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EFFICIENCY OF DISTRJBUTED PRJORJTY QUEUES IN PARALLEL 
ADAPTIVE INTEGRATION 

Rodger Zanny, M.S. 

Western Michigan University, 1999 

The adaptive integration algorithm is· effective in numerically solving in

tegration problems. It is able to focus the application of integration rules on the 

portion of the integration region where the integrand is the least well-behaved. 

Parallel implementations must use dynamic load balancing or performance suffers. 

Dynamic local load-balancing techniques allow each processor to maintain 

its own pool of work in a local priority queue and balance the workload based on 

local criteria. However, the use of locally controlled priority queues is known to 

be inefficient (in terms of the number of integration rule applications needed to 

reach an answer) as the number of processors increases. 

This thesis implements and analyzes the use of a distributed priority queue 

for managing the current pool of work and performing global load balancing in 

the parallel adaptive integration algorithm. Initial experimental results show that 

the use of a distributed priority queue does not provide any clear benefits over the 

use of multiple local priority queues. However , analyzing the circumstances where 

the results are better has led to greater understanding of the basic algorithm. 
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CHAPTER I 

INTRODUCTION 

Integration is a fundamental problem in mathematics, and the efficient 

solving of integral problems using computers is an important problem in computer 

science. 

Given some function f(x) (called the integrand) and two x coordinates a 

and b, with a ::; b, the integral of that function over the region defined by a and b 

can be intuitively understood as the area bounded by the function, the x-axis, and 

the boundaries a and b, as shown in Figure 1. In three dimensions, the boundaries 

are defined by a region in the xy-plane, the function f(x, y) is a surface, and the 

integral is the bounded volume. The problem definition is analogous through 

any number of dimensions (in which case the function variables are specified as a 

vector x). 

Introduction to the Research 

Some integrands can be integrated symbolically, i.e., they can be analyzed 

and a closed-form equation of the integral result can be derived. This closed-form 

equation can be numerically evaluated to provide a quick and accurate answer to 
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a b 

Figure 1. Schematic of a Simple Integral. 

the integral. 

Other integrals are not able to be symbolically integrated and numerical 

techniques must be used to evaluate the integral. 

Generally, the integral method is viewed as a black-box. While there are 

certain numerical techniques that work especially well with certain kinds of inte

grand functions (singular , peak, oscillatory, etc.), a general approach will make 

few assumptions about the function to be integrated. The only thing known to 

the computer about the function is how to compute the function's value for each 

applied input. 

To solve the integration problem over a particular region numerically, the 

function is evaluated many times within that region, for particular values of x, 

and the results are used to provide an integral answer and an estimate of the error 
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in the result. This functionality is provided by an integration rule. A rule can be 

applied just once or many times ( with combined results) to solve a particular inte

gration problem. (For further information on symbolic and numerical integration, 

the reader is referred to [25, 38).) 

This method is very computationally intensive. As with many such prob

lems, recent research has focussed on deriving numerical integration techniques 

that can be parallelized. I.e., multiple processing elements (CPU's, workstations, 

etc.) are utilized together to reach a suitable answer faster than a single processing 

element could by itself. 

And as is the case with many applications, once parallel techniques are 

investigated, many interesting problems arise that need to be solved in order 

to have an efficient algorithm. One problem that arises in the area of parallel 

numerical integration ( again, as in many other problems) is that as the number 

of processing elements used increases the amount of work (in terms of integration 

rule applications) that must be done to solve the problem increases. This increase 

in work is considered an inefficiency, and it slows down the algorithm. 

A research goal is therefore to devise parallel techniques that reduce these 

inefficiencies. This thesis focuses on such a technique, developed within the con

text of the P ARINT parallel numerical integration research project. 
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Thesis Contents 

Chapter II defines the terminology used to specify the integration prob

lems that will be solved. An introduction to current parallel techniques appears in 

Chapter III and Chapter IV. Chapter V discusses. current problems with general 

and specific parallel techniques, and proposes the solution which forms the heart 

of this thesis. The background of this solution is provided in Chapter VI, while 

the current design is discussed in general in Chapter VII. The details of the imple

mentation, within the context of a very general implementation technique { which 

can be applied to many algorithms), are in Chapter VIII. The experimental results 

comparing the old and new techniques appear in Chapter IX, with Chapter X dis

cussing future research directions, and Chapter XI summarizing and concluding 

the thesis. 

Thesis Composition 

This thesis was prepared under the formatting guidelines [37] required of 

theses and dissertations prepared at Western Michigan University. 

Formatting was performed using W[E)( {version JnEX 2�) (29, 21] using 

'JEX templates written by Jay Ball for his thesis [3]. All editing of the thesis and 

code was done in Emacs. Figures and graphs were completed on a PC using Visio 

Express and Microsoft Excel and transferred and included as postscript files. 
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CHAPTER II 

PROBLEM TERMINOLOGY 

This chapter introduces the terminology used for the parameters of P ARlNT 

integration problems. 

Single Integrand Functions 

Let 'D be a hyper-rectangular region in 'R,N _ Let f(x) be the function to

integrate over 'D. P ARlNT will attempt to calculate a numerical approximation Q

and an error estimate Ea for the integral 

I= Iv f(x)dx, 

where the error estimate should satisfy II - QI :::; Ea . PARINT will attempt 

to find an answer within a user specified maximum allowed error, or, maximum 

allowed error tolerance. (This characterizes PARINT as having an "automatic" 

integration algorithm, for it proceeds until a satisfactory answer is reached and 

then stops automatically.) There are two different parameters that specify this 

tolerance. The parameter ea is the absolute error tolerance and er is the relative 

error tolerance. As PARlNT solves the integration, it will attempt to satisfy the 
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least strict of these two tolerances, trying to ensure that: 

Note that the value of max{ca , er III} is approximated by max{ca , cr lQI} 

as the algorithm proceeds. 

As PARINT proceeds in its calculations, it will need to evaluate the function 

f(x) for many values of x. The number of function evaluations has traditionally 

been used as a measure of the amount of effort spent in the computation of the 

integral. The user can set a limit ,C on the number of function evaluations per

formed, ensuring that the calculations will not go on without stopping. Note that 

it is quite possible that for a given integrand function, the results of an integration 

problem may not be able to be achieved within the given error tolerances due to 

the nature of the integrand function, the effects of round-off errors in the computa

tion and the limits on machine precision. If the function count limit ,C is reached, 

then the required accuracy is generally not believed to have been achieved. 

Vector Integrand Functions 

The terminology presented in the previous section actually represents a 

simplification of the problems capable of being solved. If there are several func

tions to be integrated over the same region, and they behave similarly over that 
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region, then PARlNT can integrate them together as a vector function. 

The values €0 , er, and.Care as before. With the integrand function spec

ified as f( x), P ARlNT will calculate a numerical approximation Q and an error

estimate E
0 

to the integral

f= fv!(x)dx, 

while attempting to satisfy 

where the infinity norm is used. This terminology subsumes that used earlier, 

as a single function can be thought of as a vector function containing a single 

component function. However, as throughout this thesis only vector integrand 

functions of a single function will be integrated, the simpler terminology will be 

used. 
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CHAPTER III 

INTRODUCTION TO THE META-ALGORITHM 

This chapter introduces the basic adaptive partitioning algorithm used to 

solve integrals. 

Integration Rules 

Given a region and a function to integrate, the integration rules used pro

vide an estimate of the integral over that region and an estimate of the error 

in the result. Generally, quadrature rules are used to calculate results and error 

estimates, though the integration rules are viewed as a "black box" throughout 

this thesis; no concern is taken with their internal workings. The version of the 

PARlNT software used provides four different rules from Genz and Malik (19, 20], 

each best suited for different kinds of functions or for functions of different dimen

sionality. For this thesis, a single integration rule was chosen for each integrand 

function. This ensures consistent experimental results: experiments performed in 

this thesis will examine the behavior of different integration algorithms on the 

evaluation of integrals. Changing the integration rule for a function across these 

experimental runs would cloud the results. 
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Sequential Algorithm 

This section explains the sequential ( single processor) integration algo-

rithm. 

Given an initial region and a function to integrate over that region, it is 

possible to evaluate an integration rule a single time over that region to get the 

result. In general, the estimated error may be too large. 

Non-adaptive Integration 

The next approach may be to divide the initial region into n equally sized 

subregions using a fixed a priori dividing technique. The integration rule can be 

called once for each subregion, and the final result and error estimate are the sum 

of the results and errors over all subregions. This technique is classified as non

adaptive. A typical form of non-adaptive integration evaluates a fixed sequence of 

rules over the given region. If the sequence is extended to stop when a prescribed 

accuracy is reached ( or it is determined that the error requirement cannot be 

achieved) then this is classified as an automatic non-adaptive algorithm [34]. The 

problem with this approach is that the integrand will generally have different 

characteristics over the region to integrate. Where the integrand behaves poorly 

(e.g., where there are peaks or singularities in the function), the quadrature rules 

will not perform as well. The subregions chosen should be smaller in these areas 

9 



of the initial region. Where the integrand function is smoother, the quadrature 

rules will perform well, and the subregions will not need to be as small. In fact, 

given subregions of identical size, the integration rule may get an answer that is 

accurate well within the given tolerance where the function is smooth, resulting in 

wasted effort. This need to vary the size of the subregions leads us to the adaptive 

integration algorithm. 

Adaptive Integration 

In this approach, the integration rule is evaluated once on the entire initial 

region. If the result does not appear to be accurate enough, the initial region 

is split into two. The integration rule is evaluated over each subregion. The 

two subregions are then placed on a priority queue which orders the previously 

evaluated regions on the queue by their estimated error. The subregion with the 

largest estimated error is taken off the priority queue and divided in half. The 

integration rule is applied to each of these sub-subregions, and they are again 

placed back on the priority queue. The algorithm continues in this fashion until 

the function count limit has been reached, or, until the estimated error is below 

the tolerated error. This algorithm classified as automatic adaptive integration 

[34], and is presented in Figure 2. The algorithm is further classified as being a 

globally adaptive algorithm, as the error value used to control termination is the 

sum of the estimated errors over all regions. (In a locally adaptive algorithm an 
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individual region is continually divided and evaluated until the error over that 

region is small enough.) 

adaptive_integration..algorithm: 

initialize; 

while (function limit not reached and estimated error too large) 

retrieve region from priority queue 

split region 
evaluate new sub regions and update results 

place sub regions back onto priority queue 

Figure 2. Adaptive Integration Algorithm. 

Splitting the Regions 

Regions are generally split in half. When the integrand is of multiple 

dimensions, it will not be clear along which dimension each region should be split. 

Therefore, an additional piece of information that the integrand rule must provide 

when evaluating a region is the direction along which the region should be split 

next time. Generally, this is the direction in which the function appears to be 

changing most rapidly (in PARlNT this is estimated from 4th order differences of 

integrand values obtained for each region in each coordinate direction [19]). This 

information is stored along with the region on the priority queue and is used to 

split the region when it is taken off the queue. 

Note that work is wasted in this approach. As the algorithm progresses, 

a small piece of the initial region may have the integration rule evaluated over 

11 



it many times as that portion of the initial region is split finer and finer. How

ever, for functions that are difficult, of low dimensionality, and about which the 

behavior of the function is not known a priori, the adaptive approach is best. ( At 

higher dimensions, e.g., > 15 dimensions, non-adaptive Monte Carlo approaches 

are usually best.) 

This algorithm, as presented, is sequential; i.e., it is executed on a single 

processor. The rest of this thesis concerns the· modification of this algorithm for a 

parallel environment. In such an environment issues arise concerning the division 

of the work, the storing of the priority queue, and the updating of results and error 

estimates. Chapter IV presents the Local Heap version, in which each processor 

works mostly independently, managing its own piece of the initial subregion and 

storing its own priority queue. In Chapter VI, the Global Heap approach, the 

focus of this thesis, is presented. In this approach, a single global priority queue, 

managed by one or more processors, is used to store all subregions for all pro

cessors. Each processor requests from the global heap the region with the largest 

error estimate and returns the new subregions to the global heap after performing 

a round of work. 

12 



CHAPTER IV 

LOCAL HEAP ALGORITHM 

This chapter presents the first parallel version of the adaptive integration 

algorithm, the local heap version. First, the parallel processing model used is 

presented. 

Parallel Processing Model 

When discussing a parallel algorithm, it is necessary to explain the under

lying computational model used. In this thesis, the model is that of independent 

processing elements, each with a local memory, communicating with other pro

cessing elements via a message-passing interface. Within Flynn's classification 

[17], this falls within the MIMD (Multiple Instruction Multiple Data) model. 

The network over which the processing elements communicate is further 

assumed to be a bus network, in which each pair of processing elements are con

sidered to be an equal distance apart. (So that communication between any 

two processing elements requires a constant time.) The corresponding hardware 

model is that of a multicomputer, or more specifically, of a network of workstations 

(Now) communicating over a Local Area Network (LAN). 

13 



This is to be contrasted with a fixed-interconnection network [2], in which 

communication channels connect individual processing elements in a specific net

work topology (e.g., a hypercube, butterfly, mesh, etc.). This is also to be con

trasted with the Parallel Random Access Model [2], in which processing elements 

communicate using shared memory. Most Exclusive ·Read Exclusive Write (EREW) 

PRAM algorithms map easily to message passing algorithms where each memory 

read or write becomes a message received or sent. 

The NOW model is a loosely-coupled parallel model, in which communi

cation costs are relatively high, and in which coarse-grained algorithms perform 

better than fine-grained algorithms [27]. 

While most PARINT work has been on NOW's, it should be noted that 

previous versions of PARINT [10, 8, 9, 7] have been implemented and analyzed on 

a hypercube network architecture, specifically the nCUBE-2 [33]. 

Throughout this thesis, a Processing Element will be abbreviated as a 

'PE', or referred to as a 'processor' or a 'process'. Within this thesis, these terms 

are generally synonymous, as there will be a single process per processor, and 

it is assumed that there is a single processor per workstation, though use of the 

term 'processing element' provides generality. Specific PE's may be referred to as 

controllers, workers, etc., as the situation demands. 

14 
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Local Heap Version 

The algorithm presented in this section is the primary algorithm used 

within the PARlNT parallel adaptive integration research project [11]. (The 

PARlNT work is based on previous work in [14, 4, 26] and others.) 

In this version, each of the p processes is assigned a piece of the initial 

region. Each process then begins to execute. the adaptive integration algorithm 

over its initial subregion. Each process maintains its own local priority queue 

consisting of the smaller subregions generated from its initial subregion. 

One process is chosen to be the Integral Controller (1c) process. The other 

processes are called Integral Worker (1w) processes. The Ic's primary responsibil

ity is to keep track of the global result and global error estimate. It accomplishes 

this by receiving local update messages from the IW's, from which it maintains the 

global result and error estimates. These allow it to determine when the result is 

within the desired tolerances, or, when the function count limit has been reached, 

at which point it will broadcast a STOP message to all the IW's. 

It is possible that one worker may finish before another worker, either 

because the worker is executing on a faster processor, or, because the integrand 

was smoother within its initial subregion. Therefore, there must be a way for each 

worker to know when it has satisfactorily completed work on its initial subregion. 

There are a variety of specific techniques for accomplishing this and various criteria 
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are used. The method used in PARlNT is for the IC to broadcast the current global 

c value, calculated as: 

where Q is the current result held at the IC. The IW i takes the c
91obal and 

calculates from it its local c value: 

vol(Vi) 
c1oca1 = Eglobal 

vol(V)

where Vi is the initial subregion assigned to worker i. 

A worker knows that it has satisfactorily completed work over its initial 

subregion when its local error estimate ( the sum of the error estimates over the 

subregions it has generated) is less than its c1oca1 value. 

Note that since the IC's value of Q changes as it receives updates, it must 

periodically send down to all the workers a fresh c
91obal value. The IW to IC result 

updates and the IC to IW c
91obal updates constitute the bulk of the communication 

costs in the algorithm. 

An additional algorithm parameter is the value ns. This algorithm pa

rameter controls the communication granularity at the IW by allowing the IW to 

accumulate result update inf onnation for ns basic iterations before sending an up

date message to the IC. A smaller value of ns will result in more messages, while 
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a larger value will result in fewer communications, but possibly wasted effort as 

an additional unneeded iteration or two is executed. 

The basic algorithm at the IW is presented in Figure 3, the IC's algorithm 

is in Figure 4. 

Integral Worker: 

initialize; 

while (global stop message not received) 

if (not locally-done) 

Check for updated eps_global 

for (i = O; i < ns; ++i) 

Retrieve region from priority queue 

Split region 

Evaluate new subregions and update local results 

Place subregions back onto priority queue 

Send update msg to IC 

Update locally-done information 

Figure 3. Local Heap IW Algorithm. 

Integral Controller: 

initialize; 

while (function limit not reached and estimated error too large) 

Receive update message from an IW 

Update global result, error estimate, and eps_global 

if (time to send eps message) 

broadcast new eps_global value to all IW's

Update globally done information 

Send STOP message to all IW's

Figure 4. Local Heap IC Algorithm. 

Note that the IC does not send down £global information after every update, 
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but rather after it h� changed by a significant percentage or after some set number 

of iterations, in order to reduce the communication costs. The €global value held 

by a worker may be slightly out of date � a result. 

This algorithm is �ynchronous, in that the processes never synchronize 

during the execution of an algorithm. Each processor iterates through its loop at 

its own pace, performing integral work, sending messages � needed, and receiving 

messages � they arrive. 

Controller � Worker 

Previous experiments show that the IC is not kept busy in its rather simple 

job. As a result, the IC w� modified to also act � one of the integral workers ( this 

w� done for the first time within the PARlNT project in (12)). This functionality 

is termed controller-as-worker ( CAW). The IC calls a function when there are no 

available updates to collect from the IW's. This function performs a single round 

of work (i.e., it splits a single region and calls the integration rule twice) and then 

returns the result to the IC portion of the code. The CAW code is �signed a 

portion of the initial region along with the other workers, and maintains its own 

priority queue. 
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Priority Queues 

Only very basic and common operations are required for the priority queues; 

accordingly, a simple data structure like a binary heap can be used. For a general 

reference on priority queues and heaps, see [5, l]. 

Specifically, only operations to initialize the heap, to delete and return the 

max element, and to insert a new element need to be supported. Therefore, a 

simple pointer-based binary heap implementation of the priority queue is used. 

From this point on, the term "local heap" will be synonymous with the term "local 

priority queue" . 

Load Balancing 

It is quite possible that one of the workers will complete the work needed 

over its initial subregion very early, while other workers are still processing their 

subregions. This processor will then be idle. In the worst case, one processor will 

end up with nearly all the work to be performed. For this reason, a dynamic load 

balancing technique is used to attempt to keep all of the workers busy at all times. 

Note that the division of the initial region can be considered to be an in

stance of load balancing, specifically, static load balancing, i.e., load balancing 

done before work has commenced on the problem. Dynamic load balancing in

volves the transferring of work while the problem is being solved. See [27, 28] for 
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an overview of various dynamic load balancing schemes. 

In PARINT, a scheduler-based receiver initiated load balancing scheme is 

used as follows: A worker knows when it is locally idle. At its next update, it 

informs the controller { the regular update message contains idle information). The 

next non-idle worker i to send an update to the controller is sent a HELPER-1D

message from the controller informing them of the id of an idle worker. If worker 

i is still not idle by the time it receives the HELPER-1D message, and is not "close" 

to being idle {based on an algorithm parameter), then it selects the region on 

the top of its local heap and sends it to the idle worker in a SEND-RGN message. 

Otherwise, if worker i is idle or close to being idle, it sends a dummy region. The 

recipient of the SEND-RGN message either receives the dummy region and informs 

the IC that it is still idle, or, receives the actual region, places it on top of its local 

heap, and resumes working. The local heap, local load-balancing version will be 

abbreviated LLB throughout this thesis. 

A worker is considered to be close to idle if the ratio between its local 

estimated error and its £1oca1 is less than a specific ratio, the LB..HELP ..RATIO, 

another algorithm parameter. Note that it is completely idle when that ratio 

reaches 1.0. 
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PARlNT Environment 

The PARINT research group has released the current version of its inte

gration tools, PARlNTl.0. This release implements the LLB algorithm within the 

MPI (22] message-passing environment for use primarily with UNIX systems. Users 

can solve integration problems by calling the P ARINT executable on the UNIX 

command line, by writing their own applications via the P ARINT Application 

Programmer Interface ( API), or through an integrated Java based graphical user 

interface. The release is available at [11]; the PARlNTl.0 User Manual is available 

at [40]. 

The P ARINT environment allows for the easy manipulation of integration 

parameters (c
a
, c
r
, £, etc.) and algorithm parameters (ns, LB-11ELP ..RATIO). The 

algorithm can be modified via other run-time parameters, including the turning 

on and off of load-balancing. 

Recent Modifications 

Two modifications were made to the P ARINT 1. 0 release code after the 

official beta release date, but before experiments were performed for this thesis. 

The benefits of these modifications were known, and it was felt that they should 

be added to the LLB version in order to compare the best LLB implementation 

with the modified design proposed in this thesis. 
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Round-Robin Idle Worker Selection 

The first modification was first made in the experimental P ARINT version 

of [13]. It was noticed that the higher ranked workers generally performed less 

work than the lower ranked workers. The problem was in the selection of idle 

workers. Whenever the id of an idle worker needed to be sent to a non-idle 

worker, the selection routine always sent the lowest-ranked idle worker's id. The 

result was that lower-ranked workers were more likely to have their id sent, and 

higher ranked workers were more likely to stay idle, resulting in an unbalanced 

load across the workers. The solution was to have the selection algorithm proceed 

in a round-robin fashion: the selected idle worker is the lowest-ranked worker with 

a rank higher than the last worker selected, wrapping around back to the lowest 

ranked worker as needed. 

Handling of Local Heap During Load Balancing 

The second modification involved the handling of a local heap when a 

worker received a new region as part of load balancing. Traditionally, when that 

new region arrived at an idle worker, the worker's old heap was completely deleted 

and a new heap consisting of the new single region was initialized. While investi

gating some difficulties with a particular function (39], it was realized that some 

of the regions that were being thrown out might still need to be evaluated in order 
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to reach an answer to the desired tolerances. The change was to have the workers 

keep their old heaps when doing load balancing and merely insert the new region 

onto the old heap. It is expected that the new region has the worst error, but 

it is possible that the worker will end up at some point evaluating some regions 

that in the old version would have been thrown out. The old technique was called 

kill-heap, the new technique keep-heap. For some functions it was discovered that 

keep-heap led to significant reductions in the amount of work required to reach an 

answer; keep-heap is also necessary for the extrapolation method reported on in 

[13]. The keep-heap technique is implemented as part of the PARlNTl.0 release; 

the next release will allow for switching between the techniques as a run-time 

option for additional experimentation. 

As the next chapter will discuss, there are various inefficiencies with the 

local load balancing version, and, with any adaptive integration algorithm. 
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CHAPTER V 

INEFFICIENCIES IN LLB VERSION 

This chapter discusses inefficiencies that can result in any adaptive inte

gration algorithm, and, specifically, the LLB algorithm. 

The term efficiency, when applied to parallel algorithms, generally refers 

to the ratio of work performed by a sequential algorithm to the work performed 

by the corresponding parallel algorithm [2]. Specifically, it is defined as t1 / ( t
P
p) 

(where t1 is the sequential time and t
P 

is the time with p processors), or, the ratio of 

speedup top. Ideally, this ratio would be 1.0, indicating that there is no additional 

work performed. The additional work includes all interprocess communication, as 

the sequential algorithm needs no communication to complete its work. Since the 

parallel algorithm must perform at least some communication, the efficiency will 

always be less than 1.0. 

Efficiency in Terms of Regions Evaluated 

This thesis will focus on specific kinds of work performed by the adap

tive integration algorithm, and modify the definition of efficiency accordingly. 

Specifically, the focus will be on the number of regions evaluated by the adaptive 
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integration algorithm. Therefore, the measure of the amount of work completed 

by the algorithm will be the number of regions evaluated. 

The rationale for this is threefold. First, in these algorithms the number of 

regions evaluated to reach an answer can vary greatly as the number of processes 

solving the problem varies, as the parameters of the algorithm vary, and as the 

algorithm is modified. A meaningful goal therefore is to design a parallel algorithm 

that minimizes the number of regions evaluated. 

Second, the time spent evaluating the integration rule is the most time 

consuming of the non-communication activities of a process. The best measure of 

this time is the number of regions evaluated. 

Last, one must consider the relative costs of communication and the cost 

of evaluating a single region. As the communication costs increase, it will be more 

desirable to reduce communications, even at the cost of evaluating more regions 

(or, in general, doing more local computation). 

The cost of evaluating a single region can vary greatly, though. A single 

function evaluation can take a few floating point operations, or, up to tens of 

thousands. And an integration rule can require a few dozen or a few thousand 

function evaluations to be performed. Therefore, given any level of communication 

cost, there will always be a function/integration rule combination where the cost of 

evaluating a region dwarfs the communication costs. And, it will be seen that the 

number of region evaluations needed to get an adequate answer tends to increase 
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as the number of PE's increases. In this situation, the best algorithm will work 

to reduce the number of regions evaluated at the expense of more communication 

( for a single given integration rule). 

To consider a real-world analogy, consider the situation where the regions 

are evaluated by human beings, by hand, and where a manager assigns regions 

to be evaluated. It will take only a second or two for each region to be assigned, 

but it will require a human many hours to evaluate even a single region. In this 

analogy, every unnecessary region evaluation greatly increases the time to get a 

solution. 

Function Evaluations vs. Region Evaluations 

In the numerical integration community, it is traditional to measure the 

work performed by an integration algorithm in terms of the number of function 

evaluations. This thesis instead focuses on the number of regions evaluated. These 

measures are largely able to be interchanged; for any given integration rule and 

function dimensionality, the number of function evaluations will be a constant 

multiple of the number of regions evaluated. 

The number of regions evaluated, however, is a more intuitive number. 

For example, after a worker in the LLB version has performed i region evaluations, 

there will be i + 1 regions in its local heap. And the number of basic iterations a 

worker has performed after the initial round of work is equal to the ratio of i - 1 
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and ns ( recall that ns is the integration parameter specifying how many rounds 

of work should be done between sending update messages; see page 16). 

Note that if experiments were being performed to evaluate different inte

gration rules for a single function, then it would be important to use function 

evaluations as a measure, to weigh the benefits of each additional function evalu

ation performed within a single rule evaluation. (Especially when considering the 

accuracy achieved, as this generally is affected by the number of function points 

taken by each rule application.) However, as mentioned, this thesis will only ever 

use a single integration rule per function. 

Evaluated Regions Viewed as a Binary 'free 

Consider first the sequential algorithm. The pattern of subregions pro

duced by the adaptive algorithm can be viewed as a binary tree [7]. Each node of 

the tree corresponds to a region with the initial region as the root. Every division 

of a region results in the creation of two child nodes. (Though, it should be noted 

that the tree is a binary tree merely due to the choice of each region being divided 

in two; there is no inherent reason why regions could not be divided into more 

pieces.) At any point in the algorithm, the regions in the priority queue ( the 

active regions) correspond to the leaf nodes of the tree. The internal nodes rep

resent regions that have been previously evaluated and divided and are no longer 

managed by the algorithm. The number of nodes, both internal and leaf nodes, 
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represent the total number of regions evaluated in the course of the algorithm. 

Note also that in the parallel LLB algorithm, the initial region is divided 

a priori into p pieces; so the binary tree is actually a forest of trees, one for each 

worker. Also, the transferring of a region from one worker to another distorts the 

tree view. 

We can also view the nodes evaluated as a set of nodes. Given the initial 

region, all possible subregions able to be generated from that initial subregion can 

be enumerated. A specific set of these generated subregions can correspond to 

the nodes evaluated by the execution of an algorithm. {Though many sets do not 

correspond to any execution of an algorithm; a valid pattern of subdivisions must 

be followed.) 

Viewing the nodes evaluated by the algorithm as a tree or a set aids in 

comparing different algorithms, as will be done in Chapter IX. 

Regions Evaluated by the Sequential Algorithm 

The sequential algorithm is a deterministic algorithm, in that if it is run 

many times over a single set of inputs, the outputs will be the same every time, 

including the set of regions evaluated. The parallel message-passing algorithm ( an 

asynchronous algorithm) has an element of nondeterminism; due to the variations 

in the speed of messages being passed around, the algorithm will generally proceed 

differently on each execution. Accordingly, the set of regions and the number of 
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regions evaluated will be different across different runs. 

Assumptions in the Adaptive Integration Algorithm 

The adaptive integration algorithm is built upon several assumptions con

cerning the behavior of the error estimates of the regions encountered. These 

assumptions must hold for the majority of the regions evaluated. If they do not, 

the algorithm's performance may suffer or the algorithm may fail, as explained 

below. 

First, it is assumed that when a region is evaluated, the total error estimate 

will be reduced, as the evaluation of that region represents a refinement of the 

result as compared to when the parent region was evaluated. If a singularity 

or peak is "discovered" as the result of evaluating a region, then the total error 

estimate can temporarily increase, but this is assumed not to be the usual case. 

(Indeed, the total error estimate must decrease as regions are evaluated, or the 

algorithm will not converge upon an answer. Again, this is possible, but is not 

the usual case.) 

The ordering of the regions by the priority queue (by estimated error over 

each region) reflects a second assumption, that splitting the region with the highest 

estimated error and evaluating the resulting subregions should reduce the total 

error by the greatest amount. This is also an assumption that is not always true. 

A third assumption is that changes in the estimated error will reflect 
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changes in the actual error. In other words, seeking to quickly reduce the es

timated error should also result in quickly reducing the actual error. Again, there 

is no guarantee that this will be the case. 

However, if we grant these assumptions, then it is clear that the sequential 

algorithm will, within the limits of the algorithm, converge on the true result in 

the fewest number of region evaluations. 

Regions Evaluated by the Parallel Algorithm 

The LLB parallel algorithm does not have access to a single priority queue 

of regions. Each worker has its own queue. It cannot be assumed that as each 

worker takes a region off its local queue that it is getting a region with an error that 

is large when compared with all regions. It is possible that one worker has a queue 

full of generally low-error regions when compared with other workers. Therefore, 

by the second assumption above, we can conclude that the parallel LLB algorithm 

should reduce the global error estimate more slowly than the sequential algorithm, 

i.e., that after a set number of region evaluations, the sequential algorithm would

have a lower error estimate than the parallel algorithm. 

A related conclusion is that the parallel algorithm will require more regions 

to get the error estimate below the tolerated error than will the sequential algo

rithm. This is an analytical justification for the reduced efficiency of the parallel 

algorithm. 
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This particular loss in efficiency is termed "singularity loss" [26, 7]. This 

term is derived from the specific case where a significant singularity is discovered 

by a worker. The regions containing that singularity will have relatively large 

error estimates, and the workers' queues containing those regions will therefore 

include regions with large errors. A worker whose initial region does not contain 

the singularity will have a queue consisting of regions with smaller errors. 

The worker with the smaller error regions may divide and evaluate regions 

that do not need to be evaluated to get an answer to the desired tolerances. Even 

then, the loss will be a partial loss, as evaluating any region, even a relatively 

unimportant one, can reduce the global error estiamte. Also, this problem will be 

reduced by dynamic load balancing, as this allows regions to flow to workers with 

generally low error regions (depending upon the load balancing strategy used). 

The phenomenon of singularity loss can occur when there are no singular

ities, though. It will occur any time the integrand function behaves poorly over 

some portion of the initial region and is well behaved over other portions. 

Note that the problem of singularity loss increases as the number of workers 

increases. As the number of local queues increases, it becomes more likely that 

workers are taking regions off their queue whose error estimate is locally worse, 

but is not that large globally. This may give a justification for the increasingly 

poor performance, in terms of efficiency, as the number of workers increases. 

Some initial efficiency results for the LLB algorithm can now be presented. 
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First the general experimental environment must be introduced. 

Experimental Environment 

All program executions completed for the experiments in this thesis were 

run on a lOMbs Ethernet network of UNIX Spare workstations. The workstations 

on the network include Spare 1+, Spare IPC, and Spare 5 machines; however, the 

actual runs were performed on a set of homogeneous Spare Ultra lO's. 

The PARINT release PARlNTl.0 was used for the LLB runs. The runs gen

erally included from 1 to 24 workstations. The set of functions did not include any 

vector functions, so the max vector length constant was set to 1 to reduce memory 

requirements. The max dimension value was also reduced to 6 to reflect the func

tions used. (Note that these are compile-time constants within PARlNTl.0, and 

are used to declare vectors of values that are ultimately stored within the local 

heaps. It is desirable to reduce their values as much as possible to save memory.) 

All runs in which the results could vary ( due to algorithm nondeterminism or 

varying timing results) were run at least 5 times and averaged. 

Table 1 shows the functions used in the experiments. While it is not 

possible to come up with a set of "average" functions, those used contain a wide 

range of function behavior. 

Generally, the ca was set to zero so that only the c
r 

value was used to 

calculate the desired tolerance. The cr value for each function was set to as small 
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Table 1 

Integrals Used for Testing 

Name Integral 
Smooth integrands 
fcnl 
fcn2 
fcn3 

fcn16 

J1 J1 J1 J;i' ); 1 );2 :z:i:z:i sin:z:J dx dx dx. dx dx dx -1 -1 -1 0 O O 4+:z:,+:z:s+:z:
6 

1 2 3 4 5 6 
);2 J;l J;l J;l :z:�:z:, exp 

(:z:3:z:,) dx dx dx dx 0 0 0 0 (:z:1+:z:2+1)2 1 2 3 4
fl fl fl 1+2(:z:�t1+z) dx dy dz 
fl fl exp(x + y)dx dy 

Oscillating integrands 
fcn4 
fcn5 
fcn6 

fl Io Io fo1f fo1f cos(x1 + X2 + X3 + X4 + xs)dx1 dx2 dx3 dx4 dxs 
fl fl fl fl sin(l0x1)dx1 dx2 dx3 dx4 
Jcf'ir Jt1r cos( x + y )dx dy 

Integrand with singularity 
fcn7 

fcn14 
fcn18 
fcn19 
fcn21 
fcn22 

fl fl fl (:z:+y\z)2 dx dy dz 
Ji Jl(x $ 1.0 ?-j;: ,;k)dxdy 
J/J/ 

1 dxd O O :z:o.2y0.2 (:z:+t1)0.2 Y 
J/J/J/J/ 1 dx dx dx dx 0 0 0 0 :z:p:z:g.2:z:p:z:p(:z:1+:z:2+:z:3+:z:,)0.2 1 2 3 4
J/ J/ J;1 

1 dxd d 0 0 0 :z:0.2110.2 z0.2 (:z:+t1+z)0.2 Y Z 

fl fl �dxdy 
Integrands with a peak 
fcn8 
fcn9 

J;l J;l 605y 
dx d 0 0 (1+120(1-y))((1+120(1-y))2+25:z:2y2) Y 

fl fl f:z:2+0.000lHfu�0.2512+0.000l)dx dy 
Integrand with discontinuous derivative 
fcn10 I fl fl exp(lx + y - Il)dx dy 

€d 

6 

7 
9 

9 

7 
9 

9 

7 
10 

6 

2 

4 

11 

9 

9 

7 

a value as was generally possible given the inherent limits on accuracy due to 

limits on machine precision, data types used {8 byte double's were used for all 

relevant variables in most runs), and round-off errors that occur after too many 

iterations. 

Setting the error tolerances too loose (i.e., setting the er or €0 too large) 
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results in runs of so few iterations that the total times are so low (e.g., < 0.05 

seconds) that accurate timing results can not be achieved, as any variation in the 

network load during the short run can greatly affect the time. Table 1 also shows 

the default cr value used for each function, shown as cd ( defined as the number of 

digits of accuracy requested by the cr value, so cd = -log1ocr ). Even though high 

tolerances were requested, some problems were inherently too easy, so a limited 

set of functions were used on some experiments. 

Unless otherwise noted, the function count limit was set high enough that 

it was not reached on any runs. Allowing the function count to be reached does 

not allow for a measurement of the total region evaluations to get an answer to 

the desired accuracy. 

Initial Efficiency Results 

Figure 5 shows efficiency results for all of the functions. The efficiency 

measure graphed is the number of regions evaluated by the sequential run, divided 

by the number of regions evaluated by a particular run at some number of workers. 

The graph is not intended to be viewed on a function-by-function basis, but rather 

to show the trend over all functions of falling efficiency as the number of workers 

mcreases. 

The efficiencies at 24 processors range from 0.8 to less than 0.1. Consider 

that at an efficiency of 0.25, four times as many regions are evaluated than in 
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Figure 5. Efficiency (in# Regions) for All Functions. 

the sequential version. Given that the goal of any parallel algorithm is linear 

speedup of time, having to perform 4 times as many region evaluations is a large 

obstacle. For example, the efficiency of fcnl O at p = 10 is 0.44. Consequently 

1.0/0.44 � 2.27 times as many regions must be evaluated at p = 10 to get an 

answer than when p = 1. Since we cannot expect more than a 10-fold speedup 

in the time per function evaluation with p = 10, having to perform 2.27 times 

as many region evaluations will likely limit the overall speedup to 10 /2.27 � 4.4. 

(Though, other sources of inefficiency must also be considered.) 

The efficiency does not decrease monotonically as p increases. Generally 
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this is due to the different arrangement of the p initial regions. Some combinations 

of initial subregions and functions just perform better, others perform worse. In 

PARlNTl.0 and previous PARINT code, the number of integral workers had to 

be 2k or 2k - 1 for some integer k. A change w� made to the PARINT code 

allowing any number of workers. The previous power-of-two algorithm for finding 

the initial subregions attempted to preserve in each subregion the shape of the 

initial region (e.g., dividing each dimension an identical number of times, etc.). 

The new simplified algorithm simply finds the longest dimensional length of the 

initial region and divides it p - 1 times to form p slices of the initial region. This 

method w� used at all values of p, even powers of two, to reduce the variation 

between the forms of the initial subregions � p incre�ed. 

Other Sources of Lost Efficiency 

There are two other sources of lost efficiency in the parallel LLB algorithm, 

� identified in [26, 7]. (Other losses can exist in other kinds of algorithms and in 

other parallel architectures; see [32].) 

Braking Loss 

When the controller determines that the global result is within the desired 

tolerances (or that the function count limit is reached), it will send out a STOP

message to all the workers. The term broking loss is applied to the loss of efficiency 
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due to the workers performing some additional rounds of work after the controller 

has determined that the results are close enough, but before the workers get the 

STOP message. 

The braking loss can easily be one round of work per worker; for the 

PARINT algorithm this could result in 2 x ns additional region evaluations per 

worker (since each iteration of thens loop divides a region and evaluates the two 

resulting subregions). A detail of the implementation, though, is that a worker 

will not send up an update if it does not have a "recent" €global value on which to 

base its decision to go locally idle. Therefore, it is possible for the braking loss at 

a single worker to be a larger multiple of ns. (A method for improving the update 

and c
91ooa1 message passing has been devised, and will likely be implemented in 

future releases of P ARINT.) 

As the number of workers increases, it is likely that it will take longer for 

the STOP message to reach all the workers. The workers to receive the message 

last may have a higher braking loss. Note that if a true broadcast capability is 

supported by the communication network, then this may not be the case. Within 

the MPI communication system, though, using the broadcast message primitive 

( which may or not be a true broadcast depending upon the underlying network) 

requires synchronization of the processes. Accordingly, the STOP message is sent 

as a separate message to each process, from the lowest ranked through the highest 

ranked worker. 
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In the PARlNTl.0 implementation, the IC does collect all of the extra 

region evaluations and applies them to the global results before terminating. The 

rationale is that since the work has been done to get these additional updates, the 

controller might as well perform a small amount of extra work and include their 

contribution in the final answer. Ideally, though, the workers would not perform 

this extra work. 

Iteration Loss 

Another kind of loss is termed iteration loss. This loss stems from the static 

initial division of the given region. The initial region is broken into p pieces, but, 

the sequential algorithm may be able to solve the integration problem in fewer 

than p region evaluations. The additional regions created at the initial division 

already represent an inefficiency, especially as the number of workers increases. 

Of the functions and er values in Table 1, fcn5 requires fewer than 24 region 

evaluations (specifically, 17) to be completed with a single processor. 

Reducing Inefficiencies 

By far, the largest loss of efficiency is singularity loss. And the primary 

cause of this loss is the division of what is a single priority queue in the sequential 

version with p priority queues in the parallel version. The next chapter presents 

a solution to this problem, using a single priority queue over all workers. 
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CHAPTER VI 

INTRODUCTION TO THE GLOBAL HEAP 

This chapter describes a previous global heap version of the adaptive par

titioning integration algorithm. It also presents background information and dis

cusses related work and the research that led to the current implementation. 

Motivation for a Global Heap 

As discussed in Chapter V, one idea for increasing the efficiency of the 

parallel adaptive partitioning algorithm is to have a single priority queue of all 

the regions. This single priority queue is called the global priority queue, or, global 

heap. There are still multiple workers, but each gets its regions from the global 

heap, divides and processes the region, and then places the new regions back on the 

global heap. (Note that technically it is premature to refer to this data structure 

as a "heap", for that implies a specific implementation, while at this point we 

are considering the data structure as an abstract data type divorced from any 

implementation. However, this data structure will end up being implemented as 

a heap, so its final name will be used for simplicity.) 

This approach ensures that workers will be working on the p regions that 
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have the largest error over all regions. From the assumptions in the previous 

chapter, this should lead to an algorithm that can find a result to the desired 

tolerance in fewer iterations than when multiple local heaps are used. 

Needed Operations 

Before disc�ing the design of any implementation, it is instructive to 

consider the operations needed for this global heap. Each worker will make two 

requests of the global heap: they will request the deletion and retrieval of the 

maximum region from the heap {referred to as a DELETEMAX operation), and, 

they will request the insertion of a new region onto the heap ( referred to as an 

INSERT operation). 

There will need to be some sort of initialization operation, to initialize a 

new heap. In the course of executing the adaptive partitioning algorithm, we only 

need to initialize a heap at the beginning of the algorithm; after that point, the 

heap grows monotonically. Since this operation is only used once, this thesis will 

not explicitly disc� the initialization operation. 

Simple One-Node Global Heap 

The parallel model used is that of processors communicating via messages 

over a NOW. The simplest corresponding global heap consists of a single processor, 

termed the Global Heap Controller (GHC), that stores all the regions in the global 
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heap within its local memory space. 

Whenever any worker needs a new region, it forms a message requesting 

a region and sends that message to the GHC. The GHC receives the request, 

extracts the maximum error region from the heap, and sends it back to the re

questing worker. When the worker has completed a round of work, it sends the 

two new regions back to the GHC, requesting that they be inserted into the global 

heap. Since the latter message is always followed by a new request for regions, a 

simplification is to have a single message combining the requests for insertion and 

deletion. 

In this design, called the Single Node Global Heap, the GHC can simply 

store the regions in a normal binary ( or d-ary) heap, and perform DELETEMAX

and INSERT operations on the heap as in any sequential heap implementation. 

The GHC is acting as a region server, serving regions to the workers, who are 

acting as region clients. 

The clients do not care how the global heap stores the data items, so long 

as the DELETEMAX and INSERT operations are supported efficiently. 

Multi-Node Global Heap 

In the Single Node Global Heap, the GHC will have to store all the regions 

that used to be stored by all the workers individually. This could be a very large 

number of regions. It is instructive to consider an alternate design for the global 
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heap, a Multi-Node Global Heap. In this design, multiple PE's work together to 

store the regions in the global heap, and, work together to implement the required 

heap operations. The actual regions are stored in the local memory of multiple 

PE's, yet in a fashion that allows for the quick retrieval of the maximum error 

region over all regions in the global heap, and, for the quick insertion of new 

regions. 

Such an implementation has been previously done in the PARINT project 

and elsewhere. The next few sections describe previous PARlNT global heap im

plementations and related work. 

Overview of Storing Distributed Data 

The basic idea behind the multi-node global heap is to spread the data to be 

stored across multiple PE's. This is a distributed data structure (DDS) [31], a data 

structure which is distributed across multiple sites of a communication network 

and may be accessed by multiple PE's concurrently. The aspects of a distributed 

data structure include: an organization or topology of PE's, each of which stores 

a portion of the data, local data structures to be used at the PE's for the storing 

of data, and, a defined collection of operations and protocols for retrieving data, 

inserting data, and modifying data in the distributed data structure. 

The goals of a DDS mirror the goals of any parallel algorithm: faster access 

to data, greater concurrency in the accessing of data, the ability to store greater 
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amounts of data, etc. 

Previous PARINT Global Heap Research 

The previous P ARINT global heap design was derived from Gupta and 

Photiou in [23], based on previous work in [16, 35, 6]. The Gupta and Photiou 

design was implemented and tested within the context of the PARINT project in 

[9]. This implementation was done on the nCUBE-2 [33] architecture using native 

message passing primitives. Further analysis of the global heap was done in [7]. 

In this design the global heap is broken into a tree of nodes. Each node 

contains regions; the regions in a node are guaranteed to meet the global max

heap condition: that any region in a node is guaranteed to have an error estimate 

larger than or equal to that of any region in the child nodes, and, less than or 

equal to that of any region in the parent node. 

Two specific schemes were developed for distributing the nodes over a 

collection of processors, the vertically sliced global heap and the horizontally sliced 

global heap. In the vertically sliced heap, each PE maintains a portion of every 

node in the heap, i.e., each PE stores regions of low, high, and medium priority. In 

the horizontally sliced heap, each PE manages a single node (i.e., each PE stores 

regions within a range of priorities). 

In either approach, global inserts and deletes are initiated at the root node 

with the effects rippling downward through the tree of nodes. In addition, the 
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tree is guaranteed in these designs to be balanced; if there are a total of p PE 's in 

the tree, and a total of n regions to be stored, then each PE stores approximately 

n / P regions ( specifically, either L !! J or r !! 1 regions). 
p p 

As Gupta and Photiou concluded in (23], the horizontally sliced heap re-

suits in less communication overhead, so that design was used as the basis for the 

modified global heap design of this thesis. 

Horizontally Sliced Global Heap Design 

The Horizontally Sliced Global Heap consists of a complete binary tree 

of processors in which each processor stores all the regions for a single node ( a 

complete tree implying that p is 2k - 1 for some k � 1). Therefore, each processor 

stores regions whose error estimates are less than or equal to any region at the 

parent processor, and are greater than or equal to any region at the child processors 

(regions of equal error are prioritized arbitrarily). The value of p can be equal to, 

or less than, the total number of PE's participating in the integration. 

Consider the insertion of m items into the global heap currently containing 

n regions over p nodes. The m items arrive at the root node. Currently each node 

has either L !! J or r!!l regions and the max-heap condition applies. After the 
p p 

insertion is completed, each node will have either L n;m J or rn;ml regions, and

the max-heap property must still hold. 

Consider the "thinking" of the root node. It knows ( or can easily find 
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out) the range of errors in the regions that it stores. It does not know the range 

of errors for the regions stored at either of its children. It can also examine the 

errors in the incoming regions. In the worse case, the regions it must insert will 

have low errors, meaning that there are regions at the root's children nodes that 

have larger error than some of those to be inserted. In this case, the new regions 

must be sent down to the children (to be stored at the children or even lower-level 

nodes), and, nodes from the children must be sent to the root node for storage. 

The insertion proceeds as follows: the regions to be inserted are sorted 

into a list L. The root requests some calculated number of regions (for details 

see [23]) from each child node, receives them, and sorts them into L. The largest 

c
r
em regions (also calculated) in L are added to the root's collection of regions. 

Then, over the remaining items in L and the root node's regions, the smallest 

cz and cr regions must be sent to the left and right children, respectively. (The 

root's regions must be considered because they may have a lower error than the 

new regions in L.) The root node must therefore be able to both insert new items 

into its local data structure, delete max items ( to support the DELETEMAX global 

heap operation), and, delete minimum items. A convenient data structure that 

can handle these operations is the deap [24] (these data structures will be termed 

the nodes' local deaps). 

The children then receive the regions from the root node and each recur

sively initiates its own heap insertion at the subtree rooted at its node ( taking into 
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account that each has already sent some of its regions to the root node). Once 

the root node has requested regions, shuffled its data structures, and then sent 

regions to its children, it is finished with that global insert. 

Consider now the DELETEMAX operation. On a deletion of m nodes, each 

node must finish with L n;m J or r n;m l regions.

Assuming that m ::::; L;J (which it must, as will be discussed below), the 

root node holds them regions that must be extracted. It can remove them from 

its local deap. At that point, the global heap is unbalanced; the global heap 

must request regions from its children. As the root node does not have perfect 

information about the regions stored by its children, it must request the worst

case number of regions, shuffle regions between what it receives and what it stores, 

and then send regions back down to the children. 

The root node requests the regions and receives them into a sorted list L. 

At this point, the root node has some regions in its local deap, some regions to 

insert from a sorted list L, and the children are expecting to receive regions from 

their parent. The global deletion routine at this point can proceed exactly like 

the insertion routine: the root node keeps the appropriate number of highest-error 

regions, sends the remaining lowest-error regions to its children, who receive them 

and initiate their own heap adjustment on their own subtrees. 

Note that while the algorithm in Figure 2 was presented as the local heap 

algorithm, it is also the algorithm used with the global heap with the exception 
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that the maintenance of the priority queue occurs on a global, cooperative level 

rather than a local level. In the previous implementation of the global heap, this 

meant that all workers were synchronized, each doing its portion of the global 

heap maintenance in a synchronized fashion between each round of integration 

work. This thesis implements an asynchronous version. The former algorithm 

will be termed the Synchronized Global Heap Algorithm, to distinguish it from the 

current asynchronous design. 

The design restricts global deletions to only retrieve regions stored at the 

root node. As noted, this restricts deletions tom � l�J nodes; this implies that 

the global heap must contain n 2:: mp regions before any deletions can be done. 

The implementation done in [9] required that all integral workers initially maintain 

a local heap across multiple iterations of the adaptive integration algorithm until 

a threshold number of regions had been generated. At this point, the first global 

insertion was done, and after that point the global heap was used. This transition 

from local heaps to a global heap incurred a large cost. The design used in this 

thesis eliminates this problem. 

Current Related Research 

Mans has developed a related global heap design and implementation [30, 

31]. The preferred term used here is distributed priority queue (DPQ) (which avoids 

confusion with the term "global heap" which can apply to a heap of local memory 
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space as allocated and managed by an operating system). 

Mans' implementation used MPI and was tested on Cray-T3D and Meiko

T800 machines. His design included DPQ's implemented in d-ary heaps and bino

mial heap structures [5], where the processing nodes were linked in a corresponding 

tree structure. As with the synchronized global heap algorithm, the root of the 

tree of nodes contained the highest priority items; the leaves of the tree the lowest 

priority items. 

They are load balanced designs, in that the items stored are balanced across 

the processors. The technique used to do this (in the context of a global insertion) 

is as follows: The insertion of each item is considered separately. For each item, 

a target leaf node is selected in a round-robin fashion using an algorithm that 

guarantees a balanced selection and reduces congestion of messages up and down 

the tree. After the insertion is complete, this leaf node will have an additional 

data item. The insertion proceeds from the root node down the tree towards the 

destination leaf; at each step, the item is sent downward until its priority matches 

the range of priorities of a node. 

After this downward shuffling, the participating nodes may also have to re

heapify, i.e., they may have to exchange data items with their children nodes until 

the global heap condition is re-satisfied. This is necessary to ensure a balanced 

heap. 

It is interesting to examine the method used in this reheapification. The 
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Mans algorithm exchanges data items between a parent node and its children 

nodes one at a time until the heap condition is satisfied. This results in a possibly 

large number of small ( single item) messages. The total number of items needed 

to be sent is not known a priori due to the nature of the local data structures 

(splay trees [36) are used). However, this technique does result in the minimum 

number of data items sent. The cost, however, is the large number of messages 

sent. 

In the synchronized global heap design of Gupta and Photiou, a parent 

node retrieves all necessary data items (regions) from its children in two messages 

(one from each child) by receiving the worst case number of regions. (Note, 

though, that technically more than two messages were used, due to the relatively 

small maximum message size of the nCUBE-2, and the large messages (arrays of 

regions) that needed to be sent. Rather, the regions were grouped and sent in a 

sequence of messages until all regions were sent. The ideas of Mans indicate that 

if processing were done between these messages, the number of regions sent might 

have been reduced. The implementation in this thesis contains similar child-to

parent messages, and they were implemented as a single, large, MPI message). 

Mans did get good results from his implementation. It should be noted though, 

that the architectures used feature communication latencies smaller than that of 

the nCUBE-2, and much smaller than the NOW model used in this thesis. 

In [31), some other concerns are noted, which should be discussed as they 
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apply to global heaps in the PARlNT environment. 

Two models of application behavior, as applied to the use of the DPQ, 

are noted. The first is the self-scheduling model, in which the priority queue 

has a single initial item, processors request DELETEMIN operations and perform 

subsequent INSERT operations, and execution terminates when the DPQ is empty. 

The second is the event-set model, in which the queue has initial items in it, each 

processor repeatedly requests items and inserts new items, and terminates after a 

given number of iterations, or when an appropriate result is obtained.. The good 

results of Mans were obtained over both of these models. 

The adaptive partitioning algorithm fits neither of these models. It begins 

with an empty heap, the processes go through iterations in which they request 

regions and then insert even more regions, and terminate after some initially 

unknown number of iterations, during which time the number of regions in the 

global heap grows monotonically. 
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CHAPTER VII 

CURRENT DESIGN FOR THE GLOBAL HEAP 

This chapter explains the design of the global heap developed in this the

sis. This algorithm, distinguished from the synchronized version just presented, is 

termed the GHEAP algorithm, and is based on the horizontally sliced global heap 

of [23]. (The GHEAP and LLB algorithms are the primary algorithms compared 

in this thesis.) The implementation, detailed in Chapter VIII, used MPI as an 

experimental extension, based on PARlNTl.0, of the PARINT system of numer

ical integration. (Note that a partial design and implementation of the GHEAP 

algorithm was previously completed in [42]). 

Design Overview 

The design, as previously mentioned, is asynchronous. The integral workers 

are viewed as independent clients of the global heap. Each is free to execute 

the adaptive partitioning algorithm at its own pace, receiving regions from and 

sending regions to the global heap as needed. Additionally, each periodically sends 

updates up to the IC. No c
91

ooo1 values need to be sent from the IC to the 1w's, as 

the workers never become locally idle over some initial piece of the total region. 
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Rather, they continue working on non-contiguous subregions received from the 

global heap until the IC sends out the STOP message. (Though, as in the LLB

algorithm, the initial region is divided a priori among the workers; each evaluates 

its initial piece and sends an initial update to the IC. This ensures that the 

controller has some result estimate for the entire initial region. After evaluating 

its initial region, each worker begins normal iterations of the GHEAP algorithm.) 

An asynchronous design was chosen because the targeted hardware model 

was the NOW; in this model the communication is assumed to be slow, and, syn

chronization in a parallel algorithm generally requires additional communication. 

Also, the workstations are assumed to be of a wide-range of capabilities; in a 

synchronized implementation the faster workstations may end up idling at each 

iteration while the slower workstations catch up. 

The root of the global heap is termed the Global Heap Controller (GHC), 

the other nodes in the global heap are the Global Heap Workers (GHW's). The 

global heap must again be a complete binary tree of p nodes, with the number 

of nodes less than or equal to the total number of processors. The global heap 

will store n regions, and as in the synchronized version, it is guaranteed that each 

node in the global heap stores L !! J or f !!1 regions. The global max-heap condition 
p p 

is the same as in the synchronous algorithm: each processor holds only regions 

that have errors less than or equal to those at the processor's parent node and 

that have errors greater than or equal to those at the processor's children nodes. 
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The total group of PE1s in the algorithm consist of the Integral Controller 

(1c), the Global Heap Controller (GHC), the Integral Workers (1w), the Global 

Heap Workers (GHW), and, the Controller-as-Worker (CAW). The key to the 

implementation is designing each MPI process to variably fulfill multiple functions 

(i.e., to act as multiple PE's). The IC can optionally also be a CAW, or not, by 

simply switching the value of a boolean flag (via a command line parameter). The 

GHC functionality can be assigned to the same process as the IC, or, be assigned 

to the lowest-ranked IW process. Each IW might also be a GHW, based on the 

rank of the IW and the number of nodes in the global heap. 

This flexibility is important because it is not known beforehand which 

combinations of functionalities within each process will produce the best results. 

Experiments must be performed to determine this. Also, it may be the case that 

the best combination depends upon the particular network and workstations used, 

requiring the switching of combinations based on run-time information. 

Chapter VIII discusses how this variability is achieved. For now, we will 

consider each functionality of each process to be a distinct process, without regard 

to the overall sum of what each process is actually doing. 

Design of the GHC 

The GHC design supports asynchronous operation and tries to reduce the 

number of global heap operations needed. 
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In the synchronous global heap, regions were always inserted and deleted 

in a large group, as all workers sent regions to or received regions from the GHC

at the same time. 

In the new design, the GHC receives regions from a single worker at a time 

and there needs to be a quick response to each request. To reduce the number 

of messages, each request for an insertion of regions is considered an implicit 

request to send new regions back to the worker. (Note that throughout the entire 

algorithm, no worker ever sends regions to the global heap without, at the same 

time, wanting additional regions from the global heap.) 

We do not want to have to perform a global heap adjustment (insertion 

or deletion) as each request is serviced. Yet requests cannot be held pending the 

next global insertion or deletion. 

The solution is as follows: The GHC stores regions in two data structures, 

a local deap D ( filling the same basic role as the local deap in the synchronous 

algorithm) and a sorted linked list L. Each message sent to the GHC contains 

r regions, though generally r will be 2, as workers will receive a single region, 

divide it and evaluate the new subregions, and then send them both back to the 

global heap. The incoming regions will be inserted into L sorted by descending 

estimated error. The regions on L are not considered to yet be part of the global 

heap. 

To fill a request for regions, the GHC will compare the regions on Land D.
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If L contains one or more regions of higher error than the max region on D, then 

those regions have a higher error than any regions in the global heap and they 

can be removed from L and sent back to the requesting worker. (Since the GHC 

sits at the top of the global heap, the regions in its local <leap have a larger error 

than those in any other node in the global heap.) 

If D contains regions with the highest error, then they can be removed 

from D and sent back to the requesting worker. (This may reduce the value of 

n, possibly resulting in fewer than l .!!. J regions at the root node. This imbalance 
p 

is only temporary, persisting until the next global adjustment of regions.) One 

multi-region request from a worker may be filled using regions from L, D, or both. 

Global Heap Adjustments 

This pattern of retrieving regions from D and L without bothering other 

nodes in the global heap can continue until one of two situations occurs. First, D

may become empty. At this point, it is no longer known whether the regions in 

L have a higher error than the regions on the global heap, as the max regions of 

the global heap now reside at the children of the GHC. Therefore, a global heap

adjustment must occur. This adjustment will result in them regions on L being 

inserted into the global heap, the list L becoming empty, and the global heap 

being readjusted such that all nodes (including the root node) hold either L n;m 
J

or r n+m l regions.
p 
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Secondly, the list L may become very large. If it grows too large, then 

there will generally be too many regions at the root node, unbalancing the global 

heap, and it will be desirable to initiate a global adjustment. The threshold value 

is set (somewhat arbitrarily) at L;J. A value lower than this will work, but may 

result in too many costly global adjustments. At this value, D can contain as 

many as f!!l regions; when combined with the maximum L size, this results in a 
p 

maximum of� rn;tl regions at the root node, or, basically one "node's" extra 

regions. This global adjustment achieves the same results as when D becomes 

empty: the m regions in L are inserted into the global heap and all nodes are 

re-balanced. Note that at the point when Lis too large, D will generally contain 

fewer than L !! J regions, as some regions in D will have been sent to an integral 
p 

worker since the last global adjustment. 

Note that neither type of adjustment is explicitly a global insertion or 

deletion. Rather, each adjustment takes the regions in L and inserts them into 

the global heap and "re-fills" D with new regions. If the sum of the regions in L 

and D is greater than n/p, then it can be considered an insertion, if that sum is 

less than n / p then it can be considered a deletion. 

The overall pattern of an adjustment is the same as with the synchronized 

global heap: the root node performs some calculations, requests regions from its 

children nodes, receives those regions, shuffles regions between its local deap and 

the received regions, and then sends the locally lowest error regions back down 
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to its children. The children receive those regions and initiate their own heap 

adjustment at the subtrees for which they are the root nodes. 

The details of the number and pattern of regions sent up and down the 

tree to complete the global adjustment are complex and are basically the same as 

in the synchronized algorithm; the reader is referred to [23) for details. 

If a worker is requesting multiple regions, and only part of the worker's 

request can be filled before a global adjustment, then the regions that can be im

mediately sent will be, so that the worker does not have to wait for the global heap 

adjustment to complete before receiving regions. After filling a partial request, 

the heap controller must complete its portion of the heap adjustment before being 

able to service any additional requests. 

Pattern of Errors Over Time 

Consider now the pattern of errors in the regions arriving at the GHC.

Over time, the errors in the incoming regions should decrease as the total error 

estimate is gradually reduced. This pattern should ensure that over time, regions 

are taken from D more often than they are taken from L. The global adjustments 

will have the net effect of shifting regions from L into the global heap, gradually 

increasing the value of n. There may be times, though, when a sequence of 

incoming regions allows the GHC to serve many requests from L without requiring 

a global adjustment. Increasing the global re-heapify threshold will result in a 
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slightly unbalanced global heap, but may decrease the total number of global 

adjustments. 

Initial Handling of Heap 

There were some problems in the initialization of the synchronized global 

heap due to the synchronous nature of the algorithm. These problems are resolved 

in the GHEAP algorithm. Initially, all of the nodes' local <leaps will be empty, 

including the root node. The first few region requests will be handled solely by 

the root node; it will store each incoming region in its local <leap and then retrieve 

maximum regions from the <leap to send back to the worker. This technique is 

efficient, as there is no point in initiating a global heap adjustment when each 

node will receive only zero or one nodes from it. Global adjustments are delayed 

until n = p
2 regions are in the root's local <leap. At that point, the first global 

adjustment is completed, after which each node holds exactly p regions. Until 

this first adjustment, all GHW's simply wait idle to receive their first global heap 

message. (Though recall that each of the corresponding MPI processes will not be 

waiting idle, as the process that performs the GHW work will also be acting as an 

IW.) 
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Single-Node Version 

The GHEAP algorithm includes a single-node global heap version in which 

the GHC stores all the regions in a local heap and services all requests from integral 

workers by itself. A local heap is used ( as opposed to a deap) as only the max 

region ever needs to be retrieved; the resulting speedup is of a constant factor, but 

can be substantial when the heap becomes very large. This single-node version is 

used whenever the value of p ( a run-time parameter) selected by the user happens 

to be 1. 

Details of the Global Heap Algorithm 

This section presents the details of the global heap algorithm. 

Because the algorithm is asynchronous, and because each GHW must also 

handle IW functionality, all of the message receive function calls must be non

blocking. 

Due to this behavior, the algorithm is best presented not as pseudo-code, 

but as a flow through a state diagram. Each of the global heap controller and 

worker flows through a different pattern of states. It is the receipt of one of a 

particular state-dependent set of messages ( considered the "preferred" messages 

for a state) that can transition the process into a different state. If a non-preferred 

message is received, it is generally ignored by the process. (Note that messages 
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are discovered to have arrived at a process via the non-blocking MPI probe func

tion (MP LI probe()) before they are actually received via the receive function 

MPLRecv (); if a non-preferred message is discovered via the probe, it is actually 

not received, but left on the incoming message queue for receipt at a later time.) 

Message Types for the Global Heap 

Before the states can be presented, the possible message types must be 

explained (for any message that can be received from any global heap process). 

They are: 

1. TAG_IW2GHC_RGHS This is the message that an IW uses to send regions

to the GHC, and, implicitly, to request new regions. 

2. TAG_GH_F2C....START This message is the first message that a worker re

ceives; it tells it to soon expect the first set of regions for the initial global heap 

adjustment. 

3. TAG_GH_F2C_REQ This is the message from a global heap parent to one

of its child nodes requesting regions. 

4. TAG_GH_C2P ...SEND This is the reply message from a child to its parent,

returning the regions that the parent requested. 

5. TAG_GH_F2C....SE:ND This message contains regions and is sent from a par

ent node to a child node, telling the child that it should begin its own global heap 

adjustment on its own subtree. 
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6. TAG_GH_INTG-5TOP This message is sent from the IC to all processes; it

is the global stop message. 

State Flow for the GHW

As the functionality of the GHW is simpler, it is presented first. The states 

are as follows: 

1. STATE..BEGIN The worker begins in this state. From this state the worker

expects to receive a TAG_GH_F2C-5TART message. 

2. STATE..BETWEEN This is the "steady-state" state; the worker is in this

state between global heap adjustments. 

3. STATE_WAIT...FOR...FOLKS The worker is in this state whenever it expects

to next receive regions from its parent. 

4. STATE_WAIT...FORJ{ID1 In this state, the worker has requested regions

from its children, and has not yet received any regions back. 

5. STATE_WAIT...FORJ{!D2 In this state, the worker has requested regions

from its children, and has received regions from one child, but not the other. 

Figure 6 presents the state diagram for the global heap worker process. The 

digram is simplified in that the STOP message is not shown; this message can be 

received at any point. and will cause the process to begin cleaning up resources and 

then halt. This diagram also does not hold for the leaf nodes in the global heap; 

their state diagram is much simpler, as they only send regions to their parents and 
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receive regions in return. They never have to initiate their own global adjustment, 

for they are not the root of any non-empty subtree. 
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Note that the worker is done with a global heap adjustment after it has 

sent regions to its children. At any time after this, a new global heap adjustment 

can commence, regardless of whether or not the previous adjustment has been 

completed at the lower levels of the tree. I.e., the adjustments are pipelined, so 

that the tree can be in the process of completing multiple adjustments at any 

instant in time. 

State Flow for the GHc 

The states for the heap controller are similar to those of the heap workers: 

1. STATE...LOCAL_J)EAP This is the initial state for the controller; in this

state, the controller has not yet received enough regions to initiate the first global 

adjustment, so the controller is still solely using its local <leap to serve regions 

back to the integral workers. 

2. STATE...BETWEEN As with the heap workers, this is the steady-state state

for the controller; in this state the controller is not currently in the middle of any 

global adjustment ( though previous global adjustments may still be progressing 

down the tree). 

3. STATE_WAIT-4J{ID1 In this state the controller has requested regions

from its children, but has not yet received any reply. 

4. STATE_WAIT-4J{ID2 In this state the controller has requested regions

from its children, and has received a reply from exactly one child. 
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Figure 7 shows the state diagram for the controller. Its additional complex

ity over the worker diagram is the result of additional logic needed to determine 

when a global adjustment should be started, and, how the current integral worker 

request should be filled. As with the worker diagram, the receipt and handling of 

a STOP message is not shown. 

The complexity of the GHC state diagram requires some additional ex

planation. The legend for this diagram is as the same as in Figure 6. Flow 

begins at the STATE..LOCAL....DEAP node in the upper-left hand comer (abbreviated 

as LOCAL....DEAP). Execution loops around the small upper loop until the controller 

has received too many regions. At that point it exits the small loop, starts and 

finishes its portion of the initial adjustment, and then settles into the BETWEEN 

state. 

Receipt of a message from an integral worker will send it down the dia

gram's left vertical path, where it tries to fill the request from its list L and deap 

D. If L becomes too full, or D becomes empty, then it must begin a global ad

justment, else it can just fill the request and return to the BETWEEN state. If the 

list L is full, a flag variable pending..svc_ftag is set to indicate that the integral 

worker is still waiting for service. The final vertical path on the right side of the 

diagram is the sequence used to complete a global adjustment, after which the 

controller returns to the BETWEEN state. 
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Figure 7. State Diagram for the GHC.
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Integration of the Global Heap With PARINT 

The global heap modification to the base code in PARlNTl.0 required 

substantial modification to the rw, IC, and CAW code. Additional code needed to 

be brought in to handle the linked list and deap data structures. 

A lot of the base code was able to be re-used. Little had to be changed to 

the upper-level code that begins the integration process. As a result, the user of 

the global heap version need not worry about the change in the algorithm they 

are using; they can simply run PARlNT as before. 

To modify the behavior of the global heap, two additional run-time pa

rameters were added to P ARINT. (The term run-time parameter is used to refer 

to any parameter that the user can change immediately before running PARINT; 

no re-compiling of the code is required to change these values). The user is able 

to change the global heap size and specify whether or not the process that is the 

re should also be the GHC, or if the lowest ranked integral worker should be the 

GHC. These parameters can be changed on the PARINT executable command line 

or through functions in the P ARINT APL No support for these parameters was 

added to the PARINT GUI; if the global heap design becomes part of a future 

PARINT release, then they will be added at that time. 

The remaining aspect of the design / implementation that has not yet 

been explained is the method by which multiple functionalities were combined 
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into single MPI processes. This is explained in the next chapter. 



CHAPTER VIII 

GLOBAL HEAP IMPLEMENTATION DETAILS 

Chapter VII presented the design of the global heap. Key to the design 

was the flexibility in assigning different tasks to different MPI processes. This 

chapter explains the technique used. To fully understand this chapter, the reader 

should be familiar with the writing of parallel programs in a message passing 

environment, though familiarity with MPI itself is not necessary. 

Overview of the Implementation 

The key idea of this chapter is the technique termed the Single Pass Mes

sage Loop ( SPML). This is an implementation technique developed independently 

by the author, though it may be in use elsewhere ( certainly, parts of the idea have 

been used, if only implicitly, see for example [14]). It is a technique for design

ing and coding any asynchronous parallel program in which a variety of message 

types must be received and handled, and, local work ( work that is performed 

independent of the receipt of any message) must also be completed. 

As is needed in the global heap implementation, the SPML allows for a 

single process to easily perform multiple roles, when normally each role might be 
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assigned to a separate process. 

Terminology Used in This Chapter 

Some of the terms used in this chapter must be carefully defined. 

The term message passing process will be used to refer to the entire process 

( as the operating system views it) that is sending and receiving messages. This is 

a more general term than referring to a process as, e.g., an "MPI process". 

The term functionality will be used to refer to a specific role played by a 

message passing process. For example, a process in PARlNT may be an IC. If 

that process is also acting as the CAW, then that message passing process has two 

functionalities. A process will perform one or more functionalities. 

Any time the functionalities are viewed separately from the processes, then 

one can consider the idea of a mapping from the processes to the functionalities, 

i.e., assigning one or more functionalities to each process.

The term local work is used in this chapter to refer to some specific kinds 

of work performed by a process. It applies only when the work is not done in 

response to any received message, but rather is work that the process can do 

regardless of which messages are received. For example, the IW process performs 

local work consisting of evaluating regions. The local work can include sending 

messages, but generally does not include receiving any messages. 
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Rationale for the Single Pass Message Loop 

An alternative to the SPML is to actually create a separate process for each 

desired functionality. There are drawbacks to this approach. 

Process Spawning Drawbacks 

It may not be as flexible to have each functionality be a separate process. 

Completing this assignment requires some sophistication at the process spawning 

time. To spread multiple functionalities over multiple workstations may require 

multiple processes to be spawned on each workstation. 

To do this in MPI, for example, each process must have its workstation and 

program to run specified in a text file. If a user wants to modify the mapping from 

functionalities to workstations, the process/workstation list has to be modified 

(edited), possibly automatically using shell scripts for novice users. In addition, 

if each functionality is implemented as a separate program, the processes have to 

be terminated and respawned again any time the mapping needs to be changed. 

Process spawning time is generally very expensive. In addition, the MPI standard 

is not designed to handle the spawning of new processes from within existing 

processes. 

The competing product PVM [18) can better control the spawning of pro

cesses ( a process is easily able to create additional processes on other worksta-
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tions), but it can still be time consuming. 

In contra.5t, the SPML design allows a process to switch its functionality 

(within limits) while the program is running. For example, each time an integral 

is solved ( within a single run of the GHEAP version of the PARINT executable) the 

functionalities performed by each process can be changed. 

Control Over Interleaving of Execution 

If the SPML technique is used then the programmer ha.5 control over the 

receiving of different kinds of messages and the amount of time spent in each 

functionality. Alternatively, if each functionality is a.55igned to a separate pro

cess, then the operating system controls the amount of time each functionality is 

given via the CPU scheduling algorithm. Granted, there may be times when the 

programmer does not care and prefers to have scheduling handled automatically. 

Speed of Message Pa.55ing 

If the SPML technique is used, then it is likely that one functionality will 

end up sending a message to another functionality even though a single process 

controls both those functionalities. (For example, the GHC may send a message 

containing regions to the lowest-ranked integral worker, yet the process that is 

that worker may also be acting a.5 the GHC.) It is likely that a well designed 

message-pa.55ing implementation will optimize this kind of message pa.5sing. 
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For example, on a message send, the sending message buffer may be copied 

into a separate buffer within the same process (in the process's incoming message 

queue) to await receipt. The message contents will never leave the process's 

memory space. 

If two message passing processes want to communicate on the same work

station, then at best the operating system's shared memory functionality will be 

used if not some slightly slower technique. Regardless, the operating system must 

manage the communication, and this will require context switching, hence slowing 

execution. 

The fastest alternative is to custom design each possible combination of 

functionalities to work together as a separate message passing process. In such 

an implementation the different functionalities can be invoked via simple function 

calls, and the "message passing" between functionalities can be achieved through 

the programming language's parameter passing mechanism. The CAW /1c func

tionality combination uses this technique, as the CAW modification was completed 

before the SPML was developed. The CAW is invoked by the IC via a c function 

call; after performing a round of work, the CAW builds an update structure with 

the results (as do all workers) but the structure is passed directly back to the IC 

via a function parameter. 

The drawback of this approach is the combinatorial explosion of combina-

tions of functionalities. Consider the functionalities presented in this thesis; there 
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is a need for the following combinations: IC, IC/CAW, IC/GHC, IC/CAW /GHC, IW, 

IW /GHC, IW /GHW, etc. 

However, it is clear that passing messages via function parameters is the 

fastest technique. 

Terminology Used Within the Pseudocode 

The next section begins to develop the SPML technique. It assumes the 

existence of a message passing programming environment. The messages are as

sumed to have message types, identified by message tags ( usually represented by 

distinct integral values). Each process has a unique id or rank used to specify 

a message sender or destination. The pseudocode will assume the existence of 

several message passing primitives. They are: 

1. msg_probe ( tag , sender, Bmsg-type, Bmsg-sender) This function

waits until a message of a particular type tag from a particular sender has 

been received into the process'es incoming message queue (specifying ANY _TAG 

or ANY _SENDER allows for the checking of any kind of tag or sender.) The parame

ters 8msg-type and Bmsg-sender are filled in with the message's type and sender 

if a message is found. The message is not actually retrieved. 

2. msg_iprobe (tag, sender, Bmsg-type, Bmsg-sender) This func

tion will test ( without waiting) to see if a message of a particular type tag from 

sender has been received into the process'es incoming message queue. The param-
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eters are the same as with msg_probe (). It will not actually receive the message. 

It returns TRUE if the message is there, FALSE otherwise. 

3. msg_recv(tag, sender, &msg-type, &mag-sender) This function

block-receives a message. If the message has been determined to already be on the 

incoming message queue (via a msg_iprobe() call) then it returns immediately. 

Otherwise, it will wait until the message arrives. The parameters are the same as 

with msg_iprobe(). 

4. msg_send ( tag , receiver) This function sends a message of type tag

to the process with id receiver. It locally-blocks, i.e., it blocks until the outgoing 

message queue has room for the message, but it does not wait until the destination 

process is ready to receive this particular message. 

The functions above also need parameters containing the message itself. 

These parameters do not need to be considered in this chapter, so they are skipped. 

Both PVM and MPI support these functions. 

Single Pass Message Loop 

The key behind the SPML is to develop a single, simple, organized program 

loop that controls all of the execution of a process ( other than initialization and 

cleanup activities). And as the name suggests, this loop will receive at most a 

single message per loop iteration. 

This approach is designed for programs that might receive several different 
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types of messages. The loop is designed to show no arbitrary preferences for the 

receiving of any particular type of message. 

Simple Example 

Consider the message loop (presented in a c-style pseudocode) in Figure 8. 

In this example it is assumed that the "handling" of one of the given message 

types (TAG1 and TAG2) will eventually set the boolean done variable and end the 

loop. A similar variable will be used in most of the examples in this chapter. This 

loop is shown with two distinct messages tags; there could be any number of tags. 

Message Loop: 

while ( !done) 

{ 
while (msg_iprobe(TAG1, ANY_SENDER, msg-type, mag-sender)) 

handle-message-of-type-TAG!; 
while (msg_iprobe(TAG2, ANY_SENDER, msg-type, mag-sender)) 

handle-message�of-type-TAG2; 

Figure 8. Simple Message Loop. 

There are several problems with this code. First of all, if too many messages 

arrive of a certain type, then the messages of the other type will not be handled. 

This may adversly affect the behavior of the program. In addition, the incoming 

message queue may become clogged with the type of message not being received, as 

long as a single message of the type being checked for is on the queue. Secondly, if 
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the process is supposed to terminate as the result of a STOP message its termination 

may be delayed because the STOP message may be waiting on the incoming message 

queue while the process handles other kinds of messages. 

Figure 9 shows a SPML implementation of the code in Figure 8. This 

loop shows no preference for either type of message. It block-probes and receives 

whichever message is detected first. It receives a single message per loop iteration. 

Code can also be added to detect the receipt of an unexpected message ( a message 

with an unknown tag). 

Single Pass Message Loop: 

vhile ( !done) 

msg_probe(ANY_TAG, ANY_SENDER, msg-type, msg-sender) 
if (msg-type == TAG1) 

handle-message-of-type-TAG!; 
else if (msg-type =• TAG2) 

handle-message-of-type-TAG2; 

Figure 9. Initial Single Pass Message Loop. 

Mixing Message Receiving With Local Work 

The previous examples were simple in that the process was only responsible 

for receiving and responding to messages. While the P ARINT processes must do 

this, they also have to perform local work. As previously defined on page 69, 

this specifically means work that must be performed regardless of the receipt of 
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messages. 

For example, the integral worker processes receive £global messages, and may 

occasionally receive a message from the IC indicating the id of an idle worker. 

Regardless of the receipt of these messages, though, the worker must continue 

to perform rounds of work on the integration problem: retrieving regions from 

its heap, dividing, evaluating, and storing them back on the heap, and sending 

updates to the controller. 

This is not work done in response to any message, and can be contrasted 

with the instance of when the worker receives a message indicating the id of an 

idle worker ( as part of an instance of load balancing). The work it performs in 

response is: determine if it is idle or close to idle, prepare a region to send, and 

send the region to the worker with the given id. This is certainly work, but is not 

considered local work. 

The design of the SPML is to prefer to receive a message rather than perform 

local work. There are several reasons behind this. First of all, the message to be 

received may be the global STOP message, and it is preferable to receive this 

message as soon as possible (indeed, receiving this message soon can directly lead 

to a reduction in braking loss). 

Secondly, there is not assumed to be any predefined "end" to the local work. 

The process can perform local work indefinitely until some time when it receives 

a STOP message, or, it possibly determines independently that it is finished. But, 
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if it is continually busy performing local work, it will never probe for nor receive a 

STOP message! The local work must be broken into pieces, between which it must 

check for the receipt of a message. 

Third, it is assumed that the work done in response to a message does 

not take long to complete. Since the receipt of a message often indicates that 

some other process is requesting a service of the receiving process, it is desirable 

to complete that service as quickly as possible. Consider again an instance of 

PARINT load balancing: If a worker receives the id of an idle worker, then that 

explicitly means that another worker is idle. The receiving worker should not 

make the idle worker wait while it performs one or more rounds of work; it should 

respond as soon as possible so that the idle worker can get back to work solving 

the integral. In fact, if we assume for a moment identical speeds of processing, we 

can assume that every round of work done by one worker while another is idle is a 

round of work that the idle worker could have done concurrently. And as already 

discussed, it is important to receive STOP messages as soon as possible. 

Figure 10 shows the SPML pseudo-code when there is local work to perform. 

It is possible for a process to receive so many messages that it never gets around to 

performing local work. This is considered a flaw in the algorithm's design. Even 

if the local work were given preference, with that many messages arriving, it is 

likely that the incoming message queue would fill up. 

There are some additional considerations when identifying and coding the 
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Single Pass Message Loop: 

while ( ! done) 

{ 

} 

if (msg_iprobe(ANY_TAG, ANY_SENDER, mag-type, mag-sender)) 

{ 

if (mag-type == TAG1) 

handle-message-of-type-TAG!; 

else if (mag-type == TAG2) 

handle-message-of-type-TAG2; 

} 

else 

{ 

do-round-of-local-work; 

} 

Figure 10. Single P� Message Loop With Loca) Work. 

local work. The local work should be divided into small pieces, as smal) as is 

reasonably possible. A small unit of local work will allow the process to quickly 

get back to receiving and processing messages. If the unit is too small, though, it 

may cause additional overhead in keeping track of partial results. In the GHEAP 

algorithm, the unit of work is a single round of the adaptive partioning algorithm: 

dividing a region, evaluating the two new regions, forming the update, and sending 

a message to the IC and the GHC. 

Also, the local work should not do any actions that block it from continuing. 

For example, it should not attempt to block-receive any messages. If it did, it 

might cause long delays before the process was able to receive any other messages. 

It is fine for the process to send a message as part of the local work, as sends are 
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assumed to be only locally blocking. 

State Information 

If a unit of local work requires a lot of computation, then it may be best 

to break that unit of work into even smaller pieces. Doing this may require 

storing state information between iterations of the SPML. The state information, 

stored in some variable, specifies which kind of work should be performed in the 

next iteration (or, alternately, what kind of work was performed in the previous 

iteration). 

A convenient unit of work for the LLB algorithm is a single round of the 

adaptive partitioning algorithm. If we want to make the unit of local work smaller, 

we would need state information to record what step to perform next. The state 

information would record whether we should next do: the retrieving of a region, 

the dividing of a region, the first evaluation, the second evaluation, or the storing 

of the regions on the heap. 

This control is performed within the block of code that implements the 

local work; generally the rest of the loop will not care about the state of the local 

work. 
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Multiple Functionalities in a Single Process 

As previously presented, one of the key benefits of the SPML is the ease at 

which it can allow a single process to variably perform multiple functionalities. 

This design can now be shown. 

In this section, the multiple functionalities will be named funcl, fimc2, 

etc. The existence of several boolean variables is assumed, one per process, per 

functionality. Each boolean variable specifies whether or not a given process is 

to perform a given functionality. This example is from the point of view of the 

single executing process, so these variables will be named i...am...func1, Lam_func2, 

etc. For example, in the case of the GHEAP algorithm, a processor will have the 

variables i...am_ghc, i...am...ghw, i...am_ic, etc., defined. 

If there are multiple functionalities, then it is assumed that every incoming 

message "belongs" to, or can be handled by, a particular functionality. The design 

specifies that a single message handling routine { a message handler) be written 

for each functionality. This routine will be called when a message is found on the 

incoming message queue {i.e., when the msg_iprobe() call returns a TRUE value). 

The routine examines the type of the message and if it is one of the messages that 

is to be handled by that functionality, then the message is received, it is handled, 

and a TRUE value is returned to indicate that the message was handled. If the 

incoming message type does not belong to that functionality, then it is left on the 
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incoming me�age queue, and FALSE is returned. The sender of a me�age may 

also be used to indicate whether a particular functionality should receive or ignore 

a me�age. 

The me�age types of an application need to be designed, across all func

tionalities, to handle this method of receiving me�ages. 

The pseudocode for one of these recieving functions is shown in Figure 11 

for func1, for two me�age types for this functionality. Figure 12 shows the use of 

several of these routines in a me�age loop ( with no local work): 

bool handler-routine-func1(msg-type, mag-sender): 
{ 

if (msg-type == FUNC1_TAG1) 
{ 

} 

handle-msg-tag1; 
return TRUE; 

else if (msg-type == FUNC1_TAG2) 
{ 

} 

handle-msg-tag2; 
return TRUE; 

return FALSE; 

} 

Figure 11. Message Handler Routine for a Single Pass Me�age Loop. 

(The U: operator is assumed to have the semantics of a c conditional logical 

conjunction operator.) 

Note that if one handler function declines to handle a me�age, then the 

next handler function (based on the Lam_xxx variables) is called to handle the 
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Single Pass Message Loop: 

while ( !done) 

msg_probe(ANY_TAG, ANY_SENDER, mag-type, msg-sdr) 

if (i_am_func1 tt handler-routine-func1(msg-type, msg-sdr)) 

continue; 

else if (i_am_func2 tt handler-routine-func2(msg-type, msg-sdr)) 

continue; 

else if (!(i_am_func3 tt handler-routine-func3(msg-type, msg-sdr))) 

error; 

Figure 12. Single Pass Message Loop With Message Handler Routine. 

message. If the processor does not have any of the flag variables set, then the error 

statement will be executed ( this condition may be preferred to be checked using 

pre-processor controlled assertion statements, as if it occurs, it indicates a serious 

flaw in the program logic). If a message is found that no handler message will 

receive, then again the error statement will be executed. The large if statement 

can also be re-coded in a more succinct statement through the heavier use of 

the conditional logical operators. The displayed form of the function is clearer, 

though. 

If local work needs to be performed, then the msg_probe () is turned into a 

msg_i probe (), and the message handlers are checked only if a message is available, 

else, a round of local work is performed. If there are multiple functionalities that 

need to perform local work, then logic needs to be added to allow them to take 

turns. 
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In practice, it may be eMier for a process to have a default functionality. 

For example, in the GHEAP algorithm, a process is either an IW or an IC; if it is 

an IW then it may also be a GHC or a GHW; if it is an IC then it may also be 

a CAW or a GHC. It is eMier for the default functionality not to have a handler 

routine, rather, the message tag is checked and possibly handled in the body of 

the SPML itself before being optionally passed to a secondary handler routine. 

Local work performed by the default functionality can also be executed directly 

from the body of the loop. 

Functionality States and Handling of Preferred Messages 

A functionality may have to receive and send a sequence of several messages 

in order to complete a portion of its execution. After receiving a message, it cannot 

simply wait for the second message to arrive. It must exit the handler function 

and allow for possibly another handler function or a round of local work to execute 

next. Therefore, the functionality may have to store state information to know 

where it is in a sequence of execution. 

For example, the GHC hM state information which can tell it whether it is 

in the middle of a global heap adjustment or not, and if it is, where it is within 

the adjustment. 

The existence of state information may complicate the SPML and the han

dler function. For example, if the GHC process is in the middle of an adjustment, 

84 



it may be "waiting" to receive regions from one or both of its children. The GHC is 

the functionality that receives and handles message from the IW's when they send 

and request regions (a TAG_IW2GHC..RGNS message). But if it is in the middle of 

an adjustment, it cannot receive this message, because it cannot reply to requests 

for regions until the adjustment has been completed. 

The solution is to identify the functionalities and states where these con

flicts exist, and identify the message types that must be received before other 

messages types. Then, preferred message routines can be written as needed for 

each functionality. These routines perform msg_iprobe's on the messages for 

which they are looking (by message type or sender), and if a looked-for message 

is found, it can be received and handled. 

The pseudocode for this is not shown, as is can vary a lot depending upon 

the requirements. Generally, though, a single function can be called before the 

SPML calls its msg_probe() or msg_iprobe() function. This will call the preferred 

message routine for each functionality that has one, until one of them indicates 

that it received a message. If any message is received, then that information will 

be returned to the SPML so it knows whether to loop around and receive another 

message, or, possibly perform some local work. 

If multiple functionalities have preferred message routines, then care must 

be taken to ensure that no functionality is given preference for receiving messages, 

or messages may become stuck on the incoming message queue. This can simply 
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be handled by changing the order in which the preferred message routines are 

called. In the GHEAP algorithm this is not a problem, as only the GHC or GHW 

functionalities have preferred messages, and these two functionalities cannot both 

be assigned to the same process. 

Finally, if a process is going to be told to terminate via a STOP message 

then that message should probably always be specifically checked for ( using a 

msg_iprobe() at the top of the SPML before any other message checking calls are 

performed). 

Use of a SPML in the LLB Algorithm 

The implementation of the LLB algorithm used (PARlNTl.0) does not use 

a SPML. The primary loop in which it receives messages does have several smaller 

msg_iprobe() loops and the local work performed is always completed in units of 

thens algorithm parameter. 

This algorithm only has three functionalities: the IW, the IC, and the CAW. 

There are restrictions on how they are assigned to processes: the CAW can only 

be assigned to the process that is acting as the IC, and the IC and the IW cannot 

be assigned to the same process. 

The experimental version of PARINT in [12] allowed for very large numbers 

of processes to solve multiple integrals in parallel by dividing the processes into 

groups. Each group consisted of an IC and one or more IW's. An overall Global
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Controller ( GC) controlled the assigning of integral problems to the groups ( acting, 

in a sense, as an "integral server"). This multi-group design clearly shows the 

possibilities of using a SPML (though one was not used, as this work was completed 

before the ideas of the SPML were developed). If there are only a few groups, then 

the GC can probably simply be assigned to a process that also acts as an IC; if a 

message comes in to that process for the GC it will be handled quickly given the 

SPML design. 

If there are a lot of groups, then contention for the Ge's attention may 

lead to experimenting with having the GC be the sole functionality for a process 

separate from any IC or IW responsibilities. This separation can easily be achieved 

and changed, even at run-time (e.g., between sets of integrals), by using the SPML.

A rough design has been completed for modifying the PARlNTl.0 code to 

use a SPML; this change may be part of the next PARlNT release. This design 

assumes that the process code has a default functionality of either an IW or an IC. 

Furthermore, since the CAW functionality is already implemented in a "local work" 

style (passing information back to the IC using function parameters rather than 

messages), it will probably be kept in that style (since· the function parameters 

are faster than message passing, even within a single process). 

The largest change will be at the IW, where a unit of local work will be 

a single round of the adaptive partitioning algorithm. State information will be 

kept to determine after which round of work an update should be sent to the IC. 
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It is hoped that by modifying the code in this fashion it will be easier to ex

periment with different local load-balancing techniques and other modifications. 
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CHAPTER IX 

EXPERIMENTAL RESULTS 

This chapter presents the experimental results, predominately comparing 

the GHEAP algorithm with the existing LLB algorithm. 

Hypothesis 

The primary hypothesis is that the global heap algorithm will be able to 

solve integrals in fewer region evaluations than the LLB algorithm, with the results 

getting better as the number of workers increases. It is also hypothesised that the 

global heap will perform iterations of work slower than the LLB algorithm. What 

is not clear is whether or not the reduction in the number of regions evaluated 

with the GHEAP algorithm will be great enough to offset the slower iteration rate 

and result in an overall faster algorithm. 

Initial Results 

A subset of the integrals and tolerances presented in Table 1 (on page 33) 

were used. Each function used was run on values of p (recall that pis the number 

of processes) going from 1 to 24; each run was performed 5 times and averaged. 
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For these initial runs, the global heap size was one and the GHC functionality was

assigned to the same processor as the IC. Sample initial results are presented in

Figure 13 though Figure 22.

GHEAP vs LLB; tcn1 
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Number of Processors 

Figure 13. GHEAP vs. LLB Data for Jeni. 

Poor Results 

Figure 16 shows the results for fcn7. They are not very good. What was

hoped to be a large (possibly 50%) reduction in regions evaluated is only a small

improvement, and, the improvement does not grow much at all as the number of

processors increases to 24. Figure 14 and Figure 15 (showing results for fcn2 and

fcn4 respectively), are other examples where the GHEAP algorithm shows only a
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GHEAP vs LLB; tcn2 
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Figure 14. GHEAP vs. LLB Data for fcn2. 

slight improvement. 

Figure 22 (Jcn22) has even worse results, as there apears to be no improve

ment at all when using the global heap. Similar results appear in Figures 17, 20, 

and 21. 

In Figure 19, the GHEAP algorithm actually is worse (requires more regions) 

than the LLB algorithm; similar results are in Figure 13 and Figure 18. 
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GHEAP vs LLB; fcn4 
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Figure 15. GHEAP vs. LLB Data for Jcn4. 

Explanation of Initial Results 

The initially poor results are cause for concern, but present the challenge 

of explaining why they are poor. 

More information was needed to analyze the results, so the next set of ex

periments were designed to get more data about what occurs during a single run 

of each algorithm. Each graph (Figure 23 through Figure 28, to be introduced for

mally after the parameters shown in these graphs are derived) shows the changing 

of what is termed the error ratio versus the number of regions evaluated to some 

intermediate point in the algorithm. Recall from Chapter II that the algorithm 
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Figure 16. GHEAP vs. LLB Data for fcn7.

will terminate (�urning that the function count limit is not reached) when the 

condition: 

is reached. In these runs, the €a value is zero, so that term can be removed. 

Rewriting and rearranging leads to termination when the condition 
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GHEAP vs LLB; fcn10 
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Figure 17. GHEAP vs. LLB Data for fcnl 0. 

holds. The value E
p 

is the error ratio; it provides a convenient, single value that is 

an estimate of how close we are to having an answer. The next figures specifically 

show the log10 EP 
versus the iteration number (the log factor makes it easier to 

visualize the results, as the error ratio generally goes from a number in the billions 

very quickly down to a number that hovers near 1.0 for a while before dropping to 

be 5 1.0). An error ratio of 1.0 corresponds to a log10 
E

p 
value of 0.0. Note that 

while the integral is being solved the value of Q ( the current value of the answer 

to the integral) changes, so both the numerator and the denominator of the error 

ratio can change. 

Figure 23 through Figure 28 show results for functions fcn22 (at 4, 16, and 
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Figure 18. GHEAP vs. LLB Data for Jcn14. 

24 workers) and fcn18 {also at 4, 16, and 24 workers). These results were run with 

the same er values as the previous set of graphs, so a y-axis value of 0.0 is reached 

at an x-axis value that corresponds to the plotted y-axis value in the previous 

graphs {for the corresponding number of workers, also, the earlier graphs were 

averaged over multiple runs and are therefore more representative than the single 

runs in the error curve graphs). For example, in Figure 23 the error curve crosses 

the x-axis at :::::: 9500 iterations; this corresponds to the data point in Figure 22 at 

p = 4 and number of regions equal to:::::: 9500. 

These figures make clear the behavior of the algorithms. In these runs, the 

global heap algorithm is able to initially reduce the error ratio quicker (in fewer 
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GHEAP vs LLB; tcn18 
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Figure 19. GHEAP vs. LLB Data for fcn18. 

iterations) than the LLB algorithm. Consider Figure 23, where the global heap 

curve swoops down very smoothly, consistently, and swiftly, while the LLB curve 

does more meandering. 

The differences are even more pronounced in the fcn22 results at 16 and 24 

workers. Consider that at 24 workers there are 24 local heaps; at any given itera

tion there are a lot of workers probably working on regions that have relatively low 

error estimates (regions that under the assumptions of Chapter V cannot reduce 

the error ratio much), resulting in the horizontal pieces of the error ratio curve. 

Then, some worker evaluates some region that is important, resulting in a large 

llE
P 

( change in E
p
) decrease. Presumably, the GHEAP algorithm encountered the 
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GHEAP vs LLB; fcn19 
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Figure 20. GHEAP VS. LLB Data for fcn19. 

same region earlier on, when that t:,.E P resulted in only a small downward tick in 

the error ratio curve. When the LLB algorithm evaluated that region, the EP was 

much lower, the t:,.EP value appeared relatively large, and resulted in the large 

vertical pieces of the LLB curve. In general, the failure of the LLB algorithm to 

select the highest error region at each iteration created the meandering of the LLB

error ratio curve. 

Note that these results are for fcn22, the function for which (in Figure 22) 

there was no improvement for the global heap. Figures 26, 27, and 28 show the 

error ratio curve for fcn18, the function for which the LLB algorithm outperformed 

the GHEAP algorithm. 
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GHEAP vs LLB; fcn21 
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Figure 21. GHEAP vs. LLB Data for fcn21. 

These results are similar to the error curves for fcn22, but show more 

wandering by both algorithms. There are horizontal and vertical pieces to the 

error ratio curves for both algorithms. 

It is not clear why the GHEAP algorithm would have such irregular behavior. 

Possibly this is a function where even the sequential run's error curve would 

wander more. It is also not clear why the GHEAP would be the clear victor at 4 

and 24 workers, but would appear to be an even match for the LLB algorithm at 

16 workers. The variation in the initial regions and in the load balancing behavior 

probably have some effect on the varying results. An avenue of future work is 

to explore in more details the behavior of the the GHEAP and LLB algorithms on 
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GHEAP vs LLB; fcn22 
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Figure 22. GHEAP vs. LLB Data for fcn22. 

functions like f cn18 and Jen 22. 

Trail Ends of the Error Curve 

The explanation of the initial poor results lies in the far ends of the error 

curve. In all six error curve graphs the two lines converge as the algorithm is 

about to complete its work. The previous set of graphs showed a single data point 

corresponding to the number of iterations it took to complete the integration; this 

data point corresponds to the position on the error curve graphs where the two 

error ratio curves converge. 
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Figure 23. Single Run Error Ratio Curve for fcn22 and p = 4. 

The trend over all of the GHEAP error ratio curves is that the curves level off 

over time. They do not continue their initial fast descent. The proposed rationale 

for this is that the initial fast descent is due to the regions in the worst portions 

of the initial region being repeatedly subdivided and evaluated. After a while, 

the error ratio has settled down to a lower value. The regions on the global heap 

generally then all have a lower error, and, each individual evaluation of a region 

does not greatly contribute to a decreasing error ratio. 

The speculated, overall answer to the conundrum of these results is as fol

lows: The GHEAP reduces the error ratio quicker, but ultimately the LLB algorithm 
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Figure 24. Single Run Error Ratio Curve for fcn22 and p = 16. 

12000 

thoroughly evaluates the same "crucial" regions as the GHEAP algorithm. It takes 

longer for the LLB to evaluate these crucial regions because they may be buried 

within a single worker's local heap along with lots of other high-error regions. 

After these crucial regions have been evaluated, both algorithms are faced 

with a vast but calm sea of regions, all generally having a low error estimate (but 

some of which are still important in reducing the error to below the tolerance). 

At this point the GHEAP algorithm's benefit of being able to select the region 

with the overall lowest error for division and evaluation is of reduced benefit. It 

is speculated that at this point, the LLB's method of choosing locally important 
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Error Ratio vs. # Regions; fcn22; p:24 
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Figure 25. Single Run Error Ratio Curve for fcn22 and p = 24. 

regions is no worse than the GHEAP's global region selection. 

At this point in the execution, both algorithms have evaluated the cru

cial regions and both have evaluated enough non-crucial regions to get their es

timated error within the desired tolerance. Hence, both complete their run at 

approximately the same number of region evaluations. 

More support for the idea of crucial regions comes from some previous 

experiments performed with fen 7 when the kill-heap feature was still used in 

PARlNT [39]. It was noticed that with kill-heap on, it was common for the algo

rithm to get stuck with the estimated error at a particular value. No matter how 
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Error Ratio vs. I Regions; fcn18; p:4 
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Figure 26. Single Run Error Ratio Curve for fcn18 and p = 4. 

many additional evaluations were performed, the error estimate barely moved. 

With keep-heap turned on, this never happened. The proposed explanation was 

that a crucial region was getting deleted when a worker's local heap was removed 

during an instance of load balancing, and without that region, the error was not 

able to be reduced below the error tolerance. 

Lower Error Tolerances 

It might be thought that by lowering the desired error tolerance, the al

gorithm would terminate while the crucial regions were still being evaluated, and 
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Error Ratio vs. I Regions; fcn18; p = 16 
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Figure 27. Single Run Error Ratio Curve for fcn18 and p = 16. 

since the GHEAP algorithm does that quicker, it would get an answer quicker. 

Consider, however, the graph in Figure 29. This graph shows a single run for 

fcn22 with p = 16, similar to Figure 24, but in this c�, the er is 10-6 (versus 

er = 10-11 in Figure 24). 

Even though the value of er is larger, the curves still converge, and the 

GHEAP algorithm still gets an answer in about the same number of region evalu

ations as the LLB algorithm. The key lies in the makeup of the error ratio. In the 

latter run, the denominator of the error ratio was much larger (recall that er is a 

factor in the denominator of E
p
)- This implies that the change in the error ratio 
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Error Ratio vs I Regions; fcn18; p = 24 
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Figure 28. Single Run Error Ratio Curve for fcn18 and p = 24. 

from evaluating a given region will be much le� than in the former run. Consider 

the effect of evaluating a region in both runs, resulting in a change in the current 

estimated error from E
0 

to E:, and a change in the current result from Q to Q'. 

The change in error ratio for runs #1 and #2, �E
PI 

and �E
p,.

, respectively, are 

related as follows: 
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Figure 29. Single Run Error Ratio Curve for fcn22, p = 16, and er
= 10-6

•

I.e., the effect of evaluating the region in Run #2 is less than evaluating

that same region in Run #1. In fact, the net effect of evaluating any region in Run 

#2 is less than when evaluating that same region in Run #1. The importance 

of all regions is shifted, meaning that there will still be, in a relative sense, the 

same number of crucial regions, and the same large number of regions that are 
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not so crucial. So, regardless of the tolerances required, we can expect the GHEAP

algorithm's error curve to initially have a fast descent, but always to level off. 

Note that the same effect would occur if just an ca value was used. In this 

case, the identical value of ca to use for a given cr would be ca = cr lll, where I 

is the actual answer to the integral. Consider the evaluation of a region again; 

the effect on the denominators of the error ratios would be the same, so the same 

!l.E
p 

effect would be seen. The only difference is that the Q term is eliminated, 

so the cglobal value does not change over time. 

Figure 30 through Figure 32 verify these results for functions fen 7, fcnl 8, 

and fcn22, respectively. They show the results of running each function, at p = 16, 

across cr values from 10-1 through 10- 10
. As is now expected, there is no benefit 

{in terms of number of regions evaluated) with using the global heap algorithm 

when requesting less accuracy (i.e., when cr is larger). 

Revisiting the Hypothesis 

The original hypothesis was that the global heap would reduce the number 

of regions required to get an answer. The rationale was that by concentrating 

on the globally most important regions, the global error ratio would be reduced 

quicker, resulting in a final answer in fewer region evaluations. 

It has now been revealed that the effect does result in the error being 

reduced quicker, but that the rate of reduction levels off before the final answer 
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GHEAP vs LLB; fcn7; p:16; multiple eps-r values 
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Figure 30. GHEAP vs. LLB Data for fcn7; Multiple er Values. 

is reached, and that the levelling off allows the LLB algorithm to catch up and 

generally match the GHEAP algorithm in the number of regions required to get 

the answer. 

Note that the GHEAP algorithm suffers from the same problem as the LLB

algorithm: the number of regions required to get an answer increases asp increases. 

This aspect has not yet been explained. Regardless of the number of workers, 

all are accessing the global heap, and all should be always retrieving the most 

important region at every iteration. There are several possible explanations for 

this. 
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GHEAP vs LLB; fcn18; p:16; multiple eps-r values 
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Figure 31. GHEAP vs. LLB Data for fcn18; Multiple er Values. 

Non-Ideal Regions From the Global Heap 

12 

One problem is that workers are not actually retrieving from the global 

heap the globally most important region. At any given retrieval from the global 

heap, the extracted region is the most important over all the regions on the global 

heap. But, there are regions that are not currently stored on the global heap, 

specifically, all the regions that are currently being sent to the GHC for insertion 

on the heap, and all regions in the GHC's incoming message queue. One or more 

of these regions may have a higher estimated error than the regions currently on 

the global heap. 
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Figure 32. GHEAP vs. LLB Data for fcn22; Multiple er Values. 

12 

Since the GHC has not yet received these regions, they cannot be considered 

as possible regions to be sent back to other workers. Therefore, the region sent 

back to a worker is not necessarily the most important region over all known 

regions. Furthermore, it is increasingly likely that the region a worker gets is not 

the most important as the total number of workers increases. (As the value of 

p increases, the number of regions on their way to the GHC at any given instant 

increases.) 

This appears to be a partial explanation for why the number of regions to 

get an answer increases in the GHEAP algorithm. 
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Effects of Singularities on Region Retrieval 

An idea proposed in [15] is that a singularity in the region may have an 

adverse effect upon the retrieval of regions from the global heap. 

As an example, suppose that the integrand function has a single point 

singularity in the region and that over the rest of the region the function is well

behaved. 

At some point in the algorithm there will only be a single worker working 

on a region containing the point of the singularity. However, all of the workers 

will still be requesting regions from the global heap. Only a single worker on 

each iteration will get the region containing the singularity; the other workers get 

regions of lesser importance, possibly even regions that would not be evaluated 

by the sequential algorithm. 

The problem is that the important regions can only be produced one at a 

time as the worker with the region containing the singularity performs a round 

of work. This does not affect the sequential algorithm, as it only ever does one 

round of work at a time. 

As the number of potential important regions that can exist at one time 

increases (as in the case with several point singularities, or a line singularity, etc.), 

this effect should be reduced. This phenomenon has not yet been experimentally 

verified. 

111 



Domino Effect of Evaluating Incorrect Regions 

An additional aspect may cause the increase in regions to get an answer, 

though this theory has not yet been tested. Consider the idea from Chapter V of 

considering the dividing of regions by the adaptive partitioning algorithm to be 

filling out a binary tree. The sequential algorithm is assumed to build a binary 

tree of the minimum number of nodes. As the number of processors used increases, 

the size of the binary tree increases. Consider the effects of dividing a region (in 

some parallel run) that would not have been divided by the sequential run. The 

immediate result is that an additional region is evaluated, resulting in a small 

additional amount of work, and (by previous assumptions), the reduction in the 

global error estimate is not as large as if a correct region had been evalauted. 

But there are now two additional active regions (regions in the global heap 

or in a local heap) that never became active regions in the sequential run. It is now 

possible for them to become selected as well, after which their child regions could 

become selected, and so on. The effect of evaluating a single incorrect region can 

have a domino effect resulting in many other incorrect regions being evaluated. 

This is especially so if we are on the trail end of the error ratio curve, where 

the crucial regions have already been thoroughly evaluated, and, most regions are 

generally of a low error ( and where slightly incorrect error estimations for a region 

may greatly mis-rank that region's importance against the other regions in the 
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priority queue( s)). 

It seems that · the domino effect will be worse for the LLB algorithm and 

will be affected by the locally-idle criteria and the load balancing straegy used. 

Analysis of the Domino Effect 

It would be nice to be able to analyze and verify the domino effect. This 

is rather diffcult. 

One possible analysis would take two binary tree representations of two ex

ecutions of the adaptive partitioning algorithm, and compare them. It would find 

where a single incorrect region evaluation led to other incorrect region evaluations. 

Consider, though, that the binary tree of regions may consist of upwards 

of 105 regions. 

It is presumed that the sequential algorithm will have the minimum number 

of nodes on its tree. However, there may be other distinctly shaped trees of the 

same number of nodes, slightly more nodes, or even slightly fewer nodes (if some 

of the given assumptions do not always hold), that result in similar accuracy of 

answer. To simply say that a portion of a tree does not match the sequential tree 

does not provide a measure of the incorrectness of evaluating that portion of the 

tree. 
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Benefit of the Global Heap 

The sole benefit of the global heap, then (within the context of considering 

the number of regions to get an answer), is that it can initially reduce the error 

ratio quicker than the LLB algorithm. As the next section discusses, there are 

circumstances where this can be of great benefit, namely, when the function count 

limit is reduced. 

Lowering the Function Count Limit 

All of the runs performed so far in this thesis had the function count 

limit (£) set high enough that it was not reached, i.e., an answer to satisfactory 

accuracy was found in fewer function evaluations than the function count limit. 

If £ had not been set this high, then it would not have been possible to measure 

the total number of regions required to get an answer to a desired tolerance, as 

that accurate an answer would not have been found. 

There are practical situations where the total amount of work (or, similarly, 

the total amount of time) spent on a problem needs to be limited. After that limit 

has been reached, the answer found, to whatever estimated accuracy, is used. 

To understand the effect on limiting the value of £, reconsider Figure 24. 

Limiting £ to 325000 (correspond to limiting the number of regions to 5000, as 

fcn22 is integrated using an integration rule that uses 65 function evaluations 
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per rule evaluation) has the effect of drawing a vertical line through the graph at 

x = 5000 region evaluations. This vertical line represents the halting point for 

this value of £. On this line, the GHEAP algorithm has reduced the log of the 

error ratio to 2.6 while the LLB algorithm has reduced it to only 8.2. 

In a more concrete example, consider the actual output of such a run. Aver

aging over 5 runs, using fcn22 with ca
= 0.0, cr = 10-11, £ = 325000, the GHEAP 

algorithm gets an answer Q = 4.0000000000377, and an Ea = l.8134419632370E-

08; the LLB algorithm gets an answer of Q = 4.0000000940704, and an Ea =

3.1331609302382E - 05. With an actual answer of J = 4.0, GHEAP has an actual 

error of 3. 78E -11 and LLB has an error of 9.40E - 08, a significant improvement 

when using the GHEAP algorithm. 

Unfortunately the reason for limiting £ such that it will usually be reached 

is to get an answer in a limited amount of time. So far, we have not considerd the 

execution time of the two algorithms. This is the subject of the next section. 

Initial Timing Results 

There are several methods and measures for getting experimental data 

concerning the execution timing of an implementation of the adaptive integration 

algorithm. 

The easiest to consider is just to measure the total time that it takes for 

an answer to be found. As the previous sections indicate, different algorithms can 
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have a tremendous effect on the amount of work required (i.e., number of regions 

evaluated) to get an answer. If one algorithm requires twice as many regions to 

get an answer, comparing total execution times does not yield an accurate picture 

of the raw speed of an algorithm. 

Therefore, an alternate measure can be used, that of measuring the time 

per basic unit of work. Regardless of how many units of work are performed, 

this measure gives an indication of how fast the algorithm executes. Within the 

PARlNT project, a common unit of work used for timing is the time to complete 

100,000 function evaluations (abbreviated t
per

)- This measure was chosen because 

the time to complete a single function evaluation is generally a very small fraction 

of a second for a modem workstation; by multiplying by 100,000 a value closer 

to 1 second is often obtained. Note that while this value explicitly refers to the 

time to evaluate functions, all of the overhead of the algorithm is also included, 

i.e., the t
pe

r value for a run is the total time of the run, divided by the number of

function evaluations, times 100,000. 

Expected Timing Results 

It is expected that the t
pe

r for the global heap algorithm will be several 

times larger than that of the LLB algorithm due to all the communication overhead 

involved. In the GHEAP algorithm each round of work is preceded by the time to 

send a message to the GHC, and, have the reply sent back. In the LLB algorithm, 
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there is only the delay to send or receive messages between rounds of work; there 

is no waiting for a round-trip message delay. 

In addition, it is expected the speedup as the number of workers increases 

to be less for the GHEAP algorithm, due to the increased contention at the GHC.

Timing and Efficiency Results 

Figure 33 shows the result of running fcn22 at 1 through 24 workers. The 

t
per value (in seconds) is graphed versus p. The runs were done with cd = 11, 

c
0 

= 0.0, and £, = 520000 ( corresponding to 8000 regions, ensuring that the limit 

was always reached). Each data point is the averaged value over 20 runs. Figure 34 

contains the same data manipulated to show the efficiency versus p. In this graph 

the traditional definition of efficiency is used (efficiency defined as t1/(t
p
p); recall 

that t1 is the sequential time and t
P 

is the parallel time of the same algorithm). 

The LLB does a fairly good job at reducing the t
per 

value as p increases. 

Its lack of efficiency comes from imperfect load balancing. However, the GHEAP

algorithm performs very poorly. In fact, the algorithm actually gets progressively 

slower (as shown in the rising time versus p in Figure 33). This is due to the 

contention at the GHC as the number of integral workers increases, and, due to 

the large delay between each round of work. The next chapter discusses some 

modifications that would speed up the execution of the GHEAP algorithm. From 

these results, it is clear that these modifications are needed. 
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Multi-Node Global Heap 

All of the results were run on a global heap of a single node. While the 

multi-node global heap Wa.5 implemented and tested, no final experiments were 

performed on it. 

From some initial results it Wa.5 found that the number of regions to get 

an answer did not vary with global heap size. 

It is anticipated that a very large number of regions will be stored more 

efficiently on a multi-node global heap. 
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CHAPTERX 

FUTURE WORK 

This chapter discusses future directions of research, as well as proposed 

improvements to the global heap design. 

Improvements to the Global Heap 

The global heap implemented in this thesis can really be considered a 

"base" asynchronous implementation of the synchronized global heap of [23]. 

There are some obvious modifications that could be added which should improve 

the heap's performance. The following sections detail some of these improve

ments. Along with each improvement is a discussion of the estimated change in 

the performance characteristics that the improvement would bring. 

Modify the Number of Regions Per Request 

Currently workers request only a single region per message to the GHC. 

This could be modified to allow each worker to request nrpm regions per message, 

i.e., allowing a variable "access granularity". The value of nrpm could even vary

across the workers, allowing faster workers to perform more rounds of work be-
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tween accessing the global heap. The number of regions sent back to the GHC

would also change; if nrpm 
regions are requested, after evaluating all the regions, 

there will be n
rpm 

+ 1 regions to send back. 

The expected effect of this change would be to increase the speed (i.e., 

decrease the tper for the implementation), because multiple rounds of work would 

be able to be completed for each long delay caused by a request for more regions. 

Also, the contention at the GHC could be controlled by modifying n
rpm

. The cost, 

though, would be a further increase in the number of region evaluations required 

to get an answer. If workers request multiple regions at a time, and then perform 

multiple rounds of work on those regions, then there is an increased chance that 

they are working on regions that are not of the highest priority over all known 

regions. 

Increase Work Between Requests 

Regardless of how many regions are requested in a message, it is possible to 

have each worker perform some arbitrary number of rounds of work, nwbr ( "wbr" 

stands for "Work Between Requests"), between sending requests for more regions 

to the GHC. If nrpm 
regions were requested, then it is expected that nwbr 2: nrpm

,

and nwbr + 1 regions would be sent back to the GHC.

The expected effect is the same as with adding nrpm : the t
pe

r value would 

decrease, but the total number of regions evaluated to get an answer would in-
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crease, � again the region being evaluated at any given round of work is less likely 

to be the globally most important region. 

Incre�e Work Between Updates 

This improvement is related to the previous two. Currently each worker 

sends an update to the IC after each round of work ( so that each pair of region 

evaluations is followed by the sending of a message requesting more regions and 

the sending of a message to the IC containing an update. This could result in too 

many messages being sent to the IC. The solution is to add a parameter, nwbu

("wbu" stands for "Work Between Updates"), specifying the number of rounds 

of work to be done between sending updates to the controller. The value of nwbu

can be independent of the values of nrpm and nwbr, but, if a worker is about to 

wait for regions to come back from the GHC, it might � well send off an update 

during that time. 

A further, but slight, decrease in t
per 

is again expected for this improve

ment, due to the ability to better manage contention at the IC.

Consider the cost of this improvement. At some point in the algorithm, a 

worker completes a round of work that decre�es the global error estimate below 

the requested tolerances. However, the IC may have to wait longer than usual to 

get the update reporting this because it will not be sent until nwbu rounds of work 

have been completed since the last update. The result is a small increase in the 
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number of regions to get the answer. This can be considered a form of braking 

loss, � introduced on page 36. 

Continual Working 

Currently, when a worker sends regions to be inserted into the global heap, 

it sends all of the regions on its heap to the GHC. It could hold back nkih regions 

("kih" stands for "keep in heap") and continue working on those regions while 

it waits for fresh regions from the global heap. When those regions arrive, they 

would be added to the current heap of regions. After nwbu rounds of work were 

completed, the entire heap minus nkih regions would again be sent to the GHC for 

insertion into the global heap. 

As with .the previous proposed improvements, this would reduce the t
per

value for the algorithm, but would incre�e the number of regions required to get 

an answer. 

Dynamic Allocation of Arrays 

This improvement deals with a detail of the implementation. Currently the 

PARlNT base code (the code on which PARlNTl.0, the GHEAP implementation, 

and all experimental versions are based) considers the maximum values for the 

number of dimensions and the number of functions in a vector function to be 

compile-time constants, and, these values are to used declare arrays that store 
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one value per dimension or per function in a vector. The data structure that 

stores a region has two vectors based on the maximum number of functions in a 

vector and two vectors based on the maximum dimension value. 

The default value for each of these parameters is 10, meaning that a non

vector function of 2 dimensions ( the current minimu"m function dimensionality in 

PARlNTl.0) wastes an incredible amount of space per region structure. 

This is a problem for the LLB version, as regions are stored in the local heap, 

and local memory should not be wasted. It is a greater problem for the GHEAP

version, as not only are regions stored on local deaps, but large numbers of regions 

are constantly sent back and forth constantly as the algorithm is executed. 

Making all these arrays be allocated dynamically would result in a small 

additional computational cost (for the memory allocation time), but would greatly 

reduce the size of the region-containing messages. This improvement is on a list 

of considered improvements for future PARINT releases. 

The negative effects of this wasted memory space were reduced for this 

thesis by reducing the compile time constants for the number of functions in a 

vector to 1, and the maximum dimensionality to 6. These were the maximum 

values needed for the experiments used in this thesis. Having smaller maximum 

values reduced the maximum amount of wasted space. 
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Attempt to Keep Regions Local in the Global Heap 

If an IW is also a GHW, then there is a chance that a region sent to be 

inserted by that IW will end up within that process'es local deap after the next 

global adjustment. If that is the case, then the region should never have to leave 

the memory space of the process. It can be "sent" to the GHW functionality and 

stored in its local deap. The GHW can then send a message to its parent node in 

the global heap and inform it that it now holds an extra region. This information 

can be used to rebalance the global heap at the next global adjustment. 

Further, it seems that the probability that this occurs is high. The chance is 

...L -
1 

-
1- ( where p is the total number of processes, p9h is the number of processes

p,,. og2p,,. 

managing the global heap; the formula reflects the chance that an integral worker 

is also a heap worker, times the chance that the region fits into that workers level 

of the global heap). For example, if there are 3 nodes in the global heap, and there 

are 4 processes total, then the chance of any given node belonging to a process'es 

local deap is 3/8. 

This improvement would reduce the number of messages sent back and 

forth to the GHC, and would reduce the total number of global adjustments needed. 

Therefore, the t
per 

value would go down. The costs include a possibly unbalanced 

global heap (i.e., the chance that the regions in the global heap are not evenly 

distributed across the nodes of the global heap). It seems likely that a method 
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could be devised for moving the global heap back towards perfect adjustment at 

each global adjustment, reducing the imbalance. The resulting increase in the 

complexities of the global adjustment sequence must also be considered a cost. 

Increasing the Global Heap Size 

It is hypothesized (but not yet rigorously tested) that a large number of 

regions is better managed (i.e., faster global heap access is provided) by a multi

node global heap. Correspondingly, as the number of regions in the global heap 

grows yet larger, it makes sense that an even larger number of heap nodes may 

better manage the regions. 

The proposed improvement, then, is to allow the number of nodes in the 

global heap grow as the algorithm progresses and the number of regions to manage 

grows. At some point, when a threshold number of regions was reached, the leaf 

nodes of the heap would inform their as-yet-idle child nodes that they were now 

going to operate as the global heap leaf nodes, and then the previous leaf nodes 

would begin operating as internal heap nodes. 

If the hypothesis concerning the relationship between the number of regions 

on the heap, the heap size, and the speed of accessing the heap is correct, then 

this should result in quicker heap access. 
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Optimizing Inter-Heap-Node Message Sizes 

In the middle of a global heap adjustment, an internal node in the global 

heap forms a worst case estimate of the number of regions that it must request 

from its child nodes and the children each send up that many regions. 

It is likely that a method could be devised to reduce the number of nodes 

sent from the current worst-case value. For example, the message containing 

regions could be broken into several messages. The parent node could make a 

partial request, and after receiving, examining, and shuffling regions around, make 

a request for further regions based on the range of region errors in the first request. 

In this manner a single large request could be broken into several requests whose 

sum total number of regions would be less. 

It is not clear whether the increasing in the number of messages would be 

offset by the decrease in the total number of regions passed back and forth during 

a global adjustment. 

Overall, the heap improvements suggested do nothing to reduce the effi

ciency, in terms of region evaluations, of the algorithm. Rather, they increase the 

speed of the algorithm. Since the primary goal of the GHEAP algorithm was to 

reduce the number of region evaluations, these improvements do not overall seem 

to be a good idea. 
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Future Research Directions 

The results in Chapter IX were not what was expected when this thesis 

was begun. While the results were able to be explained, not all of these final 

explanations were able to be verified by experimental evidence. 

A starting point for future research directions is therefore to devise methods 

for verifying these explanations. The explanations that need verification include 

the theory of the existence of "crucial" regions that need to be subdivided satis

factorily for the algorithm to get an adequate answer, and the corresponding idea 

that there exist many other regions that are somewhat interchangeable. Also, 

the idea of the "domino effect" of evaluating an improper region needs further 

examination. 

All these ideas would benefit from a close examination of the binary tree 

view of the evaluated regions. Other areas of computer science could be surveyed 

for theories and results involving large d-ary trees in general, and possibly those 

technqiues could be applied in this area. 

Another possible avenue is to develop finer models of the behavior of the 

adaptive partitioning algorithm, and possibly even test them using simulations. 

Further experimentation with additional types of integrands may also yield 

more clues to the GHEAP algorithm's behavior. 

If the final conclusion of this thesis is that the global heap algorithm is not 

128 

. 



effective for solving integration problems on a NOW, then that can serve to focus 

future improvements to the adaptive partitioning algorithm in other areas. 

Initial discussions [41] have centered around the idea of improving the load 

balancing techniques of the LLB algorithm in an attempt to combine the initial 

fast decrease in the error ratio of the GHEAP algorithm with the lower t
per values of 

the LLB algorithm. It is known that the LLB algorithm currently uses a very small 

amount of message-passing to implement the load balancing. Paying a slightly 

larger communication cost (i.e., passing more messages) in load balancing may 

allow for workers to have a greater assurance that the regions they are evaluating 

are globally important, though maybe not as globally important as with using a 

global heap. 

And lastly, the initial problem of low efficiency in the adaptive partitioning 

algorithm has not been solved. If the goal is to improve the speedup of this 

algorithm to near-optimal, then this inefficiency must be reduced. 
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CHAPTER XI 

CONCLUSIONS 

The results in Chapter IX were not what was expected when this thesis was 

begun. It was assumed, without question, that the global heap would complete 

its work more efficiently than the LLB algorithm. 

As a result, the primary benefit of this thesis was not to provide an im

proved algorithm for parallel numerical integration, but rather to extend the 

knowledge of the characteristics and behavior of the adaptive partitioning in

tegration algorithm. Some of the experimental techniques used in this thesis had 

not been used before to analyze the PARINT algorithms; they can now easily be 

applied to future modifications to get better experimental data. 

Finally, the knowledge gained through the completion of this research will 

aid greatly in finding future improvements to the P ARINT system of parallel nu

merical integration. 

130 



BIBLIOGRAPHY 

[1] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms.
Addison-Wesley Series in Computer Science and Information Processing.
Addison-Wesley Publishing Company, 1983.

[2] S. G. Aki. Parallel Computations: Models and Methods. Prentice Hall, 1997.

[3] J. Ball. Prototype implementation of the comprehensive parallel integration
tool Parlnt. Master's thesis, Western Michigan University, April 1997.

[4] I. Carino, Robinson and E. de Doncker. Adaptive integration of singular func
tions over a triangularized region on a distributed system. In R. Schreiber,
editor, Proc. of the 7th SIAM Conj.- on Parallel Processing for Scientific
Computing, 1994.

[5] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The
MIT Electrical Engineering and Computer Science Series. The MIT Press,
1990.

[6] S. Das and W. Homg. Managing a parallel heap efficiently. In Proceedings
of Parallel Architectures and Language Europe {PARLE), Lecture Notes in
Computer Science, volume 505. Springer Verlag, 1991.

[7] E. de Doncker and Gupta. A. Multivariate integration on hypercubic and
mesh networks. Parallel Computing, 24:1223-1244, 1998.

[8] E. de Doncker, A. Gupta, J. Ball, P. Ealy, and A. Genz. Parlnt: A software
package for parallel integration. In 10th ACM International Conference on
Supercomputing, pages 149-156. Kluwer Academic Publishers, 1996.

[9] E. de Doncker, A. Gupta, and P. Ealy. Two methods for load balanced dis
tributed integration. Lecture Notes in Computer Science, High-Performance
Computing and Networking, 1067:562-570, 1996.

[10] E. de Doncker, A. Gupta, P. Ealy, and K. Rathbun. Development of a parallel
and distributed integration package - part I. In Lecture Notes in Computer
Science, volume 919, pages 229-234, 1995.

[11] E. de Doncker, A. Gupta, A. Genz, and R. Zanny. PARlNT web site. At
http://www.cs.wmich.edu/-parint.

131 



[12] E. de Doncker, A. Gupta, and R. Zanny. Large scale parallel numerical
integration. Journal of Computational and Applied Mathematics, 1999. To
appear.

[13] E. de Doncker, A. Gupta, R. Zanny, and J. Maile. Extrapolation in dis
tributed adaptive integration. In Proceedings of the International Conference
on High Performance Computing {HiPC '98), 1998.

[14) E. de Doncker and J. Kapenga. Parallel cubature on loosely coupled systems. 
In T. 0. Espelid and A. C. Genz, editors, NATO ASI Series C: Mathematical 
and Physical Sciences, pages 317-327, 1992. 

[15] E. de Doncker and R Zanny. Thesis meeting, April 1999.

[16) N. Deo and S. Prasad. Parallel heap: An optimal parallel priority queue. 
Journal of Supercomputing, pages 87-92, 1992. 

[17] M.J. Flynn. Some computer organizations and their effectiveness. IEEE

Transactions on Computers, 21(9):948-960, 1972.

[18] Al Geist, Adam Beguelin, et al. PVM: Parallel Virtual Machine, A User's
Guide and Tutorial for Network Parallel Computing. MIT Press, 1994.

[19) A.C. Genz and A.A. Malik. An adaptive algorithm for numerical integration 
over an n-dimensional rectangular region. Journal of Computational and 
Applied Mathematics, 6:295-302, 1980. 

[20] A.C. Genz and A.A. Malik. An imbedded family of multidimensional inte
gration rules. SIAM J. Numer. Anal., 20:580-588, 1983.

[21) Michel Goossens, Frank Mittelbach, and Alexander Samarin. The BTEX 

Companion. Addison-Wesley Publishing Company, 1994. 

[22) W. Gropp, E. Lusk, and A. Skjellum. Using MP/: Portable Parallel Program
ming with the Message Passing Interface. The MIT Press, 1994. 

[23) A. Gupta and A. Photiou. Load balanced priority queues on distributed 
memory machines. In Lecture Notes in Computer Science, Springer Verlag, 
volume 817, pages 689-700, 1994. 

[24) E. Horowitz, S. Sahni, and D. Mehta. Fundementals of Data Structures in 
C++. Computer Science Press, 1995. 

[25] D. Kahaner, C. Moler, and S. Nash. Numerical Methods and Software. Pren
tice Hall Series in Computational Mathematics. Prentice Hall, 1989.

132 

• 

""' . 



[26) J. Kapenga and E. de Doncker. A parallelization of adaptive task partitioning 
algorithms. Parallel Computing, 7:211-225, 1988. 

[27) V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel
Computing: Design and Analysis of Algorithms. The Benjamin/Cummings 
Publishing Company, 1994. 

[28) V. Kumar and A. Gupta. Scalable load balancing technqiues. Journal of
Parallel and Distributed Computing, 1994. 

[29) Leslie Lamport. B'J'FjX User's Guide & Reference Manual. Addison-Wesley 
Publishing Company, second edition, 1994. 

[30) B. Le Mans. Portable distributed priority queues with MPI. In IEEE Inter
national Conference on High Performance Computing, pages 16-21, 1995. 

[31] B. Le Mans. Portable distributed priority queues with MPI. Concurrency:
Practice and Experience, 10(9):175-198, March 1998.

[32) P.M. M11}ller-Nielson and J. Straunstrup. Experiments with a multiprocessor. 
Technical report, Aarhus University, Aarhus, 1994. Report CS PB-185. 

[33) nCUBE Corporation. nCUBE 2 Programmer's Guide. December 1990. 

[34] R. Piessens, E. de Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner.
QUADPACK, A Subroutine Package for Automatic Integration. Springer
Series in Computational Mathematics. Springer-Verlag, 1983.

[35) M. C. Pinotti and G. Pucci. Parallel priority queues. Information Processing
Letters, 1991. Also available as TR 91-016, ICSI, Berkeley. 

[36] R. Tarjan. Data Structures and Network Algorithms. Society for Industrial
and Applied Mechanics, 1983.

[37] The Graduate College, Western Michigan University. Guidelines for the
Preparation of Theses, Specialist Projects, and Dissertations. Western Michi
gan University, 1997.

[38) G. Thomas and R. Finney. Calculus and Analytic Geometry. Addison-Wesley 
Publishing Company, 1985. 

[39] R. Zanny. Function #7 problems, August 1998. Unpublished internal PARINT

document fcn7-problems. txt.

[40) R. Zanny. PARINTl.0 User Manual, 1998. Available at 
http://www.cs.wmich.edu/-parint. 

133 



[41] R. Zanny, A. Gupta, and E. de Daneker. Thesis meeting, March 1999.

[42] R. Zanny and S. Van Roekel. Implementation of a global heap under PARINT
using MPI, December 1997. Unpublished class project in CS526, Western
Michigan University.

134 


	Efficiency of Distributed Priority Queues in Parallel Adaptive Integration
	Recommended Citation

	tmp.1558707688.pdf.1zqVl

