
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Master's Theses Graduate College

6-2005

A Tool Supporting Validation of UML Models A Tool Supporting Validation of UML Models

Weng Liong Low

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Low, Weng Liong, "A Tool Supporting Validation of UML Models" (2005). Master's Theses. 4236.
https://scholarworks.wmich.edu/masters_theses/4236

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/4236?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4236&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

A TOOL SUPPORTING VALIDATION OF
UML MODELS

by

Weng Liong Low

A Thesis
Submitted to the

Faculty of The Graduate College
in partial fulfillment of the

requirements for the
Degree of Master of Science

Department of Computer Science

Western Michigan University
Kalamazoo, Michigan

June 2005

Copyright by
Weng Liong Low

2005

ACKNOWLEDGMENTS

First I would like to thank my graduate advisor and thesis committee chair Dr

Wuwei Shen for his strong support and help throughout the duration of this thesis. His

enthusiasm for and support of software engineering, in particular tools that support

software engineering, has led me to pursue the subject and therefore resulting in the

work contained in this thesis. His constant support has helped me through difficult

parts in the thesis-writing process and I truly appreciate that support.

Secondly, I would like to thank the other members of my thesis committee, Dr

Dionysios Kountanis and Dr Li Yang, for being on the committee and spending the

effort and time to review my work.

Lastly, I would like to thank both my parents and my sister for giving me

moral and financial support halfway around the world back home.

Weng Liong Low

11

A TOOL SUPPORTING VALIDATION OF
UML MODELS

Weng Liong Low, M.S.

Western Michigan University, 2005

Software design is an important phase in the computer software development

life cycle. The Unified Modeling Language (UML) is a widely used notation to design

software models. As a software system increases in size and complexity it is harder

for developers to check that their UML models are correct with respect to the UML

metamodel. Consistency among different diagrams in a UML model is also important

to ensure that there are no design conflicts that will lead to problems later. Incorrect

software design will result in loss of productivity, time and money as developers fix

design errors. Therefore, to ensure consistency in a software design we propose a tool

that will help developers validate UML models in a number of ways.

The tool is developed based on the concept of abstract state machines (ASMs),

which have been used to perform verification of UML models. By translating UML

models including OCL constraints into AsmL, an executable specification language

based on ASMs, the tool is able to perform model instantiation checking, i.e.,

checking whether a diagram at one level of the metamodeling architecture is a valid

instance of another diagram at a higher-level. The tool can also verify message

ordering between sequence diagrams and state chart diagrams. The tool has been

applied to various specific areas such as class diagram refinement and design pattern

profile checking. With this tool software developers will be able to reduce the number

of errors in their software designs.

TABLE OF CONTENTS

ACKNOWLEDGMENTS.. 11

LIST OF FIGURES.. Vl

CHAPTER

I. INTRODUCTION.. 1

Architecture of the Tool.. 3

Uses of the Tool.. 6

Development Environment... 6

IL SPECIFICATION DIAGRAM PARSER .. 8

Data Structure Design... 9

Reading the UML Model.. 10

AsmL Translation . 14

III. INSTANCE DIAGRAM PARSER.. 20

Converting Instance Diagrams into Object Diagrams 21

Validation Tests on the Instance Diagram :................... 23

Checking Object Instantiation... 23

Checking Slot Values for Class Attributes.................................. 24

Checking Graphical Constraints.. 25

AsmL Translation 26

IV. OCL PARSER AND LIBRARY.. 29

OCL Library in AsmL.. 29

OCL Metamodel 29

lll

Table of Contents-continued

CHAPTER

IV. OCL PARSER AND LIBRARY.. 29

Basic OCL Type Operations 31

Collection Type Operations... 32

Iterate-based Collection Operations.. 34

OCL Type Information.. 35

OCL Parser 36

Data Structures for the OCL Parser... 37

Methodology for Translating OCL Constraints 39

Property Calls in OCL Expressions... 41

Short-Circuit Evaluation of Logical Operators........................... 42

V. UML MODEL INSTANTIATION CHECKING....................................... 44

Notations Used in the UML Model.. 45

Notations Used in a Specification Diagram................................ 46

Notations Used in an Instance Diagram...................................... 50

Miscellaneous Notes... 52

Metamodel Version in Diagram Conversion............................... 52

Graphical Interface to Rational Rose . 5 3

V I. UML MESSAGE ORDERING V ERIFICATION..................................... 55

Data Structures for the Algorithm :................. 58

Constructing the Message Graph.. 61

IV

Table of Contents-continued

CHAPTER

VI. UML MESSAGE ORDERING VERIFICATION..................................... 55

Searching the Message Graph... 65

Guards in Transitions and Events... 67

Notation for Message Names.. 67

VIL APPLICATIONS OF THE TOOL... 69

Class Diagram Refinement . 69

Notation for Class Diagram Refinement..................................... 70

Rules for Refinement 73

Advantage of Using Metamodel Methodology........................... 78

Design Pattern Profile Checking... 79

A Profile for the State Design Pattern... 79

Example Class Diagram Instantiating the Design Pattern........... 82

VII I. CONCLUSION .. 84

Limitations.. 84

Future Work.. 86

Conclusion.. 87

APPENDICES

A. EBNF for Notations in UML Models... 88

BIBLIOGRAPHY .. 91

V

LIST OF FIGURES

1. The UML model validation tool and its modules :.................. 4

2. Top-level packages containing specification and instance diagrams............ 6

3. High-level view of translating a specification diagram................................. 9

4. Use ofXMI IDs that are unique throughout a UML model 14

5. A unidirectional association between two classes... 17

6. High-level view of translating an instance diagram...................................... 21

7. Metamodel showing class hierarchy of OCL types....................................... 30

8. Some elements in an example UML profile.. 47

9. Notation for enumerations in a specification diagram 49

10. A collaboration diagram representing an object diagram.............................. 50

11. Using comment tags to provide tag values.. 51

12. Graphical user interface for the tool in Rational Rose 54

13. Sequence diagram for a scenario in a telephone network 56

14. State chart diagram for a person in a telephone network 56

15. Virtual states in a message graph .. 59

16. Connecting substates with parent composite states'................................... 62

17. Cascading exit actions in a state chart diagram... 64

18. Connecting cascading exit actions .. 64

19. Connecting transitions between states... 65

20. Package structure in a UML model supporting class diagram refinement.... 71

21. Part of UML profile supporting class diagram refinement 72

Vl

List of Figures-continued

22. A rule for refinement of generalizations 73

23. Refinement rule for generalizations.. 74

24. A rule for refinement of bidirectional associations....................................... 75

25. Refinement rule for bidirectional associations ,............................ 76

26. A rule for refinement of unidirectional associations..................................... 77

27. Refinement rule for unidirectional associations.. 78

28. Structure of the State design pattern.. 80

29. UML profile representing the State design pattern 81

30. A class diagram based upon the State design pattern profile........................ 82

Vll

CHAPTER I

INTRODUCTION

Software design is an important phase in the computer software development

life cycle. It is especially important in the production of large and complex software.

The Unified Modeling Language (UML) is a popular language for designing software

programs. The UML specifies notations and constructs for software design and

improvements to itself are constantly being made by researchers in the academic

community as well as in the software industry.

The UML is based on a four-level modeling architecture developed by the

Object Management Group (OMG) and has many different diagrams with each

diagram allowing a software developer to specify different aspects of a software

system. As a software system increases in size and complexity, it becomes

increasingly difficult for software developers to check that the UML model of the

software system is correct with respect to the UML metamodel. Furthermore, the task

of verifying that the different diagrams in the UML model for a particular software

are consistent with each other becomes difficult as well. Consistency among UML

diagrams in a single UML model is important in order to avoid design conflicts that

will lead to problems with implementation of the software. Incorrect software design

will result in loss of productivity, time, and money as software developers go back to

their design to find the problems, fix them, and change their code to meet the

requirements of the corrected design. Therefore the importance of ensuring that a

design is consistent and as error-free as possible during the design phase cannot be

understated. Various tools have been written to assist software developers with this

problem and to reduce the amount of manual consistency checking that the developer

must perform on the UML model in the hopes of decreasing the cost of software

design.

With this in mind, we propose a software tool that validates UML models by

performing a number of consistency checks between: (1) a UML model and the UML

metamodel, and (2) different diagrams within a UML model. These checks are

performed using two methods:

1. The UML model is represented using abstract state machines (AS Ms) so

that model constraints can be validated.

2. Specific algorithms written into the tool validate other aspects of the UML

model that are not so easily validated using the first method.

The concept of abstract state machines (ASMs) [l] was first presented by Dr

Yuri Gurevich more than ten years ago. An ASM is a state machine that computes a

set of updates of its own variables by firing all possible updates based on the current

state. The computation of a set of updates occurs at the same time and results in the

generation of a new state. ASMs can be formally defined and can be used to define

precise models of software. ASMs have been applied to UML in a variety of ways.

Borger et al. have applied ASMs to provide semantics for UML activity diagrams and

state machines (3, 4]. Cavarra et al have integrated UML static and dynamic views

based on ASMs [5]. Ober has proposed translating UML class diagrams into ASMs

by defining action semantics as well as an XML Metadata Interchange (XMI) to ASM

translator with manually input Object Constraint Language (OCL) constraints [6].

Shen presented a static validation method for a UML model based on the XASM tool

([2]) (7]. Based on these previous works, we believe that abstract state machines can

be used to support the validation of UML models.

2

AsmL [8] is an executable specification language based on the concept of

abstract state machines that is developed by the Foundations of Software Engineering

(FSE) group at Microsoft Research. It is a high-level specification language running

on Microsoft's .NET framework and has language constructs such as sets and

sequences and high-level operations that let the programmer specify what the program

should do but not how it should be done. There are other languages based on abstract

state machines, but we choose AsmL because it uses object-oriented programming,

component-oriented programming, and functional programming. These features make

AsmL easier to use because it is similar to other popular languages such as C++ or

Java, and its object-oriented paradigm matches the object-oriented model employed

by UML in its class diagrams so the translation from a UML model into an AsmL

specification is simplified.

Architecture of the Tool

Figure 1 shows the architecture of our model validation (or checking) tool. It

consists of four major modules: (1) a UML specification diagram parser, (2) a UML

instance diagram parser, (3) an OCL parser, and (4) a library of OCL operations

written in AsmL.

3

,----------------. UML specification diagram UML instance diagram WPlIT I

L__ -----�

I

UML specification
diagram parser

I

L_

OCLparser

AsmL compiler

Model checking results

UML instance
diagram parser

-- - -

MODEL I
CHECKING

I TOOL

OCLlibrary
inAsmL

OUTPUT
I

- - - I

Figure 1. The UML model validation tool and its modules.

The three parser modules read a UML model given in an Extensible Markup

Language (XML) file that is written in the XML Metadata Interchange (XMI) format.

XMI [9] is a widely used interchange format for sharing objects using XML and is

developed by the OMG. The XML file containing the UML model should be valid

based on a Data Type Definition (DTD) for UML 1.3, which was released by the

OMG. Once read in, each parser module will extract portions of the model that it is

responsible for and converts that part into an AsmL specification. The combined

AsmL specification from each of the three modules will then be passed to the external

AsmL compiler - part of the AsmL installer package released by Microsoft's FSE

group - together with the fourth module, which is the OCL library written in AsmL.

These items are compiled and the resulting executable file can be run to perform

4

r ___ _

I
I
___ __.

Generated
AsmLcode-

- - - - -- - - - -

constraint checking on the UML model. The compiled AsmL program will display

model checking results to the user. The model checking tool also performs a few other

consistency checks after reading in the UML model but prior to generating the AsmL

specification.

We divide the UML model into two parts: the specification diagram and the

instance diagram. The specification diagram is the diagram or set of diagrams that

specify the base model that the instance diagram is based upon. The instance diagram

is the diagram or set of diagrams that instantiates the specification diagram. Instance

diagrams are most commonly object diagrams, but in the case of checking a UML

diagram against the UML metamodel, the instance diagram could be a sequence or

state chart diagram which will have to be converted into an object diagram as an

instance of the metamodel. This concept is the foundation for model instantiation

checking performed by the tool, which is described later on in this work. With this

division into specification and instance diagrams, we can check whether a UML

model created by the software developer (designated as the instance diagram)

conforms to the UML specification (designated as the specification diagram). Due to

the four-level meta-modeling architecture of UML, we can also check if an object

diagram (designated as the instance diagram in this case) in a UML model is a valid

instance of a class diagram within the same model (designated as the specification

diagram).

In order to make the separation between the specification and instance

diagrams clear, the input UML model has two top-level packages - one for the

specification diagram and one for the instance diagram. Packages are defined as

containers in UML that partition UML model elements into separate logical groups.

We make use of this construct to place all model elements for the specification

5

..

diagram and instance diagram into their respective packages and define a notation to

indicate which package contains the specification or the instance diagram. In Figure 2

we see two top-level packages in a UML model. We use a dependency relation

between the packages to denote the specification and the instance package. In this

example 'Profile' contains the specification diagram and 'Instance' contains the

instance diagram. In the rest of this work we will assume that all UML models given

as input partition their diagrams and model elements this way.

I

Profile - - - - - - - - • Instance

Figure 2. Top-level packages containing specification and instance
diagrams.

Uses of the Tool

The major use of the tool is to perform model instantiation checking, which is

to check that a UML instance diagram is a valid instance of a UML specification

diagram. Besides this, the tool can also be applied to domain-specific model

checking. For instance, it can be used in the validation of class diagram refinement. It

can also be used to verify UML diagrams that have been generated by a third-party

tool following a design pattern. These uses and applications of the tool will be

described later in this thesis.

Development Environment

The development environment for the tool is limited to the Windows platform

6

mainly because the AsmL compiler uses the .NET framework that is currently only

available on Microsoft Windows operating systems. The implementation language

used is C++ because it supports object-oriented programming, which is required to

implement data structures for the tool (described later in this paper), and because of

the author's familiarity with the language. The compiler used is the Windows port of

the popular open-source GNU compiler under the MinGW package [15]. This

compiler is used instead of the more common Visual C++ suite used for Windows

application development because it is free and portable, although with the use of

AsmL portability is less of an issue because the tool is already limited to running on

Windows platforms. However, the fact that the MinGW package is free means that

anyone else can build this tool from its source code if she has the software, platform

requirements, and the free compiler without paying for a commercial compiler suite.

We strive to use libraries and tools that are free or open-source for this project so that

more people can use this work without high costs and complex licensing issues.

This thesis will begin by spending the next few chapters discussing each of the

modules of the tool in detail. This will be followed by a chapter on model

instantiation checking as well as another one on message ordering verification, both

of which are functions the tool can perform. Next some applications of the tool to

refinement checking and design patterns are given. Finally we present limitations of

the tool, future work and some conclusions.

7

CHAPTER II

SPECIFICATION DIAGRAM PARSER

The specification diagram parser module is responsible for reading in a

specification diagram from the UML model provided in the XML file given as input

to the tool. Usually the specification diagram will either be a UML class diagram that

defines the static view of a software model or it could be the UML metamodel. The

latter is used to validate a user-defined UML model with respect to a particular

version of the UML specification released by the OMG. The specification diagram

can also be a set of diagrams, including class diagrams, collaboration or sequence

diagrams, and state chart diagrams, but in this case there is usually no corresponding

instance diagram, since it does not make sense. In this case we usually perform

validation on the individual diagrams within the specification diagram, such as

checking for message ordering between sequence and state chart diagrams. The

detailed discussion of this check is given in a later chapter. Figure 3 shows the

functionality of the specification diagram parser module.

As mentioned in the introductory chapter, the input to the specification

diagram parser is an XML file using the XMI format and the DTD for UML models.

Because the format is a standard, our tool can read UML models in this format that

are generated from other UML modeling software. An example of such software is

Rational Rose by IBM. For our purposes we use XML files generated from UML

models created by Rational Rose Enterprise Edition installed on the campus

computers, but technically any valid XML files generated from other UML computer­

aided software engineering (CASE) tools should work.

8

- - - -
ModelChecker SpecDiagModule S ecDia Reade SpecDiagStructure 8 ecDia Translato

1. r�adSpecDiagram(fn�me) :

1.1.2.1. diag
<--------------

. . readDiagram(fname)
f------.....,• 1.1.1. «create»

1.1.2. diag

. validSpecDiagram

3. translate�iagram(diag)

.. [i=1 .. n] translateElemO
�

.. [i=1 .. n] writeToFileO

�

Figure 3. High-level view of translating a specification diagram.

Data Structure Design

Before going further into the discussion of the specification diagram parser,

we will describe the data structure used to represent the UML model within the tool.

This data structure is important because it is used by other modules of the tool in

order to perform validation tests on the tool. The design of the data structure has gone

through a number of revisions over the course of this work. At this point we note that

the discussion on the data structure focuses mostly on UML class diagram elements,

but can be applied to other diagrams and model elements that a UML model can have.

At the beginning the goal was to design a data structure generic enough to

represent any UML class diagram regardless of the UML version. The problem that

software developers face is the selection of a particular version of UML upon which

their design is based. For example, most commercial software including Rational

Rose use UML 1.3, while some tools support UML 2.0 (which is still a draft

version). For our tool to receive widespread use, support of multiple UML

9

I.
' - ' , r ,

. t----..,,.,..,~ '
< -- -- ------- ---- - y
)

l 2

metamodels for different versions of UML would be good. However, due to the fact

that new model elements can be introduced into later versions of UML, it is quite

difficult to generate a minimal set of data structures and core classes that can fit all

possible UML metamodels that can be developed in the future. One way of solving

this problem is by designing and using separate data structures, one for each

significant change in the UML version, but this solution is beyond the scope of this

work.

As a result, we settle upon a data structure that can represent at least a UML

1.3 model, because it is the most widely supported UML version in commercial UML

CASE tools including Rational Rose. The data structure also supports UML 1.5

diagrams because the changes between the two versions are not significant with the

exception of the action semantics, which is not dealt with in this work. The data

structure consists of core classes from the UML 1.5 metamodel [1 O] that are

frequently used in UML diagrams, such as Classifier, Generalization, Association,

Attribute, Operation, and so on. The data structure used in the tool preserves the

complex class hierarchy and class relationships present in the UML metamodel and

because the implementation language for the tool is C++, features like multiple

inheritance in the UML metamodel can easily be implemented. For the purposes of

this work, the data structure designed for the tool can support UML class diagrams,

sequence or collaboration diagrams, state chart diagrams, and object diagrams.

Reading the UML Model

The specification diagram parser is actually an XML parser because the input

file is an XML file. There are two common ways of parsing an XML file: (1) build a

Document Object Model (DOM) [11] tree from the nested XML elements in the file,

10

and (2) use Simple API for XML (SAX) [12] to read XML elements sequentially

from the file. We chose the latter method for our XML parser. The SAX interface was

chosen over building a DOM tree because:

1. Building a DOM tree requires the entire XML file be read to build the tree.

We are, however, ignoring most of the tags except what is needed for our

purposes and therefore wasting a lot of time and memory. With SAX,

however, we can choose to process only the relevant XML tags.

2. A DOM tree is appropriate for an application that makes changes to the

elements within the tree, for example an editor that saves information into

an XML file. However, our tool does not make ch<!,nges to the XML file.

3. A DOM tree is not suitable for our purposes because we use a different

representation for the information contained in the XML file, namely the

data structure to store model elements from the UML 1.5 metamodel. We

would be wasting memory and time copying from the DOM tree into our

own data structure. On the other hand, with SAX the parser can read

information from the XML tags directly into the data structures used by

the tool.

One of the disadvantages of using SAX is that a lot more code needs to be

written for the parser, especially for storing the state of the parser so that we know

what tags to expect next after one has been read in before. SAX also uses callback

functions which makes the design and implementation of the parser different than a

normal file reader that reads a file linearly.

Building an XML parser from scratch is a lot of work, and why invent the

wheel when there are good XML parser libraries out there? Therefore we choose to

use the libxm/2 library, which is the "XML C parser and toolkit developed for the

11

Gnome project" [13]. There are other good XML parser libraries out there, both

commercial and free, but we choose libxm/2 because it is open-source, very portable,

implements a good number of standards related to XML, and its implementation

passes a majority of compliance tests from the OASIS XML Tests Suite [14]. The

Xerces-C XML parser [16] is also portable and has a large number of implemented

standards, but an arbitrary choice was made in favor of libxm/2. A small argument

against Xerces-C is that it is licensed under version 2.0 of the Apache Software

License, which is more restrictive and incompatible with the GNU General Public

License for most open-source software.

The libxm/2 library provides both methods of reading XML files as described

above, but we only use the SAX interface it provides. We use a Win32 binary version

of the library provided on its web site in the form of dynamic link libraries (DLLs).

The XML parser for the specification diagram parser and instance diagram parser

modules are the same. A base class containing the XML parser routines to read the

various XML tags from the input file is created. Ideally, the two parser modules

should each have its own parser class - inheriting from this common base class -

containing specific handling routines to process the XML tags that each module is

responsible for. In practice, however, the specification diagram parser module has its

own derived parser class but the instance diagram parser module does not. This is due

to the fact that the instance diagram is represented as an object diagram in the internal

data structure of the tool even if it originally was a class diagram. For example, if we

are comparing a user-defined class diagram with the UML metamodel, the user­

defined class diagram is represented as an object diagram, which is an instance of the

UML metamodel 's class diagram. Since the user-defined class diagram is considered

a specification diagram and is handled by the specification diagram parser, we use this

12

parser to read in that diagram and have internal operations to convert this into an

object diagram. More information on this process will be provided later.

Each model element in the XML file has an XMI identifier that is unique to a

given XML file and can change when the file is regenerated by the modeling software

like Rational Rose. It is used in some attributes of the UML model elements as a way

of representing the associations between model elements in the UML metamodel. For

example, a UML generalization has a child class and a parent class. The XML tag

representing a generalization within a UML model will include an attribute that

indicates the UML class that is the child class and another one that indicates the

parent class. Each of these attributes will have a character string value - the XMI

identifier - that indicates the child and parent class respectively. This means that we

have to resolve these XMI identifiers to point to the actual model elements within the

data structure representing the UML model. This is done after all the relevant model

elements have been read into the data structures. Then for each model element in the

UML model that contains attributes with XMI identifiers to be resolved, we search

the data structure for the model element that has the particular XMI identifier. After

that we link it to the originating model element by assigning it to a variable in the

originating model element. In the example in Figure 4, the Generalization class in the

data structure will have two string variables to store the XMI identifier for the parent

class and child class respectively. The Generalization class will also contain two

variables of type GeneralizableElement, which is one the parent classes of Classifier

as specified by the UML metamodel. Once the XMI identifiers have been resolved,

each of these two variables will point to the Classifier representing the parent class or

child class respectively.

13

<UML:Class xmi.id =C'S.103.1714.33.92�
name = 'A' visibi1il.y public is�cification = 'false'
isRoot = 'true' isLeaf = 'false' isAbstract = 'false'
isActive = 'false'
namespace = 'S.103.1714.33.91'
specialization= 'G�-�-•------�

<UML:Class xmi.id 'S.103.1714.33.94'
name = 'C' visibil1 pacification = 'false'
isRoot = 'false' isLeaf = 'true' isAbstract = 'false'
isActive = 'false'
namespace = 'S.103.1714.33.91'
generalization= 'G.90' >
<UML:Namespace.ownedElement>

<UML:Generalization xmi.id = 'G.90'
name = '' visibility= 'public' isSpecification = 'false'
discrimin - ''
child= S.103.1714.33.94 parent ==Q.103.1714.33.9�>

Figure 4. Use ofXMI IDs that are unique throughout a UML model.

AsmL Translation

Once the specification diagram has been read into the internal data structure

and XMI identifiers have been resolved, we can now translate the specification

diagram, which is usually a UML class diagram, into the target language AsmL. The

architecture of the tool in Figure 1, already discussed in the first chapter, shows that

the specification diagram parser, OCL parser, and instance diagram parser generates

parts of an AsmL specification or code. We do this because we use abstract state

machines to verify that an instance diagram is a valid instance of a specification

diagram by checking constraints in the class diagram written in OCL. The resulting

AsmL specification consists of three parts: (1) a set of classes generated from a UML

class diagram, (2) a set of OCL constraints translated from OCL constraints given

within the UML class diagram, and (3) a set of objects and their instantiations that are

generated from an instance diagram (with respect to the UML class diagram). The

specification· diagram parser module generates the class diagram part of the AsmL

specification. Translation of OCL constraints and instance diagram will be described

14

- -

C ;:;,
"""Tt"'yr-.,,,..-•p"a-a'"±""z-c---.1-.s"""!>

<:!tor
</UML:NamespaCQ.OWIJQUEIQillQIICJ

</UML:Class>

in their respective chapters.

When we discuss the translation of a specification diagram, we usually refer to

a UML class diagram that defines the static structure of a UML model, which include

classes and the structural relationships between those classes. A specification

diagram, as defined earlier, can include sequence and state chart diagrams, but it does

not make sense to translate them into the specification diagram part of the AsmL

specification because these diagrams specify the behavior or dynamic view of a UML

model, not the static structural view. The sequence and state chart diagrams within a

specification diagram are used to perform message ordering verification, which is

described in a later chapter. For now, it is sufficient to say that we use the resulting

AsmL code to perform model instantiation checking, which will also be described

later. Remember that this module is responsible for generating the first of three parts

of an AsmL specification, so we ignore everything but the class diagram during

translation.

Moving on to the translation schema to convert a UML class diagram into

AsmL, one of the advantages of using AsmL as the target language based on the

concept of abstract state machines is the fact that it supports object-oriented

programming. This feature of AsmL makes translation much easier because UML is

inherently object-oriented and a UML class diagram consists of classes, member

variables and methods, and inheritance, all of which are supported by AsmL directly.

Other specification languages based on ASMs such as XASM [17] do not have such a

feature. Hence, we can translate UML class diagram elements in the following way:

• UML classes are directly translated into a class declaration in AsmL. For

example, a class called MyClass with no parent classes would be

translated into

15

public class MyClass extends libOcl.OclAnylmpl

where libOcl. Oc/Anylmpl is a class defined in the OCL library within the

libOcl namespace. The reason for this will be given in the chapter

describing the OCL library in AsmL.

• Features of a UML class such as attributes and operations will be

translated into

public var at_name as libOcl.OclString

public var op_calcSalary0 as libOcl.OCllnteger

where De/String and Ocllnteger are classes declared in the OCL library

defining the OCL basic data types String and Integer. Each attribute and

operation has a prefix attached to its name so that it can be easily

identified as either an attribute or an operation within methods in the OCL

library that return type information of the classes.

• UML associations are translated into sets or sequences of objects of the

opposite association end type in the declaration of UML class. Sets are

used when the association end is not ordered and sequences are used when

it is ordered. For example, there is an unordered unidirectional association

from Customer to Order in Figure 5. When translated into AsmL, the

Customer class in the AsmL specification will have th� following member

variable:

public var ae_order as libOcl.OclSet of Order

where libOcl. Oc/Set is the OCL library class encapsulating the Set

collection type in OCL. There is no similar member variable for the Order

class because the association is unidirectional. We use a set even when the

multiplicity of the association end is exactly one because an incorrect

16

•

object diagram can have an object that is connected by multiple links

instantiating the association to objects at that association end. Graphical

constraints including the multiplicity of an association end are validated by

the tool within the instance diagram parser module and will be described

in further detail in the chapter devoted to it.

Custo1ner Order

0 .. *

Figure 5. A unidirectional association between two classes.

• Generalizations in UML classes are translated into inheritance statements

in AsmL. For example, if the class Customer has a parent class called

Person, then the declaration of the Customer class would be

public class Customer extends Person

The only problem we encounter is the fact that like Java, AsmL does not

support multiple inheritance. It supports the concept of interfaces but that

is insufficient to convey the exact semantics of multiple inheritance in a

UML class diagram. The first workaround was to have the class with

multiple parents inherit from an arbitrary parent (for example, the first

parent) and then copy the features and associations of the other parents

into the declaration of the class itself while resolving any name conflicts

arbitrarily. Recently it was discovered that this workaround would not

work correctly in certain cases when the concepts of inheritance and

17

1
')

polymorphism are utilized.

For example, in the UML 1.5 metamodel, the class Classifier inherits from

both Namespace and GeneralizableElement. If we make an arbitrary

choice and have Classifier inherit from Namespace in the AsmL

specification, everything works fine until we try to represent the

association between Generalization and GeneralizableElement to indicate

the child or parent classes in a UML generalization. There we have a

problem because Classifier cannot be inserted into the association end set

of GeneralizableElement (translated as described in the previous point)

representing the child and parent classes respectively because to the

AsmL compiler, Classifier is not a child class of GeneralizableElement.

Because this discovery was recent, we were unable to implement another

workaround to this problem and so we leave this as future work.

• A stereotype is an important lightweight extension mechanism of UML

that allows a developer to attach new semantics to an existing metaclass in

the UML metamodel. We can think of a stereotyped class as extending the

functionality of an existing class, and so we use the same translation for

stereotypes as we used for generalizations. For example, if the UML

metaclass Class has a stereotype <<Entity>>, then the translation would

be

public class Entity extends Class

and any tagged definitions for the stereotype would be translated into

attributes of this class.

Using the translation schema described above, we are able to translate the

frequently used core elements of a class diagram into AsmL. By using the object-

18

.

oriented capability of AsmL the translation schema has been greatly simplified.

Besides the unfortunate feature of AsmL that does not support multiple inheritance,

the translation schema allows most UML class diagrams to be converted successfully.

19

-

CHAPTER III

INSTANCE DIAGRAM PARSER

The instance diagram parser module is responsible for reading in an instance

diagram from a UML model in the input XML file. The instance diagram parser

module uses an XML parser to process the XML file. However, it does not have an

XML parser of its own. Rather, as briefly mentioned in the previous chapter, the

instance diagram is read into the internal data structure for a specification diagram by

the XML parser in the specification diagram parser module. This is because some of

the UML diagrams that can be instance diagrams with respect to the UML metamodel

such as sequence and state chart diagrams can also be specification diagrams in

certain modes of operation of the tool. Specifically, sequence and state chart diagrams

are treated as specification diagrams instead of instance diagrams during message

order verification, described in a later chapter. Furthermore, because the popular

UML modeling application Rational Rose does not support object diagrams

separately, we have to use collaboration diagrams to represent the objects, slots, and

links in an object diagram. Sequence and collaboration diagrams are represented in

the same way in the XML file and are handled as a single entity by the XML parser.

Therefore there is no need for a separate XML parser in the instance diagram module

to read in any instance diagrams. However, this brings. up the need for the tool to

convert the instance diagram from the specification diagram data structure into the

data structure used to represent an object diagram. Figure 6 shows the functionality of

the instance diagram parser module.

20

ins!Diagram : �
ModelChecker lns!Dia Mod I lnstDiagStructure lns!DiagStructure lns!Dia Translato

' ' '

1. getlnstanceDiagr�m(specDiagram) : 1 _1 _ «create» :

1.3. instD!agram
'

. validate(ins!Diagram]

1. [i=1 .. n] validateSl�ls(obj[i])

. ranslatelnstDiagram(irstDiag)
3.1. t�nslateDiagram(ins �iag)

Figure 6. High-level view of translating an instance diagram.

Converting Instance Diagrams into Object Diagrams

In the first chapter we briefly mentioned that a UML model to be input to our

tool is partitioned into two top-level packages, one of which contains the specification

diagram and the other which contains the instance diagram. Because the XML parser

from the specification diagram parser module reads both the specification and

instance diagram packages, we have to convert the model elements in the instance

diagram package into the object diagram representation. The internal data structure of

the tool for the UML model is a tree-like structure where containers such as UML

packages fully own the model elements inside them. The tool currently performs two

types of conversions:

1. Conversion into an object diagram that 1s an instance of the UML

21

[,_ _

1.2 onvertDiagram(speqDiagram)

! ' ------------------~-----------------

t'

metamodel.

This is used mainly to validate a user-defined UML model against the

UML metamodel. This validation allows the developer to see if the UML

model follows the UML specification correctly. In this case, the

specification diagram should be a partial or a complete UML metamodel,

with or without OCL constraints given in the metamodel. The instance

diagram in this case would either be a UML class diagram, sequence or

collaboration diagram, or a state chart diagram and each model element

would be converted into objects that instantiate meta-classes in the UML

metamodel.

2. Conversion from a collaboration diagram representing an actual object

diagram.

This is the easier of the two, because each classifier role in the

collaboration diagram will be directly converted into an object while each

association role is converted into a link connecting objects at the

association end roles. Slot values for each object are given in

documentation tags that are tagged to each classifier role in the

collaboration diagram. The use of documentation tags is necessary because

we are improvising an object diagram with a collaboration diagram. When

Rational Rose exports the UML model into an XML file, documentation

tags are exported as well. To avoid confusing slot values for the objects

and actual documentation, we enclose slot value declarations inside

BeginSlot and EndSlot strings. We separate different slot values with

semicolons, which are optional for the last value. For example, an object

John of class Person that has the attributes name and SSN could have the

22

following slot values in the documentation tag for the classifier role

representing the object John:

BeginSlot

name = 'John'; SSN = 123456789

EndSlot

When the internal data structure for the object diagram is finally created

from the instance diagram package within the specification diagram

structure, the memory allocated for the package and all its contents are

freed, leaving the specification diagram structure with just the model

elements for the specification diagram. After this step, the instance

diagram structure has been separated from the specification diagram

structure and the tool can now perform validation checks and translation

into AsmL.

Validation Tests on the Instance Diagram

Some validation tests are performed on the instance diagram before it is

translated into AsmL. Problems discovered from these tests are usually given as

warnings, much like a compiler gives warnings, and the tool terminates with an error

before the diagram is translated into AsmL. This means that the validation tests done

here represent the first set of tests performed by the tool to validate parts of a UML

model.

Checking Object Instantiation

The instance diagram parser module makes sure that each object in the object

diagram that will eventually be translated into AsmL is an instance of a class that

23

exists in the specification class diagram. If it is not, then the AsmL translation would

be an error because all objects must instantiate an existing class. However, it is

entirely possible that some objects do not have a corresponding class in the class

diagram. This usually occurs when the object diagram is generated from a class

diagram, sequence or collaboration diagram, or a state chart diagram. Because this

object diagram is an instance of the UML metamodel, the tool hard-codes the

translation of some objects based on the UML metamodel version supported by the

tool. However, we allow the developer to provide a partial metamodel that the

developer wants to compare the UML model against, so some metaclasses may be

missing. In this case, the tool just sets a flag on the object so that it will be ignored for

translation. For example, the developer can provide a partial metamodel with only the

metaclasses Classifier and Attribute. If there are objects instantiating the metaclasses

Generalization, Operation, or Association, they will be ignored because the developer

is not interested in their validation. No error or warning is reported to the user if any

object fails this test.

Checking Slot Values for Class Attributes

Each object must have one slot value defined for each attribute that the class it

instantiates has. Otherwise, the object diagram is not a valid instance of the

specification class diagram. Besides checking for the existence of a slot for each

attribute the instantiated class has, we also check to see if the type of the slot value

matches the expected type for that attribute. The type of the slot value is evaluated

based on the OCL representation for the type. Using the previous example of object

John of class Person, if the name attribute is a String and the SSN attribute is an

Integer, then the following slot values have the correct types:

24

BeginSlot

name = 'John'; SSN = 123456789

EndSlot

However, if the slot value for SSN was '123456789' instead (note the single

quotes), the slot value would be interpreted as an OCL String, which does not match

the Integer type of the SSN attribute. Therefore, this will be flagged as an error in the

instance diagram in the form of a warning.

Checking Graphical Constraints

Graphical constraints refer to the multiplicities of association ends in the UML

class diagram. These constraints can either be checked by algorithms within the tool

itself or converted into OCL constraints that will be translated into the AsmL

specification in addition to other OCL constraints a class could have. The latter

method would have taken another step - namely the conversion into an OCL

constraint - and then be treated like any other OCL constraint in the specification

diagram. The former however can be done more efficiently within the tool itself by

designing an algorithm that, for each association originating from the class an object

instantiates, counting the number of links to objects that are exact types or subtypes of

the opposite association end.

Furthermore, the role name of the association end, if it exists, must match the

role name indicated by the link end for that link to be counted towards the

instantiation of that particular association. This check is included to disambiguate

multiple associations between two classes, whether or not the associations are

inherited. Therefore it is extremely important for association ends in a UML

metamodel or profile (i.e. a specification class diagram) to have role names and each

25

role name should be unique so that the tool can properly count instances of those

associations in the instance diagram. If the final count is within the range of the

multiplicity for that association end, no error is reported. Otherwise, the tool displays

a warning indicating the expected multiplicity for that association end and the count.

Stereotypes are treated as subclasses of the element it extends, so the algorithm takes

care of that as well.

AsmL Translation

Once the instance diagram passes the checks described in the previous section,

the instance diagram parser module proceeds to translate the instance diagram into

AsmL. The translation is rather straightforward given the fact that AsmL supports

object-oriented programming. Translated AsmL statements are placed within a MainO

function in the AsmL specification. Objects are translated into object declarations, for

example:

public var John as Person = new PersonO

The above statement declares an object called John that instantiates the class

Person using the example we have used in the previous sections. Each object in the

instance diagram is declared consecutively. Following the object declarations are slot

value assignments for each object. This is done in one step of the ASM. Recall that an

ASM is a state machine, but updates to its member variables are done in parallel. The

MainO function defines one such state machine, and so in one step of that ASM we

can initialize any number of different object slot values at the same time using an

update statement in AsmL. For example, we can initialize the name and SSN slots of

the object John with the following block:

step

26

John.at_name.setVal ("John")

John.at_SSN.setVal (123456789)

We note that AsmL uses indentation to identify blocks, so all indentation is

important. We also note that primitive types are encapsulated by classes in the OCL

library module; hence the setVal methods used in the example to set values for

primitive OCL types. Back to the above block, we can see that both slot values are

initialized at the same time within one step of the ASM for the MainO function.

Associations are initialized the same way because they are translated into

member variables that are sets or sequences of objects of the opposite association end

type. This was described in the chapter on the specification diagram parser module.

The only difference with slot initialization is that a single statement may assign an

entire set or sequence of objects of the opposite association end. For example, if the

object John had a set of Bank objects connected by links instantiating an association

between the classes Person and Bank, we could have a statement like the following:

step

John.ae_bank.addltems({ BankOne, N atCityBank, BankOITJSA })

AsmL has support for set, bag, and sequence collection types, so the above

block would add the set of three bank objects into the set representing the association

between Person and Bank on the object John. Likewise, if the association end is

ordered, a sequence notation would be used instead of a set.

After the statements initializing the objects in the instance diagram, the tool

appends additional AsmL code to initialize the set of all the instances for each class in

the class diagram. These sets are used in OCL's alllnstancesO operation, which

evaluates to the set of all instances of a given class in the UML model. Finally, the

tool adds AsmL statements that will loop through each object in the object diagram

27

'I, .,

..

-.

and call its verify0 method. The body of this method for each class in the

specification class diagram contains the translated OCL constraints for the

corresponding class and is generated by the OCL parser module. In effect, the AsmL

code, when compiled and executed, will check the OCL constr�ints for each object

and will report any constraint violations to the user.

28

CHAPTER IV

OCL PARSER AND LIBRARY

The OCL is used to represent constraints in the UML class diagram.

Therefore, we parse OCL constraints and translate them into AsmL in order to enforce

these constraints on the instance-level diagrams described in the previous section.

There has been previous work [18] to write OCL compilers to translate OCL into

languages such as Java. The OCL parser module, together with the OCL library

written in AsmL, support the checking of OCL constraints within a UML model that

is translated into AsmL. The OCL library will be discussed first, followed by the

design and implementation of the OCL parser itself.

OCL Library in AsmL

The OCL library written in AsmL [22] implements operations of the basic and

collection types for OCL as defined in the UML 1.5 specification. It also defines a

class hierarchy consisting of all the OCL types including user-defined classes in the

specification diagram so that AsmL code translated from an OCL constraint is able to

use the specification diagram to check constraints on an instance diagram. Much of

this will become clear in a moment when the details of this class hierarchy are

provided.

OCL Metamodel

We use a class diagram to represent the structure of OCL types defined in the

UML specification. Figure 7 shows the metamodel for OCL that is used for the OCL

29

library. The original design of the metamodel comes from [19] and has been modified

to suit the needs and the limitations imposed by AsmL as a target language.

OclSet

OclCollection

<<interface>>

�'
/ ''

I '

OclAnylmpl

OclEnum

OclBoolean
OclT e

OclReal

Oc Any

Ocllnte er

Oc String

Figure 7. Metamodel showing class hierarchy of OCL types.

All basic OCL types (Boolean, String, Integer, and Real) inherit from the

Oc/Any class, whi.ch is the supertype of all the basic and user-defined types. The

Oc!Type class has operations to retrieve type information from an OCL object and is

implemented as a subtype of Oc!Any. The three OCL collection types, namely Set,

Bag, and Sequence, inherit from an Oc!Collection class, which contains operations

common to all the collection types. Oc/Any and Oc!Collection implement an Oc!Root

interface, which serves two functions. First, it connects all the OCL classes in the

hierarchy together so that object-oriented features like polymorphism can be used.

Second, it provides a general set of operations common to all the OCL types.

Oc!Enum represents an enumeration in OCL, and we use constant values to define

enumeration values. Oc!Any/mpl serves as the base class for all the classes defined by

the user in the specification class diagram. This links the classes defined in the UML

model with the rest of the OCL types so that we can perform OCL operations on them

30

OclRoot

g

during the course of checking OCL constraints.

The UML specification describes operations for basic and collection types in

OCL. Since AsmL is a high-level specification language and has most of the basic

and collection types that OCL has, most of these OCL opera!ions are implemented as

methods that encapsulate the existing operations of the corresponding types in AsmL.

The OCL basic datatype Real corresponds to the AsmL basic datatype Double but is

otherwise the same. Another difference is the Bag collection type in OCL. Earlier

versions of AsmL do not have this collection type, so it was implemented using the

Sequence collection type in AsmL. Even though the latest versions of AsmL now

supports the Bag type, we encountered problems using it and there was insufficient

documentation in AsmL to find out what was wrong. Therefore the current

implementation of the OCL library still uses an AsmL Sequence to represent an OCL

Bag since the functionality is almost the same.

Basic OCL Type Operations

As mentioned earlier, operations for basic OCL types are just encapsulations

of the corresponding operations of the basic types in AsmL. For example, the

following code fragment shows the implementation of some operations of the OCL

Real datatype:

type Real = Double

public class OclReal extends OclAny

public var val as Real

public addition (b as OclReal) as OclReal

return new OclReal (val+ b.val)

public getVal0 as Real = val

31

public setVal (b as Real)

val:= b

The first statement declares a type alias, much like the typedef keyword in

C++, to be consistent with the names of the OCL types. The !lext two lines define the

class that encapsulates the AsmL data type for a real number. The addition operator

for the Real datatype encapsulates the '+' operation of AsmL's Double datatype.

Many of the other basic data type operations are defined in this way. The getVal0 and

setVa/0 methods are present in each class representing an OCL type so that we can

retrieve and set the values of the internal data members that each of these classes

encapsulate. There are also conversion functions converting between the primitive

AsmL data types and the corresponding OCL class for that data type. These functions

are used by some operations implemented in the OCL library.

Collection Type Operations

Collection types are encapsulated in a way similar to the basic data types, but

this is done at the common base class for collection types, Oc/Collection. Part of the

implementation for this class is shown below:

public abstract class OclCollection of T implements OclRoot

public var collSet as Set of T

public var collSequence as Seq of T

public var usingSet as Boolean

AsmL has a feature called type classes that is similar to templates in C++ and

allows a class to be instantiated to work on a particular type and this feature is used to

define the classes for OCL collection types. The Oc/Collection class has a couple of

data members, two of which are mutually exclusive and is used depending whether

32

the actual concrete derived class is a Set or either a Sequence or a Bag. Remember

that the latter two collection types are implemented using an AsmL Sequence (whose

AsmL keyword is actually just Seq). The usingSet member indicates to the common

collection operations which of the two collection members !o use depending on the

actual concrete collection type. Previously, instead of two mutually exclusive data

members, the implementation used AsmL's disjuctive type, where a variable can be

one of a few defined types:

public var coll as Set of T or Seq of T

The statement above declares the variable coll as having either a Set or a

Sequence as a type. The boolean flag is still needed to easily identify the actual type of

the data member. However, problems encountered using the disjunctive data type in

some operations eventually forced us to use the current implementation of two

mutually exclusive data members.

Most of the OCL collection operations are implemented by translating their

definitions given in the UML specification into AsmL. For example,

public size0 as Ocllnteger

if isSet0 then

return ToOcllnteger (collSet.Size)

else

return ToOcllnteger (collSequence.Size)

The above code fragment implements the sizeO operation in the OCL

Collection data type. The proper data member in the class is used after determining

whether the actual collection type is a Set, or a Sequence or Bag. One of the

advantages of using a high-level language like AsmL is the presence of these

collection types, which makes implementing the OCL operations a lot easier.

33

..

However, some collection operations cannot be implemented so easily. These include

what we call iterate-based collection operations.

Iterate-based Collection Operations

There are a number of collection operations that have OCL expressions as

parameters that work on all the elements of a collection. These are called iterate-based

collection operations and are OCL operations that can be can be described in terms of

an iterate operation. Operations such as select, reject, collect, for All, and exists fall

into this category. In the UML specification, iterate is defined as follows:

collection->iterate(elem : Type; ace : Type = <expression> I

expression-with-elem-and-ace)

It is a generic collection operation that evaluates the given OCL expression for

each element in the collection and the result of each evaluation is accumulated until

the final result is returned to the caller. In terms of an AsmL-like pseudocode, an

iterate expression looks like the following:

step

initialize accumulator

step foreach elem in collection

evaluate OCL expression on elem

update accumulator with result of previous evaluation

step

return accumulator result

The Java-based OCL compiler (18] handles iterate-based collection operations

differently using inner classes, which is a feature of Java. AsmL has no such feature

so this method is used. Instead of implementing the iterate-based collection operations

34

in this way within the OCL library in AsmL, the OCL parser module will translate

each occurrence of an iterate-based operation into the general form above in the

generated AsmL code, replacing the relevant parts with the actual collection and the

expression used. From experience this is the best way to hc!J1dle expressions of this

sort, and we believe this is the reason the iterate expression was provided in the UML

specification.

OCL Type Information

In the UML specification, there are a number of operations that provide type

information, such as the OclType operations attributes0, associationEnds0,

operations0, supertypes0, and allSupertypes0. In Chapter 2 we mentioned that

attributes, operations and association ends that were translated into AsmL had

prefixes added to their names. These prefixes are used by some of these operations in

order to quickly identify the data members in the AsmL class that are either attributes,

operations, or an association ends. All these type operations are implemented using

the reflection capabilities of the .NET framework that are defined in the

System.Reflection namespace. For example, the following code fragment is the

implementation of the attributes0 operation of the OclType class:

public attributes0 as OclSet of OclString

var s as OclSet of OclString = new OclSet of OclString

var a as Set of OclString = {}

var f = objectType.GetFields ((System.Reflection.BindingFlags.Public

+ System.Reflection.BindingFlags.NonPublic +

System.Reflection.BindingFlags.Instance) as

System.Reflection.BindingFlags)

35

step foreach x in (fas PrimitiveArray of System.Reflection.Fieldlnfo)

let temp= x.Name as String

if temp.Starts With ("at_") then

p = new OclString((temp.Substring (3) as St!"ing))

add p to a

step

s.setVal(a)

step

return s

OCL Parser

The OCL parser module consists of a lexical analyzer, a parser for OCL, a tree

parser, and supporting classes for storing the symbol table, translated text, and for

translating OCL constraints into AsmL. The first three components are generated

from a parser generator called ANTLR [20]. The lexical analyzer retrieves tokens

from a text file containing OCL constraints extracted from the specification class

diagram and passes them to the parser, which will build a parse tree. The tree parser

will then traverse this parse tree and then translate each OCL constraint into AsmL

with the help of the support classes.

Writing a parser from scratch is definitely not a good idea because of the

complexity of the grammar from OCL, which is available in the UML specification.

Therefore a parser generator is used to automatically generate a parser. There are

other commonly used parser generators available that output C or C++ parsers, such

as yacc or bison for C parsers or bison++ for C++ parsers. The parsers generated from

these programs, however, are bottom·up parsers and only work well with LR(l)

36

grammars. Bottom up parsers also suffer from the problem of code readability

because of the table-based method used in bottom-up parsing and there is also the

problem of shift-reduce conflicts in grammars that are not easy to fix. On the other

hand, ANTLR generates LL-based recursive descent parser� and supports semantic

and syntactic predicates in a grammar specification, which means that it has more

than one look-ahead token to parse grammars with less ambiguity. Recursive descent

parsers are also easier to understand compared to bottom up parsers. Furthermore,

ANTLR generates C++ parsers and is more suitable for the C++ implementation of

the tool because yacc or bison generate C parsers. The bison++ tool produces C++

parsers, but still suffer from the problems of bottom-up parsing and LR(1) grammars

that its predecessors had.

Another feature of ANTLR is the support of tree parsers, which are effectively

parsers that will traverse a parse tree, such as one generated from a regular parser, and

then perform actions on them. Tree parsers, or tree walkers as they are also called, are

represented by a grammar specification, just as a language to be parsed is represented

using a grammar. Therefore, for the tool we have two grammar specifications: one

contains the lexical analyzer specification and the grammar for OCL, and the other

one contains the grammar for the tree parser. Most of the actions are given in the

grammar specification for the tree parser where the actual translation of OCL

constraints are done.

Data Structures for the OCL Parser

The OCL parser uses a few data structures to store information about the OCL

constraints and the translated code. First, it has a symbol table structure, which is

common in parsers. Each symbol table entry contains at least the name of the symbol

37

and its type. If the symbol is a collection type, the type of the contained element is

also stored. If the symbol is a method, then the return type is stored as well. Each

symbol table is a linked list of symbol table entries. OCL supports user-defined

operations, so the symbol table structure needs to support yariable scoping so that

operation parameters have local scope. Scoping is also needed to localize the scope of

variable names used in different OCL constraints within the same class (referred to as

the context of the constraint). Therefore, we use a tree data structure in which each

node is a symbol table. The root of the tree is the symbol table for global symbols,

and children nodes represent symbol tables for local scopes. The scope of each sibling

node is mutually exclusive.

Besides the symbol table, there are data structures to store the translated OCL

constraints. At the lowest level there is the Oc/Expr class, which stores information

regarding an OCL expression within an OCL constraint or operation definition. This

is the building block for translated OCL constraints. In addition to the text of the

translated expression, each Oc/Expr object stores the evaluation type of the

expression since OCL constraints consists of evaluation expressions, although most

are boolean expressions. We also keep track of the index of the temporary variable

name used to store the result of the expression as well as the indentation of this

expression statement in AsmL. This is because in AsmL indentation is used to denote

blocks rather than bracket pairs commonly used in other programming languages.

There are a few other miscellaneous data members in Oc/Expr, but the most notable

one is a linked list of Oc/Expr. This list represents translated sub-expressions that the

current expression depends on. For instance, in the OCL expression "a and b", the

sub-expressions a and b have to be evaluated first before the and expression can be

evaluated. We could add the Oc/Expr objects containing the AsmL translation of the

38

..

sub-expressions into this list so that they will be written out to the AsmL specification

first before the and expression. Even though this may not have been a good design

decision, we can enforce the order of output of translated sub-expressions in this way.

The ConstraintElement class contains a linked list _of Oc!Expr objects and

represents one OCL constraint. It also has two string data members that contain

header and footer AsmL code that are written to the AsmL specification before and

after the translated statements that make up the OCL constraint. The ContextElement

class represents a set of OCL constraints in one context, whether it is a class or an

operation (for class or operation constraints respectively). Its data members include a

linked list of ConstraintElements, a ConstraintElement that stores translated OCL

expressions defining support operations used by OCL constraints in a context, and a

string data member containing AsmL statements declaring and initializing temporary

variables within the scope of the context that are used by the containing OCL

constraints.

Methodology for Translating OCL Constraints

We utilize a divide and conquer method to translate each OCL expression,

whether it is a constraint, a pre-condition, a post-condition, or a "let" statement

defining a local variable or method used by constraints. With the help of the parser,

each OCL expression is subdivided into many sub-expressions and translation occurs

from the leaves of the parse tree going upwards. Because OCL is an evaluative

language, each sub-expression has a result type and therefore it can be evaluated and

the result of that evaluation is used in the containing expression, and so on. This

means that the translation of an OCL constraint results in many sequential AsmL

statements that stores results of the evaluations of intermediate sub-expressions

39

before the larger containing expression is evaluated. As an example, let us say that the

class Person has the following OCL constraint (an invariant):

inv: self.isMarried implies self.age> 18

This constraint consists of an implies statement, whicg contains two operands

that are sub-expressions. The dot operator in the first operand further subdivides that

sub-expression into two more sub-expressions, which match the property call rule in

the OCL grammar. The second operand in the implies expression is a greater-than

expression that can be further divided into two sub-expressions, the second of which

is a literal (the smallest possible expression). Talcing all of these into account, a

translation in pseudo-code would be:

tempt= self

temp2 = templ.isMarried

temp3 = self

temp4 = temp3.age

temp5 = new libOcl.Ocllnteger (18)

temp6 = temp4.isGreaterThan (temp5)

temp7 = temp2.irnplies (temp6)

As you can see, each sub-expression is evaluated one by one so that its result

can be used by the containing expression until the entire OCL constraint (or method)

is evaluated. The actual translation may be slightly different but this pseudo-code

captures the basic concept in our translation schema.

We translate iterate-based expressions in the same way but the tool adds

additional AsmL statements following the pseudo-code for iterate expressions given

in the section above on iterate-based collection operations. Indentation for the sub­

expressions within these iterate-based expressions have to be computed correctly

40

because of AsmL's use of indentation to denote blocks. With indentation done

correctly the tool can translate multiple nested iterate-based expressions without

problems.

Property Calls in OCL Expressions

Property calls are one of the most important expressions in OCL because they

provide the only access to members of classes in the UML model and operations

defined in OCL types. Property calls can have three forms:

1. Property calls using the dot operator, such as self.name

2. Property calls using the arrow operator, such as course->sizeO

3. The property by itself, such as self

The first form is used to access members of a type where the type is not a

collection and to navigate associations between classes. The second form is used to

call operations of collection types. The third form is usually either self, which returns

a reference to the current context, or a member or navigable association from the

current context where self is implied.

When a property call is encountered during the translation of an OCL

expression, the tool will try to search for the property depending on the context where

it is encountered. In the first form, we assume that the caller expression (the

expression before the dot operator) has been evaluated. We check to see if the

property name matches any property (for example, class attribute) of the caller type.

In the second form, the tool will check to make sure that the calling expression

evaluates to a collection type. If it is, then we check a hard-coded list of possible

collection type operations and if one is found, we try to translate it together with any

parameters for the operation if they exist. Currently we perform limited type checking

41

on the parameters of these operations. In the third form, we first check for the "self'

string. If found, we translate it to the "me" keyword in AsmL. Otherwise, we proceed

to find a match in the current context by assuming that self is implied. In all three

cases, an error is reported if any type check fails or if the proQerty call is not found for

the given caller type. Furthermore, the specification class diagram is only consulted in

the first and third forms of the property call expression because the arrow operator in

the second form is only used for operation calls from an OCL collection type, which

do not involve any UML model.

There is a special case of property call expressions. These are operations of the

Oc!Any type and apply to all the types in the model. These operations, which include

ocllsKindOf, ocllsTypeOf, and oc!AsType, are accessed using the dot operator, so the

tool will check for these operation names and translate them into corresponding

AsmL statements after doing some type checking. The first two operations translate

into an is statement (for example, "self.ocllsKindOf(Class)" becomes "me is Class"

where me is the translation of self in AsmL) while the latter is translated into an as

statement (for example, "self.oclAsType(Class) becomes "me as Class"). To avoid

run-time exceptions when the generated AsmL code is compiled and executed,

developers writing OCL constraints are advised to use ocllsKindOf or ocllsTypeOfto

validate an object's type before doing type casting with the oc!AsType operation.

Short-Circuit Evaluation of Logical Operators

When translated into AsmL using the methodology explained earlier, logical

expressions using operators such as and, or, and implies are translated so that their

operands are evaluated first before the logical expression itself is evaluated. However,

with the use of the casting expression using oc!AsType, run-time casting exceptions

42

may occur if AsmL code tries to cast an object to an invalid type. An example is the

following constraint:

context WebServer

inv: self.person.ocllsKindOf (Student) implies

self.person.oclAsType(Student).cgpa > 3.0

This OCL constraint means that if the navigated association is a Student

(which is a child of the class Person) then we downcast the object to its actual type,

Student, and evaluate the boolean expression of whether the student's CGPA is

greater than 3. The implies operator means that if the Person object is not actually a

Student object (but for example an instance of another child class of Person called

Worker) then the constraint automatically evaluates to true according to the truth table

for implies. The problem is that with the default AsmL translation we use, both sub­

expressions are evaluated first and therefore the AsmL code may try to typecast a

Person object that is not a Student object, resulting in a run-time exception.

The solution to this is short-circuit evaluation, in which the first operand in a

logical expression is evaluated. If the result of the logical expression can be

determined completely by the first operand, then the remaining operands are skipped.

This concept can be extended to logical expressions with multiple operands, where

the fewest amount of operands needed to determine the result of the expression is

used. Short-circuit evaluation is a feature available in many programming languages,

but involves some complexity in implementation in the tool. However, due to recent

uses of our tool requiring OCL constraints that have type-checking followed by type­

casting like the example above, it was implemented so that the problem can be

solved.

43

.

CHAPTER V

UML MODEL INSTANTIATION CHECKING

One of the major purposes of the tool is to perform UML model instantiation

checking. The UML is based on the four-level meta-modeling architecture. Each

successive level is labeled from M3 to Mo and are usually named meta-metamodel,

metamodel, class diagram, and object diagram respectively. A diagram at the Mi level

is an instance of a diagram at the Mi+I level. Therefore, an object diagram (an Mo­

level diagram) is an instance of some class diagram (an M1-level diagram), and this

class diagram is an instance of a metamodel (an M2-level diagram). The M3-level

diagram is used to define the structure of a metamodel, and the Meta Object Facility

[21] belongs to this level. The UML metamodel that we have been talking about

belongs to the M2-level. Model instantiation checking is therefore the process in

which an Mi-level diagram is checked to see if it is a correct instance of the

corresponding Mi+1-level diagram that we claim it is an instance of. The tool

presented in this work can check a user-defined model against a UML metamodel and

also an object diagram against a user-defined class diagram. The tool performs the

former by converting the user-defined model into an object diagram and checking to

see if it is a valid object diagram with respect to the metamodel. This is done by

checking graphical and OCL constraints provided in the specification class diagram to

ensure that the instance diagram is valid.

The previous chapters have already described the way in which the tool reads

in the UML model containing both the specification and instance diagram provided by

the user and extracting the specification diagram, OCL constraints, and the instance

44

-

diagram to produce a single AsmL specification that can be compiled and executed to

perform model instantiation checking. As a result, this chapter will focus on the

notation used in a UML model to be given to the tool for checking as well as other

notes about what the tool needs from the standpoint of the us�r.

Notations Used in the UML Model

To perform model instantiation checking on the diagrams in a given UML

model, we have come up with some notations to help the tool recognize parts of the

model that it needs to read in. This is due to the fact that UML modeling software

such as Rational Rose are designed to support a general UML model that is not

specific to any particular subject domain. Another reason is the fact that no modeling

software has complete support for all the features of the UML specification. For

instance, Rational Rose does not support object diagrams, so we use collaboration

diagrams to represent them instead.

To represent the specification and instance diagrams, we use two distinct top­

level packages in the model, each of which will contain either the specification

diagram or the instance diagram respectively. This notation was briefly introduced in

the first chapter and shown in Figure 2. All the UML diagrams that belong to the

specification diagram will be created inside the specification diagram package, which

is the package at the supplier end of the dependency relation between the two

packages at the top level. All the UML diagrams that belong to the instance diagram

will be created inside the instance diagram package, which is the package at the client

end of the dependency relation. For the purposes of checking multiple instance

diagrams against a single specification diagram (which could be a UML metamodel),

there can be more than one instance package at the top level package of the UML

45

model. However, there can only be one dependency relation. To check multiple

instance diagrams against one specification diagram, the software developer needs to

change the client of the dependency relation from one instance package to another

while keeping the specification package as the supplier of Jhe dependency relation.

The tool can then be executed using this modified UML model. Conversely, the same

technique can be used to check a single instance diagram against multiple

specification diagrams, one at a time.

Notations Used in a Specification Diagram

The specification diagram usually consists of a class diagram. This class

diagram could represent a complete or a partial UML metamodel or a UML profile (at

the M2 level). The tool supports a partial UML metamodel because the software

developer may not want to validate a user-defined diagram against the entire

metamodel. This is especially true when a UML profile is used. A UML profile is an

extension of a UML metamodel using the lightweight extension mechanism of UML

involving UML stereotypes to provide additional semantics, constraints and structural

relationships between the original meta-classes in the metamodel. By using a UML

profile, the software developer can tailor the UML metamodel to a specific

application domain using stereotypes. More information on this can be found in the

UML specification [10]. That said, the software developer may only want to validate

a UML diagram that is based on the profile against meta-elements in the profile itself.

Therefore, the developer can provide only the UML profile that includes the

stereotypes and the meta-classes that these stereotypes extend. When the tool converts

the instance diagram into an object diagram based on the profile, any objects created

based on the UML metamodel that is not provided in the profile will be ignored, so

46

only objects of meta-elements in the profile will be checked.

Feature
+feature

,-------------;dt>ownerScope: ScopeKind
�isibility : ViaibilityKind

+owner 0 .. 1

Classifier

+type

Class

«stereotype»:

O .. *
---------�

{ordered}'---------�------'

+typedF eature

o .. * Structura/Feature

<<stereotype>>:

<<stereotype>>
{ subsets owner} { subsets feature}

<<stereotype»
MyClass MyAttr

1 1

Figure 8. Some elements in an example UML profile.

Figure 8 is an example of a UML profile. In this simple profile, we have part

of the UML metamodel elements, namely Classifier, Class, Feature,

StructuralFeature, and Attribute. The profile extends the UML metamodel by adding

two stereotypes, MyClass and MyAttr. These stereotypes extend the meta-classes

Class and Attribute respectively. If a class diagram that uses these stereotypes is

provided as an instance diagram, the tool will ignore Generalization and Association

objects in the object diagram converted from the instance-level class diagram since

the meta-classes for these elements are not provided in the UML profile.

Figure 8 also shows a number of notations used in a UML model that the tool

47

will read:

1. Stereotypes

According to the UML specification, there are two ways to show

stereotypes in a UML model. The first is to use _a table form to represent

the stereotype and listing its base class, descriptions, tag definitions, and

constraints. The second is to use a graphical notation, which is the method

we are using here. A stereotype is designated with a normal class notation

with the stereotype "stereotype", denoted with <<stereotype>> in the

figure. To indicate the base class that the stereotype extends, we use a

dependency relation (also denoted with <<stereotype>>) connecting the

stereotype (for example, MyClass) with its base class (for example, Class).

Tag definitions for the stereotype are represented as attributes in the class

notation (not shown in the figure).

2. Subset associations

Subset associations are associations between two UML classes or

stereotypes that are subsets of another association between the supertypes

of these two model elements. The notation we have adopted here is widely

used in the upcoming UML 2.0 specification and we use it to disambiguate

between multiple associations between the same two classes or their

supertypes. In the example in Figure 8, the stereotypes MyClass and

MyAttr inherit two associations from their supertypes, namely the

association between Classifier and Feature and the association between

Classifier and StructuralFeature. Without any special notation, it is

impossible to tell which of these two associations is the superset

association for the one between the two stereotypes. By adding the

48

..
--

'·
J,.,

. .,.

.. •
..

- ~·

• ..

,,
. . --....
- ..

.. - .
• • t

... '
. . .

"subsets" string as a constraint at the association ends of the subset

association, this problem is solved.

Another important notation used in a specification class diagram is the

representation of a enumeration. Figure 9 shows the definition of two enumerations,

ScopeKind and VisibilityKind, in the UML metamodel. As with stereotypes, we use a

class notation to define the enumeration but this time the class has the stereotype

<<enumeration>>. Enumeration literals are denoted with class attributes that do not

have a corresponding attribute type. The visibility of the attributes do not matter in

this case.

<<enumeration>>
ScopeKind

�classifier
�instance

<<enumeration>>
Visib ilityKi nd

�public
�protected
�private

Figure 9. Notation for enumerations in a specification diagram.

OCL constraints for classes in a specification class diagram are given within

the documentation part of each class. Rational Rose will export these documentation

tags to the XML file containing the model so the tool can read them in. Constraints

are placed within two keywords recognized by the tool so that other forms of

documentation can be given and will be ignored by the tool. As an example, a class

called Person may have the following OCL constraints in its documentation tag:

BeginOCL

inv: self.course->size0 > l;

inv: self.rank = #Senior implies self.age > 18

49

EndOCL

Notations Used in an Instance Diagram

An instance diagram can be an object diagram (at _the Mo level) if we are

comparing it with a user-defined class diagram (at the M 1 level) or it can be a class

diagram, sequence diagram, or state chart diagram if we are comparing it with the

metamodel (at the M2 level). Rational Rose, which is the most commonly used UML

modeling software, does not have object diagrams. Therefore we use a collaboration

diagram to represent an object diagram, like the one shown in Figure 10.

stude

student

{order�...__ __ __,
CS224: Cf.:660:

Course Course

DrV\lho : DrSomeone:

Instructor Instructor

Figure 10. A collaboration diagram representing an object diagram.

Classifier roles are used to represent the objects in an object diagram, while

association roles represent the links between the objects. Classifier roles have a name

and the base class, which is mapped into the object name and the class that the object

instantiates. Rational Rose allows the software developer to select an existing

50

{ orde re

association as the base for the association role and automatically adds role names to

them, if they exist. Objects also have slot values, and they are given inside the

documentation part of each classifier role representing the object and they follow the

format described in the chapter about the instance diagram P8!ser.

If we are comparing a M 1 -level diagram against a UML profile, then the

developer may need to provide values for tag definitions a stereotype in the profile

might have. We still call them slot values rather than tag values because the M 1 -level

diagram will be converted to an object diagram that is an instance of the profile.

Therefore the format and method to provide slot values for objects are used to provide

tag values for instances of stereotypes. However, documentation tags for some

elements, such as relations, are not exported to the XML file representing the UML

model. Hence, if the UML profile contains stereotypes for these elements that also

contain tag definitions, the workaround to provide tag values for instances of these

stereotypes is to place them in comment tags, as shown in Figure 11.

«stereotype>>
Associat ion Refined_Assoc <<stereotype>>

hr--::----,--,-,-----::-,-,----+---------------- ,,.,-,,..1--------1
�refinement_value: String

BeginSlot
refinement value=\11'
EndSlot

'
'

«Refine Class»
A

'
'

'
'

<<R��oed Assoc>>
' -

'-

<<Refine_Class>>
B

Figure 11. Using comment tags to provide tag values.

51

- ..___I _____.

I - J
- Ii------:__

Miscellaneous Notes

Metamodel Version in Diagram Conversion

One thing the software developer should know is the fact that the tool hard­

codes most of the UML 1.5 metamodel when converting a class diagram, sequence

diagram, or a state chart diagram into an object diagram. For example, a class diagram

with a class named 'A' with an attribute named 'age' of type Integer will be

converted into an object diagram with an object of the meta-class Class named 'A',

an object of the meta-class Attribute called 'age', and an object of the meta-class

Datatype called 'Integer'. There will be a link between object 'A' and object 'age'

that is instantiated from the association between meta-classes Classifier and Feature

representing the relationship between a class and its attribute (see Figure 8). There

will be another link between object 'age' and object 'Integer' which is an instantiation

of the association between meta-classes Classifier and StructuralF eature representing

the type of the attribute, where meta-class Datatype is a subtype of Classifier. The

tool hard-codes the meta-classes and associations that will be used in the conversion

when it needs to check an M 1 -level model against the metamodel, and because

supporting multiple metamodels at this point is beyond the current scope of our work,

we have chosen UML 1.5 as the hard-coded metamodel.

What this means to the user of the tool is that the version of the UML

metamodel used as the specification diagram for model instantiation checking should

be 1.5 and this should also be true of the metamodel that a UML profile extends if a

profile is used instead. If a different version of the metamodel is used, then the tool

may report errors because it cannot find an association or an element that is present in

the UML 1.5 metamodel but not in the version that was given to it.

52

Graphical Interface to Rational Rose

Currently the tool is written as a console-based Win32 application, which

means it needs to run in a command prompt under Windows. This might be suitable

for a Unix- or Linux-based application, but a Windows user would expect a graphical

user interface. Therefore, we have integrated it with the Rational Rose modeling

software as an add-in by writing a script using BasicScript in Rational Rose that

provides a Windows dialog box prompting the user for input to be passed on to the

tool via a batch file. Although there is no installer, instructions are provided in a text

file that would allow another developer to add a menu option to the tool in Rational

Rose. At this point we are emphasizing functionality over user-friendliness, but future

work include providing a user-friendly graphical interface to the user. A screenshot of

the user interface in Rational Rose is shown in Figure 12. The tool has four operating

modes right now. The two modes at the top row are the model instantiation checking

modes that have been discussed in this chapter. The ones in the second row will be

discussed in more detail later. Note that the add-in runs independent of whatever

model that has been loaded into Rational Rose because the only input file it requires

is an XML file containing the UML model to be checked that has been generated

prior to running the tool.

53

Select'-·

Tool operating mode-----:-=--:--=,-----------,,,:-==�

� Profile+ instance diagram
(' CWs diagram refinelnent

OK

(' Class + object diagram
r seq + statechart message' order

Cancel]

Figure 12. Graphical user interface for the tool in Rational Rose.

54

CHAPTER VI

UML MESSAGE ORDERING VERIFICATION

Besides model instantiation checking, our tool can also perform what we call

message ordering verification, which involves two types of diagrams in a UML

model: sequence diagrams and state chart diagrams. UML sequence diagrams are

used to model the interactions between objects in a software system. A sequence

diagram shows the sequence of messages exchanged between objects in a given

scenario. For instance, Figure 13 shows a sequence diagram for a telephone system

where the user uses the telephone exchange to make a successful phone call. UML

state chart diagrams are used to model the behavior of individual objects by using

states that show how the objects respond to various messages and events during the

execuation of a software system. As an example, Figure 14 is a state chart diagram

showing what a user in a telephone system can do in response to events.

In a valid UML model of a software system, the sequence of messages sent

and received by an object in a sequence diagram should be consistent with the

sequence of messages sent and received by that same object in a state chart diagram

for the corresponding class. For example, if a sequence diagram shows a user picking

up a phone, dialing a number and then getting a working phone connection, then the

corresponding state chart diagram should show a possible scenario where the same

sequence of events can occur. In this work, the process of ensuring that sequence and

state chart diagram messages are consistent is called message ordering verification.

55

56

Bob: Person AT&T:
Telecom

1: pi�kupPhone()

2: dialNum ber(String)
'
'

�
'

� 3: con nect()
4: returnConnection() �

__,

--..

': Chat ()

6: endCall

7: hangUp

8: dialtone ,--

�-- - - ------- - - - - - ------------- ------

'

Figure 13. Sequence diagram for a scenario in a telephone network.

Active

• entry/ pickupPhone

Idle endCall

Talking

Calling

do/Chat

�
exit/ ATelecom.h ang Up

badNews eturnConnect o StartChat L------?J

Crying

do;' cry

Laughing

do;' la ugh

service isconnect

Down

Figure 14. State chart diagram for a person in a telephone network.

-I I I --=~: -
' '

To perform message ordering verification, the tool constructs a message graph

for each state chart diagram and builds a list of messages sent and received by each

object in a sequence diagram. After that the goal is to find an initialized trajectory in

the message graph that matches the sequence of messages �ent and received by the

corresponding object. Basically this is just a graph search to find a path starting from

the initial node in the message graph that containing the same sequence of messages

in the message list for an object. The following pseudo-code illustrates the overall

algorithm for message ordering verification. Details for the algorithm will be given

later in this chapter.

***** MainLoop:

For each statechart diagram s in the model

BuildMessageGraph(s)

For each sequence diagram x in the model

n = number of collaboration roles in x

create n empty lists, a[n]

for each message m in the ordered message list for x

add m to a[i] if i is a receiver or sender in m

for each list y in a

CheckMessageOrder(y, classifier for list y)

***** CheckMessageOrder(y ,c):

G = message graph for c

p = initial node in G

for each message q in ordered list y

find b in non-pseudo node successors of p where b = q

57

•

p=b

return true

ifnone return false

Data Structures for the Algorithm

The data structures used for the message ordering verification algorithm

include a message graph, a list of messages for each object in a sequence diagram,

and some additional data structures to store intermediate information.

Each state chart diagram will have one message graph, which is a graph where

nodes represent messages in a state chart diagram and transitions represent the next

possible messages. The message graph represents all possible sequences of messages

that can be triggered and executed based on information in the corresponding state

chart diagram. It is just a different representation of the state chart diagram, but in this

representation each node in the message graph contains messages so searching for

sequence of messages along a path in the graph becomes easier compared to doing the

same search in a state chart diagram.

There are several node types in the message graph and they are: StubEntry,

Entry, DoActivity, Event, EventEffect, TransStart, Transition, TransEffect, and

Exit nodes. Most of them correspond to the events and actions in a state chart

diagram. Although the message graph only contains message nodes, sets of nodes

form a virtual state that has information about the corresponding state in the state

chart diagram. As shown in Figure 15, we keep track of the message nodes that

belong to a state in the state chart diagram while constructing the message graph. The

transitions in the figure represent the possible messages that can occur after a

particular message node. Most of the nodes are optional depending on what the state

58

,

has, but there will always be an Entry node (represented as a StubEntry node if there

is no entry action) and a TransStart node (starting point for all outgoing transitions

from the state) in each virtual state. Event nodes are the triggers for the internal

transitions within a state. Transition nodes represent ttjggers for an outgoing

transition. Exit actions occur after a transition event but before the effect of the

transition so the Exit node for a state, if present, is inserted right after a Transition

node.

-
,
- -- -- -- --. Entry- - -

VIRTUAL STATE l

I /�
I

iDoActivity • ----------- • I
I

E�� I
I i I
I �

BventBffect I
I �ransstact • I L------}----------'

• Transition

Bxit !
TransEffect

1------ � ------

/. VIRTUAL STATE I
I • E�ry

I

Figure 15. Virtual states in a message graph.

While constructing the message graph, the tool keeps track of the nodes in

each virtual state in the graph. For each virtual state, pointers to the nodes

59

representing the entry action, do activity, and events are stored. Also stored is a

pointer to the TransStart node for the state and a string containing the exit action,

whose node will be inserted separately for each outgoing transition from the state. The

state index of the parent state is also stored if the current �tate is a sub-state. Each

state in the state chart diagram read from the UML model is given an integer index

unique to a state chart diagram that allows states to be indexed in an array for easy

access. The information for virtual states in the message graph is only stored during

the construction of the message graph, where that information is used to help in

connecting message nodes to each other in the graph. After construction, the message

graph only stores the list of nodes and a pointer to the initial node.

Another important data structure is the list of messages for each object in the

sequence diagram. Each object in the sequence diagram interacts with other objects

by sending and receiving messages. For the purposes of message ordering

verification, we want a list of messages sent and received by each object to be

checked with the message graph that was constructed based on the state chart diagram

of the corresponding class. Messages can have one of two types: sent or received.

Sent messages are messages that are sent by the current object to another object in the

sequence diagram. We treat messages sent by an object to itself (for instance, to an

operation in the object's own class) as a sent message. Received messages are

messages received by the current object from another object in the sequence diagram.

In Figure 13 the list of messages for the object Bob will be all the messages in the

sequence diagram except connect because that message is only seen by the object

AT&T. From the context of object Bob, messages 1, 2, 5, and 7 are sent messages,

while messages 4 and 6 are received messages. We currently ignore return values

such as message 8.

60

Constructing the Message Graph

The first part of message order verification is to con�truct one message graph

for each state chart diagram for a class in the specification diagram. The pseudo-code

for the high-level BuildMessageGraphO function in the algorithm is shown below:

void BuildMessageGraph (StateMachine m)

initMap(stateN odeMap)

init = GetlnitialState(m)

buildSubGraphs(m, init)

buildCompositeStatesO

buildTransitionsO

The function initMapO initializes an array of structures that will store

information about virtual states in the message graph. After finding the initial state in

the diagram, buildSubgraphsO will create and connect message nodes for all the states

so that they look like the nodes in Figure 15. Initial states and final states will only

have the StubEntry and TransStart nodes because they do not have the other types

of messages. The buildSubgraphsO function will also set the "parent" field in the

virtual state structure if the current state is a substate within a composite state. Initial

substates are also labeled at this point. At the end of buildSubgraphsO, the message

graph contains many unconnected sub-graphs where each sub-graph represents a state

or substate in the original state chart diagram.

The function buildCompositeStatesO searches for all substates in the state

chart diagram and connects each substate's message nodes to the message nodes of all

61

ancestor composite states:

void buildCompositeStatesO

for each state x in the statechart diagram with a parent state

if x is an initial state

do

add x.entry as successor to parent.entry/doActivity

connectSubstate(x, parent)

connectSubstateTrans(x, parent)

parent = parent composite state of parent

until top-level composite state is reached

1
---•ntry---. 7

I ;•
\
_________ l ___ i�:�����

Stat•

1

I . I ---- __ _ lntry
DoActivity • I I �:::_:�• I \��ven:

-
-

-
�--------------J�:-------1 \

I __ '\r:--_:4:_- --- -- -:.:=-1::::;;;-•

�

DoAct
\

vity

I
EventlUect ,!-':::.:.:. i :-_:;�: .. _'=.:���=�-=---1---- _��Event

I \ __
_
_ :;::::f=;:::____ ---�::_-_-:.=::_ � - i

I
'fran■start w::::. ____ � ____ .::----.:------t--------:---... � lventlff•ct

I
I

------L_
L _!ARI� CON»OSJ:'l'B _!!AH J : -----..._ 'fran■start

I_ - - _SOBS'rA!_!__ _ - -

Figure 16. Connecting substates with parent composite states.

Figure 16 shows what connectSubstateO does to connect the message nodes of

each substate with the message nodes of each parent or ancestor composite state. The

messages are connected based on the possible sequences of messages that can occur.

For instance an event in the parent state can be triggered during the do activity of a

62

substate, and after the event's effect or action has been executed, control might go

back to the substate's do activity again. Remember that message order verification

involves searching the message graph for any path that matches the sequence of

messages an object sends and receives in a sequence diagr�, so the message graph

represents all possible scenarios and paths that can be taken depending on triggered

events and guards in the state chart diagram.

The function connectSubstateTransO connects a substate with outgoing

transitions of its ancestor states, including a proper sequence of exit actions. This

behavior is defined in the UML specification. For example, in Figure 17 there is a

transition from state A to state D. If the transition is triggered while the current

execution of the object instantiating this class is in substate C, the sequence of

messages should be: transition trigger, exitC, exitB, exitA, transition effect, and the

entry action of D. The transition trigger and effect as well as the entry action ofD are

optional. Assuming all the triggers and actions are present, the resulting portion of the

message graph would look like Figure 18 after the connectSubstateTransO function

completes its task.

The final task m the high-level function BuildMessageGraphO is calling

buildTransitionsO, which connects each virtual state in the message graph to another

virtual state based on transitions in the state chart diagram. This function links the

sub-graphs in the message graph together the same way transitions link different

states in the state chart diagram together. This procedure is similar to the one in

Figure 18.

63

A

exitA

B

exitB

Figure 17. Cascading exit actions in a state chart diagram.

I . lnATB c
I�

rans Start •
_ I

Transition t
� r�

S_T_M_
B

_
D __

• .,•--•• ---•• ----,.
i
-• • Entry

I Bxitc Bxite BxitA TransBffect

Figure 18. Connecting cascading exit actions.

I I
I I
L _____ I

If there are no transition triggers, effects, and exit action, then the TransStart

node of the source state is directly linked to the Entry node of the target state. Figure

19 shows an example of different outgoing transitions to other states where some

transitions may or may not have transition triggers and effects. Besides this,

buildTransitionsO also adds the proper sequence of cascading Entry nodes if the

source state has a transition going into a nested substate, similar to what is done for

cascading exit actions.

64

I . IS!AH C

L
ran■start •

� ,-- ___ �

lxitC e

--�-� I • Bntry I
I I
L ____ J

t
�

itc Tranalffect
I

stublntry I
'l'ransition • ---• ----...;.

I
-• J

� L ____ I
e BxitC

4---
1 • lntry I

I I

L __ J

Figure 19. Connecting transitions between states.

Searching the Message Graph

After the message graphs have been constructed, the next step is to build the

list of messages for each object in a sequence diagram. If there are multiple sequence

diagrams in a UML model then the process is repeated. The pseudo-algorithm for this

step was given near the beginning of the chapter. Once the message lists are created,

searching the message graph is quite simple. Each message graph has a pointer to the

initial message node (which is the Entry node for the initial state in the state chart

diagram for the particular class). If we think of the message list for an object as a

queue, then we first compare the front of the queue with the current node in the

message graph. A match is found when the names of the two messages are the same

and the message types match. Remember that there are two types of messages in the

message list: sent and received messages. Received messages can be matched with

event triggers or transition triggers in the state chart diagram because these triggers

are messages that the current object receives from another object. Sent messages can

be matched with entry actions, exit actions, do activities, event effects, and transition

65

effects because the messages are sent by the current object to another object or to

itself.

When a match is found, then we move on to the next message in the queue.

Then we try to find a successor node in the message graph _that will match this new

message. If no successors are found, then the recursive search algorithm will

backtrack to the previously matched message and the previous message node and

attempt to find another successor node with a match. The search returns an error if no

path in the message graph can be found that matches the sequence of messages in the

message list for the current object. The algorithm keeps track of the longest match and

returns that in the case of an error so that the developer has more information on what

caused the message ordering verification procedure to fail. The algorithm succeeds

when a path with the sequence of messages in the message list exists in the message

graph.

For example, checking the message list of the object Bob in Figure 13 with the

message graph generated from the state chart diagram for class Person in Figure 14

results in success. If, however, we remove message 4 (returnConnectionO) from the

sequence diagram, the validation process would return an error because the algorithm

would be unable to find a path in the message graph for class Person where the sent

message Chat follows the sent message dialNumber. In terms of the original state

chart diagram, the current state of object Bob after message 2 would be the substate

Calling, which has no entry action, do activity, exit action, event effect, or transition

effect named Chat. Therefore, the sequence diagram is incorrect with respect to

message ordering.

66

Guards in Transitions and Events

Transitions and events (which are just internal transitions in a state) in a state

chart diagram may have guards, which are boolean expressions that have to evaluate

to a true value before a transition can be traversed. Guards provide some level of

control over the behavior of an object depending on factors such as variable values

and so on. Supporting guards would definitely make our message ordering

verification algorithm better since they are part of the semantics of a state chart

diagram. When the tool encounters a guard in a transition node in the message graph

it is currently trying to match, the tool will display the guard expression and prompt

the user to say whether the guard evaluates to true or false. If the guard is true, then

the tool proceeds with the graph search along the current path for the next match.

Otherwise, the tool treats the match as being false and the algorithm will backtrack to

search for another matching successor node. The evaluation of the guard is therefore

up to the developer, and he may let a guard be true or false on different runs to test

different scenarios in the sequence diagram.

This method of handling guards in transitions and, events may not be very

efficient, but the alternative would be to implement a parser that can parse and

evaluate guards, which also means that the tool has to keep track of all variables and

values so that the guards can be evaluated automatically. It might be possible to

perform message ordering verification in AsmL by generating AsmL code that can be

compiled and executed, just like we did for m�del instantiation checking, but the

entire design for this validation test will need to be changed.

Notation for Message Names

Message names in the sequence and state chart diagrams need to have a

67

particular notation for the messages to be compared for matches during the second

phase of message order verification in which the message graph is searched.

Depending on the UML model, there might be different ways of specifying messages.

The simplest notation are the ones in our telephone network example where messages

are just single names (for example, hangUp). In a more detailed and precise model,

however, messages can have parameters since most messages between objects are

actually operation calls (for example, dia!Number(someNumber) which has one

parameter). In state chart diagrams, the name of the class that the message is sent to or

the operation call is directed to can be prefixed to the message. For instance,

Telecom.dia!Number(someNumber) is a message sent to an object of the Telecom

class calling the operation of that class named dia!Number with a single parameter.

These are three notations that can be used for messages in the two UML diagrams.

The tool handles message names by stripping class prefixes and parameters

off, leaving only the actual message or operation call. Therefore in the two preceding

examples we are left with the message dia!Number, which can be easily matched. A

better but more complex way is to check the parameters as well, but that would

require data structures and parser code so that parameter evaluation can be done. Just

as with the complex checking of transition guards, this might be handled better by

parsing and translating the sequence and state chart diagrams into executable form

such as through the use of AsmL. This is beyond the scope of the our work because

our main focus is on model instantiation checking.

68

CHAPTER VII

APPLICATIONS OF THE TOOL

Now that the features and uses of the tool have been described, we now look

at what the tool can be applied to. One of the common uses ofUML is to design UML

profiles based on the metamodel and then creating diagrams based on the profile. Our

tool allows software developers to check that the diagrams they create are correct

instance diagrams with respect to a UML profile that is used in a specific domain. For

this thesis two such applications of the tool are presented: (1) a UML profile assisting

developers in class diagram refinement, and (2) verifying class diagrams that are

based on UML profiles representing design patterns.

Class Diagram Refinement

Modern software development is a complicated process especially when the

software system to be designed is large and complex. Software developers apply

software refinement in order to proceed from a high-level design to a more detailed

design by adding new diagrams, classes, and other elements to an existing UML

model representing the software system. Class diagrams are important because they

represent the static structure of a software system, and therefore we design a UML

profile based on the UML metamodel to support class diagram refinement [23]. The

main idea is to help developers check whether two consecutive levels of class

diagrams, one of which is a refined version of the other, have any semantic

discrepancies that could have been introduced during the refinement phase. This will

help software developers find errors during software development and also lets them

69

know whether their development is on the right track since some discrepancies are

caused by the refinement process from an imprecise problem to a precise solution.

We support class diagram refinement by designing a UML profile, which

extends the original UML metamodel by using stereotypes, that software developers

can use to tag classes and relations in the class diagrams at the different levels of

refinement. Then with the help of OCL constraints written for some of the

stereotypes, we can use the model instantiation checking feature of our tool to check

whether the combined class diagram containing classes at the two levels of refinement

is a correct instance of the profile, which would mean that they pass the rules of

refinement that we provide in the OCL constraints.

Notation for Class Diagram Refinement

In order for the tool to support class diagram refinement, we have to specify a

notation to represent class diagrams at two different levels of refinement within a

UML model that will be given as input to the tool. The solution here is pretty simple.

We use the same notation that we used to separate specification and instance

diagrams in the UML model when using the tool for model instantiation checking,

which is to use packages and connect them with dependency relationships. Therefore,

the UML model used for this purpose would first have two top-level packages: one

for the UML profile (as the specification diagram package) and one for the instance

diagram. Instead of the normal instance diagrams, the instance diagram package

would contain two or more packages that will each contain one class diagram at

different levels of refinement. There has to be exactly one dependency relationship

connecting two of those packages where the supplier is the higher-level class diagram

and the client is the refined class diagram. This is shown in Figure 20, in which we

70

are designating the package labeled "Level 2" as the higher-level class diagram and

the "Level 3" package as the refined class diagram. This way the software developer

is able to compare any two levels of class diagram refinement, just as we can validate

any instance diagram package with a corresponding specification diagram package by

changing the client and supplier of the dependency relation.

Refinement
Profile

I
Instance Package

I kvel 2 f- - - - - � kvel 3 I
Figure 20. Package structure in a UML model supporting class diagram
refinement.

We extend the UML metamodel by introducing stereotypes including

Refine_Class, Refined_Assoc, Refining_Assoc, Refined_Gen, and Refining_Gen. A

stereotype that has the prefix Refined_ represents an element to be refined, i.e. its

instance belongs to a higher-level model. A stereotype with the prefix Refining_

represents an element that is used to refine an element at the higher-level model. The

Refine_Class stereotype is used to represent classes at the ends of a refined or a

refining relation. We define a tag named mapping_name that is used to represent a

refinement relation between two classes during class diagram refinement. If two

classes have the same value for mapping_name, then these two classes are involved in

71

- - - - - - .

some refinement relation. Each of the other stereotypes have a tag named

refinement_value, which is used to represent elements that are involved in a

refinement relation. All Refined_ and Refining_ stereotypes with the same value for

refinement_value are involved in some refinement relation. In addition to this, each

Refining_ stereotype also has a tag named mapping_order, which is an integer value

that represents the order in which the refining element appears in the relation that is

refined in the refined class diagram. The purpose of this will be made clearer when

the rules for refinement are discussed below. Figure 21 shows part of the UML profile

supporting class diagram refinement.

I +specialization r Generalization n

Idiscriminator: String +parent
+generalization +child

n n

,) 11 � +powertype

'
+powertypeRange

«st er•otyp�>> «stereoty�e
,
» I/

' '
«
R

st ere otyp e »
1:fining_Gen

ent_value : String refinem
llbmappi ng_order: Integer

C/as�fier
+participant '

'

«ste re otyp e » 1

Refined Gen +specification
�refinement_value : String

n

t «stereotype»
Refine Class _

«stereotype»J Class I
l�mapping_name : String jisActive Boolean I

«stereotype» I
:·· -1

«stor• otyp e »
Refined_Assoc

l�refinement_value : String

<<stereotype>:,�

,'

«stereotype»
Refining_Assoc

llbrefin•m•nt_value : String
llbmapping_order: Integer

G•n<

isRoot:
1 isleaf:

isAbstra
-

+a �ociatic

+specif

Association

I
�

:

Figure 21. Part of UML profile supporting class diagram refinement.

72

- 1

....__

:
'
' .

- '- -----,
' ' -

I
-

I f '
....

Rules for Refinement

Rules for the refinement of relations from a higher-level model to a refined

model are given in the form of OCL constraints attached to some of the stereotypes

defined in the profile for class diagram refinement. We will present some refinement

rules for generalization, bidirectional association, and unidirectional association.

Generalization

At level one, which is the higher-level class diagram, we assume that the class

A is a subclass of B. Then at level two, which is the refined class diagram, the

generalization can be refined into two or more generalizations by adding helper

classes. We assume that class A maps to class X in the refined model while class B

maps to class Y by using the same values for mapping_name respectively. We also

assume that the order of refining generalizations go from the child to the parent end­

classes. This rule is depicted in Figure 22.

<<Refine_ Class>> <<Refined_ Gen>> I'---
<<Refme Class>>

V mapping_ naine=" one" refinement value= 'vl' mapping_naine="two"

(a) Level One

< R.efi.Jdnc Ge
<<Refme_Class>>

mapping_naine=" one"

nfinement_value='vl'
mapping_ value= I

«R.efi.Junc_ Gen» <<Refme_ Class>>

mapping_naine="two''

nfinement_val•= 'vl'
mappinc_ val•=n

(b) Level Two

Figure 22. A rule for refinement of generalizations.

73

-A B

Jl

1 X r -q 1----- -~ y 1

The stereotype Refined_Gen is used to represent a generalization at the higher­

level class diagram that will be refined in the lower-level class diagram. It should

satisfy restrictions between itself and its corresponding refining generalizations:

• The refined generalization should be refined to a set of generalizations

• The child of the refined generalization should correspond to the child of

the first refining generalization

• The parent of the refined generalization should correspond to the parent of

the last refining generalization

• Two consecutive generalizations should have the same class as their end

class, and this class is the parent class of one generalization and the child

class of the other generalization.

The OCL constraint for the stereotype Refined_Gen is shown in Figure 23.

context Refined Gen
inv: let matchingGen : Set(Generalization) =

Generalization.alllnstances()->select(gl g.ocllsKindOf(Refining_Gen) and
g.oclAsType(Refining_Gen).refinement_value = self .refinement_value)

in
self .parent.ocllsKindOf(Refine_Class) and
self .child.ocllsKindOf(Refine_Class) and
matchingGen->forAll (a,b I a.oclAsType(Refining_Gen).mapping_order

b.oclAsType(Refining Gen).mapping order implies a = b
>I

- -

and matchingGen->forAll (al
a.oclAsType(Refining_Gen).mapping_order >= 1 and
a.oclAsType(Refining_Gen).mapping_order <= matchingGen->size()

)
and matchingGen->exists (a,b I a<>b and

a.oclAsType(Refining_Gen).mapping_order = 1 and
a.child.ocllsKindOf(Refine_Class) and
a.child.oclAsType(Refine_Class) .mapping_name =

)

self .child.oclAsType(Refine_Class) .mapping_name and
b.oclAsType(Refining_Gen) .mapping_order = matchingGen->size() and
b.parent.ocllsKindOf(Refine_Class) and
b.parent.oclAsType(Refine_Class).mapping_name =
self .parent.oclAsType(Refine_Class).mapping_name

and matchingGen->forAll (c,d I (c<>d and
c.oclAsType(Refining_Gen).mapping_order + 1 =

d.oclAsType(Refining_Gen) .mapping_order) implies
(c.parent = d.child)

Figure 23. Refinement rule for generalizations.

74

The constraint for the stereotype Refining_Gen is related to the stereotype

Refined_Gen, which was already provided. Therefore there is no constraint for

Refining_Gen.

Bidirectional Association

At level one, we assume that there is a bidirectional association between class

A and class B. This association can be refined to a set of bidirectional associations

using a set of helper classes. Figure 24 shows this refinement rule.

<<Refme_ Class>> <<Refmed Assoc>> <<Refme _ Class>>
A

mapping__ name=" one" refmement_ value='bi' mapping__name=''two''

(a) Level One

<<Refme_ Class>><< Refining_ Assoc >>

mapping__ name=" one"

refinement_value='lli'
mapping_ order= l

«Refininc_Assoc> <<Refme_Class>>

mapping__name=''two"

refinement_value='lli'

mapping_ order=n

(b) Level Two

Figure 24. A rule for refinement of bidirectional associations.

The stereotype Refined_Assoc represents the association at the higher-level

diagram that will be refined in the lower-level diagram. It should satisfy the following

restrictions between itself and its corresponding refining associations:

• The refined association should be refined to a chain of associations

• The two end classes on the refined association correspond to the two

classes at both ends of the chain of the refining associations

75

- I B

Jl

I x i I I ·· ... 1 y I

• Two consecutive bidirectional associations should have the same class as

their end class.

The OCL constraint for the stereotype Refined_Assoc is shown in Figure 25.

inv: let matchingAssoc : Set(Association) =

Association.allinstances()->select(gl g.oclisKindOf(Refining_Assoc) and
g.oclAsType(Refining_Assoc).refinement_value = self .refinement_value) in

self .associationEnd->forAll (p,q I (p<>q and p.isNavigable and q.isNavigable)
implies (p.participant.oclisKindOf(Refine_Class) and

q.participant.oclisKindOf(Refine_Class) and
matchingAssoc->forAll (a,b I a.oclAsType(Refining_Assoc).mapping_order

b.oclAsType(Refining_Assoc).mapping_order implies a = b)
and matchingAssoc->forAll (all
a.oclAsType(Refining_Assoc).mapping_order >= 1 and
a.oclAsType(Refining_Assoc).mapping_order <= matchingAssoc->size())

and matchingAssoc->exists (a,b I a<>b and
(a.oclAsType(Refining_Assoc).mapping_order = 1 and

a.associationEnd->exists (ell el.isNavigable and
el.participant.oclisKindOf(Refine_Class) and
el.participant.oclAsType(Refine_Class).mapping_name
p.participant.oclAsType(Refine_Class).mapping_name)

and b.oclAsType(Refining_Assoc).mapping_order = matchingAssoc->size() and
b.associationEnd->exists (e21 e2.isNavigable and

e2.participant.oclisKind0f(Refine_Class) and
e2.participant.oclAsType(Refine_Class).mapping_name =
q.participant.oclAsType(Refine_Class).mapping_name))

or (a.oclAsType(Refining_Assoc).mapping_order = matchingAssoc->size() and
a.associationEnd->exists (ell el.isNavigable and

el.participant.oclisKindOf(Refine_Class) and
el.participant.oclAsType(Refine_Class).mapping_name
p.participant.oclAsType(Refine_Class).mapping_name)

and b.oclAsType(Refining_Assoc).mapping_order = 1 and
b.associationEnd->exists (e21 e2.isNavigable and

e2.participant.oclisKind0f(Refine_Class) and
e2.participant.oclAsType(Refine_Class).mapping_name
q.participant.oclAsType(Refine_Class).mapping_name)))

and matchingAssoc->forAll (c,d I (c<>d and
c.oclAsType(Refining_Assoc).mapping_order + 1 =

d.oclAsType(Refining_Assoc).mapping_order)
implies (c.associationEnd->exists (xi d.associationEnd->exists (vi

x.isNavigable and y.isNavigable and x.participant = y.participant)))))

Figure 25. Refinement rule for bidirectional associations.

The constraint for the stereotype Refining_Assoc is related to the one in

Refined_Assoc and therefore no constraint is provided for Refining_Assoc.

Unidirectional Association

At level one, we assume that there is a unidirectional association from class A

to class B, which is then refined to a set of unidirectional associations in the lower­

level diagram. This rule is shown in Figure 26.

76

<<Refme_ Class>> <<Refmed_Assoc>>"
<<Refme _ Class>>

A
/

mapping_ name=" one" refmement_ value='uni' mapping_ name=''two''

(a) Level One

<<Refme_Class>> < fininc_Assoc >

X

mapping_name=" one"

refinement_ value= 'uni'
mapping_ order= l

«Refininc_Asso,(<<Refme_Class>>
y

/ mapping_name="two"

refinement_ value= 'uni'
mapping_ order=n

(b) Level Two

Figure 26. A rule for refinement of unidirectional associations.

The stereotype Refined_Assoc is also used here to represent a unidirectional

association at the higher-level class diagram. It should satisfy the following

restrictions between itself and the set of Refining_Assoc in the refined class diagram:

• The refined association should be refined to a chain of associations

• The class at the navigable end of the refined association should correspond

to the class at the navigable end of the last association in the chain of the

refining associations

• The class at the non-navigable end of the refined association should

correspond to the class at the non-navigable end of the first association in

the chain of the refining associations

• Two consecutive unidirectional associations should have the same class as

their end class and this class is at the navigable end of one association and

the non-navigable end of the other association.

The OCL constraint for the stereotype Refined_Assoc is shown in Figure 27.

The refinement rules for bidirectional associations and unidirectional associations are

77

B I

Jl -
_t 1 ······· 1..-------------,

mutually-exclusive and can be seen in the first operand for the implies operator near

the beginning of each OCL constraint, which ensures that the constraint is completely

evaluated only if the required conditions are true. Remember that with short-circuit

evaluation, the rest of the implies expression is ignored if t�e first operand evaluates

to false.

inv: let matchingAssoc Set(Association) =

Association.alllnstances()->select(gl g.ocllsKindOf(Refining_Assoc) and

g.oclAsType(Refining_Assoc).refinement_value = self.refinement_value) in
self.associationEnd->forAll (p,q I (p<>q and not p.isNavigable and q.isNavigable)
implies (p.participant.ocllsKindOf(Refine_Class) and

q.participant.ocllsKindOf(Refine_Class) and
matchingAssoc->forAll (a,b I a.oclAsType(Refining_Assoc).mapping_order

b.oclAsType(Refining_Assoc).mapping_order implies a = b)
and matchingAssoc->forAll (al

a.oclAsType(Refining_Assoc).mapping_order >= 1 and
a.oclAsType(Refining_Assoc).mapping_order <= matchingAssoc->size())

and matchingAssoc->exists (a,b I a<>b and
a.oclAsType(Refining_Assoc).mapping_order = 1 and
a.associationEnd->exists (el I el.participant.ocllsKindOf(Refine_Class) and

el.participant.oclAsType(Refine_Class).mapping_name =
p.participant.oclAsType(Refine_Class).mapping_name)

and b.oclAsType(Refining_Assoc).mapping_order = matchingAssoc->size() and
b.associationEnd->exists (e2 I e2.participant.ocllsKind0£(Refine_Class) and

e2.participant.oclAsType(Refine_Class).mapping_name =
q.participant.oclAsType(Refine_Class).mapping_name))

and matchingAssoc->forAll (c,d I (c<>d and
c.oclAsType(Refining_Assoc).mapping_order + 1 =
d.oclAsType(Refining_Assoc).mapping_order)

implies (c.associationEnd->exists (xi d.associationEnd->exists (YI
x.isNavigable and x.participant = y.participant))))

and matchingAssoc->exists (m I m.associationEnd->exists (n I
not n.isNavigable)))

Figure 27. Refinement rule for unidirectional associations.

Advantage of Using Metamodel Methodology

The refinement rules presented here are conservative in the sense that they try

to keep the transitive property for each relationship during refinement. The refinement

rule for unidirectional associations actually allows some of the refining associations to

be bidirectional as long as at least one of them is unidirectional and the navigation of

the unidirectional associations is consistent with the corresponding unidirectional

association at the higher-level model. One important advantage of the metamodel

methodology is that developers can easily design their metamodel to reflect the

78

refinement rules they want.

Design Pattern Profile Checking

Another application of our tool is to the validation_ of UML class diagrams

generated from a UML profile specifying a design pattern. France et al. [24] describe

a technique to specify design patterns by specializing the UML metamodel to obtain a

pattern metamodel that can be used in model driven architecture (MDA). The pattern

specification is represented using a custom notation in a class or sequence diagram,

which we can translate into a UML profile using stereotypes, graphical constraints,

and OCL constraints. Class diagrams that are designed based on a particular design

pattern can be regarded as an instance of the UML profile representing the pattern.

This means that we can use our tool to verify that the generated diagrams are valid

instances of the corresponding profile. This can be useful to the software developer,

especially after details are added to the UML diagrams, to ensure that the diagram still

follows the constraints and structure specified by a particular design pattern.

To illustrate the application of our tool to design pattern profile checking, we

present an example of a user-defined class diagram that uses the State design pattern

introduced by Gamma et al. [25] and check whether the class diagram is a valid

instance of the UML profile representing the State design pattern.

A Profile for the State Design Pattern

The State design pattern is a behavioral design pattern that allows the behavior

of an object to change when its internal state changes. This design pattern is used

when an object's behavior depends on its state at run-time. The structure of the State

design pattern is shown in Figure 28.

79

Context +state State
�

♦RequestQ ♦HandleQ

,

I::::
ConcreteStateA ConcreteStateB

.HandleQ state

♦HandleQ ♦HandleQ

Figure 28. Structure of the State design pattern.

Based on the structure of the design pattern we can translate it into a UML

profile. To do this we introduce a number of stereotypes:

1. Two stereotypes, extending the meta-class Class, named StateContext and

State.

2. Two stereotypes, extending the meta-class Operation, named

StateRequestOp and StateHandleOp.

3. A stereotype, extending the meta-class Association, named aContextState

representing the association between StateContext and State.

4. Two stereotypes, extending the meta-class AssociationEnd, named CSC

and CSS representing the two association ends for the association

stereotype.

Besides the stereotypes, we also introduce associations between stereotypes

that are subsets of the associations of their extended meta-elements. These

associations are relevant to the State design pattern and allows us to specify graphical

constraints through multiplicity values on the association ends. For instance, each

class with the stereotype StateContext must have at least one operation that is

stereotyped with StateRequestOp; hence we have a multiplicity value of J .. * at the

80

-

I

end of the association between the stereotypes StateContext and StateRequestOp.

Figure 29 presents part of the UML profile representing the State design pattern.

Notice that all the associations between the stereotypes use the subset constraint

notation described in Chapter 5 to indicate that these associations are subsets of some

association inherited by the base classes of the two end stereotypes respectively. To

disambiguate the subset associations from their superset associations, arbitrary role

names are given to association ends so that the set of ends at each stereotype have

unique role names (where having no rolename is also considered one unique role

name). For example, aContextState has two association ends connecting it with CSS,

one of which comes from the association inherited from meta-class Association that

has no role name and the other which is from the subset association with the role

name fromCSS. Notice that the role name fromCSS disambiguates the ends of the two

associations connecting these two stereotypes.

« ste re otyp e » {subsets connection} « ste re otyp e » {subsets connection} «stereotype»

csc a Co ntextState css

1 1 1 1

1 {subsets association} +fromCSC +fromCSS {subsets association} 0 .. 1

1 {subsets participant} {subsets participant} 1

«stereotype» « ste re otyp e »

State Context State

1 {subsets owner} {subsets owner} 1

1 .. " <<stereotype» « ste re otyp e » 1 .. "

StateRequestOp StateHandleOp
{subsets feature} {subsets feature}

Figure 29. UML profile representing the State design pattern.

Graphical constraints are not enough to express all the restrictions of the

design pattern, so OCL constraints are used as well. For instance, to ensure that there

is a unidirectional aggregate association from a class stereotyped with StateContext to

81

a class stereotyped with State, we add the following OCL constraint to the

aContextState stereotype:

inv: self.cSS.isNavigable and not self.cSC.isNavigable and

self.cSC.aggregation = AggregationKind: :aggregate

Example Class Diagram Instantiating the Design Pattern

Now that a UML profile representing the State design pattern is available, a

software developer can design a class diagram based upon this profile by using the

stereotypes defined there. As an example, consider a class that represents a network

connection whose behavior changes depending on the state of the connection [25].

From the description of the system it is obvious that the State design pattern can be

applied to its design. Therefore, we can draw a class diagram using the structure of

the State design pattern as a template and come up with a class diagram such as the

one in Figure 30.

<<State Context»
TCPConneclion

♦«stateRequestOp» Openo
♦«stateRequestOp» CloseQ
♦«stateRequestOp» AcknowtedgeO

+CSC +CSS_thesta!_e
- ,

«a Co ntex!State »

<<State»
TCPState

•«stateHandleOp» OpenQ
♦«stateHandleOp» CloseQ
♦«stateHandleOp» AcknowledgeQ

6

<<State>> «State>> <<State>>
TCPListen TCPClosed TCPEstablished

Figure 30. A class diagram based upon the State design pattern profile.

All the elements in this class diagram that are relevant to the UML profile

representing the State design pattern are tagged with the appropriate stereotypes. This

brings us to the notation used to denote the stereotype for association ends. They are

82

-

I\

given as part of the association end's role name followed by an underscore character.

The format of the role name is

Stereotypename_Rolename

Both the stereotype name and the role name are optional, but the underscore

character must be present if the stereotype name is provided, even if there is no role

name. The association connecting the classes TCPConnection and TCPState in Figure

30 shows how the stereotype name and role name will look like. Unlike association

ends, stereotypes for the other common elements in a class diagram, such as classes,

attributes, operations, associations, generalizations, and dependencies can be provided

in the stereotype field for the respective element in a modeling tool such as Rational

Rose. A limitation of the current prototype is that the tool cannot check the body of an

operation in the class diagram, such as the one in Figure 28, so validation is currently

limited to the structural aspect of the model as well as OCL constraints.

The above class diagram is a valid instance of the State design pattern profile,

and so executing the tool on this UML model using model instantiation checking will

yield no model checking errors. However, if none of the operations in the

TCPConnection class are stereotyped, or if the association is bidirectional instead of

unidirectional, then the errors will be caught by the tool at the graphical constraint or

the OCL constraint level respectively. As with class diagram refinement, by using a

UML profile to represent design pattern specifications software developers are able to

modify the metamodel depending on their interpretations of the design patterns.

83

CHAPTER VIII

CONCLUSION

The work in this thesis attempts to cover a broad area, especially to support

the entire UML specification, and given constraints on time and resources there is

only so much that can be implemented into the current version of the tool. Therefore

this chapter will provide a list of limitations of the tool as well as a list of things that

can be done in the future to further improve the functionality and the use interface of

the tool. Lastly we will summarize the conclusions obtained from this work.

Limitations

Here is a list of the limitations to the tool that are either beyond the scope of

our work or limited due to time and resource constraints:

• The diagram parsers are written specifically to read XML files in the XMI

format using the UML 1.3 DTD. If the DTD of a different UML version is

used (for example, 2.0) our tool will not work. This is because the parsers

are hand-written to follow the DTD that is currently used by the most

popular commercial UML modeling software, Rational Rose. To solve this

problem, one would have to write an XML parser that would read the

DTD before reading the XML file, but .then the software would need to

map what it reads into the appropriate data structures or generate the data

structures dynamically based on the DTD. Whatever the method used to

solve this problem, the complexity of the solution and the time needed to

implement it is beyond the scope of this work.

84

• One important assumption throughout the tool is that an association will

have exactly two association ends, even though the UML metamodel

specifies that associations can have two or more association ends. This

assumption is valid for almost all UML class di�grams in practice and it

makes the implementation of many algorithms much easier. The tool will

usually abort execution or display an error message if the number of

association ends for some association is not exactly two.

• Association classes are not supported in the tool mainly because of the

lack of support for them in the translation schema from class diagram into

AsmL. The XML parser in the tool can read association classes but they

will be ignored.

• As mentioned before, the tool does not support multiple inheritance in

class diagrams well because AsmL does not support multiple inheritance.

This feature is one of the more important items in the list of future work

since it is a common occurrence in UML models.

• Support for translating diagrams other than class diagrams, sequence

diagrams, and state chart diagrams are not present due to lack of time and

resources. The UML specification is large; thus it is not possible to

support all the diagrams during the course of this work, but is left as future

work.

• Some operations in OCL, such as isUnique, sortedBy, any, one, and so on

are not supported in the current version of the tool. These operations were

introduced in version 1.5 of the UML specification.

• The OCL parser currently does not support constraints or pre- and post­

conditions for operations because to support them we would also need a

85

way to express the functionality of these operations in some way, such as

through OCL or some other action semantic language. This task is beyond

the scope of this work.

• Related to the previous limitation is the lack of proper type-checking of

operation parameters.

• Other less frequently used class diagram and OCL features such as

qualifiers and templates are not supported by the tool.

• In message order verification, concurrency in sequence and state chart

diagrams is not handled because of the method used (graph search) to

perform the validation test.

• There is no support for history states, submachine states, and other more

advanced features of state chart diagrams at this point.

• Errors when parsing an OCL constraint are limited to the default error

messages displayed by the code produced from the ANTLR parser

generator. In order to implement the basic functionality of the OCL parser

module, there was insufficient time to implement the complex error

recovery grammar rules and actions within the ANTLR grammar

specification for the OCL parser. This will be a high-priority item in the

list of future work.

Future Work

Due to time and resource constraints, not everything could be accomplished

during the design and implementation of the model validation tool. Here are some of

the items that could be implemented in the future:

• Find a way to support multiple inheritance in UML class diagrams.

86

• Provide more helpful and detailed error messages throughout the tool,

especially for parse errors in OCL constraints.

• Gradually add support for the remaining features or elements of the UML

and OCL specification to the tool.

• Re-implement message ordering verification so that it is easier to perform

the same task while at the same time being able to automatically evaluate

guards and operation parameter values.

Conclusion

In this work we proposed a software tool that validates UML models m

various ways, including model instantiation checking through the use of abstract state

machines and message ordering verification through the use of message graphs and a

graph searching algorithm. A translation schema from UML class diagrams into

AsmL specifications as well as the support of OCL in AsmL via a library of OCL

operations implemented in the language allows us to perform model instantiation

checking on different levels. This resulted in applications of the tool to areas such as

class diagram refinement and design pattern profile checking. Software developers

can use this tool to aid them in the validation of their UML models and because of the

tool's support for UML profiles, the tool can be applied to a specific domain

depending on the profile given as input to the tool.

87

Appendix A

EBNF for Notations in UML Models

88

.

1) EBNF for syntax of OCL constraints in the UML model:

constraint := "BeginOCL" (constraintDef I constraintBody)+ "EndOCL"

constraintDef := "def" (NAME)? COLON (letExpression)*

constraintBody := stereotype (NAME)? COLON oclExpression

stereotype := "pre" I "post" I "inv"

oclExpression := ((letExpression)* "in")? expression

expression := logicalExpression

letExpression := "let" NAME (LPAREN formalParameterList RPAREN)?
(COLON typeSpecifier)? EQUALS expression

formalParameterList := (NAME COLON typeSpecifier (COMMA NAME COLON
typeSpecifier)*)?

ifExpression := "if" expression "then" expression "else" expression
"endif"

logicalExpression : = relationalExpression (("and" I "or" I "xor"
\ "implies") relationalExpression)*

relationalExpression := additiveExpression ((EQUALS I GREATERTHAN
I LESSTHAN I GTE I LTE I NOTEQUALS) additiveExpression)?

additiveExpression := multiplicativeExpression ((PLUS I MINUS)
multiplicativeExpression)*

multiplicativeExpression := unaryExpression ((STAR I DIV)
unaryExpression)*

unaryExpression := ("not" I MINUS)? postfixExpression

postfixExpression := primaryExpression ((DOT I ARROW) propertyCall)*

primaryExpression := literalCollection I literal I propertyCall
I LPAREN expression RPAREN I ifExpression

propertyCallParameters .- LPAREN (declarator)?
(actualParameterList)? RPAREN

literal := STRING I number I POUND NAME

typeSpecifier := simpleTypeSpecifier I collectionType;

collectionType := collectionKind LPAREN simpleTypeSpecifier RPAREN

simpleTypeSpecifier := pathName I oclType

literalCollection := collectionKind LBRACE (collectionList)? RBRACE

collectionList := collectionitem (COMMA collectionitem)*

89

collectionitem := expression (DOTDOT expression)?

propertyCall := pathName ("@pre")? (qualifiers)?
(propertyCallParameters)?

qualifiers .- LBRACK actualParameterList RBRACK

declarator .- NAME (COMMA NAME)* (COLON simpleTypeSpecifier)?
(SEMI NAME COLON typeSpecifier EQUALS expression)? BAR

actualParameterList := expression (COMMA expression)*

pathName := NAME (DBLCOLON NAME)*

collectionKind := "Set" I "Bag"

oclType := "OclType" I "OclAny"
I "Boolean"

bool Type : = "true" I "false"

"Sequence" I "Collection"

"Real" I "Integer" I "String"

number := INT I REAL I boolType I oclType

INT := (DIGIT)+

REAL : = (DIGIT)+ ((' . ' (DIGIT)+) I
(('e' I 'E') ('+'I'-')? (DIGIT)+))+

NAME := ALPHA (ALPHA I DIGIT)*

STRING : ' \ ' ' (ESC I - (' \ \ ' I ' \ ' ')) * ' \ ' '

DIGIT .- '0'

ALPHA . - 'a'

'9'

'z' I 'A' I .. I 'Z' I '_'

ESC : = ' \ \ ' (' n ' I ' r ' I ' t ' 'b ' I ' f ' I ' " ' I ' \ ' ' I ' \ \ '
((·o· I .. I •3•i ((·o· I I '7'l (·o· I .. I '7'l? l?
I ('4' I .. I '7'l (·o· I .. I '7'l?ll

Note: The tilde (-) means the set of ASCII characters excluding the
characters inside the parentheses.
Note2: Comment lines begin with two dashes ("--") and is not
represented in the grammar.

2) EBNF for syntax of slot values in the UML model:

slotTag := "BeginSlot" slots "EndSlot"

slots := oneSlot (SEMI oneSlot)*

oneSlot := NAME EQUALS slotValue

slotValue := NAME I INT I REAL I STRING I boolType

90

I . · I
I . . I

BIBLIOGRAPHY

[l] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In_E. Borger, editor,
Specification and Validation Methods, pages 9-36. Oxford University Press,
1995.

[2] M. Anlauff. XASM - An Extensible, Component-based Abstract State
Machines Language. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele,
editors, Abstract State Machines - Theory and Applications, volume 1912 of
LNCS, pages 69-90. Springer.

[3] E. Borger, A. Cavarra, and E. Riccobene. An ASM Semantics for UML Activity
Diagrams. In Algebraic Methodology and Software Technology, 8th
International Conference, AMAST 2000, Iowa City, Iowa, USA, May 20-27,
2000, volume 1816 ofLNCS. Springer.

[4] E. Borger, A. Cavarra, and E. Riccobene. Modeling the Dynamic of UML State
Machines. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele, editors,
Abstract State Machines - Theory and Applications, volume 1912 ofLNCS,
pages 223-241. Springer.

[5] A. Cavarra, E. Riccobene, and P. Scandurra. Integrating UML Static and
Dynamic Views and Formalizing the Interaction Mechanism ofUML State
Machines. In E. Borger, A. Gargantini, and E. Riccobene, editors, ASM 2003,
volume 2589 of LNCS, pages 229-243. Springer.

[6] I. Ober. An ASM Semantics of UML Derived From the Meta-model and
Incorporating Actions. In Proceedings of Abstract State Machines 2003.
Advances in Theory and Practice: 10th International Workshop, ASM 2003,
volume 2589 of LNCS, pages 356-371. Springer, 2003.

[7] · W. Shen. The Application of Abstract State Machines in Software Engineering.
PhD thesis, Dept of EECS, the University of Michigan, September, 2001.

[8] AsmL home page. [cited 2005 Mar 2], Available at:
http://www.research.microsoft.com/foundations/asml.

[9] The Object Management Group(OMG). XML Metadata Interchange (XMI)
specification.

[10] The Object Management Group(OMG). Unified Modeling Language
Specification, version 1.5, March 2003.

91

[11] World Wide Web Consortium (W3C). Document Object Model (DOM) Level 2
Core Specification, version 1.0, November, 2000.

[12] Simple API for XML (SAX). [cited 2005 Feb 14], Available at:
http://www.saxproject.org.

[13] The XML C parser and toolkit of Gnome. [cited 2005 Feb 14], Available at:
http://www.xmlsoft.org.

[14] OASIS XML Conformance Technical Committee. [cited 2005 Feb 14],
Available at: http://www.oasis-open.org/committees/xml-conformance.

[15] MinGW - Minimalist GNU for Windows. [cited 2005 Feb 20], Available at:
http://www.mingw.org.

[16] Xerces C++ Parser. [cited 2005 Feb 20], Available at:
http://xml.apache.org/xerces-c/index.html.

[17] eXtensible Abstract State Machines (XASM). [cited 2005 Feb 20], Available at:
http://www.xasm.org.

[18] Dresden OCL toolkit. [cited 2005 Feb 14], Available at: http://dresden­
ocl.sourceforge.net/.

[19] F. Finger. Design and Implementation of a Modular OCL Compiler. PhD thesis,
Dresden University of Technology, 2000.

[20] ANTLR Parser Generator. [cited 2005 Mar 1], Available at:
http://www.antlr.org/.

[21] The Object Management Group(OMG). Meta-Object Facility Specification,
version 1.4, April 2002.

[22] W. Shen and W. L. Low. Using Abstract State Machines to Support UML
Model Instantiation Checking. In Proceedings of The IASTED International
Conference on Software Engineering, 2005.

[23] W. Shen and W. L. Low. Using the Metamodel Mechanism To Support Class
Refinement. Presented at 10th IEEE International Conference on Engineering
of Complex Computer Systems, 2005.

[24] R. France, D. Kim, S. Ghosh, and E. Song. A UML-Based Pattern Specification
Technique. IEEE Transactions on Software Engineering, volume 30, number 3,
pages 193-206. IEEE Computer Society. March 2004.

92

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley. 1995.

93

	A Tool Supporting Validation of UML Models
	Recommended Citation

	tmp.1558708260.pdf.XW7JO

