mfngéAﬂ N Western Michigan University

UNIVERSITY ScholarWorks at WMU

Master's Theses Graduate College

12-1996

An Efficient Collective Communication Library for PVM

Chirapol Mathawaphan

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

b Part of the Computer Sciences Commons

Recommended Citation

Mathawaphan, Chirapol, "An Efficient Collective Communication Library for PVYM" (1996). Master's
Theses. 4242.

https://scholarworks.wmich.edu/masters_theses/4242

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

WESTERN
MICHIGAN

UNIVERSITY

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/4242?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4242&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

AN EFFICIENT COLLECTIVE COMMUNICATION LIBRARY FOR PVM

by

Chirapol Mathawaphan

A Thesis
Submitted to the
Faculty of The Graduate College
in partial fulfillment of the
requirements for the
Degree of Master of Science
Department of Computer Science

Western Michigan University
Kalamazoo, Michigan
December 1996

ACKNOWLEDGMENTS

I wish to express much appreciation to my advisor, Professor Ajay Gupta, for
his valuable ideas and time spent on this thesis. I have gain much from his outstanding
guidance and continual encouragement. Also I would like to express my gratitude to
the thesis committee members, Professor Ben Pinkowski and Professor Elise de
Doncker, for their help, comments and suggestions.

Finally, but not lastly, I would like to thank my mother, sister, brothers and all

my friends for their love, encouragement and support.

Chirapol Mathawaphan

il

AN EFFICIENT COLLECTIVE COMMUNICATION LIBRARY FOR PVM

Chirapol Mathawaphan, M.S.

Western Michigan University, 1996

PVM enables the use of network of workstations for parallel and distributed
computation. PVM provides the message-passing primitives which include those for
point-to-point communication and collective communications. The current
approaches for the collective communication operations in PVM use algorithms that
do not exhibit good performance.

In this thesis, we develop new approaches to improve the performance of
collective communication operations in PVM by using shared memory with IP
broadcasting and IP multicasting mechanism. We have implemented these approaches
and have run extensive tests. This reports shows the comparison of the time used by

current approaches and our approaches.

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... e ii

LIST OF TABLES ... oo, vi

LIST OF FIGURESo vii
CHAPTER

I INTRODUCTIONoooiiiiiiiiiiii e 1

Statement of the Problem ... 1

Organization of the Study...................coocco 3

II. BACKGROUND INFORMATIONoooiiiiiiiiiiiiii e 4

Heterogeneous Network Computingccccoooioiiiiiiii, 4

Parallel Virtual Machinecoi 5

OVEIVIBW. ...ttt 5

PVM System ..o 7

How PVM WOTKS.oooiiiiiiiiii 8

Libpvm Communication Routinesoooooeeiovinenn . 12

Collective Communication Librarycccooooiiiiiiii 14

Process Group in CCLcccoooiiiiiiiice 14

Broadcastoooiiiiii 14

A T e S e, S 15

1

Table of Contents—Continued

CHAPTER

Gather. ... 16
ReAUCE ... 16
III. PREVIOUS APPROACHES ..., 18
Iterative Pvmd...............oii 18
TAMANG NEOTO 5. s oo coe Mo s i e 50 SR A 0 < B o 19
Timing Model for pvm_send() and pvm _recv()................cccoooe. 20
Timing Model for pvm_mcast()ccoocoeiiiiiiiii, 23
Applying Timing Model to Current Approaches of CCL....................... 25
Broadcast ... 26
1. {1 S Y ———— 27
GATHET . .- oo o g ooy <o o Faa ol oo B 31
RedUCE ..o 33
IV. OUR SOLUTION ..ot 38
Different Approachesccccoooiiiiiiiiiice e, 38
Using Shared Memory for Pvmd-Task Communication................ 39

Using IP-Broadcast or IP-Multicast for Pvmd-Pvmd
COmMMUNICALION ...ttt 40
CCL Using IP Broadcasting and IP Multicasting Mechanism................ 41
Broadcastcoooiiiii 42

v

Table of Contents—Continued

CHAPTER

SEACOIT oy e erm 00 T o - o 08 T, ECC 7 - T I e R o TR R 46
Gather ..o 50
REAUCE ... 55
Comparison to Current Approaches...........................cooccoiiiiiciiin, 60
Broadcast ...t 61
T 17 TR 62
Gather ... 63
REAUCE ... 64
V. EXPERIMENTAL RESULTS ..o 66
VI. CONCLUSIONS AND DISCUSSIONS ..o e, 77

APPENDICES
A. Source Code of Broadcast-Receive Protocol for Pvimd......................... 79
B. Source Code of Pvmd-Task Protocol for Pvind 99
C. Source Code of Pvmd-Pvmd Protocol for Pvmd................................. 118
D. Source Code of Library Functions for Task .. 135
BIBLIOGRAPHY ... 152

LIST OF TABLES
1. Comparing Execution Time (secs) for a Molecular Dynamic
Application [12]..........oiii i,

2. The Use Of TID SPacCES...........ccccoviiiiiiiiiiiiieii e,

vi

10.

11

12.

13.

14.

15.

16.

LIST OF FIGURES

PVM Architectural Model [12] ...
32-bit Generic Task Identifierin PVM ST U ST TR U TR URU SRR
(a) Ta and Ty Are on the Same Machine, (b) T4 and Tg Are

on Different Machines.................................oo
Broadcast Operationoccooiiiiiiie e
Scatter OPeration................oooiiiiii e
Gather Operationccccooiiii i
Reduce Operationc...ooiiiiiii e
Times Used to Perform pvm_send()/pvm_recv() Routines..........................
Timing for Performing pvm_mcast()o.ccoooiiiiiiii

Time Used by Current Scatter Algorithm ...

. Time Used by Current Gather Algorithm...

Time Used by pvin_reduce(): (a) All Local Tasks Send Their Data to
Coordinator to Perform the Local Reduction, (b) All Coordinator

Send Their Result to Root to Perform the Global Reduction
Data Exchange Using Shared Memory.........................ccooooiii

The Pvmd-Pvmd Communication Using IP Broadcasting or IP
Multicasting MechaniSm.....................coocoiiiiiii

Time Used by Broadcast and Scatter Operation Using IP
Broadcasting or IP Multicasting Mechanism..............................occcoo,

Time Used by Broadcast Operation of Different Data Sizes and
Different Numbers of Tasks per Processorocccooiiiiiien

vii

List of Figures—Continued
17. Time Used by Scatter Operation of Different Data Sizes and Different
Numbers of Tasks per Processor.......................cc..coooiiiiiiiiiii e

18. Time Used by Gather Operation of Different Data Sizes and Different
Numbers of Tasks per Processor...................cccccoooiiiiiiiiiiicee e,

19. Time Used by Reduce Operation of Global Summation of 4-byte
Integer Data and Different Numbers of Tasks per Processor........................

viil

CHAPTER |

INTRODUCTION

Statement of the Problem

In the last decade, a new trend of parallel and distributed computing has been
developed namely Heterogeneous Network Computing. It involves a parallel program
running on a cluster of workstations of different architecture bases, connected together
by a high-speed network. The advent of high-performance workstations and gigabit
networks, such as 100 Mb Ethernet, FDDI, ATM and HIPPI networks have made
these workstations grow in power over the past few years and represent a significant
computing resource [11].

Parallel programming environments have been developed to run on top of
clusters of workstations and offer the user a convenient way for expressing parallel
computation and communication. In message-passing paradigm, the communication
part consists of regular point-to-point communication as well as collective
communication, such as broadcast, scatter, gather and reduce [6]. It has been
recognized that many parallel numerical algorithms can be effectively implemented by
formulating the required communication as collective communications [16]. The
performance of many algorithms depends heavily on the performance of Collective
Communication Library (CCL) [1, 3, 6, 16].

1

Parallel Virtual Machine (PVM) provides the user a parallel programming
environment. PVM enables users to use their existing computer hardware to solve
much larger problems at minimal cost. Hundreds of sites around the world are using
PVM to solve important scientific, industrial, and medical problems. PVM is also used
as an educational tool to teach parallel programming [25]. PVM supports the
message-passing model of computation. It provides user interface primitives for point-
to-point communication and collective communication.

Collective Communication Library currently implemented in PVM is not very
efficient, as we shall see later. The current approaches simply use linear algorithms,
for example, in gather, scatter, and reduce operations and use the library function,
pvm_mcast() which uses 1:N fanout mechanism, to perform broadcast operation [11,
13].

A new model is proposed here and we show that the performance of
Collective Communication Library in PVM can be improved by using the advantage
of LAN and PVM software point of view.

In this thesis, we develop new approaches using shared memory with IP
broadcasting or [P multicasting mechanism, and report the comparision timings of the
current algorithms and the new algorithms. OQur experimental results show the
improvement of the performance of Collective Communication Library using new

approaches.

Organization of the Study

Chapter 1II is a review of the background and related literature, and it is
intended to build some problem specific background, required to understand how
PVM and collective communication operations work. This study is based on PVM
version 3.3.

Chapter III is a review of current approaches of collective communication
library in PVM.

Chapter IV is devoted to our new approaches that were developed during the
course of study. We present an overview, describe our algorithms in detail, and
compare them to the current approaches.

Chapter V is a presentation of our experimental results. The algorithms were
implemented and run a large number of times for several problem sizes, in order to
collect accurate performance statistics.

The new algorithms are implemented in PVM version 3.3. The source codes
developed for the experiments in this study are included in Appendices. All
implementations were done on Sun SparcStation 5 workstations and measurements of
timing simply use the C library gettimeofday() function.

A summary and conclusion of the study and suggestions for further study are

included in Chapter VI.

CHAPTER 11

BACKGROUND INFORMATION

Heterogeneous Network Computing

A heterogeneous network computing system is typically a collection of
independent machines of different types interconnected by a high-speed network [24].
The environment of local area network of the same type of workstations is also called
a “cluster” [23].

Concurrent computing environments based on networks of computers can be
an effective, viable, and economically attractive complement to single hardware
multiprocessors [12]. When the networks become more high-speed, the combination
of computational power of each workstation can be applied to solve a variety of
computationally intensive applications. It may provide supercomputer-level
computational power. Further, under the right circumstances, the network-based
approach can be nearly as effective as multiprocessors. This configuration may be
economically and technically difficult to achieve with supercomputer hardware [11].
As an example, Table 1 shows the comparison of the execution times of PVM using a
network of RS/6000 workstations over a 1.2 MB/sec Ethernet and the iPSC/860

hypercube [12].

Table 1

Comparing Execution Time (secs) for a Molecular Dynamics Application [12]

Molecular Dynamics Simulation

PVM Problem size

procs Sx5x5 8x8x8 12x12x12
1 23 146 1030
2 15 91 622
4 12 62 340
8 6 34 184

iPSC/860

procs
1 42 202 992
2 22 102 500
4 11 52 252
8 6 27 129

Overall, the performance of a molecular dynamics application shows the
viability of using network of computers to achieve supercomputer performance. Even

higher performance is expected as faster networks become available [12].

Parallel Virtual Machine

Overview

Parallel Virtual Machine (PVM) was developed by the Heterogeneous
Network Computing research project team, a collaborative effort by researchers at
Oak Ridge National Laboratory, the University of Tennessee, Emory University, and

Carnegie Mellon University specifically to make heterogeneous parallel computing

easier. This software is distributed freely in the interest of advancement of science and
is being used in computational applications around the world [4, 23].

PVM enables a collection of heterogeneous computer systems to be viewed as
a single parallel virtual machine. PVM may be implemented on a hardware base
consisting a different machine architectures, including single CPU systems, vector
machines, and multiprocessors. These computers may be interconnected by one or
more networks. Application programs access these computers via a standard interface
that supports common concurrent processing paradigms in the form of well-defined
primitives that are available for procedural languages, such as C, C++, and Fortran
[23]. This programming interface is straight forward and allows simple program
structures to be implemented in an intuitive manner. The application program is a
collection of cooperating tasks. PVM provides routines that allow initiation and
termination of these tasks as well as communication and synchronization among tasks.

Figure 1 shows architectural overview of the PVM system.

Application 1

QRO QQ e A

ZaN I AN 2 Butterfly Cray

Figure 1. PVM Architectural Model [12].

Application programs view the PVM system as a single general and flexible
computing resource. PVM transparently handles all message routing, data conversion,
task scheduling and group management across a network of incompatible computer
architectures. Communication constructs include those for sending and receiving data
(in the form of message) as well as high-level primitives such as broadcast, barrier
synchronization, gather, scatter, and global reduction. These high-level operations are

also known as collective communication operations.

PVM System

PVM system consists of two parts. The first part is the daemon called pvmd
which takes care of communication between machines such as send and receive data or
command. The second part is a library function called libpvm which provides
functions for developer to interface with pvmd, pack/unpack data, and send/receive
data between tasks. Libpvm is now available for C/C++ and Fortran [11].

On each host of a virtual machine, there is one pvmd running. Pvmds owned
by one user do not interact with those owned by others to reduce security risks. This
feature provides different users to have their own configuration and host mapping can
be overlapped over the network [11].

PVM also provides group management for tasks such as join group, leave
group, and get group members list. The pvmd does not perform the group functions.

By having a group server running as one of the tasks in the system, every task which

wants to maintain a group has to contact group server. In PVM, the group functions
are designed to be very general and transparent to the user. Any PVM task can join or
leave any user named group at any time without having to inform any other task in the

affected group [11].

How PVM works

Task Identifier

PVM system uses a unique task identifier (TID) to address pvmds, tasks, and
group of tasks within a virtual machine. TID is designed to fit into the 32-bit integer
data type which is available on a wide range of machines. TID has four fields which

are S, G, H, and L. Figure 2 shows the contents of TID.

31 30 18 0

S|G H L

Figure 2. 32-bit Generic Task Identifier in PVM.

For pvimd’s address, S bit is set, with host number set in the H field and L field
is cleared. Therefore, the maximum number of hosts in a virtual machine is limited to
2" -1, whichis 22 - 1 = 4095.

For the address of each task, H field is set to host number where the task is

running and L field is assigned by pvmd. Therefore, up to 2'* - 1 tasks can exists

concurrently on each host. Pvmd maintains a mapping between L values and real
process id’s in the native operating system.

The G bit is set to form multicast addresses (GIDs). This addresses refer to
groups of tasks. Multicasting is described later in this chapter. Table 2 shows the use

of TID spaces.

Table 2
The Use of TID Spaces

Use S G H L
Task Identifier 0 0 1. Homax 1. Lonax
Pvmd Identifier 1 0 1. Hpax 0
Local pvimd (from task) 1 0 0 0
Pvmd’ from masterpvmd 1 0 0 0
Multicast address 0 1 Lo Hoyow 0. Lonax
Error code 1 1 (small neg. number)

Communication Model

PVM communication is based on TCP, UDP, and Unix-domain sockets,
because these protocols are generally available. There are three connections to

consider: Between pvmds, between pvmd and task, and between tasks.

Pvmd-pvmd. PVM daemons (pvmds) communicate with one another through
UDP sockets which are unreliable, therefore an acknowledgment and retry mechanism
is used to avoid losing, duplicating, or reordering packets. UDP also limits packet

length, thus PVM fragments long messages. The main reason why UDP sockets are

used is because TCP sockets consume file descriptors. In a virtual machine of N
hosts, each pvmd must have TCP connections to other N - 1 hosts. This occupies a

number of file descriptors.

Pvmd-Task and Task-Task. A task communicates with pvmd and other tasks

through TCP sockets which are reliable. In PVM version 3.3, the Unix Domain
sockets are used for Pvmmd-Task communication. UDP is unacceptable here because it
needs acknowledgment and retry mechanism at both ends but tasks cannot be
interrupted while computing to perform I/O.

PVM daemons and tasks can compose and send messages of arbitrary lengths
containing typed data. The sender of messages does not wait for an acknowledgment
from the receivers, but continues as soon as the message has been transferred to the
network and the message buffer can be safely deleted or reused. Messages are
buffered at the receiving end until received by a task. Blocking and non-blocking
receive primitives are provided. There is no acknowledgment used between sender

and receiver. Messages are reliably delivered and buffered by the system.

Message Routing

Default Message Routing. The message is routed through pvmds. For

example, if task T, wants to send a message to task Tg, the message will be sent to

local pvmd on the machine on which Ty is running. There are two cases: (1) Ta and

10

Tg are running on the same machine, (2) T, and Ty are running on different machines.

When T, and Tg are on the same machine, the local pvind will send message to Tg as

shown in Figure 3 (a). When T, and T are on different machines, the local pvmd of

Ta routes the message to remote pvmd using UDP in the machine where Tg is running,

then the remote pvmd transfers the message to Tg when requested by a pvm_recv()

function call by Tg as shown in Figure 3 (b).

Machine 1

Machine 1

(@

Machine 2

pvind

()

Figure3. (a) Taand Tg Are on the Same Machine, (b) T, and Tg Are on
Different Machines.

Direct Message Routing. PVM provides task-to-task direct route

communication, so that a task can communicate with other tasks directly through TCP

11

sockets. This direct route mechanism reduces the overhead of forwarding a message

through the pvmds, but it consumes a file descriptor for each direct route to task.

Multicasting. The libpvm function pvm_mcast() sends a message to multiple
destinations in one call. The current implementation only routes multicast message
through the pvmds using 1:N fanout mechanism where message is one-by-one routed
from local pvmd to other pvimds and one-by-one routed from each pvmd to its local

tasks.

Libpvm Communication Routines

pvm send() and pvm recv()

Sending a message in PVM version 3.3 requires three function calls. First, a
send buffer is initialized by pvm _initsend() function call. This step includes clearing
the previous send buffer. Second, the message is packed into this buffer using any
number and combination of pvm_pk*() function calls. At this step the message is
encoded and the buffer is also fragmented if the message is too long. Third, the
message is sent to destination process by pvm_send() call which uses the Default
Message Routing as a default routing.

There are some advantages of having this three step method. First, the user
can pack a message with several data with different types. The advantage is that only

one pvm_send() function call is required instead of every call for each data type. This

12

causes the startup latency for communication over a network to be reduced because
packing is faster than sending data over a network. Another advantage is that the
encoding and fragmenting of the message is done only once if this message is to be
sent to several different destinations. PVM takes advantage of packing only once
when a user broadcasts a message.

The pvm_recv() function call is a blocking receive method provided by PVM
to receive a message. This blocking receive waits until the message is copied to the
receive buffer. Wildcards can be specified in the receive for the source. This makes

the pvm_recv() call to receive the message from any source.

pvm mcast()

The multicast operation has two steps. First, during the initiation step, a task
sends a TM_MCA message to its pvmd, containing a list of destination TIDs. The
pvmds create a multicast descriptor (struct mca) and group identifier (GID). Then it
notifies each host, one by one, which has destination tasks running by sending a
message DM_MCA to the pvmd on that host, containing a list of TIDs running on that
host and GID, and return the GID back to the task. After receiving DM_MCA
message, each pvmd on each host then creates a multicast descriptor for that GID.
Second step is the message sending step, in which the task sends a message using GID
as a destination address. The message is routed to the local pvmd. The local pvmd

knows that the address is multicast address. It sends the message to each pvmd listed

13

in a multicast descriptor (struct mca) of that GID one by one. Pvmds then send the
message to each task belonging to them. This local message multicasting is done

sequentially, that is, a message is sent to a task before sending to another local task.

Collective Communication Library

A Collective Communication Library (CCL) for parallel computers includes
frequently used operations such as broadcast, reduce, scatter, and gather. This library
provides users with a convenient programming interface, efficient communication

operations, and the advantage of portability.

Process Group in CCL

A process group is an ordered set of processes that has a unique name in the
system. Each process group is identified by a unique process Group Identifier (GID)
in an application program. We next define the operations typically contained in a

CCL.

Broadcast

Broadcast a message from one process to all processes in the group. The
sending process will be referred as the root and the other processes in the group will
be referred as the client in the rest of the thesis. Figure 4 depicts this operation

pictorially.

14

15

Legens

O i

O Daaltem
ST Localdata
T Message sending

Figure 4. Broadcast Operation.

Scatter
Distribute distinct message from a single source to each process in a group.

From Figure S, process 1 is the root of scatter operation.

Before

Process

Legemd

O =

O Datsltem
=% Localdata

—® Message sendng

Figure §. Scatter Operation.

16

Gather

Gather distinct messages from each process in a group to a single destination
process. It is opposite of the scatter operation. From Figure 6, process 1 is the root

of gather operation.

Legemd

O -

0 Dsallem
T % Locd daa
~="® Memape scuding

Figure 6. Gather Operation.

Reduce

Apply an associative reduction operation on local data of all the processes in a
group and place the reduction result in a specified destination process. From Figure
7, process 1 is the specified destination process which is referred to as the root of

reduce operation.

Before After

Process Process

1

O OB

D

A
/

n

Figure 7. Reduce Operation.

Legend

Process

Data Item
Local data
Message sendmg

Global camputation
operation

17

CHAPTER III

PREVIOUS APPROACHES

Iterative Pvimnd

Pvmd is an iterative server. It means that pvid will repeatedly check if there is
any packet in the output queue, then it will send the packet out to destination, or if
there is any input from UDP or Unix domain sockets, then it will receive from the
socket. The algorithm of the main working part of pvimd is as follows.

Assume:

netoutput() is the function to send all packets in which destination is a remote

pvmd.

netinput() is the function to read a packet from another pvmmd and process

the message.

locloutput(#) is the function to send a packet to a local task i.

loclinput(7) is the function to read a packet from a local task i and process the

message.
In(s) indicate that there is an input from socket s.
Out(s) indicate that there is an output to socket s.
netsock is the UDP socket for pvmd-pvmd communication.

18

loclsock’ is the Unix domain socket for pvmd-task communication of task

1.

The algorithm of main working part of pvmd:
for (;;) { / *infinite loop */
netoutput(), / *send all packets in outgoing queue */
if (In(netsock))
netinput();
if (In(loclsock'))
loclinput(7);
for (1= 1, 1 < number of local tasks; i++) {
if (Out(loclsock'))

locloutput();,

Timing Model

The timing model for sending a d-byte message from process p to process q is
T = t, + di. where ¢, is the overhead (startup time) associated with each send or

receive operation and ¢, is the communication time for sending each additional byte.

19

20

The following definitions are used in Chapter III and Chapter IV.

Define:

th

/4 c2

h;

is startup time for pvmd-task communication using Unix
domain socket.

is startup time for pvmd-pvmd communication using UDP
socket.

is communication time for sending additional byte using Unix
domain, TCP or UDP socket in the same machine.

i1s communication time for sending additional byte using TCP or
UDP socket over the network.

is the number of pvmds (hosts).

is size of TID (4 bytes in PVM 3.3).

is the number of TID in TID-list, group size.
is the number of TID on host i,) _,n =m.

is size of data.

Timing Model for pvm_send() and pvm_recv()

Terminology

Synchronous Send: A synchronous send returns only when the receiver has

posted a receive.

Asynchronous Send: An asynchronous send does not depend on the receiver
calling a matching receive.

Blocking Send: A blocking send returns as soon as the send buffer is free for
reuse, that is, as soon as the last byte of data has been sent or placed in an internal
buffer.

Blocking Receive: A blocking receive returns as soon as the data is ready in
the receive buffer.

Non-blocking Receive: A non-blocking receive returns as soon as possible,
that is, either with a flag that the data has not arrived yet or with the data in the receive
buffer.

According to our terminology, the PVM communication model provides only
asynchronous blocking sends. Therefore, the PVM user does not have to worry either
about any deadlocks for non-matching pairs of pvm_send()/pvm_recv() or about
rewriting into a buffer after it has been sent. PVM provides blocking receives and
non-blocking receives [7], but we will consider only blocking receives because the
current implementation of collective operations uses only blocking receives.

We still use the dynamic groups which are provided by group server, because
the current approaches use it, but note that this will results in more costs than static
groups facility. Discussion of static groups facility is out of the scope of this thesis,
further a group of PVM developing team is working on it. Our goal in this thesis was

to improve CCL in dynamic group environment.

21

The time for a d-byte message for a matching pvm_send() and pvm_recv()
using the default routing mechanism, according to the previous chapter, can be

modeled as shown in Figure 8.

0 i

O Task
Tl - Q Pvmd
—_ Data transfer

O~ >
Figure 8. Times Used to Perform pvm_send()/pvm_recv() Routines.

Let T, be the time used for routing message from sender to local
pvmd.
T, be the time used for routing message from local pvmd to remote
pvmd.
T be the time used for routing message from local pvind to
receiver.
Hence, T,’s could be expressed as
Ty =ty +dt,
T,=t,+dt,;
Ts =ty +dt.,
Note that T, can be O if A and B are on the same machine and this model does

not include pack/unpack timings.

22

Pvmd being an iterative server, T1 and T2 cannot be overlapped, so does T2
and T3. T1 and T3 can be overlapped only if task A and B are on different machines.
These timing models of T;, T, and T3 will be used later to describe the times

used to perform scatter, gather and reduce operations.

Timing Model for pvm_mcast()

According to how pvm_mcast() works from the previous chapter, the timing

model of pvm_mcast() operation can be modeled as shown in Figure 9.

Step 1 Initiation step

Legend
O Task
® Root task
. Q Pvimd
Step 2 Message Sending step
— Data transfer

Figure 9. Timing for Performing pvm mcast().

23

Let T, be the time used for sending TIDs list from sender to local pvmd.
T, be the time used for notifying other pvmds in pvmds list.
T; be the time used for sending GID back to sender.

T, be the time used for sending the message to local pvmd.

T’ be the time used for sending the message to the pvmd '

T. be the time used for sending the message from pvmd ' to local
tasks.

T}, be the time used at pymd ' assuming messages have been sent to
pvmd’, .. pvmd "

T, be the total time used by pvm_mcast() for p hosts, once message
has been read by pvmd’ in step 2.

Hence T,’s could be expressed as

T,

tsl + Smtcl

P r
T, = D, (lotsnls) = (p-Dio+ sY, Mo
i=2 i=2

Tz = 1+t
Ts = ty+dty
T16 = ni(tsl + dtcl)

Tie = (1)t +dle2) + T,

24

)4
T, = Max ((-1)(t2 + dtes) + T) (since messages have to be
i=2

first sent to pvmd’, ..., pvmd "', all of which potentially
could be sending messages to their local tasks in parallel.)
From Figure 9, the time used to perform pvm_mcast() can be modeled as:
T seae = T1 +Ta+ T ¥ Tyt Tse
For load balanced situations, we have n; = m/p for ¥V i. Therefore,
T,s = (-1 + dt:;) + (mlp)(t, + dt)
and
Tovm meat = T1+ To+ Tz + Ty + (p-1)(42 + dl2) + (mip) (L + dt.;)
This timing model for pvm_mcast() will be used later to describe the time used
to perform broadcast operation because the current pvm bcast() simply call

pvm_mcast() to broadcast the data.
Applying Timing Model to Current Approaches of CCL

In this section, we define some more variables which are used to model the
timing of current approaches of each collective operations in PVM.
Define:
S={z|zis TID}.
|G| where G < S is the number of members of G.

g isthe i™ member of G, g€ Gwhere GC S.

25

T, is the time used for obtaining TIDs list of the specified group from
the group server.

t, 1s the time used for copying data byte by byte.

Broadcast

The current approach in the broadcast operation uses pvm_mcast() function to
perform the operation. The root of the operation first obtains TIDs list of the
specified group from the group server then sends data to the other tasks (clients) in
the group using pvm_mcast() function and copying the data to result buffer for itself.
The clients simply call pvm_recv() function to wait and receive the data.

The current pvm_bcast() algorithm is as follows:

Assume:

G, G cS.

root 1is the TID of the root task.

data is the buffer for data.

result is the buffer for result.

Copy(src, dst) is the function to copy from src to dst.
GetTidList(gname) is the function to get the list of TIDs in group

gname from group server.

26

Root task of the broadcast operation:
G = GetTidList(gname), /* obtain from group server */
G’ =G - {root},
Copy(data, result), /* for itself */

pvm_mcast(G’, data),

Client tasks of broadcast operation:
pvm_recv(root, result), /* receive message from root and

put it into result */

From the pvm_mcast() timing, assuming that », = m/p for V i, the time used to

perform the broadcast operation is

. _ '
Tbcasl = Tg + Tpvm_mca_g;+ dtm > for m= |G |

I

Te+Ti+Ty+ T3+ Ty +

(-1t + dte) + (i)t + dte) + dty ... (3.1)

where T,’s are T,’s of pvm_mcast() timing and d/, is the time used to copy

data to local result buffer.

Scatter

The current approach of scatter operation uses a linear algorithm to distribute

data[i] to process i. The root of the operation first obtains TIDs list of the specified

27

28
group from the group server then sends data[/] to the client task / by using pvm_send()
function. The data are received by pvm_recv() function called by tasks other than root
(clients tasks) in the group. Data for root is directly copied to result buffer.

The algorithm of current pvm_scatter() operation is as follows:
Assume:
G cS.
root is the TID of root task.
data is the buffer for data.
data' is the data for task /.
result 1s the buffer for result.
Copy(src, dst) is the function to copy from src to dist.
GetTidList(gname) is the function to get the list of TIDs in group

gname from group server.

Root task of the scatter operation:
G = GetTidList(gname);
for i =1,i<=|G|; i++) {
if (g, = root)
Copy(data', result),

else

pvm_send(g,, data'),

Client tasks of scatter operation:

pvm_recv(root, resulf), /* receive message from root and
put it into result */

Figure 10 shows the time used by this scatter algorithm.

Legend

Task

Root task

Pvmd

Data transfer

Figure 10. Time Used by Current Scatter Algorithm.

Consider T3’s, all T3’s on the same machine cannot be overlapped. but T;’s on
different machine can be overlapped. T, and T; can be overlapped except T, and T;
that are used for sending data from root task to the clients task on the same machine.
The sending paths are not ordered. This means that the root task will send a message

to each client tasks in any order. From current implementation of pvm_scatter(), the

29

message routes are ordered by instance number of the client tasks which can be placed
in arbitrary order when the tasks join the group.

According to the timing model for pvm_send() and pvm_recv(), assume that T;
is equal to T, all T,’s are equal and all T3’s are equal, because they are the time used
to send data within machine using Unix domain sockets. Assume that n; = m/p for V i,

the time used by this pvm_scatter() can be modeled as:

Tseatter = Tg + (m-l)T1 + (m = m/p)T2 + m/pT3 tdty (32)

Where m is the number of tasks in the group.
p 1s the number of hosts (pvmd).
T’s are T;’s from pvm_send()/pvm_recv() timing model.

This model uses m-1 because the data for root task is copied to the result
buffer instead of sent and received by a pair of pvm_send() and pvm_recv() and the
time that the root task used to copy data is indicated by the term dt,. T,’s occur (m-1)
times to send (m-1) messages. T,’s occur m-m/p times to send m-m/p messages to (p-
1) remote pvmds because T,’s and T,’s cannot be overlapped. T3’s can be overlapped
with T,’s except T3’s and T,’s perform by the root pvmd which occur m/p-1 times.
On other hosts, T3’s are overlapped with T,’s. Therefore, T3’s are reduced from (m-

m/p)Ts to one T;. Therefore, the extended time performed by T;’s are m/p times.

30

31

Gather

The current approach of gather operation uses a linear algorithm to gather
data[i] from process i. The root of the operation first obtains TIDs list of the
specified group from the group server and then calls pvm_recv() m times to wait and
receive data from client task 1 to client task m. The client tasks simply call
pvm_send() to send their data to root. Data of root is locally copied to the result

buffer. The current pvm_gather() algorithm is as follows:

Assume:
G cS.
data is the buffer for data.
result is the buffer for result.
result' is the result buffer for result from client task /.
Copy(src, dst) is the function to copy from src to dst.
GetTidList(gname) is the function to get the list of TIDs in group

gname from group server.

Root task of the gather operation:
G = GetTidList(gname);
for (i=1,i<=|G|;, i++) {

if (g = root)

32
Copy(data, result);
else

pvm_recv(g,, result’),

Client tasks of gather operation:

pvin_send(root, data),

Figure 11 shows the time used by pvm_gather().

Legend

Task

Root task

Pvind

Data transfer

Figure 11. Time Used by Current Gather Algorithm.

Consider T,’s, all T,’s on the same machine cannot be overlapped but T;’s on
different machines can be overlapped. T, and T; can be overlapped except T; and T
that are used for sending data from client tasks to the root task on the same machine.

All T3’s cannot be overlapped. The sending paths are not ordered. This means that

the root task will receive a message from each client tasks in any order. From current
implementation of pvm_gather(), the message routes are ordered by instance number
of the client tasks which can be placed in arbitrary order when the tasks join the group.

According to the timing model for pvm_send() and pvm_recv(), assume that T,
is equal to T3 because they are the time used to send data within machine using Unix
domain sockets. Assume that », = m/p for V i, the time used by this pvm_gather() can

be modeled as:

Teather = Ty + (m/p-1)T1 + (m-m/p)To+ (m-1)T3+ dt,,(3.3)

Where m is the number of tasks in the group.

T/’s are T,’s of pvm_send()/pvm_recv() timing,

This model use (m-1) T3 because the data for root task is copied to the result
buffer instead of sent and received by a pair of pvm_send() and pvm_recv() and the
time that the root task used to copy data is indicated by the term df,. T,’s can be
overlapped with T3’s except Ty’s and T3’s performed by the root pvmd which occur
m/p-1 times, therefore, T,’s occur m/p-1 times. T,’s occur m-m/p times to receive m-

m/p messages from remote pvmds.

Reduce

The current approach of reduce operation uses a linear algorithm. First, all

tasks in the group obtain the TIDs list of the local tasks in the group on their hosts

33

along with which task is the coordinator task on that host. Then, each task on host i
sends its data to coordinator on host / using pvm_send(). Coordinator on host i
receives data using pvm_recv() and then performs the global computation operation
on those data and sends the result to root task using pvm_send(). The root task then
receives results from each coordinator on host i and performs the global computation
operation on those result and puts the final result to the result buffer. Figure 12 shows
the time used by pvm_reduce().

(a)
Legend

Task
Root task
Coordinator Task

Pvind

10@@0

Data transfer

(d)

Figure 12. Time Used by pvm_reduce(): (a) All Local Tasks Send Their Data to
Coordinator to Perform the Local Reduction, (b) All Coordinator
Send Their Result to Root to Perform the Global Reduction.

34

35

The current pvm_reduce() algorithm is as follows:
Assume:

G cS.

root is the TID of root task.

coordinator is the TID of local coordinator.

coordinator ' is the TID of coordinator of host i.

data is the buffer for data.

data’ is the buffer for temporary data.

result is the buffer for result.

result' is the result buffer for result from client task /.

Copy(src, dst) is the function to copy from src to dst.

IsCoordinator() indicate that this task is coordinator.

GetLocalTidList(gname) is the function to get the list of local TIDs in

group gname from group server.

Root task of the reduce operation:
G = GetLocalTidList(gname);
/* Compute reduce operation on data residing on this host */
if (IsCoordinator()) {
for (i = 0, i < (|G|-1); i++) {

pvm_recv(g,, data’),

data = GlobalOperation(data, data’),
/* root & coordinator, so keep data for global op. of

coordinator’s data */

}

else { /* not a coordinator but root */
pvm_send(coordinator, data),
pvm_recv(coordinator, data), /* receive the final result */
}
/* Compute reduce op. on data from different coordinators, one per
host */
for (i = 0, i < nhosts; i++) {
pvm_recv(coordinator ', data’),

data = GlobalOperation(data, data’),

Client tasks of reduce operation:
G = GetLocalTidList(grame);
if (IsCoordinator()) {
for (i = 0; i < (|G}-1); i++) {

pvm_recv(g;, data’),

36

37
data = GlobalOperation(data, data’),

}

pvm_send(root, data),

else

pvm_send(coordinator, data),

From the pvm_reduce() algorithm, we ignore the time used to perform global
computation operation. The time used to perform pvm_reduce() (Treguc) can be

expressed as:

Treauee = MTgs(mip - DTy + (mlp - 1)Ts + Ty + (p - DTa+ (p- DT;(3.4)

Where m is the number of tasks in the group.
T/’s are T,’s of pvm_send()/pvm_recv() timing.
Tg occurs m times because every task obtain the TIDs list from a group server.
This model use m/p -1 because the data of coordinator task are not sent to other tasks.
The term (m/p - 1)T, + (m/p - 1)Ts 1s the time that the each local task uses to send
data to local coordinator, and T; + (p - 1)T,+ (p - 1)T; is the time that root task used

to receive remote result from other coordinator tasks.

CHAPTER IV

OUR SOLUTION

Different Approaches

We propose new approaches to make collective communication operations in
PVM more efficient. The timing model of the current pvm_bcast(), pvm_scatter(),
pvm_gather() and pvm reduce() from equation 3.1, 3.2, 3.3 and 3.4 in previous
chapter show that the performance depends on the times used by the pvind-task and
pvind-pvmd communication. We propose new solutions which try to reduce the
overhead and the communication over the local area network.

The improvement in performance of a CCL in PVM can be achieved by using
the properties of LAN. From a software point of view, PVM considers the network of
workstations as a number of pvmds. We divide the virtual machine into each host
running a pvind at the lowest layer. Instead of handling by tasks, the new approaches
of collective communication operations are handled by pvmd. Each pvind takes care
of data of local tasks.

For the Pvind-Task communication, the data exchange between tasks and local
pvind in the same host can be efficiently achieved by using Interprocess
Communication (IPC). The current implementation uses Unix domain socket to

achieve this. We select shared memory since it exhibits a better performance [18] and

38

CCL involves a group of data which can be viewed as an array of data. For the pvmd-
pvmd communication, because CCL involves the communication to a group of pvmds
we develop the new approach — the one-to-all communication using IP broadcasting or
IP multicasting mechanism. This approach uses the advantage of LAN such as
Ethernet.

We refer to our approach for Collective Communication Library in PVM as

Shared Memory with IP Broadcasting or IP Multicasting mechanism.

Using Shared Memory for Pvmd-Task Communication

The use of shared memory for data exchange between pvmd and tasks on a
host i can be viewed as Figure 13 where #; is the number of PVM tasks running on

host i. Semaphores are used for synchronization.

Host
Shared Memory
Legend
3
e O Task
—_— Data transfer
i 2 n; in both directions
tasks
4
Come >

Figure 13. Data Exchange Using Shared Memory.

39

The shared memory is created at the time pvmd is starting up. More than one
process can read the shared memory simultaneously. This means that it does not have
to wait until other processes finish their reading. The shared memory is divided into
sections of size of the data size. Only one process can write the data to each shared
memory section. All writings to each section of the shared memory have to wait for
the mutual exclusion semaphore and release after finish. All sections of shared
memory, on the other hand, can be viewed as an array of data buffer. This has an
advantage because the collective operations such as scatter and gather view the data as
an array of data. Therefore, the single copy call can copy all continuous data instead

of iterative copy data to or from each section of memory.

Using IP-Broadcast or IP-Multicast for Pvmd-Pvmd Communication.

This approach adds the IP broadcasting or IP multicasting to the UDP socket.
A packet-loss recovery mechanism is added to make it reliable. IP Broadcasting sends
a packet to all machines on the local area network while IP multicasting sends a
packet to a group of machines [17]. We implement this approach in both IP
broadcasting and IP multicasting mechanisms to compare their performance. The
pvmd-pvmd communication using IP broadcasting or IP multicasting mechanism can

be viewed as Figure 14.

40

41

2
D
7
// 3
Pt Legend
1 P
D —
——_—(‘
S . . B _(_’; simultaneous
™ - . 'Y data wansfer
\\. -
~
s 4
O

Figure 14. The Pvmd-Pvind Communication Using IP Broadcasting or IP
Multicasting Mechanism.

CCL Using IP Broadcasting and IP Multicasting Mechanism

We next describe how collective communication operations in PVM can be
implemented using IP broadcasting or IP multicasting mechanism instead of using
unicast UDP sockets. This mechanism reduces the time that the root pvind sends data

to all client pvmds almost down to the time used for sending message to one pvid.

Define:
S = {z| zis TID}.
IG| where G c S is the number of members of G.
g is the i member of G, g; € G.
T, is the time used for obtaining TIDs list of the specified group
from the group server.

I is the time used for copying data byte by byte.

)% is the number of pvmds (hosts).
s is size of TID (4 bytes in PVM 3 .3).

m is the number of TID in TID-list, group size.
h, is the number of TID on host i,) _m =m.

d is size of data.

In all algorithms of this chapter, for simplicity, the code for mutual exclusion to
access shared memory is not indicated but exists in the implementation. The message
type TM_* means the control message sent between task and pvmd, and the message
type DM_* means the control message sent between pvmd and pvmd. The pvmd-list

is the array of the TIDs of pvmds involved in the collective operation.
Broadcast

The root task of the broadcast operation first obtains TIDs list of the specified
group from the group server and copies them and the data to the shared memory.
Then, it sends the request for broadcast operation to local pvmd (root pvmd) along
with the number of TIDs in the group. Root pvmd reads the TIDs list and data from
shared memory, sorts the TIDs list and creates the pvmd-list. Then, root pvmd sends
the pvmd-list and data to other pvids using IP broadcasting or IP multicasting
mechanism. After receiving, each pvmd writes the data to the shared memory and

gives access to local tasks. Tasks then read the data from shared memory

42

43
simultaneously. Figure 15 shows the time used in broadcast operation using IP

broadcasting or IP multicasting mechanism.

1
-

Legend
O Task
® Root task
> i
— Data transfer
F.4 simultaneous
N "‘; data transfer

Figure 15. Time Used by Broadcast and Scatter Operation Using IP Broadcasting or
IP Multicasting Mechanism.

In this algorithm of the broadcast operation, the message type TM_BCAST is
the request message which is sent to root pvmd by root task. The message type
DM _BCAST is the message that contains pvmd-list which is sent by root pvmd to
other pvimds. The algorithm of the broadcast operation using shared memory and IP

broadcasting or IP multicasting mechanism is as follows:

44
Assume:

G G cS

root is the TID of the root task.

data is the buffer for data.

result is the buffer for result.

Shmem is the shared memory.

Copy(src, dst) is the function to copy from src to dst.

GetTidList(grname) is the function to get list of TIDs in group gname
from group server.

wait(sem) is the function to wait for semaphore sem > 1 then subtract
by 1.

signal(sem, n) is the function to increase the value of semaphore sem
by n.

Bcast(msg type, msg) is the function to broadcast message type
msg_type along with message msg to all pvmds using IP-
broadcasting or [P-multicasting mechanism.

Recv(msg) is the function to receive message msg.

read sem is a semaphore initialized to 0.

At the root task of the broadcast operation:

G = GetTidList(gname);

45
G’ =G - {root},
Copy(G’, Shmem);
Copy(data, result),
Copy(data, Shmem),

Send(/ocal pvmd, TM_BCAST, |G’|),

At the pvmds:
TM_BCAST:
Copy(Shmem, G),
Copy(Shmem, data),
Sort G and create pvmd-list;
Bcast(DM_BCAST, pvmd-list and data);
DM_BCAST:
Recv(pvmd-list and data),
Copy(data, Shmem),

signal(read sem, the number of local tasks);

At the client tasks of the broadcast operation:
wait(read sem),

Copy(Shmem, result),

46
From Figure 15, let
T, be the time used to send the number of TIDs in TID-list (request).
T, be the time used to copy TIDs list form shared memory.
Tz be the time used to send pvmd-list and data to all pvmds using IP
broadcasting or IP multicasting mechanism.
T, be the time used for all local tasks to copy data from shared
memory.
We assume that n, = m/p for V i. Hence, T,’s can be expressed as

Ti = tiui+astg

T, (sm + d)t,
Ts = tax+(sp+dh
Ty = (mip)dt,

Therefore, the time used by broadcast operation using IP-broadcasting or IP-

multicasting mechanism can be modeled as:

Tbcas(.1 = T8+T1+T2+T3+T4 .. (41)

Scatter

The root task of the scatter operation first obtains TIDs list of the specified
group from the group server and copies them and all data to the shared memory.

Then, it sends the request for scatter operation to local pvind (root pvind) along with

the number of TIDs in the group. Root pvind reads the list of TIDs and all data from
the shared memory, sorts them and creates the pvmd-list. Then, root pvmd sends the
TIDs list and their data to all pvnd using IP broadcasting or IP multicasting
mechanism. Each pvind writes the data of its local tasks to the shared memory and
gives access to the tasks. Tasks read its own data from shared memory
simultaneously.

In this algorithm of the scatter operation, the message type TM_SCATTER is
the request message which is sent to root pvind by root task. The message type
DM_SCATTER is the message containing pvind-list and is sent by root pvimd to other
pvinds. The algorithm of the scatter operation using shared memory and IP

broadcasting or IP multicasting mechanism is as follows:

Assume:
GcS.
data is the buffer of data for all tasks (m tasks).
data' is the data of task i.
result is the buffer for result.
Shmem is the shared memory.
Copy(src, dst) is the function to copy from src to dst.
GetTidList(gname) is the function to get list of TIDs in group gname

from group server.

47

wait(sem) is the function to wait for semaphore serm > 1 then subtract
by 1.

signal(sem, n) is the function to increase the value of semaphore sem
by n.

Bcast(msg type, msg) is the function to broadcast message type
msg type along with message msg to all pvmds using IP-
broadcasting or IP-multicasting mechanism.

Send(dst, msg_type, msg) is the function to send the message type
msg type along with message msg to destination dist.

Recv(msg) is the function to receive message msg.

read sem is a semaphore initialized to 0.

At the root task of the scatter operation:
G = GetTidList(grname),
Copy(G, Shmem);
Copy(data, Shmem),
Send(/ocal pvmd, TM_SCATTER, |GJ),
wait (read sem),

Copy(Shmem, result), /* copy data' to result where i is root */

At the pvmds:

TM_SCATTER:

49
Copy(Shmem, G),
Copy(Shmem, data),
Sort G and create pvmd-list;
Bcast(DM_SCATTER, pvmd-list and data);
DM SCATTER:
Recv(pvmd-list and data),
Copy(local data, Shmem),

signal(read sem, the number of local tasks);,

At the client tasks of the scatter operation:
wait(read sem),

Copy(Shmem, result), /* Copy data' from shared memory to result */

By using IP Broadcast or IP Multicast mechanism. T3 will be the time used to
send pvmd-list and the local TIDs and their data of each pvmd in pvmd-list by IP
broadcast or IP multicast mechanism.

From Figure 15, let

T, be the time used to send the number of TID in TID-list (request).
T, be the time used to read TIDs list and all data form shared memory.
T3 be the time used to send TIDs list and their data to other pvmds

using IP broadcasting or IP multicasting mechanism.

T, be the time used for all local tasks to copy data from shared
memory.
We assume that », = m/p for V i, T;’s can be expressed as:

Tl = Iy +Stcl

T, (sm + dm)t,,

T3 = [+ (sp + dm)tc2

T, d(m/p)t,,
Therefore, the time used by scatter operation using IP-broadcasting or IP-

multicasting mechanism can be modeled as:
Tscatter—l = Tg + Tl + T2 + T3 o T4
Gather

The root task of the gather operation first obtains TIDs list of the specified
group from group server and copies them to the shared memory. Then, it sends the
request message for the gather operation (TM_GATHERA message) to local pvmd
(root pvind) along with the number of TIDs in the group. Root pvind reads the list of
TIDs from shared memory, sorts them and create the pvmd-list. Then, it sends the
pvid-list to other pvmds using IP broadcasting or IP multicasting mechanism
(DM_GATHERA message). Each pvind reads all local data of its tasks when it

receives the TM_GATHERB message indicating that all local data is ready in the

50

shared memory and sends the data back to the root pvmd (DM_GATHERC message).
When the data reach the root pvmmd, they are copied to the shared memory and read by
the root task.

The tasks can determine whether all data of local tasks are written in the
shared memory by examining the shared memory header which is initialized to the
number of local tasks by local pvimd. After a task writes its data, it decreases a count
in the shared memory header. After the decrement, if the shared memory header is O,
the task will know that all data of local tasks are written in the shared memory.

The algorithm of the gather operation using shared memory and IP

broadcasting or IP multicasting mechanism is as follows:

Assume:
Gc S
datd' is the data of task /.
result is the buffer for result of gather operation.
Shmem is the shared memory.
Copy(src, dst) is the function to copy from src to dst.
GetTidList(gname) is the function to get list of TIDs in group gname
from group server.
wait(sem) is the function to wait until the value of semaphore sem > 1

then subtract by 1.

51

52
Bcast(msg type, msg) is the function to broadcast message type
msg type along with message msg to all pvmds using IP-
broadcasting or IP-multicasting mechanism.
signal(sem, n) is the function to increase the value of semaphore sem
by ».
Send(dst, msg type, msg) is the function to send the message type
msg type along with message msg to destination dist.
Recv(msg) is the function to receive message msg.
read _header sem is a semaphore initialized to 0.

read result sem is a semaphore initialized to 0.

At the root task of the gather operation:
G = GetTidList(gname),
Copy(G, Shmem),
Send(local pyvmd , TM_GATHERA, |G)),
wait (read header sem),
Copy(data, Shmem), /* copy data of root to shared memory */
if (all local data are written to shared memory)
Send(/local pvmd, TM_GATHERB, 0),

wait (read result sem),

Copy(Shmem, result), / *Copy data' from task’, data available

in shared memory */

At the pvmds:

TM_GATHERA:
Copy(Shmem G),
Sort G and create pvmd-list,
Bcast(DM_GATHERA, pvmd-list),

TM_GATHERSB:
Copy(Shmem, data), / *data is the data of all local tasks */ .
Send(root pvmd, DM_GATHERC, data),

DM _GATHERA:
Recv(pvmd-list),

signal (read header sem, the number of local tasks),

DM_GATHERC:
Recv(data),
put data' in appropriate place;
if (received all data) {
Copy(all data, Shmem),

signal(read result sem, 1),

53

54
At the client tasks of the gather operation:
wait (read header sem);
Copy(data, Shmem),
if (all local data are written to shared memory) {

Send(/ocal pvmd, TM_GATHERB, 0),

By using IP Broadcast or IP Multicast mechanism. T3 will be the time used to
send pvmd-list to other pvimds using IP broadcast or IP multicast mechanism.
From the algorithm, let
T, be the time used to send the number of TID in TID-list (request).
T, be the time used to read TIDs list form the shared memory.
Ts be the time used to send the pvmd-list to other pvmds using IP
broadcasting or IP multicasting mechanism.
T, be the time used by all local tasks to copy their data to the shared
memory.
Ts be the time used by all client pvimds to send data to root pvmd.
Te be the time used by root task to read data from shared memory.
We assume that n, = m/p for ¥ i, T,’s can be expressed as:
T, = t,+st,

T, = smt,

Ts = to+ spies
T, = d(mp)t,
Ts = (p-1) te2 + d(m - (mp))tc>
Te = dmt,
Therefore, the time used by gather operation using IP broadcasting or IP

multicasting mechanism can be modeled as:

Teather1 = Tg+ Ty +To+Ts+Ta+Ts+ T 4.3)

Reduce

All tasks of the reduce operation first obtains TIDs list of the specified group
from group server and copies them to the shared memory. Then, the root task sends
the request message for the reduce operation (TM_REDUCEA) to local pvmd (root
pvmd) along with the number of TIDs in the group. Root pvind reads the list of TIDs
from the shared memory, sorts them and creates the pvind-list. Then, it sends the
pvind-list to other pvmds using IP broadcasting or IP multicasting mechanism
(DM_REDUCEA message). Each pvmd performs a reduction operation to all local
data of its tasks when it receives the TM_REDUCEB message indicating that all local
data are ready in the shared memory and sends the final result backward to the root

pvind (by DM_REDUCEC message). When the data reach the root pvind, the root

55

pvmd performs the global computation operation on the received data and places the
result in the shared memory to be read by the root task.

The tasks can determine whether all data of local tasks are written in the
shared memory by examining the shared memory header which is initialized to the
number of local tasks by local pvind. After the task writes its data, it decreases a
count in the shared memory header. After the decrement, if the shared memory header
is 0, the task will know that all data of local tasks are written in the shared memory.

The algorithm of the reduce operation using shared memory and IP

broadcasting or IP multicasting mechanism is as follows:

Assume:

GcS.

datd' is the data of task /.

result is the buffer for result of reduce operation.

Shmem is the shared memory.

Copy(src, dst) is the function to copy from src to dst.

GetTidList(gname) is the function to get list of TIDs in group gname
from group server.

wait(sem) is the function to wait until the value of semaphore sem > 1
then subtract by 1.

Bcast(msg type, msg) is the function to broadcast message type

56

57
msg type along with message msg to all pvmds using IP-
broadcasting or IP-multicasting mechanism.

signal(sem, n) is the function to increase the value of semaphore sem
by n.

Send(dst, msg type, msg) is the function to send the message type
msg_ type along with message msg to destination dist.

Recv(msg) is the function to receive message msg.

GlobalFunc(datal, data2) is the global computation function performs
on datal and data2 and place the result in datal.

read header sem is a semaphore initialized to 0.

read result sem is a semaphore initialized to 0.

At the root task of the reduce operation:
G = GetTidList(gname),
Copy(G, Shmem),
Send(local pvmd , TM_REDUCEA, |GY),
wait (read header sem);
Copy(data', Shmem);,
if (all local data are written to shared memory)

Send(/ocal pvmd, TM_REDUCEB, 0),

wait (read result sem);

Copy(Shmem, result);

At the pvmds:
TM_REDUCEA:
Copy(Shmem, G),
Sort G and create pvmd-list;
Bcast(DM_REDUCEA, pvmd-list),
TM_REDUCEB:
Copy(Shmem, resulf), /* first data */
for (1 = 1, i < the number of local tasks; i++) {
Copy(Shmem, datafi]), /* data of local task i */
GlobalFunc(result, datafi]); /* Compute reduction function */
}
Send(root pvmd, DM_REDUCEC, resulf),
DM REDUCEA:
Recv(pvmd-list);
signal (read header sem, the number of local tasks);
DM REDUCEC:
Recv(data),

GlobalFunc(result, data),

58

if (received all data) {
Copy(all data, Shmem)),

signal(read result sem, 1),

At the client tasks of the reduce operation:
G = GetTidList(gname);
wait (read header sem),
Copy(data, Shmem),
if (all local data are written to shared memory) {

Send(/ocal pvmd, TM_REDUCEB, 0),

From the algorithm, let
T, be the time used to send the number of TID in TID-list (reduce).
T, be the time used to read TIDs list form shared memory.
T3 be the time used to send the pvmd-list to other pvmds using IP
broadcasting or IP multicasting mechanism.
T, be the time used for all local tasks to copy their data to the shared
memory.

Ts be the time used for all client pvmds to send the local result to the

59

60
root pvmd.
Te be the time used for root task to copy result from shared memory.
Assume that #, = m/p for V i, T,’s can be expressed as:
T, = ty+ sty

T,

smt,,

Ts = t+ spt;

T4 = d(m/p)t,,,
Ts = (p-1)(42 +dt.2)
T6 = dtm

Therefore, the time used by reduce operation using IP-broadcasting or IP-

multicasting mechanism can be modeled as:

Treduce1 = ng +T+Ty+ T3 +Ts+Ts+ Te

Here, we ignore the time for computing the reduce operation on a pair of data

since it depends on the operation.

Comparison to Current Approaches

Now we will compare the timing model of our new algorithms to the existing

collective communication operations algorithms.

Broadcast

The cost of the current algorithm of broadcast operation from equation 3.1 can
be expanded as (assuming », = m/p, Vi):
Tocat = Tg+ (L +smitey) + (P-1)ts2 + s(m-mip)te5)) + (81 + Ster) + (4 + dlep)

+ ((p-1)(t:2 + dt2) + (mlp)(t + dtey)) + dtn,

I

To+ { (mip +3)t, + (s(m + 1) + dmip + V)t +dt | +

{ 2(p-1)t52 + (s(m-mip) + (p-1)d)t.; |
The equation can be separated into two parts. The first part is the cost of
communication within a host and the second part is the cost of communication
between hosts.
The cost of the algorithm of broadcast operation using shared memory and IP
broadcasting or IP multicasting mechanism, from equation 4.1, can be expanded as:

Tbcast-l = Tg + (tsl + s’cl) + (Sm + d)tm + (ts2 + (Sp+d)tc-?) + (m/p)dtm

To+ { b+ sto + (sm + (mip+1)d)tn §+

{ L2 + (spta)t.: }
By comparing Tpcay and Theaq-1, it shows that the cost of communication within
a host is reduced to the cost of memory access. The overhead of communication
between hosts also reduce almost by a factor of (p-1) for IP broadcasting or IP

multicasting mechanism.

61

Scatter

The cost of the current algorithm of scatter operation from equation 3.2 can be
expanded as:
Tscane, = Tg + (m-])(t_” + dtcl) + (m-m/p)(t,g + dfcg) +

(mlp)(t;, +dto;) + dt,

= Ts+{ ((m-1)ytmip)t;; + ((m-1)+mip)dt.; + dt, }+

{ (n-mip)tert (m-mip)at., |
The equation can be separated into two parts. The first part is the cost of
communication within a host and the second part is the cost of communication
between hosts.
The cost of the algorithm of scatter operation using shared memory and IP
broadcasting or IP multicasting mechanism, from equation 4.2, caﬁ be expanded as:
Tsater1 = T + (8 + Stey) + (sm + dm)t, + (42 + (sprdm)icz) +

d(m/p)t.,

Il

To+ { t+ St + (sm + dm + d(mip))t, }+

{ >+ (sp +dmt; }
By comparing Tsater, and Tscater1, it shows that the cost of communication

within a host is reduced to the cost of memory access. The overhead of

62

communication between hosts also reduce from (m - m/p) to 1 for IP broadcasting or

[P-multicasting mechanism.
Gather

The cost of the current algorithm of gather operation from equation 3.3 can be
expanded as:
Tgaum = Tg + (m/p-l)(tsl + dtcl) + (m-m/p)(tsg + dtcg) +

(m'l)(tsl + dtcl) + dtm

= Tg+ { (m+mip-2)t;; + (m+mip-2)dt.; + dt,, } +

{ (m-mip)t;; + (m-mip)di.; }

The equation can be separated into two parts. The first part is the cost of
communication within a host and the second part is the cost of communication
between hosts.

The cost of the algorithm of gather operation using shared memory and IP
broadcasting or IP multicasting mechanism, from equation 4.3, can be expanded as:

Teaner-1 = Tg + (61 + Stey) + smiy, + (12 + spt2) + d(mip)t, +

((p-1)ts2 + d(m - mip)t,;) + dmt,,

= Tyt { ty+ st + (sm+ (m+ mip)dytn J+

{ -1+ (sp+(m-mip)d)rc, |

63

64
By comparing Tgater, and Tgather-1, it shows that the cost of communication
within a host is reduced to the cost of memory access. The overhead of
communication between hosts also reduce from (m-m/p) to (p-1) for IP broadcasting

or IP multicasting mechanism.
Reduce

The cost of the current algorithm of reduce operation from equation 3.4 can be
expanded as:
Tteduce = ng + (m/p'l)(tsl + dtcl) + (m/p'l)(tsl + dtcl) + (’sl + dtcl) +

-1tz + dteo) + (p-1)(t; + dlty) + dit,

= mT, + { 2mip+p-2)t;, + 2mip+p-2)dt.; + dt,, } +

{ -1y + (p-1ydt.;

The equation can be separated into three parts. The first part is the cost of
communication with the group server. The second part is the cost of communication
within a host. The third part is the cost of communication between hosts.

The cost of the algorithm of reduce operation using shared memory and IP
broadcasting or IP multicasting mechanism, from equation 4.4, can be expanded as:

Treduce1 = Tg + (s + Ster) + smiy, + (L, + spt.y) + d(mip)t, + (p-1) (252 + dt.)

+ dt,,

= To+ { 1+ st + (sm+ (mip+)dt) +

{ Ptz + (sp + (p-1)ad)te; }
By comparing Treduce, and Treduce-1, 1t Shows that the cost of communication with
the group server is reduced from m to 1. This will promote the better performance
because having every task contacts a group server makes the bottleneck situation. The

cost of communication within a host is reduced to the cost of memory access.

65

CHAPTER V

EXPERIMENTAL RESULTS

The new approaches presented in the previous section were implemented in C
language and incorporated into PVM version 3.3.10. Sixteen Sun SparcStation S
workstations were used for our experiments. The machines were not dedicated to the
tests. Therefore, there were some additional loads from other users. The message
sizes were up to 2048 bytes. The number of tasks running on each host is up to 2
tasks because more tasks running on the same uniprocessor machine are not
preferable, in general, for parallel computation.

Each graph shows the results collected by running the program for different
problem sizes. Each test was repeated 100 times in different times of the day to
account for various load situations and the average was computed for better accuracy
in the reported results. The results obtained are compared to the result of the current
approaches of CCL in PVM. Note that the focus of our comparison is the relative
performances improvements of the proposed approaches to the current ones, rather
than the observation of absolute timings of the approaches.

Figure 16 shows the time in millisecond used by broadcast operation plotted
against the number of machines in the configuration with 1 and 2 tasks per machine

and data sizes of 4, 256, 512 and 2048 bytes.

66

Figure 16.

1 task per processor, data size = 4 bytes

800.00
g 60GM00 « ---@- - - Current
E 400.00 —0— Pmutticast
E 200.00 1 —on— P broadcast

0.00F

"
-+

1 4 8 12

Number of processors

16

1 task per processor, data size = 256 bytes

800.00

Time (msec)
H
3
8

0.00F . . .

1 4 8 12

Number of processors

1

16

---@ -- Current
—— IP mutticast
—an— IPbroadcast

1 task per processor, data size = 512 bytes

800.00

- ‘. :
g 600.00 + e — ---@ - - Current
E 40000 { —O0— IPrutticast
E 200.00 | —an— IPbroadcast
0.00 & = : '
q 4 8 12 16

Number of Processors

Time Used by Broadcast Operation of Different Data Sizes and Different

Numbers of Tasks per Processor.

67

Figure 16—Continued

0.00 £

4 8 12

Number of processors

16

1 task per processor, data size = 2048 bytes
1000.00
s 800.00 +
¢ 60000 | ---@ - - Current
E —O0— IPrmutticast
@ 400.00 |
£ —n— IPbroadcast
= 200.00 '
000 & - : - !
1 4 8 12 16
Number of processors
2 tasks per processor, data size = 4 bytes
1000.00
—~ 800.00
H ---@ - - Current
g o0 IP multicast
= 40000 —0— F’rnu icas
IP broadcast
E 200.00 —h— roadcas
ooo & . - !
1 4 8 12 16
Number of processors
2 tasks per processor, data size = 256 bytes
1000.00
< 800.00
g 600.00 ool G Currer‘ﬂ
< 40000 —D— IPmulticast
é 200.00 —a— |IPbroadcast

68

Figure 16—Continued

2 tasks per processor, data size = 512 bytes
1000.00
5 800.00 -
2 50000 | ---@--- Current
E —O0— IPmulticast
o 400.00 1
E —an— IPbroadcast
= 200.00
0.00F . |
1 4 8 12 16
Number of Processors
2 tasks per processor, data size = 2048 bytes
1000.00 -
®- L
— 800.00 - -
m s
¢ 600.00 | . .-® ---@--- Current
lf. . —O0— P multicast
£ —n— P broadcast
= 200.00
0.00 E A
1 4 8 12 16
Number of processors

One might expect that the timing of our broadcast algorithms should remain
constant as a function of number of hosts since IP broadcast mechanism is used.
However, as can be seen from the plots in Figure 16, the timings of the new broadcast
algorithms increase as a function of the number of machines. It is due to the fact that
every task still needs some information from the group server, which creates a

congestion a the group server. By having every task contact the group server, more

69

time is consumed when the number of tasks grow up. From the graphs, it is clear that
the IP multicasting and IP broadcasting approach times are faster than the current
approach.

Figure 17 shows the time in millisecond used by scatter operation plotted
against the number of machines in the configuration with 1 and 2 tasks per machine

and data sizes of 4, 32 and 64 bytes.

1 task per processor, data size = 4 bytes
1000.00
-. °
5 800.00 + a-o-C
® 50000 1 ---@-- Current
E —0— Pmutticast
o 400.00 +
= —an—IPbroadcast
= 200.00 -
0.00 & : ,A , !
1 4 8 12 16
Number of processors
1 task per processor, data size = 32 bytes

1000.00
—~ 800.00 +
§ 600.00 | ---&--- Current
£ —0— IPmulticast
o 40000 +
E —aA— IPbroadcast
= 200.00

0.00 & . -+ !
1 4 8 12 16
Number of processors

Figure 17. Time Used by Scatter Operation of Different Data Sizes and Different
Numbers of Tasks per Processor.

70

Figure 17—Continued

Time (msec)

1000.00
800.00 +

1 task per processor, data size = 64 bytes

---@--- Current

—O0— IP multicast
—an—IPbroadcast

600.00 +
400.00 ¢

1 4 8 12 16

Number of Processors

Time (msec)

2 tasks per processor, data size = 4 bytes

1200.00
1000.00 -
800.00
600.00 -
400.00 -
200.00 A

0.00 B !
1 4 8 12 16

---@ -- Current
—0— IP multicast
—a— [P broadcast

Number of processors

Time (msec)

2 tasks per processor, data size = 32 bytes

1200.00
1000.00
800.00
600.00
400.00
200.00

0.00 & ; - {
1 4 8 12 16

-.-@- -- Current
—0— IP multicast
—ar— [P broadcast

Number of processors

71

Figure 17—Continued

It is clear that the IP multicasting and IP broadcasting approach times are

2 tasks per processor, data size = 64 bytes

1500.00
1000.00
500.00

Time (msec)

0.00

4 8 12

Number of Processors

16

- --@- - - Current
—0— IP multicast
—a—IPbroadcast

faster than the current approach.

Figure 18 shows the time in millisecond used by gather operation plotted

72

against the number of machines in the configuration with 1 and 2 tasks per machine

and data sizes of 4, 256, 512 and 1024 bytes.

Figure 18.

150.00
100.00
50.00

Time (msec)

000
oo

4 8 12

Number of processors

1 task per processor, data size = 4 bytes

---& -- Current

—O0— IP multicast
—a— IPbroadcast

Time Used by Gather Operation of Different Data Sizes and Different

Numbers of Tasks per Processor.

Figure 18—Continued

Time (msec)

1 task per processor, data size = 256 bytes

140.00
120.00
100.00
80.00
60.00
40.00
20.00
0.00

---@--- Current
—0— IP multicast
—a— IPbroadcast

1 4 8 12 16

Number of processors

Time (msec)

1 task per processor, data size = 512 bytes

140.00
120.00

100.00
80.00
60.00
40.00

---@--- Current

—an—IP broadcast

—O0— P mutticast

20.00
0.00

1 4 8 12 16

Number of Processors

Time (msec)

1 task per processor, data size = 1024 bytes

140.00
120.00 .

100.00
80.00 - 2
60.00 A
40.00

---@--- Current
—0— IP mutticast
—n— IPbroadcast

20.00
0.00 + - ~ !
1 4 8 12 16

Number of processors

73

Figure 18—Continued

Time (msec)

2 tasks per processor, data size = 4 bytes

300.00

250.00
200.00 PO
150.00 1 R
100.00 | s

50.00 { .

0.00 ~ - - ;
1 4 8 12

Number of processors

16

---@- -- Current
—O0— IP multicast
—a— IPbroadcast

Time (msec)

2 tasks per processor, data size = 256 bytes

300.00

250.00
200.00 & -0
150.00
100.00 Py
50.00 |
0.00

1 4 8 12

Number of processors

16

---@--- Current
—0— IP multicast
—a— IPbroadcast

Time (msec)

2 tasks per processor, data size = 512 bytes

300.00

250.00 L o

200.00 o
150.00 | -
100.00 | PR

50.00 | .

1 4 8 12

Number of Processors

16

---@--- Current
| —O0— P mutticast
| ———IP broadcast

74

Figure 18—Continued

It is clear that the IP multicasting and IP broadcasting approach times are

Time (msec)

2 tasks per processor, data size = 1024
bytes

300.00
200.00
100.00

0.00

|0- Current
—0— IP mutticast
|—— IP broadcast

1 4 8 12 16

Number of processors

faster than the current approach.

75

Figure 19 shows the time in millisecond used by reduce operation of global

summation plotted against the number of machines in the configuration with 1 and 2

tasks per machine and data size of 4-byte integer.

Global Sum

1 task per processors, datasize = 4 bytes (integer)

200.00

150.00
100.00
50.00

Time (msec)

---@--- Current
—0— IPmulticast
—an— IPbroadcast

0-00.
oo

4 8 12 16

Number of processors

Figure 19.

Time Used by Reduce Operation of Global Summation of 4-byte Integer
Data and Different Numbers of Tasks per Processor.

Figure 19—Continued

Global Sum

2 tasks per processors, datasize = 4 bytes (integer)

500.00
400.00
300.00
200.00
100.00

Time (msec)

0.00 B=

8 12

Number of processors

16

---@-- Current

—0— IP nulticast
—a— IPbroadcast

It is clear that the IP multicasting and IP broadcasting approach times are

faster than the current approach.

76

CHAPTER VI

CONCLUSIONS AND DISCUSSIONS

In this thesis, we developed the new approaches for Collective Communication
Operations in PVM. These approaches intend to reduce the overhead of the
communication over the network by using IP multicasting or IP broadcasting
mechanism and reduce the communication time between tasks and local pvmd by using
shared memory.

The experiments we conducted show that the performances of Collective
Communication Library in PVM over local area network of 16 machines of the new
approaches are about 13%, 35%, 15% and 60% faster than the current approaches for
broadcast, gather, scatter and reduce operation respectively. In practice, actual
performance improvements may differ from these numbers. Non the less, one can
expect reasonable performance gains.

The proposed approaches still promote the problems in flexibility and
portability. The implementation of broadcast or multicast over UDP sockets has a
restriction. The port number of the UDP sockets of all pvmds in the system has to be
the same. It may not be flexible when having a number of users running PVM systems
because the port number of UDP sockets has to be unique for each user and has to be

identical for all pvmds in one system. Next, using the shared memory for

77

communication within a machine has the portability problems because some operating
systems do not provide shared memory facility.

For the future work, it would be nice to provide the ability to use these new
approaches over a wide area network (WAN). The extension of the multicast
mechanism can be applied, as well as the efficient packet-loss recovery algorithm over
WAN. Because the broadcast and multicast over UDP sockets are not reliable, the

performance of the operations will also depend on the packet-loss recovery algorithm.

78

Appendix A

Source Code of Broadcast-Receive Protocol for Pvmd

79

80

/*
* New functions added to pvmd.c to perform IP multicast or IP
* broadcast operation.

*

*/

& bcastmessage ()

/
*
* broadcast a message. Make destination to broadcast
address or

i multicast address.
i - then put packet to bcast_opq queue by pkt to bcast().
et - set pp->pk dst to 0. (for broadcast address).

* - the message is sent by bcastoutput().

% - the message is received by netinput().

*

7

int
bcastmessage (mp)
struct mesg *mp;
{
struct frag *fp;
struct pkt *pp;
int ff = FFSOM;
int dst = mp->m dst = 0;

if (debugmask & PDMMESSAGE) {
sprintf (pvmtxt, "bcastmessage() dst t%x code %s len

%d\n", -
dst, pvmnametag(mp->m cod, (int *)0), mp-
>m_len);
pvmlogerror (pvmtxt) ;
)
/*
L add a frag to empty message to simplify handling
*/
if ((fp = mp->m frag->fr link) == mp->m frag) ({
fp = fr new(MAXHDR) ;
fp->fr dat += MAXHDR; :
LISTPUTBEFORE (mp->m frag, fp, fr link, fr rlink);
}
/*
* route message
*/

/* to remote */
/* packetize frags */

do {

pp = pk new(0);
if (ff & FFSOM) {

pp->pk_cod = mp->m _cod;
pp—->pk enc = mp->m enc;
pp—>pk:wid = mp->m:wid;
#ifdef MCHECKSUM
pp->pk_crc = mesg_crc(mp);
#else
pp->pk_crc = 0;
#endif
)
pp->pk_buf = fp->fr buf;
pp->pk _dat = fp->fr dat;
pp->pk max = fp->fr max;

pp->pk_len = fp->fr:len;
da_ref (pp->pk buf);
if (fp->fr link == mp->m fragqg)

ff |= FFEOM;
pp->pk_src = mp->m src;
pp->pk_dst = dst;
pp->pk_flag = ff;
ff = 0;

if (mp->m flag & MM PRIO) {
if (debugmask & (PDMMESSAGE|PDMAPPL))
pvmlogerror ("bcastmessage () PRIO
message to host? (scrapped)\n");

} else {
pkt _to bcast(pp):
}

) while ((fp = fp->fr link) != mp->m frag);

bail:

mesg_unref (mp) ;

return 0;
)
o i/
/* pkt to bcast()
*
k3 Add data pkt to bcast queue (bcast opq).
e If data plus header length is greater than our host mtu,
* refragment into >1 pkts.
*
¥ We have to pay special attention to the FFSOM packet - make it
e shorter so there's room to prepend the message header later.
*
i/
int

pkt to_bcast (pp)
struct pkt *pp;
{

81

int maxl

ourudpmtu - DDFRAGHDR;

int 1lim = pp->pk flag & FFSOM ? maxl - TTMSGHDR : maxl;

pp->pk _flag = (pp->pk flag & (FFSOM|FFEOM)) | FFDAT;
if (debugmask & PDMPACKET) ({

len %d\n",

sprintf (pvmtxt, "pkt to bcast() pkt src t%x dst t%x f %s

pp->pk_src, pp->pk_dst, pkt flags(pp-

>pk _flag), pp->pk_len);

}

pvmlogerror (pvmtxt) ;

if (pp->pk_len <= 1lim) {

}

else {

{

$d\n", n);

#ifdef

#endif

pp->pk _ack = hosts->ht cnt;

bcast txseq = NEXTSEQNUM(bcast txseq);
pp->pk_seq = bcast_txseq;

LISTPUTAFTER (bcast opq, pp, pk_tlink, pk trlink);

struct pkt *pp2;

char *cp = pp->pk dat;
int togo;

int n;
int ff
int fe

pp—>pk flag & FFSOM;
pp->pk_flag & FFEOM;

for (togo = pp->pk len; togo > 0; togo -= n) {
n = min(togo, 1llim);
if ((debugmask & PDMPACKET) && togo != pp->pk len)

sprintf (pvmtxt, "pkt to_bcast() refrag len

pvmlogerror (pvmtxt) ;

)
STATISTICS
stats.refrag++;

pp2 = pk_new(0);
pp2->pk_src = pp->pk_src;
pp2->pk dst = pp->pk dst;

if (n == togo)

ff = fe;
pp2->pk flag = ff | FFDAT;
ff = 0;

1llim = maxl;

pp2->pk cod = pp->pk_cod;
pp2->pk_enc = pp->pk_enc;
pp2->pk_wid = pp->pk_wid;
pp2->pk crc = pp->pk_crc;
pp2->pk_buf = pp->pk buf;
pp2->pk_max = pp->pk max;
pp2->pk _dat = cp; B

pp2->pk_len = n;
da_ref (pp->pk buf);

82

cp += n;

pp->pk_ack = hosts->ht cnt;
bcast txseq = NEXTSEQNUM(bcast txseq);
pp->pk seq = bcast txseq;

LISTPUTAFTER (bcast opq, pp2, pk tlink, pk trlink);

}
pk_free(pp):
}

return 0;
}
/*
s bcastoutput ()
*
e Broadcast packets out the wire to remote pvmds.
*/
bcastoutput ()

{

struct timeval tnow, tx, tout;
struct pkt *pp, *pp2;

struct hostd *hp;

char *cp;

int len;

int cc;

char dummy[DDFRAGHDR] ;

struct sockaddr in sin;

gettimeofday(&tnow, (struct timezone*)O0);

tout.tv_sec = MCASTMAXTIMEOUT/1000000;
tout.tv _usec = MCASTMAXTIMEOUT%10000000;

for (pp=bcast_txg->pk link; pp != bcast_txq; pp=pp->pk_link)

if (debugmask & PDMMESSAGE) ({
pvmlogerror ("bcastoutput () Check bcast_txq

queue.\n") ;

)
if (pp->pk_ack == 0) { /* recv all ACKs */

if (debugmask & PDMMESSAGE) {
sprintf (pvmtxt, "bcastoutput() All ACKs

received for pkt %d.\n",

pp->pk _seq);
pvmlogerror (pvmtxt) ;

}

LISTDELETE (pp, pk_link, pk_rlink);

i/

{

83

pk _free(pp);
pp = bcast txg; /* reset pp for next loop */

}

else { /* Check for time out */
TVXSUBY (&tx, &tnow, &pp->pk at);
if (TVXLTY (&tout, &tx)) | /* Exceed time out,

then retry */

sprintf (pvmtxt, "bcastoutput() pkt %d exceed

timeout.\n",
pp->pk_seq);
pvmmlogerror (pvmtxt) ;

LISTDELETE (pp, pk_link, pk rlink);

pp->pk_ack = hosts->ht cnt:; /* reset pk ack
L2

LISTPUTBEFORE (bcast opq, pp, pk_tlink,

pk _trlink);
pp = bcast _txqg; /* reset pp for next loop */

}

if (bcast_opg->pk_tlink == bcast opq)

return 0; /* No pkt in queue */
/*
* send any pkts whose time has come
/f
while ((pp = bcast opg->pk _tlink) != bcast_opq

/**&& TVXLTY (&pp->pk_rtv, &tnow)**/) {

Cp = pp->pk_dat;
len = pp->pk len;
if (pp->pk flag & FFSOM) {
cp -= TTMSGHDR;
len += TTMSGHDR;
if (cp < pp->pk_buf) ({
pvmlogerror ("bcastoutput () no headroom for
message header\n");
return O;
}
pvmput32 (cp, pp->pk_cod);
pvmput32 (cp + 4, pp->pk_enc);
pvmput32(cp + 8, pp->pk_wid);
pvmput32(cp + 12, pp->pk crc)

14

)
cp -= DDFRAGHDR;

len += DDFRAGHDR;

/*

84

* save under packet header, because databuf may be shared.

* we don't worry about message header, because it's only at the

* head.
i/
BCOPY (cp, dummy, sizeof (dummy));
if (cp < pp->pk_buf) {
pvmlogerror ("bcastoutput () no headroom for packet
header\n") ;
return 0;

)

if (debugmask & PDMPACKET) {
sprintf (pvmtxt,
"netoutput () pkt to bcast src t%x dst t%x f %s len
%d seq %d ack %d retry %d\n",
pp->pk_src, pp->pk dst, pkt flags(pp-

>pk flag),
pp->pk_len, pp->pk_seq, pp->pk_ack, pp-
>pk_nrt);
pvmlogerror (pvmtxt) ;
)
pvmput32 (cp, pp->pk dst);
pvmput32(cp + 4, pp->pk _src);
pvmputlé(cp + 8, pp->pk seq);
pvmputlé(cp + 10, pp->pk ack);
pvmput32 (cp + 12, 0); /* to keep purify
happy */
pvmput8 (cp + 12, pp->pk_flag);
/*
* Select Multicast Address or Broadcast Address here
*
&/

BZERO((char *)&sin, sizeof(sin));
sin.sin_ family = AF_INET;
sin.sin port = EXPR FIXED PORT;

sin.sin_addr.s_addr_= ineE_addr(EXPR_MCAST_ADDR);/*
multicast address */

if ((cc = sendto(netsock, cp, len, O,
(struct sockaddr*)é&sin, sizeof(sin)))

&& errno !'= EINTR
&& errno !'= ENOBUFS
#ifdef IMA_LINUX
&& errno != ENOMEM
#endif
) |
pvdogperror ("bcastoutput () sendto");
#if defined(IMA SUN4SOL2) || defined(IMA X86S0L2) ||
defined (IMA SUNMP) || defined(IMA UXPM)
/* life, don't talk to me about life... */

if (errno == ECHILD)

85

86

pvmlogerror ("this message brought to
you by solaris\n");

else
#endif
pvmbailout(0) ;
)
#ifdef STATISTICS
if (cc == -1)
stats.sdneg++;
else
stats.sdok++;
#endif

TVCLEAR (&pp->pk_at) ;

TVXADDY (&pp->pk_at, &pp->pk_at, &tnow);
LISTDELETE (pp, pk_tlink, pk trlink);
LISTPUTBEFORE (bcast txq, PP, pk_link, pk_rlink);

return 0O;

}

return 0;

(s L3/
A netinput()
*
¥ Input from a remote pvmd.
* Accept a packet, do protocol stuff then pass pkt to netinpkt().
*/ -
int
netinput ()
{
struct sockaddr_in osad; /* sender's ip addr */
struct sockaddr in sin;
int len;
int oslen; /* sockaddr length */

struct timeval tnow;
struct pkt *pp, *pp2;
struct hostd *hp;
char *cp:

int sqgn;

int aqn;

int ff;

int dst;

int src;

int hh;

int already:;

struct timeval tdiff; /* packet rtt */
int rttusec;

int cg;

/*
* alloc new pkt buffer and read packet
*/

pp = pk_new(ourudpmtu) ;
if (TDFRAGHDR > DDFRAGHDR)

pp->pk_dat += TDFRAGHDR - DDFRAGHDR;

oslen = sizeof(osad);

if ((pp->pk_len = recvfrom(netsock, pp->pk_dat,
pp->pk max - (pp->pk dat - pp->pk buf),

0, (struct sockaddr*)&osad, &oslen)) == -1) {
if (errno !'= EINTR)
pvmlogperror ("netinput () recvfrom(netsock)");

goto scrap;

#if O
/* drop random packets */
if (!'(random() & 3)) {
pvmlogerror ("netinput () oops, dropped one\n");
goto scrap;
)
#endif
#ifdef STATISTICS
stats.rfok++;
#endif

cp = pp->pk dat;

pp->pk_len -= DDFRAGHDR;

pp->pk _dat += DDFRAGHDR;

dst = pp->pk_dst pvmget32 (cp) ;

src = pp->pk src = pvmget32(cp + 4);
sgqn = pp->pk _seq = pvmgetl6(cp + 8);
agn = pvmgetlé(cp + 10);

ff = pp->pk _flag = pvmget8(cp + 12);
if (ff & FFSOM) ({
if (pp->pk_len < TTMSGHDR) ({
sprintf (pvmtxt, "netinput/()
too short\n",
src, dst);
pvmlogerror (pvmtxt) ;
goto scrap;
}
cp += DDFRAGHDR;
pp->pk cod = pvmget32(cp);

= (
pp->pk_enc = pvmget32(cp + 4);
pp->pk _wid = pvmget32(cp + 8);
pp->pk crc = pvmget32(cp + 12);

pp—->pk_len -= TTMSGHDR;
pp->pk_dat += TTMSGHDR;

SOM pkt src t%x dst

t%x

87

88

/*
* make sure it's from where it claims

Y/

hh = (src & tidhmask) >> (ffs(tidhmask) - 1);

if (hh < 0 || hh > hosts->ht last || !(hp = hosts-

>ht hosts[hh])
#ifndef IMA LINUX
/*
* XXX removing these lines is a hack and reduces security
between
* XXX pvmds somewhat, but it's the easiest fix for Linux right
now.
*/
|| (osad.sin_addr.s_addr != hp->hd sad.sin_addr.s_addr)
'l (osad.sin port != hp->hd sad.sin _port)
ffendif
I
sprintf (pvmtxt, "netinput() bogus pkt from %s\n",
inadport decimal (&osad)) ;
pvmlogerror (pvmtxt) ;
goto scrap;

}

if (debugmask & PDMPACKET) {
sprintf (pvmtxt,
"netinput () pkt from %s src t%x dst t%x f %s len %d seqg
$d ack %d\n",
hp->hd name, src, dst, pkt flags(ff), pp-
>pk len, sgn, agn);
B pvmlogerror (pvmtxt) ;

)
if (!dst) { /* This is a broadcast packet */
if (ff & FFACK) {

if (debugmask & PDMMESSAGE) ({
sprintf (pvmtxt, "netinput() recv ACK pkt for
pkt %d.\n",
pp->pk_ack);
pvmlogerror (pvmtxt) ;
}

for (pp2 = bcast txg->pk link; pp2 != bcast txg;
pp2 = pp2->pk link) - h -
if (pp2->pk_seq == agn) {
if (pp2->pk _ack > 0)
pp2->pk _ack--;
else
sprintf (pvmtxt, "netinput() Too
many Ack for pkt %d\n",
pp-
>pk seq);

89

break;
}
goto scrap:;
)
/*
* send an ACK for the bcast pkt
*/

pp2 = pk new(DDFRAGHDR) ;/* XXX could reref a dummy

databuf here */

ACK */

pp2->pk dat += DDFRAGHDR;
pp2->pk dst = 0; /* set dst=0 for bcast pkt

pp2->pk src = pvmmytid | TIDPVMD;
pp2->pk flag = FFACK;

pp2->pk nrt = 0;
pp2->pk seq = 0;
pp2->pk ack = sgn; /* put sequence

number in pk ack */

received */

header\n") ;

happy */

%$s.\n",

/* Send ack pkt here, if myself assume ack pkt can be

cp = pp2->pk dat;
len = pp2->pk len;

cp —-= DDFRAGHDR;
len += DDFRAGHDR;

if (cp < pp2->pk_buf) {
pvmlogerror ("netinput () no headroom for ack pkt

goto afterack;
}
pvmput32 (cp, pp2->pk dst);
pvmput32 (cp + 4, pp2->pk_src);
pvmputl6é(cp + 8, pp2->pk seq);
pvmputl6 (cp + 10, pp2—>p§_ack);
pvmput32(cp + 12, 0); /* to keep purify

pvmput8 (cp + 12, pp2->pk flag):
BZERO((char *)é&sin, sizeof(sin));
sin.sin family = AF_INET;

sin.sin port = EXPR FIXED PORT;

sin.sin:addr.s_addr_= osad.sin_addr.s_addr;

if (debugmask & PDMMESSAGE) {
sprintf (pvmtxt, "netintput() Send Ack pkt to

inet ntoa(sin.sin_addr));
pvmlogerror (pvmtxt) ;

if ((cc = sendto(netsock, cp, len, O,

(struct sockaddr*) &sin, sizeof(sin)))

= -]
&& errno !'= EINTR
&& errno !'= ENOBUFS
#ifdef IMA LINUX
~ && errno != ENOMEM
#endif
)|
pvmlogperror ("netinput () sendto”);
#if defined(IMA SUN4SOL2) || defined(IMA X86SOL2) ||
defined(IMA_SUNﬁP) || defined(IMA UXPM)
/* life, don't talk to me about life... */
if (errno == ECHILD)

pvmlogerror ("this message brought to
you by solaris\n");
else
#endif
pvmbailout (0) ;

afterack:
if (SEQNUMCOMPARE (bcast_rxseq, sqn)) { /* sgqn >
bcast rxseq ? */

if (debugmask & PDMMESSAGE) {
sprintf (pvmtxt, "netintput() Going to consume
pkt, bcast rxseg=%d, sgn=%d.\n",
bcast rxseq, sqn);
pvmlogerror (pvmtxt) ;

}

bcast_rxseq = sqn; /* Update bcast rxseq

*/

bcast txseq bcast rxseq;
/* Consume pkt - Make pk dst of this packet to tid
of this pvmd. */ -
already = 0;
for (pp2=bcast_rxqg->pk link; pp2 '= bcast rxq;
pp2=pp2->pk link)
if (pp2->pk_seq == sqn) {
already = 1;
break;
)
if ('already)
LISTPUTBEFORE (pp2, pp, pk_link, pk_rlink);

} /* end if -- (already received message) */
else
goto scrap;

/* consumes pkt from reorder q */

while (pp = bcast rxq->pk link,

90

reorder g\n");

}

91

pp !'= bcast _rxqg) {

if (debugmask & PDMMESSAGE) ({
pvmlogerror ("netinput () Consuming pkts from

}

LISTDELETE (pp, pk_link, pk rlink);
pp->pk _dst = pvmmytid | TIDPVMD;
netinpkt (hp, pp); '

return 0;
) /* End if broadcast packet */

if ((ff &

(FFFIN|FFACK)) == (FFFIN|FFACK)) {

if (hh == hosts->ht master) {

/*

* FIN|ACK from master means we should bailout

*/

halting\n");

(%s)\n",

if (runstate == PVMDPRIME) ({
if (debugmask & PDMSTARTUP)
pvmlogerror ("work () PVMDPRIME

exit(0);

]
sprintf (pvmtxt, "netinput() FIN|ACK from master

hp->hd _name) ;
pvmlogerror (pvmtxt) ;
runstate = PVMDHALTING;

} else {

/*

* FIN|ACK from slave means it croaked

*/

}

sprintf (pvmtxt, "netinput() FIN|ACK from %s\n",
hp->hd name) ;
pvmlogerror (pvmtxt) ;
hd_dump (hp) ;
hostfailentry (hp) ;
clear opq of((int) (TIDPVMD | hp->hd hostpart));
if (hp->hd hostpart) {
ht delete(hosts, hp):
if (newhosts)
ht delete(newhosts, hp):

}

goto scrap;

}
/*

* done with outstanding packet covered by this ack

*/

if (ff & FFACK) ({

for (pp2 = hp->hd opg->pk_link; pp2 '= hp->hd opq; pp2 =

pp2->pk_1link)

if (pp2->pk_seq == aqn) {
if (pp2->pk_flag & FFDAT) {
if (pp2->pk nrt == 1) {

timezone*)0);

>pk_at);

+ tdiff.tv_usec;

const */

DDMAXRTT*1000000)
DDMAXRTT*1000000;

* 1000000 + hp->hd rtt.tv _usec);

gettimeofday(&tnow, (struct

TVXSUBY (&tdiff, &tnow, &pp2-
rttusec = tdiff.tv_sec * 1000000

if (rttusec < 1)

rttusec = 1000; /* XXX

else
if (rttusec >

rttusec =
rttusec += 3 * (hp->hd rtt.tv sec

rttusec /= 4;
hp->hd rtt.tv _sec = rttusec /

hp->hd rtt.tv usec = rttusec %

if (pp2->pk_flag & FFFIN) {
finack to host(hp);

LISTDELETE (pp2, pk_link, pk_rlink);

1000000;
1000000;
}
}
)
hp->hd nop--;
pk free(pp2);
break;
}
)
/*
* move another pkt to output g
*/
/*
if ((hp->hd opg->pk_link == hp->hd_opq)
*

if (hp->hd _nop < nopax

&& (hp->hd txg->pk link != hp->hd txq)) {

if (debugmask & PDMPACKET) {
sprintf (pvmtxt,

"netinput () pkt to opg\n");

pvmlogerror (pvmtxt) ;

}

pp2 = hp->hd_txg->pk_link;

LISTDELETE (pp2, pk_link, pk rlink);
TVCLEAR (&pp2->pk_rtv);
TVXADDY (&4pp2->pk rta, &hp->hd rtt, &hp->hd rtt);
TVCLEAR (&pp2->pk _rto);
TVCLEAR (&pp2->pk_at);
pp2->pk nrt = 0;
pp2->pk_hostd = hp;
pp2->pk seq = hp->hd txsegq;
hp->hd txseq = NEXTSEQNUM (hp->hd txseq);
LISTPUTBEFORE (hp->hd opq, pp2, pk _link, pk_rlink);
hp->hd _nop++;
LISTPUTAFTER (opq, pp2, pk tlink, pk_trlink);
}

if (!'(ff & (FFDAT|FFFIN)))
goto scrap;

/*

* send an ack for the pkt

*/

pp2 = pk_new (DDFRAGHDR) ; /* XXX could reref a dummy

databuf here */
pp2->pk dat += DDFRAGHDR;
pp2->pk dst = hp->hd hostpart | TIDPVMD;
pp2->pk_src pvmmytid;
pp2->pk flag = FFACK;
TVCLEAR (&pp2->pk_rtv);
TVCLEAR (&pp2->pk_rta);
TVCLEAR (&pp2->pk_rto);
TVCLEAR (4pp2->pk_at);
pp2->pk _nrt = 0;
pp2->pk hostd = hp;
pp2—>pk:seq = 0;
pp2->pk_ack = sqn;
LISTPUTAFTER(opq, pp2, pk tlink, pk trlink);

if (! (ff & FFDAT))
goto scrap;

/*

* if we don't have it already, put it in reordering g
*/

pp2 = 0;

if (SEQNUMCOMPARE (sqn, hp->hd rxseq))
already = 1; B
else {
already = 0;
for (pp2 = hp->hd _rxq->pk link; pp2 !'= hp->hd_rxq; pp2 =
pp2->pk_link)
if (pp2->pk_seq >= sqn) {
if (pp2->pk seq == sqgn)
already = 1;

94

break;

}
if (already) {
if (debugmask & PDMPACKET) {
sprintf (pvmtxt, "netinput() pkt resent from %s seq
$d\n",
hp->hd name, sqn);
pvmlogerror (pvmtxt) ;
}
goto scrap;

)
LISTPUTBEFORE (pp2, pp, pk link, pk rlink);

/*
* accept pkts from reordering g

*/

while (pp = hp->hd_rxg->pk link,
pp !'= hp->hd_rxq && pp->pk seq == hp->hd rxseq) |
hp->hd_rxseq = NEXTSEQNUM (hp->hd_rxseq) ;
LISTDELETE (pp, pk_link, pk rlink);
netinpkt (hp, pp):
}

return 0;

scrap:
if (pp)
pk_free(pp);
return 0;

}
/4= ===+/

/* Create shared memory and semaphores */

static int
shmem init()
{
long shm key;

I

shm key SHM_ BCAST;
shm hdr = sizeof(int);
shm size = SHM SIZE;

if ((semidl = semget(SEM KEYl, 1, SEM PERMS | IPC_CREAT)) < O
) A
sprintf (pvmtxt, "shmem init(): semget (SEM_KEY1)
error\n");
pvmlogerror (pvmtxt) ;
return -1;

if ((semid2 = semget (SEM KEY2, 1, SEM PERMS | IPC CREAT)) < O
) |
sprintf (pvmtxt, "shmem init(): semget (SEM KEY2)
error\n");
pvmlogerror (pvmtxt) ;
return -1;

}
if ((semid3 = semget(SEM_KEY3, 2, SEM_PERMS | IPC_CREAT)) < 0
) A
sprintf (pvmtxt, "shmem init(): semget(SEM_KEY3)
error\n") ;
pvmlogerror (pvmtxt) ;
return -1;

)

if ((semid4 = semget (SEM KEY4, 2, SEM PERMS | IPC_CREAT)) < O
) |
sprintf (pvmtxt, "shmem init(): semget (SEM KEY4)
error\n") ;
pvmlogerror (pvmtxt) ;
return -1;

}

if ((shmid = shmget (shm_key, shm“size, SHM_PERMS | IPC_CREAT)) <
0) {

return -1;

}

return 0;

/* Remove shared memory and semaphores */

shmem cleanup ()

{

int ce;

if (semidl != -1)
if (cc = semctl (semidl, 0, IPC_RMID, 0) < 0) {
sprintf (pvmtxt, "shmem cleanup() can't remove

seml.\n");
pvmlogerror (pvmtxt) ;
}
if (semid2 != -1)
if (cc = semctl(semid2, 0, IPC_RMID, 0) < 0) {
sprintf (pvmtxt, "shmem cleanup() can't remove

sem2.\n") ;
pvmlogerror (pvmtxt) ;

}
if (semid3 !'= -1)

if (cc = semctl (semid3, 0, IPC RMID, 0) < 0) {
sprintf (pvmtxt, "shmem;cfeanup() can't remove
sem3.\n") ;
pvmlogerror (pvmtxt) ;
}
if (semid4 !'= -1)
if (cc = semctl(semid4, 0, IPC_RMID, 0) < 0) f{
sprintf (pvmtxt, "shmem cleanup() can't remove
semd .\n") ;
pvmlogerror (pvmtxt) ;
}
if (shmid != -1)
if (cc = shmctl(shmid, IPC RMID, (struct shmid ds *) 0) <
0) {
sprintf (pvmtxt, "shmem cleanup() shmctl() - can't
remove shmem.\n");
pvmlogerror (pvmtxt) ;

}

/* === */
/e work ()
*
= The whole sausage
2/
work ()
{

static int lastpinged = 0; /* host that got last keepalive
message */

fd _set rfds, wifds; /* result of select */
/*

fd set efds;
*/ -

int nrdy; /* number of fds ready
after select */

struct timeval tbail; /* time to bail if state =
STARTUP */

struct timeval tping; /* time to send next keepalive
packet */

struct timeval tnow;
struct timeval tout;
struct mesg *mp;
struct task *tp;
struct hostd *hp;

for (; ;) {

/*

96

ok clean up after any tasks that we got SIGCHLDs for

bcastoutput () ;
netoutput () ;

/*
* send keepalive message to remote pvmd once in a while
*/

rfds = wrk rfds;

wfds = wrk wifds;

if (debugmask & PDMSELECT) ({
sprintf (pvmtxt, "work() wrk_nfds=%d\n", wrk nfds);
pvmlogerror (pvmtxt) ;
print fdset ("work() rfds=", wrk nfds, &rfds);
print:fdset("work() wfds=", wrk nfds, &wfds);

)
#if !'defined(IMA PGON) && 'defined(IMA I860)

if ((nrdy = select(wrk_nfds,

#ifdef FDSETISINT
(int *)&rfds, (int *)&wfds, (int *)O,
#else
&rfds, &wfds, (fd_set *)0,
#endif
&tout)) == -1) {
if (errno != EINTR) {

pvmlogperror ("work() select");

sprintf (pvmtxt, " wrk nfds=%d\n", wrk nfds);

pvmlogerror (pvmtxt) ;

print fdset (" rfds=", wrk nfds, &wrk rfds);

print fdset (" wfds=", wrk nfds, &wrk wfds);

sprintf (pvmtxt, " netsock=%d, ppnetsock=%d,
loclsock=%d\n",

netsock, ppnetsock, loclsock);

pvmlogerror (pvmtxt) ;

task dump () ;

pvmbailout (0) ;

97

)

#else /*IMA_PGON/IMA 1860*/

#endif /*IMA PGON/IMA I860*/

/*
& check network socket and local master socket for action
7//
if (nrdy > 0) {
if (FD_ISSET (netsock, &rfds)) {
nrdy--;
netinput();
)
if (loclsock >= 0 && FD ISSET(loclsock, &rfds)) {
nrdy--;
loclconn() ;
}
)
/*
i check tasks for action

&/

Appendix B

Source Code of Pvmd-Task Protocol for Pvimmd

99

100

static int
tid elem compare(i, j)
tid elem *i, *j;
{
return i->tid - j->tid;
}

static int
gatids_compare (i, J)
struct gatids *i, *j;
{
return(i->tid - j->tid);
}

/* */

/* tm bcasta ()
+*

Task wants to broadcast message to all tids in the list.
*

*/

int

tm bcasta(tp, mp)
struct task *tp;
struct mesg *mp;

struct cca *ccap; /* cca descriptor */
char *shmptr; '
int tidccamask = TIDCCA;

int ndst; /* num of dst
tids */

int *dsts; /* dst tids */

int wval;

int tid;

int id, i2, mn;
/* generate new cca local part */
lastcca += TIDFIRSTCCA;

if (lastcca > tidccamask)
lastcca = TIDFIRSTCCA;

/* Unpack request message from task */

ccap = cca_new();

ccap->cc_tid = myhostpart | TIDGID | lastcca;
ccap->cc_type = CC_BCAST;

upkint (mp, &(ccap->cc datasize));

ccap->cc_data = (char *) TALLOC(ccap->cc_datasize, char,

"cc_data");

/*

byteupk (mp, (char *)ccap->cc data, ccap->cc_datasize, 1, 1);
upkint (mp, &(ccap->cc msgtaq));

upkint (mp, &(ccap->cc_roottid));

upkint (mp, &ndst);

dsts = TALLOC (ndst, int, "dsts"):;

* - Copy tid-list from shmem.

*/

/*

if ((shmptr = (char *)shmat(shmid, (char *) 0, 0)) == (char *)
) |
sprintf (pvmtxt, "tm bcasta(): shmat() error\n") ;
pvmlogerror (pvmtxt) ;
goto noguys;
}
/* Copy tid-list from shared memory */
BCOPY ((char *) (shmptr), (char *)dsts, ndst*sizeof(int));
if (shmdt(shmptr) < 0) {
sprintf (pvmtxt, "tm bcasta(): shmdt() error\n");
pvmlogerror (pvmtxt) ;
goto noguys;
)
if (ndst < 1) /* if no dsts then just return */
goto noguys;
/*
* sort dst tids
* XXX we could easily remove duplicates here
* Make list of pvmds and its tids.
*/
gsort((char*)dsts, ndst, sizeof(int), int compare);
ccap->cc_dsts = TALLOC(ndst, struct cc_elem, "tm bcasta"); /%
Cheat, too much space */
ccap->cc_ndst = 0;

* - Add tid of pvmmd of local and remote tids to ccap-
>cc_dsts[].pvmdtid

* - Create its tidlist (ccap->cc _dsts[].tids)

* - send mesg DM BCASTA along with pvmdtids and their tids to local

*

*/

pvmmd first

for (i2 = 0; (il = i2) < ndst;) {

Sl

101

102

n = 0;
tid = dsts[il] & tidhmask;
while (++1i2 < ndst && tid == (dsts[i2] & tidhmask)) ;

ccap->cc_dsts[ccap->cc_ndst] .pvmdtid = tid;
ccap->cc_dsts[ccap->cc_ndst].ntids = i2 - 1il; /* number
of tids */
ccap->cc_dsts[ccap->cc ndst].tids = 0;
ccap->cc_ndst++;
]

/* Create a broadcast message */

mp = mesg new(0);
mp->m dst = 0; /* Broadcast to
all pvmds */
mp->m_cod = DM BCASTA;
pkint (mp, ccap->cc_tid); /* cca address */
pkint (mp, ccap->cc type);
pkint (mp, ccap->cc_datasize);
bytepk (mp, (char *)ccap->cc_data, ccap->cc _datasize, 1, 1);
pkint (mp, ccap->cc_msgtag);
pkint (mp, ccap->cc_roottid);
pkint (mp, ccap->cc ndst);
for (i1=0; il<ccap->cc ndst; il++) |
pkint (mp, ccap->cc dsts[il].pvmdtid);
pkint (mp, ccap->cc dsts[il].ntids);
}

bcastmessage (mp) ;

noguys:
PVM_FREE (dsts) ;

/*
* tag task descriptor with cca desc and send cca back to task
2/

tp->t cca = ccap;

return 0;

/* */

int

tm scattera(tp, mp)
struct task *tp;
struct mesg *mp;

struct cca *ccap; /* cca descriptor */
int tidccamask = TIDCCA;

/*

char *shmptr, *tptr, *dptr;

int ndst; /* num of dst tids */

tid elem *dsts;
char *tdata=0;
int intsize;
int wval;

int tid;

int 11, i2, n;

/* generate new cca local part */
lastcca += TIDFIRSTCCA;

if (lastcca > tidccamask)
lastcca = TIDFIRSTCCA;

/*

* unpack request from message.
B/

ccap = cca new();

ccap->cc_t§d = myhostpart | TIDGID | lastcca;
ccap->cc_type = CC_SCATTER;

upkint (mp, &(ccap->cc datasize));
upkint (mp, &ndst):;

tdata =
upkint (mp, &(ccap->cc msgtag));

upkint (mp, &(ccap->cc_roottid));

dsts = TALLOC(ndst, tid elem, "dsts");

* Copy tid-list from shmem.

*/

if
)

{

((shmptr = (char *)shmat(shmid, (char *) 0, 0))

/* dst tids */
/* temp. data */

(char *) TALLOC(ccap->cc datasize*ndst, char, "tdata");

== (char *) -1

sprintf (pvmtxt, "tm scattera(): shmat() error\n");

pvmlogerror (pvmtxt) ;
goto noguys;

)

/* Copy tid-list from shared memory */

intsize = sizeof (int);
tptr = shmptr;
dptr = (char *)tptr + ndst*intsize;

BCOPY((char *)dptr, (char *)tdata, ccap->cc datasize*ndst);

for (il = 0; il < ndst; il++) {

BCOPY ((char *)tptr, (char *)é&dsts[il].tid,

tptr (char *)tptr + intsize;

intsize);

103

/* dsts[il].data =
>cc_datasize); */
dsts[il] .data =
}

((char *)

dptr + il*ccap-

((char *) tdata + il*ccap->cc datasize);

/* if no dsts then just return */

if (ndst < 1)
goto noguys;

/*

* sort dst tids

* XXX we could easily remove duplicates here

* Make list of pvimds and its tids.

* Send DM MCA messages containing pvmds and tids to local host
first.

*/

gsort((char*)dsts, ndst, sizeof(tid_elem), tid elem compare);

ccap->cc_dsts =
ccap->cc_ndst = 0;

/*

TALLOC (ndst, struct cc_elem, "tm scattera"); /*

Cheat, too much space */

* - Add tid of pvmd of local and remote tids to ccap-

>cc_dsts[].pvmdtid
* - Create its tidlist

(ccap->cc dsts[].tids)

* - send mesg DM BCASTA along with pvmdtids and their tids to local

* pvmmd first

L7

(i2 = 0;
n = 0;
tid
while

for (11 = 12)

< ndst;

) |

= dsts[il] .tid & tidhmask;
(++i2 < ndst && tid ==

(dsts[i2].tid & tidhmask)) ;

ccap->cc_dsts[ccap->cc_ndst] .pvmdtid = tid;

ccap->cc_dsts[ccap->cc_ndst] .ntids =

of tids */

ccap->cc_dsts[ccap->cc_ndst] .tids =

tid elem, "tm scattera");

while (i1 < 1i2) {

i2 - il; /* number

TALLOC((i2 - il),

ccap->cc_dsts[ccap->cc_ndst].tids[n].tid =

dsts[il] .tid;

ccap->cc_dsts[ccap->cc_ndst]

dsts[il++] .data;
}

ccap->cc_ndst++;
}
/* Create scatter message */

mp = mesg new(0);

.tids[n++] .data =

104

*/

105

mp->m dst = (pvmmytid |= TIDPVMD); /* send to local pvmd */
mp->m_cod = DM _SCATTERA;

pkintTmp, ccap:>cc_tid); /* cca address */
pkint (mp, ccap->cc_type);

pkint (mp, ccap->cc_datasize); /* NOTE: no ccap->cc_data

pkint (mp, ccap->cc msgtag);
pkint (mp, ccap->cc_roottid);
pkint (mp, ccap->cc ndst);
for (il1=0; i1<ccap:>cc_ndst; il++) {
pkint (mp, ccap->cc_dsts[il].pvmdtid);
pkint (mp, ccap->cc_dsts[il].ntids);
for (i2=0; i2<ccap->cc_dsts[il].ntids; i2++) |
pkint (mp, ccap->cc_dsts[il].tids[i2].tid);
bytepk (mp, (char *)ccap->cc_dsts[i1].tids[iZ].data,

ccap->cc_datasize, 1, 1);

ccap->cc_dsts[il].tids[i2].data = 0;
}

if (shmdt (shmptr) < 0) {
sprintf(pvmtxt, "tm scattera(): shmdt() error\n");
pvmlogerror (pvmtxt) ;
goto noguys;

)

bcastmessage (mp) ;

noguys:

/*

int

PVM_FREE (dsts) ;
PVM FREE (tdata);

/*
* tag task descriptor with cca desc and send cca back to task
*/

tp->t_cca = ccap;

return 0O;

___________ */

tm gathera(tp, mp)

struct task *tp;

/*

*

*/

struct mesg *mp;

struct cca *ccap:;

char *shmptr, *ptr;

int tidccamask = TIDCCA;
int ndst;

struct gatids *dsts;

int wval;

int tid;

int intsize;

int i1, i2, n;

intsize = sizeof (int);
/* generate new cca local part */
lastcca += TIDFIRSTCCA;

if (lastcca > tidccamask)
lastcca = TIDFIRSTCCA;

/*
* unpack request from message.

L

ccap = cca _new();
ccap->cc_tid = myhostpart | TIDGID
ccap->cc_type = CC_GATHER;

upkint (mp, &(ccap->cc_datasize));
upkint (mp, &ndst);

upkint (mp, &(ccap->cc_msgtag));
upkint (mp, & (ccap->cc roottid));
dsts = TALLOC (ndst, struct gatids,

- read tids from shmem.

if ((shmptr = (char *)shmat (shmid,

/* cca descriptor */

/* num of dst tids */
/* dst tids and inst. */

lastcca;

"dStS") :

(char *) 0, 0)

sprintf (pvmtxt, "tm gathera(): shmat()

pvmlogerror (pvmtxt) ;
goto noguys;

/* Copy tid-list from shared memory */

ptr = shmptr;
for (i1l=0; il<ndst; il++) {

BCOPY ((char *) (ptr), (char *)&dsts[il].tid,

dsts[il].inst = il;
ptr = (char *)ptr + intsize;

) == (char *)

error\n");

intsize);

106

107

if (shmdt (shmptr) < 0) {
sprintf (pvmtxt, "tm gathera(): shmdt() error\n") ;
pvmlogerror (pvmtxt) ;
goto noguys;

}

if (ndst < 1) /* if no dsts then just return */
goto noguys;

sort dst tids

XXX we could easily remove duplicates here

Make list of pvmds and its tids.

Send DM _MCA messages containing pvmds and tids to local host

* * o

first.

*/

gsort ((char*)dsts, ndst, sizeof(struct gatids),
gatids_compare) ;

ccap->cc_dsts TALLOC (ndst, struct cc_elem, "tm gathera"); /*
Cheat, too much space */
ccap->cc_ndst 0;

I

/*
* — Add tid of pvmd of local and remote tids to ccap-
>cc_dsts[].pvmdtid
* - Create its tidlist (ccap->cc dsts[].tids)
* - send mesg DM BCASTA along with pvmdtids and their tids to local
i pvind first

w37
for (i2 = 0; (il = i2) < ndst;) |
n = 0;
tid = dsts[il].tid & tidhmask;
while (++i2 < ndst && tid == (dsts[i2].tid & tidhmask)) ;
ccap->cc_dsts[ccap->cc_ndst].pvmdtid = tid;
ccap->cc_dsts[ccap->cc_ndst].ntids = i2 - il; /* number
of tids */

ccap->cc_dsts[ccap->cc_ndst].tids = TALLOC((i2 - il),
tid elem, "tm gathera");

/* Put insts. in tids for gather/reduce op. */
/* will be used again in dm gatherc() to put data in the
right place */
while (il < i2) {
ccap->cc_dsts[ccap->cc_ndst].tids[n].tid =
dsts[il++].inst;
ccap->cc_dsts[ccap->cc ndst].tids[n++].data = 0;
)

ccap->cc_ndst++;

108

ga_ccap = ccap; /* save for dm gatherc(), will be freed
there */

/* Create Gather message */

mp = mesg new(0);

mp->m dst = (pvmmytid |= TIDPVMD); /* send to local pvmd */
mp->m_cod = DM GATHERA;
pkint (mp, ccap->cc_tid):; /* cca address */
pkint (mp, ccap->cc_type):
pkint (mp, ccap->cc _datasize); /* NOTE: no ccap->cc _data
*/
pkint (mp, ccap->cc msgtag);
pkint (mp, ccap->cc_roottid);
pkint (mp, ccap->cc ndst);
for (i1l=0; il<ccap->cc _ndst; il++) {
pkint (mp, ccap->cc dsts[il].pvmdtid);
pkint (mp, ccap->cc dsts[il].ntids);
}
bcastmessage (mp) ;
noguys:
PVM_FREE (dsts) ;
}
/5 This message send from last task that writes data to shmem
* /i
/* to tell local pvmd to read all data and continue the operation */
/* Local pvmd will read data {(tid, data} and sort them by tid
*/
/* then send only data to root pvmd in order.
*/
int

tm gatherb(tp, mp)
struct task *tp:;
struct mesg *mp;

char *shmptr = 0;
char *ptr;
tid elem *dd=0;

int cc_datasize, cc_type, cc_msgtag;
int intsize;

int inst, ntids;

int i, cc;

int semval;

struct sembuf reset head[l] = {

sem#0 by 1 */

/*

upkint (mp,
upkint (mp,
upkint (mp,
upkint (mp,

if

(debugmask &
sprintf (pvmtxt,

0, -1, IPC NOWAIT }; /* decrease value of

&cc_tid); el
&cc_type)
&cc_datasize);

&cc msgtag);

(PDMMESSAGE)) {

"dm gatherb(): start, cc_datasize =

%d.\n", cc_datasize);
pvmlogerror (pvmtxt) ;

}

((shmptr
)

sprintf (pvmtxt,

= (char *) shmat(shmid, (char *) 0, 0)) == (char *) -

"dm gatherb(): shmat() error\n");

pvmlogerror (pvmtxt) ;
goto done;

}

/* Skip Header

intsize =
ptr =

ptr =
dd =

of tids */
sizeof (int);

shmptr;

BCOPY ((char *)ptr,
(char *)ptr +

TALLOC (ntids, tid elem,

(char *)&ntids, intsize);
(intsize*2);

"tm gatherb - dd");

/* tid and data */

for (i=0;

BCOPY ((char *)ptr,

i++4) |
(char *)é&dd[i].tid,

i < ntids;
intsize);

ptr = (char *)ptr + intsize;
dd[i] .data = 0;
dd[i] .data = (char *) TALLOC(cc_datasize, char,

"dd[i] .data");

BCOPY ((char *)ptr,

ptr
)

(char *)dd[i].data, cc_datasize);
= (char *)ptr + cc_datasize;

/* sort by tid */
gsort ((char*)dd, ntids, sizeof(tid elem), tid_elem compare);

/* this pvmd sends DM_GATHERC to root pvmd */

mp =
mp->m_dst

pvmmd */

mp->m_cod
pkint (mp,
pkint (mp,
pkint (mp,

pkint (mp,

ga_ccap */

pkint (mp,

mesg_new(0) ;

= parent tid; /* send data to root
= DM_GATHERC;
cc_type);
cc_datasize);
cc_msgtag);
ga_index);

/* pvmd index of this pvmd in

ntids);

109

done:

110

for (i=0; 1 < ntids; i++) {
bytepk(mp, (char *)dd[i].data, cc datasize, 1, 1);
}

sendmessage (mp) ;

if (debugmask & (PDMMESSAGE)) ({
sprintf (pvmtxt, "dm gatherb(): After send message.\n");
pvmlogerror (pvmtxt) ;

}

if ((cc = shmdt(shmptr)) < 0) {
sprintf(pvmtxt, "dm gatherb(): shmdt() error\n");
pvmlogerror (pvmtxt) ;

/* reset sem#0 */
if ((cc = semop(semid3, &reset head[0], 1)) < 0) {
sprintf (pvmtxt, "dm_gatherb(): semop(reset_head)

error\n") ;

pvmlogerror (pvmtxt) ;
)

if (debugmask & (PDMMESSAGE)) {
semval = semctl (semid3, 0, GETVAL, O0);

sprintf (pvmtxt, "dm gatherb(): sem#0 reset to %d.\n",
semval) ;
pvmlogerror (pvmtxt) ;
}
if (dd) {

)

for (i=0; i<ntids; i++)
if (dd[i] .data)
PVM FREE(dd[i].data);
PVM FREE (dd) ;
J

return 0;

/*= ===+/
int
tm reducea(tp, mp)
struct task *tp;
struct mesg *mp;
{
struct cca *ccap; /* cca descriptor */

char *shmptr, *ptr;
int tidccamask = TIDCCA;

int ndst; /* num of dst
tids */

int *dsts; /* dst tids */
int wval;
int tid;

int intsize;
int i1, i2, n;

intsize = sizeof(int);
/* generate new cca local part */
lastcca += TIDFIRSTCCA;

if (lastcca > tidccamask)
lastcca = TIDFIRSTCCA;

/*

* unpack request from message.
Y/

ccap = cca_new();

ccap->cc_tid = myhostpart | TIDGID | lastcca;
ccap->cc_type = CC_REDUCE;

upkint (mp, &(ccap->cc datasize));
upkint (mp, &ndst);

upkint (mp, & (ccap->cc msgtag)):
upkint (mp, &(ccap->cc roottid)):
dsts = TALLOC (ndst, int, "dsts"):;

/*
* - read tids from shmem.
wi//
if ((shmptr = (char *)shmat(shmid, (char *) 0, 0)) == (char *) -1
) |
sprintf (pvmtxt, "tm reducea(): shmat() error\n");

pvmlogerror (pvmtxt) ;
goto noguys;

)

/* Copy tid-list from shared memory */
ptr = shmptr;
BCOPY ((char *) (ptr), (char *)dsts, intsize*ndst):;

if (shmdt (shmptr) < 0) ({
sprintf (pvmtxt, "tm reducea(): shmdt () error\n");
pvmlogerror (pvmtxt) ;
goto noguys;

}

if (ndst < 1) /* if no dsts then just reply to task
*/

goto noguys;

* ok ok kN
*

hosts.

*/

sort dst tids
XXX we could easily remove duplicates here
Make list of pvmds and its tids.
Send DM _REDUCEA messages containing pvmds and tids to all

gsort ((char*)dsts, ndst, intsize, int compare);

ccap->cc_dsts

Cheat,

/*

ccap->cc_ndst

too much space */
0;

I

TALLOC (ndst, struct cc_elem, "tm gathera"); /*

* - Add tid of pvmd of local and remote tids to ccap-
>cc_dsts[].pvmdtid
* - Create its tidlist (ccap->cc _dsts[].tids)

* - send mesg DM BCASTA along with pvmdtids and their tids to local

*

=

pvind first

for (i2 =
n=
tid

while

ccap->cc_dsts[ccap->cc_ndst]
ccap->cc_dsts[ccap->cc ndst]

of tids */

*/

ccap->cc_dsts[ccap->cc_ndst]

0; (il = i2) < ndst;) {
0;
= dsts([il] & tidhmask;
(++i2 < ndst && tid ==

ccap->cc_ndst++;

}
/* Create

mp =
mp->m dst
mp->m_cod
pkint (mp,
pkint (mp,
pkint (mp,

pkint (mp,
pkint (mp,
pkint (mp,

for (i1=0; il<ccap->cc_ndst; il++)

reduce message */

mesg new(0);

= (pvmmytid |= TIDPVMD) ;
= DM_REDUCEA;

ccap->cc tid);
ccap—>cc:type);
ccap->cc_datasize);

ccap->cc_msgtag) ;
ccap->cc_roottid);
ccap->cc_ndst) ;

.tids =

(dsts[i2] & tidhmask)) ;

.pvmdtid = tid;
.ntids =

i2 - il; /* number

0;

/* send to local pvmd */
/* cca address */

/* NOTE: no ccap->cc_data

{

pkint (mp, ccap->cc_dsts[il].pvmdtid);
pkint (mp, ccap->cc dsts[il].ntids);

)

bcastmessage (mp) ;

112

113

noguys:
PVM_FREE (dsts) ;

}

5 This message send from last task that write data to shmem
*
/* to téll local pvmd to read all data and continue the operation */
s Local pvmd will read data and perform global computation op.
*
/f then send final result data to root pvmd.
*
int /

tm reduceb (tp, mp)
struct task *tp;
struct mesg *mp;

char *shmptr = 0;

char *ptr;

char *data=0, *work=0;

int cc_datasize, cc_type, cc_msgtag;
int datatype, count;

int func;

void (*reduce_func) ();
int intsize;

int inst, ntids;

int i, ecp

int semval;

struct sembuf reset head(1l] = {
0, -1, IPC_NOWAIT }; /* decrease value of
sem#0 by 1 */

upkint (mp, &cc _type):
upkint (mp, &cc_datasize);
upkint (mp, &cc_msgtag);
upkint (mp, &datatype):
upkint (mp, &count);
upkint (mp, &func);

/* Add more function here */

switch (func) {

case REDUCESUM: reduce_func = PvmSum;
break;
default: sprintf (pvmtxt, "tm reduceb () ([%d]

function unknown\n",
func) ;
pvmlogerror (pvmtxt) ;
cc = -1;
goto done;

114

if ((shmptr = (char *) shmat(shmid, (char *) 0, 0)) == (char *) -
1) |
sprintf (pvmtxt, "dm reduceb(): shmat() error\n");
pvmlogerror (pvmtxt) ;
goto done;

}

/* Skip Header # of tids */

intsize = sizeof (int);

ptr = shmptr;

BCOPY ((char *)ptr, (char *)&ntids, intsize);
ptr = (char *)ptr + (intsize*2);

if (debugmask & (PDMMESSAGE)) |
sprintf (pvmtxt, "dm reduceb(): From shm header, ntids =

%d, shmptr = %x.\n", ntids, shmptr);
pvmlogerror (pvmtxt) ;

}

/* perform global computation on data */

data (char *) TALLOC(cc _datasize, char, "data");
work = (char *) TALLOC(cc datasize, char, "work");

BCOPY ((char *)ptr, (char *)data, cc_datasize);
ptr = (char *)ptr + cc _datasize;

for (i=1; i < ntids; i++) {
BCOPY ((char *)ptr, (char *)work, cc datasize);

(*reduce func) (&datatype, data, work, &count, &cc);

ptr = (char *)ptr + cc_datasize;
)

if (debugmask & (PDMMESSAGE)) {
sprintf (pvmtxt, "dm reduceb(): Sending DM REDUCEC, data =

%d.\n",
* (int *)data);
pvmlogerror (pvmtxt) ;

)

/* this pvmd sends DM REDUCEC along with final result to root

pvmd */

mp = mesg new(0);

mp->m dst = parent tid; /* send data to root
pvmnd */

mp->m_cod = DM _REDUCEC;
pkint (mp, cc_type);
pkint (mp, cc_datasize);
pkint (mp, cc msgtag);
pkint (mp, datatype):;
pkint (mp, count);

pkint (mp, func);

bytepk (mp, (char *)data, cc datasize, 1, 1);
sendmessage (mp) ;

if ((cc = shmdt (shmptr)) < 0) {
sprintf (pvmtxt, "dm reduceb(): shmdt() error\n");
pvmlogerror (pvmtxt) ;

done:

/* reset sem#0 */
if ((cc = semop(semidd, &reset_head[0], 1)) < 0) {
sprintf (pvmtxt, "dm reduceb(): semop(reset head)
error\n") ;
pvmlogerror (pvmtxt) ;

}

if (debugmask & (PDMMESSAGE)) {
semval = semctl (semid4, 0, GETVAL, O0);

sprintf (pvmtxt, "dm reduceb(): sem#0 reset to %d.\n",
semval) ;
pvmlogerror (pvmtxt) ;
)
if (data)
PVM_FREE (data) ;
if (work)

PVM FREE (work) ;

return O;

/* PvmSum() */

/-k
void PvmSum(int *datatype, void *x, void *y, *num, *info)

Assigns the elements of x the sum of the corresponding elements of
X and y.

*/

void

PvmSum(datatype, x, y, num, info)

int *datatype:

void *x, *y;

int *num, *info;

{
short *xshort, *yshort;
int *xint, *yint;
long *xlong, *ylong;
float *xfloat, *yfloat;
double *xdouble, *ydouble;

115

int i, count;
count = *num;
switch (*datatype)

{
case (PVM_SHORT) :

xshort = (short *) x;
yshort = (short *) y;
for (i=0; i<count; i++) xshort[i] += yshort[i];
break;
case (PVM INT):
xint = (int *) x;
yint = (int *) y;
for (i=0; i<count; i++) xint[i] += yint[i];
break;
case (PVM _LONG):
xlong = (long *) x;

ylong = (long *) vy;
for (i=0; i<count; i++) xlong[i] += ylong(i];

break;
case (PVM FLOAT) :
xfloat = (float *) x;

yfloat = (float *) y;
for (i=0; i<count; i++) xfloat[i] += yfloat[i];

break;

case (PVM _DOUBLE) :
xdouble = (double *) x;
ydouble = (double *) vy;
for (i=0; i<count; i++) xdouble[i] += ydouble[i];
break;

case (PVM CPLX):
/* complex - complex*8 in fortran - treated as two floats

*
/

/* returns the sum of the two complex pairs */
xfloat = (float *) x;
yfloat = (float *) y;
for (i=0; i<2*count; i++) xfloat[i] += yfloat[i];
break;

case (PVM DCPLX):
/* double complex - complex*16 in fortran - treated as 2

doubles */

/* returns the sum of the two complex pairs */
xdouble = (double *) x;
ydouble = (double *) y;
for (i=0; i<2*count; i++) xdouble[i] += ydouble[i];
break;

default:
*info = PvmBadParam;
return;

}] /* end switch */

*info = PvmOk;

116

117
return;

] /* end of PvmSum() */

Appendix C

Source Code of Pvmd-Pvmd Protocol for Pvimd

118

/* dm bcasta()

*

* - This message is broadcast from tm bcasta() of root pvmd.

e - If this message does not contian our tid of pvmd, the drop it.
* - If we are in pvmd-list, get our number of TIDs and send data to
. them.

*

*/

int

dm bcasta (hp, mp)
struct hostd *hp;
struct mesg *mp;

struct cca *ccap;
int i, 3;

int index = -1;
int sl, s2;

/* unpack struct cca from message */

ccap = cca new();
upkint (mp, &ccap->cc tid);
upkint (mp, &ccap—>cc:type);
upkint (mp, &ccap->cc_datasize);
ccap->cc_data = (char *) TALLOC(ccap->cc_datasize, char,
"dm bcasta");
byteupk (mp, (char *)ccap->cc_data, ccap->cc_datasize, 1, 1);
upkint (mp, &ccap->cc_msgtag);
upkint (mp, &ccap->cc_roottid);
upkint (mp, &ccap->cc_ndst);
ccap->cc dsts = TALLOC (ccap->cc ndst, struct cc elem,
"bcastad"); N B
for (i = 0; i < ccap->cc _ndst; i++) {
upkint (mp, &ccap->cc _dsts[i].pvmdtid);
if ((ccap->cc dsts[i].pvmdtid | TIDPVMD) == (pvmmytid |
TIDPVMD)) B
index = 1i; /* if we are in, get our index */

upkint (mp, &ccap->cc_dsts[i].ntids);

ccap->cc _dsts[i] .tids = 0;

}

/* Go on of we are in. If not, just drop it */
if (index !'= -1)
bcastd(ccap, index); /* Send data to tasks */

cca_free(ccap);

return O;

int bcastd(ccap, index)

119

120

struct cca *ccap;
int index; /* index of ccap->cc_dsts/[] &

int i, ce;

int dst;
char *shmptr = 0;
struct sembuf r empty[l] = {

0, 0, 0 }; /* wait for sem#0

become 0 */
struct sembuf r send[1l]
0, 1, 0 }; /* increase value of sem#0 by 1

Il
iy

¥/

]

struct sembuf c recv([l] {
0, -1, 0 }; /* wait for sem$0 >= 1 and
decrement by 1 */

/* create or attach to shared memory */
if (ccap->cc ndst) {

ollh | (Ehmptr = shmat (shmid, (char *) 0, 0)) == (char *) -
1) |
sprintf (pvmtxt, "bcastd(): shmat() error\n");
pvmlogerror (pvmtxt) ;
cc = -1;

goto done;

)

/* Copy data to shared memory */
BCOPY ((char *)ccap->cc_data, (char *) (shmptr + shm hdr),
ccap->cc_datasize);

if ((cc = shmdt(shmptr)) < 0) {
sprintf (pvmtxt, "bcastd(): shmdt() error\n");
pvmlogerror (pvmtxt) ;
goto done;

}

r send[0].sem op = ccap->cc_dsts[index].ntids;
if ((cc = semop(semidl, &r send[0], 1)) < 0) {
sprintf (pvmtxt, "bcastd(): shmdt() error\n");

pvmlogerror (pvmtxt) ;
goto done;

}

if (debugmask & (PDMMESSAGE)) {
sprintf (pvmtxt, "bcastd() signal semaphore by sem op =
$d.\n",
ccap-
>cc _dsts[index] .ntids);
pvmlogerror (pvmtxt) ;

}

121

done:
if (cc < 0) {
sprintf (pvmtxt, "bcastd() fail. return %d\n", cc);
pvmlogerror (pvmtxt) ;
)
return cc;
}
/*:::: */
int

dm_scattera (hp, mp)
struct hostd *hp;
struct mesg *mp;

struct cca *ccap:;
int &, j;
int index = -1;

/* unpack struct cca from message */

ccap = cca_new();

upkint (mp, &ccap->cc_tid);

upkint (mp, &ccap->cc_type);

upkint (mp, &ccap->cc_datasize);

upkint (mp, &ccap->cc msgtag);

upkint (mp, &ccap->cc_roottid);

upkint (mp, &ccap~>cc_ndst);

ccap->cc_dsts = TALLOC (ccap->cc_ndst, struct cc_elem,
"dm_scattera");

for (1 = 0; i < ccap->cc_ndst; i++) {
upkint (mp, &ccap->cc_dsts[i].pvmdtid);
if ((ccap->cc dsts[i].pvmdtid | TIDPVMD) == (pvmmytid |
TIDPVMD)) -

index = i; /* use for MST */

upkint (mp, &ccap->cc _dsts[i].ntids);
ccap->cc_dsts[i].tids = (tid elem *) TALLOC (ccap-
>cc _dsts[i].ntids, tid elem, "dm scattera");

for (j=0; j<ccap->cc dsts[i].ntids; j++) |
upkint (mp, &ccap->cc dsts([i].tids[j].tid);
ccap->cc_dsts[i].tids[j].data = (char *)
TALLOC (ccap->cc_datasize, char, "dm scattera");
byteupk (mp, (char *)ccap->cc_dsts[i].tids[]j].data,
ccap->cc_datasize, 1, 1);
}
)

/* Go on of we are in. If not, just drop it */
(index !'= -1)

if

scatterd(ccap,

cca free(ccap);

return 0;

}

int scatterd(ccap,

int

int
int

index)
struct cca *ccap;
index;
i, cc;
dst;
size;

int

char *shmptr = 0;

char *ptr;
struct sembuf r empty(l] =

become 0 */

struct sembuf r send[1]

*/

struct sembuf ¢ recv[l]

decrement by 1 */

0, 0, O

(0]F L1

o

0o, -1, O

index) ;

}i

/* Send data to tasks */

/* index of ccap->cc dsts[]

L/

/* wait for sem#0

/* increase value of sem#0 by 1

/* wait for sem#0 >= 1 and

/* create or attach to shared memory */
if (ccap->cc ndst) {
((shmptr = shmat (shmid, (char *) 0, 0)) == (char *)

1) |

error\n")

size);

(char *)

if

.
’

)

sprintf (pvmtxt, "scatterd(): shmat ()

pvmlogerror (pvmtxt) ;

ce = -1;

goto done;

/* Copy data to shared memory */

ptr = shmptr;

/*

si

Header

= # of tids */
ze = sizeof(int);
BCOPY ((char *)&ccap->cc dsts([index].ntids, (char *)

ptr += size;

/* tid-list
i < ccap->cc dsts[index].ntids; i++) {

for (i=0; N
BCOPY ((char *)&ccap->cc dsts([index].tids[i].tid,

ptr,

size);

(sorted)

7]

ptr,

122

123

ptr += size;
)

/* data ordered by tid-list */
size = ccap->cc datasize;
for (i=0; i < ccap->cc_dsts[index].ntids; i++) |
BCOPY ((char *)ccap->cc dsts[index].tids[i] .data,
(char *) ptr, size);

ptr += size;

)

if ((cc = shmdt (shmptr)) < 0) {
sprintf (pvmtxt, "scatterd(): shmdt() error\n");
pvmlogerror (pvmtxt) ;
goto done;

}

r send[0].sem op = ccap->cc_dsts[index].ntids;

if ((cc = semop (semid2, &r send[0], 1)) < 0) {
sprintf (pvmtxt, "scatterd(): shmdt() error\n");
pvmlogerror (pvmtxt) ;
goto done;

}

if (debugmask & (PDMMESSAGE)) {
sprintf (pvmtxt, "scatterd() signal semaphore by sem_op

%d.\n",
ccap-

>cc_dsts[index].ntids);
pvmlogerror (pvmtxt) ;

)

cc = 0;
done:
if (cc < 0) |
sprintf (pvmtxt, "scatterd() fail. returning %d\n", cc);
pvmlogerror (pvmtxt) ;
)
return cc;
}
/* ——————————— */
int

dm gathera (hp, mp)
struct hostd *hp;
struct mesg *mp;

struct cca *ccap;
int i, j;

int index = -1;

int root;

int tid _count = 0;
struct btree *bt=0;

/* keep to reply to */
parent tid = mp->m_src;
child count = 0;

/* unpack struct cca from message */

ccap = cca_new();
upkint (mp, &ccap->cc_tid);
upkint (mp, &ccap->cc_type);
upkint (mp, &ccap->cc_datasize);
upkint (mp, &ccap->cc msgtag):
upkint (mp, &ccap->cc_roottid);
upkint (mp, &ccap->cc_ndst);
ccap->cc_dsts = TALLOC (ccap->cc_ndst, struct cc_elem,
"dm gathera");
~ for (i = 0; i < ccap->cc_ndst; i++) |{
upkint (mp, &ccap->cc_dsts[i].pvmdtid);
if ((ccap->cc_dsts[i].pvmdtid | TIDPVMD) == (pvmmytid |
TIDPVMD))
index = 1i;
if ((ccap->cc_dsts[i].pvmdtid | TIDPVMD) ==
((ccap->cc_roottid & TIDHOST) |
root = 1i;

TIDPVMD))

upkint (mp, &ccap->cc_dsts([i] .ntids);
ccap->cc dsts[i].tids = 0;
tid_counE += ccap->cc dsts[i] .ntids; /* for allocate
ga_data.data */ B
}

if (index == -1) /* Not my msg, drop it */
goto scrap;
ga_index = index; /* global var */
if ({(pvmmytid | TIDPVMD) == ((ccap-
>CC_rOOttid&TIDHOST)ITIDPVMD)) |
is root pvmd = 1;

child_count = ccap->cc_ndst;

}

if (is_root pvmd) { /* allocate ga data.data */
ga_data.ndata = 0;
ga_data.data = TALLOC(tid_count*ccap->cc_datasize, char,
"ga_data.data"T;
}

124

gatherd(ccap, index);
tasks to write */

scrap:
if (ccap)
cca_free(ccap);
if (bt)
PVM_FREE (bt) ;
return 0;
}
int

dm gatherc(hp, mp)
struct hostd *hp;
struct mesg *mp;

struct cca *ccap;
char *ptr, *dptr;
char *dd=0, *ddptr;

125

/* Initialize shared memory for

/* Check this out */

int intsize;
int inst;
int cc_type, cc_tid, cc _datasize, cc_msgtag;

int ntids;
int index;
int i, €c;
int pvmd src;
char *shmptr = 0;
struct sembuf wait write[l] = {
1, 0, 0 };
become 0 */
struct sembuf sig read[1l] = {
1, 1, 0 };
sem#l by 1 */
intsize = sizeof(int);
pvind_src = mp->m_src | TIDPVMD;

upkint (mp, &cc_type);
upkint (mp, &cc datasize);
upkint (mp, &cc_msgtag);
upkint (mp, &index);
upkint (mp, &ntids);

dd = TALLOC(cc_datasize*ntids, char,

ddptr = dd;
for (i = 0; i < ntids; i++) {

/* wait for sem#l

/* increase value of

"dm gatherc - dd");

byteupk (mp, (char *)ddptr, cc_datasize, 1, 1);
ddptr = (char *)ddptr + cc_datasize;

}

if (debugmask & PDMMESSAGE) {

sprintf (pvmtxt, "dm gatherc() index = %d ntids = $d\n",
index, ntids);
pvmlogerror (pvmtxt) ;
sprintf (pvmtxt, "dm gatherc() ga_ccap-
>cc dsts[index] .ntids = %d\n",
- ga_ccap->cc_dsts[index] .ntids);
pvmlogerror (pvmtxt) ;

)

/* Match data with inst in ga_ccap */
if (ga_ccap->cc_dsts[index].ntids != ntids) {
sprintf (pvmtxt, "dm gatherc() number of data not match
%d, %d\n",
ga_ccap—>cc_dsts[index].ntids, ntids);
pvmlogerror (pvmtxt) ;
} else {

if (debugmask & PDMMESSAGE) {

for (i=0; i<ntids; i++) {
sprintf (pvmtxt, "dm gatherc() inst = %d\n",
ga ccap-
>cc dsls([index].Lids[1i].tid); -
- pvmlogerror (pvmtxt) ;

]

}

/* Put data in place (indexed by inst of that data) */

ddptr = dd;
for (i=0; i<ntids; i++) {
ptr = (char *)ga_data.data + cc_datasize*ga_ccap-

>cc_dsts[index].tids[i].tid;
BCOPY ((char *)ddptr, (char *)ptr, cc_datasize);
ddptr = (char *)ddptr + cc_datasize;
ga_data.ndata++;

if (debugmask & PDMMESSAGE) {
sprintf (pvmtxt, "dm gatherc() from t%x cc_datasize = %d,
ntids = %d\n",
mp->m src, cc_datasize, ntids);
pvmlogerror (pvmtxt) ;

if (debugmask & PDMMESSAGE) {
int i, inst;
char *ptr2;
char buf([512];

sprintf (pvmtxt, "dm gatherc() list ga datal\n");
pvmmlogerror (pvmtxt) ;
sprintf (pvmtxt, "ndata = %d\n", ga data.ndata);

126

127

pvmlogerror (pvmtxt) ;

ptr = ga data.data;

for (i=0; i<ga data.ndata; i++) {
BCOPY ((char *)ptr, (char *)buf, cc datasize);
ptr = (char *)ptr + cc _datasize;
sprintf (pvmtxt, " {%d, %c}\n", inst, buf);
pvmlogerror (pvmtxt) ;

}

--child_count;

if (child_count <= 0) { /* get all data from children and
itself */
/* send data to roottid via shmem */
if ((shmptr = shmat(shmid, (char *) 0, 0)) ==
(char *) -1) {
sprintf (pvmtxt, "dm gatherc(): shmat()
error\n");

pvmlogerror (pvmtxt) ;
return -1;

}

/* going to write all data for root task */
if ((cc = semop(semid3, &wait write[0], 1)) < 0)
sprintf (pvmtxt, "dm gatherc():
shmop (wait_write) error\n") ;
pvmlogerror (pvmtxt) ;
return -1;
)
ptr = shmptr;
dptr = ga data.data;
BCOPY ((char *)dptr, (char *)ptr,
cc_datasize*ga_data.ndata);

if ((cc = semop(semid3, &sig read([0], 1)) < 0) {
sprintf (pvmtxt, "dm gatherc():
semop (sig read) error\n");
pvmlogerror (pvmtxt) ;
return -1;

if ((cc = shmdt(shmptr)) < 0) {
sprintf (pvmtxt, "dm gatherc(): shmdt ()
error\n") ; -
pvmlogerror (pvmtxt) ;
return -1;

}

if (ga_data.data) {
PVM FREE (ga data.data);
ga_data.data = 0;

128

if (ga ccap) {
cca_free(ga ccap);
ga_ccap=0;

done:
if (dd)
PVM_FREE (dd) ;

int gatherd(ccap, index)
struct cca *ccap;
int index; /* index of ccap->cc dsts[] */

int el

int dst;

int size;

struct mesg *mp;

char *shmptr = 0O;

char *ptr;

int semval = -1;

struct sembuf wait init[l] = {

0, 0, 0 }; /* wait for sem#0

become 0 */

struct sembuf sig init[1l] = {

"0, 1, 0 }; /* increase value of

sem#0 by 1 */

/* create or attach to shared memory */
if (ccap->cc ndst) {

if ((ghmptr = shmat (shmid, (char *) 0, 0)) == (char *) -
1) |
sprintf (pvmtxt, "gatherd(): shmat() error\n");
pvmlogerror (pvmtxt) ;
CCR=NENN;

goto done;

/* Wait for sem#l is 0 */

if ((cc = semop(semid3, &wait init[0], 1)) < 0) {
sprintf (pvmtxt, "gatherd(): semop() error\n");
pvmlogerror (pvmtxt) ;
goto done;

T

/* Initialize header of shmem to 0 and ntids
I +

a2 | 0 | <-- shmptr

* fom————— +

& | ntids |

*

* | |

w1/
ptr = shmptr;

size = sizeof(int):;
cc = 0;
BCOPY ((char *)&cc, (char *)ptr,
cc = ccap->cc_dsts[index].ntids;
ptr = (char *)ptr + size;

BCOPY ((char *)&cc, (char *)ptr,

/* signal sem#0 by 1 */

129

<-~ data start here

size);

size);

if ((cc = semop(semid3, &sig_init[0], 1)) < 0) |
sprintf (pvmtxt, "gatherd(): semop() error\n");
pvmmlogerror (pvmtxt) ;
goto done;
}
if ((cc = shmdt (shmptr)) < 0) {
sprintf (pvmtxt, "gatherd(): shmdt() error\n");
pvmlogerror (pvmtxt) ;
goto done;
}
)
cc = 0;
done:
if (cc < 0) |
sprintf (pvmtxt, "gatherd() fail. returning %d\n", cc):;
pvmlogerror (pvmtxt) ;
}
return cc;
}
/* ==== */
int

dm reducea (hp, mp)
struct hostd *hp;
struct mesg *mp;

struct cca *ccap:
int i, 3

int index = -1;
int root;

int tid _count = 0;

/* keep to reply to */

parent tid = mp->m src;
child count = 0;

/* unpack struct cca from message */

ccap = cca_new();
upkint (mp, &ccap->cc tid);
upkint (mp, &ccap->cc_type);
upkint (mp, &ccap->cc_datasize);
upkint (mp, &ccap->cc msgtag);
upkint (mp, &ccap—>cc:roottid);
upkint (mp, &ccap->cc_ndst);
ccap->cc_dsts = TALLOC (ccap->cc_ndst, struct cc_elem,
"dm gathera");
T for (i =0; i< ccap->cc_ndst; i++) {
upkint (mp, &ccap->cc dsts[i].pvmdtid);
if ((ccap->cc_dsts[i].pvmdtid | TIDPVMD) == (pvmmytid |
TIDPVMD))
index = 1i;
if ((ccap->cc dsts[i].pvmdtid | TIDPVMD) ==
((ccap->cc_roottid & TIDHOST) | TIDPVMD))

root = 1i;

upkint (mp, &ccap->cc dsts[i].ntids);
ccap->cc _dsts[i].tids = 0;
tid_count += ccap->cc_dsts[i] .ntids; /* for allocate
ga_data.data */
)

if (index == -1) /* Not my msg, drop it */
goto scrap;
if ((pvmmytid | TIDPVMD) == ((ccap-
>cc_roottid&TIDHOST) |TIDPVMD)) |
is root pvmd = 1;

chzld_cgunt = ccap->cc_ndst;

if (debugmask & PDMMESSAGE) {

sprintf (pvmtxt, "dm reducea(): This pvmd is root
pvmd, %x\n",
pvmmytid|TIDPVMD) ;
pvmlogerror (pvmtxt) ;
}
}
reduced (ccap, index); /* Initialize shared memory for

tasks to write */
scrap:
if (ccap)
cca free(ccap); /* Check this out */

return 0;

130

131

int

dm reducec(hp, mp)
struct hostd *hp;
struct mesg *mp;

char *work=0;
int intsize;

int cc_type, cc_tid, cc_datasize, cc _msgtag;
int func, datatype, count;

void (*reduce func) ();

int i, ceq;

char *shmptr = 0;
struct sembuf wait write[l] = {
1, 0, 0 }; /* wait for semil
become 0 */
struct sembuf sig read[l] = {
1, 1, 0 }; /* increase value of
sem#l by 1 */

intsize = sizeof (int);

upkint (mp, &cc_type):

upkint (mp, &cc datasize);

upkint (mp, &cc:msgtag);

upkint (mp, &datatype):

upkint (mp, &count);

upkint (mp, &func);

work = TALLOC(cc datasize, char, "dm reducec - work");
byteupk (mp, (char *)work, cc datasize, 1, 1);

if (!'re data) {
re data = TALLOC(cc_datasize, char, "re data");
BCOPY ((char *)work, (char *)re data, cc datasize);

}

else |
switch (func) {

case REDUCESUM: reduce_func = PvmSum;
break;

default: sprintf (pvmtxt, "dm reducec()

[$d] function unknown\n", -
func) ;

pvmlogerror (pvmtxt) ;

cc = -1;
goto done;
]
(*reduce_func) (&datatype, re data, work, &count, &cc);

--child count;

132

if (child count <= 0) { /* get all data from children and
itself */
/* send data to roottid via shmem */

if ((shmptr = shmat(shmid, (char *) 0, 0)) ==
(char *) -1) {
sprintf (pvmtxt, "dm gatherc(): shmat()
error\n") ;
pvmlogerror (pvmtxt) ;
return -1;

}

/* going to write final result for root task */
if ((cc = semop(semid4, &wait write[0], 1)) < 0) {
sprintf (pvmtxt, "dm reducec():
shmop (wait write) error\n"); -
pvmlogerror (pvmtxt) ;
return -1;
}
BCOPY ((char *)re data, (char *)shmptr,
cc_datasize); N

if ((cc = semop(semid4, &sig read[O0], 1)) < 0) {
sprintf (pvmtxt, "dm_reducec():
semop (sig read) error\n");
pvmlogerror (pvmtxt) ;
return -1;

)

if ((cc = shmdt (shmptr)) < 0) {
sprintf (pvmtxt, "dm reducec(): shmdt()
error\n") ;
pvmlogerror (pvmtxt) ;
return -1;

}

if (re_data) {
PVM FREE(re data);
re data = 0;

done:
if (work)
PVM_FREE (work) ;

int reduced(ccap, index)

struct cca *ccap,

int index; /* index of ccap->cc_dsts[] */
{

int i, cc:

int dst;

become

sem#0

int size;

struct mesg *mp;

char *shmptr = 0;

char *ptr;

int semval = -1;

struct sembuf wait init[l] = {

0/ 0/ 0 %;
0 */

struct sembuf sig init[1l] = {
"0, 1, 0 });

by 1 */

/* create or attach to shared memory */
if (ccap->cc_ndst) {

/* wait for sem#O

/* increase value of

if ((shmptr = shmat (shmid, (char *) 0, 0)) == (char *)

sprintf (pvmtxt, "gatherd():
pvmlogerror (pvmtxt) ;

cc = ~1;

goto done;

/* Wait for sem#fl is 0 */

shmat () error\n"):;

if ((cc = semop(semid4, &wait init([0], 1)) < 0) {

sprintf (pvmtxt, "reducea():
pvmlogerror (pvmtxt) ;
goto done;

semop () error\n");

/* Initialize header of shmem to 0 and ntids
* e +

* | 0 | <-- shmptr

R +

b | ntids |

¥ e +

e | e | <-- data start here
*

ptr = shmptr;

size = sizeof(int);

cc = 0;

BCOPY ((char *)&cc, (char *)ptr, size);
cc = ccap->cc_dsts[index].ntids;

ptr = (char *)ptr + size;

BCOPY ((char *)&cc, (char *)ptr, size);

/* signal sem#f0 by 1 */

if ((cc = semop(semid4, &sig init[0], 1)) < 0) {

sprintf (pvmtxt, "reduced () :

pvmlogerror (pvmtxt) ;
goto done;

semop () error\n");

133

134

if ((cc = shmdt (shmptr)) < 0) {
sprintf (pvmtxt, "reduced(): shmdt() error\n");
pvmlogerror (pvmtxt) ;
goto done;

done:
if (cc < 0) {

sprintf (pvmtxt, "reduced() fail. returning %d\n", cc);
pvmlogerror (pvmtxt) ;

}

return cc;

Appendix D

Source Code of Library Functions for Task

135

/*
* pvm bcast ()
*
* Written by: Chirapol Mathawaphan
* Description: Use shared memory to transfer data between task and
* local pvmd.
/]
int

pvm bcast (result, data, count, datatype, msgtag, gname, rootinst)
void *result, *data;
int count, datatype, msgtag, rootinst;
char *gname;
{

int pvmtidlmask = TIDLOCAL;

int pvmtidhmask = TIDHOST;

int roottid, myginst;

int datasize, gsize, ntids, *tids = 0;

int i, cel;

int sbuf, rbuf;

int hdr size, shm size;

int shmid = -1; /* shmem id */

long shm key;

char *shmptr = NULL;

long sem key;

int semid = -1; /* semaphore id */

struct sembuf r empty[l] = {

0, 0, 0 }; /* wait for sem#0

become 0 */

struct sembuf r send[1l] =

0, 1, O

; /* increase value of sem#0 by 1
*/
struct sembuf c recv[l] = {
0, -1, 0 }; /* wait for sem#0 >= 1 and
decrement by 1 */
if ((result == NULL) || (count <= 0)) { /* check some

parameters */
cc = PvmBadParam;
goto done;

)

/* root must be member of the group */
if ((roottid = pvm gettid(gname, rootinst)) < 0)
goto done;

/* get data size */
if ((cc = datasize = gs get datasize(datatype)) < 0)
goto done;

/* calculate the value of message queue key */
shm key = (long) SHM BCAST;
sem key = SEM KEY1;

136

1))

/* calculate size of the shared memory */
hdr size = sizeof(int); /* header size */
shm size = 0;

/* I'm the root node for the bcast operation */
if (pvmmytid == roottid) {

if (data == NULL) { /* check data parameter */
cc = PvmBadParam;
goto done;

}

/* get the list of tids */

if ((cc = gs_get_tidlist(gname, msgtag, &gsize, &tids,
goto done;

ntids = gsize;

for (i=0; i<gsize; i++) {
if (i == rootinst) {

/* copy to root itself */
BCOPY((char *) data, (char *)result,

datasize*count);

/* mark inst as sent */

tids([i] = tids[--ntids]; /* remove root from

the list */

break;

)
} /* end for-loop */

/* copy tid-list to shmem for pvmd */
if (shmid == -1) {
if ((cc = shmid = shmget (shm key, shm size,

SHM_PERMS | IPC_CREAT)) < 0) {

perror ("shmget ()");
goto done;

}

/* attach shmem */

if ((shmptr=(char *)shmat (shmid, (char *)0, 0)) ==

(char *)-1) {

perror ("shmat ()");
goto done;

)
BCOPY ((char *) tids, (char *)shmptr, ntids*sizeof(int));
if (shmdt (shmptr) < 0) {

perror ("shmdt ()") ;

goto done;

}

/* send to all receivers */

137

if ((cc = lpvm bcast(data, count, datatype, msgtag,
roottid, tids, ntids)) > 0)
cc = 0;
}
else { /* other tasks receives data from shmem, prepared by
pvmd */
if (shmid == -1) {
id */

if ((cc =
SHM_PERMS | IPC_CREAT)) < 0)

/* then get message queue
shmid = shmget (shm key, shm size,

{

perror ("shmget ()");

goto done;
}
/* attach shmem */
if ((shmptr = (char *) shmat(shmid, (char *)0, 0))
== (char *)-1) {
perror ("shmat()");
goto done;
}
}
if (semid == -1) /* and get sem id */
if ((cc
IPC_CREAT)) < 0)

semid = semget (sem_key, 1, SEM PERMS |
goto done;

if (semop (semid,
access given by root */

&c_recv(0], 1)

perror ("semop() - c_recv");

'= 0) { /* wait for
goto done;
}

BCOPY ((char *) (shmptr+hdr size),
datasize*count) ;

(char *) result,
if (shmdt (shmptr) < 0) {
perror ("shmdt ()");
goto done;
}
}
cc = PvmOk;
done:
if (tids) PVM _FREE(tids);
if (cc < 0) lpvmerr("pvm bcast", cc);
return(cc);
)
int

lpvm bcast(data, count, datatype, msgtag, roottid, tids, ntids)
void *data;

138

139

int count, datatype, msgtag, roottid;
int *tids; /* dest tasks */
int ntids; /* number of tids */

int cc; /* for return code */
int ret; /* return code of operation from pvmd */
int i;

int datasize;
int sbf, rbf;
static struct timeval ztv = { 0, 0 };

if (!'cc && ntids > 0) |
datasize = count * get datasize(datatype);

/* send whole data to pvmd with TM_BCAST message */

sbf
rbf

pvmm_setsbuf (pvm mkbuf (PvmDataFoo)) ;
pvm_setrbuf (0);

I

/* pack data */

pvm pkint (&datasize, 1, 1);

pvm pkbyte((char *)data, datasize, 1);
pvm_pkint (&msgtag, 1, 1);

pvm_pkint (&roottid, 1, 1);

pvm pkint (&ntids, 1, 1);

cc = mroute (pvmsbufmid, TIDPVMD, TM_BCASTA, &ztv);
pvm_freebuf (pvm setsbuf (sbf));

)

if (cc < 0)

lpvmerr ("lpvm bcast", cc);
return cc;

/* */

int
pvm_scatter(result, data, count, datatype, msgtag, gname, rootinst)
void *result, *data;
int count, datatype, msgtag, rootinst;
char *gname;
{
int roottid, myginst, datasize, gsize, *tids = 0, i, cc;
int shmid = -1; /* shmem id */
long shm key;
char *shmptr = NULL;
int hdr size, shm size;
long sem key;
int semid = -1; /* semaphore id */

char *ptr;
int n, index;
struct sembuf r empty[l] = {
0, 0, 0 1}; /* wait for sem#0
become 0 */
struct sembuf r send[1]

|
-

0, 1, 0 }); /* increase value of sem#0 by 1
*/
struct sembuf c_recv[l] = {
0, -1, 0 }; /* wait for sem#f0 >= 1 and
decrement by 1 */
if ((result == NULL) || (count <= 0)) /* check some parameters
*/
{
cc = PvmBadParam;
goto done;
}
/* root must be member of the group */
if ((roottid = pvm gettid(gname, rootinst)) < 0)
{
cc = roottid;
goto done;
}
/* get the number of bytes per element of type datatype */
if ((cc = datasize = gs_get datasize(datatype)) < 0) goto
done;

/* calculate the value of message queue key */
shm key = (long) SHM BCAST;
sem key = SEM KEY2;

/* calculate size of the shared memory */
hdr_size = sizeof(int); /* header size */
shm size = 0;

/* everyone receives a result from the shared memory include the
root */

if (shmid == -1) { /* then get message queue id */
if ((cc = shmid = shmget(shm key, shm size, SHM PERMS |
IPC _CREAT)) < 0) {
perror ("shmget () ") ;
goto done;
1
/* attach shmem */
if ((shmptr = (char *) shmat (shmid, (char *)0, 0)) ==
(char *)-1) {
perror ("shmat ()");
goto done;

140

/* I am the root node for the scatter operation */
if (pvmmytid == roottid)

{

if (data == NULL)

{

/* check data parameter */

cc = PvmBadParam;

goto done;

}

/* Get the list of tids.

BCOPY ((char *)tids,

BCOPY((char *)data,

lpvm scatter(data, count, datatype, msgtag,

holes). */
if |
0)
goto done;
ptr = shmptr;
ptr =
if ((cc =
roottid, tids, gsize))
cc =
else
goto

if (semid == -1)
if ((cc =
IPC CREAT)) < 0) goto

if (semop (semid,
given by root */

>= 0)
0;
done;

/* and get sem id */

semid = semget (sem_ key, 1, SEM PERMS |

done;

&c recv([0], 1) !'= 0) {

perror ("semop() - c_recv");

goto done;

/* find tid in shmem */

ptr = shmptr;

n = *((int *)ptr):;
ptr += sizeof (int);

if |

shmem. \n") ;

(index = find tid(ptr, 0, n-1, pvmmytid))
sprintf (pvmtxt, "pvm scatter: can't find tid in

pvmgslogerror (pvmtxt) ;

goto done;

These must be contiguous

< 0)

(no

(cc = gs_get tidlist(gname, msgtag, &gsize, &tids, 1)) <

(char *)ptr, gsize*sizeof(int)):
(char *)ptr + gsize*sizeof(int):;
(char *)ptr, datasize*count*gsize);

/* wait for access

{

141

142

/* copy the data out */

ptr=(char *)
shmptr+(sizeof (int) +n*sizeof (int)+index*datasize*count) ;
BCOPY ((char *) ptr, (char *) result, datasize*count);

if (shmdt (shmptr) < 0) {
perror ("shmdt ()");
goto done;

cc = PvmOk;

done:
if (tids) free(tids);

if (cc < 0) lpvmerr("pvm scatter",cc);
return(cc);

} /* end pvm scatter() */

int
lpvm scatter(data, count, datatype, msgtag, roottid, tids, ntids)
void *data;
int count, datatype, msgtag, roottid;
int *tids; /* dest tasks */
int ntids; /* number of tids */

int cc; /* for return code */
int ret; /* return code of operation from pvmd */
int 1i;

int datasize;
int sbf, rbf;
static struct timeval ztv = { 0, 0 };

if (!cc && ntids > 0) {
datasize = count * get datasize(datatype);

/* send whole data to pvmd with TM SCATTER message */

sbf = pvm setsbuf (pvm mkbuf (PvmDataFoo)) ;
rbf pvm _setrbuf(0);

/* pack data */

pvm_pkint (&datasize, 1, 1);
pvm _pkint (&ntids, 1, 1);
pvm pkint (&msgtag, 1, 1);
pvm:pkint(&roottid, 1, 1);

cc = mroute(pvmsbufmid, TIDPVMD, TM SCATTERA, &ztv);

pvm_freebuf (pvm setsbuf (sbf));
]

if (cc < 0)
lpvmerr ("lpvm scatter", cc);
return cc;

}

/*

int
pvm _gather(result, data, count, datatype, msgtag, gname, rootinst)
void *result, *data;
int count, datatype, msgtag, rootinst;
char *gname;
{
int roottid, myginst, datasize, gsize, *tids = 0, i, cc;
int shmid = -1; /* shmem id */
long shm key;
char *shmptr = NULL;
int hdr size, shm size;
long sem key;
int semid3 = -1; /* semaphore id */
char *ptr;
int nl, n2;
int intsize, size;

struct sembuf wait head[l] = {
0, -1, 0 }; /* wait for sem#0 become 1 and
decrement by 1 */

struct sembuf sig head[l {

] =
0, 1, 0 }; /* increase value of sem#0 by 1

7
struct sembuf wait read[l] = {
1, -1, 0 }; /* wait for sem#l become 1 and
decrement by 1 */
int semval = -1;
if ((data == NULL) || (count <= 0)) /* check some parameters */
{
cc = PvmBadParam;

goto done;

)

/* root must be member of the group */
if ((roottid = pvm gettid(gname, rootinst)) < 0)
{
cc = roottid;
goto done;

}

/* get the number of'bytes per element of type datatype */

143

if ((cc = datasize = gs_get datasize(datatype)) < 0) goto
done;

/* calculate the value of message queue key */
shm key = (long) SHM_BCAST;
sem key = SEM KEY3;

/* calculate size of the shared memory */

intsize = sizeof(int);

hdr size = intsize*2; /* header size */

shm size = 0;

if ((cc = shmid = shmget(shm key, shm size, 0)) < 0) {
perror ("shmget ()");

goto done;
}
/* attach shmem */
if ((shmptr = (char *) shmat(shmid, (char *)0, 0)) == (char *)-
1) |
perror ("shmat()"):;
goto done;

}

/* I am the root node for the gather operation */

if (pvmmytid == roottid)
{
if (result == NULL) /* check data parameter */
{
cc = PvmBadParam;

goto done;

}

/* Get the list of tids. These must be contiguous (no
holes). */

144

if ((cc = gs_get tidlist(gname, msgtag, &gsize, &tids, 1)) <

0)

goto done;

/* root task copy tid-list to shm for pvmd */

BCOPY ((char *)tids, (char *)shmptr, gsize*sizeof(int));

if ((cc = lpvm gather(count, datatype, msgtag, roottid,
tids, gsize)) >= 0)

cc = 0;
else

goto done;

}

/* everyone write data to the shared memory include the root for
pvmd */

if ((cc = semid3 = semget (SEM KEY3, 2, 0)) < 0)
goto done;

if (semop(semid3, &wait head[0], 1) != 0)
access to header of shmem */
perror ("semop () - wait_head");

goto done;

}

/* update header in shmem */

/* increase header[0] */

ptr = shmptr;

nl = *((int *)ptr);

nl++;

BCOPY ((char *)é&nl, (char *)ptr,

/* decrease header[1l] */

ptr = (char *)ptr + intsize;
n2 = *((int *)ptr):;
n2--;

BCOPY ((char *)&n2, (char *)ptr,

intsize);

intsize);

{

/* wait for

if (semop(semid3, &sig head[0], 1) !'= 0) { /* give access
to another task */
perror ("semop() - sig head");
goto done;
}
ptr = shmptr;
size = intsize + datasize*count;
ptr = (char *)ptr + hdr_size + size*(nl-1);
BCOPY ((char *) &pvmmytid, (char *) ptr, intsize); /*

write

write

tid */
ptr = (char *)ptr + intsize;

BCOPY ((char *) data, (char *) ptr,

data */

if (n2 == 0)

/*

/* all data wrote in shmem */
lpvm gatherb (count, datatype, msgtag):

datasize*count) ; /*

* Root read all gathered data from shared memory.

*/
if (pvmmytid == roottid) {

/* if root, read all result from shmem */
if ((cc = semop(semid3, é&wait read[O],

perror("semop(wait_readT");

goto done;

}

BCOPY ((char *)shmptr, (char *)result,
gsize*count*datasize);

)

< 0) {

145

146

cc = PvmOk;
done:
if (shmdt (shmptr) < 0) {
perror("shmdt () ") ;
goto done;
if (tids) free(tids):;
if (cc < 0) lpvmerr("pvm gather",cc);
return(cc);
)} /* end pvm gather() */
int
lpvm gather(count, datatype, msgtag, roottid, tids, ntids)
int count, datatype, msgtag, roottid;

int *tids; /* dest tasks */
int ntids; /* number of tids */

int cc; /* for return code */
int ret; /* return code of operation from pvmd */
int i;

int datasize;
int sbf, rbf;
static struct timeval ztv = { 0, 0 };

if (!'cc && ntids > 0) {
datasize = count * get_datasize(datatype):

/* send whole data to pvmd with TM GATHER message */

sbf = pvm setsbuf (pvm mkbuf (PvmDataFoo)) ;
rbf = pvm setrbuf(0);

/* pack data */

pvm pkint (&datasize, 1, 1);
pvm pkint(&ntids, 1, 1);
pvm pkint (&msgtag, 1, 1);
pvm:pkint(&roottid, 1, 1);

cc = mroute (pvmsbufmid, TIDPVMD, TM GATHERA, &ztv);
pvm_freebuf (pvm_setsbuf (sbf));

}

if (cc < 0)
lpvmerr ("lpvm gather", cc);
return 0;

147

int

lpvm_gatherb (count, datatype, msgtag)
int count, datatype, msgtag;

{

int sbf;

int datasize;

int cc;

int cc_type = CC_GATHER;

static struct timeval ztv = { 0, 0 };
datasize = count * get datasize(datatype);

sbf = pvm setsbuf (pvm mkbuf (PvmDataFoo)) ;

/* pack data */

pvm pkint (&cc_type, 1, 1);

pvm pkint (&datasize, 1, 1);

pvm_pkint (émsgtag, 1, 1);

cc = mroute(pvmsbufmid, TIDPVMD, TM GATHERB, &ztv);
pvm_ freebuf (pvm setsbuf (sbf));

return 0;

/* */

int pvm reduce (func, data, count, datatype, msgtag, gname, rootinst)
int func;
void *data;
int count, datatype, msgtag, rootinst;
char *gname;

int roottid, myginst, datasize, gsize, *tids = 0, i, cc;
int shmid = -1; /* shmem id */
long shm key;
char *shmptr = NULL;
int hdr size, shm_size;
long sem key;
int semid4 = -1; /* semaphore id */
char *ptr;
int nl, n2;
int intsize, size;

struct sembuf wait head[l] = {
0, -1, 0 }; /* wait for sem#0 become 1 and
decrement by 1 */
struct sembuf sig head([1l] = {
0, 1, 0 }; /* increase value of sem#0 by 1
*/
struct sembuf wait read[l] = {
1, -1, 0 }; /* wait for sem#l become 1 and
decrement by 1 */

int semval = -1;
if ((data == NULL) || (count <= 0)) /* check some parameters */
{
cc = PvmBadParam;

goto done;

}

/* root must be member of the group */
if { (roottid = pvm gettid(gname, rootinst)) < 0)
{
cc = roottid;
goto done;
}

/* get the number of bytes per element of type datatype */
if ((cc = datasize = gs_get datasize(datatype)) < 0) goto
done;

/* calculate the value of message queue key */
shm key = (long) SHM BCAST;
sem key = SEM KEY4;

/* calculate size of the shared memory */

intsize = sizeof(int);

hdr size = intsize*2; /* header size */

shm size = 0;

if ((cc = shmid = shmget (shm key, shm size, 0)) < 0) {
perror ("shmget () ") ; '

goto done;

}

/* attach shmem */

if ((shmptr = (char *) shmat(shmid, (char *)0, 0)) == (char *)-
1) {
perror ("shmat()");
goto done;
}
/* I am the root node for the reduce operation 37/
/* Send request to local pvmd (root pvmd) */
if (pvmmytid == roottid)

{
/* Get the list of tids. These must be contiguous (no
holes). */

if ((cc = gs_get tidlist(gname, msgtag, &gsize, &tids, 1)) <

0)
goto done;

/* root task copy tid-list to shm for pvmd */

BCOPY ((char *)tids, (char *)shmptr, gsize*sizeof(int));

148

if ((cc
gsize)) >= 0)

lpvm reduce (count, datatype, msgtag, roottid,

cc = 0;
else
goto done;

/* everyone write data to the shared memory include the root for
pvmd */ '
#ifdef DEBUGCCL
sprintf (pvmtxt, "pvm reduce: ready to write, shmid = %d\n",
shmid) ;
pvmgslogerror (pvmtxt) ;

#endif
if ((cc = semid4 = semget (SEM KEY4, 2, 0)) < 0)
goto done;
if (semop(semid4, &wait head[0], 1) !'= 0) { /* wait for
access to header of shmem */

perror ("semop () - wait head");
goto done;

}

/* update header in shmem */

/* increase header[0] */

ptr ‘= shmptr;

nl = *((int *)ptr):;

nl++;

BCOPY ((char *)&nl, (char *)ptr, intsize);

/* decrease header[l] */

ptr = (char *)ptr + intsize;
n2 = *((int *)ptr);
n2--;

BCOPY ((char *)&n2, (char *)ptr, intsize);

if (semop(semid4, &sig head[0], 1) !'= 0) { /* give access
to another task */
perror ("semop () - sig_head");

goto done;

}

ptr = shmptr;
size = datasize*count;
ptr = (char *)ptr + hdr size + size*(nl-1);

BCOPY ((char *) data, (char *) ptr, datasize*count); /*
write data */

if (n2 == 0) /* all data wrote in shmem */
lpvm_reduceb (func, count, datatype, msgtag);

149

150

/*
* Root read final result from shared memory.
w2/
if (pvmmytid == roottid) {
/* if root, read final result from shmem */
if ((cc = semop(semid4, &wait read[0], 1)) < 0) {
perror ("semop (wait read)");
goto done;
)
BCOPY ((char *)shmptr, (char *)data, count*datasize);
)
cc = PvmOk;

if (shmdt (shmptr) < 0) {
perror("shmdt ()");
goto done;

done:
if (cc < 0) lpvmerr("pvm reduce",cc);
return(cc);

) /* end pvm reduce() */

int

lpvm reduce(count, datatype, msgtag, roottid, ntids)
int count, datatype, msgtag, roottid;
int ntids; /* number of tids */

int cc; /* for return code */
int ret; /* return code of operation from pvmd */
int 1i;

int datasize;
int sbf, rbf;
static struct timeval ztv = { 0, 0 };

if (!'cc && ntids > 0) { .
datasize = count * get datasize(datatype);

/* send whole data to pvmd with TM GATHER message */

sbf
rbf

pvm_setsbuf (pvm_mkbuf (PvmDataFoo)) ;
pvm_setrbuf (0);

I

/* pack data */

pvm pkint (&datasize, 1, 1);
pvm_pkint (&ntids, 1, 1);
pvm pkint (émsgtag, 1, 1);

}

int

151

pvm _pkint (&roottid, 1, 1);

cc = mroute (pvmsbufmid, TIDPVMD, TM_REDUCEA, &ztv);
pvm_freebuf (pvm setsbuf (sbf));

J

if (cc < 0)
lpvmerr ("lpvm reduce", cc);
return 0;

lpvm reduceb (func, count, datatype, msgtag)

int

{

func, count, datatype, msgtag;

int sbf;

int datasize;

int cc;

int cc_type = CC_GATHER;

static struct timeval ztv = { 0, 0 };
datasize = count * get datasize(datatype);

sbf = pvm setsbuf (pvm mkbuf (PvmDataFoo)) ;

/* pack data */

pvm _pkint (&cc _type, 1, 1);

pvm_pkint (&datasize, 1, 1);

pvm pkint (&msgtag, 1, 1);

pvm pkint (&datatype, 1, 1);

pvmfpkint(&count, 1, 1);

pvm:pkint(&func, (P) N

cc = mroute (pvmsbufmid, TIDPVMD, TM REDUCEB, &ztv);
pvm_freebuf (pvm setsbuf (sbf)); -

return 0O;

[1]

(2]

(3]

(4]

(3]

(6]

[7]

(8]

(9]

BIBLIOGRAPHY

Bala, V., Bruck, J., Cypher, R., Elustondo, P., Ho, A. Ho, C. T, Kipnis, S., and
Snir, M. “CCL: A Portable and Tunable Collective Communication Library for
Scalable Parallel Computers.” International Parallel Processing Symposium,
pp. 835-844, April 1994.

Barnett, M., Gupta, S., Payne, D, Shuler, L., van de Geijn, R., and Watts, J.
“Building a High-Performance Collective Communication Library.” Proceedings
of IEEE Scalable High Performance Computing, pp. 835-834, 1994.

Barnett, M., Gupta, S., Payne, D, Shuler, L., van de Geijn, R., and Watts, J.
“Interprocessor Collective Communication Library (InterCom).” Proceedings of
Scalable High Performance Computing Conference, pp. 357-364, May 23-24,
1994.

Beguelin, A, Dongarra, J., Geist, A. Mancheck B., and Sunderam, V. “Recent
Enhancements to PVM.” International Journal for Supercomputer
Applications, Vol. 9, No. 2, Summer 1995.

Bernaschi, M. and Richelli, G. “Development and Results of PVMe on the IBM
9076 SP1.” Journal of Parallel and Distributed Computing. Vol. 29, pp. 75-83,
1995.

Bruck, J., Dolev, D., Ho, C.T., Orni, R, and Strong R, “PCODE: An Efficient
and Reliable Collective Communication Protocol for Unreliable Broadcast
Domains.” /BM Research Report RJ 9895, September 1994,

Casanova, H., Dongarra, J. and Jiang, W. “The Performance of PVM on MPP
Systems.” University of Tennessee Technical Report CS-95-301, August 1995.

Crowl, L. A. “How to Measure, Present, and Compare Parallel Performance.”
IEEE Parallel & Distributed Technology, pp. 9-25, Spring 1994.

Dongarra, J., Geist, A, Mancheck, R. and Runderam, V. “Supporting

Heterogeneous Network Computing: PVM.” Chemical Design Automation
News, Vol. 8, No. 9/10, pp. 36-42, September/October 1993.

152

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

Dongarra, J., Geist, A., Manchek, R. and Runderam, V. “Integrated PVM
Framework Supports Heterogeneous Network Computing.” Computers in
Physics, Vol. 7, No. 2, pp. 166-75, April 1993,

Geist, A., Beguelin, A, Dongarra, J. Jiang, W., Manchek, R. and Sunderam V.
PVM: Parallel Virtual Machine - A User’s Guide and Tutorial for Network
Parallel Computing. MIT Press, 1994.

Geist, G. A. and Sunderam, V. S. “Network Based Concurrent Computing on
the PVM System.” Journal of Concurrency: Practice and Experience, 4, 4, pp.
166-175, June 1992.

Lowekamp B., Beguelin, A. “ECO Efficient Collective Operations for
Communication on Heterogeneous Networks.” School of Computer Science,
Carnegie Mellon University, February 1996.

McKinley P. K., Liu, J. “Multicast tree construction in bus-based networks.”
Communications of the ACM, 33(1), pp. 29-41, January 1990.

McKinley, P. K., Tsai, Y., and Robinson, D. F. “Collective Communication in
Wormhole-Routed Massively Parallel Computers.” Computer, pp. 39-50,
December 1995.

Mitra, P., Payne D. G., Shuler, L, van de Gein, R., and Watts, J. “Fast
Collective Communication Library, Please.” Technical Report TR-95-22, The
University of Texas, June 1995.

Stevens, R. Unix Network Programming, Prentice-Hall, 1989.

Stevens, R. Advanced Unix Network Programming, Prentice-Hall, 1991.

Stevens, R., Comer, P. Internetworking with TCP/IP, Volume I, Prentice-Hall,
1988.

Stevens, R., Comer, P. Internetworking with TCP/IP, Volume II, Prentice-Hall,
1990.

Stevens, R., Comer, P. Internetworking with TCP/IP, Volume 111, Prentice-Hall,
1992.

153

154

[22] Sunderam, V. S. “PVM: A Framework for Parallel Distributed Computing.”
Concurrency: Practice and FExperience, 2, 4, pp. 315-339, December 1990.

[23] Sunderam, V., Dongarra, J., Geist, A. and Mancheck, R. “The PVM Concurrent
Computing System: Evolution, Experiences, and Trends.” Parallel Computing,
Vol. 20, No. 4, pp. 531-547, April 1994

[24] Zomaya, A. Y. Parallel & Distributed Computing Handbook. McGraw-Hill,
1996.

[25] URL http://www.epm.ornl.gov/pvm/pvm_home.html

	An Efficient Collective Communication Library for PVM
	Recommended Citation

	tmp.1558706197.pdf.UssYx

