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A TOOL SUPPORTING VALIDATION OF 
UML MODELS 

Weng Liong Low, M.S. 

Western Michigan University, 2005 

Software design is an important phase in the computer software development 

life cycle. The Unified Modeling Language (UML) is a widely used notation to design 

software models. As a software system increases in size and complexity it is harder 

for developers to check that their UML models are correct with respect to the UML 

metamodel. Consistency among different diagrams in a UML model is also important 

to ensure that there are no design conflicts that will lead to problems later. Incorrect 

software design will result in loss of productivity, time and money as developers fix 

design errors. Therefore, to ensure consistency in a software design we propose a tool 

that will help developers validate UML models in a number of ways. 

The tool is developed based on the concept of abstract state machines (ASMs ), 

which have been used to perform verification of UML models. By translating UML 

models including OCL constraints into AsmL, an executable specification language 

based on ASMs, the tool is able to perform model instantiation checking, i.e., 

checking whether a diagram at one level of the metamodeling architecture is a valid 

instance of another diagram at a higher-level. The tool can also verify message 

ordering between sequence diagrams and state chart diagrams. The tool has been 

applied to various specific areas such as class diagram refinement and design pattern 

profile checking. With this tool software developers will be able to reduce the number 

of errors in their software designs. 
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CHAPTER I 

INTRODUCTION 

Software design is an important phase in the computer software development 

life cycle. It is especially important in the production of large and complex software. 

The Unified Modeling Language (UML) is a popular language for designing software 

programs. The UML specifies notations and constructs for software design and 

improvements to itself are constantly being made by researchers in the academic 

community as well as in the software industry. 

The UML is based on a four-level modeling architecture developed by the 

Object Management Group (OMG) and has many different diagrams with each 

diagram allowing a software developer to specify different aspects of a software 

system. As a software system increases in size and complexity, it becomes 

increasingly difficult for software developers to check that the UML model of the 

software system is correct with respect to the UML metamodel. Furthermore, the task 

of verifying that the different diagrams in the UML model for a particular software 

are consistent with each other becomes difficult as well. Consistency among UML 

diagrams in a single UML model is important in order to avoid design conflicts that 

will lead to problems with implementation of the software. Incorrect software design 

will result in loss of productivity, time, and money as software developers go back to 

their design to find the problems, fix them, and change their code to meet the 

requirements of the corrected design. Therefore the importance of ensuring that a 

design is consistent and as error-free as possible during the design phase cannot be 

understated. Various tools have been written to assist software developers with this 



problem and to reduce the amount of manual consistency checking that the developer 

must perform on the UML model in the hopes of decreasing the cost of software 

design. 

With this in mind, we propose a software tool that validates UML models by 

performing a number of consistency checks between: ( 1) a UML model and the UML 

metamodel, and (2) different diagrams within a UML model. These checks are 

performed using two methods: 

1. The UML model is represented using abstract state machines (AS Ms) so

that model constraints can be validated.

2. Specific algorithms written into the tool validate other aspects of the UML

model that are not so easily validated using the first method.

The concept of abstract state machines (ASMs) [l] was first presented by Dr 

Yuri Gurevich more than ten years ago. An ASM is a state machine that computes a 

set of updates of its own variables by firing all possible updates based on the current 

state. The computation of a set of updates occurs at the same time and results in the 

generation of a new state. ASMs can be formally defined and can be used to define 

precise models of software. ASMs have been applied to UML in a variety of ways. 

Borger et al. have applied ASMs to provide semantics for UML activity diagrams and 

state machines (3, 4]. Cavarra et al have integrated UML static and dynamic views 

based on ASMs [5]. Ober has proposed translating UML class diagrams into ASMs 

by defining action semantics as well as an XML Metadata Interchange (XMI) to ASM 

translator with manually input Object Constraint Language (OCL) constraints [6]. 

Shen presented a static validation method for a UML model based on the XASM tool 

([2]) (7]. Based on these previous works, we believe that abstract state machines can 

be used to support the validation of UML models. 
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AsmL [8] is an executable specification language based on the concept of 

abstract state machines that is developed by the Foundations of Software Engineering 

(FSE) group at Microsoft Research. It is a high-level specification language running 

on Microsoft's .NET framework and has language constructs such as sets and 

sequences and high-level operations that let the programmer specify what the program 

should do but not how it should be done. There are other languages based on abstract 

state machines, but we choose AsmL because it uses object-oriented programming, 

component-oriented programming, and functional programming. These features make 

AsmL easier to use because it is similar to other popular languages such as C++ or 

Java, and its object-oriented paradigm matches the object-oriented model employed 

by UML in its class diagrams so the translation from a UML model into an AsmL 

specification is simplified. 

Architecture of the Tool 

Figure 1 shows the architecture of our model validation (or checking) tool. It 

consists of four major modules: ( 1) a UML specification diagram parser, (2) a UML 

instance diagram parser, (3) an OCL parser, and (4) a library of OCL operations 

written in AsmL. 

3 
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Figure 1. The UML model validation tool and its modules. 

The three parser modules read a UML model given in an Extensible Markup 

Language (XML) file that is written in the XML Metadata Interchange (XMI) format. 

XMI [9] is a widely used interchange format for sharing objects using XML and is 

developed by the OMG. The XML file containing the UML model should be valid 

based on a Data Type Definition (DTD) for UML 1.3, which was released by the 

OMG. Once read in, each parser module will extract portions of the model that it is 

responsible for and converts that part into an AsmL specification. The combined 

AsmL specification from each of the three modules will then be passed to the external 

AsmL compiler - part of the AsmL installer package released by Microsoft's FSE 

group - together with the fourth module, which is the OCL library written in AsmL. 

These items are compiled and the resulting executable file can be run to perform 
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constraint checking on the UML model. The compiled AsmL program will display 

model checking results to the user. The model checking tool also performs a few other 

consistency checks after reading in the UML model but prior to generating the AsmL 

specification. 

We divide the UML model into two parts: the specification diagram and the 

instance diagram. The specification diagram is the diagram or set of diagrams that 

specify the base model that the instance diagram is based upon. The instance diagram 

is the diagram or set of diagrams that instantiates the specification diagram. Instance 

diagrams are most commonly object diagrams, but in the case of checking a UML 

diagram against the UML metamodel, the instance diagram could be a sequence or 

state chart diagram which will have to be converted into an object diagram as an 

instance of the metamodel. This concept is the foundation for model instantiation 

checking performed by the tool, which is described later on in this work. With this 

division into specification and instance diagrams, we can check whether a UML 

model created by the software developer (designated as the instance diagram) 

conforms to the UML specification (designated as the specification diagram). Due to 

the four-level meta-modeling architecture of UML, we can also check if an object 

diagram (designated as the instance diagram in this case) in a UML model is a valid 

instance of a class diagram within the same model (designated as the specification 

diagram). 

In order to make the separation between the specification and instance 

diagrams clear, the input UML model has two top-level packages - one for the 

specification diagram and one for the instance diagram. Packages are defined as 

containers in UML that partition UML model elements into separate logical groups. 

We make use of this construct to place all model elements for the specification 
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diagram and instance diagram into their respective packages and define a notation to 

indicate which package contains the specification or the instance diagram. In Figure 2 

we see two top-level packages in a UML model. We use a dependency relation 

between the packages to denote the specification and the instance package. In this 

example 'Profile' contains the specification diagram and 'Instance' contains the 

instance diagram. In the rest of this work we will assume that all UML models given 

as input partition their diagrams and model elements this way. 

I 

Profile - - - - - - - - • Instance

Figure 2. Top-level packages containing specification and instance 
diagrams. 

Uses of the Tool 

The major use of the tool is to perform model instantiation checking, which is 

to check that a UML instance diagram is a valid instance of a UML specification 

diagram. Besides this, the tool can also be applied to domain-specific model 

checking. For instance, it can be used in the validation of class diagram refinement. It 

can also be used to verify UML diagrams that have been generated by a third-party 

tool following a design pattern. These uses and applications of the tool will be 

described later in this thesis. 

Development Environment 

The development environment for the tool is limited to the Windows platform 
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mainly because the AsmL compiler uses the .NET framework that is currently only 

available on Microsoft Windows operating systems. The implementation language 

used is C++ because it supports object-oriented programming, which is required to 

implement data structures for the tool (described later in this paper), and because of 

the author's familiarity with the language. The compiler used is the Windows port of 

the popular open-source GNU compiler under the MinGW package [15]. This 

compiler is used instead of the more common Visual C++ suite used for Windows 

application development because it is free and portable, although with the use of 

AsmL portability is less of an issue because the tool is already limited to running on 

Windows platforms. However, the fact that the MinGW package is free means that 

anyone else can build this tool from its source code if she has the software, platform 

requirements, and the free compiler without paying for a commercial compiler suite. 

We strive to use libraries and tools that are free or open-source for this project so that 

more people can use this work without high costs and complex licensing issues. 

This thesis will begin by spending the next few chapters discussing each of the 

modules of the tool in detail. This will be followed by a chapter on model 

instantiation checking as well as another one on message ordering verification, both 

of which are functions the tool can perform. Next some applications of the tool to 

refinement checking and design patterns are given. Finally we present limitations of 

the tool, future work and some conclusions. 
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CHAPTER II 

SPECIFICATION DIAGRAM PARSER 

The specification diagram parser module is responsible for reading in a 

specification diagram from the UML model provided in the XML file given as input 

to the tool. Usually the specification diagram will either be a UML class diagram that 

defines the static view of a software model or it could be the UML metamodel. The 

latter is used to validate a user-defined UML model with respect to a particular 

version of the UML specification released by the OMG. The specification diagram 

can also be a set of diagrams, including class diagrams, collaboration or sequence 

diagrams, and state chart diagrams, but in this case there is usually no corresponding 

instance diagram, since it does not make sense. In this case we usually perform 

validation on the individual diagrams within the specification diagram, such as 

checking for message ordering between sequence and state chart diagrams. The 

detailed discussion of this check is given in a later chapter. Figure 3 shows the 

functionality of the specification diagram parser module. 

As mentioned in the introductory chapter, the input to the specification 

diagram parser is an XML file using the XMI format and the DTD for UML models. 

Because the format is a standard, our tool can read UML models in this format that 

are generated from other UML modeling software. An example of such software is 

Rational Rose by IBM. For our purposes we use XML files generated from UML 

models created by Rational Rose Enterprise Edition installed on the campus 

computers, but technically any valid XML files generated from other UML computer­

aided software engineering (CASE) tools should work. 
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Figure 3. High-level view of translating a specification diagram. 

Data Structure Design 

Before going further into the discussion of the specification diagram parser, 

we will describe the data structure used to represent the UML model within the tool. 

This data structure is important because it is used by other modules of the tool in 

order to perform validation tests on the tool. The design of the data structure has gone 

through a number of revisions over the course of this work. At this point we note that 

the discussion on the data structure focuses mostly on UML class diagram elements, 

but can be applied to other diagrams and model elements that a UML model can have. 

At the beginning the goal was to design a data structure generic enough to 

represent any UML class diagram regardless of the UML version. The problem that 

software developers face is the selection of a particular version of UML upon which 

their design is based. For example, most commercial software including Rational 

Rose use UML 1.3, while some tools support UML 2.0 (which is still a draft 

version). For our tool to receive widespread use, support of multiple UML 
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metamodels for different versions of UML would be good. However, due to the fact 

that new model elements can be introduced into later versions of UML, it is quite 

difficult to generate a minimal set of data structures and core classes that can fit all 

possible UML metamodels that can be developed in the future. One way of solving 

this problem is by designing and using separate data structures, one for each 

significant change in the UML version, but this solution is beyond the scope of this 

work. 

As a result, we settle upon a data structure that can represent at least a UML 

1.3 model, because it is the most widely supported UML version in commercial UML 

CASE tools including Rational Rose. The data structure also supports UML 1.5 

diagrams because the changes between the two versions are not significant with the 

exception of the action semantics, which is not dealt with in this work. The data 

structure consists of core classes from the UML 1.5 metamodel [ 1 O] that are 

frequently used in UML diagrams, such as Classifier, Generalization, Association, 

Attribute, Operation, and so on. The data structure used in the tool preserves the 

complex class hierarchy and class relationships present in the UML metamodel and 

because the implementation language for the tool is C++, features like multiple 

inheritance in the UML metamodel can easily be implemented. For the purposes of 

this work, the data structure designed for the tool can support UML class diagrams, 

sequence or collaboration diagrams, state chart diagrams, and object diagrams. 

Reading the UML Model 

The specification diagram parser is actually an XML parser because the input 

file is an XML file. There are two common ways of parsing an XML file: (1) build a 

Document Object Model (DOM) [11] tree from the nested XML elements in the file, 

10 



and (2) use Simple API for XML (SAX) [12] to read XML elements sequentially 

from the file. We chose the latter method for our XML parser. The SAX interface was 

chosen over building a DOM tree because: 

1. Building a DOM tree requires the entire XML file be read to build the tree.

We are, however, ignoring most of the tags except what is needed for our

purposes and therefore wasting a lot of time and memory. With SAX,

however, we can choose to process only the relevant XML tags.

2. A DOM tree is appropriate for an application that makes changes to the

elements within the tree, for example an editor that saves information into

an XML file. However, our tool does not make ch<!,nges to the XML file.

3. A DOM tree is not suitable for our purposes because we use a different

representation for the information contained in the XML file, namely the

data structure to store model elements from the UML 1.5 metamodel. We

would be wasting memory and time copying from the DOM tree into our

own data structure. On the other hand, with SAX the parser can read

information from the XML tags directly into the data structures used by

the tool.

One of the disadvantages of using SAX is that a lot more code needs to be 

written for the parser, especially for storing the state of the parser so that we know 

what tags to expect next after one has been read in before. SAX also uses callback 

functions which makes the design and implementation of the parser different than a 

normal file reader that reads a file linearly. 

Building an XML parser from scratch is a lot of work, and why invent the 

wheel when there are good XML parser libraries out there? Therefore we choose to 

use the libxm/2 library, which is the "XML C parser and toolkit developed for the 
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Gnome project" [13]. There are other good XML parser libraries out there, both 

commercial and free, but we choose libxm/2 because it is open-source, very portable, 

implements a good number of standards related to XML, and its implementation 

passes a majority of compliance tests from the OASIS XML Tests Suite [14]. The 

Xerces-C XML parser [ 16] is also portable and has a large number of implemented 

standards, but an arbitrary choice was made in favor of libxm/2. A small argument 

against Xerces-C is that it is licensed under version 2.0 of the Apache Software 

License, which is more restrictive and incompatible with the GNU General Public 

License for most open-source software. 

The libxm/2 library provides both methods of reading XML files as described 

above, but we only use the SAX interface it provides. We use a Win32 binary version 

of the library provided on its web site in the form of dynamic link libraries (DLLs). 

The XML parser for the specification diagram parser and instance diagram parser 

modules are the same. A base class containing the XML parser routines to read the 

various XML tags from the input file is created. Ideally, the two parser modules 

should each have its own parser class - inheriting from this common base class -

containing specific handling routines to process the XML tags that each module is 

responsible for. In practice, however, the specification diagram parser module has its 

own derived parser class but the instance diagram parser module does not. This is due 

to the fact that the instance diagram is represented as an object diagram in the internal 

data structure of the tool even if it originally was a class diagram. For example, if we 

are comparing a user-defined class diagram with the UML metamodel, the user­

defined class diagram is represented as an object diagram, which is an instance of the 

UML metamodel 's class diagram. Since the user-defined class diagram is considered 

a specification diagram and is handled by the specification diagram parser, we use this 

12 



parser to read in that diagram and have internal operations to convert this into an 

object diagram. More information on this process will be provided later. 

Each model element in the XML file has an XMI identifier that is unique to a 

given XML file and can change when the file is regenerated by the modeling software 

like Rational Rose. It is used in some attributes of the UML model elements as a way 

of representing the associations between model elements in the UML metamodel. For 

example, a UML generalization has a child class and a parent class. The XML tag 

representing a generalization within a UML model will include an attribute that 

indicates the UML class that is the child class and another one that indicates the 

parent class. Each of these attributes will have a character string value - the XMI 

identifier - that indicates the child and parent class respectively. This means that we 

have to resolve these XMI identifiers to point to the actual model elements within the 

data structure representing the UML model. This is done after all the relevant model 

elements have been read into the data structures. Then for each model element in the 

UML model that contains attributes with XMI identifiers to be resolved, we search 

the data structure for the model element that has the particular XMI identifier. After 

that we link it to the originating model element by assigning it to a variable in the 

originating model element. In the example in Figure 4, the Generalization class in the 

data structure will have two string variables to store the XMI identifier for the parent 

class and child class respectively. The Generalization class will also contain two 

variables of type GeneralizableElement, which is one the parent classes of Classifier 

as specified by the UML metamodel. Once the XMI identifiers have been resolved, 

each of these two variables will point to the Classifier representing the parent class or 

child class respectively. 
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<UML:Class xmi.id =C'S.103.1714.33.92� 
name = 'A' visibi1il.y public is�cification = 'false' 
isRoot = 'true' isLeaf = 'false' isAbstract = 'false' 
isActive = 'false' 
namespace = 'S.103.1714.33.91' 
specialization= 'G�-�-•------� 

<UML:Class xmi.id 'S.103.1714.33.94' 
name = 'C' visibil1 pacification = 'false'
isRoot = 'false' isLeaf = 'true' isAbstract = 'false' 
isActive = 'false' 
namespace = 'S.103.1714.33.91' 
generalization= 'G.90' > 
<UML:Namespace.ownedElement> 

<UML:Generalization xmi.id = 'G.90'
name = '' visibility= 'public' isSpecification = 'false' 
discrimin - '' 
child= S.103.1714.33.94 parent ==Q.103.1714.33.9�> 

Figure 4. Use ofXMI IDs that are unique throughout a UML model. 

AsmL Translation 

Once the specification diagram has been read into the internal data structure 

and XMI identifiers have been resolved, we can now translate the specification 

diagram, which is usually a UML class diagram, into the target language AsmL. The 

architecture of the tool in Figure 1, already discussed in the first chapter, shows that 

the specification diagram parser, OCL parser, and instance diagram parser generates 

parts of an AsmL specification or code. We do this because we use abstract state 

machines to verify that an instance diagram is a valid instance of a specification 

diagram by checking constraints in the class diagram written in OCL. The resulting 

AsmL specification consists of three parts: (1) a set of classes generated from a UML 

class diagram, (2) a set of OCL constraints translated from OCL constraints given 

within the UML class diagram, and (3) a set of objects and their instantiations that are 

generated from an instance diagram (with respect to the UML class diagram). The 

specification· diagram parser module generates the class diagram part of the AsmL 

specification. Translation of OCL constraints and instance diagram will be described 
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in their respective chapters. 

When we discuss the translation of a specification diagram, we usually refer to 

a UML class diagram that defines the static structure of a UML model, which include 

classes and the structural relationships between those classes. A specification 

diagram, as defined earlier, can include sequence and state chart diagrams, but it does 

not make sense to translate them into the specification diagram part of the AsmL 

specification because these diagrams specify the behavior or dynamic view of a UML 

model, not the static structural view. The sequence and state chart diagrams within a 

specification diagram are used to perform message ordering verification, which is 

described in a later chapter. For now, it is sufficient to say that we use the resulting 

AsmL code to perform model instantiation checking, which will also be described 

later. Remember that this module is responsible for generating the first of three parts 

of an AsmL specification, so we ignore everything but the class diagram during 

translation. 

Moving on to the translation schema to convert a UML class diagram into 

AsmL, one of the advantages of using AsmL as the target language based on the 

concept of abstract state machines is the fact that it supports object-oriented 

programming. This feature of AsmL makes translation much easier because UML is 

inherently object-oriented and a UML class diagram consists of classes, member 

variables and methods, and inheritance, all of which are supported by AsmL directly. 

Other specification languages based on ASMs such as XASM [ 17] do not have such a 

feature. Hence, we can translate UML class diagram elements in the following way: 

• UML classes are directly translated into a class declaration in AsmL. For

example, a class called MyClass with no parent classes would be

translated into
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public class MyClass extends libOcl.OclAnylmpl 

where libOcl. Oc/Anylmpl is a class defined in the OCL library within the 

libOcl namespace. The reason for this will be given in the chapter 

describing the OCL library in AsmL. 

• Features of a UML class such as attributes and operations will be

translated into

public var at_name as libOcl.OclString

public var op_calcSalary0 as libOcl.OCllnteger

where De/String and Ocllnteger are classes declared in the OCL library

defining the OCL basic data types String and Integer. Each attribute and

operation has a prefix attached to its name so that it can be easily

identified as either an attribute or an operation within methods in the OCL

library that return type information of the classes.

• UML associations are translated into sets or sequences of objects of the

opposite association end type in the declaration of UML class. Sets are

used when the association end is not ordered and sequences are used when

it is ordered. For example, there is an unordered unidirectional association

from Customer to Order in Figure 5. When translated into AsmL, the

Customer class in the AsmL specification will have th� following member

variable:

public var ae_order as libOcl.OclSet of Order

where libOcl. Oc/Set is the OCL library class encapsulating the Set

collection type in OCL. There is no similar member variable for the Order

class because the association is unidirectional. We use a set even when the

multiplicity of the association end is exactly one because an incorrect
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object diagram can have an object that is connected by multiple links 

instantiating the association to objects at that association end. Graphical 

constraints including the multiplicity of an association end are validated by 

the tool within the instance diagram parser module and will be described 

in further detail in the chapter devoted to it. 

Custo1ner Order 

0 .. *

Figure 5. A unidirectional association between two classes. 

• Generalizations in UML classes are translated into inheritance statements

in AsmL. For example, if the class Customer has a parent class called

Person, then the declaration of the Customer class would be

public class Customer extends Person

The only problem we encounter is the fact that like Java, AsmL does not

support multiple inheritance. It supports the concept of interfaces but that

is insufficient to convey the exact semantics of multiple inheritance in a

UML class diagram. The first workaround was to have the class with

multiple parents inherit from an arbitrary parent (for example, the first

parent) and then copy the features and associations of the other parents

into the declaration of the class itself while resolving any name conflicts

arbitrarily. Recently it was discovered that this workaround would not

work correctly in certain cases when the concepts of inheritance and

17 
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polymorphism are utilized. 

For example, in the UML 1.5 metamodel, the class Classifier inherits from 

both Namespace and GeneralizableElement. If we make an arbitrary 

choice and have Classifier inherit from Namespace in the AsmL 

specification, everything works fine until we try to represent the 

association between Generalization and GeneralizableElement to indicate 

the child or parent classes in a UML generalization. There we have a 

problem because Classifier cannot be inserted into the association end set 

of GeneralizableElement (translated as described in the previous point) 

representing the child and parent classes respectively because to the 

AsmL compiler, Classifier is not a child class of GeneralizableElement. 

Because this discovery was recent, we were unable to implement another 

workaround to this problem and so we leave this as future work. 

• A stereotype is an important lightweight extension mechanism of UML

that allows a developer to attach new semantics to an existing metaclass in

the UML metamodel. We can think of a stereotyped class as extending the

functionality of an existing class, and so we use the same translation for

stereotypes as we used for generalizations. For example, if the UML

metaclass Class has a stereotype <<Entity>>, then the translation would

be

public class Entity extends Class

and any tagged definitions for the stereotype would be translated into

attributes of this class.

Using the translation schema described above, we are able to translate the 

frequently used core elements of a class diagram into AsmL. By using the object-
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oriented capability of AsmL the translation schema has been greatly simplified. 

Besides the unfortunate feature of AsmL that does not support multiple inheritance, 

the translation schema allows most UML class diagrams to be converted successfully. 
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CHAPTER III 

INSTANCE DIAGRAM PARSER 

The instance diagram parser module is responsible for reading in an instance 

diagram from a UML model in the input XML file. The instance diagram parser 

module uses an XML parser to process the XML file. However, it does not have an 

XML parser of its own. Rather, as briefly mentioned in the previous chapter, the 

instance diagram is read into the internal data structure for a specification diagram by 

the XML parser in the specification diagram parser module. This is because some of 

the UML diagrams that can be instance diagrams with respect to the UML metamodel 

such as sequence and state chart diagrams can also be specification diagrams in 

certain modes of operation of the tool. Specifically, sequence and state chart diagrams 

are treated as specification diagrams instead of instance diagrams during message 

order verification, described in a later chapter. Furthermore, because the popular 

UML modeling application Rational Rose does not support object diagrams 

separately, we have to use collaboration diagrams to represent the objects, slots, and 

links in an object diagram. Sequence and collaboration diagrams are represented in 

the same way in the XML file and are handled as a single entity by the XML parser. 

Therefore there is no need for a separate XML parser in the instance diagram module 

to read in any instance diagrams. However, this brings. up the need for the tool to 

convert the instance diagram from the specification diagram data structure into the 

data structure used to represent an object diagram. Figure 6 shows the functionality of 

the instance diagram parser module. 
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ins!Diagram : � 
ModelChecker lns!Dia Mod I lnstDiagStructure lns!DiagStructure lns!Dia Translato 

' ' '

1. getlnstanceDiagr�m(specDiagram) : 1 _1 _ «create» :

1.3. instD!agram 
'

. validate(ins!Diagram] 

1. [i=1 .. n] validateSl�ls(obj[i])

. ranslatelnstDiagram(irstDiag) 
3.1. t�nslateDiagram(ins �iag) 

Figure 6. High-level view of translating an instance diagram. 

Converting Instance Diagrams into Object Diagrams 

In the first chapter we briefly mentioned that a UML model to be input to our 

tool is partitioned into two top-level packages, one of which contains the specification 

diagram and the other which contains the instance diagram. Because the XML parser 

from the specification diagram parser module reads both the specification and 

instance diagram packages, we have to convert the model elements in the instance 

diagram package into the object diagram representation. The internal data structure of 

the tool for the UML model is a tree-like structure where containers such as UML 

packages fully own the model elements inside them. The tool currently performs two 

types of conversions: 

1. Conversion into an object diagram that 1s an instance of the UML
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metamodel. 

This is used mainly to validate a user-defined UML model against the 

UML metamodel. This validation allows the developer to see if the UML 

model follows the UML specification correctly. In this case, the 

specification diagram should be a partial or a complete UML metamodel, 

with or without OCL constraints given in the metamodel. The instance 

diagram in this case would either be a UML class diagram, sequence or 

collaboration diagram, or a state chart diagram and each model element 

would be converted into objects that instantiate meta-classes in the UML 

metamodel. 

2. Conversion from a collaboration diagram representing an actual object

diagram.

This is the easier of the two, because each classifier role in the

collaboration diagram will be directly converted into an object while each

association role is converted into a link connecting objects at the

association end roles. Slot values for each object are given in

documentation tags that are tagged to each classifier role in the

collaboration diagram. The use of documentation tags is necessary because

we are improvising an object diagram with a collaboration diagram. When

Rational Rose exports the UML model into an XML file, documentation

tags are exported as well. To avoid confusing slot values for the objects

and actual documentation, we enclose slot value declarations inside

BeginSlot and EndSlot strings. We separate different slot values with

semicolons, which are optional for the last value. For example, an object

John of class Person that has the attributes name and SSN could have the
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following slot values in the documentation tag for the classifier role 

representing the object John:

BeginSlot 

name = 'John'; SSN = 123456789 

EndSlot 

When the internal data structure for the object diagram is finally created 

from the instance diagram package within the specification diagram 

structure, the memory allocated for the package and all its contents are 

freed, leaving the specification diagram structure with just the model 

elements for the specification diagram. After this step, the instance 

diagram structure has been separated from the specification diagram 

structure and the tool can now perform validation checks and translation 

into AsmL. 

Validation Tests on the Instance Diagram 

Some validation tests are performed on the instance diagram before it is 

translated into AsmL. Problems discovered from these tests are usually given as 

warnings, much like a compiler gives warnings, and the tool terminates with an error 

before the diagram is translated into AsmL. This means that the validation tests done 

here represent the first set of tests performed by the tool to validate parts of a UML 

model. 

Checking Object Instantiation 

The instance diagram parser module makes sure that each object in the object 

diagram that will eventually be translated into AsmL is an instance of a class that 
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exists in the specification class diagram. If it is not, then the AsmL translation would 

be an error because all objects must instantiate an existing class. However, it is 

entirely possible that some objects do not have a corresponding class in the class 

diagram. This usually occurs when the object diagram is generated from a class 

diagram, sequence or collaboration diagram, or a state chart diagram. Because this 

object diagram is an instance of the UML metamodel, the tool hard-codes the 

translation of some objects based on the UML metamodel version supported by the 

tool. However, we allow the developer to provide a partial metamodel that the 

developer wants to compare the UML model against, so some metaclasses may be 

missing. In this case, the tool just sets a flag on the object so that it will be ignored for 

translation. For example, the developer can provide a partial metamodel with only the 

metaclasses Classifier and Attribute. If there are objects instantiating the metaclasses 

Generalization, Operation, or Association, they will be ignored because the developer 

is not interested in their validation. No error or warning is reported to the user if any 

object fails this test. 

Checking Slot Values for Class Attributes 

Each object must have one slot value defined for each attribute that the class it 

instantiates has. Otherwise, the object diagram is not a valid instance of the 

specification class diagram. Besides checking for the existence of a slot for each 

attribute the instantiated class has, we also check to see if the type of the slot value 

matches the expected type for that attribute. The type of the slot value is evaluated 

based on the OCL representation for the type. Using the previous example of object 

John of class Person, if the name attribute is a String and the SSN attribute is an 

Integer, then the following slot values have the correct types: 
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BeginSlot 

name = 'John'; SSN = 123456789 

EndSlot 

However, if the slot value for SSN was '123456789' instead (note the single 

quotes), the slot value would be interpreted as an OCL String, which does not match 

the Integer type of the SSN attribute. Therefore, this will be flagged as an error in the 

instance diagram in the form of a warning. 

Checking Graphical Constraints 

Graphical constraints refer to the multiplicities of association ends in the UML 

class diagram. These constraints can either be checked by algorithms within the tool 

itself or converted into OCL constraints that will be translated into the AsmL 

specification in addition to other OCL constraints a class could have. The latter 

method would have taken another step - namely the conversion into an OCL 

constraint - and then be treated like any other OCL constraint in the specification 

diagram. The former however can be done more efficiently within the tool itself by 

designing an algorithm that, for each association originating from the class an object 

instantiates, counting the number of links to objects that are exact types or subtypes of 

the opposite association end. 

Furthermore, the role name of the association end, if it exists, must match the 

role name indicated by the link end for that link to be counted towards the 

instantiation of that particular association. This check is included to disambiguate 

multiple associations between two classes, whether or not the associations are 

inherited. Therefore it is extremely important for association ends in a UML 

metamodel or profile (i.e. a specification class diagram) to have role names and each 
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role name should be unique so that the tool can properly count instances of those 

associations in the instance diagram. If the final count is within the range of the 

multiplicity for that association end, no error is reported. Otherwise, the tool displays 

a warning indicating the expected multiplicity for that association end and the count. 

Stereotypes are treated as subclasses of the element it extends, so the algorithm takes 

care of that as well. 

AsmL Translation 

Once the instance diagram passes the checks described in the previous section, 

the instance diagram parser module proceeds to translate the instance diagram into 

AsmL. The translation is rather straightforward given the fact that AsmL supports 

object-oriented programming. Translated AsmL statements are placed within a MainO 

function in the AsmL specification. Objects are translated into object declarations, for 

example: 

public var John as Person = new PersonO 

The above statement declares an object called John that instantiates the class 

Person using the example we have used in the previous sections. Each object in the 

instance diagram is declared consecutively. Following the object declarations are slot 

value assignments for each object. This is done in one step of the ASM. Recall that an 

ASM is a state machine, but updates to its member variables are done in parallel. The 

MainO function defines one such state machine, and so in one step of that ASM we 

can initialize any number of different object slot values at the same time using an 

update statement in AsmL. For example, we can initialize the name and SSN slots of 

the object John with the following block: 

step 
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John.at_name.setVal ("John") 

John.at_SSN.setVal (123456789) 

We note that AsmL uses indentation to identify blocks, so all indentation is 

important. We also note that primitive types are encapsulated by classes in the OCL 

library module; hence the setVal methods used in the example to set values for 

primitive OCL types. Back to the above block, we can see that both slot values are 

initialized at the same time within one step of the ASM for the MainO function. 

Associations are initialized the same way because they are translated into 

member variables that are sets or sequences of objects of the opposite association end 

type. This was described in the chapter on the specification diagram parser module. 

The only difference with slot initialization is that a single statement may assign an 

entire set or sequence of objects of the opposite association end. For example, if the 

object John had a set of Bank objects connected by links instantiating an association 

between the classes Person and Bank, we could have a statement like the following: 

step 

John.ae_bank.addltems( { BankOne, N atCityBank, BankOITJSA }) 

AsmL has support for set, bag, and sequence collection types, so the above 

block would add the set of three bank objects into the set representing the association 

between Person and Bank on the object John. Likewise, if the association end is 

ordered, a sequence notation would be used instead of a set. 

After the statements initializing the objects in the instance diagram, the tool 

appends additional AsmL code to initialize the set of all the instances for each class in 

the class diagram. These sets are used in OCL's alllnstancesO operation, which 

evaluates to the set of all instances of a given class in the UML model. Finally, the 

tool adds AsmL statements that will loop through each object in the object diagram 
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and call its verify0 method. The body of this method for each class in the 

specification class diagram contains the translated OCL constraints for the 

corresponding class and is generated by the OCL parser module. In effect, the AsmL 

code, when compiled and executed, will check the OCL constr�ints for each object 

and will report any constraint violations to the user. 
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CHAPTER IV 

OCL PARSER AND LIBRARY 

The OCL is used to represent constraints in the UML class diagram. 

Therefore, we parse OCL constraints and translate them into AsmL in order to enforce 

these constraints on the instance-level diagrams described in the previous section. 

There has been previous work [ 18] to write OCL compilers to translate OCL into 

languages such as Java. The OCL parser module, together with the OCL library 

written in AsmL, support the checking of OCL constraints within a UML model that 

is translated into AsmL. The OCL library will be discussed first, followed by the 

design and implementation of the OCL parser itself. 

OCL Library in AsmL 

The OCL library written in AsmL [22] implements operations of the basic and 

collection types for OCL as defined in the UML 1.5 specification. It also defines a 

class hierarchy consisting of all the OCL types including user-defined classes in the 

specification diagram so that AsmL code translated from an OCL constraint is able to 

use the specification diagram to check constraints on an instance diagram. Much of 

this will become clear in a moment when the details of this class hierarchy are 

provided. 

OCL Metamodel 

We use a class diagram to represent the structure of OCL types defined in the 

UML specification. Figure 7 shows the metamodel for OCL that is used for the OCL 
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library. The original design of the metamodel comes from [ 19] and has been modified 

to suit the needs and the limitations imposed by AsmL as a target language. 

OclSet 

OclCollection 

<<interface>> 

�' 
/ '' 

I ' 

OclAnylmpl 

OclEnum 

OclBoolean 
OclT e 

OclReal 

Oc Any 

Ocllnte er 

Oc String 

Figure 7. Metamodel showing class hierarchy of OCL types. 

All basic OCL types (Boolean, String, Integer, and Real) inherit from the 

Oc/Any class, whi.ch is the supertype of all the basic and user-defined types. The 

Oc!Type class has operations to retrieve type information from an OCL object and is 

implemented as a subtype of Oc!Any. The three OCL collection types, namely Set, 

Bag, and Sequence, inherit from an Oc!Collection class, which contains operations 

common to all the collection types. Oc/Any and Oc!Collection implement an Oc!Root 

interface, which serves two functions. First, it connects all the OCL classes in the 

hierarchy together so that object-oriented features like polymorphism can be used. 

Second, it provides a general set of operations common to all the OCL types. 

Oc!Enum represents an enumeration in OCL, and we use constant values to define 

enumeration values. Oc!Any/mpl serves as the base class for all the classes defined by 

the user in the specification class diagram. This links the classes defined in the UML 

model with the rest of the OCL types so that we can perform OCL operations on them 

30 

OclRoot 

g 



during the course of checking OCL constraints. 

The UML specification describes operations for basic and collection types in 

OCL. Since AsmL is a high-level specification language and has most of the basic 

and collection types that OCL has, most of these OCL opera!ions are implemented as 

methods that encapsulate the existing operations of the corresponding types in AsmL. 

The OCL basic datatype Real corresponds to the AsmL basic datatype Double but is 

otherwise the same. Another difference is the Bag collection type in OCL. Earlier 

versions of AsmL do not have this collection type, so it was implemented using the 

Sequence collection type in AsmL. Even though the latest versions of AsmL now 

supports the Bag type, we encountered problems using it and there was insufficient 

documentation in AsmL to find out what was wrong. Therefore the current 

implementation of the OCL library still uses an AsmL Sequence to represent an OCL 

Bag since the functionality is almost the same. 

Basic OCL Type Operations 

As mentioned earlier, operations for basic OCL types are just encapsulations 

of the corresponding operations of the basic types in AsmL. For example, the 

following code fragment shows the implementation of some operations of the OCL 

Real datatype: 

type Real = Double 

public class OclReal extends OclAny 

public var val as Real 

public addition (b as OclReal) as OclReal 

return new OclReal (val+ b.val) 

public getVal0 as Real = val 
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public setVal (b as Real) 

val:= b 

The first statement declares a type alias, much like the typedef keyword in 

C++, to be consistent with the names of the OCL types. The !lext two lines define the 

class that encapsulates the AsmL data type for a real number. The addition operator 

for the Real datatype encapsulates the '+' operation of AsmL's Double datatype. 

Many of the other basic data type operations are defined in this way. The getVal0 and 

setVa/0 methods are present in each class representing an OCL type so that we can 

retrieve and set the values of the internal data members that each of these classes 

encapsulate. There are also conversion functions converting between the primitive 

AsmL data types and the corresponding OCL class for that data type. These functions 

are used by some operations implemented in the OCL library. 

Collection Type Operations 

Collection types are encapsulated in a way similar to the basic data types, but 

this is done at the common base class for collection types, Oc/Collection. Part of the 

implementation for this class is shown below: 

public abstract class OclCollection of T implements OclRoot 

public var collSet as Set of T 

public var collSequence as Seq of T 

public var usingSet as Boolean 

AsmL has a feature called type classes that is similar to templates in C++ and 

allows a class to be instantiated to work on a particular type and this feature is used to 

define the classes for OCL collection types. The Oc/Collection class has a couple of 

data members, two of which are mutually exclusive and is used depending whether 
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the actual concrete derived class is a Set or either a Sequence or a Bag. Remember 

that the latter two collection types are implemented using an AsmL Sequence (whose 

AsmL keyword is actually just Seq). The usingSet member indicates to the common 

collection operations which of the two collection members !o use depending on the 

actual concrete collection type. Previously, instead of two mutually exclusive data 

members, the implementation used AsmL's disjuctive type, where a variable can be 

one of a few defined types: 

public var coll as Set of T or Seq of T 

The statement above declares the variable coll as having either a Set or a 

Sequence as a type. The boolean flag is still needed to easily identify the actual type of 

the data member. However, problems encountered using the disjunctive data type in 

some operations eventually forced us to use the current implementation of two 

mutually exclusive data members. 

Most of the OCL collection operations are implemented by translating their 

definitions given in the UML specification into AsmL. For example, 

public size0 as Ocllnteger 

if isSet0 then 

return ToOcllnteger (collSet.Size) 

else 

return ToOcllnteger (collSequence.Size) 

The above code fragment implements the sizeO operation in the OCL 

Collection data type. The proper data member in the class is used after determining 

whether the actual collection type is a Set, or a Sequence or Bag. One of the 

advantages of using a high-level language like AsmL is the presence of these 

collection types, which makes implementing the OCL operations a lot easier. 
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However, some collection operations cannot be implemented so easily. These include 

what we call iterate-based collection operations. 

Iterate-based Collection Operations 

There are a number of collection operations that have OCL expressions as 

parameters that work on all the elements of a collection. These are called iterate-based 

collection operations and are OCL operations that can be can be described in terms of 

an iterate operation. Operations such as select, reject, collect, for All, and exists fall 

into this category. In the UML specification, iterate is defined as follows: 

collection->iterate( elem : Type; ace : Type = <expression> I 

expression-with-elem-and-ace ) 

It is a generic collection operation that evaluates the given OCL expression for 

each element in the collection and the result of each evaluation is accumulated until 

the final result is returned to the caller. In terms of an AsmL-like pseudocode, an 

iterate expression looks like the following: 

step 

initialize accumulator 

step foreach elem in collection 

evaluate OCL expression on elem 

update accumulator with result of previous evaluation 

step 

return accumulator result 

The Java-based OCL compiler (18] handles iterate-based collection operations 

differently using inner classes, which is a feature of Java. AsmL has no such feature 

so this method is used. Instead of implementing the iterate-based collection operations 
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in this way within the OCL library in AsmL, the OCL parser module will translate 

each occurrence of an iterate-based operation into the general form above in the 

generated AsmL code, replacing the relevant parts with the actual collection and the 

expression used. From experience this is the best way to hc!J1dle expressions of this 

sort, and we believe this is the reason the iterate expression was provided in the UML 

specification. 

OCL Type Information 

In the UML specification, there are a number of operations that provide type 

information, such as the OclType operations attributes0, associationEnds0, 

operations0, supertypes0, and allSupertypes0. In Chapter 2 we mentioned that 

attributes, operations and association ends that were translated into AsmL had 

prefixes added to their names. These prefixes are used by some of these operations in 

order to quickly identify the data members in the AsmL class that are either attributes, 

operations, or an association ends. All these type operations are implemented using 

the reflection capabilities of the .NET framework that are defined in the 

System.Reflection namespace. For example, the following code fragment is the 

implementation of the attributes0 operation of the OclType class: 

public attributes0 as OclSet of OclString 

var s as OclSet of OclString = new OclSet of OclString 

var a as Set of OclString = {} 

var f = objectType.GetFields ((System.Reflection.BindingFlags.Public 

+ System.Reflection.BindingFlags.NonPublic +

System.Reflection.BindingFlags.Instance) as 

System.Reflection.BindingFlags) 
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step foreach x in (fas PrimitiveArray of System.Reflection.Fieldlnfo) 

let temp= x.Name as String 

if temp.Starts With ("at_") then 

p = new OclString((temp.Substring (3) as St!"ing)) 

add p to a 

step 

s.setVal(a)

step 

return s 

OCL Parser 

The OCL parser module consists of a lexical analyzer, a parser for OCL, a tree 

parser, and supporting classes for storing the symbol table, translated text, and for 

translating OCL constraints into AsmL. The first three components are generated 

from a parser generator called ANTLR [20]. The lexical analyzer retrieves tokens 

from a text file containing OCL constraints extracted from the specification class 

diagram and passes them to the parser, which will build a parse tree. The tree parser 

will then traverse this parse tree and then translate each OCL constraint into AsmL 

with the help of the support classes. 

Writing a parser from scratch is definitely not a good idea because of the 

complexity of the grammar from OCL, which is available in the UML specification. 

Therefore a parser generator is used to automatically generate a parser. There are 

other commonly used parser generators available that output C or C++ parsers, such 

as yacc or bison for C parsers or bison++ for C++ parsers. The parsers generated from 

these programs, however, are bottom·up parsers and only work well with LR(l) 
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grammars. Bottom up parsers also suffer from the problem of code readability 

because of the table-based method used in bottom-up parsing and there is also the 

problem of shift-reduce conflicts in grammars that are not easy to fix. On the other 

hand, ANTLR generates LL-based recursive descent parser� and supports semantic 

and syntactic predicates in a grammar specification, which means that it has more 

than one look-ahead token to parse grammars with less ambiguity. Recursive descent 

parsers are also easier to understand compared to bottom up parsers. Furthermore, 

ANTLR generates C++ parsers and is more suitable for the C++ implementation of 

the tool because yacc or bison generate C parsers. The bison++ tool produces C++ 

parsers, but still suffer from the problems of bottom-up parsing and LR( 1) grammars 

that its predecessors had. 

Another feature of ANTLR is the support of tree parsers, which are effectively 

parsers that will traverse a parse tree, such as one generated from a regular parser, and 

then perform actions on them. Tree parsers, or tree walkers as they are also called, are 

represented by a grammar specification, just as a language to be parsed is represented 

using a grammar. Therefore, for the tool we have two grammar specifications: one 

contains the lexical analyzer specification and the grammar for OCL, and the other 

one contains the grammar for the tree parser. Most of the actions are given in the 

grammar specification for the tree parser where the actual translation of OCL 

constraints are done. 

Data Structures for the OCL Parser 

The OCL parser uses a few data structures to store information about the OCL 

constraints and the translated code. First, it has a symbol table structure, which is 

common in parsers. Each symbol table entry contains at least the name of the symbol 
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and its type. If the symbol is a collection type, the type of the contained element is 

also stored. If the symbol is a method, then the return type is stored as well. Each 

symbol table is a linked list of symbol table entries. OCL supports user-defined 

operations, so the symbol table structure needs to support yariable scoping so that 

operation parameters have local scope. Scoping is also needed to localize the scope of 

variable names used in different OCL constraints within the same class (referred to as 

the context of the constraint). Therefore, we use a tree data structure in which each 

node is a symbol table. The root of the tree is the symbol table for global symbols, 

and children nodes represent symbol tables for local scopes. The scope of each sibling 

node is mutually exclusive. 

Besides the symbol table, there are data structures to store the translated OCL 

constraints. At the lowest level there is the Oc/Expr class, which stores information 

regarding an OCL expression within an OCL constraint or operation definition. This 

is the building block for translated OCL constraints. In addition to the text of the 

translated expression, each Oc/Expr object stores the evaluation type of the 

expression since OCL constraints consists of evaluation expressions, although most 

are boolean expressions. We also keep track of the index of the temporary variable 

name used to store the result of the expression as well as the indentation of this 

expression statement in AsmL. This is because in AsmL indentation is used to denote 

blocks rather than bracket pairs commonly used in other programming languages. 

There are a few other miscellaneous data members in Oc/Expr, but the most notable 

one is a linked list of Oc/Expr. This list represents translated sub-expressions that the 

current expression depends on. For instance, in the OCL expression "a and b", the 

sub-expressions a and b have to be evaluated first before the and expression can be 

evaluated. We could add the Oc/Expr objects containing the AsmL translation of the 
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sub-expressions into this list so that they will be written out to the AsmL specification 

first before the and expression. Even though this may not have been a good design 

decision, we can enforce the order of output of translated sub-expressions in this way. 

The ConstraintElement class contains a linked list _of Oc!Expr objects and 

represents one OCL constraint. It also has two string data members that contain 

header and footer AsmL code that are written to the AsmL specification before and 

after the translated statements that make up the OCL constraint. The ContextElement 

class represents a set of OCL constraints in one context, whether it is a class or an 

operation (for class or operation constraints respectively). Its data members include a 

linked list of ConstraintElements, a ConstraintElement that stores translated OCL 

expressions defining support operations used by OCL constraints in a context, and a 

string data member containing AsmL statements declaring and initializing temporary 

variables within the scope of the context that are used by the containing OCL 

constraints. 

Methodology for Translating OCL Constraints 

We utilize a divide and conquer method to translate each OCL expression, 

whether it is a constraint, a pre-condition, a post-condition, or a "let" statement 

defining a local variable or method used by constraints. With the help of the parser, 

each OCL expression is subdivided into many sub-expressions and translation occurs 

from the leaves of the parse tree going upwards. Because OCL is an evaluative 

language, each sub-expression has a result type and therefore it can be evaluated and 

the result of that evaluation is used in the containing expression, and so on. This 

means that the translation of an OCL constraint results in many sequential AsmL 

statements that stores results of the evaluations of intermediate sub-expressions 
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before the larger containing expression is evaluated. As an example, let us say that the 

class Person has the following OCL constraint (an invariant): 

inv: self.isMarried implies self.age> 18 

This constraint consists of an implies statement, whicg contains two operands 

that are sub-expressions. The dot operator in the first operand further subdivides that 

sub-expression into two more sub-expressions, which match the property call rule in 

the OCL grammar. The second operand in the implies expression is a greater-than 

expression that can be further divided into two sub-expressions, the second of which 

is a literal (the smallest possible expression). Talcing all of these into account, a 

translation in pseudo-code would be: 

tempt= self 

temp2 = templ.isMarried 

temp3 = self 

temp4 = temp3.age 

temp5 = new libOcl.Ocllnteger (18) 

temp6 = temp4.isGreaterThan (temp5) 

temp7 = temp2.irnplies (temp6) 

As you can see, each sub-expression is evaluated one by one so that its result 

can be used by the containing expression until the entire OCL constraint ( or method) 

is evaluated. The actual translation may be slightly different but this pseudo-code 

captures the basic concept in our translation schema. 

We translate iterate-based expressions in the same way but the tool adds 

additional AsmL statements following the pseudo-code for iterate expressions given 

in the section above on iterate-based collection operations. Indentation for the sub­

expressions within these iterate-based expressions have to be computed correctly 
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because of AsmL's use of indentation to denote blocks. With indentation done 

correctly the tool can translate multiple nested iterate-based expressions without 

problems. 

Property Calls in OCL Expressions 

Property calls are one of the most important expressions in OCL because they 

provide the only access to members of classes in the UML model and operations 

defined in OCL types. Property calls can have three forms: 

1. Property calls using the dot operator, such as self.name

2. Property calls using the arrow operator, such as course->sizeO

3. The property by itself, such as self

The first form is used to access members of a type where the type is not a 

collection and to navigate associations between classes. The second form is used to 

call operations of collection types. The third form is usually either self, which returns 

a reference to the current context, or a member or navigable association from the 

current context where self is implied. 

When a property call is encountered during the translation of an OCL 

expression, the tool will try to search for the property depending on the context where 

it is encountered. In the first form, we assume that the caller expression (the 

expression before the dot operator) has been evaluated. We check to see if the 

property name matches any property (for example, class attribute) of the caller type. 

In the second form, the tool will check to make sure that the calling expression 

evaluates to a collection type. If it is, then we check a hard-coded list of possible 

collection type operations and if one is found, we try to translate it together with any 

parameters for the operation if they exist. Currently we perform limited type checking 
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on the parameters of these operations. In the third form, we first check for the "self' 

string. If found, we translate it to the "me" keyword in AsmL. Otherwise, we proceed 

to find a match in the current context by assuming that self is implied. In all three 

cases, an error is reported if any type check fails or if the proQerty call is not found for 

the given caller type. Furthermore, the specification class diagram is only consulted in 

the first and third forms of the property call expression because the arrow operator in 

the second form is only used for operation calls from an OCL collection type, which 

do not involve any UML model. 

There is a special case of property call expressions. These are operations of the 

Oc!Any type and apply to all the types in the model. These operations, which include 

ocllsKindOf, ocllsTypeOf, and oc!AsType, are accessed using the dot operator, so the 

tool will check for these operation names and translate them into corresponding 

AsmL statements after doing some type checking. The first two operations translate 

into an is statement (for example, "self.ocllsKindOf(Class)" becomes "me is Class" 

where me is the translation of self in AsmL) while the latter is translated into an as

statement (for example, "self.oclAsType(Class) becomes "me as Class"). To avoid 

run-time exceptions when the generated AsmL code is compiled and executed, 

developers writing OCL constraints are advised to use ocllsKindOf or ocllsTypeOfto 

validate an object's type before doing type casting with the oc!AsType operation. 

Short-Circuit Evaluation of Logical Operators 

When translated into AsmL using the methodology explained earlier, logical 

expressions using operators such as and, or, and implies are translated so that their 

operands are evaluated first before the logical expression itself is evaluated. However, 

with the use of the casting expression using oc!AsType, run-time casting exceptions 

42 



may occur if AsmL code tries to cast an object to an invalid type. An example is the 

following constraint: 

context WebServer 

inv: self.person.ocllsKindOf (Student) implies 

self.person.oclAsType(Student).cgpa > 3.0 

This OCL constraint means that if the navigated association is a Student 

(which is a child of the class Person) then we downcast the object to its actual type, 

Student, and evaluate the boolean expression of whether the student's CGPA is 

greater than 3. The implies operator means that if the Person object is not actually a 

Student object (but for example an instance of another child class of Person called 

Worker) then the constraint automatically evaluates to true according to the truth table 

for implies. The problem is that with the default AsmL translation we use, both sub­

expressions are evaluated first and therefore the AsmL code may try to typecast a 

Person object that is not a Student object, resulting in a run-time exception. 

The solution to this is short-circuit evaluation, in which the first operand in a 

logical expression is evaluated. If the result of the logical expression can be 

determined completely by the first operand, then the remaining operands are skipped. 

This concept can be extended to logical expressions with multiple operands, where 

the fewest amount of operands needed to determine the result of the expression is 

used. Short-circuit evaluation is a feature available in many programming languages, 

but involves some complexity in implementation in the tool. However, due to recent 

uses of our tool requiring OCL constraints that have type-checking followed by type­

casting like the example above, it was implemented so that the problem can be 

solved. 
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CHAPTER V 

UML MODEL INSTANTIATION CHECKING 

One of the major purposes of the tool is to perform UML model instantiation 

checking. The UML is based on the four-level meta-modeling architecture. Each 

successive level is labeled from M3 to Mo and are usually named meta-metamodel, 

metamodel, class diagram, and object diagram respectively. A diagram at the Mi level 

is an instance of a diagram at the Mi+I level. Therefore, an object diagram (an Mo­

level diagram) is an instance of some class diagram (an M1-level diagram), and this 

class diagram is an instance of a metamodel (an M2-level diagram). The M3-level 

diagram is used to define the structure of a metamodel, and the Meta Object Facility 

[21] belongs to this level. The UML metamodel that we have been talking about

belongs to the M2-level. Model instantiation checking is therefore the process in 

which an Mi-level diagram is checked to see if it is a correct instance of the 

corresponding Mi+1-level diagram that we claim it is an instance of. The tool 

presented in this work can check a user-defined model against a UML metamodel and 

also an object diagram against a user-defined class diagram. The tool performs the 

former by converting the user-defined model into an object diagram and checking to 

see if it is a valid object diagram with respect to the metamodel. This is done by 

checking graphical and OCL constraints provided in the specification class diagram to 

ensure that the instance diagram is valid. 

The previous chapters have already described the way in which the tool reads 

in the UML model containing both the specification and instance diagram provided by 

the user and extracting the specification diagram, OCL constraints, and the instance 
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diagram to produce a single AsmL specification that can be compiled and executed to 

perform model instantiation checking. As a result, this chapter will focus on the 

notation used in a UML model to be given to the tool for checking as well as other 

notes about what the tool needs from the standpoint of the us�r. 

Notations Used in the UML Model 

To perform model instantiation checking on the diagrams in a given UML 

model, we have come up with some notations to help the tool recognize parts of the 

model that it needs to read in. This is due to the fact that UML modeling software 

such as Rational Rose are designed to support a general UML model that is not 

specific to any particular subject domain. Another reason is the fact that no modeling 

software has complete support for all the features of the UML specification. For 

instance, Rational Rose does not support object diagrams, so we use collaboration 

diagrams to represent them instead. 

To represent the specification and instance diagrams, we use two distinct top­

level packages in the model, each of which will contain either the specification 

diagram or the instance diagram respectively. This notation was briefly introduced in 

the first chapter and shown in Figure 2. All the UML diagrams that belong to the 

specification diagram will be created inside the specification diagram package, which 

is the package at the supplier end of the dependency relation between the two 

packages at the top level. All the UML diagrams that belong to the instance diagram 

will be created inside the instance diagram package, which is the package at the client 

end of the dependency relation. For the purposes of checking multiple instance 

diagrams against a single specification diagram (which could be a UML metamodel), 

there can be more than one instance package at the top level package of the UML 
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model. However, there can only be one dependency relation. To check multiple 

instance diagrams against one specification diagram, the software developer needs to 

change the client of the dependency relation from one instance package to another 

while keeping the specification package as the supplier of Jhe dependency relation. 

The tool can then be executed using this modified UML model. Conversely, the same 

technique can be used to check a single instance diagram against multiple 

specification diagrams, one at a time. 

Notations Used in a Specification Diagram 

The specification diagram usually consists of a class diagram. This class 

diagram could represent a complete or a partial UML metamodel or a UML profile (at 

the M2 level). The tool supports a partial UML metamodel because the software 

developer may not want to validate a user-defined diagram against the entire 

metamodel. This is especially true when a UML profile is used. A UML profile is an 

extension of a UML metamodel using the lightweight extension mechanism of UML 

involving UML stereotypes to provide additional semantics, constraints and structural 

relationships between the original meta-classes in the metamodel. By using a UML 

profile, the software developer can tailor the UML metamodel to a specific 

application domain using stereotypes. More information on this can be found in the 

UML specification [10]. That said, the software developer may only want to validate 

a UML diagram that is based on the profile against meta-elements in the profile itself. 

Therefore, the developer can provide only the UML profile that includes the 

stereotypes and the meta-classes that these stereotypes extend. When the tool converts 

the instance diagram into an object diagram based on the profile, any objects created 

based on the UML metamodel that is not provided in the profile will be ignored, so 
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only objects of meta-elements in the profile will be checked. 

Feature 
+feature

,-------------;dt>ownerScope: ScopeKind 
�isibility : ViaibilityKind 

+owner 0 .. 1

Classifier 

+type 

Class 

«stereotype»: 

O .. * 
---------�

{ordered}'---------�------' 

+typedF eature

o .. * Structura/Feature 

<<stereotype>>: 

<<stereotype>> 
{ subsets owner} { subsets feature} 

<<stereotype» 
MyClass MyAttr 

1 1 

Figure 8. Some elements in an example UML profile. 

Figure 8 is an example of a UML profile. In this simple profile, we have part 

of the UML metamodel elements, namely Classifier, Class, Feature, 

StructuralFeature, and Attribute. The profile extends the UML metamodel by adding 

two stereotypes, MyClass and MyAttr. These stereotypes extend the meta-classes 

Class and Attribute respectively. If a class diagram that uses these stereotypes is 

provided as an instance diagram, the tool will ignore Generalization and Association 

objects in the object diagram converted from the instance-level class diagram since 

the meta-classes for these elements are not provided in the UML profile. 

Figure 8 also shows a number of notations used in a UML model that the tool 
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will read: 

1. Stereotypes

According to the UML specification, there are two ways to show

stereotypes in a UML model. The first is to use _a table form to represent

the stereotype and listing its base class, descriptions, tag definitions, and

constraints. The second is to use a graphical notation, which is the method

we are using here. A stereotype is designated with a normal class notation

with the stereotype "stereotype", denoted with <<stereotype>> in the

figure. To indicate the base class that the stereotype extends, we use a

dependency relation (also denoted with <<stereotype>>) connecting the

stereotype (for example, MyClass) with its base class (for example, Class).

Tag definitions for the stereotype are represented as attributes in the class

notation (not shown in the figure).

2. Subset associations

Subset associations are associations between two UML classes or

stereotypes that are subsets of another association between the supertypes

of these two model elements. The notation we have adopted here is widely

used in the upcoming UML 2.0 specification and we use it to disambiguate

between multiple associations between the same two classes or their

supertypes. In the example in Figure 8, the stereotypes MyClass and

MyAttr inherit two associations from their supertypes, namely the

association between Classifier and Feature and the association between

Classifier and StructuralFeature. Without any special notation, it is

impossible to tell which of these two associations is the superset

association for the one between the two stereotypes. By adding the
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"subsets" string as a constraint at the association ends of the subset 

association, this problem is solved. 

Another important notation used in a specification class diagram is the 

representation of a enumeration. Figure 9 shows the definition of two enumerations, 

ScopeKind and VisibilityKind, in the UML metamodel. As with stereotypes, we use a 

class notation to define the enumeration but this time the class has the stereotype 

<<enumeration>>. Enumeration literals are denoted with class attributes that do not 

have a corresponding attribute type. The visibility of the attributes do not matter in 

this case. 

<<enumeration>> 
ScopeKind 

�classifier 
�instance 

<<enumeration>> 
Visib ilityKi nd 

�public 
�protected 
�private 

Figure 9. Notation for enumerations in a specification diagram. 

OCL constraints for classes in a specification class diagram are given within 

the documentation part of each class. Rational Rose will export these documentation 

tags to the XML file containing the model so the tool can read them in. Constraints 

are placed within two keywords recognized by the tool so that other forms of 

documentation can be given and will be ignored by the tool. As an example, a class 

called Person may have the following OCL constraints in its documentation tag: 

BeginOCL 

inv: self.course->size0 > l; 

inv: self.rank = #Senior implies self.age > 18 

49 



EndOCL 

Notations Used in an Instance Diagram 

An instance diagram can be an object diagram (at _the Mo level) if we are 

comparing it with a user-defined class diagram (at the M 1 level) or it can be a class 

diagram, sequence diagram, or state chart diagram if we are comparing it with the 

metamodel (at the M2 level). Rational Rose, which is the most commonly used UML 

modeling software, does not have object diagrams. Therefore we use a collaboration 

diagram to represent an object diagram, like the one shown in Figure 10. 

stude 

student 

{order�...__ __ __, 
CS224: Cf.:660: 

Course Course 

DrV\lho : DrSomeone: 

Instructor Instructor 

Figure 10. A collaboration diagram representing an object diagram. 

Classifier roles are used to represent the objects in an object diagram, while 

association roles represent the links between the objects. Classifier roles have a name 

and the base class, which is mapped into the object name and the class that the object 

instantiates. Rational Rose allows the software developer to select an existing 
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association as the base for the association role and automatically adds role names to 

them, if they exist. Objects also have slot values, and they are given inside the 

documentation part of each classifier role representing the object and they follow the 

format described in the chapter about the instance diagram P8!ser. 

If we are comparing a M 1 -level diagram against a UML profile, then the 

developer may need to provide values for tag definitions a stereotype in the profile 

might have. We still call them slot values rather than tag values because the M 1 -level 

diagram will be converted to an object diagram that is an instance of the profile. 

Therefore the format and method to provide slot values for objects are used to provide 

tag values for instances of stereotypes. However, documentation tags for some 

elements, such as relations, are not exported to the XML file representing the UML 

model. Hence, if the UML profile contains stereotypes for these elements that also 

contain tag definitions, the workaround to provide tag values for instances of these 

stereotypes is to place them in comment tags, as shown in Figure 11. 

«stereotype>> 
Associat ion Refined_Assoc <<stereotype>> 

hr--::----,--,-,-----::-,-,----+---------------- ,,.,-,,..1--------1 
�refinement_value: String 

BeginSlot 
refinement value=\11' 
EndSlot 

' 
' 

«Refine Class» 
A 

' 
' 

' 
' 

<<R��oed Assoc>> 
' -

'-

<<Refine_Class>> 
B 

Figure 11. Using comment tags to provide tag values. 
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Miscellaneous Notes 

Metamodel Version in Diagram Conversion 

One thing the software developer should know is the fact that the tool hard­

codes most of the UML 1.5 metamodel when converting a class diagram, sequence 

diagram, or a state chart diagram into an object diagram. For example, a class diagram 

with a class named 'A' with an attribute named 'age' of type Integer will be 

converted into an object diagram with an object of the meta-class Class named 'A', 

an object of the meta-class Attribute called 'age', and an object of the meta-class 

Datatype called 'Integer'. There will be a link between object 'A' and object 'age' 

that is instantiated from the association between meta-classes Classifier and Feature 

representing the relationship between a class and its attribute (see Figure 8). There 

will be another link between object 'age' and object 'Integer' which is an instantiation 

of the association between meta-classes Classifier and StructuralF eature representing 

the type of the attribute, where meta-class Datatype is a subtype of Classifier. The 

tool hard-codes the meta-classes and associations that will be used in the conversion 

when it needs to check an M 1 -level model against the metamodel, and because 

supporting multiple metamodels at this point is beyond the current scope of our work, 

we have chosen UML 1.5 as the hard-coded metamodel. 

What this means to the user of the tool is that the version of the UML 

metamodel used as the specification diagram for model instantiation checking should 

be 1.5 and this should also be true of the metamodel that a UML profile extends if a 

profile is used instead. If a different version of the metamodel is used, then the tool 

may report errors because it cannot find an association or an element that is present in 

the UML 1.5 metamodel but not in the version that was given to it. 
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Graphical Interface to Rational Rose 

Currently the tool is written as a console-based Win32 application, which 

means it needs to run in a command prompt under Windows. This might be suitable 

for a Unix- or Linux-based application, but a Windows user would expect a graphical 

user interface. Therefore, we have integrated it with the Rational Rose modeling 

software as an add-in by writing a script using BasicScript in Rational Rose that 

provides a Windows dialog box prompting the user for input to be passed on to the 

tool via a batch file. Although there is no installer, instructions are provided in a text 

file that would allow another developer to add a menu option to the tool in Rational 

Rose. At this point we are emphasizing functionality over user-friendliness, but future 

work include providing a user-friendly graphical interface to the user. A screenshot of 

the user interface in Rational Rose is shown in Figure 12. The tool has four operating 

modes right now. The two modes at the top row are the model instantiation checking 

modes that have been discussed in this chapter. The ones in the second row will be 

discussed in more detail later. Note that the add-in runs independent of whatever 

model that has been loaded into Rational Rose because the only input file it requires 

is an XML file containing the UML model to be checked that has been generated 

prior to running the tool. 
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Select'-· 

Tool operating mode-----:-=--:--=,-----------,,,:-==� 

� Profile+ instance diagram 
(' CWs diagram refinelnent 

OK 

(' Class + object diagram 
r seq + statechart message' order 

Cancel ] 

Figure 12. Graphical user interface for the tool in Rational Rose. 
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CHAPTER VI 

UML MESSAGE ORDERING VERIFICATION 

Besides model instantiation checking, our tool can also perform what we call 

message ordering verification, which involves two types of diagrams in a UML 

model: sequence diagrams and state chart diagrams. UML sequence diagrams are 

used to model the interactions between objects in a software system. A sequence 

diagram shows the sequence of messages exchanged between objects in a given 

scenario. For instance, Figure 13 shows a sequence diagram for a telephone system 

where the user uses the telephone exchange to make a successful phone call. UML 

state chart diagrams are used to model the behavior of individual objects by using 

states that show how the objects respond to various messages and events during the 

execuation of a software system. As an example, Figure 14 is a state chart diagram 

showing what a user in a telephone system can do in response to events. 

In a valid UML model of a software system, the sequence of messages sent 

and received by an object in a sequence diagram should be consistent with the 

sequence of messages sent and received by that same object in a state chart diagram 

for the corresponding class. For example, if a sequence diagram shows a user picking 

up a phone, dialing a number and then getting a working phone connection, then the 

corresponding state chart diagram should show a possible scenario where the same 

sequence of events can occur. In this work, the process of ensuring that sequence and 

state chart diagram messages are consistent is called message ordering verification. 
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Bob: Person AT&T: 
Telecom 

1: pi�kupPhone() 

2: dialNum ber(String) 
' 
'

� 
' 

� 3: con nect() 
4: returnConnection() � 

__, 
----

--.. 

': Chat () 

6: endCall 

7: hangUp 

8: dialtone ,--

�-- - - ------- - - - - - ------------- ------

' 

Figure 13. Sequence diagram for a scenario in a telephone network. 
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exit/ ATelecom.h ang Up 
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Figure 14. State chart diagram for a person in a telephone network. 
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To perform message ordering verification, the tool constructs a message graph 

for each state chart diagram and builds a list of messages sent and received by each 

object in a sequence diagram. After that the goal is to find an initialized trajectory in 

the message graph that matches the sequence of messages �ent and received by the 

corresponding object. Basically this is just a graph search to find a path starting from 

the initial node in the message graph that containing the same sequence of messages 

in the message list for an object. The following pseudo-code illustrates the overall 

algorithm for message ordering verification. Details for the algorithm will be given 

later in this chapter. 

***** MainLoop: 

For each statechart diagram s in the model 

BuildMessageGraph(s) 

For each sequence diagram x in the model 

n = number of collaboration roles in x 

create n empty lists, a[n] 

for each message m in the ordered message list for x 

add m to a[i] if i is a receiver or sender in m 

for each list y in a 

CheckMessageOrder(y, classifier for list y) 

***** CheckMessageOrder(y ,c): 

G = message graph for c 

p = initial node in G 

for each message q in ordered list y 

find b in non-pseudo node successors of p where b = q 
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p=b 

return true 

ifnone return false 

Data Structures for the Algorithm 

The data structures used for the message ordering verification algorithm 

include a message graph, a list of messages for each object in a sequence diagram, 

and some additional data structures to store intermediate information. 

Each state chart diagram will have one message graph, which is a graph where 

nodes represent messages in a state chart diagram and transitions represent the next 

possible messages. The message graph represents all possible sequences of messages 

that can be triggered and executed based on information in the corresponding state 

chart diagram. It is just a different representation of the state chart diagram, but in this 

representation each node in the message graph contains messages so searching for 

sequence of messages along a path in the graph becomes easier compared to doing the 

same search in a state chart diagram. 

There are several node types in the message graph and they are: StubEntry, 

Entry, DoActivity, Event, EventEffect, TransStart, Transition, TransEffect, and 

Exit nodes. Most of them correspond to the events and actions in a state chart 

diagram. Although the message graph only contains message nodes, sets of nodes 

form a virtual state that has information about the corresponding state in the state 

chart diagram. As shown in Figure 15, we keep track of the message nodes that 

belong to a state in the state chart diagram while constructing the message graph. The 

transitions in the figure represent the possible messages that can occur after a 

particular message node. Most of the nodes are optional depending on what the state 
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has, but there will always be an Entry node (represented as a StubEntry node if there 

is no entry action) and a TransStart node (starting point for all outgoing transitions 

from the state) in each virtual state. Event nodes are the triggers for the internal 

transitions within a state. Transition nodes represent ttjggers for an outgoing 

transition. Exit actions occur after a transition event but before the effect of the 

transition so the Exit node for a state, if present, is inserted right after a Transition 

node. 

-
, 
- -- -- -- --. Entry- - -

VIRTUAL STATE l

I /� 
I 

iDoActivity • ----------- • I 
I 

E�� I 
I i I 
I � 

BventBffect I 
I �ransstact • I L------}----------' 

• Transition

Bxit ! 
TransEffect 

1------ � ------

/. VIRTUAL STATE I
I • E�ry 

I 

Figure 15. Virtual states in a message graph. 

While constructing the message graph, the tool keeps track of the nodes in 

each virtual state in the graph. For each virtual state, pointers to the nodes 
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representing the entry action, do activity, and events are stored. Also stored is a 

pointer to the TransStart node for the state and a string containing the exit action, 

whose node will be inserted separately for each outgoing transition from the state. The 

state index of the parent state is also stored if the current �tate is a sub-state. Each 

state in the state chart diagram read from the UML model is given an integer index 

unique to a state chart diagram that allows states to be indexed in an array for easy 

access. The information for virtual states in the message graph is only stored during 

the construction of the message graph, where that information is used to help in 

connecting message nodes to each other in the graph. After construction, the message 

graph only stores the list of nodes and a pointer to the initial node. 

Another important data structure is the list of messages for each object in the 

sequence diagram. Each object in the sequence diagram interacts with other objects 

by sending and receiving messages. For the purposes of message ordering 

verification, we want a list of messages sent and received by each object to be 

checked with the message graph that was constructed based on the state chart diagram 

of the corresponding class. Messages can have one of two types: sent or received. 

Sent messages are messages that are sent by the current object to another object in the 

sequence diagram. We treat messages sent by an object to itself (for instance, to an 

operation in the object's own class) as a sent message. Received messages are 

messages received by the current object from another object in the sequence diagram. 

In Figure 13 the list of messages for the object Bob will be all the messages in the 

sequence diagram except connect because that message is only seen by the object 

AT&T. From the context of object Bob, messages 1, 2, 5, and 7 are sent messages, 

while messages 4 and 6 are received messages. We currently ignore return values 

such as message 8. 
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Constructing the Message Graph 

The first part of message order verification is to con�truct one message graph 

for each state chart diagram for a class in the specification diagram. The pseudo-code 

for the high-level BuildMessageGraphO function in the algorithm is shown below: 

void BuildMessageGraph (StateMachine m) 

initMap(stateN odeMap) 

init = GetlnitialState(m) 

buildSubGraphs(m, init) 

buildCompositeStatesO 

buildTransitionsO 

The function initMapO initializes an array of structures that will store 

information about virtual states in the message graph. After finding the initial state in 

the diagram, buildSubgraphsO will create and connect message nodes for all the states 

so that they look like the nodes in Figure 15. Initial states and final states will only 

have the StubEntry and TransStart nodes because they do not have the other types 

of messages. The buildSubgraphsO function will also set the "parent" field in the 

virtual state structure if the current state is a substate within a composite state. Initial 

substates are also labeled at this point. At the end of buildSubgraphsO, the message 

graph contains many unconnected sub-graphs where each sub-graph represents a state 

or substate in the original state chart diagram. 

The function buildCompositeStatesO searches for all substates in the state 

chart diagram and connects each substate's message nodes to the message nodes of all 
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ancestor composite states: 

void buildCompositeStatesO 

for each state x in the statechart diagram with a parent state 

if x is an initial state 

do 

add x.entry as successor to parent.entry/doActivity 

connectSubstate(x, parent) 

connectSubstateTrans(x, parent) 

parent = parent composite state of parent 

until top-level composite state is reached 
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Figure 16. Connecting substates with parent composite states. 

Figure 16 shows what connectSubstateO does to connect the message nodes of 

each substate with the message nodes of each parent or ancestor composite state. The 

messages are connected based on the possible sequences of messages that can occur. 

For instance an event in the parent state can be triggered during the do activity of a 
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substate, and after the event's effect or action has been executed, control might go 

back to the substate's do activity again. Remember that message order verification 

involves searching the message graph for any path that matches the sequence of 

messages an object sends and receives in a sequence diagr�, so the message graph 

represents all possible scenarios and paths that can be taken depending on triggered 

events and guards in the state chart diagram. 

The function connectSubstateTransO connects a substate with outgoing 

transitions of its ancestor states, including a proper sequence of exit actions. This 

behavior is defined in the UML specification. For example, in Figure 17 there is a 

transition from state A to state D. If the transition is triggered while the current 

execution of the object instantiating this class is in substate C, the sequence of 

messages should be: transition trigger, exitC, exitB, exitA, transition effect, and the 

entry action of D. The transition trigger and effect as well as the entry action ofD are 

optional. Assuming all the triggers and actions are present, the resulting portion of the 

message graph would look like Figure 18 after the connectSubstateTransO function 

completes its task. 

The final task m the high-level function BuildMessageGraphO is calling 

buildTransitionsO, which connects each virtual state in the message graph to another 

virtual state based on transitions in the state chart diagram. This function links the 

sub-graphs in the message graph together the same way transitions link different 

states in the state chart diagram together. This procedure is similar to the one in 

Figure 18. 
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Figure 17. Cascading exit actions in a state chart diagram. 
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Figure 18. Connecting cascading exit actions. 
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If there are no transition triggers, effects, and exit action, then the TransStart 

node of the source state is directly linked to the Entry node of the target state. Figure 

19 shows an example of different outgoing transitions to other states where some 

transitions may or may not have transition triggers and effects. Besides this, 

buildTransitionsO also adds the proper sequence of cascading Entry nodes if the 

source state has a transition going into a nested substate, similar to what is done for 

cascading exit actions. 
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Figure 19. Connecting transitions between states. 

Searching the Message Graph 

After the message graphs have been constructed, the next step is to build the 

list of messages for each object in a sequence diagram. If there are multiple sequence 

diagrams in a UML model then the process is repeated. The pseudo-algorithm for this 

step was given near the beginning of the chapter. Once the message lists are created, 

searching the message graph is quite simple. Each message graph has a pointer to the 

initial message node (which is the Entry node for the initial state in the state chart 

diagram for the particular class). If we think of the message list for an object as a 

queue, then we first compare the front of the queue with the current node in the 

message graph. A match is found when the names of the two messages are the same 

and the message types match. Remember that there are two types of messages in the 

message list: sent and received messages. Received messages can be matched with 

event triggers or transition triggers in the state chart diagram because these triggers 

are messages that the current object receives from another object. Sent messages can 

be matched with entry actions, exit actions, do activities, event effects, and transition 
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effects because the messages are sent by the current object to another object or to 

itself. 

When a match is found, then we move on to the next message in the queue. 

Then we try to find a successor node in the message graph _that will match this new

message. If no successors are found, then the recursive search algorithm will 

backtrack to the previously matched message and the previous message node and 

attempt to find another successor node with a match. The search returns an error if no 

path in the message graph can be found that matches the sequence of messages in the 

message list for the current object. The algorithm keeps track of the longest match and 

returns that in the case of an error so that the developer has more information on what 

caused the message ordering verification procedure to fail. The algorithm succeeds 

when a path with the sequence of messages in the message list exists in the message 

graph. 

For example, checking the message list of the object Bob in Figure 13 with the 

message graph generated from the state chart diagram for class Person in Figure 14 

results in success. If, however, we remove message 4 (returnConnectionO) from the 

sequence diagram, the validation process would return an error because the algorithm 

would be unable to find a path in the message graph for class Person where the sent 

message Chat follows the sent message dialNumber. In terms of the original state 

chart diagram, the current state of object Bob after message 2 would be the substate 

Calling, which has no entry action, do activity, exit action, event effect, or transition 

effect named Chat. Therefore, the sequence diagram is incorrect with respect to 

message ordering. 
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Guards in Transitions and Events 

Transitions and events (which are just internal transitions in a state) in a state 

chart diagram may have guards, which are boolean expressions that have to evaluate 

to a true value before a transition can be traversed. Guards provide some level of 

control over the behavior of an object depending on factors such as variable values 

and so on. Supporting guards would definitely make our message ordering 

verification algorithm better since they are part of the semantics of a state chart 

diagram. When the tool encounters a guard in a transition node in the message graph 

it is currently trying to match, the tool will display the guard expression and prompt 

the user to say whether the guard evaluates to true or false. If the guard is true, then 

the tool proceeds with the graph search along the current path for the next match. 

Otherwise, the tool treats the match as being false and the algorithm will backtrack to 

search for another matching successor node. The evaluation of the guard is therefore 

up to the developer, and he may let a guard be true or false on different runs to test 

different scenarios in the sequence diagram. 

This method of handling guards in transitions and, events may not be very 

efficient, but the alternative would be to implement a parser that can parse and 

evaluate guards, which also means that the tool has to keep track of all variables and 

values so that the guards can be evaluated automatically. It might be possible to 

perform message ordering verification in AsmL by generating AsmL code that can be 

compiled and executed, just like we did for m�del instantiation checking, but the 

entire design for this validation test will need to be changed. 

Notation for Message Names 

Message names in the sequence and state chart diagrams need to have a 
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particular notation for the messages to be compared for matches during the second 

phase of message order verification in which the message graph is searched. 

Depending on the UML model, there might be different ways of specifying messages. 

The simplest notation are the ones in our telephone network example where messages 

are just single names (for example, hangUp). In a more detailed and precise model, 

however, messages can have parameters since most messages between objects are 

actually operation calls (for example, dia!Number(someNumber) which has one 

parameter). In state chart diagrams, the name of the class that the message is sent to or 

the operation call is directed to can be prefixed to the message. For instance, 

Telecom.dia!Number(someNumber) is a message sent to an object of the Telecom 

class calling the operation of that class named dia!Number with a single parameter. 

These are three notations that can be used for messages in the two UML diagrams. 

The tool handles message names by stripping class prefixes and parameters 

off, leaving only the actual message or operation call. Therefore in the two preceding 

examples we are left with the message dia!Number, which can be easily matched. A 

better but more complex way is to check the parameters as well, but that would 

require data structures and parser code so that parameter evaluation can be done. Just 

as with the complex checking of transition guards, this might be handled better by 

parsing and translating the sequence and state chart diagrams into executable form 

such as through the use of AsmL. This is beyond the scope of the our work because 

our main focus is on model instantiation checking. 

68 



CHAPTER VII 

APPLICATIONS OF THE TOOL 

Now that the features and uses of the tool have been described, we now look 

at what the tool can be applied to. One of the common uses ofUML is to design UML 

profiles based on the metamodel and then creating diagrams based on the profile. Our 

tool allows software developers to check that the diagrams they create are correct 

instance diagrams with respect to a UML profile that is used in a specific domain. For 

this thesis two such applications of the tool are presented: ( 1) a UML profile assisting 

developers in class diagram refinement, and (2) verifying class diagrams that are 

based on UML profiles representing design patterns. 

Class Diagram Refinement 

Modern software development is a complicated process especially when the 

software system to be designed is large and complex. Software developers apply 

software refinement in order to proceed from a high-level design to a more detailed 

design by adding new diagrams, classes, and other elements to an existing UML 

model representing the software system. Class diagrams are important because they 

represent the static structure of a software system, and therefore we design a UML 

profile based on the UML metamodel to support class diagram refinement [23]. The 

main idea is to help developers check whether two consecutive levels of class 

diagrams, one of which is a refined version of the other, have any semantic 

discrepancies that could have been introduced during the refinement phase. This will 

help software developers find errors during software development and also lets them 

69 



know whether their development is on the right track since some discrepancies are 

caused by the refinement process from an imprecise problem to a precise solution. 

We support class diagram refinement by designing a UML profile, which 

extends the original UML metamodel by using stereotypes, that software developers 

can use to tag classes and relations in the class diagrams at the different levels of 

refinement. Then with the help of OCL constraints written for some of the 

stereotypes, we can use the model instantiation checking feature of our tool to check 

whether the combined class diagram containing classes at the two levels of refinement 

is a correct instance of the profile, which would mean that they pass the rules of 

refinement that we provide in the OCL constraints. 

Notation for Class Diagram Refinement 

In order for the tool to support class diagram refinement, we have to specify a 

notation to represent class diagrams at two different levels of refinement within a 

UML model that will be given as input to the tool. The solution here is pretty simple. 

We use the same notation that we used to separate specification and instance 

diagrams in the UML model when using the tool for model instantiation checking, 

which is to use packages and connect them with dependency relationships. Therefore, 

the UML model used for this purpose would first have two top-level packages: one 

for the UML profile ( as the specification diagram package) and one for the instance 

diagram. Instead of the normal instance diagrams, the instance diagram package 

would contain two or more packages that will each contain one class diagram at 

different levels of refinement. There has to be exactly one dependency relationship 

connecting two of those packages where the supplier is the higher-level class diagram 

and the client is the refined class diagram. This is shown in Figure 20, in which we 
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are designating the package labeled "Level 2" as the higher-level class diagram and 

the "Level 3" package as the refined class diagram. This way the software developer 

is able to compare any two levels of class diagram refinement, just as we can validate 

any instance diagram package with a corresponding specification diagram package by 

changing the client and supplier of the dependency relation. 

Refinement 
Profile 

I 
Instance Package 

I kvel 2 f- - - - - � kvel 3 I
Figure 20. Package structure in a UML model supporting class diagram 
refinement. 

We extend the UML metamodel by introducing stereotypes including 

Refine_Class, Refined_Assoc, Refining_Assoc, Refined_Gen, and Refining_Gen. A 

stereotype that has the prefix Refined_ represents an element to be refined, i.e. its 

instance belongs to a higher-level model. A stereotype with the prefix Refining_ 

represents an element that is used to refine an element at the higher-level model. The 

Refine_Class stereotype is used to represent classes at the ends of a refined or a 

refining relation. We define a tag named mapping_name that is used to represent a 

refinement relation between two classes during class diagram refinement. If two 

classes have the same value for mapping_name, then these two classes are involved in 

71 

- - - - - - . 



some refinement relation. Each of the other stereotypes have a tag named 

refinement_value, which is used to represent elements that are involved in a 

refinement relation. All Refined_ and Refining_ stereotypes with the same value for 

refinement_value are involved in some refinement relation. In addition to this, each 

Refining_ stereotype also has a tag named mapping_order, which is an integer value 

that represents the order in which the refining element appears in the relation that is 

refined in the refined class diagram. The purpose of this will be made clearer when 

the rules for refinement are discussed below. Figure 21 shows part of the UML profile 

supporting class diagram refinement. 
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Figure 21. Part of UML profile supporting class diagram refinement. 
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Rules for Refinement 

Rules for the refinement of relations from a higher-level model to a refined 

model are given in the form of OCL constraints attached to some of the stereotypes 

defined in the profile for class diagram refinement. We will present some refinement 

rules for generalization, bidirectional association, and unidirectional association. 

Generalization 

At level one, which is the higher-level class diagram, we assume that the class 

A is a subclass of B. Then at level two, which is the refined class diagram, the 

generalization can be refined into two or more generalizations by adding helper 

classes. We assume that class A maps to class X in the refined model while class B 

maps to class Y by using the same values for mapping_name respectively. We also 

assume that the order of refining generalizations go from the child to the parent end­

classes. This rule is depicted in Figure 22. 

<<Refine_ Class>> <<Refined_ Gen>> I'---
<<Refme Class>> 

V mapping_ naine=" one" refinement value= 'vl' mapping_naine="two" 

(a) Level One

< R.efi.Jdnc Ge 
<<Refme_Class>> 

mapping_naine=" one" 

nfinement_value='vl' 
mapping_ value= I 

«R.efi.Junc_ Gen» <<Refme_ Class>> 

mapping_naine="two'' 

nfinement_val•= 'vl' 
mappinc_ val•=n 

(b) Level Two

Figure 22. A rule for refinement of generalizations. 
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The stereotype Refined_Gen is used to represent a generalization at the higher­

level class diagram that will be refined in the lower-level class diagram. It should 

satisfy restrictions between itself and its corresponding refining generalizations: 

• The refined generalization should be refined to a set of generalizations

• The child of the refined generalization should correspond to the child of

the first refining generalization

• The parent of the refined generalization should correspond to the parent of

the last refining generalization

• Two consecutive generalizations should have the same class as their end

class, and this class is the parent class of one generalization and the child

class of the other generalization.

The OCL constraint for the stereotype Refined_Gen is shown in Figure 23. 

context Refined Gen 
inv: let matchingGen : Set(Generalization) = 

Generalization.alllnstances()->select(gl g.ocllsKindOf(Refining_Gen) and 
g.oclAsType(Refining_Gen).refinement_value = self .refinement_value)

in 
self .parent.ocllsKindOf(Refine_Class) and 
self .child.ocllsKindOf(Refine_Class) and 
matchingGen->forAll (a,b I a.oclAsType(Refining_Gen).mapping_order 

b.oclAsType(Refining Gen).mapping order implies a = b 
>I

- -

and matchingGen->forAll (al
a.oclAsType(Refining_Gen).mapping_order >= 1 and
a.oclAsType(Refining_Gen).mapping_order <= matchingGen->size()

) 
and matchingGen->exists (a,b I a<>b and 

a.oclAsType(Refining_Gen).mapping_order = 1 and 
a.child.ocllsKindOf(Refine_Class) and
a.child.oclAsType(Refine_Class) .mapping_name =

) 

self .child.oclAsType(Refine_Class) .mapping_name and
b.oclAsType(Refining_Gen) .mapping_order = matchingGen->size() and
b.parent.ocllsKindOf(Refine_Class) and
b.parent.oclAsType(Refine_Class).mapping_name =
self .parent.oclAsType(Refine_Class).mapping_name

and matchingGen->forAll (c,d I (c<>d and 
c.oclAsType(Refining_Gen).mapping_order + 1 = 

d.oclAsType(Refining_Gen) .mapping_order) implies
(c.parent = d.child)

Figure 23. Refinement rule for generalizations. 
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The constraint for the stereotype Refining_Gen is related to the stereotype 

Refined_Gen, which was already provided. Therefore there is no constraint for 

Refining_Gen. 

Bidirectional Association 

At level one, we assume that there is a bidirectional association between class 

A and class B. This association can be refined to a set of bidirectional associations 

using a set of helper classes. Figure 24 shows this refinement rule. 

<<Refme_ Class>> <<Refmed Assoc>> <<Refme _ Class>> 
A 

mapping__ name=" one" refmement_ value='bi' mapping__name=''two'' 

(a) Level One

<<Refme_ Class>><< Refining_ Assoc >>

mapping__ name=" one" 

refinement_value='lli' 
mapping_ order= l 

«Refininc_Assoc> <<Refme_Class>> 

mapping__name=''two" 

refinement_value='lli' 

mapping_ order=n 

(b) Level Two

Figure 24. A rule for refinement of bidirectional associations. 

The stereotype Refined_Assoc represents the association at the higher-level 

diagram that will be refined in the lower-level diagram. It should satisfy the following 

restrictions between itself and its corresponding refining associations: 

• The refined association should be refined to a chain of associations

• The two end classes on the refined association correspond to the two

classes at both ends of the chain of the refining associations
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• Two consecutive bidirectional associations should have the same class as

their end class.

The OCL constraint for the stereotype Refined_Assoc is shown in Figure 25. 

inv: let matchingAssoc : Set(Association) = 

Association.allinstances()->select(gl g.oclisKindOf(Refining_Assoc) and 
g.oclAsType(Refining_Assoc).refinement_value = self .refinement_value) in

self .associationEnd->forAll (p,q I (p<>q and p.isNavigable and q.isNavigable) 
implies (p.participant.oclisKindOf(Refine_Class) and 

q.participant.oclisKindOf(Refine_Class) and
matchingAssoc->forAll (a,b I a.oclAsType(Refining_Assoc).mapping_order

b.oclAsType(Refining_Assoc).mapping_order implies a = b)
and matchingAssoc->forAll (all
a.oclAsType(Refining_Assoc).mapping_order >= 1 and
a.oclAsType(Refining_Assoc).mapping_order <= matchingAssoc->size())

and matchingAssoc->exists (a,b I a<>b and 
(a.oclAsType(Refining_Assoc).mapping_order = 1 and 

a.associationEnd->exists (ell el.isNavigable and
el.participant.oclisKindOf(Refine_Class) and
el.participant.oclAsType(Refine_Class).mapping_name
p.participant.oclAsType(Refine_Class).mapping_name)

and b.oclAsType(Refining_Assoc).mapping_order = matchingAssoc->size() and 
b.associationEnd->exists (e21 e2.isNavigable and

e2.participant.oclisKind0f(Refine_Class) and
e2.participant.oclAsType(Refine_Class).mapping_name =
q.participant.oclAsType(Refine_Class).mapping_name))

or (a.oclAsType(Refining_Assoc).mapping_order = matchingAssoc->size() and 
a.associationEnd->exists (ell el.isNavigable and

el.participant.oclisKindOf(Refine_Class) and
el.participant.oclAsType(Refine_Class).mapping_name
p.participant.oclAsType(Refine_Class).mapping_name)

and b.oclAsType(Refining_Assoc).mapping_order = 1 and 
b.associationEnd->exists (e21 e2.isNavigable and

e2.participant.oclisKind0f(Refine_Class) and
e2.participant.oclAsType(Refine_Class).mapping_name
q.participant.oclAsType(Refine_Class).mapping_name)))

and matchingAssoc->forAll (c,d I (c<>d and 
c.oclAsType(Refining_Assoc).mapping_order + 1 = 

d.oclAsType(Refining_Assoc).mapping_order)
implies (c.associationEnd->exists (xi d.associationEnd->exists (vi 

x.isNavigable and y.isNavigable and x.participant = y.participant)))))

Figure 25. Refinement rule for bidirectional associations.

The constraint for the stereotype Refining_Assoc is related to the one in 

Refined_Assoc and therefore no constraint is provided for Refining_Assoc. 

Unidirectional Association 

At level one, we assume that there is a unidirectional association from class A 

to class B, which is then refined to a set of unidirectional associations in the lower­

level diagram. This rule is shown in Figure 26. 
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<<Refme_ Class>> <<Refmed_Assoc>>" 
<<Refme _ Class>> 

A 
/ 

mapping_ name=" one" refmement_ value='uni' mapping_ name=''two'' 

(a) Level One 

<<Refme_Class>> < fininc_Assoc > 

X 

mapping_name=" one"

refinement_ value= 'uni' 
mapping_ order= l 

«Refininc_Asso,( <<Refme_Class>>
y

/ mapping_name="two"

refinement_ value= 'uni' 
mapping_ order=n 

(b) Level Two

Figure 26. A rule for refinement of unidirectional associations. 

The stereotype Refined_Assoc is also used here to represent a unidirectional 

association at the higher-level class diagram. It should satisfy the following 

restrictions between itself and the set of Refining_Assoc in the refined class diagram: 

• The refined association should be refined to a chain of associations

• The class at the navigable end of the refined association should correspond

to the class at the navigable end of the last association in the chain of the

refining associations

• The class at the non-navigable end of the refined association should

correspond to the class at the non-navigable end of the first association in

the chain of the refining associations

• Two consecutive unidirectional associations should have the same class as

their end class and this class is at the navigable end of one association and

the non-navigable end of the other association.

The OCL constraint for the stereotype Refined_Assoc is shown in Figure 27. 

The refinement rules for bidirectional associations and unidirectional associations are 

77 

B I 

Jl -
_t 1 ······· 1..-------------, 



mutually-exclusive and can be seen in the first operand for the implies operator near 

the beginning of each OCL constraint, which ensures that the constraint is completely 

evaluated only if the required conditions are true. Remember that with short-circuit 

evaluation, the rest of the implies expression is ignored if t�e first operand evaluates 

to false. 

inv: let matchingAssoc Set(Association) = 

Association.alllnstances()->select(gl g.ocllsKindOf(Refining_Assoc) and 

g.oclAsType(Refining_Assoc).refinement_value = self.refinement_value) in
self.associationEnd->forAll (p,q I (p<>q and not p.isNavigable and q.isNavigable) 
implies (p.participant.ocllsKindOf(Refine_Class) and 

q.participant.ocllsKindOf(Refine_Class) and
matchingAssoc->forAll (a,b I a.oclAsType(Refining_Assoc).mapping_order

b.oclAsType(Refining_Assoc).mapping_order implies a = b) 
and matchingAssoc->forAll (al 

a.oclAsType(Refining_Assoc).mapping_order >= 1 and
a.oclAsType(Refining_Assoc).mapping_order <= matchingAssoc->size())

and matchingAssoc->exists (a,b I a<>b and 
a.oclAsType(Refining_Assoc).mapping_order = 1 and
a.associationEnd->exists (el I el.participant.ocllsKindOf(Refine_Class) and

el.participant.oclAsType(Refine_Class).mapping_name =
p.participant.oclAsType(Refine_Class).mapping_name)

and b.oclAsType(Refining_Assoc).mapping_order = matchingAssoc->size() and 
b.associationEnd->exists (e2 I e2.participant.ocllsKind0£(Refine_Class) and

e2.participant.oclAsType(Refine_Class).mapping_name =
q.participant.oclAsType(Refine_Class).mapping_name))

and matchingAssoc->forAll (c,d I (c<>d and 
c.oclAsType(Refining_Assoc).mapping_order + 1 =
d.oclAsType(Refining_Assoc).mapping_order)

implies (c.associationEnd->exists (xi d.associationEnd->exists (YI 
x.isNavigable and x.participant = y.participant))))

and matchingAssoc->exists (m I m.associationEnd->exists (n I 
not n.isNavigable))) 

Figure 27. Refinement rule for unidirectional associations. 

Advantage of Using Metamodel Methodology 

The refinement rules presented here are conservative in the sense that they try 

to keep the transitive property for each relationship during refinement. The refinement 

rule for unidirectional associations actually allows some of the refining associations to 

be bidirectional as long as at least one of them is unidirectional and the navigation of 

the unidirectional associations is consistent with the corresponding unidirectional 

association at the higher-level model. One important advantage of the metamodel 

methodology is that developers can easily design their metamodel to reflect the 
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refinement rules they want. 

Design Pattern Profile Checking 

Another application of our tool is to the validation_ of UML class diagrams 

generated from a UML profile specifying a design pattern. France et al. [24] describe 

a technique to specify design patterns by specializing the UML metamodel to obtain a 

pattern metamodel that can be used in model driven architecture (MDA). The pattern 

specification is represented using a custom notation in a class or sequence diagram, 

which we can translate into a UML profile using stereotypes, graphical constraints, 

and OCL constraints. Class diagrams that are designed based on a particular design 

pattern can be regarded as an instance of the UML profile representing the pattern. 

This means that we can use our tool to verify that the generated diagrams are valid 

instances of the corresponding profile. This can be useful to the software developer, 

especially after details are added to the UML diagrams, to ensure that the diagram still 

follows the constraints and structure specified by a particular design pattern. 

To illustrate the application of our tool to design pattern profile checking, we 

present an example of a user-defined class diagram that uses the State design pattern 

introduced by Gamma et al. [25] and check whether the class diagram is a valid 

instance of the UML profile representing the State design pattern. 

A Profile for the State Design Pattern 

The State design pattern is a behavioral design pattern that allows the behavior 

of an object to change when its internal state changes. This design pattern is used 

when an object's behavior depends on its state at run-time. The structure of the State 

design pattern is shown in Figure 28. 
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Context +state State 
� 

♦RequestQ ♦HandleQ

, 

I:::: 
ConcreteStateA ConcreteStateB 

.HandleQ state 

♦HandleQ ♦HandleQ

Figure 28. Structure of the State design pattern. 

Based on the structure of the design pattern we can translate it into a UML 

profile. To do this we introduce a number of stereotypes: 

1. Two stereotypes, extending the meta-class Class, named StateContext and

State.

2. Two stereotypes, extending the meta-class Operation, named

StateRequestOp and StateHandleOp.

3. A stereotype, extending the meta-class Association, named aContextState

representing the association between StateContext and State.

4. Two stereotypes, extending the meta-class AssociationEnd, named CSC

and CSS representing the two association ends for the association

stereotype.

Besides the stereotypes, we also introduce associations between stereotypes 

that are subsets of the associations of their extended meta-elements. These 

associations are relevant to the State design pattern and allows us to specify graphical 

constraints through multiplicity values on the association ends. For instance, each 

class with the stereotype StateContext must have at least one operation that is 

stereotyped with StateRequestOp; hence we have a multiplicity value of J .. * at the 
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end of the association between the stereotypes StateContext and StateRequestOp. 

Figure 29 presents part of the UML profile representing the State design pattern. 

Notice that all the associations between the stereotypes use the subset constraint 

notation described in Chapter 5 to indicate that these associations are subsets of some 

association inherited by the base classes of the two end stereotypes respectively. To 

disambiguate the subset associations from their superset associations, arbitrary role 

names are given to association ends so that the set of ends at each stereotype have 

unique role names (where having no rolename is also considered one unique role 

name). For example, aContextState has two association ends connecting it with CSS, 

one of which comes from the association inherited from meta-class Association that 

has no role name and the other which is from the subset association with the role 

name fromCSS. Notice that the role name fromCSS disambiguates the ends of the two 

associations connecting these two stereotypes. 

« ste re otyp e » {subsets connection} « ste re otyp e » {subsets connection} «stereotype» 

csc a Co ntextState css 

1 1 1 1 

1 {subsets association} +fromCSC +fromCSS {subsets association} 0 .. 1 

1 {subsets participant} {subsets participant} 1 

«stereotype» « ste re otyp e » 

State Context State 

1 {subsets owner} {subsets owner} 1 

1 .. " <<stereotype» « ste re otyp e » 1 .. " 

StateRequestOp StateHandleOp 
{subsets feature} {subsets feature} 

Figure 29. UML profile representing the State design pattern. 

Graphical constraints are not enough to express all the restrictions of the 

design pattern, so OCL constraints are used as well. For instance, to ensure that there 

is a unidirectional aggregate association from a class stereotyped with StateContext to 
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a class stereotyped with State, we add the following OCL constraint to the 

aContextState stereotype: 

inv: self.cSS.isNavigable and not self.cSC.isNavigable and 

self.cSC.aggregation = AggregationKind: :aggregate 

Example Class Diagram Instantiating the Design Pattern 

Now that a UML profile representing the State design pattern is available, a 

software developer can design a class diagram based upon this profile by using the 

stereotypes defined there. As an example, consider a class that represents a network 

connection whose behavior changes depending on the state of the connection [25]. 

From the description of the system it is obvious that the State design pattern can be 

applied to its design. Therefore, we can draw a class diagram using the structure of 

the State design pattern as a template and come up with a class diagram such as the 

one in Figure 30. 

<<State Context» 
TCPConneclion 

♦«stateRequestOp» Openo 
♦«stateRequestOp» CloseQ 
♦«stateRequestOp» AcknowtedgeO 

+CSC +CSS_thesta!_e 
- , 

«a Co ntex!State » 

<<State» 
TCPState 

•«stateHandleOp» OpenQ 
♦«stateHandleOp» CloseQ 
♦«stateHandleOp» AcknowledgeQ 

6 

<<State>> «State>> <<State>> 
TCPListen TCPClosed TCPEstablished 

Figure 30. A class diagram based upon the State design pattern profile. 

All the elements in this class diagram that are relevant to the UML profile 

representing the State design pattern are tagged with the appropriate stereotypes. This 

brings us to the notation used to denote the stereotype for association ends. They are 
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given as part of the association end's role name followed by an underscore character. 

The format of the role name is 

Stereotypename_Rolename 

Both the stereotype name and the role name are optional, but the underscore 

character must be present if the stereotype name is provided, even if there is no role 

name. The association connecting the classes TCPConnection and TCPState in Figure 

30 shows how the stereotype name and role name will look like. Unlike association 

ends, stereotypes for the other common elements in a class diagram, such as classes, 

attributes, operations, associations, generalizations, and dependencies can be provided 

in the stereotype field for the respective element in a modeling tool such as Rational 

Rose. A limitation of the current prototype is that the tool cannot check the body of an 

operation in the class diagram, such as the one in Figure 28, so validation is currently 

limited to the structural aspect of the model as well as OCL constraints. 

The above class diagram is a valid instance of the State design pattern profile, 

and so executing the tool on this UML model using model instantiation checking will 

yield no model checking errors. However, if none of the operations in the 

TCPConnection class are stereotyped, or if the association is bidirectional instead of 

unidirectional, then the errors will be caught by the tool at the graphical constraint or 

the OCL constraint level respectively. As with class diagram refinement, by using a 

UML profile to represent design pattern specifications software developers are able to 

modify the metamodel depending on their interpretations of the design patterns. 
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CHAPTER VIII 

CONCLUSION 

The work in this thesis attempts to cover a broad area, especially to support 

the entire UML specification, and given constraints on time and resources there is 

only so much that can be implemented into the current version of the tool. Therefore 

this chapter will provide a list of limitations of the tool as well as a list of things that 

can be done in the future to further improve the functionality and the use interface of 

the tool. Lastly we will summarize the conclusions obtained from this work. 

Limitations 

Here is a list of the limitations to the tool that are either beyond the scope of 

our work or limited due to time and resource constraints: 

• The diagram parsers are written specifically to read XML files in the XMI

format using the UML 1.3 DTD. If the DTD of a different UML version is

used (for example, 2.0) our tool will not work. This is because the parsers

are hand-written to follow the DTD that is currently used by the most

popular commercial UML modeling software, Rational Rose. To solve this

problem, one would have to write an XML parser that would read the

DTD before reading the XML file, but .then the software would need to

map what it reads into the appropriate data structures or generate the data

structures dynamically based on the DTD. Whatever the method used to

solve this problem, the complexity of the solution and the time needed to

implement it is beyond the scope of this work.
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• One important assumption throughout the tool is that an association will

have exactly two association ends, even though the UML metamodel

specifies that associations can have two or more association ends. This

assumption is valid for almost all UML class di�grams in practice and it

makes the implementation of many algorithms much easier. The tool will

usually abort execution or display an error message if the number of

association ends for some association is not exactly two.

• Association classes are not supported in the tool mainly because of the

lack of support for them in the translation schema from class diagram into

AsmL. The XML parser in the tool can read association classes but they

will be ignored.

• As mentioned before, the tool does not support multiple inheritance in

class diagrams well because AsmL does not support multiple inheritance.

This feature is one of the more important items in the list of future work

since it is a common occurrence in UML models.

• Support for translating diagrams other than class diagrams, sequence

diagrams, and state chart diagrams are not present due to lack of time and

resources. The UML specification is large; thus it is not possible to

support all the diagrams during the course of this work, but is left as future

work.

• Some operations in OCL, such as isUnique, sortedBy, any, one, and so on

are not supported in the current version of the tool. These operations were

introduced in version 1.5 of the UML specification.

• The OCL parser currently does not support constraints or pre- and post­

conditions for operations because to support them we would also need a
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way to express the functionality of these operations in some way, such as 

through OCL or some other action semantic language. This task is beyond 

the scope of this work. 

• Related to the previous limitation is the lack of proper type-checking of

operation parameters.

• Other less frequently used class diagram and OCL features such as

qualifiers and templates are not supported by the tool.

• In message order verification, concurrency in sequence and state chart

diagrams is not handled because of the method used (graph search) to

perform the validation test.

• There is no support for history states, submachine states, and other more

advanced features of state chart diagrams at this point.

• Errors when parsing an OCL constraint are limited to the default error

messages displayed by the code produced from the ANTLR parser

generator. In order to implement the basic functionality of the OCL parser

module, there was insufficient time to implement the complex error

recovery grammar rules and actions within the ANTLR grammar

specification for the OCL parser. This will be a high-priority item in the

list of future work.

Future Work 

Due to time and resource constraints, not everything could be accomplished 

during the design and implementation of the model validation tool. Here are some of 

the items that could be implemented in the future: 

• Find a way to support multiple inheritance in UML class diagrams.
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• Provide more helpful and detailed error messages throughout the tool,

especially for parse errors in OCL constraints.

• Gradually add support for the remaining features or elements of the UML

and OCL specification to the tool.

• Re-implement message ordering verification so that it is easier to perform

the same task while at the same time being able to automatically evaluate

guards and operation parameter values.

Conclusion 

In this work we proposed a software tool that validates UML models m 

various ways, including model instantiation checking through the use of abstract state 

machines and message ordering verification through the use of message graphs and a 

graph searching algorithm. A translation schema from UML class diagrams into 

AsmL specifications as well as the support of OCL in AsmL via a library of OCL 

operations implemented in the language allows us to perform model instantiation 

checking on different levels. This resulted in applications of the tool to areas such as 

class diagram refinement and design pattern profile checking. Software developers 

can use this tool to aid them in the validation of their UML models and because of the 

tool's support for UML profiles, the tool can be applied to a specific domain 

depending on the profile given as input to the tool. 
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Appendix A 

EBNF for Notations in UML Models 
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1) EBNF for syntax of OCL constraints in the UML model:

constraint := "BeginOCL" (constraintDef I constraintBody)+ "EndOCL" 

constraintDef := "def" (NAME)? COLON (letExpression)* 

constraintBody := stereotype (NAME)? COLON oclExpression 

stereotype := "pre" I "post" I "inv" 

oclExpression := ((letExpression)* "in")? expression 

expression := logicalExpression 

letExpression := "let" NAME (LPAREN formalParameterList RPAREN)? 
(COLON typeSpecifier)? EQUALS expression 

formalParameterList := (NAME COLON typeSpecifier (COMMA NAME COLON 
typeSpecifier)*)? 

ifExpression := "if" expression "then" expression "else" expression 
"endif" 

logicalExpression : = relationalExpression ( ( "and" I "or" I "xor" 
\ "implies") relationalExpression)* 

relationalExpression := additiveExpression ((EQUALS I GREATERTHAN 
I LESSTHAN I GTE I LTE I NOTEQUALS) additiveExpression)? 

additiveExpression := multiplicativeExpression ((PLUS I MINUS) 
multiplicativeExpression)* 

multiplicativeExpression := unaryExpression ((STAR I DIV) 
unaryExpression)* 

unaryExpression := ("not" I MINUS)? postfixExpression 

postfixExpression := primaryExpression ((DOT I ARROW) propertyCall)* 

primaryExpression := literalCollection I literal I propertyCall 
I LPAREN expression RPAREN I ifExpression 

propertyCallParameters .- LPAREN (declarator)? 
(actualParameterList)? RPAREN 

literal := STRING I number I POUND NAME 

typeSpecifier := simpleTypeSpecifier I collectionType; 

collectionType := collectionKind LPAREN simpleTypeSpecifier RPAREN 

simpleTypeSpecifier := pathName I oclType 

literalCollection := collectionKind LBRACE (collectionList)? RBRACE 

collectionList := collectionitem (COMMA collectionitem)* 
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collectionitem := expression (DOTDOT expression)? 

propertyCall := pathName ("@pre")? (qualifiers)? 
(propertyCallParameters)? 

qualifiers .- LBRACK actualParameterList RBRACK 

declarator .- NAME (COMMA NAME)* (COLON simpleTypeSpecifier)? 
(SEMI NAME COLON typeSpecifier EQUALS expression)? BAR 

actualParameterList := expression (COMMA expression)* 

pathName := NAME (DBLCOLON NAME)* 

collectionKind := "Set" I "Bag" 

oclType := "OclType" I "OclAny" 
I "Boolean" 

bool Type : = "true" I "false" 

"Sequence" I "Collection" 

"Real" I "Integer" I "String" 

number := INT I REAL I boolType I oclType 

INT := (DIGIT)+ 

REAL : = (DIGIT)+ ( (' . ' (DIGIT)+) I 
(('e' I 'E') ( '+'I'-' )? (DIGIT)+))+ 

NAME := ALPHA (ALPHA I DIGIT)* 

STRING : ' \ ' ' ( ESC I - ( ' \ \ ' I ' \ ' ' ) ) * ' \ ' '

DIGIT .- '0' 

ALPHA . - 'a' 

'9' 

'z' I 'A' I .. I 'Z' I '_' 

ESC : = ' \ \ ' ( ' n ' I ' r ' I ' t ' 'b ' I ' f ' I ' " ' I ' \ ' ' I ' \ \ ' 
((·o· I .. I •3•i ((·o· I I '7'l (·o· I .. I '7'l? l?
I ('4' I .. I '7'l (·o· I .. I '7'l?ll

Note: The tilde (-) means the set of ASCII characters excluding the 
characters inside the parentheses. 
Note2: Comment lines begin with two dashes ("--") and is not 
represented in the grammar. 

2) EBNF for syntax of slot values in the UML model:

slotTag := "BeginSlot" slots "EndSlot" 

slots := oneSlot (SEMI oneSlot)* 

oneSlot := NAME EQUALS slotValue 

slotValue := NAME I INT I REAL I STRING I boolType
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