
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Master's Theses Graduate College

12-1998

A Portable, Object-Oriented Library for Neural Network Simulation A Portable, Object-Oriented Library for Neural Network Simulation

Martin P. Franz

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Franz, Martin P., "A Portable, Object-Oriented Library for Neural Network Simulation" (1998). Master's
Theses. 4239.
https://scholarworks.wmich.edu/masters_theses/4239

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4239&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/4239?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4239&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

A PORTABLE, OBJECT-ORIENTED LIBRARY FOR NEURAL NETWORK
SIMULATION

by

Martin P. Franz

A Thesis
Submitted to the

Faculty of The Graduate College
in partial fulfillment of the

requirements for the
Degree of Master of Science

Department of Computer Science

Western Michigan University
Kalamazoo, Michigan

December 1998

© 1998 Martin P. Franz

ACKNOWLEDGEMENTS

My inspiration for this research was the work of people whom I have

never met. · Dr. Andrew Barto and Dr. Rich Suttdn demonstrated by their

research that neural networks (in particular those using temporal difference

learning) could be put to powerful and interesting uses. The many books of

Dr. Donald Knuth show that programming can be a fascinating and

profitable craft. Dr. Bjarne Stroustrup deserves mention for making C + + a

pleasant and powerful programming language whose many features I tried

to utilize fully in this library.

I also wish to thank those who served on my committee and leant

their wisdom and encouragement to me: Dr. Robert Trenary, Dr. Ajay Gupta,

and Dr. John Kapenga. In particular, Dr. Trenary patiently r�ad many drafts

of this thesis ·with a sharp red pencil in hand. The reader may thank him as

well for what is not here as for what is. I should point out, however, that

any errors remaining in this work are solely my own.

Finally, I wish to thank my wife, Maria, my son, Graham, and the rest

of my family, friends, and colleagues for tolerating my fascination with

computing in general and neural networks in particular. They bore well the

long hours I was absent while working on this project.

Martin P. Franz

ii

A PORTABLE, OBJECT-ORIENTED LIBRARY FOR NEURAL NETWORK
SIMULATION

Martin P. Franz, M.S.

Western Michigan University, 1998

A portable, object-oriented library for simulation of general Multi-layer

Feedforward Neural Networks (MLFNs) is described. Unlike ail-

encompassing neural network simulation environments, the library was

designed to allow convenient use in existing programs and in applications

where training and testing data are generated using separate, often complex

simulations.

The library' s design goals include modularity, portability, efficiency,

correctness, compactness, and type-safety. To demonstrate how these

objectives are met, competing architectural choices are prêsented, along with

the criteria used for determining the strategy actually implemented.

Sample applications using the library are presented, showing how the

library' s class files are used in neural network simulations. Finally, the

performance of the library is evaluated to demonstrate that the neural

network algorithms chosen exhibit modest run-time and storage costs. ~-

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. il

LIST OF TABLES... V

LIST OF FIGURES... vi

CHAPTER

1. INTRODUCTION .. 1

Purpose and Scope ... 2

Historical Background of Problem... 4

Il. LIBRARY ARCHITECTURE... 7

The Neural Network Model ... 9

Neural Network Classes.. 14

III. APPLICATION STRUCTURE.. 30

Using the Library ... �...................... 31

Monarch Application Classes ... 32

Streams in the Monarch Library .. 40

Additional Functions.. 45

The Complete Framework .. 48

IV. DETAILS OF ALGORITHMS... 49

Adaptive Linear Neurons (ADALINE) .. 50

Backpropagation... 58

Temporal Difference Learning and TD(À) 66

V. PERFORMANCE ISSUES... 74

Collection Class Performance ... 7 4

iii

CHAPTER

Table of Contents-------continued

Performance and Network Size ... 79

Performance in Applications .. 81

Performance Caveats ... 84

Backpropagation Performance... 85

Conclusions 86

VI. TYPE SAFETY AND EXCEPTION HANDLING 88

Type Safety.. 89

Exception Handling 96

VII. EXAMPLES ... 101

Character Recognition With ADALINE 102

Sunspot Prediction With Backpropagation 108

Random Walk and TD(À) :-...................... 114

VIII. CONCLUSIONS.. 119

Additional Learning Algorithms .. 119

Front-End Processing... 120

Back-End Processing.. 122

Concluding Remarks ... 122

BIBLIOGRAPHY .. 124

iv

LIST OF TABLES

1. Collection Class Benchmark Results... 78

2. Summary of Algorithm Runtime Behavior _.. 81

3. Summary of C/C + + Comparison Benchmarks.. 84

4. Summary of Type Safety Functions 90

V

LIST OF FIGURES

1. A Single Neuron .. 9

2. A Layer of Neurons... 11

3. The Monarch Class Tree... 28

4. A Sample ADALINE Network... 50

5. A Three-Layer Neural Network.. 59

6. Sample Character Grids ... 102

7. ADALINE Network Schematic .. 103

8. AD ALINE Error Convergence ... 109

9. Graph of Actuarand Predicted Sunspot Counts 114

10. "Random Walk" Markov Model ... 115

vi

CHAPTER I

INTRODUCTION

Artificial Neural Systems (ANSs) have become a popular tool for

solving many computational problems. These include statistical correlation,

signal processing, pattern storage and recognition, game playing, and other

applications where traditional solutions are limited by the need for a priori

understanding of the problem's constraints and structure. An ANS (also

called a "neural network") offers some decided advantages over traditional

computational solution techniques. These advantages include statistical

robustness, a degree of built-in fault tolerance, and the ability to work in

either supervised or unsupervised capacities (Masters, 1993).

Unfortunately, developing software to implement a neural network

can be frustrating and time-consuming. Most useful ANS algorithms (such as

backpropagation) require extensive programming and computation time to

reach a solution. Properly documented test cases are difficult to find, and the

software available to the researcher tends to fit the category of large, complex

graphical "environments" rather than small, reusable code modules (Plonski

and Joyce, 1990). These environments, while acceptable for prototyping and

visualization, impose limitations on the types of problems that can be

conveniently solved by the researcher and student.

This thesis describes the design and construction of a C + + library for

implementing neural network programs. This library is limited to multi-layer,

1

feedforward networks, and within this subset of neural network architectures

the user may employ the object-oriented features of C + + to easily create a

network to directly solve a given problem. Rather than a graphical

environment, simple constructs (such as streamable classes) have been

implemented to allow the user to naturally express the problem in a standard

programming language. The objective was to fit the ANS model of neurons,

connections, and learning rules into the structure of C + +. It is hoped that

this library will make it convenient and pleasant for the neural network

researcher to write neural network programs.

Purpose and Scope

This thesis is not a user' s guide to the library. Instead, it details the

design issues involved in the construction of this library, and the way in

which these issues were resolved in implementation. It is assumed that the

reader knows something about neural networks, C + +, artd object-oriented

programming, although appropriate introductory material is included here.

In most cases, a design issue is first described, several competing alternative

solutions are mentioned, and the solution chosen is then presented in detail.

Where possible the correctness of the choice is then validated with

experimental data. It is hoped that this practical approach will result in the

reader' s appreciation of the trade-offs involved in the library' s design, and a

better understanding of it' s utility.

This thesis is organized into the following chapters:

Chapter II covers the basic architecture of the library. Here is where

the organization of the library' s class files is presented. The need for general,

2

reusable collection classes is mentioned. Several competing storage strategies

(such as using the Standard Template Library in C + +, or omitting collections

altogether) are described.

Chapter III covers the structure for application programs that use the

library. In addition to the basics of creating and simulating a neural network,

the library also provides provisions for debugging and tracing, and adjusting

parameters at run time through an initialization file mechanism.

Chapter IV describes the neural network algorithms implemented

using the structure described in the previous two chapters. These include

backpropagation, Widrow-Hoff, and TD(À). Introductory material on these

algorithms, and analysis of their performance, is also provided.

Chapter V covers performance issues. Is the C + + implementation of

these algorithms as fast and compact as a matching C implementation? If

not, the utility of the library would be seriously compromised. Three test

cases are shown. This chapter also compares the performance of the C + +

collection classes to their C counterparts.

Chapter VI covers exception handling and type safety. One of the

reasons to use C + + is that the typing mechanism in the compiler may be

employed to virtually guarantee that programs that compile correctly will

run correctly. To accomplish this, additional methods need to be written for

each class.

Chapter VII presents three examples in detail. It is hoped that these

examples will demonstrate the power and compactness of the library' s

design.

3

Chapter VIII gives some conclusions and future directions for this

research.

Throughout this thesis, C + + source code has been included where

appropriate. This code is set in monospace font. Sorne source statements

are shown in boldf ace in these listings to highlight statements explained

further in the text. In the text, monospace font has been used for items as

they would appear on a computer system, such as file and function names.

For clarity, however, class names are set in proportional font.

The rest of this chapter covers some history and prior implementations

of neural networks.

Historical Background of Problem

The research of McCulloch and Pitts in the 1940s is generally agreed to

be the founding of the field of Neural Networks (McCulloch and Pitts, 1943).

They demonstrated that networks of simple neurons ccru.ld compute any

function computable by a Turing machine. Donald Hebb, who tied the

functioning of biological neurons to a model of classical conditioning, and

who presented a mathematical model by which reinforcement learning could

occur, followed their work (Hebb, 1949).

In the 1950s, Frank Rosenblatt invented the Perceptron, the first

practical neural network in the sense that it could be implemented on a

digital computer and used for simple applications (Rosenblatt, 1958). His

success, and the success of Widrow and Hoff (1960), prompted keen interest

in the field. It was believed at the time that networks of neurons would,

eventually, allow computers to demonstrate cognitive functions.

4

Unfortunately, Papert and Minsky (1969) soon demonstrated that

networks like the Perceptron and the adaptive linear neurons of Widrow and

Hoff were insufficient for solving some types of simple problems, and

interest in the field of neural networks waned. As a result, the field lay

dormant until the 1980s. Then, an increase in computing power and the

development of the backpropagation training algorithm allowed newer types

of networks to be developed. These breakthroughs allowed larger, multi

layer, feedforward networks to be implemented and trained, overcoming the

limitations found by Minsky and Papert.

At the time of this writing, using multi-layer, feedforward neural

networks (MLFNs) has become a well-understood method for solving a

variety of computing problems. Because of this, there are now a number of

software systems available that allow the researcher to create neural

networks and simulate their function. These include SNNS, RCS,

Aspirin/MIGRAINES, and others (Plonski and Joyce, 1990).•

These packages may be considered "environments" in the sense that

the user runs a single, large program and then interacts with it through a

user interface to (a) create the network, (b) specify training and testing data,

(c) simulate its function, and (d) evaluate performance. In some cases, (such

as Aspirin/MIGRAINES) a separate, C-like programming language is used to

control this interaction. In other cases (such as SNNS), a complete graphical

user interface (GUI) has been implemented, with multiple windows, drag

and drop network configuration, and graphical visualization of the network' s

output.

5

This environmental approach to neural network simulation has many

advantages, but it can also be limiting. First, these tools have a substantial

learning curve associated with them, even with the examples provided.

Second, it is difficult to write a separate program to interact with the

environment. If the researcher is constructing a control system simulation,

for example, getting the system' s sensory and evaluation functions to interact

with the neural network part of the simulation (which is running within the

environment) can be problematic. Finally, once the network has been

trained, there is no easy way to encapsulate it for inclusion in a production

program.

For these reasons, a library-based approach is desirable as an

implementation alternative. A neural network library would allow the

researcher to implement neural network functionality in a program in a more

traditional, modular manner. The ideal neural network library would

provide a set of reusable functions for creating the netwerk; simulating its

operation with training and testing data; and evaluating its performance.

The user' s program would be responsible for calling the library through a

well-described, type-safe interface. In addition, it would include provisions

for handling exceptions (such as running out of storage), overriding the basic

learning rules, and adding new network architectures based on those already

provided.

These, then, were the goals of the Monarch neural network library

described in this thesis. In the next chapter, the overall architecture of the

library and its associated data structures will be presented.

6

CHAPTER II

LIBRARY ARCHITECTURE

In this chapter, and the one that follows, we examine the architecture

of the library. Here we will consider the interna! construction of the library,

isolating the fundamental objects and data structures needed to construct

neural networks. In the next chapter, we will examine the library from an

external (or application programmer's) viewpoint, to determine the amenities

required to make writing neural network programs as pleasant an experience

as possible.

Before going further, we shall define what we mean when we say

"pleasant". Programming using a tool may be called "pleasant" when that

tool allows us to write programs which are correct (the program performs the

way we in tend it to); compact (it provides sensible default behaviors and

sufficiently powerful constructions so no extra lines of code are required),

and robust (the tool handles exceptions properly, and creates data types that

can be used naturally). These three interrelated attributes-----correctness,

compactness, and robustness---together comprise the idea of "pleasantness"

for which we will strive as we design this library.

With these criteria in mind, let us now examine the structure of a

neural network, and creation of an object-oriented design to manipulate it.

Object-oriented design has been covered in many sources, including Booch

(1991) and Stroustrup (1991), and will not be described in detail here. The

7

-

properties of an object-oriented programming language include

encapsulation (information hiding), polymorphism, dynamic binding, and

inheritance. These make it possible for the programmer to create software

"objects", incorporating both data and associated behavior, which accurately

model the real-world problem domain. For convenience, objects are grouped

into a hierarchy of classes, which are templates from which objects are

created. In OOP terminology, the process of creating a specific object from a

class is instantiation; the data within the object resides in one or more instance

variables; and the action of the object is specified with a method activated by a

message sent from another object in the running program (Franz, 1990).

The basic technique for object-oriented design is to (a) describe the

real-world system to be modeled by the object-oriented program; (b) factor

this model into various objects and actions; and (c) create software models of

these objects (classes) and actions (methods) using an object-oriented

language. With a sufficiently general and expressive langu.age, such as C + +,

we can employ inheritance (a class' s use of behavior and structure from a

parent class) and polymorphism (similar classes having similar protocols for

passing messages and invoking behavior) to reduce the amount of software

needed.

Before factoring the design into classes and methods, we need to

understand the components of the neural network model in more detail.

This is covered in the next section.

8

The Neural Network Model

A neural network is simply a linked collection of neurons. A single

neuron is a mathematical abstraction of a biological neuron. (Throughout

this thesis, the notation used in Hagan, Demuth, and Beale (1995) is used.) A

biological neuron, in turn, is a type of cell found in human and animal

nervous systems, although the correlation between it and the abstract neuron

used in a neural network is very loose.

A Single Neuron

A diagram of a single mathematical neuron is shown in Figure 1:

p�

Figure 1. A Single Neuron.

In this simple model, the scalar input p is multiplied by a scalar

weight, w, which is added to a scalar bias term. The bias term is typically 1.

The summed output of the weight and the bias is called n and is fed, in turn,

into an activation function f. This can be one of many functions, depending

on the architecture of the network, although functions commonly employed

are the log-sigmoid function, step function, and linear function. The output

of the activation function is the scalar a. This is considered to be the output

of the neuron.

For computational purposes, the output of the neuron is given by

a= f(wp+b)

9

Note that both w and b are adjustable parameters of the network. It is the

network designer's job to select the function JO, and an appropriate learning

rule, such that w and b may be computed to meet some specific goal for the

network' s output when presented with a given input.

Multiple Neurons

If we generalize p and w into vectors we obtain a generalized neuron.

Then the equation for the neuron's output becomes:

a=f(Wp+b)

From here it is a small step in generality to consider a layer of neurons that

share the same input vector. This is illustrated in Figure 2.

In a layer of neurons, each one of R inputs is connected to each of

every one of S neurons, and therefore the weights can nQw be considered a

matrix. It is common for the number of inputs to be different than the

number of neurons in the layer, so R ::t= S. Each neuron in the layer has a

separate bias, summing unit, and transfer function, although usually the

transfer functions for ail the neurons in a layer are the same. If different

transfer functions are required for a layer, it is usually more convenient to

have logically separate layers that share the same inputs and combine their

outputs. The outputs from each transfer function form an output vector.

10

pl

f al

p2 bl

f a2

p3 b2

f a3

pR
bS

Figure 2. A Layer of Neurons.

The weights in a layer of neurons may be viewed as a matrix, as

shown below:

w 1 ,1 w 1 , 2 w 1 , R

w 2 ,1 w 2 ,2 w 2 ,R

w =

w
S , 1

w
S ,2 w

S ,R

It is customary to make the row indices of the elements of matrix W indicate

the destination neuron associated with that weight and the column indices

indicate the source input. Hence, w2,1 indicates the weight to the second

neuron from the first input. Note that W contains, in effect, the state of the

layer. This means a program may save and restore W to effectively stop and

restart training of the network from a particular point. This is a technique

used in training backpropagation networks (Kutza, 1996).

11

Layers of neurons can be combined into multiple layers by making the

output of one layer the input of another. With the appropriate learning rule,

this aggregation of layers may be trained as a unit to produce a composite

network of neurons. In neural network terminology, the layer whose input

is the input to the network is cailed the input layer, the layer whose output is

the output of the network is cailed the output layer, and ail the other layers

are cailed hidden layers.

Despite the generality of this model, in most applications only three

layers are used, the transfer function is log-sigrnoid, and ail the layers are

trained by a single common learning rule cailed backpropagation (Castleman,

1996). Backpropagation will be covered in more detail in Chapter IV.

Training and Testing a Neural Network

Using the model described above, we may now discuss how a neural

network is generaily implemented. This discussion assumes that some sort of

feature identification exists for the system to recognize, and that data points

corresponding to these features can be conveniently obtained. These are

generaily considered appropriate preliminary steps in any sort of pattern

recognition problem, and will not be discussed further here (Castleman,

1996).

First, the designer chooses a suitable architecture. The parameters for

the network include the number of layers, the number of neurons in each

layer, the transfer function employed by each neuron, and the learning rule

to use when training the network. Then two sets of data points are

prepared: one for training, and one for testing. It is wise to make these data

12

sets statistically independent of one another, since an improperly trained

network can converge on one set of data points but nevertheless be

insufficiently generalized for the full range of data points it is likely to receive

as inputs (Venables and Ripley, 1994).

Next, the training data set is introduced to the network as an

input/output pair, one sample at a time. The input is propagated through

the network and an output computed according to the neuron rule shown

above. This output is compared to the desired output in the training set for

the input and an error computed. The error is used to adjust the weights in

the network according to the operant learning rule, and another data point is

then presented to the network. When ail the data points in the training data

set have been presented to the network, the process repeats until the error

decreases to within some acceptable limit.

After some number of iterations through the training set (called

epochs), the adjustment to the weights in each layer will converge. The

training algorithm usually guarantees convergence provided that certain

restrictions on the network' s architecture and the training and testing data

are observed. It also guarantees that network' s output errors are within

some statistical limits. At this time the network is considered "trained". A

separate testing data set is then introduced and processed through the

network in exactly the same manner as the training data set. Again, an error

is computed. If the error from the testing data set is close to the error for the

training data set, the network is considered ready for production. If not,

different test data points may need to be obtained, or the architecture of the

network adjusted, and the whole training and testing process repeated.

13

Neural Network Classes

From the preceding discussion it is clear that general library classes

should indude layers, which contain weights, sums, and transfer functions

for behaviors, and matrix and array collections to hold the weight matrix,

input vector, and output vector for a layer. We would also like to have a

network class, which would hold a collection of layers, and (perhaps) some

global network parameters needed by the learning rule we are using.

Objects of the network class should also contain state information telling how

the network is currently being used. Possible states are in training (weights

are being adjusted using the learning rule) or in testing (an input vector is

being propagated through the network, one layer at a time, using the vector

version of the neuron equation above.) Since most learning rules require

propagation (computation of output using input and weights), this would be

behavior common to ail types of networks and layers (Kohn, 1992).

Header Files and Source Organization

Before we go into the discussion of the library' s dass structure, a word

about the overall organization of the library' s source files is appropria te. The

prototypical user of this library is assumed to be an undergraduate or

graduate student who wishes to perform research or write class assignments

using neural networks. Such a user typically wants an absolute minimum of

implementation requirements for a project, and a shallow learning curve for

any software packages they happen to use. Thus, one of the major design

goals of the Monarch library is programmer convenience.

14

To this end, a single header file is used for all Monarch programs. lt

contains the declarations for the classes described in this thesis, and it calls

any additional header files a Monarch program requires (such as those

containing function prototypes) through the C++ #include file

mechanism.

There is a good bit of treatment in Stroustrup (1991) about single

versus multiple # incl ude files for a C + + library, and more than a bit of

religious feeling on the subject. Advocates of multiple #include files cite

flexibility and reduced overhead for users who don't wish to pull in the

facilities of a package they aren't using. The biggest reason to use a single

incl ude file for everything, even if it grows quite large, is simplicity.

Given the casual nature of the library's user, a single #include file has been

used in Monarch.

Basic Types

Within MONARCH . H, it is useful to first supply a few basic types for the

library. These help the application programmer to make his or her programs

portable without regard to the details of a C + + implementation on a

particular machine. Having these types, and using them consistently

throughout the library, should ease any porting problems.

The basic types needed by a neural network program include Boolean

values, integer values, and real numbers. In Monarch, these are defined as

follows:

15

#ifdef _MSDOS_

typedef enum { false=O, true} boolean;

#else

typedef int boolean;

#endif

#ifndef INT_TYPE

typedef int integer;

#define INT_TYPE

#endif

#ifndef REAL_TYPE

typedef double real;

#define REAL_TYPE

#endif

On Unix machines supporting the newer 2.0 C + + compiler, there is already

a Boolean type with true and false keywords. We can therefore make

boolean synonymous with int for this case. On MS DOS machines, we

don't have this convenience, so we need to create an enumerated type for

Boolean values.

The Array and Matrix Classes

A good place to begin class irnplementation is with array and matrix

classes. In OOP terminology, these are called "collection classes" or simply

"collections", since they are classes that hold other objects. Other examples of

collection classes include sets, lists, hash tables, and trees. In an 00

language, collection classes provide data structures that can be used in an

application program without the programmer needing to implement their

details (Coplein, 1992).

There is a good reason to begin irnplementation of the library with the

array and matrix collection classes-------both are commonly used in neural

network programs. Even "outside" the library (which we will discuss more

16

in the next chapter) there is a compelling need for reusable arrays and

matrices.

For our library, we have three strategies we can pursue. They are, in

order of increasing complexity:

1. We can use the matrix and array facilities already in C++. This has

the advantage of economy, but amenities such as range checking and stream

1/0 are not provided. Both facilities would be enormous conveniences.

2. We can implement matrix and array facilities, starting with those

provided by C + + and adding the features described above. This has the

advantage of providing the additional functionality mentioned above to what

is a common data structure in a neural network program. The disadvantage

is that we will have to write this code ourselves, and we will be adding

(perhaps prohibitive) overheads to what is a fairly efficient basic

implementation.

3. We can utilize the array and matrix collections provided in the

Standard Template Library. This is a set of collection classes defined as part

of the C+ + language. This has the advantage of providing a robust set of

facilities for arrays and matrices. However, the disadvantages are (a)

portability to older C + + implementations that do not support templates, (b)

extra overhead (neural programs are unlikely to use the other classes

supported by the Standard Template Library), and (c) the library's user must

learn to use the Standard Template Library to use the neural network library

For these reasons, then, following strategy (2) and writing our own

array and matrix classes seems like a wise decision. As it happens, C + +

makes the task relatively painless.

17

To design these collection classes, we use the following procedure:

first, we will list ail the data items that must be present "inside" an array or

matrix object. In OOP terminology, these are called "instance variables."

Next, we will list the functions we would like our array or matrix to perform.

This is called the "external protocol" for the object. Using both of these as

specifications, we can then proceed with the implementation.

First, array and matrix objects must contain the actual data stored in

the collection. These items will be of type of real. In actual use, most

neural network weights and inputs are in the range of (-0.5 ... 0.5), but there is

no reason not to use a double-length floating point number on all

implementations. In any event, this can be easily changed and the library

recompiled if needed.

Second, the number of elements in the array needs to be stored within

the object, so range checking can be performed. For an initial

implementation, we will choose a sequential storage of the objects, C-style,

going from O to (size of the array-1).

Third, we will provide two additional indices. The first is a "from"

index telling where the next element is to be obtained from the array. The

second is a "to" index telling where the next element is to be stored. Both of

these allow the array (or matrix) to be read sequentially as well as by a

subscript. This will make streaming data to or from an array or matrix easier.

Here we make the arbitrary (and simplifying) design decision that a matrix

can be read or written sequentially as if it were an array stored in row-major

order. This is the way C (and C++) does it.

18

With these variables defined, the operations we would like to perform

using the array or matrix include:

1. Create the array or matrix initially, or as a copy of another array or

matrix object.

2. Add elements sequentially to the array or matrix, and check the

bounds to make sure we don' t overflow it.

3. Retrieve elements sequentially from the array or matrix.

4. Add elements at any location, and check the location.

5. Retrieve elements (with bounds checking) using the subscript

operator in C + +. (The language provides convenient operator overloading

facilities, so it seems a shame not to use them for this.)

6. Stream data to and from the array or matrix. This is especially

useful when we want to load the object from an external file using C ++

streams.

Since C + + is a compiled language, data stored in an array or matrix

can be economically accessed using pointers. We use the calloc () library

function to allocate a block of memory to hold the contents of the array or

matrix, and then access an element with subscripts using exactly the same

method that C + + uses for its own arrays and matrices---by computing the

address of the item using the base address of the collection, the shape of the

array or matrix, and the subscript(s) to be accessed. We can overload the []

(subscript) operator to make this process transparent to the user of an array

or matrix.

Checking an array or matrix subscript against the bounds of the

collection requires a bit of further explanation. Since we may not wish to

19

have this overhead in a production program, a bounds-checking function

that can be removed with #def ine seems useful. On the other hand, we

would like accessing the array to be an inline method in C + +.

To accommodate these two conflicting requirements, we will use a

macro that conditionally expands a call to the bounds checking function

inside an inline function. This is what the macros CHECK () (for arrays) and

CHECK2 () (for matrices) do.

With this explanation in mind, the class file structure for the array and

matrix classes is shown below. First the array class:

#ifndef NDEBUG

#define _CHECK(X} check((x))

#define _CHECK2(x, y) check((x),(Y))

#endif

class array

{

protected:

real *a;

integer n_items;

integer here;

integer next;

public:

array(void) { here = O; next O; };

array(integer n);

array(const array &};

~array(void);

void reset(void) { here = O; next - O; };

int size(void) { return n_items; };

void add(real x)

{
* (a+next) x;

next++;

} i

void addAt(integer i,real x}{_CHECK(i); *(a+i)= x;};

real get(void)

{

real x - *(a+here);

here++;

return x;

} ;

real getAt(integer i) { _CHECK(i); return *(a+i); };

20

void from(array& x, integer where=O);

void to(array& x, integer where=O);

array& operator = (const array&);
real operator[) (integer i) { _CHECK(i); return *(a+i); }
void check(integer);

void randomize(real low, real high);

void normalize(void);

real mean(void);

friend ostream& operator << (ostream&, array&);

friend istream& operator >> (istream&, array&);

} ;

These definitions implement the complete protocol described above. The

array's "from" index is the integer here, and the array's "to" index is called

next. The operators [] and = are overloaded to allow arrays to be

subscripted normally, and for one array to be copied to another item by item.

The>> and<< operators are defined as friend functions to allow arrays to

be streamed using the J/O streams package in C + +. The functions

randomize(), normalize(), and mean() perform some basic statistical

calculations on the contents.

The ma tr ix class is defined in a similar manner:

class matrix : public array

{

integer n_rows, n_cols;
public:

matrix(integer i, integer j);

matrix(const matrix&);

-matrix(void);

integer rows(void) { return n_rows; };

integer cols(void) { return n_cols; };

void addAt(integer i, integer j, real x)

{

_CHECK2(i, j);
*(a+(i*n_cols+j)) = x;

} ;
real getAt(integer i, integer j)

{
_CHECK2 (i, j) ;

return *(a+(i*n_cols+j));

} ;

real *operator[] (integer i) {return &a[i*n_cols];};

matrix& operator = (const matrix&);

21

void check(integer, integer);
friend ostream& operator << (ostream&, matrix&);
friend istream& operator >> (istream&, matrix&);

} ;

The matrix class inherits much of its behavior from the array class,

including the instance variable a, which contains the data. It retains the

behavior of sequential access but adds rows and columns.

In bath arrays and matrices, the principal functions are likely to be

inlined by C + + since they are defined as part of the class declaration. This

reduces the overhead of using these collections, since the compiler will

generate no calling sequence when a method is invoked. The additional

support for the array and matrix classes is contained in the ARRAY. CPP

source file.

The collection classes above have the advantage of being concise,

economical with storage (only 3 extra integers are required for arrays and 5

for matrices) and, as Chapter V will demonstrate, reasonably fast. However,

they have several disadvantages:

1. Subscripts must go from O to 1 less than the number of items. Other

ranges, (e.g. -10 ... + 10), such as are found in Pascal, are not supported.

2. The data in these structures is contiguous in memory. Sparse arrays

and matrices are not supported. They could be added using the same

protocol, however.

3. The array or matrix must be allocated to a fixed size. The size

cannot increase or decrease as needed. Variable length structures are not

supported. Again, the same protocol could be used and the implementation

changed to support this, however. This is one of the advantages of C++'s

facilities for encapsulation.

22

None of these three disadvantages has any impact on the algorithms

implemented using the library to date.

The Neural Network Classes

With the ability to create arrays and matrices, we can create neural

network classes that use them. Initially, the library had only two main object

types: a Layer object, which was a collection of neurons, and a Net object,

which held a collection of Layers Goyce, 1990).

This design, however, proved inadequate when implementing the

algorithms in the library. This is because the matrix of weights W makes

more sense when thought of as going between a set of neuron layers (from

the output of one layer to the input of another) and not part of a set of

neuron layers. Other properties of a neuron layer, such as the transfer

function, make sense if they are thought of as part of the layer itself.

As a result, a synthetic entity was created, called ·a Link. (In OOP

terminology, a synthetic entity is one created for the convenience of the

programmer that does not have a physical analogue in the "real" problem.)

A Link connects two Layers of neurons. The Layer contains the sum, output,

and error terms for the neurons in the layer, along with the transfer function

and its derivative (this becomes more important when we discuss

backpropagation in Chapter IV.) The Link holds the weights and the

changes in the weights for the current epoch (this quantity is used in some

training methods to tell when the network has been sufficiently trained.

Again, this is covered in Chapter IV.) A Link also holds pointers to the two

Layers it joins.

23

A neural network, then, is a collection of Links, each of which joins a

pair of Layers.

The declaration for a Layer is shown below:

class Layer : public Monarch

{
protected:

integer n_units;
char *layer_name;

public:
array *sum, *output, *error;
Layer(char *, integer);
~Layer(void);
integer numberUnits(void) { return n_units; }
char *layerNameOf(void) { return layer_name; }
friend ostream& operator << (ostream&, Layer &);
friend istream& operator >> (istream&, Layer &);
virtual real f(real x); Il transfer function
virtual real f_dot(real x); Il derivative of transfer function
} i

The Layer class descends from the Monarch class, about which there

will be more to tell below. The basic protocol includes returning the number

of units, the name of the Layer, and the transfer function f () and its

derivative f _dot () . The sums of each neuron, the outputs of each neuron

in the layer, and the error terms (the difference between the actual and

expected outputs for each neuron in the layer) are declared as pointers to

array abjects.

Here is the declaration for the Link class:

class Link : public Monarch

{
protected:

Layer *Upper, *lower;
matrix *weights, *dweights, *save_weights;

public:
Link(Layer *from, Layer *to);
-Link(void);
Layer *fromLayer(void) { return lower;
Layer *toLayer(void) { return upper; }
void save(void);

24

}

void restore(void);

virtual void propagate(void);

virtual void backpropagate(void) { };

virtual void adjust(void) { };

virtual real computeError(array&) { return 0.0; };

virtual void newtrial(void) { } ;

friend ostream& operator << (ostream&, Link &);

friend istream& operator >> (istream&, Link &);

} ;

In this class, the weights are defined as a. matrix whose rows are the

number of input Layer units and whose columns are the number of output

Layer units, exactly as specified earlier in this chapter. There is a matching

matrix called save_weights that may be used to hold the weights for

stopped training, and another matrix called dweights that contains the

change in each weight the last time the Link was propagated.

Like Layers, Links descend from the Monarch class.

Finally, there is the Net class. This is the collection class for the Links

in the network, the controlling class for simulating its operation, and also the

base class for any derived classes which actually implement the various

learning algorithms. Its structure is shown below:

class Net : public Monarch

{

protected:

integer here;

integer next;

integer n_layers;

char *net_name;

phaseid phase;

long epoch;

real error; Il total net error

Link •links[N_LINKS];

public:

Net(char *, integer);

-Net(void);

integer numberLayers(void) { return n_layers; }

char *netNameOf(void) { return net_name; }

void reset(void) { here = O; next = O; };

virtual void propagate(void);

virtual void backpropagate(void);

virtual void adjust(void);

25

virtual void newtrial(void);

virtual void computeError(array&);

virtual void simulate(array&);

void add(Link *l) { links[next++] l; };

void addAt(integer i, Link* 1)

links[i] = l;

}

Link* get(void) { return links[here++]; };

Link* getAt(integer i) { return links[i]; }

void setPhase(phaseid p) {phase = p; epoch 0; };

real errorOf(void) { return error; }

void save(void);

void restore(void);

} ;

There will be much more to say about this structure in upcoming

chapters, but for now it is important to note that the array links [] holds

pointers to ail the Links in the network. Going forward through this array

(from O to the number of Links-1) propagates through the network, from the

input layer, through the hidden layers, to the output layer; going backwards

(from Links-1 to 0) backpropagates from the output layer to the input layer.

These iterations are what the member functions propagate () and

backpropagate() do, respectively. The function adjust.() is cailed if the

network is in "training'' phase to set the weights of each Link based on the

error for each Layer. Ail three of these methods appear to have some

correspondence in real algorithms. It is the task of the various network

implementations, which descend from Net, to complete the functions

mentioned above with appropriate learning rules.

The Monarch Class

The Monarch class acts as a base class for ail other neural network

classes in the library. The array and matrix classes do not descend from

26

Monarch so that they can be used in programs without dependency on the

neural network structure.

The structure of the Monarch class is shown below:

typedef enum
{
monarch, net, layer, inputlayer, outputlayer, hiddenlayer,link
} classid;

typedef enum

{
setup, training, testing, evaluating
} phaseid;

class Monarch

protected:
classid id;
char *name;
void change(char *, classid);

public:
Monarch(char *, classid);
-Monarch(void);
classid isA(void) { return id; }
char *nameOf(void) { return name; }
} ;

The Monarch base class provides a name and ID. for ail the other

classes in the class structure. The member functions isA () and nameOf ()

return these. These are used principally in tracing and debugging facilities,

which are discussed in Chapter VI.

The lnputLayer, OutputLayer, and HiddenLayer objects descend from

Layer and are used for these various types of neuron layers. Their chief

difference is that an InputLayer may be written to with a to () function,

while an OutputLayer read with a f rom () function. This allows the calling

program to pass data to and from the neural network during training,

testing, and evaluation phases. It also allows streaming operators, discussed

further in the next chapter, to be implemented.

27

The basic Monarch class tree is shown in Figure 3.

Monarch

Net Link

lnputlayer Hiddenlayer Outputlayer

Figure 3. The Monarch Class Tree.

Note that the classes presented in this chapter are very basic. For

instance, the simula te () method in the Net class simply follows the

procedure described earlier to use the network:

/*
* simulate() -- run (and possibly) train the network
* Runs a single cycle

*/
void Net

{

simulate(array& target)

if (phase != setup)

{

++epoch;

propagate ();

computeError(target);

if (phase == training)

{

backpropagate();

adjust();

}

The Net member functions propagate(), backpropagate(), etc.

in turn simply iterate through the array of links [] in either forwards or

28

}

backwards order. To implement a learning method using this structure,

descendants for the Net and Link classes must be added for the algorithm.

This is discussed in Chapter IV.

This chapter described the architecture of the Monarch library,

presenting an overview of the basic classes. In the next chapter, the

programmer' s view of the library will be presented, and some additional

classes to make programming easier will be described.

29

CHAPTER III

APPLICATION STRUCTURE

In this chapter we present a structure for programs that use the

Monarch library. By "application structure" we mean a set of C + + classes

that, when used in concert, provide a coherent framework for a Monarch

neural network application. Within this framework, the programmer need

only write the parts of the program needed to solve the specific problem at

hand. Many details, such as creating the network and providing it with

input, are already handled.

This chapter therefore covers topics relating to application structure:

1. How to use the standard header file and link with the library.

2. Basic classes, such as MonarchApp, which handle the application' s

initialization and termination.

3. How to use training and testing databases within an application.

4. Support for debugging and inspecting Monarch objects.

5. How network configuration information can be brought into the

application when the program is run so the network can be dynamically

configured.

Before we present the classes that are provided to make application

programming easier, we need to take a look at how a Monarch program is

compiled and linked.

30

...

U sing the Library

Using the Monarch library is a two-step process. It involves (1)

including the C + + header file that defines the Monarch classes in the source

program, and (2) linking with the Monarch object library. A sample program

and compilation, using Borland' s Turbo C + + compiler, is shown below:

First the sample file:

C:>type sample.cpp

Il SAMPLE.CPP: Test Monarch library

Il

Il version: 9116197

Il compiler: Turbo C++ 3 .X

Il uses: monarch.h, monproto.h

Il module type: .EXE

#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include "monarch.h"

parameters sample_ini[l]

{

{ "echo" , (function) _echo }

} i

class App

{

public MonarchApp

public:
App (void);
-App (void);

} i

App *theApp;

App : : App(void)

{

}

App : : -App(void)

{
}

MonarchApp("SAMPLE.INI", 1, &sample_ini)

int main(int argc, char *argv[])

{
theApp = new App;

31

// application goes here

delete theApp;

Now the compilation:

C:>tcc sample.cpp

C:>tlink sample,,,monarch.lib

Chapter II discussed the benefits and penalties of using a single

header file. This topic will not be covered further here. In this example the

library file MONARCH. LIB contains ail the object modules that implement the

classes in the library. Ali the example programs presented in this thesis were

compiled the same way.

Monarch Application Classes

The program SAMPLE . CPP above shows the minimal code needed to

use the Monarch library. The most important feature in this small example is

that it creates a class called App that descends from the Monarch class

MonarchApp.

The MonarchApp Class

This class is a formal class for the Monarch library. This means that

specific instances of this class are never created directly. Instead, the user is

expected to create a descendant tailored for his or her own use. This

descendant class typically creates ail the objects needed by the application

program for the neural net: the Net, Link, and Layer objects described in the

last chapter. It also performs any additional initialization needed by the

simulation.

32

Here is an example, drawn from the ADALINE example program.

(The ADALINE example is covered ftirther in Chapter VII.)

/* ADALINE Layers and Network */

InputLayer *il;
OutputLayer *ol;
AdNet *recognize;

/*
* App() -- create and initialize neural network
* Note: many values are set as part of MonarchApp initialization
*/

App : : App(int argc, char *argv[])
MonarchApp(argc, argv, "CHARS.IN!", N_PARMS, test_ini)

{
il new InputLayer("Inputs", n_inputs);
ol = new OutputLayer("Outputs", N_OUTPUTS);

recognize = new AdNet("Recognize", ADALINE_LAYERS, Alpha,
Epsilon);

recognize->add(new AdLink(il, ol));

}

As part of the constructor for the App, the constructor for

MonarchApp is called to initialize the Monarch library functions, and then

the neural network used in the program is created. The exact protocol for

this is described later in this chapter.

The Parameters Class

An important class used by MonarchApp is the Parameters class. This

class allows the user to create initialization files ("INI files") of parameters for

the neural network, which in turn may dynamically control features such as

learning constants, the number of units in a layer, etc.

33

To use the facility, the user must create a static structure of

initialization file keywords and functions:

parameters sample_ini[l] =

{
{ "echo", (function) _echo}

} ;

The address of this structure is then passed to the MonarchApp class

when its constructor is invoked:

App : : App(void) : MonarchApp("SAMPLE.INI", 1, &sample_ini)

{

}

The initialization file may either be a file proper, or a sequence of

command-line arguments.

A number of alternative methods for performing this function were

considered. These were:

1. Strictly using UNIX command-line arguments, passed through argc

and argv [] . These are portable to ail C and C + + implementations, but

they are limiting: if ail the arguments required are too long to fit on a

command line, then no support exists for retrieving them.

2. Using an operating system-dependent facility for .INI file

processing. Microsoft's Windows 3.1, Windows 95, and Windows NT have

such a facility, available through the Application Program Interface (API) for

these environments. It handles ail the required functions conveniently. The

problem, of course, is that this mechanism is limited to these environments.

3. Writing a basic facility that builds on the UNIX command line

processing but augments it with files.

34

4. Writing a more complex facility that replaces the UNIX command

line processing using the UNIX parsing tools Lex and Yacc. This is the

approach adopted by environments such as Aspirin/MIGRAINES. It allows

ultimate flexibility, but it is much more general than is needed for this

project-most of the parameter specifications required by Monarch obey the

rule "parameter = value".

In this application, option (3) was chosen. Implementing it in a

hybrid object-oriented language like C + + is problematic, since an important

feature of this facility is that the Monarch library' s parameter file handler

calls code the application programmer writes within his or her program. In a

"pure" object-oriented language such as Smalltalk, code can be passed

between objects as blocks (Goldberg, 1983), but this ability is not included in

C + +. (There are alternative idioms for this, discussed in Coplien (1992).)

The closest we can corne to a proper block without adding too much

apparatus to the library is with C-style pointers to functions.

This mechanism is what the following types establish:

typedef void (* function) (char * t);
// keyword function table entry

struct parameters

char *what; // control token
function where; // function to call

} ;

These declarations create a type of f unction that is a pointer to a

function that returns void, and a structure called pararneters that pairs a

string (called a "control token") with a function to process it. The class

Parameters, shown below, takes an array of parameters, a file, and a UNIX

style argument list. We can consider both the initialization file and the

35

command line argument list as sources of paramete_rs. Using the parameter

structure, the Parameters class calls the functions in the structure whenever a

keyword is encountered in either parameter source.

Ail the programmer writes are relatively simple functions to handle

argument processing, such as:

void _alpha(char *s) { Alpha - atof(s); }

void _epsilon(char *s) {Epsilon = atof(s); }

#define N_PARMS 4

parameters test_ini[N_PARMS]

{

{ "echo",

{
11 * 11 /

{ "alpha",

{ "epsilon",

} ;

(function)

(function)

(function)

(function)

_echo } ,

_comment } ,

_alpha } ,

_epsilon }

// in library

// in library

Here _alpha () and _epsilon () simply process their arguments

with the C++ standard library function atof () and set the parameters in

the simulation accordingly. In an .INI file, a user could then include:

alpha 0.05

epsilon 0.95

to set these values, while on the program' s command line, the construction

eta-0.05 epsilon=0.95

would be used instead, since C + + runtime initialization breaks up parameter

strings using blanks. (ln this example, eta=O. 05 and epsilon=O. 95 are

treated as separate arguments.)

Ail the processing for parameter handling is embedded in the class

Parameters. This synthetic class handles this chore for the entire library. Its

declaration is shown below:

class Parameters

{

36

FILE *inifp;

integer num_keywds;

parameters *key_table;

protected:

void getline (char *s);

integer search (char * key);

public:

Parameters(char *fn, integer n, parameters *tbl);

-Parameters(void);

boolean arglist(integer argc, char *argv[]);

boolean obtain(void);

} ;

The details of this class need not concern us, except to mention that the user

never calls the Parameters class directly-the standard constructor for

MonarchApp handles this processing when the program is initiated.

Creating the Neural Network

Within the App class, the library functions to actually build the

network are called. The exact protocol is described in this section. Here

there are several design options to consider:

1. C + + calls to constructors for Nets, Links, and L1yers can be used.

This is the most straightforward and obvious approach.

2. A "design language" can be implemented where the schema for the

network is read from an ASCII file. This is the approach used in packages

such as Aspirin/MIGRAINES. The file can be edited outside of the simulation

program, and different network configurations interchanged.

3. A graphical design tool can be constructed which outputs the

needed objects for the network directly. This is the most elaborate

implementation, but operation would be easiest for the non-programming

user. This is the approach used by environments such as SNNS (Zell, 1995).

37

In this application, approach (1) was adopted. Using C++ and the

Unix language tools such as Lex and Yacc, approach (2) or even (3) could be

implemented at a later time.

For approach (1), there are two sub-cases to be considered:

a. The network can be constructed at compile-time, using statically

initialized data structures. This makes it easy to design tools to create the

network, but it is difficult for programmers who don't have (or like) the tools

to use the package. Preprocessor macros can make this process more

palatable, however.

b. The network can be constructed at run-time, using C + + function

calls. This makes it easy to use the library without any supporting tools,

although adding a language or visual tool later means that an interpreter is

required to translate a schema into C + + calls.

Approach �) was the one adopted. The linked data- structures within

the Net object make adding additional tools later a straightiorward process.

Sample code to create a network is shown below:

/*
* App() -- create and initialize neural network
* Note: many values are set as part of MonarchApp initialization
*/

App : : App(int argc, char *argv[]) :
MonarchApp(argc, argv, "BPN.INI", N_PARMS, test_ini)

{
il = new InputLayer("Inputs", n_inputs);
ol = new OutputLayer("Outputs", N_OUTPUTS);
hl = new HiddenLayer("Hidden", n_hidden);

sunspots = new BpNet("Sunspots", N_LAYERS, Gain, Eta, Alpha);
sunspots->add(new BpLink(il, hl));
sunspots->add(new BpLink(hl, ol));

38

The network is created from the bottom up. First the Layers are

created, then the Net object, and then two Links (one for the input to hidden

connection, one for the hidden to output connection). Each Layer's

constructor takes as an argument the number of units for the layer. This is

obtained from the initialization file when the App' s ancestor, MonarchApp, is

instantiated.

When the Net object is instantiated, learning parameters set during

the program's startup (either from default constants or the initialization file)

are passed to the constructor. These parameters vary depending on the type

of network and learning method. Here, standard backpropagation

parameters gain, e (eta), and a. (alpha) are shown. These are described in

detail in Chapter IV.

Using the relatively simple initialization file facility and run lime

function calls, a variety of network configurations can be easily created in an

application program.

Destroying the Neural Network

When the program has ended, the destructor for the App class

typically deletes the neural network Net object.

I*
* -App() -- delete network when program finishes
* Layers, Links, etc. are deleted automatically

*I
App : : -App(void)

{
delete sunspots; Il delete Net

}

Since a Monarch neural network is a linked object, ail the associated

Links and Layers, and their associated arrays and matrices, are also destroyed

39

from "within" the Net object. Several different neural networks can be

independently created and destroyed in a single simulation.

Streams in the Monarch Library

In a neural network simulation program, there are a several uses for

type-safe input and output facilities:

1. Files of training and testing data need to be handled. (These are

sometimes referred to as databases in neural network literature, although the

traditional view of a database as a hierarchical or relational organization of

data items is not applicable here. Instead, a neural network database is a set

of arrays or matrices of paired input and output data items.)

2. Visualization tools, such as MATLAB and GNUPLOT, are often used

to graph data output from the simulation, or to prepare input for a

simulation. These tools usually require ASCII files.

3. Debugging an application sometimes requireS "dumping" the

contents of an array or matrix for examination.

Ali three uses fall into three broad areas of input and output as

defined in C+ + (Stroustrup, 1991):

l. Input can be thought of as the conversion of a sequence of

characters (usually read from a file) into an instance of a specific type.

2. Output is the conversion of an instance of a specific type into a

sequence of characters.

3. Formatting is changing the layout of the sequence of characters

before they are input to a type, or after the type is output.

40

In C + + vocabulary, these sequences of characters from which types

are input or output are called streams. By default, a C + + program has

access to three streams when it is run: cin, which is connected to standard

input; cout, which is connected to standard output, and cerr, which is

connected to the error output. By connecting to streams through standard

C + + library calls additional files may be used.

Operator Overloading

C++ uses the<< and>> operators to get data from and put data to a

stream. Defining stream behavior for a class therefore requires overloading

these two operators. An example demonstrates the use of the overloaded

"put to" << operator:

ostrearn& operator << (ostrearn& s, array &a)

{
for (integer i = 0; i < a.n_iterns; i++)

{
s << *(a.a+i) << "\n";

return s;
} i

The function operator << is defined as a friend of the array class in

MONARCH . H. This allows the function access to the normally private instance

variables of an array object. For an array, we simply want to output the

individual elements of the array (note that we also use << for these) to

whatever stream we happen to be using. The << operator is considered

dyadic, with the stream to output to and the object to be output as the two

operands.

41

For a network object such as a Link or a Layer, specifying the behavior

of the stream operators is problematic. What do we want them to

accomplish? What does "putting to" a Link or "getting from" a Layer mean?

For Layers, we arbitrarily decide that the stream operators work with

the output array in the object. This is what we are interested in most of the

time. The code to handle "put to" is shown below:

istream& operator >> (istream& s, Layer &l)

{

s >> *l. output;

return s;

}

This allows us to set the InputLayer of a neural network very conveniently.

The code for "get from" is similar:

ostream& operator << (ostream& s, Layer &l)

{

s << l.output;

return s;

} i

Using this, we can get the contents of an OutputLayer eas�y.

For Links, we define the same functions to work with the weight

matrix. This is useful for debugging and tracing the output. The functions

are shown below:

ostream& operator << (ostream& s, Link &l)

{

s << l.weights;

return s;

} i

istream& operator >> (istream& s, Link &l)

{

s >> *l.weights;

return s;

}

In both the Link and Layer examples shown above, we call the operator

<< and operator >> functions defined for arrays and matrices. The

42

member functions for Links and Layers simply call them for the appropriate

instance variable.

Database Classes

In addition to making neural network classes streamable, Monarch

provides direct support for database classes. In Monarch, a database is

usually associated with a file, and it contains an array or matrix of ASCII

numeric data. The two sub-types of databases are streams and blocks. Like

arrays and matrices, streams and blocks are available in programs without

requiring the rest of the neural network library class tree. They may be used

wherever ASCII files of numeric data need to be handled.

In designing the database classes, the goal was to provide a class

structure where (a) basic ASCII file operations could be done easily by casual

users and (b) a more knowledgeable Monarch user would have a suitable

hierarchy to use for their own, more specific "databases". • These databases

may not associate with files at ail, but could, for example, interface to the

move generator in a board game.

The protocol for accessing a database relies on the polymorphism

available in C + +: the programmer opens, closes, gets, and puts data to a

database exactly like using a file. The definition of the da tabase class in

MONARCH. H is shown below.

typedef enum {closed=O, opened=l} db_state;

class database

protected:

real x;

integer items_read, items_written;

db_state s;

43

public:
database(void) { s = closed; items_read O;

items_written = O; };
-database(void) { } ;
void dump (void);
virtual void reset(void) { } ;
virtual boolean isError(void) { return false; }
virtual boolean isEof(void) { return false; }
virtual int errorOf(void) { return 0; } ;
db_state stateOf(void) { return s; };
virtual real get(void) { items_read++; .return x; } ;
real last(void) { return x; };
virtual void put(real y) { x = y; ++items_written;
integer read(void) { return items_read; };
integer written(void) { return items_written; };
} ;

This formal class defines the basic behavior for a database object. It provides

the ability to get an item from the database and query its various attributes,

such as whether the file associated is it is at end of file or not.

The supported descendants of the database class are s tream and

blacks databases. These map to the C++ Standard Library's stream and

block J/O file handling, respectively. The stream class is shown below:

class stream : public database

protected:
FILE *f;
char *fname, *fmt, *mode;

public:
stream(char *, char *);
-stream(void);
stream(const stream&);
stream& operator = (const stream&);
char *fileNameOf(void) { return fname; };
char *formatOf(void) { return fmt; };
void format(char *s) { delete fmt; fmt = strdup(s); };
boolean isError(void);
boolean isEof(void);
int errorOf(void);
FILE *fileOf(void) { return f; };
real get(void);
void put(real);
void reset(void); // flush and seek to start
long locate(long);
friend int operator (const stream& a, const stream& b);
friend int operator != (const stream& a, const stream& b);
} ;

44

{

Note that this defines most of the actual behavior, while database acts as a

template. The blocks class is similar:

class blacks : public database

{
protected:

int handle;
char *fname;

public:
blocks(char *, int);
-blacks (void) ;
blocks(const blacks&);
blacks& operator = (const blacks&);
char *fileNameOf(void) { return fname; };
boolean isError(void);
boolean isEof(void);
int errorOf(void);
int fileOf(void) { return handle; };
real get(void);
void put(real);
void reset(void); // seek to start
void close(void);
void open(int mode);
long locate(long);
friend int operator (const blacks& a, const blacks& b);
friend int operator != (const blacks& a, const blacks& b);

} ;

There is a substantial amount of code in these classes to make them type-safe;

this is covered in more detail in Chapter VI.

Additional Functions

While stream operators and databases are convenient, there are

applications where we want to simply transfer data to or from the neural

network using arrays. This is the case when, for example, we dynamically

generate data in our program without reading a database file.

To handle this situation, we may use the buffered 1/0 features of the

C + + stream library, but it is just as easy to define two additional functions.

One belongs to the InputLayer class and is called to () , whilè the other

45

belongs to the OutputLayer class and is called from(). Both copy the

contents of an array to or from the output array of the Layer.

The f rom () function is shown below:

/*
* from(a) -- set contents of input layer from 'a'
*/

void InputLayer : : from(array& a)

{

assert(a.size() < output->size());
for (integer i - O; i < a.size(); i++)

{

}

output->addAt(i+l, a[i]);

}

The to () function is the inverse:

/*
* to(a) -- get contents of output layer into 'a'
*/

void OutputLayer : : to(array& a)

{

assert(a.size() < output->size());
for (integer i - O; i < a.size(); i++)

{

a.addAt(i, ((*output)[i+l]));

}

Here is an example of how these are used. The sunspot simulation (see

Chapter VII) uses these functions to copy the input and target arrays to and

from the neural network during a simulation epoch:

/*
* Simulate(in, out, target) -- run a single simulation cycle
*/

void Simulate(array& in, array& out, array& target)

{

il->from(in);
sunspots->simulate(target);
ol->to(out);

}

46

}

First, the InputLayer is loaded from the in array. Next, the simula te ()

method is called for the network. Finally, the out array is loaded from the

OutputLayer of the network. This completes a single simulation cycle.

Debugging Support

Many C + + compilers, such as Borland' s, provide interactive

debugging tools such as class browsers and object inspectors for C + +

programs. However, there are times when it is convenient to display the

contents of an object in an application-specific manner during a program' s

execution. Ali Monarch classes support a dump() method for this. An

example is shown below:

/*

* dump() -- dump array's instance variables
*/

void array : : dump(void)

{
cout << " array" ;
cout << " n_items-" << n_items
cout << " here-" << here ;
cout << " next-" << next ;
cout << " &a=" << a << "\n";

The preprocessor macro DUMP invokes the dump method for a single

object:

#define DUMP(x) cout << #x; x.dump()

Since ail objects descending from the Monarch class tree have a type and

identifier, this is included in the output.·

47

The Complete Framework

In this chapter we have seen ail the elements of a Monarch

application. This includes: (a) the MonarchApp class; (b) the App class that

descends from it; (c) how configuration parameters for the simulation may be

read from an initialization file; (d) how the neural network is created when

the App abject is instantiated, and destroyed at termination; and (e) how

C + + streams may be used to send data to and from the neural network for

simulation, and how databases may be used within simulations.

These pieces together comprise the Monarch application framework.

Once the network has been constructed, it' s up to the programmer to write

the parts of the simulation that obtain or generate the testing and training

databases, pass them to the network, and evaluate the outputs that corne

back. The details of this will be shown later in Chapter VII, when three

specific examples are presented.

In the next chapter, we will consider the neural algorithms that were

implemented in the library.

48

CHAPTER IV

DETAILS OF ALGORITHMS

In the last two chapters, we considered the intemal and extemal

architecture of the library. We introduced classes for Nets, Links, Layers, and

MonarchApps. This exposition was necessary to describe a framework in

which neural network simulation programs could be conveniently written.

We have yet to implement any neural network algorithms, however.

Th�t state of affairs will change with this chapter. Here we present

three neural network algorithms, in increasing order of complexity. We will

show how the code for these algorithms may be "plugged into" the library

structure developed in the previous chapters. The three algorithms are the

ADALINE network of Widrow and Hoff (1960), standard backpropagation,

and the TD(À) algorithm of Barto and Sutton (1990). The derivation of these

algorithms is necessarily brief-there are many other sources which cover

this material in more detail, including the important analysis of convergence

once the algorithm and its performance index have been derived (Hagan

Demuth, and Beale, 1995). Here enough detail has been included to give the

reader a feel for the algorithm and how the implementation in C + + reflects

it.

49

Adaptive Linear Neurons (ADALINE)

As mentioned in the Introduction, the earliest types of neural

networks were the Perceptrons of Rosenblatt (1958) and the adaptive linear

neurons (ADALINE) of Widrow and Hoff (1960). A single layer of neurons,

each of which used a relatively simple transfer function, characterized these

network architectures. In the case of the Perceptron, the transfer function

was the hard limit. In the case of ADALINE, it is a pure linear function.

Unlike the Perceptron, which uses an arithmetic learning rule, the

ADALINE uses the Least Mean Squares (LMS) learning rule. LMS gives

better performance than the Perceptron learning rule, which simply moves

the decision boundary in the direction of the error vector when a

misclassification occurs. Perceptron weights are susceptible to input noise;

weights computed by LMS are generally not. More importantly, the

ADALINE network may be viewed as a simplified form of backpropagation

network, so its implementation can be generalized.

Following the notation described in Chapter II, an ADALINE network

is shown in Figure 4.

p
w

Rx 1

1 b

R s

Figure 4. A Sample ADALINE Network.

50

The output of this network is given by:

a = purelin(Wp + b)= Wp + b

Like the Perceptron, this equation creates a decision boundary at the

point where n = 0 or Wp+b = O. This implies that an individual ADALINE

may be used to classify objects into two categories, but only if the features are

linearly separable.

With this basic description, let's tum our attention to the LMS

algorithm for training an ADALINE network. To do this we will summarize

the exposition in Hagan, Demuth, and Beale (1995). This is a supervised

algorithm, meaning that the network must be provided with examples of

proper behavior. The network is presented with pairs of inputs and

associated targets in the sequence:

The weights and bias may be lumped into a single vector:

Similarly, we include the bias input "l" and create the composite input

vector:

51

z=[�]

Now the network output can be written in vector form as

a =X
T

Z

Using this notation, the mean square error function F(x) is based on

the expected value of the error over ail the input-target pairs. If we use the

notation E[] to denote expected value, the mean square error function may

then be written:

F (x) = E[e2
] = E[(t-a)2] = E[(t-xT z)2

]

This can be expanded and re-written as

Where c=E[t], h-E[tz], and R=E[zzTJ. The vector h is sometimes called the

cross-correlation between the input and the target, and R is called the

correlation matrix.

To compute the LMS error, we need to minimize this F(x) function.

This is a quadratic function, fitting the general form:

1
F(x)=c+dTx+-xT Ax

2

52

where

d = -2h and A = 2R

Because this is a quadratic function, its characteristics (and therefore

the existence of a minimum error point) are deterrnined by Hessian matrix A.

If the eigenvalues of the Hessian matrix are ail positive, then the function will

have one unique global minimum. Since the Hessian matrix is twice the

correlation matrix R, and ail correlation matrices may be demonstrated to be

either positive definite or positive semidefinite, then the performance index

will have either one unique global minimum, a weak minimum, or no

minimum. Ail of this can be determined by the vector d--2h.

The minimum of the performance index is determined by the gradient

of F(x). This is given by:

VF(x); v(c+dT x+ � XT Ax); d+Ax ;-2h.+2lb

The stationary point can be found by setting the gradient equal to

zero:

-2h+2Rx = 0

If the correlation matrix is positive definite there will be a unique

stationary point, which will be a strong minimum:

53

x• = R -1h

Note that the existence of a solution depends only on the input

correlation matrix, R. If we could calculate h and R directly, we would have

the minimum point. However, this is not always practical. The important

insight of Widrow and Hoff is that the minimum may be estimated from the

square of the original error function, and the gradient of F(x) need not be

computed exactly. It is much easier to compute an error vector e at each

iteration of the algorithm, and rely on the fact that

F(x) = (t(k)-a(k))2 = e2(k)

In this approximation, the expectation of the squared error is replaced

by the squared error at each iteration. Tuen the gradient estimate becomes:

VF(x) = Ve2(k)

The first R elements of this are derivatives with respect to the network

weights, while the (R+lyt element is the derivative with respect to the bias.

This can be written:

and

[Ve2 (k)] i
=

a;:(k)
= 2e(k) �k) for j = 1,2, ... R

1,j 1,j

[Ve2 (k)] =
ae2(k)

= 2e(k) a
e(k)

R+I
ab ab

Using the notation defined previously, this simplifies to

54

VF(x) = Ve2 (k) = -2e(k)z(k)

In our matrix notation from Chapter II, then, the LMS algorithm looks

like this:

W(k + l) = W(k)+ 2ae(k)p
t
(k)

and

b(k + 1) = b(k) + 2ae(k)

The parameter a. (alpha) is called the learning rate and may be

calculated from the eigenvalues of R. It controls the size of the gradient

descent interval at each iteration of the algorithm. Rather than compute this,

it is customary to select a small, conservative number to us� in the simulation.

We have now developed enough theory to talk about the algorithm as

it is implemented in C + +. First, let' s look at the structure of an AD ALINE

Link object, since it contains most of the data structures needed by the

algorithm. It descends from the standard Link in the class tree. It is shown

below:

/* ADALINE version of Link */

class AdNet;

class AdLink : public Link

{
protected:

AdNet *net;
array *activation;

public:
AdLink(Layer *from, Layer *to);

55

-AdLink (Void);
AdNet *netOf(void) { return net; };
void netis(AdNet *n) {net = n; };
virtual void propagate(void);
virtual void adjust(void);
virtual real computeError(array&);

} ;

In addition to the standard output and weight arrays contained in the

Link, there is also an activation array. This will be discussed below.

The basic structure of a simulation algorithm was shown in Chapter II.

It is handled by the simula te () function in the Net class, presented again

here:

/*
* simulate() -- run (and possibly) train the network
* Runs a single cycle
*/

void Net

{

simulate(array& target)

if (phase != setup)

}

{

++epoch;
propagate();
computeError(target);
if (phase -- training)

{

backpropagate();
adjust();

}

When this method is executed, each method in it calls its counterpart for

each of the Links in the network.

The first function to examine for an ADALINE Link is propagate ().

Its construction is straightforward. It simply computes the output of each

layer as shown in the diagram above and passes it on to the next one. In the

case of an ADALINE network, there is only one layer.

/*
* propagate() -- pass signals forward thru AdLink
* Output of upper layer is set from output of lower

56

..

* layer and transfer function.
*/

void AdLink : : propagate(void)
{

real sum;

for (integer i - 1; i <- upper->numberUnits(); i++)
{

}

sum - 0.0;
for (integer j - O; j <- lower->numberUnits(); j++)

{

sum +- ((*weights)[i] [j])*(*(lower->output))[j]

activation->addAt(i, sum);//needed for error computation
upper->output->addAt(i, lower->f(sum));
}

Note that the array activation holds the output of the summer (n) from

the units before it goes into the purelin () function. This is needed when

computing the error term.

The next function to examine is computeError (). Using the array of

target values passed to the Net, it computes the error values in the layer:

/*
* computeError() -- compute error for a link
*/

real AdLink : : computeError(array& target)
{

real error, err, act;

error - 0.0;
for (integer i - 1; i <- upper->numberUnits(); i++)

{

act = (*activation)[i];
err = target[i-1] - act;
upper->error->addAt(i, err);
error +- 0.5 * sgr(err);

return error;
}

For ADALINE networks, the error value is simply the target minus the

output of the summer.

57

The final method to cover here is adj ust () . This computes the new

weights and bias terms for the network. It is shown below:

/*
* adjust() adjust weights within a BpLink
*/

void AdLink .. adjust(void)

{
real err, out, dw;

for (integer i - l; i <= upper->nurnberUnits(); i++)

{
for (integer j - O; j <= lower->nurnberUnits(); j++)

{

out = (*(lower->output))[j];
err - (*(upper->error))[i];
dw - dweights->getAt(i, j);
weights->addAt(i,j,

weights->getAt(i,j)+ALPHA*err*out);
dweights->addAt(i, j, ALPHA*err*out);

This is a straightforward implementation of the matrix version of the

equations shown earlier. The constant ALPHA is used in the ADALINE Net

code as the learning rate (a.) shown earlier.

In Chapter VI, we will complete this example with a variation on the

character recognition problem used by Widrow and Hoff. For now, we will

continue the presentation of the algorithmic part of the library by turning to

backpropagation.

Backpropagation

As mentioned earlier, both ADALINE networks and Perceptrons were

limited. Because there was no way to train multiple layers of neurons,

inputs presented to the network had to be linearly separable to allow proper

classification. This severely restricted the kinds of problems that could be

58

solved with a neural network, although ADALINE found a home in many

signal-processing applications.

The problem with training a multiple layer neural network lies in

adjusting the weights of the hidden and input layers. The LMS algorithm

used for ADALINE can be used for adjusting the output weights, but how

can the error be propagated backwards through the layers which connect to

the output layer and used to correctly adjust these weights as well? This is

the problem that backpropagation solves.

Paul Werbos (1974) proposed the first algorithm to train multilayer

networks of neurons. It was then independently rediscovered and widely

publicized in the mid-1980's by Rumelhart, Hinton, and Williams (1986),

among others.

To develop the backpropagation algorithm, let us first look at a typical

multi-layer network, shown in Figure 5.

First layer Second layer Third layer

R

Figure 5. A Three-Layer Neural Network.

59

Using our notation, the output a3 is given by:

and in general the output for a given layer is given by

am+l
=

f m+l (wm+lam + bm+l) for m = 0,2, ... M -1

with the neurons in the first layer receiving the extemal inputs, and the

neurons in the last layer being the network outputs.

The performance index for a multilayer network is a generalization of

the LMS algorithm used for ADALINE. Again, the network is provided with

a set of examples of proper behavior. And again, the mean square error is

used to compute the correct weights and biases. For the approximate

steepest descent algorithm (using the squared error) the weights and biases

in a particular layer are given by:

w�/k+l)= w
1
�/k)-a :!.

l,J

Where a. is the learning rate.

b'."(k + 1) = b'."(k)-a
aft

' '

ab'."
1

In an ADALINE network, it was easy to compute the partial derivative

using just the weights and biases in the current layer. In a multilayer

60

network, the chain rule must be applied. In the case of the partial derivatives

above, this is:

aft aft an�
--=--X--

é)w�. an� aw�.
J t} J J,J

Note that the second term in these equations can be computed easily

since it is the net input to the layer:

Therefore

If we now define sensitivity (s) as follows:

m
aft

s. =--

' a m n;

We can think of this as the sensitivity of F to changes in the z1h element of the

net input at layer n.

algorithm becomes:

At this point, our approximate steepest descent

61

anr = a".'-1 anr = 1
ow'.". 1 'ob.m

l,J l

We now have equations for weights and biases . that involve only quantities

known at each step. The remaining problem becomes computing the

sensitivities. This process involves computing the sensitivity of the mth layer

in the network and backpropagating it to the (m-l)th layer. This is where the

term "backpropagation" cornes from. The recurrence relation for this is:

This equation expresses the sensitivity of the mth layer in terms of the

derivative of the transfer function for that layer, and the weights and

sensitivities of the (m+l)th layer.

We now have an algorithm for training a multilayer neural network so

long as the transfer function F(x) is differentiable. In summary, the algorithm

is:

1. The input is propagated forward through the network, with the

output of each layer used as the input of the successive layer. The output of

the last layer is the output of the entire network.

2. The sensitivities are computed. The sensitivity of the output layer is

computed directly from the error. The sensitivity of the other layers are

computed using the sensitivities of the successive layer, using the recurrence

62

wm(k+l)=Wm(k)- asm(am-l)T

bm (k + 1) = bm (k)-asm

relation above. The sensitivities are propagated backwards through the

network.

3. The weights and biases for each layer are updated using the

sensitivities and the LMS error and approximate steepest descent.

We can easily fit this algorithm into our existing library structure. We

first define a BpLink class:

/* backpropagation version of Link */

class BpNet; // forward reference

class BpLink : public Link

{

protected:
BpNet *net;

public:
BpLink(Layer *frorn, Layer *to) : Link(frorn, to) { };
BpNet *netOf(void) { return net; };
void netis(BpNet *n) { net - n; };
virtual void backpropagate(void);
virtual void adjust(void);
virtual real cornputeError(array&);

} ;

The propagate () method is straightforward. In f-act, it is common to

both backpropagation and TD(À) algorithms, so it is placed in the standard

Link class rather than BpLink:

/*
* propagate() -- pass signals forward thru Link
* Output of upper layer is set frorn output of lower
* layer and transfer function.
*/

void Link : : propagate(void)

{
real surn;

for (integer i - l; i <- upper->nurnberUnits(); i++)

{
sum - 0.0;
for (integer j - O; j <- lower->nurnberUnits(); j++)

{

surn +- ((*weights)[i] [j])*(*(lower->output))[j]

63

}

upper->output->addAt(i, lower->f(surn));
}

Next, we need to provide a computeError () method:

/*
* cornputeError() -- compute error for a link
*/

real BpLink : : cornputeError(array& target)
{

real error, err, out;

error - 0.0;
for (integer i = l; i <= upper->nurnberunits(); i++)

{
out - (*(upper->output))[i];
err - target[i-1] - out;
upper->error->addAt(i, GAIN * upper->f_dot(out) * err);
error +- 0.5 * sqr(err);

return error;
}

The error array actually contains the sensitivity for the upper layer in it. It

is up to the programmer to correctly specify the f _dot () function with the

derivative of the layer' s transfer function before the network is constructed.

The constant GAIN is provided as a way to attenuate thé size of the error if

needed.

With outputs and errors computed, we now backpropagate the

sensitivity values to each layer:

/*
* backpropagate() -- pass errors backwards thru BpLink
*/

void BpLink : : backpropagate(void)
{
real err, out;

for (integer i = 1; i <= lower->nurnberunits(); i++)
{
out - (*(lower->output))[i];
err - 0.0;
for (integer j = 1; j <= upper->nurnberUnits(); j++)

{

err +- ((*weights)[j] [i]) * (*(upper->error))[j];

64

)

}

}
lower->error->addAt(i, GAIN * upper->f_dot(out) * err);

}

This implements the recurrence equation shown earlier: the error

array from the upper layer is passed back to the lower layer, multiplied by

the derivative. This computes the sensitivity for the lower layer.

Using everything computed thus far we finally adjust the weights in

each layer:

/*
* adjust()
*/

void BpLink

{

adjust weights within a BpLink

adjust(void)

real err, out, dw;

for (integer i - l; i <- upper->numberUnits(); i++)

{

}

for (integer j = O; j <= lower->numberUnits(); j++)

{
out - (*(lower->output))[j];
err - (*(upper->error))[i];
dw - dweights->getAt(i, j);
weights->addAt(i, j,

weights->getAt(i,j)+ETA*err•out+ALPHA*dw);

dweights->addAt(i, j, ETA*err*out);

The constant ETA is used when computing the weight adjustment as a

"momentum" term. The designer chooses it in much the same way as a.. It is

multiplied by the magnitudes of the error and output values. This causes the

algorithm to descend the error surface faster when the error is larger. This

improves the convergence of the algorithm in most cases.

There is a detailed example showing the use of backpropagation to

predict sunspot numbers in Chapter VI, and an analysis of the algorithm' s

convergence performance in Chapter V.

65

..

Temporal Difference Learning and TD(À)

One may think of the problem of adjusting weights in a neural

network in terms of credit assignment: how does each individual weight in

the matrix W affect the operation of the network with each given input?

Both ADALINE and backpropagation are algorithms providing what might

be termed structural credit assignment. That is, the effect of each weight is

determined by presenting all the inputs in succession until a previously

agreed-upon error value is reached. The difference between the expected

and actual outputs is used to drive the adjustment in the weights.

But in many types of problems there is also a temporal component to

the problem of credit assignment. Take, for example, the problem of

predicting the weather. If we wish to predict Friday's weather on Monday

with a neural network, we might want to have. the various inputs (such as

temperature, wind speed and direction, and barometric pressure) weighted

differently than when we predict Friday's weather on Thursday.

Presumably, we will have more accurate data on Thursday than Monday. At

this time an appropriate reinforcement (or penalty) is sent to the network

and the weights adjusted accordingly. This is type of learning is called

reinforcement learning, to distinguish it from supervised learning.

As it tums out, there are many interesting problems that fall into this

category, and no good way to solve them with a neural network using the

backpropagation algorithm. Barto and Sutton (1990), motivated by an

interest in these types of problems, tumed their attention to so-called

"temporal difference learning" and the TD(À) algorithm.

66

The theory behind TD(À) is that weights in the network are updated at

each prediction using the difference in expected outputs at each time step.

The weight update rule is:

t+l t � (P,t+l P,') t
W;i = wii + a L k - k eiik

keO

This rule states that the difference between the successive predictions

(called the temporal difference) is used to update individual weights according

to an "eligibility" term e computed for each weight in W. In the example

above, the notation eijkt means "the kth eligibility at time t of the weight from

unit i to unit l'. This is computed using the following:

This is another gradient approximation based on the LMS error. Once again,

computation of this term is simplified by using a recursive, backpropagation

like process.

First, the eligibility is simplified to:

t+l 1 _t s:t+l t+l
eiik = Ae111 + u kJ Y,

67

(Ptl -Pf)

where

(This is the weighted sum of the inputs to unit j at time t) and

aP, l+l

s:t+l __ k_
uk. -i

s'.
1

We must now have an algorithm to compute 6. This is defined as:

8� = aP; =
as'

1

y; (1 - y;) if k
=

i

0 if k e O and k '# i

Lô;jw�y; (1- y;) otherwise
jeF01

Note that we are only using either the outputs of the network (y), or the

deltas for the successive layer (6). Since both of these quantities are known,

we can now write code to adjust the weights in a temporal-difference neural

network (Sutton, 1987).

Once again, we may use the structure we have developed for

ADALINE and backpropagation. First, we create a TdLink, which holds the

additional arrays needed for the eligibility (e) and 6:

class TdLink : public BpLink

{
protected:

matrix *eligibility;
array *delta;
void newtrial{void);

68

TdNet *net;
public:

TdLink(Layer *from, Layer *to);
-TdLink (void);
void netls(TdNet *n) { net - n;);
virtual void backpropagate(void);
virtual void adjust(void);
virtual real computeError(array&);
) ;

The function propagate () is straightforward and in fact we can use the

one we have for Link. The next function we need to write is computeError():

/*
* computeError() -- compute error for a TD(lambda) link
*/

real TdLink : : computeError(array& target)

{

real error, err, out;

error - 0.0;
for (integer i = l; i <= upper->numberunits(); i++)

{

out - (*(upper->output))[i];
err - target[i-1) - out;
upper->error->addAt(i, err);
error += 0.5 * sqr(err);

}

return error;

}

Note that this is very similar to the functions for ADALINE and

backpropagation. This makes sense since the overall error for the ID(l)

network is LMS. The array target contains the reinforcement at the

appropriate point in the simulation.

The function where ID(À) is more complex than either of the two

prior algorithms is in backpropagate (). Here we need to perform several

tasks:

1. We must backpropagate the error at the current level to the one

feeding it. The error must be in a "self-contained" form since Links are

generally independent objects from one another.

69

2. We must compute 6 for the current Link.

3. We must compute the eligibility for the current Link.

All this is performed by the function below:

/*
* backpropagate() -- pass errors and delta backwards thru TdLink
*/

void TdLink : : backpropagate(void)

{
integer j;
TdLink *fo;
real err, delt, out, outdelt, elg, wt;

// backpropagate error to next lower layer
for (integer i • O; i <• lower->nurnberUnits(); i++)

{

err - 0.0;
for (integer j = 1; j <� upper->nurnberunits(); j++)

{

err +- (*(upper->error))[j];

}
lower->error->addAt(i, err);

}

// compute delta for this Link
if (upper->isA() outputlayer)

else

{
for (i - 1; i <= upper->nurnberUnits(); i�+)

{

out - (*(upper->output))[i];
delta->addAt(i, (out * (1.0 - out)));

}

for (i - O; i <· upper->nurnberUnits(); i++)

{
fo - net->FO(upper);
for (outdelt-0.0, j•l;

j<•fo->upper->nurnberUnits(); j++)

{
outdelt += fo->delta->getAt(j);

}

out - (*(upper->output))[i];
wt - weights->getAt(i, O);
delt - outdelt*wt*(i? (out * (1.0 - out)) 1);
delta->addAt(i, delt);

}

70

}

// compute eligibilities for this Link
if (upper->isA() -- outputlayer)

else

)

{
for (i = O; i <= lower->numberUnits(); i++)

{

{

out - (*(lower->output))[i];
for (delt-0.0,j-l;j <- upper->numberUnits(); j++)

{
delt +- delta->getAt(j);

)

elg - eligibility->getAt(i, O);
elg *- LAMBDA;
elg +- delt * out;
eligibility->addAt(i, 1, elg);

)

for (i = O; i <= lower->numberUnits(); i++)

{
for (integer j-1; j <- upper->numberUnits(); j++)

{
out = (*(lower->output))[i];
delt = delta->getAt(j);
elg - eligibility->getAt(i, j);
elg *- LAMBDA;
elg +- (i? delt*out : delt);
eligibility->addAt(i, j, elg);

)

The observant reader will have noticed several things about this code when

comparing it to the other algorithms presented in this chapter (other than the

embarrassing length, that is.) Namely:

1. It checks to see if we are processing an OutputLayer or not, and

performs slightly different processing for eligibility and 6 if we are. This is in

keeping with the equations for 6 and e shown earlier. This task requires

additional predicates for a Link to retum information about the Link' s type.

2. There was no provision in the original structure to retum the "fan

out" of a layer. This has also been added. It is performed by the following

function:

71

/*
* FO() -- return Link with fanout of current Link
* Passed Layer which must be "lower" of Link

*/
TdLink *TdNet : : FO(Layer *l)

{
for (integer i - n_layers-2; i >- O; i--)

{

if (links[i]->fromLayer() == 1)
return (TdLink *)links[i];

return NIL_LINK;

}

This retums a pointer to the Link which is the fanout of the Layer passed to

it. In short, we needed to stretch the library structure a bit to accommodate

the TD(À) algorithm, but not much.

Now we can adjust the weights. This code is more straightforward:

/*
* adjust() -- adjust weights within a TdLink
* Learning rule is weight + rate * error * eligibility
*/

void TdLink : : adjust(void)

{

real err, elg, w, dw;

for (integer i - l; i <- upper->numberunits()� i++)

{

}

for (integer j = l; j <= lower->numberunits(); j++)

{

err - (*(upper->error))[i);
elg - eligibility->getAt(j, i);
w - weights->getAt(i, j);
dw = (ALPHA * err * elg);
w +- dw ;

weights->addAt(i, j, w);

}

There is only one more detail to clean up. This is in the handling of the

eligibility trace. The eligibilities are cumulative, so we require a way to clear

the trace between trials. In the original design for the library, we had no

72

}

provision for "between trial" housekeeping. W e need to add it now. This is

performed by the newtrial () method.

/*
* newtrial() -- handle between-trial housekeeping
* For TD(lambda), this means clearing eligibilities
*/

void TdLink : : newtrial(void)

{

for (integer i - O; i <= lower->numberunits(); i++)

{

for (integer j - 0; j <- upper->numberUnits(); j++)

{

eligibility->addAt(i, j, 0.0);

}

The TD(À.) version of the Net class calls this function at the start of every

simula te () cycle so we can reset the eligibility trace.

In Chapter VI there is an extended example of using TD(À.) to compute

Markov random walk probabilities. This wi11 demonstrate how the algorithm

and the library are used in a practical application.

We now have completed the development ôf the three main

algorithms in the library. We hope it is apparent that the library's structure

may accommodate other types of ANS algorithms as well.

In the next chapter, we will examine the performance of these

algorithms, especially comparing this C + + implementation with a strictly C

implementation. Note that the performance of the library at run time is

important, but secondary to development time for the project.

73

CHAPTER V

PERFORMANCE ISSUES

In this chapter we examine the library' s runtime performance.

Specifically, we are interested in answers to the following questions:

1. Are the data structure classes we have created efficient?

2. How do learning rules perform as the size of the neural network

increases?

3. Is the C++ implementation of Monarch efficient when compared to

a strictly C implementation?

For the answers to the first and third questions, we will rely on timing

data to provide an empirical answer. For the answer to the second question,

we will use more detailed analysis of the algorithms presented in Chapter IV .

Collection Class Performance

As the source code for the algorithms presented in Chapter IV

showed, Monarch makes heavy use of array and matrix collection classes.

Therefore, we can obtain insight into performance of the library by looking at

the performance of these classes compared to their "standard" C + +

counterparts.

There are two fundamental operations performed on an array or

matrix in C and C++:

74

1. Declaration introduces the variable's name into the scope of the

program, and allocates storage for its contents.

2. R.eferencing uses the variable' s name and (optionally) a subscript to

compute an address to a part of the variable' s store. From this point, the

access may entail a fetch or a store of data.

Using the native array facility in C++, both these operations require

minimal overhead. Since the language was designed to run "on top of C",

these operations both deal with storage using pointers, which the compiler

translates appropriately. The drawback to this design is that there is no

bounds checking on arrays, and no provision for arrays of varying size. Both

of these are actually considered "features" in native C/C + +: since storage is

allocated linearly when the program is compiled, the programmer can utilize

tricks to use less or more of an array or matrix as long as care is taken.

In Chapter II, we introduced the array and matrix classes. At the time,

we stated the desire to provide for automatic bounds checking, but only

when the program was being debugged. We used a preprocessor macro to

determine if the extra bounds checking code should be included in the

program.

In order to test the array and matrix classes, we will adopt the

following methodology. First, we will write and compile the famous Sieve of

Eratosthenes. This has long been used as a "standard" benchmark in

computing product comparisons (Gilbreath, 1981), sometimes with

questionable validity (the principal objection to the Sieve is that a clever

compiler can use optimizations that are unrealistic for a "real" program to

75

produce very good benchmark results). In this case, as a test of subscripting,

it should be a reasonable test of performance.

The theory behind the Sieve is simple. The program finds and/or

counts prime numbers. An array is created which holds l. .. n Boolean flags.

Ail the flags are initially set "true". The array is scanned in ascending order

and as factorable numbers are found, the matching array elements are set

"false." When the end of the array is reached, the elements still "true" are

prime numbers.

The program shown below is two test cases in one. If the preprocessor

macro CONTAINERS is defined, the Monarch collection classes are used. If

not, an array of real data (type real) is defined instead. The only difference

in the two versions is the way in which the array of flags is defined and

referenced. Even the rest of the Monarch application framework is omitted.

The source file s I EVE . CPP is shown below.

/* sieve
* Eratosthenes Sieve Prime Number Routine
* BYTE, Aug. 1983, pg. 112
* ver. 1.0 01/08/84
*/

#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include <time.h>

const size = 1024;
const iterations - 10000;

#ifdef COLLECTIONS
array flags(size + 1);
#else
real flags[size+l];
#endif

int main(int argc, char *argv[])

{
#ifdef COLLECTIONS

76

puts("Using collection classes");
#else

#endif
puts("Using 'standard' arrays");

printf("sizeof(flags) - %d bytes\n", sizeof(flags));

clock_t begin - clock();
integer count = O;
printf("%d iteratians\n", iterations);
for(integer iter - O; iter < iterations; iter++)

{
count - O;
for(integer i - O; i <= size; i++)

{

#ifdef COLLECTIONS
flags.addAt(i, true);

#else
flags[i] = true;

#endif

for(i - 0; i <- size; i++)

{

if (flags [il)

{
integer prime - i + i + 3;
for(integer k-i-prime;

k <- size; k - k + prime)

{

#ifdef COLLECTIONS
flags.addAt(k, false);

#else

#endif

}

flags[k] - false;

}
count++;

}

printf("\n%d primes. ", count);
clock_t elapsed - clock() - begin;
float elapsed_sec - (float)elapsed/CLOCKS_PER_SEC;
printf("It took %10.6f seconds\n", elapsed_sec);
return O;

This is the (in)famous Byte magazine benchmark program, modified

for C + + by removing explicit initialization of variables (in the interest of

brevity) and adding timing code. Constants are used rather than #define

for the size of the array and the number of test iterations.

77

)

Timing is accomplished by the clock () function, included in most

IBM PC compatible C compilers' libraries. This function retums a long

integer containing the "ticks" that have elapsed since the program was

started. These ticks are based on the computer' s timer interrupt, which for

historical reasons occurs 18.2 times a second. Thus, the resolution of the

timer is approximately 55 milliseconds. For higher precision timing,

additional software is required. For our purposes, this resolution is sufficient.

The SIEVE. CPP program was run on a 133 MHz Micron® Pentium

system in MS DOS under Windows 95. The programs were compiled under

Borland Turbo C + + 3.0 using the large memory model.

Table 1 shows the results of running the program m several

configurations.

Table 1

Collection Class Benchmark Results

Using subscripts Using collection classes

Bounds checking off 2.47 sec. 6.53 sec.

Bounds checking on NIA 12.03 sec.

Register variables off 3.73 sec. 7.03 sec.

Executable size 32,474 bytes 43,464 bytes

As the table shows, using collection classes is slower than using just native C

style arrays. One hypothesis for this result is that the addA t () and

getAt() (subscript reference) methods require C++ message processing,

78

unlike their native C counterparts, which index array data through a CPU

register. On this benchmark, an optimizing compiler can easily put some key

variables in registers and obtain a sizable speed improvement, as the times

without register variables (this is a compiler switch on Turbo C + +) show.

This is one reason the Sieve is not considered a good benchmark for general

application performance (Gilbreath, 1983).

A second hypothesis for this result is that the arrays in the collection

classes are dynamically allocated, and therefore accessed through an extra

pointer. (This pointer contains the address of the array base.) This extra

pointer reference increases the amount of time needed to access the data in

the array.

Nevertheless, the speed penalty here is not prohibitive, and the

convenience of having collection classes is probably worth the extra runtime

required. This is also true of executable memory size, which increases a bit

when the Monarch library routines that implement collection classes are

added to the program.

Performance and Network Size

We now turn to the issue of runtime performance versus network size.

Here it makes sense to analyze the algorithms comprising the simula te ()

function based on the number of neurons in the network. For example, let

us consider the ADALINE adj ust () function, shown below:

/*

* adjust()

*/
void AdLink

{

adjust weights within an AdLink

adjust(void)

79

real err, out, dw;

for (integer i = 1; i <= upper->nurnberUnits(); i++)

{

}

for (integer j - O; j <- lower->nurnberUnits(); j++)

{

out - (*(lower->output))[j];
err = (*(upper->error))[i];
dw = dweights->getAt(i, j);
weights->addAt(i,j,

weights->getAt(i,j)+ALPHA*err*out);
dweights->addAt(i, j, ALPHA*err*out);

}

The run fune of this algorithm is directly proportional to the size of the

two layers connected by the Link. If m is the number of neurons in the

upper layer, and n the number of neurons in the lower, then the runfune is

bounded by n x m. Since the ADALINE network consists of a single Link

connecting two layers (one of which is simply a set of inputs), this is the total

runtime for the adjust() function.

Runtiines for the remaining functions called by simula te () can be

estimated the same way.

If there are R layers in the network (see Chapter II for more on this

notation), then the runfune will be (R-1) x n x m. This is because there are R-1

links in the network.

The runtiine behavior of the algorithms supported by the library is

summarized in Table 2. The results can be summarized by stating that

theoretically, the algorithm run runes are directly proportional to the number

of neurons in the network. Therefore, we may compare implementations as

long as the size of the networks being compared is the same.

80

Table 2

Summary of Algorithm Runtime Behavior

Algorithm Step ADALINE Standard TD(À)
backpropagation

Propagate () nxm (R-1) x n x m (R-1) x n x m

ComputeError() M (R-l)xnxm (R-1) X m

Backpropagate() (R-1) X n X m (R-1) x 3 x n x m

Adjust() nxm (R-1)xnxm (R-1) X n X m

Performance in Applications

We have covered enough material on performance in the previous

two sections to conclude that the neural algorithms should have a linear

performance increase as the number of neurons increases, and the

performance penalty for a C + + implementation should be modest. We will

now verify these two conclusions with a further comparison, benchmarking

C versions of ADALINE, standard backpropagation, and TD(À) against C + +

versions.

First, let' s look at AD ALINE. The details of this example will be

presented in detail in Chapter VII. For now, it suffices to remark that the

program trains an ADALINE network to recognize digits encoded as ASCII

characters in a grid.

Since the initial random weights of the network affect it' s performance

as the minimum error is reached, we must measure each individual

simulation cycle and then average these elapsed times over the number of

81

epochs run to get an idea of how fast the library performs. This is done with

measurement code added to the simulation cycle as follows:

I*
* Simulate(in, out, target) -- run a single simulation epoch

*I
void Simulate(array& in, array& out, array& target)

{
il->from(in);

clock_t starting - clock();

recognize->simulate(target);

clock_t ending - clock();

total_elapsed +- (ending-starting);

ol->to(out);

}

Note that the code above will average times for both training and testing

simulation epochs together. This is done for convenience; the two could be

easily separated. The average is probably more indicative of how the

network is used in a production setting, however. The global variable

total_elapsed holds the dock ticks tallied over the entire simulation.

When the application terminates, statistics can be printed in the -App

destructor, since it contains any application-specific termiriation code:

I*
* -App() -- delete network when program finishes

* Layers, Links, etc. are deleted automatically

*I

App : : -App(void)

{

fclose(f); Il close the output file when done

delete recognize; Il delete Net

cout << "Total clocks-" << total_clocks << "\n";

cout << "Total epochs=" << total_epochs << "\n";

float total_time - (float)total_clocks I CLOCKS_PER_SEC;

cout << "Total time-" << total_time << "\n";

cout << "Average time-" << total_timeltotal_epochs << "\n";

}

82

After the Net has been deleted and the output file closed, the code shown

above prints the statistics for the simulation run, including the total number

of dock ticks, the total time, and the average dock ticks.

This measurement code is added to the C versions of the simulations

in a similar way. Ail the simulations were run on the same 133 MHz Micron®

Pentium computer used for the Sieve benchmarks mentioned earlier.

The results of the simulations are shown in Table 3. The benchmark

results support some interesting conclusions.

First, in every case the "native" ANSI C version of the simulation was

faster, by a factor of roughly 3 times. This was (again, roughly) the same

factor by which the C + + collection classes underperformed their C

counterparts in the Sieve benchmark. lt suggests that most of the

performance overhead in the simulation is due to just this one

implementation difference.

Second, the C + '+ AD ALINE and backprop average simulation cycles

are similar. We might expect this since, as the derivations in Chapter IV

showed, the two are very similar algorithms. This gives us a good feeling

about the soundness of the implementation.

Third, the TD(À) algorithm appears faster than the backprop or

ADALINE algorithms. While it is difficult to make exact comparisons in this

type of benchmarking environment (see below), it is faster on average. This

echoes the findings of Barto and Sutton, who found that TD(À.) had a smaller

incremental computation load than backprop. lt demonstrates that TD(À) is

not to be shunned because of the (perceived) complexity demonstrated in its

83

algorithmic derivation. When it cornes to performance, it appears to work as

well or better than backpropagation.

Table 3

Summary of C/C + + Comparison Benchmarks

Program Total Clocks Total Epochs Time

ADALINE 1772 ticks 30930 97.36 sec.
c++

ADALINE C 340 ticks 28510 19.01 sec.

Backprop. 4154 ticks 67740 228 sec.
c++

Backprop C 23174 ticks 1197430 1273.3 sec.

TD(À) c++ 1748 ticks 344438 96.04 sec.

TD(À) C 386 ticks 229896 21.21 sec.

Performance Caveats

Average
seconds/cycle

0.00315
sec./cycle
0.000667
sec./cycle
0.000337
sec./cycle
0.001063
sec./cycle
0.000276
sec./cycle
0.0000923
sec./cycle

There are some factors to bear in mind when considering this

performance data, especially when making comparisons between the

different types of algorithms. (The exact details of the examples will be

presented in Chapter VII.)

1. The architectures of the networks are dissimilar. We are using the

examples presented in Chapter VII to run these benchmarks. One should

bear in mind that the ADALINE network has only two layers of neurons, one

of which is used for inputs. They both have (approximately) the same

84

number of neurons, however, so the observation earlier about their average

cycle times is accurate.

2. The TD(À) network is smaller than either the ADALINE or backprop

networks in the examples. As the section on network size showed, this

directly affects performance. It also uses reinforcement learning rather than

supervised learning, so in a sense we are comparing apples to oranges when

we speak of one outperforming the other. The important point here is that

the performance of TD(À) was reasonable in both the C and C + + versions,

and the model should not be rejected from consideration because of its

(apparent) complexity.

Backpropagation Performance

The backpropagation example reveals that the algorithm' s

convergence time is highly variable. During testing, the network took

between 67740 epochs and 2045130 epochs to reach an acceptable error level

on the training data. The runtime varied in proportion to this. The number

of epochs required depends on the random weights when the network is

initialized. If the error "surface" described by the gradient is complex, with

many hills and valleys, the adjustments to the network during each

simulation cycle can overshoot a minimum point and require correction on

the following iterations. This lengthens the time required for the network to

reach an appropriate minimum.

In the library, a modified "momentum" term is used to control the

algorithm' s descent down the network' s error gradient. This is the function

of ETA in the library's backpropagation code shown in Chapter IV:

85

/*
* adjust()
*/

void BpLink

{

adjust weights within a BpLink

adjust(void)

real err, out, dw;

for (integer i = l; i <= upper->nurnberUnits(); i++)

{

}

for (integer j - 0; j <- lower->nurnberUnits(); j++)

{
out - (*(lower->output))[j];
err - (*(upper->error))[i];
dw - dweights->getAt(i, j);
weights->addAt(i, j,

weights->getAt(i, j)+ETA*err•out+ALPHA*dw);

dweights->addAt(i, j, ETA * err * out);

}

Even with this additional constant to control the size of the "jump" at

each iteration, it still requires a variable number of iterations during training.

Severa! more complex methods exist for improving backpropagation' s

performance. These include "batching'' (saving ail the weight updates for

each training sample and then averaging them together), the computing

conjugate gradient, and the Levenberg-Marquardt algorithm. These are

documented in other sources (Hagan, Demuth, and Beale, 1995), and have

not been implemented in the library yet. They are discussed further in

Chapter VIII.

Conclusions

The benchmarks run in this chapter demonstrate that, while the C + +

implementation imposes a significant overhead on the library, this can be

traced to the collection classes used in ail the algorithms. One would expect

that if the library were re-written to use static arrays, runtime would improve

considerably.

86

..

This said, the advantages of having these collection classes can

outweigh the additional performance penalties they impose. For instance,

since the collections are allocated dynamically, the configuration of the

network may be changed at runtime. This allows a Monarch network to be

tuned using the following heuristic: initially, a large number of neurons can

be used, and the network trained until a given error reached. This network

will fit the training set very well, but not be generalized to a11 testing data

sets. Subsequent training cycles can then be run with neurons successively

removed from this network until an appropriate tradeoff between generality

and error performance is reached.

Another advantage of the C + + collection implementation is exception

handling. C + + provides a much richer set of tools for handling exceptions

generated within objects, such as subscripting errors, domain errors in

transfer functions, etc. This topic will be covered in detail in the next

chapter.

87

CHAPTER VI

TYPE SAFETY AND EXCEPTION HANDLING

We have covered a lot of material in the. last five chapters, so a brief

summary is in order. We now have a class hierarchy for the library; a set of

classes providing initialization and configuration services for neural network

applications; collection classes for representing arrays and matrices

comprising neuron layers; and implementations for three common types of

neural networks. We have also tested and measured the library' s

performance compared to a strictly C version and found the overheads

imposed by our design to be reasonable.

In this chapter we will complete construction of the library by focusing

on two areas normally overlooked in neural network simulations:

1. The additional behavior needed by the classes to make them more

object-oriented. This includes providing copy constructors and relational

opera tors.

2. Exception handling, so error conditions likely to occur in normal use

(such as array subscripts out of range or mathematical function overflow) are

handled gracefully.

In C + + par lance, the first topic is sometimes called "type safety".

That is, we want our assortment of collections, layers, and links to behave

identically to other C + + "concrete" types such as floats, ints, and doubles.

88

Type Safety

Providing type safety for our neural network classes means adding

additional methods to the class declarations. These cover situations where

objects in the class are used as if they were normal "concrete" types like

integers, real numbers, and characters.

These additional methods include: (a) a copy constructor invoked

automatically by C + + when a new object is created from another object

through assignment; (b) an assignment operator used when one object is

assigned to another of the same class; (c) an equality operator, so two similar

objects may be compared to one another and tested for equality; and (d) an

inequality operator.

These four methods are generally considered to comprise a minimal

set of type safe behaviors for a class. It is considered good C + +

programming practice to provide at least these methods. This is not a

requirement of the language, but it seems necessary fôr completeness, to

consider these cases and account for them in the behavior of the objects

created (Oualline, 1995).

In addition to these four basic methods, there are other methods we

wish to provide. For example, we want to have arrays or matrices usable in

arithmetic expressions, so we will need to overload the arithmetic operators

for them.

The additional type safety methods needed in the library are

summarized in Table 4. In the case of Net objects, we do not want the user

to be able to freely create one network from another.

89

Table 4

Summary of Type Safety Functions

Class Name Copy Assignment Equality and Additional
constructor? Operator? inequality? Requirements

Net Yes Yes
Link Yes Yes Yes
Layer Yes Yes Yes
Database Yes
Array Yes Yes Yes Arithmetic

opera tors
Matrix Yes Yes Yes Arithmetic

oeerators

This is an arbitrary restriction, designed to keep the programmer out

of trouble by ensuring that the construction protocol is followed. The user

can assign one Net to another, however, knowing that .the Net should be

constructed when doing so. We will also make it possible to copy and assign

Links and Layers, and this should allow a great deal of freedom to

dynamically configure a network prior to the simulation' s start.

With this explanation in mind, let' s begin by examining the type

safety code for collections. The following allows arrays to be copied and

assigned:

/*

* array(const array&) -- copy constructor
* This is a new, complete copy of the array

*/
array : : array(const array &x)

{
a = (real *)calloc(x.size(), sizeof(real));
n_items = x.n_items;

90

/*

here • x.here;
next - x.next;
for (integer i = 0; i < x.size(); i++)

{

*(a+i) - x.getAt(i);

}

* array operator - -- handle assignrnent
* Get rid of old array and copy new one to it

*/
array& array

{

operator = (const array &x)

if (this !- &X)
{

free(a);
a - (real *)calloc(x.size(), sizeof(real));
n_iterns = x.n_iterns;
here - x.here;
next - x.next;
for (integer i - 0; i < x.size(); i++)

{

*(a+i) - x.getAt(i);

}

return *this;

}

These two functions appear nearly identical, but the second version

(operator =) must discard any allocations in the object passed to it, since a

new object is being created which replaces the old one via the assignment.

The first function is the copy constructor proper and C + + guarantees that a

completely new object is being created.

For the equality comparison, we arbitrarily deem two arrays to be

"equal" if all of their elements are equal and their sizes are the same. This

has a benefit for matrices, which will be discussed shortly. Here is the code:

/*

* array a -- b
*/

int operator -- (const array& a, const array& b)

{

if (a.size() !- b.size())
return (0--1);

91

)

for (integer i - 0; i < a.size(); i++)

{

if (a.getAt(i) != b.getAt(i))
return (0==1);

return (1--1);

}

Once we have the equality operator written, inequality is trivial:

/*

* array a !- b
*/

int operator !- (const array& a, const array& b)

{
return (!(a--b));

}

Matrices may inherit these methods directly if we make our definition

of "equality'' generous enough to consider two matrices equal if their sizes

are equal, and not necessarily the exact number of rows and columns (their

shape). Thus, a 2 x 5 matrix may be equal to a 5 x 2 matrix if their elements

are the same in the same order. This is an extension of other methods such

as mean () and randomize () which treat matrices as arrays in row-major

order.

Along with these basic methods, we wish to add support for

arithmetic operators. While not used directly by any of the leaming

algorithms, they nonetheless might prove useful to anyone using the library.

The additional arithmetic operators for arrays are:

array& operator += (const real&);
array& operator (const real&);
array& operator *- (const real&);
array& operator /= (const real&);
array& operator += (const array&);
array& operator (const array&);
array& operator *- (const array&);
array& operator /- (const arr a y&) ;
friend array& operator - (array&);
friend array& operator + (array&, const real&);
friend array& operator - (array&, const real&);
friend array& operator * (array&, const real&);

92

}

friend array& operator / (array&, const real&) ;
friend array& operator + (const real&, array&);
friend array& operator - (const real&, array&);
friend array& operator * (const real&, array&);
friend array& operator / (const real&, array&);
friend array& operator + (array&, const array&);
friend array& operator - (array&, const array&);
friend array& operator * (array&, const array&);
friend array& operator / (array&, const array&);

This is a lot of methods. The reason is that we need to handle the case where

two arrays are being operated on together, plus the cases where a real and

array is being used, plus the cases where an array and a real is being used.

C + + does not have any idea of commutativity. Thankfully, most of the

methods are brief (only a sample in each category above is shown here):

/*

* a +- r
*/

array& array :: operator +- (const real& r)

{

/*

for (integer i - O; i < size(); i++)

{

addAt(i, getAt(i)+r);

}

return (*this);

}

* a +- a
*/

array& array :: operator +- (const array& b)

{

/*

for (integer i - O; i < size(); i++)

{

addAt(i, getAt(i)+b.getAt(i));

}

return (*this) ;

}

* unary -
*/

array& operator - (array& a)

{

for (integer i - O; i < a.size(); i++)

{

93

/*

a.addAt(i, -a.getAt(i));

}

return a;

}

* a + r

*/
array& operator + (array& a, const real& r)

{

/*

for (integer i - O; i < a.size(); i++)

{

a.addAt(i, a.getAt(i)+r);

}

return a;

}

* r + a

*/
array& operator + (const real& r, array& a)

{
for (integer i = O; i < a.size(); i++)

{

a.addAt(i, r+a.getAt(i));

}

return a;

}

/* Arithmetic operations on conforming arrays. */

/*

* a + b

*/
array& operator + (array& a, const array& b)

{
for (integer i = O; i < a.size(); i++)

{

a.addAt(i, a.getAt(i)/b.getAt(i));

}

return a;

}

Again, because of the way that matrices are defined, these operations are also

valid with matrices of conforming size.

Note that there is no explicit length checking in these operations.

Instead, this is handled by the getA t () method being invoked within the

94

operator method. This means ail the operators work with the shorter of

the two operands, and generate an exception (see the next section) for the

longer. This shortcut ailows the canny user a bit of C-like flexibility when

writing programs, but it will still catch any subscripting errors leading to

memory overwriting.

The remaining type-safety code in the library follows the pattern

established for arrays. Sorne points worth mentioning are:

1. Layers are considered equal if their outputs are considered equal.

This in tum means they must have the same number of neurons and the

same values.

2. Links are considered equal if both of their constituent Layers are

equal.

3. Nets are considered equal if ail constituent Links are equal. Note

that two Nets may have different training parameters or even different

learning algorithms, but if they have the same outputB- at each layer, we

consider them equal anyway!

4. Databases may be copied and assigned, but the underlying files,

handles, and descriptors are not duplicated in any way. This avoids

unpleasantness with operating systems such as MS DOS. Two databases are

considered equal if they are either streams or blocks and their filenames are

identical. It is up to the programmer to define these type-safety methods for

any database class descendants needed in his or her own program.

This completes the type-safety behavior required by the library. It is

interesting to note that this additional code adds roughly 20% to the overail

size of the library.

95

Exception Handling

The library has several circumstances where exception handling is in

order. In this section, we examine how the library exploits C+ + exception

handling.

C + + has a graceful exception handling mechanism using the

keywords throw, catch, and try. A brief review of this mechanism is

appropriate here. Within each class definition, exception classes are defined,

which may be signaled (invoked) during execution using the throw

keyword. In the application, the programmer attempts execution of a block

of code using try. If an exception occurs while this code is executed, a

corresponding catch block is executed, with a mechanism for selecting

among one of many exceptions thrown.

There are several instances in the library where exceptions may occur.

Three of the most important are:

1. When a subscript is out of range, and the application is still being

debugged. (Earlier it was demonstrated that range checking has prohibitive

performance overhead in a "production" program.)

2. When a transfer function is out of range. In particular, the

exponential sigmoid functions behave badly when their arguments exceed

±500.

3. When transferring data to or from a Layer and the number of items

transferred exceeds the number of neurons in the Layer.

In these cases, we normally wish to halt execution of the simulation,

especially while the program is being debugged. However, · there may be

96

runes when the programmer would like to handle the exception in a more

graceful manner. For this "fail most runes" strategy, C++'s exception

mechanism seems a good solution, better than using an as sert () macro.

The only restriction on using the C + + exception mechanism is that it

is not implemented in ail versions of C + +. In particular, Borland' s Turbo

C + + does not have it in versions 3.xx and earlier. Since this is a popular

compiler, a workaround is needed. The following preprocessor definitions

allow the standard C + + exception mechanism to be "commented out" and a

call to a function called exception () inserted in place instead:

// Exception handling

#define EXCEPTIONS

#ifdef EXCEPTIONS

#define TRY try

#define CATCH(X) catch(x)

#define THROW(x) throw x

#define EXCEPT(x) class x { };

#else

void exception(char *, char *, int); // defined in �XCEPT.CPP

#define TRY

#define CATCH(x) if (1--0)

#define THROW(x) exception(#x,_FILE_,_LINE_)

#define EXCEPT(X)

#endif

If the preprocessor variable EXCEPTIONS is defined, then the

"normal" C + + keywords for exception handling are enabled. If not, then

any catch blocks in the program will be skipped (by using the empty

conditional if (l==O)) and any throw functions will instead call a function

called exception () with the offending exception, source file name, and line

number. This function in tum calls the Standard Library' s abort ()

handler, ending the program:

97

#ifndef EXCEPTIONS
void exception(char *s, char *f, int n)

{
printf("exception: %s file: %s line: %d\n", s, f, n);
abort();

}
#endif

This workaround is a good solution while the program is being

debugged, and not too objectionable in a production program, since it causes

termination of the program with a listing of the line number and filename

where the exception occurred.

As an example of how exceptions are used, let us look at the code for

Layers.

Layers:

The following function handles transfers between arrays and

/*
* from(a) -- set contents of input layer from 'a'
*/

void InputLayer : : from(array& a)

{
if (a.size() >= output->size())

THROW(Layer : : Size());
for (integer i - O; i < a.size(); i++)

{

}

output->addAt(i+l, a[i]);

}

This code checks to make sure the number of neurons in the Layer is

greater than or equal to the number of elements in the array a. If not,

THROW(Layer : : Size()) invokes the exception handler for Layer. The

declaration of the Layer class has the following in it now:

class Layer : public Monarch

{
protected:

integer n_units;
char *layer_name;

public:
array *sum, *output, *error;
Layer(char *, integer);
Layer(const Layer&);

98

-Layer(void);
void dump(void);
EXCEPT (Domain) ;
EXCEPT(Size);

integer nurnberUnits(void) { return n_units; }
char *layerNameOf(void) { return layer_name; }
Layer& operator - (const Layer&);
friend ostream& operator << (ostream&, Layer &);
friend istream& operator >> (istream&, Layer &);
friend database& operator << (database&, Layer &);
friend database& operator >> (database&, Layer &);
friend int operator -- (const Layer&,-const Layer&);
friend int operator !- (const Layer&, const Layer&);
virtual real f(real x); // transfer function
virtual real f_dot(real x); // derivative of transfer function

} ;

The two boldfaced lines specify the exceptions for the Layer object. The

Domain exception is signaled whenever a transfer function is passed an

argument bigger than the constant Overflow:

const Overflow - 500; // for assertions

/*
* logsig() -- sigmoid log transfer function
*/

real logsig(real n)

{

if (abs(n) >- Overflow)
THROW(Layer : : Domain());

return 1/(1 + exp(-n));

}

Returning to the Size exception, in a program, we would try the code

using from () like this:

/*

* Train(epochs) -- train net for many epochs
*/

void Train(integer epochs)

{

array in(N_INPUTS), out(N_OUTPUTS), target(N_OUTPUTS);

sunspots->setPhase(training);
for (integer n - O; n < epochs*TRAIN_YEARS; n++)

{

integer year - RandomEqual(TRAIN_LWB, TRAIN_UPB);
TRY

{
in.from(Sunspots, year-N_INPUTS);

99

)

target.from(Sunspots, year);
Simulate(in, out, target);

)

CATCH (Layer: :Size)

{
puts(�Layer size error");
DUMP(in);
DUMP (target) ;
// additional error recovery as required

)

Should a Size exception occur, the code within the CATCH block is executed.

In this case, the various offending objects are dumped. Note that if

EXCEPTIONS is not defined, this block is skipped and the exception ()

function called instead.

With the addition of type-safety and exception handling to the library,

we now have a complete protocol for creating and simulating neural

networks. In the next chapter, we will examine several complete simulations,

which will put ail the software developed to use.

100

}

CHAPTERVII

EXAMPLES

This chapter presents several examples, demonstrating how Monarch

is used, and how the C + + object-oriented model makes it possible to write

neural network simulations that are concise and correct.

Before examining the examples in detail, it should be mentioned that

there is little in the way of benchmark neural network simulations available

either in literature or as public-domain software. A software engineer wishing

to construct his or her own simulation faces the task of first implementing a

learning algorithm and testing it with known data in a known network (to

ensure the algorithm functions correctly), then collecting their application' s

data and writing their own simulation. It is hoped that Monarch will serve as

a platform to avoid this repetition of work.

The examples chosen are the following: (a) the character recognition

application of Widrow and Hoff, which uses an ADALINE network; (b)

sunspot prediction using a backpropagation network; and (c) a Markov

model example using TD(À.).

These examples are presented in order of increasing algorithmic

complexity, following the order in Chapter IV. Two of the examples are

based on the unpublished package "Neural Networks at your Fingertips"

(Kutza, 19%), since this provided a set of C programs to use as a baseline for

comparison. (For more on benchmark data, please refer to Chapter V.)

101

-

102

Character Recognition With ADALINE

In this example, an ADALINE network is trained to recognize

characters in a 5x7 grid. This is a variation on the original work by Widrow

and Hoff in 1960. In the original work, there were three characters (T, G,

and F) each sited one of two ways on a 4x4 grid. The targets were -60, 0,

and 60, which worked well with a meter that Widrow and Hoff used for their

output display.

In this simulation, there are ten digits sited on a 5x7 grid. Samples are

shown in Figure 6. These are the representations of the digits "O" and "l".

□■■■□
■□□□■
■□□□■
■□□□■
■□□□■
■□□□■
□■■■□

Figure 6. Sample Character Grids.

□□■□□
□■■□□
■□■□□
□□■□□
□□■□□
□□■□□
□□■□□

The goal of the simulation is to train a neural network to recognize ail

10 digits. When presented with ail 35 inputs corresponding to the 5x7 grid,

the output of the neuron corresponding to the value of the digit should be 1.

The architecture of this network is a single layer with ten neurons, each of

which has 35 inputs, as shown in Figure 7. The drawing is simplified for

clarity. There is actually a weight going from each cell of the input grid to

each neuron, 350 in total.

□□□□

□□□□□

□□□□□

□□□□□

□□□□□

□□□□□

□□□□□

Figure 7. ADALINE Network Schematic. ·

Our approach to writing this simulation is the following: we will take

the simulation framework presented in Chapter III. and supply the

appropriate App, ~App, and main () functions to perform the simulation.

The basic architecture of the network will be a single ADAUNE Link

connecting 35 input "neurons" with 10 output neurons. This is reflected in

the following constants and definitions:

#define X 5 Il number of pixels across
#define Y 7 Il number of pixels down

#define NUM DATA 10 Il number of characters ta recognize
#define ADALINE LAYERS 2
#define N INPUTS (X*Y)
#define N-OUTPUTS (NUM DATA)
#define N-(X*Y) -
#define MN OUTPUTS

103

0

1
2

3

4

5

6
7

9

We then define the following objects:

I* Objects required for simulation *I

array inputs(N_INPUTS), outputs(N_OUTPUTS), targets(N_OUTPUTS);

I* Transfer functions for ADALINE Layers *I

real Layer .. f(real x) { return hardlirns(x);
real Layer .. f_dot(real x) { return O; } Il not used

I* ADALINE Layers and Network *I

InputLayer *il;
OutputLayer *ol;
AdNet *recognize;

These create the input, output, and target arrays; associate the hardl ims ()

transfer function with the Layers to be used in the simulation; and provide

pointers to the various components to be configured in the App constructor.

The App constructor builds the neural network at runtime when the

program is initialized:

I*

* App() -- create and initialize neural network
* Note: rnany values are set as part of MonarchApp initialization
*I

App :: App(int argc, char *argv[]) :
MonarchApp(argc, argv, "CHARS.IN!", N_PARMS, test_ini)

il = new InputLayer("Inputs", n_inputs);
ol = new OutputLayer("Outputs", N_OUTPUTS);

recognize = new AdNet("Recognize", ADALINE_LAYERS, Alpha,
Epsilon);

recognize->add(new AdLink(il, ol));

f = fopen("ADALINE.TXT", "w"); Il

Il This is here so you can enter the characters to recognize
Il in ASCII, then have thern converted to input values.
for (integer n = O; n < NUM_DATA; n++)

for (integer i = O; i < Y; i++)
for (integer j = 0; j < X; j++)

Input[n] [i*X+j] =
(Pattern[n] [i] [j] -- 'O')? HI LO;

104

The lines following fopen () require additional explanation. The input to the

neural network is a value of -1 or 1 corresponding to whether the cell in the

grid is "off' or "on", respectively. The training set consists of a set of 10 grids

with the appropriate cells initialized to these values. Since typing these grids

would be unpleasant, an ASCII character matrix is provided in the program

instead. The grids can then be entered with a text editor:

Char Pattern [NUM_DATA] [Y] [X] = { { " 000 ",
"0 0",

"0 0",

"0 0",

"0 0",

"O O",
Il 000 Il

} /

Sorne way is needed, however, to transfer/convert the ASCII characters into

input values. That is what the remaining code in App () does.

Deleting the network when the program is finished is trivial:

/*

* ~App() -- delete network when prograrn finishes
* Layers, Links, etc. are deleted autornatically
*/

App :: ~App(void)
{
fclose(f); // close the output file when done
delete recognize; // delete Net

As we saw in Chapters II and VI, deletion of Links and Layers is handled

automatically.

The rest of the simulation is handled in main (). This function is

shown below:

integer rnain(integer argc, char *argv[])
{
theApp = new App(argc, argv);

integer stop;

105

do
{

// evaluate network
real error = 0.0;

stop = 1;
recognize->setPhase(testing);
for (integer n = 0; n < NUM_DATA; n++)

{
Setlnput(Input[n], false);
SetTarget(Output[n]);
Sirnulate(inputs, outputs, targets);
error = rnax(error, recognize->errorOf());
stop = stop &&

(recognize->errorOf() < recognize->epsilonOf());

error = rnax(error, recognize->epsilonOf());
printf("Training %0.0f%% cornpleted •.. \n",

(recognize->epsilonOf()/error) * 100.0);

// train network
if (!stop)

{

recognize->setPhase(training);
for (integer rn = O; rn < l0*NUM_DATA; rn++)

{

n = RandornEqual(0, NUM_DATA-1);
Setlnput(Input[n], false);
SetTarget(Output[n]);
Sirnulate(inputs, outputs, targets);
}

while (!stop);

// test network
for (integer n = O; n < NUM_DATA; n++)

{

Setlnput(Input[n], true);
SetTarget(Output[n]);
Sirnulate(inputs, outputs, targets);
GetOutput(Output[n], true);
}

delete theApp;
return O;

The following steps are performed in main () as part of the complete

simulation:

1. The network is trained using character data. The data is presented

by the Set Input () function. The appropriate target is set with the

106

Set Target () function. Both functions are shown below. During the

training phase, the data is presented in random order.

2. After each epoch is completed, the maximum error in the network is

compared to the value of e set when the simulation was started. This is

obtained with the epsilonOf () message. If the error for the test set is less

than e, training is complete.

3. When the error has reached an acceptable level, the final test set is

run through the network and the output written to a file. A sample of the

file' s output is shown below:

000

0 0

0 0

0 0

0 0

0 0

000 -> 0

0

00

0 0

0

0

0

0 -> 1

The functions to set the input and target values are straightforward:

/*
* Setlnput() -- copy input to array for simulation
*/

void Setlnput(real *Input, boolean writeit)

{

/*

for (integer i = 0; i < inputs.size(); i++)
inputs.addAt(i, Input[i]);

if (writeit == true)
Writelnput(Input);

* SetTarget() -- set target array from Outputs
*/

107

void SetTarget(real *Output)

{
for (integer i = O; i < outputs.size(); i++)

targets.addAt(i, Output[i]);

The Setinput () function copies the input data to the network's inputs

from the Input [] [] array, which was initialized from the ASCII data by

App () when the program was started. The SetTarget () function does

likewise for the Output array.

Once these arrays have been set up, running the actual simulation

cycle is trivial:

/*
* Simulate(in, out, target) -- run a single simulation epoch
*/

void Simulate(array& in, array& out, array& target)

{
il->from(in);
recognize->simulate(target);
ol->to(out);

Depending on which phase the network is currently set to (training or

testing), an error will be computed and leaming (weight adjustment) will

occur. When this simulation is run, the error value converges very rapidly

to a nominal value, as shown in Figure 8. Streaming the error value to an

ASCII data base and then using MA TI.AB produced the graph.

Sunspot Prediction With Backpropagation

108

In this example, astronomical sunspot data is used to predict the

distribution of sunspots over time. Sunspots are dark areas on the Sun' s

surface. They tend to follow a 21-year cycle (of keen interest to amateur

radio operators) but the underlying causes of this cycle are poorly

understood. Here, annual sunspot data from the years 1700-1960 is used to

predict the distribution of sunspots from the years 1960 to 1978. The first

data set constitutes the training set, and the second the testing set. Both sets

will be kept strictly separate by the program so that the network' s predictive

ability can be accurately measured.

35

30

25

t:: 15w

10

5

�� 0
0

Errer Output of Character Recognition Example

500 1000 1500
Epoch

.

2000 2500

Figure 8. ADALINE Error Convergence.

3000

For this simulation, a three-layer backpropagation neural network is

used. The input layer receives a 30-year period of observed sunspot counts,

normalized so these counts are between O and 1. (This normalization is

critical.)

109

~2
....
0

I
,-----

Q,

I

'

i

I

I I

- r----

l 1

I I I 7

-

-

-

-

-

-

l l l _J

110

Once again we follow the template for a Monarch program. The App

function is shown below:

/* Layers and Network */

InputLayer *il;
OutputLayer *ol;
HiddenLayer *hl;
BpNet *sunspots;

/*

* App() -- create and initialize neural network
* Note: many values are set as part of MonarchApp initialization
*/

App :: App(int argc, char *argv[]) :
MonarchApp(argc, argv, "BPN.INI", N_PARMS, test_ini)
{

il = new InputLayer("Inputs", n_inputs);
ol = new OutputLayer("Outputs", N_OUTPUTS);
hl new HiddenLayer("Hidden", n_hidden);

sunspots = new BpNet("Sunspots", N_LAYERS, Gain, Eta, Alpha);
sunspots->add(new BpLink(il, hl));
sunspots->add(new BpLink(hl, ol));
}

The nu.rober of input neurons, hidden neurons, and the constants for the

gain, 11, and a are set from the initialization file. They can be easily changed

for different runs of the simulation.

Once again the actual simulation is handled by the main0 function:

integer main(integer argc, char *argv[])
{

theApp = new App(argc, argv);
ifstream from("sunspots.dat");
if (! from)

{

cout << "Can't open input file\n";
exit(l);
}

from >> Sunspots;
Sunspots.normalize();
Mean = Sunspots.mean();
Sunspots_ = Sunspots;
ComputeinitialError();

boolean stop = false;

=

real MinTestError = MAX_REAL;
do {

Train(l0);
Test();
if (TestError < MinTestError)

{

else

printf(" - saving weights ... ");
MinTestError = TestError;
sunspots->save();
}

{
if (TestError > 1.2 * MinTestError)

{
printf(" - stop and restore weights");
stop = true;
sunspots->restore();
}

while (!stop);

Test();
Evaluate();

delete theApp;
return 0;

The functions Test (), Train (), and Evalua te () are self

explanatory. They are shown below:

/*
* Train(epochs) -- train net for rnany epochs
*/

void Train(integer epochs)
{

/*

array in(N INPUTS), out(N_OUTPUTS), target{N_OUTPUTS);

sunspots->setPhase(training);
for (integer n = 0; n < epochs*TRAIN_YEARS; n++)

{

integer year = RandornEqual(TRAIN_LWB, TRAIN_UPB);
in.frorn(Sunspots, year-N_INPUTS);
target.frorn(Sunspots, year);
Sirnulate(in, out, target);
}

* Test() -- test net after each epoch
*/

void Test(void)

111

I*

array in(N_INPUTS), out(N_OUTPUTS), target(N_OUTPUTS);

sunspots->setPhase(testing);
TrainError = 0.0;
for (integer year = TRAIN_LWB; year <= TRAIN_UPB; year++)

{
in.from(Sunspots, year-N_INPUTS);
target.from(Sunspots, year);
Simulate(in, out, target);
TrainError += sunspots->errorOf();

TestError
for (year

{

0.0;
TEST_LWB; year <= TEST_UPB; year++)

in.from(Sunspots, year-N_INPUTS);
target.from(Sunspots, year);
Simulate(in, out, target);
TestError += sunspots->errorOf();
}

printf("\nNMSE is %0.3f on training set and %0.3f on test
set",

TrainErrorlTrainErrorPredictingMean,
TestErrorlTestErrorPredictingMean);

* Evaluate() -- compute network's performance
*I

void Evaluate(void)
{

array in(N_INPUTS), target(N_OUTPUTS);
array out(N_OUTPUTS), out_(N_OUTPUTS);

sunspots->setPhase(evaluating);
printf("\n\n\n");
printf("Year Sunspots Open-Loop Prediction Closed-Loop
Prediction\n");
for (integer year = EVAL_LWB; year <= EVAL_UPB; year++)

{
Il open-loop prediction
in.from(Sunspots, year-N_INPUTS);
target.from(Sunspots, year);
Simulate(in, out, target);

Il closed-loop prediction
in.from(Sunspots_, year-N_INPUTS);
target.from(Sunspots_, year);
Simulate(in, out_, target);
Sunspots_.addAt(year, out_[0]); Il note assignrnent

Il print results
printf("%4d %0.3f %0.3f %0.3f\n",

112

=

FIRST_YEAR+year,
Sunspots[year],
out[0],
out_[0]);

This simulation outputs a nonnalized prediction for sunspots between

the years 1%0 and 1978. This is shown below:

Year Sunspots Open-Loop Prediction Closed-Loop Prediction
1960 0.587 0.357 0.346
1961 0.282 0.224 0.230
1962 0.196 0.103 0.130
1963 0.146 0.096 0.138
1964 0.053 0.268 0.293
1965 0.079 0.245 0.282
1966 0.246 0.328 0.358
1967 0.491 0.549 0.533
1968 0.554 0.588 0.549
1969 0.552 0.489 0.474
1970 0.546 0.404 0.391
1971 0.348 0.390 0.373
1972 0.360 0.265 0.265
1973 0.199 0.193 0.223
1974 0.180 0.108 0.150
1975 0.081 0.088 0.118
1976 0.066 0.084 0.105
1977 0.143 0.135 0.170
1978 0.484 0.317 0.323

When this data is streamed to a database and plotted using MATLAB,

the graph shown in Figure 9 results. This is the distribution of sunspots both

from actual data and as predicted by the simulation. The smooth line joins

the actual sunspot counts, while the open and closed-loop predictions are

shown by the"+" and "o", respectively.

The graph demonstrates that the simulation is reasonably good at

predicting sunspot activity using nothing more than the count of sunspot

data.

113

2:
·s:

Output of BPN (C++) vs. actual data
0.6.------...------,.

+
-----,-----,----�

114

<(0.4 l-+-----------...,.:...+.------4----4-----1
0
o.

en 0.3 1--1--
-

---,...-+---+-

--
-

--+
--

--4-
--

4--
---1

-�
§ 0.2

0
z

0 .___ ____ ..__ _____ ____ _._ ____ __.

1960 1965 1970
Year

1975

Figure 9. Graph of Actual and Predicted Sunspot Counts.

Random Wall< and TD(À)

1980

There is no standard example in the literature for this learning

algorithm. Therefore, this program replicates the random wall< example in

Sutton (1988). In it, there are nine states, labelled A-I. The probability of

moving from one state to either adjacent state at any time is 0.50. This is

shown in Figure 10. In the simulation, a random wall<er begins at state E.

Successive states are generated until either state A or I is reached. When state

A is reached, a reward signal z=0 is generated, while at state I, reward z=l.

I
I~

The walk ends when either terminal state is reached. The neural network is

trained to predict the reward signal for each of the intermediate states. Since

rewards are only generated when two of the eight states are reached,

efficient training using conventional backpropagation methods would be

difficult.

z=O z =1

Figure 10. "Random W alk" Markov Model.

To simulate this problem, a three-layer network is used, with seven

input neurons, three hidden neurons, and one output neuron. The inputs

reflect the presence of the walker in any of states B-H, while the output is the

probability of reaching the I state at each of these states .

To create the network with Monarch, an App constructor function is

written:

App *theApp;

/*
* App() -- create and initialize neural network
* Note: many values are set as part of MonarchApp initialization
*/

App :: App(int argc, char *argv[]) :
MonarchApp(argc, argv, "MARKOV.IN!", N_PARMS, test_ini)
{
il = new InputLayer("Inputs", n_inputs);
ol = new OutputLayer("Outputs", N_OUTPUTS);
hl = new HiddenLayer("Hidden", n_hidden);

markov = new TdNet("Markov",N_LAYERS,Gain,Eta,Alpha,Lambda);
markov->add(new TdLink(il, hl));
markov->add(new TdLink(hl, ol));

115

This creates the three Layers, then makes the Net, then links the Input

and Hidden Layers together, followed by the Hidden and Output Layers.

Running the simulation consists of: (a) generating the states of the

model, (b) passing them to the network, (c) obtaining a prediction of the

probability, and (d) training the network with. an updated prediction, or

testing the networl< s predictive ability.

To simulate the network, the following function is used:

/*

* Simulate(in, out, target) -- run single simulation epoch
*/

void Simulate(array& in, array& out, array& target)

{
il->from(in);
markov->simulate(target);
ol->to(out);

This sets the input layer from the array in, runs a single simulation

epoch, and returns the array out from the output layer. Since Monarch

automatically handles training and testing modes internaUy, performing the

TD(À.) learning algorithm on each training epoch, these functions are very

similar:

/*

* Test(t) -- test network
*

*/
Passed t, which row of state vector to use

real Test(integer t)

(

/*

array in(?), out(l), target(l);

markov->setPhase(testing);
CopyState(t, in);
target.addAt(0, 0.0); // doesn't matter here
Simulate(in, out, target);
return out[0J;

116

* Train(p) -- train network
* Update weights
* Passed state t and prediction p for current state
*/

real Train(integer t, real p)

{
array in(?), out(l), target(l);

markov->setPhase(training);
CopyState(t, in);
target.addAt(0, p);
Simulate(in, out, target);
return out[0];
}

Only association of a predicted probability p to the input separates the

two functions, although they are kept separate in the interest of clarity.

Note well that generating moves in the random walk occurs "outside"

of the Monarch library. This is where having a library to implement the

algorithm is preferable to a complete simulation "environment" where

simulating this part of the problem would be difficult. The function

CopyState () transfers state information from the part of the program

where the walker's move is generated to the part of the program that

interfaces with the library. This is shown below:

/*
* CopyState(where) -- copy state to an 'array' structure
*/

void CopyState(integer to, array& where}
{
for (integer i = 0; i < 7; i++)

{

where.addAt(i, state[to] [i] ? 1.0

}

0. 0);

When run, this program displays a crude ASCII indicator of the walker' s

state. This is shown below:

Trial 14
0 1

A B C D E F G H I
* Prediction: 0.396191

117

* Prediction: 0.394591
* Prediction: 0.396187

* Prediction: 0.394587
* Prediction: 0.396182

* Prediction: 0.389263
* Prediction: 0.396177

* Prediction: 0.389259
* Prediction: 0.396172

* Prediction: 0.389254
* Prediction: 0.389252

* Reinforcernent = 1.0

Unlike the other simulations, a fixed number of trials are run. At completion,

the walker' s probabilities are close to the expected values, indicating that the

network has "leamed'' a Markov model of how state transitions occur:

Trial 9999

0 1

ABC D E F G H I
* Prediction: 0.717366

* Prediction: 0.570204

* Prediction: 0.717663
* Prediction: 0.571133

* Prediction: 0.453579
* Prediction: 0.310332

* Prediction: 0.453189

* Prediction: 0.570005

* Prediction: 0.453108

* Prediction: 0.310447

* Prediction: 0.205433

* Prediction: 0.309549

* Prediction: 0.20515
* Prediction: 0.308638

* Prediction: 0.450955

* Prediction: 0.308975

* Prediction: 0.45057

* Prediction: 0.567068

* Prediction: 0. 715164

* Prediction: 0.857647

* Prediction: 0.716282

* Prediction: 0.858192

* Reinforcernent = 1.0

118

In this chapter, three examples were presented. These demonstrate

that Monarch' s implementation of the algorithms in Chapter IV is correct,

and the library may be successfully used to create simulations of ADALINE,

backpropagation, and TD(Â.) neural networks.

CHAPTER VIII

CONCLUSIONS

With presentation and discussion of the examples in Chapter VII, the

original aim of this thesis is complete. Nonetheless, other issues have been

raised during the course of this research, and in this chapter we discuss them

and suggest directions for further work on the library.

Clearly, the library as it stands now is incomplete as a production tool.

lt works well for simple, multi-layer feedforward networks, but it has

limitations for applications that are more complex and demanding. While it

demonstrates that C + + is an effective vehicle for constructing neural

network simulations, it may be profitably extended with the following

additions: (a) additional learning algorithms, (b) "front end" processors for

configuring and tuning the network's performance, and (c) a "back end" tool

for delivering a trained and tested network to an embedded system.

Let us address each of these issues in turn.

Additional Learning Algorithms

lt is generally agreed that standard backpropagation has drawbacks in

practical use. The biggest of these is its slow convergence. A thorough

treatment of this subject may be found in Masters (1995). A number of

methods for improving convergence have been developed (Hagan, Demuth,

and Beale 1995). These include:

119

1. "Batching" weight updates and performing them at the completion

of an epoch, using the mean of the update.

2. A "momentum" term to descend smoother parts of the error

gradient more rapidly.

3. V arying the learning rate based on the magnitude of the change in

error at each iteration.

4. Applying numerical optimization techniques such as computing the

conjugate gradient and the Levenberg-Marquardt algorithm.

Currently the backprop algorithm in the library uses method (2) since

it is straightforward to implement. For the types of programs a typical

Monarch user wishes to write, this is sufficient. But a future direction might

be implementing either of the numerical optimization algorithms as a

descendant of the BpLink and BpLayer classes.

120

Three-layer backpropagation is far and away the most popular

method for training neural networks in production settings, but there are

other learning algorithms that could be included into the library for the

student and experimenter. These include associative, competitive, and

adaptive resonance networks. Ail of these could be implemented as

descendants of the fundamental Net, Link, and Layer classes.

Front-End Processing

The design of the library makes it possible to create specialized "front

end" processing tools to increase its utility. One such tool might be a

program to read a network' s schema as a file and translate it into the C + +

statements to initialize and simulate it. This approach has already been used

in the Aspirin/MIGRAINES package (Leighton, 1992), where Aspirin is the

language to specify a network' s architecture. Here is a sample Aspirin

"program" for a character-recognition problem similar to the one shown in

Chapter VII:

/* The abcd.aspirin file in this directory is

*/

far more complex than necessary for the

problem. It is meant to illustrate capabilities

of the Aspirin language. This network will

salve the problem much more effectively.

Even smaller networks than this are possible

using tessellation.

-Russ

DefineBlackBox ABCD

{

outputLayer-> OUTPUT

Updateinterval-> 1

InputSize-> [16 x 16]

components->

{

}

}

PdpNode OUTPUT [4]

{
InputsFrom-> H

}
PdpNode H [2 x 2]

{
InputsFrom-> $INPUTS

121

The Aspirin syntax resembles C or C + + so programmers familiar with one of

these languages can feel comfortable with the package. This file will be

processed into a C file, then linked with a library/simulator for execution.

There is no reason the same strategy cannot be employed with Monarch.

The UNIX tools Lex and Yacc would be appropriate for this task.

}

Back-End Processing

Once a neural network has been trained and tested, it is usually be

employed in a control or pattern recognition system. There is currently no

facility for conveniently embedding a network into such a system. Instead,

some portion of the simulation must be re-coded for the target program.

This is typically the part of the network that propagates the signals from the

input neurons to the outputs. (Of course, the weights have been established

by training and may be treated as constants.)

This propagation algorithm may have performance overheads that are

unacceptable in a process control or real-time system. This is because library

facilities that make simulation more convenient (such as floating point

numbers and collection classes) may not be appropriate for an embedded

system.

122

Another useful tool, therefore, would take a trained network and

allow convenient emplacement into an embedded software system. It should

support scaled or fixed-point arithmetic and integer weights (Kahn and

Wilson, 1996) as opposed to floating point arithmetic and use contiguous,

statically allocated arrays instead of collection classes. It may even more

efficient to output the network's weights and propagation algorithms directly

into assembly language instead of C. Such a tool would build on the support

already in Monarch for stopped training and saving weights.

Concluding Remarks

Designing a library in C + + is both a pleasant and challenging task. It

is pleasant because the language provides features to tackle annoyances such

as store allocation and exception handling in a consistent and elegant way. lt

is challenging because the designer now must confront these issues rather

than push them onto the application programmer.

In particular, adding appropriate type safe behavior to the library is an

important (and often overlooked) part of the overall implementation cycle.

The designer must confront issues such as "what does addition of two arrays

mean?" or "what happens if one layer is assigned to another?" and in doing

do clarify one's thinking about both the specific objects one is trying to

manipulate and the overall computing problem one is trying to solve. This I

found particularly challenging.

lt is hoped Monarch demonstrates the original intent of the thesis, that

an object-oriented design and C + + implementation of neural network

algorithms makes writing such programs convenient and pleasant. More

importantly, it is hoped that this work (and the Monarch library) will serve as

a useful tool for other programmers to go forward and àevelop their own

simulations. If students and experimenters find it useful in this way, then it

will have, in my opinion, been successful.

123

BIBLIOGRAPHY

Booch, Grady. 1991. Object-Oriented Design with applications. Redwood City,
California: Benjamin/Cummings.

Castleman, Kenneth R. 1996. Digital Image Processing. Englewood Cliffs, New
Jersey: Prentice-Hall.

Coplein, James O. 1992. Advanced C++ Programming Styles and Idioms.
Reading, Massachusetts: Addison-Wesley.

Franz, Marty. 1990. Object-Oriented Programming Featuring Actor. Glenview,
Illinois: Scott, Foresman & Company.

Gilbreath, Jim. 1981. "A High-Level Language Benchmark," Byte, Septmber
1981, 180.

___ . 1983. "Eratosthenes Revisited: Once More Through The Sieve",
Byte, January 1983, 283.

Goldberg, Adele and David Robson. 1983. Smalltalk-80: The Language and its
Implementation. Reading, Massachusetts: Addison-Wesley.

Hagan, Martin T., Demuth, Howard B., and Mark Beale. 1995. Neural
Network Design. Boston: PWS Publishing Company.

Hebb, D. O. 1949. The Organization of Behavior. New York: Wiley.

Isbell, Charles L. 1992. Explorations of the Practical Issues of Learning
Prediction-Control Tasks Using Temporal Difference Learning Methods,
Master' s Thesis, Massachusetts Institute of Technology.

Joyce, C. W. 1990. Network data structures and representation in the
simulation of neural networks, Master' s thesis, the University of
Tennesee.

Kahn, Altaf H. and Roland Wilson. 1996. Integer-Weight Approximation of
Continuous-Weight Multilayer Feedforward Nets. Technical report,
University of Warwick, Coventry, England.

124

Kohn, Phil. 1992. Connectionist Layered Object-Oriented Network Simulator
(CLONES) User's Manu.al. Berkeley, California: International Computer
Science Institute TR-91-073.

Kutza, Karsten. 1996. Neural Networks at your fingertips. Unpublished
public-domain software package available on the Internet at
http://www.geocities.com/CapeCanaveral/1624/.

Leighton, Russell R. 1992. The Aspirin/MIGRAINES Neural Network Software
User's Manu.al, Technical Report MP-91W00050, the MITRE Corporation

Masters, Timothy. 1993. Practical Neural Network Recipes in C++. San Diego:
Academic Press.

___ . 1995. Advanced Algorithms for Neural Networks: a C + + Sourcebook.
New York: John Wiley & Sons.

McCulloch, W. and Pitts, W. 1943. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics 5:115-133.

Minsky, Marvin and Seymour Papert. 1969. Perceptrons. Cambridge,
Massachusetts: MIT Press.

Oualline, Steve. 1995. Practical C + + Programming. Sebastapol, California:
O'Reilly & Associates, Inc.

Plonski, M. and C. Joyce. 1990. RCS, GENESIS, and SFINX: Three "public
domain" simulators for neural networks. Neural Network Review. 4(3/4)

Rosenblatt, Frank. 1958. The perceptron: a probabilistic model for
information storage and organization in the brain. Psychological Review
65:386-408.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986. Learning internai
representation by error propagation. In Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1. Cambridge,
Massachusetts: MIT Press.

Stroustrup, Bjarne. 1991. The C++ Programming Language, Second Edition.
Reading, Massachusetts: Addison-Wesley.

125

Sutton, Richard S. 1987. Implementation details of the TD(À) procedure for
the case of vector predictions and backpropagation. GTE Laboratories
Technical Note TN87-509.1.

___ . 1988. Learning to predict by the methods of temporal differences.
Machine Learning, 3, 9---44.

Sutton, Richard S. and Andrew G. Barto. 1990. Time-derivative models of
Pavlovian reinforcement. Learning and Computational Neuroscience:
Foundations of Adaptive Networks, M. Gabriel and J. Moore, Eds.
Cambridge: MIT Press.

Tsitsiklis, John N. and Benjamin Van Roy. An Analysis of Temporal
Difference Learning with Function Approximation. Cambridge,
Massachusetts: Laboratory for Information and Decision Systems

Venables, W.N. and Riply, B.D. 1994. Modern Applied Statistics with S-Plus.
New York: Springer-Verlag.

Werbos, Paul. 1974. "Beyond regression: New tools for prediction and
analysis in the behavioral sciences", Ph.D. Diss., Harvard University.

Widrow, B. and M. E. Hoff. 1960. Adaptive switching circuits. In 1960 IRE

WESCON Convention Record by the IRE Part 4, 96-104. New York: IRE
Part 4.

Zell, Andreas. 1995. Stuttgart Neural Network Simulator User Manual Version
4.01, Technical Report 6/95, University of Stuttgart. Available
electronically at www.informatik.uni-stuttgart.de/ipvr/bv /
projekte/snns.

126

	A Portable, Object-Oriented Library for Neural Network Simulation
	Recommended Citation

	tmp.1558707169.pdf.yOqfy

