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FITNESS LANDSCAPE ANALYSIS OF DISCRETE CONSTRAINED 

OPTIMIZATION PROBLEMS 

Sai Prasanna Ravichandran, M. S. 

Western Michigan University, 1998 

The exponentially large size of the solution space of typical optimization 

problems precludes the use of any deterministic approach to search for an optimal 

solution. A more efficient and efficacious approach is to use heuristic algorithms 

based on rules of thumb to guide the search process in the solution space. Associated 

with every solution in the space is a real number called fitness that signifies the quality 

of a solution. This space and the fitness values together form the fitness landscapes. 

Knowledge about the topology of these fitness landscapes is vital for any heuristic 

search operator to expedite the search process and also, find a good solution. 

Complete enumeration of the landscape is usually impractical. Moreover, the 

landscape is often n-dimensional with n > > 3, making it difficult to visualize. This 

research deals with the development of mathematical and graphical techniques to 

characterize the structure of fitness landscapes. A new 3-D graphical tool that can 

depict the topology of high dimensional fitness landscapes has been developed. This 

graphical approach provides a visual perception of the space to be explored, which can 

be used to guide and accelerate the search process. 
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CHAPTER! 

INTRODUCTION 

Developing methodologies to solve complex combinatorial optimization 

problems (COP) is an area of intense research effort. 

Combinatorial analysis is the study of the arrangement, grouping, ordering or 

selection of discrete objects. In combinatorial optimization, one is interested in finding 

the best arrangement. It is assumed that an optimal arrangement exists and the exact 

number of such arrangements is not important [13]. Unfortunately even moderately 

sized COPs have an extremely large number of possible solutions that complete 

enumeration is impractical. In fact most of these problems are NP-Complete. Typical 

examples include the famous traveling salesman problem [12], frequency assignment 

problem [7,3,17], hardware software codesign [9] etc. 

In general, solving even moderately sized COP's is difficult. To illustrate this 

difficulty,. consider the traveling salesman problem. One has to find the shortest tour 

through N cities from an initial city, visiting each city once and returning at the end of 

the initial city. For as few as 12 cities the number of possible tours is in the millions 

growing as (N-1 )/2 ! This is the size of the search space, the set of all possible tours, 

from which the shortest tour has to be found. An exhaustive search will always find 
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the optimal arrangement of the cities. But, due to the exponential increase of the 

solution space, it may take ages to find it. 

Clearly, an exhaustive search is not a feasible approach to find an optimal 

solution for most COPs. A more efficient approach is to use heuristic algorithms 1 that 

depend on rules of thumb to guide the search process. Evolutionary algorithms are 

heuristic algorithms based on stochastic optimization, which utilize the principles of 

natural evolution. Their working mechanisms rely on the collective learning process 

within a population of individuals, each of which represents a search point. After an 

arbitrary initialization, the population evolves towards increasingly better regions of 

search space by means of a simulated process of selection, mutation and 

recombination, which are otherwise known as search operators. Better individuals are 

determined by a measure called fitness that quantifies the quality of an individual. This 

search space together with the fitness values associated with the individual form the 

fitness landscape [20,11]. The objective of any optimization algorithm is to explore 

the fitness landscape according to a well-defined set of rules to find a globally fit 

individual. Typically this landscape will be high dimensional. 

The distribution of fitness values determines the ruggedness of the fitness 

landscape. It may be very rugged with many peaks of high fitness and profound sink 

holes or it may be smooth with low hills and gentle valleys. In this framework, 

adaptive evolution is a hill climbing process on a landscape. Initially, the process starts 

1 A heuristic is a method that produces a good but not necessarily optimal 
solution to a problem 
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with a population, which can be thought of as a cluster of individuals located at 

different points on the landscape. Search operators such as mutation, crossover etc., 

produces offspring's. From this population of parents and offsprings, highly fit 

individuals are retained in a manner that moves the population to regions of better 

fitness on the landscape, which is precisely the hill climbing process. Intuitively the 

behavior of an adapting population depends on how mountainous the fitness landscape 

is, on how large the population is and on the operators, which move an individual from 

one point to another point in the search space. Hence, it is useful to consider a 

landscape as an abstract mathematical tool, whose characteristics can be analyzed to 

provide useful information that will largely influence the performance of adaptive 

evolution in solving COPs. Manderick et al. [14] have shown that knowledge about 

the structure of the landscape can be used to define effective search operators for the 

evolutionary algorithms. 

Many real world optimization problems are constrained in the sense that 

problem parameters must reside within certain ranges. Such constraints deform the 

natural fitness landscape in a way that introduces many more local optima [5]. 

Methods of characterization that involved taking a random walk on the landscape to 

collect statistical information that is representative of the entire landscape [8, 19] has 

been suggested previously. All these works presumed the landscape was statistically 

isotropic. In other words, independent of where the random walk begins the statistical 

information is invariant. However, for the class of constrained combinatorial 

optimization problems statistical isotropy is an incorrect assumption, due to the 
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constraints that deforms the natural fitness landscape [5]. Hence, the landscape for a 

constrained optimization problem is anisotropic and even more difficult to search. 

This thesis discusses the development of mathematical and graphical 

techniques to characterize the structure of fitness landscapes of such discrete 

constrained combinatorial optimization problems. Adequate characterization---in 

particular, visualization---of high dimensional fitness landscapes has proven to be 

difficult. The major contribution in this thesis, is the development of a new 3-D 

graphical tool that visualizes the search space to be explored. This graphical approach 

provides a visual picture of the space to be explored that can be used to guide and 

accelerate the search process to find the optimal solution. 



CHAPTER II 

RELATED RESEARCH 

Knowledge about the structure of fitness landscapes of COP's can lead to an 

effective exploration strategy and hence an improvement in the performance of 

algorithms based on heuristics. Consequently, there has been a considerable increase in 

research effort to characterize the structure of fitness landscapes. 

An analysis of the topology of the landscape determines its smoothness or 

ruggedness. A landscape is smooth if the neighboring points differ in their fitness 

values only by a small amount. Conversely, in a rugged landscape, the neighboring 

points differ markedly in their fitness values. A number of statistical measures like 

correlation, correlation length, number of local optima etc. exists to infer these 

characteristics. This section discusses some techniques developed by researchers to 

characterize the structure of fitness landscapes. 

One of the important works in this area is the NK model developed by 

Kauffinan [11]. In this model, Nrefers to the number of parts ofa system (e.g., in the 

traveling salesman problem 'N is the number of cities). Each part makes a fitness 

contribution that depends upon that part and upon 'K' other parts among the N. In 

other words, K reflects how richly the system is cross-coupled. K is also known as 

epistatic interaction. If K = 0 there is no interaction and the landscape is smooth. 

5 



Conversely, as K approaches N -1, the landscape becomes increasingly rugged with a 

large number of local optima. It is a tunable model that can be used to construct fitness 

landscapes and explore the_ efficacy of the techniques developed to characterize 

landscapes. 

Weinberger [19] suggested usmg a random walk to gather statistical 

information about fitness landscapes. Starting at some random point on the landscape, . 

the walk visits a randomly chosen neighbor. Repeating this process produces a 

sequence of fitness values Jo. /J ... . Weinberger assumed that there is some underlying 

distribution of fitness values and a random walk in any direction is sufficient to gather 

statistics about the landscape. The degree of correlation between any two points s

steps apart in a random walk is given by a correlation function R(s)

R ( s) = (f rf1 + s )- (/1 )2 
Gf

2 

where (.) is the expected value over all pairs s steps apart and a/ is the variance of J;. 

If a high degree of correlation exists, then the landscape is "smooth". In the sense that 

the neighboring points differ in fitness only by a small amount. Conversely, a low 

correlation means the landscape is "rugged" since neighboring points differ markedly 

in their fitness. With this knowledge about the characteristics of the landscapes, a 

search process can adapt its operators to find a better solution [ 19]. 

The autocorrelation function of random walks in fitness landscapes has also 

been explored by Manderick et al. [14]. This random walk was conducted by using 
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rather sophisticated search operators. The goal here is to explore the strong 

relationship between the performance of different search operators of genetic 

algorithms on a fitness landscape and the statistical features of that landscape. They 

have examined the autocorrelation function, correlation length of the landscapes and 

the fitness correlation coefficients of corresponding search operators (The correlation 

length gives an indication of the largest distance between two points at which the value 

of one point can still provide some information about the expected value of the other 

point [8]. The correlation coefficient of an operator is related to the correlation length 

of the underlying fitness landscapes and expresses how correlated the landscape 

appears to that operator). Manderick et al. [14] have shown that these simple 

statistical measures can be used to tune different components of genetic algorithms 

and optimize their performance in solving COP's. 

Hordijk [8] used both Weinberger's random walk [19] and a time senes 

analysis known as Box and Jenkins approach [1] to characterize the structure of fitness 

landscapes. He showed that with the statistics obtained from a random walk on the 

fitness landscape, one could express the landscape as an autoregressive (AR) model. 

An autoregressive model of order p is expressed as 

yr = yi +aiyr-t + ... +apyr - p+&t 

where the stochastic variable &1 is white noise. In other words each value y1 in AR (p) 

process depends on p past values and some stochastic variable &1 • The stochastic 
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model obtained was shown to express the correlation structure of the fitness 

landscapes and also to predict the fitness expected during a search on the landscape. 

Vassilev [ 18] proposed a different method of analysis and called it an 

'information measure' of the landscape. He considered fitness iandscapes as an 

ensemble of objects with different information characteristics. Viewing the landscape 

as a directed graph, the objects are a vertex and its neighboring vertices. The vertices 

in general can be classified as flat points ( each vertex together with its neighbors 

belongs to a plain), isolated points (each vertex higher/lower than all neighbors) or as 

neither isolated or flat points (see Figure 1). Two information measures are used to 

specify the degree of ruggedness of an ensemble of basic objects: information content 

and information stability. Information content-specified by Shannon entropy reflects 

the number of local optima contained in the landscape. Information stability is 

determined from the difference between fitness values seen while conducting a random 

walk. More details for both these measures can be found in [18]. 

Fitness 

Steps 

Figure 1. Landscape Path as an Ensemble of Seven Kinds of Objects. 
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All the above methods of analysis assumed the landscape to be statistically 

isotropic. In other words, it is assumed that the statistics obtained from a sufficiently 

long random walk is representative of the entire landscape. Greenwood and Hu [5] 

have shown that the landscapes of most constrained COP's are anisotropic, which 

means long random walk are incapable of giving accurate statistic information. In 

these problems, the goal is to optimize an objective function subject to a set of 

parametric constraints. Solutions are considered feasible, only if they do not violate 

constraints. 

One of the most popular methods of handling infeasibility in any search process 

is by using a penalty function (15]. A penalty function artificially decreases a solution's 

fitness if constraints are violated. Usually, a penalty function is quite severe such that 

there is a low probability of survival during the evolutionary search process. The fact 

to be observed here is that an otherwise smooth landscape can now have numerous 

"sink holes" of extremely low fitness values. Moreover, these sink holes are not 

isolated points but instead are entire subregions of the fitness landscapes. The sink 

holes destroy any notion of an underlying distribution as the actual fitness value is 

artificially decreased for any infeasible solution. Consequently, the correlation present 

in the landscape can differ dramatically depending on where the initial starting point of 

a random walk is located. This can be seen in Figure 2. The shaded regions represent 

infeasible solutions on the anisotropic landscape. Two random walks beginning from 

different points A and B see completely different correlation on this landscape. Even 
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repeating a random walk from the same point can produce completely different 

correlation depending on which regions of the landscape is traversed during the 

random walk. Both adaptive and random walks on landscapes with infeasible regions 

are analogous to runs from a non-stationary random process; statistics gathered from a 

single random walk will not be indicative of the true underlying correlation. Therefore, 

the techniques described earlier cannot accurately characterize the landscapes of 

constrained COP's. 

Greenwood and Hu [6] suggested a method to characterize the fitness 

landscapes of constrained COP's. Their approach suggests conducting a random walk 

from a selected number of solutions, within a confined neighborhood and forming a 

composite picture of the landscape from these observations. 

A 

B 

Figure 2. Random Walks on an Anisotropic Landscape. 
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In the research papers discussed earlier [8, 14, 18, 19], fitness landscape is 

viewed as a graphical plot of fitness versus solutions visited in a random walk, which 

was generated from search operators such as crossover, mutation etc. Hence, it has 

been claimed that the landscape is a function of operators. However, there are some 

disadvantages with this approach as some solutions may never get visited ( except for 

mutation) and the information one can get out of this is limited. 

A new graphical three-dimensional tool has been developed to represent high 

dimensional fitness landscapes. No assumption is made about the structure of the 

landscape. The graphical tool developed can assist in viewing the landscape at different 

levels of detail. Initially, one can view the landscape at a lower level of detail (without 

complete enumeration) and zoom into the regions of interest for finer details. The 

parts of solutions responsible for sink holes can be read directly from the gray code 

equivalent of the graph axis labels. Using this knowledge about the structure of the 

landscape, it is proposed to constrain the operators of heuristic algorithms such that 

they avoid the regions of sink holes or try to remain in the regions of high fitness on 

the landscape during the search process for an optimal solution. Incorporating this 

knowledge into the operators can expedite the search for an optimal solution. 
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CHAPTER III 

PRELIMINARIES 

This chapter provides an overview of the background required, for the discussions 

that will follow in the later chapters. The next section provides graph theoretical 

definitions, while the following sections describe gray codes and networks. The intent 

of this chapter is only to give a brief overview, detailed descriptions can be found in 

the references cited. Readers who are familiar with these topics can elect to skip this 

chapter. 

. Graph Theory 

The material presented in this section, with a few modifications is taken from a 

book by Lawler [ 13]. 

A graph G =(N, A) is a structure consisting of a finite set N of elements called 

nodes and a set A of unordered pairs of nodes called arcs. A directed graph or digraph 

is similar to a graph except that each arc is an ordered pair, giving it direction from 

one node to another. Nodes are also referred to as vertices or points and arcs as edges 

or lines. 

In many applications in the physical, biological, social and engineering sciences 

graphs or digraphs have numerical values attached to their nodes or arcs of a graph to 
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represent construction costs, flow capacities, probabilities of destruction etc. In 

general any graph to which such additional structure has been added is called a 

network. 

For both directed and undirected graphs, an arc from node i to node j is 

denoted by (i, )). Most problems deal with undirected graphs and at most one arc 

between a given pair of nodes i, ). Thus if INI = n and I Al = m, it follows that 

m � n(n-1)/2. In the case of directed graphs both (i, j) and (j, i) are permitted, so 

m � n(n-l). 

An undirected graph with four nodes and four interconnecting edges is shown 

in Figure 3. 

Figure 3. An Undirected Graph. 

1 

If there exists an arc (i, J) we say the nodes are adjacent or neighbors. By 

definition no node is adjacent to itself For an undirected graph, the adjacency matrix 

A = a{ij} is defined as follows: 

a .. -{
1 if there exists an arc (i,j) between nodes i and}

I] - 0 otherwise 
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Consider the graph in Figure 3, the adjacency matrix for this graph is 

A= 

0 1 1 0 

1 0 0 1 

1 0 0 1 

0 1 1 0 

Gray Codes 

A Gray code sequence is a sequence of strings in which successive strings 

differ in one and only one bit position. Let b 1 b2 . . . bn be a n-bit binary string where 

b; E {0,1}. There are 2n unique binary patterns that can be formed with n-bit binary 

strings. A sequence of length L contains L distinct n-bit binary strings. This sequence 

is a gray code sequence if any two successive strings differ in only one. bit position. 

Note that this requirement holds for the first and the last n-bit strings in the sequence. 

For example, { 00, 01, 10, 11 } and { 00, 01, 11, 10} are both valid strings but only the 

second sequence is a gray code sequence. The nodes in the lattice and the m-ary n­

cube (see next section in this chapter) are labeled in a gray code sequence. In other 

words all nodes in these networks are arranged as one mutant neighbors. 

14 



Networks 

Networks are graphs with numerical values attached to their nodes. There are 

various topologies of networks. Of particular interest to this thesis are the lattice, torus 

and the m-ary n-cube. 

A lattice is an M XL network with nodes arranged in M rows and L columns. 

Figure 4 shows an 8 X 8 lattice. Note that the rows and columns are labeled in gray 

code sequence. This ensures that any two nodes connected by an edge differ in only 

one bit value. In other words every node in the network has a 1- mutant neighbor. A 

torus is also a lattice, but with wrap around connections on each row and column. 

1 II 
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Figure 4. An 8X8 Lattice. 

15 



Lattice, torus and other networks such as ring, binary n-cubes and omega 

networks are topologically isomorphic2 to a family of m-ary n-cube networks. The 

parameter n is the dimension of the cube and m is the radix or the number of nodes 

(multiplicity) along each dimension. The total number of nodes in the network is given 

A node in the m-ary n-cube can be identified by an n-digit radix-m label 

aoa1a2 ... a,, where aj represents the node's position in the i-th dimension. The nodes in 

the m-ary n-cube are also labeled in gray code sequence. Figure 5 shows the m-ary n­

cube network with m = 4 and n = 3� hidden nodes and connections are not shown [10]. 

Figure 5. A m-ary n-cube With m = 4 and n = 3. 

2two networks are topologically isomorphic if nodes adjacent m one network are 
adjacent in the other network 
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CHAPTERIV 

DISCUSSION 

Landscape is indeed a picturesque term. Literally, it refers to a picture 

representing some attribute. Infitness landscapes, the abstract solution space ofCOP's 

is visualized as landscape structures. These structures are fitness functions derived 

from a form 

f:s ➔ 9'i 

where the function/ maps a solution s ES (Sis the space of all possible solutions) to 

a real number line called fitness. This measure signifies the quality of a solution. 

Higher the value of fitness, higher is the quality of that solution. It should be 

emphasized that an effective search operator for an optimization algorithm based on 

heuristics, requires some knowledge about the topology of these fitness landscapes. In 

this section a new 3-D tool for characterizing the structure of fitness landscapes is 

described. Using this tool, the effect of epistatic interactions on the ruggedness of 

fitness landscapes as shown by Kauffman's NK model is analyzed. The inadequacy of 

the NK model in modeling epistatic interactions for an important class of combinatorial 

optimization problems is discussed. Most notably is the limitation in modeling the 

epistatic relationships that exist in many real world problems. 
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For COP's with a single problem parameter, one can easily visualize the 

landscape as a two-dimensional plot. Consider a case where the objective of an 

optimization problem is to find the minimum value of an att�bute, the landscape for 

which is shown in Figure 6. One dimension represents the single problem parameter 

and the other dimension represents the fitness or the attribute. For a landscape such as 

this, gradient search method works extremely well. However, gradient search fails for. 

a landscape shown in Figure 7 due to the characteristics of this landscape. The search 

process can get trapped at a local optima and may never be able to find the global 

optimum. Clearly, the efficacy of the method used for searching the landscape 

depends on the characteristics of the landscape. There is no single search strategy that 

performs well for all kinds of problems. The best strategy is problem dependent--­

depending on how the landscape looks like for that problem. Hence, characterizing the 

topology of these landscapes is vital in determining effective search operators capable 

of finding an acceptable solution. 

The fitness landscape for a two dimensional COP can be visualized as a 3-D 

plot---two dimensior.s for the problem parameters and one for the fitness. Figure 8 

shows the landscape for such a problem. 

The landscape for a COP with N problem Parameters may be visualized with 

an N + 1 dimensional landscape where N dimensions corresponds to the N problem 

parameters and the additional one dimension represents the fitness. 

Real world problems generally deal with a large number of problem 

parameters. Visualizing landscapes of such high dimensions is certainly very difficult. 
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Though Weinberger's approach [19] helps to characterize the landscape in two 

dimensions, it cannot be applied to constrained COP's as described earlier in Chapter 

II. 

Fitness 

X 

Figure 6. A 2-D Landscape - Gradient Search Works Well. 

Fitness 

X 

Figure 7. A 2-D Landscape - Gradient Search Does Not Work Well. 

A new 3-D graphical tool has been developed to view high dimensional 

landscapes of COP's, in particular constrained COP's. Although this technique has the 

same shortcomings as the 2-D techniques---losing information in other dimensions, it 
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provides more information than does a simple correlation and in addition allows one to 

visualize the ruggedness of the landscape. The basic concept relies on the ability to 

isomorphically embed a lattice into an m-ary n-cube. 

fitness 

X 1 1 

4 

y 

Figure 8. A 3-D Landscape for a COP With Two Problem Parameters. 

First consider the entire solution space S for a COP represented on an m-ary n­

-cube. Each of the nodes represent a distinct solution s. Without loss of generality, 

assume that mis an integer power of two. Each node in the m-ary n-cube is labeled 

with a n lg m bit binary label 3
. The labeling is in gray code sequence such that any two 

nodes connected by an edge (see Figure 5) differ in only one bit position. In other 

words, the labels identify one mutant neighbors. 

Let A and B be integer powers of two. Now, we can show that an A X B lattice 

can be isomorphically embedded into the m-ary n-cube in the following way. The 

3 lg denotes a base-2 logarithm 
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binary label associated with each node in the m-ary n-cube can be partitioned into two 

parts, which is written in the form 

bt. .. brbr + I. . . bn lg m 
�'-----v-----' 

lgA lgB 

If the first lg A bits of the binary label represents the X coordinate and the least 

significant lg B bits represents the Y coordinate on the X-Y plane of the A X B lattice, 

then we have an arrangement were the resultant A X B lattice is isomorphically 

embedded in the m-ary n-cube. 

In effect, this embedding has "unfolded" a high dimensional cube into a two­

dimensional lattice. This unfolding process does break edges in the cube, retaining only 

a few of the n neighbors, and thus many neighbors in the cube are no longer neighbors 

in the lattice. This relates to the shortcoming mentioned earlier about this approach­

losing information in higher dimensions. However, these old neighbors in the cube are 

distributed somewhere else in space and are not completely out of the picture. Now, 

the landscape consists of an X-Y plane (the lattice) distributed with all possible 

solutions. Adding the third dimension Z as fitness to this X-Y plane results in a 3-D 

fitness landscape, in which each point represents a solution and its corresponding 

fitness. 

To assist in understanding the development of our graphical technique, it is 

advantageous to discuss it in the context of a simple albeit difficult graph theoretical 

problem---the frequency assignment problem. 
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Frequency Assignment Problem (F AP) 

The radio spectrum is a vital but a limited natural resource and the demand for 

frequencies is outpacing the increase in the usable spectrum as· technology changes. It 

is therefore vital that the spectrum be managed in the most effective way possible. This 

requires that the frequencies are assigned in an optimal or nearly optimal manner. 

Deterministic methods to solve problems of this kind works well only when the size is 

small. In fact these problems are NP-complete [7, 17]. Algorithms based on heuristic 

techniques perform well for this class of problems. The performance of these 

algorithms can be improved, as stated before, by incorporating the knowledge of the 

topology of the fitness landscape, into its search operators. Hence this problem is 

chosen to illustrate our 3-D technique. 

In general the F AP deals with the assignment of frequencies to a large number 

of transmission sites (N) operating in a region. The assignment of frequencies taken 

from a discrete set (F) is subject to a large number of constraints. There are several 

constraints that have to be considered for the F AP, of which cosite interference is one. 

This constraint states that, when any radio transmission site is located geographically 

within a distance �d from another site, they cannot be assigned the same frequency as 

there will be interference. This F AP is equivalent to the generalized graph-coloring 

problem, which is known to be NP-complete [7,17]. 

More formally let N be the number of radio transmission sites in a given 

geographical area, where the distance between any two sites is known. Each site is to 
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be assigned a single frequency (from a finite frequency set F) to transmit all messages. 

Interference between sites is possible, so it is necessary to place a constraint on the 

frequency assignments. Specifically, two sites within a disqmce �d of each other 

cannot be assigned the same transmission frequency. The objective is to find the 

minimum cardinality subset of F such that all sites are assigned a transmission 

frequency, without violating the constraints. 

Let s represent any solution in the search space S. Each s E S will be encoded 

as a bit string of length k . N, where N equals the number of frequency sites and k bits 

represent one of the 2k possible assignments. 

Let Tl represent the number of different frequencies used in a solution s. Thus 

Tl is a measure of fitness for the solution s. A low value corresponds to a high fitness. 

Typically this problem requires N + 1 dimensions, N dimensions to depict all possible 

solutions and one to indicate fitness. However this high dimensional landscape can be 

depicted on a 3-D landscape using the technique described in the previous paragraphs. 

First we apply Kauffinan' s NK model concepts to the problem. The 'N in the 

model corresponds to the number of sites and K refers to the constraint on the 

assignment of frequencies. For example, if every site is within �d distance from any 

other site and this applies to all the sites then the epistatic interaction K for this case is 

one. This is shown in Figure 9. Thus the constraint in the F AP determines the epistatic 

interaction K among the sites. 
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Consider a specific instance where N = 6 is the number of sites and four 

frequencies can be used. Let the set of frequencies be F = { 0, 1, 2, 3} and the set of sites 

miles 
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60 

30 

30 60 90 120 

miles 

Figure 9. Geographical Distribution of Sites for the Case of K = 1. 

be C = {Co,C1, C2,C3,C4, Cs}. Now this problem can be encoded and represented on a 

4-ary 6-cube. Each node requires a 12-bit label (n lg m) and each site requires two bits

(lg m) to identify the frequencies assigned to it. This 4-ary 6 cube is unfolded into a 

A X B lattice. Partitioning the 12 bit label into two equal parts of six bit labels each, 

the rows of the lattice can now be represented by the most significant six bits and the 

columns by the least significant six bits, resulting in a lattice of dimensions A = B = 

64. 

Let the rows in the lattice represent the X axis and the columns represent the 

Y-axis in a graph. In effect the lattice represents the X-Y plane for the landscape to be
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constructed. The axis numbering in the X and Y axes of the lattice is labeled in a 

natural order. However the numbering in a lattice are arranged as one mutant 

neighbors. 

The difference between natural order and gray code order is shown here. 

0, 1,2,3,4,5,6, 7 natural order 

0,1,2,3,6,7,5,4 gray code order 

The lattice does use the gray code sequence to generate the solution s at every 

node by using a function that converts the sequence of natural numbers on the X and 

Y axes to its gray code equivalent. An example will clarify this concept. Let G (i) be a 

function that converts a natural number i to its gray code equivalent (i.e. G (5) = 7). 

Then a point (x, y) in the X-Y plane will have coordinates (G (x), G (y)) in the lattice. 

Code that implements G (i) and its inverse is widely available (e.g. see page 896 [16]). 

Once the lattice coordinates are computed they can be expressed in binary form to 

describe the solution. 

Consider a solution for this problem located at (29,50) in the X-Y plane of the 

lattice. The gray code equivalent coordinates are (19,43). Juxtaposing the binary 

equivalent of these converted x and y coordinates results in 

010011 101011 
..__..., ..___...., 

19 43 
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In order to identify the actual solution this 12 bit binary label is split into n = 6 

segments of width lg m = 2 bits. 

01 00 11 10 10 11 
------

) 0 3 2 - 2 3 

In effect this partitioning gives the actual solution s that represents the 

frequency assignments to the six sites. The above solution '103223' indicates that site 

Co is assigned frequency 'l' and site C1 is assigned frequency '0', sites C2 and Cs are 

assigned frequency '3' and sites C3 and C4 are assigned frequency '2'. 

If any two solutions in space are separated by a distance M, their frequency 

assignments must be different or a constraint will be violated. The parameter Tl has 

already been defined as the number of frequencies in a solution s. Then the fitness 

function of the solution s is defined as 

{-17 
fitness(s) = p 

no constraints violated 
otherwise 

Without any constraint violations, the fitness values will range from a low of -I F I to a 

high of -1. Conversely, the fitness is forced to a fixed constant � < - Tl if one or more 

constraint violations exist---creating a deep sink hole in the landscape. The algorithm 

to generate the 3-D landscape is shown in Figure 10. 

The above problem was tested for different values of epistatic interaction K.

For the case of K = 0---no epistatic interactions---the six sites are distributed as shown 
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1. Define m and n in the m-ary n-cube.

2. Compute the number of binary bits required to represent each node and identify the
length of the bit string s (solution)

bn nlgm 
n length of s 

3. Determine number of bits required to represent the X axis - Xbits and Y axis - Ybits·

Ybits = bn - Xbits 

4. Compute lattice dimensions as Xmax = 2xb;,, and Ymax = 2Ybit, (i.e. the maximum value
of X and Y axis on the landscape)

5. Declare a structure - soln[xmaxHYmax]- that will store fitness and the solution s it repre­
sents on the X-Y plane

6. Let Xindex = 0

7. While (Xindex < Xmax)

{

} 

(a) Compute Xgray 
gray code equivalent of Xindex 

(b) Let Yindex = O;

(c) While(Yindex < Ymax)

i. Compute Ygray gray code equivalent of Yindex
ii. Compute s for the coordinate (Xindex , Yindex)

A. Convert Xgray
, Ygray 

to equivalent binary code Xbin, Ybin respectively
B. Juxtapose Xbin :: Ybin to get the solbin
C. Partition solbin into n, lg m bits and convert each partitioned set to

equivalent decimal to identify the values of frequency.
D. Store the result in the variable soln[xindex ][Yindex ]

iii. Compute fitness for the solution computed in the previous step and store in
the variable soln[XindexHYindex ]

i V • Yindex = Yindex + 1;

(d) Xindex = Xindex + l;

8. Plot the fitness versus solutions now arranged in the two-d array variable soln

Figure 10. Algorithm to Generate 3-D Landscape 
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in Figure 11. The circles around each site shows regions within which that site will 

interact with another site. Kauffman has shown that K = 0 results in a smooth 

landscape as there is no interaction. This is verified in the landscape shown in Figure 

12 that has been generated using the new 3-D technique. 

Consider the case where the sites are distributed as shown in Figure 13. (This 

figure is same as Figure 9 referred earlier. It is shown here again for convenience). The 

epistatic interactions for this case is K = I. Every site is affected only by one other 

site (i.e. site O interacts with site I and so on). The landscape generated for this case 

shows (see Figure 14) the relative increase in ruggedness due to interaction, as shown 

earlier by Kauffman [ 11]. Kauffman, s NK - model and the effect of epistatic 

interactions on fitness landscapes is easily visualized using the new 3-D technique for 

depicting higher dimensional landscapes. 
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Figure 11. Geographical Distribution of Sites With K = 0. 
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Figure 12. Fitness Landscape for K = 0. 
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The above test cases for K = 0 and K = 1 were conducted such that K was 

uniform for all sites. But, in practice an uniform epistatic interaction among the 

different sites is a rare occurrence. It may be possible for only two sites to interact and 

the rest may not. A typical example of such non-uniform interaction is shown in Figure 

15. Kauffinan assumed that K is uniform for all parts comprising the COP, which is not

the case in most real world problems. The fitness landscape for this non-uniform 

interaction K is shown in Figure 16. 
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Figure 15. Geographical Distribution of Sites With Non-unifonn K. 
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,, A comparison of the results for K = I and non-uniform K show that some of 

the sink holes in the landscape for K = I have disappeared for the non-uniform K

landscape. Indeed, complete enumeration of the solutions found that 57.8 % of the 

uniform K landscape was composed of sink holes, whereas only 25% of the non­

uniform K landscape was composed of sink holes, as the interaction level for this 

example of non-uniform K is less . 

. High Dimensional COP's 

The F AP problem used to illustrate the 3-D technique in the previous section 

was small, with only 4096 solutions in its solution space S. Hence, it was possible to 

completely enumerate and analyze its fitness landscape. So, how does this technique 

work for high dimensional COP's with a very large size of S (typical of most COP's)? 

It is impossible to completely enumerate and study the characteristics of fitness 

landscapes for such high dimensional problems. 

Nevertheless, the 3-D technique developed proves to be universal. In 

particular, the scalable property of this technique helps it to address high dimensional 

COP's. It can be applied to any kind of COP in any field. Many constrained COP's 

have multiple objects to be optimized while satisfying various constraints. This results 

in a highly complex COP. The 3-D technique can be used to ease the difficulty in 

optimizing such COP's by visualizing the landscape and providing valuable guidance 

to the heruistic technique used to optimize it. 
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The universal nature of this technique is illustrated in this section with 

reference to an instance of a hardware/software codesign problem. This problem is a 

typical example of a complex, constrained, high dimensional COP. 

Hardware Software Codesign Problem (HSC) 

The objective of hardware software codesign is to build computer systems that 

have an ideal balance of hardware and software components, which work together to 

satisfy a given specification. Hardware/software partitioning is a critical step towards 

achieving this balance. For years, designers have manually partitioned systems into 

hardware and software components. With this approach, designers make architectural 

decisions early in the design process and are often forced to revisit them. The result is 

a struggle to make a less than optimal architecture meet the design goals. Efforts have 

been made by several researchers and electronic design automation vendors to 

automate and optimize this process of partitioning. The success · of any approach 

however, depends on the level of abstraction adopted for specifying the system to be 

designed. Most approaches deal with pure hardware or software specifications at the 

behavioral level. These approaches are more specific and are not flexible enough to 

handle tradeoffs between multiple attributes such as power consumption, cost etc. 

Hu and D'Ambrosio [4] adopted a system level abstraction to evaluate various 

partitioning schemes. All system specifications are modeled as a set of functions, 

where each function has one or more performance constraints ( e.g. feasibility). 

Functions can be implemented in either hardware or software. A system 
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implementation is constructed by assigning functions to components selected from a 

hardware library ( containing microprocessors, application specific integrated circuits 

(ASIC) etc.) in an optimal way. The decision of assigning the functions to hardware or 

software is made with respect to satisfying design constraints as well as some form of 

trade off between cost, power consumption and other attributes---an instance of a 

multiple objective optimization problem. Associated with every assignment is a real 

number that reflects the fitness or the quality of a solution. The space of all possible 

assignments and its associated fitness is the fitness landscape for this problem. 

The space of all possible hardware-software partitions is very large and thus an 

exhaustive search is not a pragmatic approach. In fact the system design problem is 

shown to be NP- complete [2]. Hence some type of heuristic technique is required to 

optimize the problem. In general all heuristic search operators take current solutions 

and perturb the problem parameters in some stochastic manner to produce new 

solutions. A more effective approach is to construct an 'intelligent' search operator 

that is constrained to search in specific regions of the landscape. Incorporating 

intelligence into the operator expedites the search process and also finds a better 

solution. This can be illustrated as follows. 

The fitness landscape for this problem can be viewed as a three dimensional 

plot by applying the 3-D technique. From this plot the user identifies regions on fitness 

landscape to avoid or regions to explore thoroughly. This information is provided to 

the search algorithm, which automatically designs search operators that are 

constrained to search ( or avoid) regions identified by the user. 
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However the 3-D technique cannot portray the entire solution space for the 

problem, since it is a high dimensional multimodal entity with an exponential number 

of points. Nevertheless, the 3-D technique allows one to view the landscape with 

varying levels of granularity. A user can specify a quantization degree, which plots 

only a subset of points, resulting in a quantized landscape. For example the user can 

plot every 5000
th 

point or 10000th point and all missing points assume the same value. 

For example if every 5000th point is chosen, points 5001,5002, ... ,9999 are assumed to 

have the same fitness as point 5000. This forms a piecewise continuous landscape that 

is quantized. This quantized landscape illustrates only the most prominent features. 

Nevertheless, often this will be a sufficient level of detail to identify regions of low 

fitness, which should be avoided during the search process. Furthermore, if the user is 

interested in investigating some regions in greater detail he/she can zoom into the 

selected region by simple specifying the (x, y) coordinates of that region and the 

degree of quantization (in other words 'scale factor'). Thus, the technique is highly 

scalable. 

The efficacy of this technique is further enhanced by following some guidelines 

that can keep the fitness of I-mutant neighbors from being drastically different. For 

instance processors come in different versions, but the significant difference may be 

the clock speed or amount of on chip memory. One can try to keep processors with 

similar clock speeds as neighbors and then order them according to on chip memory. 

In other words, modules that have similar attributes should be placed as neighbors. In 
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effect, this results in a smoother fitness landscape, which is much easier to search than 

a rugged landscape. 

To illustrate the efficiency of this technique a specific instance of an 

automotive problem that deals with the design of an engine control module is 

discussed. This problem is taken from a research paper by Hu and D'Ambrosia [ 4] and 

consists of nine tasks whose properties are given in Table 1. Deadline and activation 

values are in µ sec and the number of instructions is based on a generic instruction set. 

Table 2 lists the 16 possible hardware modules that are available for task 

assignments along with their power consumption. The hardware modules include 

microcontrollers (MC), general-purpose processors with no 1/0 (P), application 

specific integrated circuits (ASIC) and standard peripherals (PIO). Note that 

microcontrollers MC3 and MC4 have multiple distinct versions where the same core 

processor is used, but there are variations in the architecture ( e.g., amount of on chip 

memory). The objective is to determine the tasks that are implemented by hardware or 

software and the modules to be included in the final system. Note that certain tasks 

may only be assigned to specific modules. 

For simplicity consider the fitness landscape constructed for power 

consumption alone. The constraint for this attribute states all feasible solutions should 

not exceed a power consumption of 20 W. Lower power consumption implies higher 

fitness. If the power exceeds the power limit constraint the solutions are assigned a 

constant value of 0, regardless of the actual value. 
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Table 1 

Specifications of Tasks for the Automotive Problem 

Name 

Digitalfilter 1 (DF 1) 

Digitalfilter2 (DF2) 

DecodeSPUB (DSB) 

Read CAM (RC) 

ServiceRoutine (SR) 

FuelCalc (FC) 

SparkCalc (SC) 

ReadMap (RM) 

Deadline Period 

46.00 104.17 

10000.00 10000.00 

83.00 208.33 

416.67 10000.00 

208.33 416.67 

1333.33 2500.00 

2500.00 2500.00 

312.50 416.67 

Activation Instructions 

0.00 64 

9895.83 32 

0.00 30 

0.00 30 

0.00 20 

833.33 480 

1666.67 100 

0.00 40 

Figure 1 7 depicts the fitness landscape based on a quantization factor of 5000 

for both X and Y coordinates. Notice there are numerous regions that contain sink 

holes, (regions corresponding to a violation of constraint---power limit 20 W, with a 

fitness value of 0). 
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Power Consumption of Modules Used

Module Power Consumption in W

MCI-H 5.00 

MC-2H 14.00 

MC3a-H 1.30 

MC3b-H 1.00 

MC4a-H 0.30 

MC4b-H 1.50 

MC4c-H 1.50 

pl-H 14.00 

P2-H 13.00 

P3-H 10.00 

P4-H 5.00 

ASICI-H 1.65 

ASIC2-H 1.20 

ASIC3-H 1.80 

PIOI-H 1.00 

PIO2-H 1.30 
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Figure 17. Fitness Landscape for the HSC Problem - With Low Level of Detail. 

3 

From this picture of the landscape, it is possible to identify the regions of sink 

holes as 0.5 X 10 5 < Y < 1.5 X 10 5 and the entire X-axis. Figure 18 shows the 

landscape zoomed into this region. One can use this information to constrain the 

search operators to avoid sink holes. If it in a sink hole the operator could discard that 

search point and generate another point that is not in the sink holes region, and 

proceed with the search. This method of constraining search operators is both simple 

and universal. 
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Figure 18. Zoomed in Fitness Landscape - Higher Level of Detail. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

Analyzing the characteristics of multipeaked fitness landscapes is vital to the 

performance of search algorithms based on heuristics. The new 3-D graphical tool 

presented here maps high dimensional fitness landscapes to a three dimensional surface 

for easier visualization. By using an appropriate scale factor the 3-D fitness landscape 

can be readily generated and depicted. It is propos�d to use this landscape information 

to constrain the search space for the COP. The user is able to identify regions on 

landscapes to explore or to avoid during a search process from this 3-D plot. 

This approach is quite general. It is independent of the search mechanism used 

and is readily applicable to several different stochastic search techniques. (e.g., 

evolutionary and simulated annealing algorithms). Furthermore, for multiple objective 

optimization, one can generate more than one landscape which captures different 

constraints (e.g., in the HSC problem---optimizing power and cost). Eventually one 

needs to just specify forbidden regions in each landscape. The search process can 

quickly eliminate the solutions in those regions, and continue to search for better 

solutions in better regions of the landscape. 

The 3-D technique developed here is highly versatile and can be applied to any 

COP. It has several advantages: 
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1. Simple and easy to use.

2. Provides visualization of the problem under consideration.

3. Gives information about whether or not a potential solution 1s m a

particular region or not. 

4. A user can identify regions of interest by reading off the coordinates from

the X and Y axes of the landscape. 

5. No restrictions on whether the problem is a constrained COP or not. In

other words, it can characterize the landscape be it isotropic or anisotropic. 

6. The method is scalable.

7. A valuable aid to define efficient search operators used in algorithms based

on heuristics (e.g.; Monte Carlo or evolutionary programs). 

The relationship between ordering the different parts of a solution (N) and the 

epistatic interaction (K) and its influence on the structure of fitness landscapes needs 

to be investigated further. This indirectly defines the neighbor relations on fitness 

landscapes. Though this appears to be entirely problem dependent, with future 

investigations particularly for the case of non-uniform K, it is believed that one can 

arrive at some general guidelines. These. guidelines should yield a landscape, wherein 

neighboring fitness values do not differ drastically. This would be a highly. attractive 

feature for search algorithms as smoother landscapes are easier to search. However the 

3-D technique will continue to act as a powerful tool for characterizing fitness

landscapes of high dimensional COP's---constrained or not. 

The two papers that resulted from this research work are 
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1. X. Hu, S. Ravichandran and G. Greenwood, ''Modeling Epistatic

Interactions in Fitness Landscapes", Computational Statistics and Data Analysis 

(submitted). 

2. X. Hu, G. Greenwood, S. Ravichandran and G. Quan, "A Framework for

User Assisted Design Space Exploration", Design Automation Conf, 1999. 

(submitted). 
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