* Processors */

buf • (char•) malloc(length); /• Allotting the Memory •/

ngf • nodetogrid(me, ne ncube, ncoords, mask, GDIM, gdimsiz); /• Getting my Grid •/
dcoords [O] • ncoords [O]-:. y;
dcoords[l] • ncoords[l];

83

dest • ngridtonode(nc_ncube, dcoords, mask, GDIM, gdimsiz, warp); /• Getting my
Destination Node•/

while (ncoords [O] I • dcoords [O] 11 ncoords [l] I • dcoords [l]) /• Moving the Messages in
Worm Mode to the
Destination */

if(ncoords[O] !• dcoords[O])

if (ncoords [O] > dcoords [O])

ncoords[O] • ncoords[O] - 1;

else

ncoords[O] • ncoords[O] + 1;
new node • ngridtonode(nc ncube, ncoords, mask, GDIM, gdimsiz, warp);
nwrite(buf, length, new_node, type, &flags);

if (ncoords [1] I • dcoords [1])

if (ncoords [1] > dcoords [1])

ncoords[l] • ncoords[l] - 1;

else

ncoords[l] • ncoords[l] + 1;
new node • ngridtonode(nc ncube, ncoords, mask, GDIM, gdimsiz, warp);
nwrite(buf, length, new_node, type, &flags);

if(ncoords[O] •• dcoords[O] 11 ncoords[l] •· dcoords[l]) /* Testing the
Destination Coordinates•/

from dest • dest;
from:me • me;

/• Exchange of Coordinates •/

ngfl • nodetogrid(from_dest, nc_ncube, ncoordsl, mask, GDIM, gdimsiz); /• Getting my •/
ngdl • nodetogrid(from_me, nc_ncube, dcoordsl, mask, GDIM, gdimsiz); /• Grid for New

Source and
Destination •/

while (ncoordsl [O] I • dcoordsl [O] 11 ncoordsl [1] I • dcoordsl [1])

if(ncoordsl[O] !• dcoordsl[O])
1

if (ncoordsl [O] > dcoordsl [O])

ncoordsl[O] • ncoordsl[O] - 1;

else

ncoordsl[O] • ncoordsl[O] + 1;
new nodel • ngridtonode(nc ncube, ncoordsl, mask, GDIM, gdimsiz, warp);
nwrite(buf, length, new_nodel, type, &flags);

if (ncoordsl [1] I • dcoordsl [1])

if (ncoordsl [l] > dcoordsl [l])

ncoordsl[l] • ncoordsl(l] - l;

else

ncoordsl[l] • ncoordsl[l] + l;
new nodel • ngridtonode(nc ncube, ncoordsl, mask, GDIM, gdimsiz, warp);
nwrÎte(buf, length, new_nodel, type, &flags);

elapse • micclk() - start;
single • (double)elapse/100000;
fpt • fopen("wnu Sd lxr.dat", "w");

/* End The Clock

/* Saving the Timings in a
File fprintf(fpt, "\n");

fprintf(fpt,"Time to run
fclose(fpt);

• \f microseconds\n", single);

84

*/

*/

REFERENCES

Abramowitz • M. & Stegun, I. A. {1970). Hand Book of
Mathematical Functions. New York: Dover Publications,
Inc.

Almasi, G. S., & Gottlieb, A. {1989). Highly parallel
Computing. Readwood City: Benjamin/Cummings
Publication.

Bunt, R. B., & Murphy, J. M. {1984, August). The
Measurement of Locality and the Behavior of Programs.
BCS Computer Journal, 27(3), 238-245.

Burks, A. W. {1970). von Neumann's Self-Reproducing
Automata. Urbana: University of Illinois Press.

Codd, E. F., {1968). Cellular Automata. New York: Academic
Press.

DeBenedictis, E., & del Rosario, J. M. {1992). nCUBE
Parallel I/O Software. IEEE Eleventh Annual
International Phoenix Conference on Computer
Communication, 117-24.

Demongeot, J., Goles, E., & Tchuente, M. {1985). Dynamical
Systems and Cellular Automata. New York: Academic
Press.

Edwards, A. L. {1971). Probability and Statistics. New
York: Holt, Rinehard and Windston, Inc.

Fahlman, S. E., Hinton, G. E., & Sejnowski, T. J. {1983).
Massively Parallel Architectures for AI. NETL. THISTLE.
and BOLTZMANN Machines. Proceedings of the National
Conference on AI.109-13.

Gajski, O. o., & Peir, J. K. {1985, June). Essential Issues
in Multiprocessor System. IEEE Computer, 18(6), 9-27.

Ghosal, O., Tripathi, S. K., Bhuyan, L . N., & Jiang, H.
{1989, September). Analysis of Computation
Communications Issues in Dynamic Dataflow
Architectures. 16th Ann. Int. Conf. on Computer
Architecture, 325-33.

Goodeve, O., & Taylor, R. {1992). CHaOS: A Scaleable

85

Cellular Kernel for MIMD Tasking. Parallel and
Distributed Computing in Engineering Systems, 9-17.

Gray, H. L. & Odell, P. L. (1970). Probability for
Practicing Engineers. New York: Barnes and Noble, Inc.

Greenwood, G. (1995). Private communication.

Gubbala, N., & Singh, C. (1993). Reliability Analvsis of
Interconnected Power System Using Monte-Carlo
Simulation in nCUBE Parallel Computer. Proceedings of
the American Power conference, 2, 1609-14.

Harary, F., Hayes, J. P., & Wu, H. J. (1988). A Survey of
the Theory of Hypercube Graphs. Comput. Math. Applic.
15. 277-289.

Haynes, L. s., Lau, R. L., Siewiorek, o. P., & Mizell, o.
W. (1982, January). A Survey of Highly Parallel
Computing. Computer, 9-24.

Hillis, W. o. (1984). The Connection Machine: A Computer
Architecture Based on Cellular Automata. Physica D, 10,
213-28.

Hillis, W. O. (1985). Connection Machine, MIT Press.

Hwang, K., & Briggs, F. (1985). Computer Architecture and
Parallel Processing. New York: McGraw�Hill.

Kleinrock, L. (1975). Queuing Systems. New York: J. Wiley
and Sons.

Klietz, A. E., Malevsky, A. V., & Chin-Purcell, K. (1994,
August/September). Mix-and-Match High Performance
Computing. IEEE Potentials. 6-10.

Lindermayer, A. (1968). Mathematical Models for Cellular
Interactions in Development. Part I & II, Jour. Theor.
Biology. 18.

Little, o. c. (1961). A proof of the Oueuina Formula: L =
ÀW. Operations Research, �, 383-87.

Macharia, G. M. (1990). Cellular Load Distribution: Dynamic
Load Balancing in Scalable Multicomputers. York, UK:
University of York Press.

Mead, c., & Conway, L. (1980). Introduction to VLSI
Systems. New York: Addison Wesley.

86

Morgan, G. (1987). The Cellular Modelling of Fault-Tolerant
Multicomputers. York, UK: University of York Press.

Neumann, J. V. {1956). Probabilistic Logics and the
Synthesis of Reliable Organisms from Unreliable
Components. Automata Studies. Princeton: Princeton
University Press.

Palmer, J. F. {1988). The NCUBE Family of High Performance
Parallel Computer Systems. Third Conference on
Hypercube Concurrent Computers ·and Applications, i,
847-51.

Sargeant, J. {1987). Load Balancinq. Locality & Parallelism
Control in Fine-Grain Parallel Machines. Manchester,
UK: University of Manchester Press.

Schaffer, G. {1995). MPP UNIX enhancement for OLYTP
Applications. Proceedings of the Twenty-Eighth Hawaii
International Conferences on System, Vol. 1, 124-33.

Schmidt, S. C., Dick, R. D., Forbes, J. W., & Tasker, D. G.
{1992). Hydrocode Development on the nCUBE and
Connection Machine Hypercube. Shock Compression of
Condensed Matter - 1991 Proceedings of the American
Physical Society to Special Topic Conference. 289-92.

Shannon, c. E., & McCarthy, J. {1956), Automata Studies,
Princeton: Princeton University Press�

Taylor, R. {1995). Private communication.

Toffoli, T. {1984). CAM: A High-Performance Cellular
Automaton Machine, Physica, 10D, 195-204.

Vitanyo, P, M, B. {1987). Locality. Communication. and
Interconnect Length in Multicomputers. Amsterdam:
University of Amsterdam Press.

Voigt, M. S. {1994). Efficient Parallel Communication with
the nCUBE 2S Processor, Parallel Computing, 20, 509-
530.

Waltz, D, L. (1987). Application of the Connection Machine.
IEEE Computer, 20(1), 85-97.

Wendler, K. {1981). Models to Describe those Features of
Cellular Computer Nets Which are Relevant to the
Operating System, Computer Supplementum, �, 193-203.

Wolfram, S. {1986). Theory and Applications of Cellular

87

Automata. World Scientific.

Yalamanchili, S., & Aggarwal, J. K. (1987). A
Characterization and Analysis of Parallel Processor
Interconnection Networks. IEEE Trans. on Computers, c-

36(6), 680-691.

88

	Modeling and Development of a Cellular Micro-Kernel
	Recommended Citation

	tmp.1558705554.pdf.vN4dX

