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THE PHOTONIC BAND STRUCTURE OF DIELECTRIC SYSTEMS WITH 
A FREQUENCY DEPENDENT DIELECTRIC FUNCTION 

Jiezhou Liu, M.A. 

Western Michigan University, 1994 

The concepts of band theory for electrons can be employed to describe the 

behavior of electromagnetic waves propagating in periodic dielectric structures with 

a frequency independent dielectric function. These periodic structures can produce 

photonic band gaps in which the propagation of electromagnetic waves is strictly 

prohibited. The introduction of a frequency dependent dielectric function in such 

systems gives rise to strong changes of the photonic bands in the neighborhood of 

the frequency resonance of the dielectric function. 

In my thesis, the photonic band structure of a dielectric system with a 

frequency dependent dielectric function which undergoes a dielectric resonance will 

be studied. The transmittance and dispersion relation in the presence of periodic 

dielectric slabs will be derived theoretically and calculated numerically. Comparison 

with results for systems in the absence of dielectric resonance will be made. 
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CHAPTER I 

INTRODUCTION 

It has been shown that when a quantum or classical wave propagates in a 

periodic structure in any number of spatial dimensions, frequency gaps at points of 

symmetry in the corresponding Brillouin Zones are produced in the dispersion relation 

of the wave. In some cases, an absolute frequency gap1 occurs in which no wave, 

regardless of the wavevector value in the Brillouin Zone can propagate. Such a gap is 

called a band gap. 

Photonic band structures are the band structures of electromagnetic waves 

propagating in periodic, dielectric media. They are thought to be of great technical 

interest. If the three-dimensional, periodic, dielectric structure is slightly disordered so 

that it remains periodic on average, it has been suggested1 • that it may be easier to 

observe the Anderson location of light whose frequency is close to an edge of an 

absolute band gap of the corresponding periodic structure than it would be in a 

disordered dielectric structure that is homogeneous on average. It has also been 

suggested2,3 that since electromagnetic waves with frequencies in absolute band gaps 

are totally absent from the system, spontaneous emission for atoms placed in these 

structures is forbidden when the band gap overlaps the emission frequencies. This 

prohibition of spontaneous emission can improve the performance of many optical and 

electric devices which suffer energy losses due to spontaneous emission. The absence 

of electromagnetic modes in a certain frequency range can also modify the basic 

properties of many atomic, molecular and excitonic systems4
. 
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In the following introduction, we will give a brief review of the development 

of the theory and experiments on photonic band structures. 

As early as 1990, S.Satpathy et al. reported their theoretical studies of the 

photonic band structures of three-dimensional, periodic, dielectric structures where the 

electromagnetic field is approximated as a scalar wave2,5-8. Soon after this, KM.Leng 

and Y.F.Liu gave a different approach to the theoretical studies of the photonic band 

structures of three-dimensional, periodic, dielectric structures in which the 

electromagnetic field is computed as a full vector field9, 10 • However, the band 

structures obtained from these two methods are not in agreement with each other. The

full vector treatment is needed to obtain accurate results.

The earliest investigations aimed at finding structures that possess absolute 

band gaps. Subsequently, many special cases were investigated. In 1991, RD.Meade 

theoretically calculated the surface electromagnetic states that can exist at the planar 

surface of a semi-infinite three-dimensional, periodic, dielectric structure formed by 

cutting an infinite structure along some plane13. In recent years, E. Yablonovitch 

derived the spatially localized defect modes that can arise in the vicinity of a 

perturbation of a periodic, dielectric structure14. Finally, S.John and J.Wang 

associated quantum electromagnetic effects with the introduction of atoms and 

molecules into photonic band gap structures15,16. And M.Plihal, S.L.Mccall and 

others have begun to investigate both theoretically19 and experimentally22-25 the 

photonic band structures of two-dimensional, periodic, dielectric structures in order to 

find structures that possess absolute band gaps. The two dimensional, periodic 

structure plays an important role in the photonic band structure studies. Two­

dimensional systems are often easier to fabricate than the three-dimensional 

structures12. 17,18 . Moreover, the localization of light in a disordered two-dimensional 

structure that is periodic on average, whose frequency is close to an edge of an 
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absolute band gap of the corresponding periodic structure, may be easier to achieve 

than that of a disordered three-dimensional, dielectric structures. 

The photonic band structure has been a subject of interest because of its many 

useful applications. It is known that when an electromagnetic plane wave is incident 

onto a periodic layered dielectric medium; it is evanescent and can not propagate in the 

medium if its frequency falls in the band gaps. Thus, the electromagnetic energy is 

totally reflected, and dielectric medium act as a high-reflectance reflector for the 

incident wave. By properly designing the periodic layered dielectric medium, 

extremely high reflectance for some selected spectral region can be achieved. The 

Fabry-Perot interferometer, the Gires-Tournois etalon, high-reflectance coating, 

antireflection coating, spectral filters, edge filters, Christiansen-Bragg filters, 

ellipsometry and so forth27 are invented based on this simple one-dimensional band 

structure theory. 

We already know from solid-state physics that some materials in some band 

gap regions have frequency-dependent dielectric constants. How this property affects 

photonic band structures is a challenging problem in the theoretical studies of the 

photonic band structures. In this thesis we will introduce a transfer-matrix method 

which has the advantage that transmission and reflection coefficients for incident 

electromagnetic waves of various frequencies can be obtained directly from 

calculations to study the photonic band structure of dielectric systems with a frequency 

dependent dielectric function . We are especially interested in the effects of a dielectric 

resonance on the photonic band structure. We will concentrate on one-dimensional 

layered optical system. 

The order of our theoretical derivation and numerical calculation in Chapter II 

are as follows: 
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First, we study one slab, characterized by a frequency dependent dielectric 

function E(ro) , surrounded by vacuum . We compute the transmittance relations for 

the frequency dependent dielectric function E (ro). We compare these results to those 

obtained for a frequency independent dielectric constant. 

Second, we put slabs, characterized by a frequency dependent dielectric 

function E(ro) into vacuum to form a one-dimensional, periodic, optical dielectric 

structure. We obtain the photonic dispersion relations of the periodic system and 

compare these to those obtained for a frequency independent dielectric constant. 

Third, conclusions are presented in Chapter III. 

The one-dimensional structure we study in this thesis illustrates all of the 

aspects of the two-dimensional and three-dimensional systems formed from frequency 

dependent dielectric media with a dielectric frequency resonance. 

4 
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CHAPTER II 

ONE-DIMENSIONAL PHOTONIC BAND STRUCTURES 

In this chapter, we investigate the propagation of electromagnetic waves in the 

simplest layered structure, which is a single homogeneous and isotropic layer 

sandwiched between two semi-infinite media. The bounding media we selected are 

simply vacuum with dielectric constant Eo=l .  Specifically , we investigate 

transmittance functions in the presence of coupling between the lattice oscillations and 

electromagnetic wave. This coupling shows up as a frequency resonance in the 

dielectric function of the dielectric structure. We then generalized this special case into 

a more complicated one which is the one-dimensional, periodic, dielectric structure, 

formed by a periodic array of slabs. We are especially interested in the effects of the 

frequency dependent function e(ro) on the dispersion relation near a resonance 

frequency of E(ro). 

Transmittance Functions in the Presence of a Single Dielectric Slab 

Referring to Figure 1, we consider the reflection and transmission of 

electromagnetic radiation at a thin dielectric layer between two semi-infinite media. We 

assume that the dielectric function of the thin dielectric layer is given by the frequency 

dependent E(ro), the bounding media are just vacuum with Eo=l, The whole structure 

for a slab of thickness a can be described by: 
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vacuum 

E1(x) 

XO 

e( ro) 

E2(x) 

a 

II 

xo+a 

vacuum 

E3(X) 

111

Figure 1. The Structure of a Single Dielectric Slab. 

eo = 1 

e (ro) 

if x � xo or x � xo+a 

if xo � x � xo+a 

X 

(1.1) 

For an electromagnetic wave propagating in the x direction, the electric 

field can be represented by: 

E(x) = Aei(kx-rot)

(1.2) 

where A is the amplitude of the wave, k is the wavevector in the x direction and ro is 

the frequency of the incident electric wave. For the motion of an electromagnetic wave 

through the system in Figure 1, a general solution of the wave E(x) propagating 

through a single isotropic layer, along the x-axis, can be written as: 
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E
1 = Aoei(kox-rot) + Boei(-kox-rot)

E
2 

= cei(kx-rot) + Dei(-kx-rot)

E
3 

= Aei(kox-rot) + Bei(-kox-rot)

X::; XO 

xo < x ::; xo+a 

x � xo+a

(1.3) 

where B=O in our single slab transmission problem .. The complex amplitudes Ao , Bo, 

C, D, A and B are constants, ko and k are the x components of the wavevectors in the 

two different regions with dielectric constant Eo = 1 and E(ro):;tl 

where: 

Ko= m � = m
C C 

k = w -fi 

(1.4) 

The constant Ao is the amplitude of the incident wave. Bo and A are amplitudes of the 

reflected and transmitted waves respectively. 

According to the boundary conditions at the film surf ace, both the electric field 

and its normal derivative at x=xo and x=xo+a should be continuous. We find that at

x=xo these conditions yield : 

Aoei(koxo-rot) + Boei(-koxo-rot) = cei(kxo-rot ) + nei(-kxo-rot)

ikoAoei(koxo-rot) _ ikoBoei(-koxo-rot) = ikCei(kxo-rot) _ ikDei(-kxo-rot)

Solving for the relation between C, D and Ao, Bo, we have: 

(1.5) 
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[C] = __ 1 [-(k + ko)exp[-i(k-ko)xo] -(k - ko)exp[-i(k + ko)xo]][Ao] D 2k -(k-ko)exp[i(k + ko)xo] -(k + ko)exp[i(k -ko)xo] Bo 
(1.6) 

At x=xo+a, our boundary conditions give: 
Aei[ko(xo+a)-cot] + Bei[-ko(xo+a)-cot] = cei[k(xo+a)-rot] + oei[-k(xo+a)-cot] ikoAei[ko(xo+a)-rot] _ ikoBei[-ko(xo+a)-rot] = ikCei[k(xo+a)-rot] _ ikDei[-k(xo+a)-rot]

(1.7) 

Similarly, we have: 
[A]= [-(k + ko)exp[i(k- ko)(xo + a)] (k- ko)exp[-i(k + ko)(xo + a)] ][CJB (k - ko)exp[i(k + ko)(xo + a)] -(k + ko)exp[-i(k -ko)(xo + a)] D 

(1.8) Combining equation (2.7), (2.9), we find the relation between A, B, and Ao, Bo: 

8 

[[cos(ka) + .!._(!..._ + ko)sin(ka)exp(-ikoa)
2 ko k _.!._( !..._ - ko)sin(ka)exp[i(koa + 2koxo)]

2 ko k 
_.!._( !..._ _ ko)sin(ka)exp[-i(koa + 2koxo)]][Ao] 2 ko k [cos(ka)-.!._(!._ + ko)sin(ka)]exp(ikoa) Bo 

2 ko k 

We can write this as: 

Where: 

[A] [ (ai + if31)exp(-ikoa) if32exp[-i(koa + 2koxo)]][Ao]B - -if32exp[i(koa + 2koxo)] (a1 - if31)exp(ikoa) Bo 

(1.9) 

(1.10) 



ai = cos(ka) 
1 k ko . �1 =-(-+-)sm(ka)2 ko k 
1 k ko . �2 = -(-- -)sm(ka)2 ko k 

This matrix can also be written as: 

where: 

P=[ (ai+i�1)exp(-ikoa) i�2exp[-i(koa+2koxo)]] -i�2exp[i(koa + 2koxo)] (a.1 - i�1)exp(ikoa) 

(1.1 1) 

(1.12) 

(1.13) 
Taking the origin of the coordinate at the left surface of the slab , xo=O we 

know there is no reflected is present. That means Bwavevector existing in area III, 
only the transmitted wave is present. That means B=O. 

Solving eq.(1.13), we have: 
A e-ikoa

=---AO al-i/31 
Then transmittance in this case is 
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I 
A 

1
2 1 T

= AO = a12+j312 

(1.14) 

Substituting eq.(1.11) and eq. (1.4) into eq. (1.14) we have: 

(1.15) 

Now we discuss the special case - the frequency dependent dielectric function 

at dielectric resonance. 

It is well known from solid state physics that the energy of a lattice vibration is 

quatized. The quantum of this energy is called a phonon in analogy with the photon of 

the electromagnetic wave. For each wavevector, there are three modes: one of 

longitudinal polarization and two of transverse polarization. Although longitudinal 

phonons do not couple to transverse photons in the bulk of crystal, the transverse 

optical phonons can interact with transverse electromagnetic waves. This interaction 

shows up as a frequency resonance in the dielectric constant of the media. Resonance 

means a condition in which the frequencies and wavevectors of two waves are 

approximately equal. At resonance this phonon-photon coupling entirely changes the 

character of the propagation and band gaps in photonic band structures. If there are N 

ion pairs of effective charge q and reduced mass M, then this dielectric function26 is: 

Where: 

D 
e(m) = e(oo)+ 

2 2 
CtJr - Ct) 

(1.16) 
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D = 41tNq2

M 

ro is the frequency of incident wave. IDr is the transverse optical phonon frequency in 

the absence of coupling with photons. E ( 00) is optical dielectric constant obtained as 

the square of the optical refractive index. 

We put the dielectric function E(ro) into eq. (1.15) and study the photonic 

transmittance near the dielectric resonance. It is a very complicated function. We can 

run a FORTRAN program to show this transmittance as a function of frequancy. 

By my FORTRAN computer program, I get a set of solutions of eq. (1.15) 

for E(ro) given by eq. (1.16). We plot the relation of transmittance versus roa/c for an 

optical dielectric constant E (00) = 9.0, eora/c=l.5421 where IDr is taken to always be 

in the band gaps. The number of frequancy points in the graphes which we have taken 

is 200. 

We plot the transmittance versus roa/c relation at different values of M, where 

M=Da2/c2, for M=0.0, M=l.0, M=5.0, M=lO.0 in Figure 2, Figure 3, Figure 4 and 

Figure 5 respectively. Referring to Figure 2, we find when M=0.0 (that is D=0.0) 

there is no resonance present, namely E(ro)=Eo, transmittance is a continuous and 

periodic function of roa/c. When Mt:0.0, refering to Figure 3, Figure 4, Figure 5, 

there is a resonance present, the transmittance is no longer a continuous function of ro. 

Instead, band gaps are bound to exist between particular frequency ranges in which 

E(ro)<0 . This means that the electromagnetic waves with frequencies in these ranges 

(band gaps) can not propagate though the dielectric structure being considered. At 

M=l .0, band gap is very narrow. Band gaps become gradually wider when M is 

increased. The band gaps are always around the transverse optical photon frequency in 

the presence of coupling with photons roT. It displays the effects of dielectric 

resonance on the transmittance of the single slab. 

11 
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Dispersion Relations in the Presence of One-dimensional Periodic Dielectric Slabs 

We now proceed to solve the problem in the presence of a one-dimensional, 

periodic, dielectric structure which is formed by the periodic array of slabs. Figure 6 

shows a cut from this periodic array of slabs. The over-simplified shape treated here 

already exhibits the essential features of all such one-:dimensional, periodic structures. 

E 

Figure 6. One-dimensional Periodic Structure Formed by 
One-dimensional Periodic Dielectric Slabs. 

area I 

As a useful idealization we assume that slabs and vacuums follow each other in 

periodic succession indefinitely in x direction, although in reality the number of slabs 

is ,of course, finite, but large. Let d=a+b be the period of this structure in which a is 

the width of every dielectric slab and b is the width of each vacuum. 

As in the single slab problem, a plane wave propagating along the x-axis is 

incident from the left on the periodic structure . Passing through the periodic dielectric 

structure, it finally arrives in area I. The wave function of the incident electric field can 

still be expressed as: 

16 

E 



E(x) = Aei(kx- rot) 

(2.1) 

Suppose the coordinate of left surface of first slab is x=0, ( see Fig.7 ), then 

the coordinate of the left and right surface of nth slab are x=nd and x=nd+a 

respectively. The electric field in the first vacuum and first slab are same as eq.(1.3). 

By the same method, we can derive the electric field in the nth vacuum and nth slab. 

The nth electric field in the vacuum may be written in the form: 

En(x) = Anei[ko(x-nd)-mt] + Bnei[-ko(x-nd)-rot]

where 0 � x-nd � I. Referring to Figure 7. 

vacuum 

En(x) 

,._ b 

E( ill) 

En'(x) 

x=nd 

a_.. 

vacuum 

En+1(x) 

x=nd+a 

X 

Figure 7. One Part of One-dimensional Periodic Structure Formed 
by Periodic Array of Slabs. 

The electric field in the (n+ l)th slab is: 

En+l'(x) = Cn+1eik[x-(n+l)d]-irot + Dn+le-ik[x-(n+l)d]-irot

(2.2) 

(2.3) 

17 
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And the electric field in (n+ l)th vacuum is: 
En+ 1 (x) = An+ 1 eiko[x-(n+ l)d]-i(l)t + Bn+ 1e-iko[x-(n+ l)d]-irot 

(2.4) 
According to the boundary conditions at the film surface, both the electric field and its 
normal derivative at x=nd and x=nd+a should be continuous. That is: 
at x = nd, 

Ane-irot + Bne-irot = Cn+ 1 e-i(kd+rot) + Dn+ 1ei(kd-rot) 
ikoAne-i(l)LikoBne-i(l)t = ikCn+ 1 e-i(kd+rot) _ ikDn+ 1ei(kd-rot) 

This equation can be written as a matrix equation: 

[Cn +1] 1 [ (k + ko)exp(ikd) (k-ko)exp(ikd) ][A"]D
n + 1 = 2k (k-ko)exp(-ikd) (k + ko)exp(-ikd) Bn 

at x = nd+a, 

(2.5) 

(2.6) 

An+ l e-i(kob+rot) + Bn+ 1ei(kob-rot) = Cn+ l e-i(kb+(l)t) + Dn+ lei(kb-rot) 
ikoAn+ 1 e-i(kob+(l)t) _ ikoBn+ 1ei(kob-rot) = ikCn+ 1 e-i(kb+rot) _ ikDn+ 1 ei(kb-rot) 

(2.7) 
The matrix form of this equation is: 

[An+1exp(-ikob)l 1 [(ko + k)exp(-ikb) (ko - k)exp(ikb)][Cn+IlBn +1exp(ikob) = 2ko (ko-k)exp(-ikb) (ko+k)exp(ikb) Dn+l 
(2.8) 

18 



Substituting (1.12) into (2.8) we find: 

[
An+ 1exp(-ikob)

l 1 [at+ f31 if32 ][
An

]Bn + I exp(ik:ob) = 4kko -if32 <XI - if31 Bn 

where we have defined a.1, f31 and f32 in section 2.1. 

This may also be written as: 

[
An+ 1

] = _l_
[

(at + if31)exp(ikob) if32exp(ikob)
][

An
] 

Bn+I 4kko -if32exp(-ikob) (at- if31)exp(-ikob) Bn 

Defining: 

p = 
[

(a.1 + if31)exp(ikob) if32exp(ikob) 

]-if32exp(-ikob) ( at - if31)exp(-ikob) 

Then we find by iteration: 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Applying these considerations to an infinite periodic lattice, we must clearly demand 

that for n-Hoo the limit pn should be finite for a propagating wave to exist. That is 

most conveniently discussed in terms of the eigenvalue problem of the matrix P. 
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We now discuss the eigenvalue of P .The eigenvalues of Pare roots of the 

characteristic equation. 

That is: 

( ai + i�1) exp(ikob )-A 
-i�2exp(-ikob)

i�2exp(ikob) 
=0 

(ai -i�1)exp(-ikob)-A 

The roots A+ and L are given by: 

where: 

A+ = aicos(kob)-�1sin(kob) + � 
A- = a1cos(kob)- �1sin(kob)- � 

(2.13) 

(2.14) 

(2.15) 

If .1 > 0, A+ and /\._ are real and lim IP" I ➔ 00 , the solution of the transfer matrix 
n➔-

blows up. Such solution is in conflict with the requirement that electric field must 

remain finite. Hence, an acceptable solution is obtained and a particular eigenvalue 

allowed only if .1 � 0. If this condition holds we may write: 
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Then: 

A+ = eiKd 

11,_ = e-iKd 

A++ 11,_ = eiKd + e-iKd 

= 2 [alcos(kob)-b1sin(kob)] 

So, we obtain the dispersion relation in this case: 

cos(Kd) = cos(ka)cos(kob)-_!-(--�--+ ko)sin(ka)sin(kob)
2 ko k 

(2.16) 

(2.17) 

Substituting (1.4) into (2.17): 

ma c mb 1 c 1 . ma c . mb 
cos(Kd) = cos(--ve) cos(-)--(-ve + ,::)sm(--ve)sm(-) 

C C 2 -Ve C C 

(2.18) 

For the wave media, K is the function of w. 

At the dielectric resonance which we have discussed in section 2.1, E is a 

function of ffi ,  given by eq. (1.16) for OEffiT. Similarly we substitute eq.(1.16) into 

eq. (2.18) to get the dispersion relation for one-dimensional, periodic, dielectric slabs 

and to study the effects of the resonance on the band structure. We also run a 

FORTRAN program to show the dispersion relation and to find band gaps for this 

case. 

We numerically calculated eq.(2.18) using a FORTRAN computer program 

and got a set of solutions of Kd in different ffid/c at condition of eq.(1.16) . Then we 
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plotted this dispersion relation Kd versus rod/c. The width of the slabs a=0.5d, the 

width of the vacuum b=0.5d, where d is the period of the structure formed by a 

periodic array of the slabs d=a+b. roTd/c=l.5421, optical dielectric constant e (00) 

=9.0, and the number of frequancy points in the graphs which we selected is 200. We 

plotted dispersion relations at different M=Dd2/c2, i.e. M=0.0 (that is D=0.0), M=l.0, 

M=5.0, and M=lO.0, where M=0.0 is in no dielectric resonance case and M:;c0.0 is in 

dielectric resonance case. In Figure 8 We present the dispersion relation when no 

dielectric resonance presented. From Figure 9, Figure 10, Figure 11, we see that 

dispersion relations altered near the resonance frequency, @r of the dielectric function. 

A new set of bands centered around a gaps at WT is observed. The width of the gap 

increase with increasing M. 
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CHAPTER III 

CONCLUSIONS 

According to the band theory in solid state physics, electrons in periodic 

crystals are arranged in energy bands separated by band gaps. Similarly, this band 

theory can also be employed to explain the propagation of electromagnetic waves in 

periodic structures in any number of spatial dimensions. Electromagnetic waves with 

frequencies falling in the photonic band gaps are totally absent from the system. When 

electromagnetic waves propagate in the dielectric systems with a frequency dependent 

dielectric function , the band gaps can be changed especially near a dielectric 

resonance. 

In chapter II, we have discussed first the propagation of electromagnetic waves 

through a single dielectric slab. The transmittance function versus the frequencies of 

electromagnetic waves was derived theoretically for the case of one single dielectric 

slab. eq.(1.15) shows the transmittance function. It is calculated by a FORTRAN 

program. From Figure 3, Figure 4 and Figure 5, we see that, the transmittance is no 

longer a continuous function of frequency, but instead, there are band gaps in the 

transmittance curves. The band gaps occur around roT the transverse optical phonon 

frequency in the absence of coupling with photons. The band gaps are presented in 

different frequency ranges with different M selected. 

Then we discussed the propagation of electric waves through a one­

dimensional, periodic structure consisting of an array of parallel dielectric slabs with a 

frequency dependent dielectric function. The dispersion relation was derived 

theoretically and calculated by a FORTRAN program. eq.(2.18) shows the dispersion 
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relation. From the figures of the dispersion relation (Figure 9, Figure 10 and Figure 

11), we see that the band gaps were changed in the dielectric system with a frequency 

dependent dielectric function from those of the frequency independent system. The 

changes of band gaps are most pronounced around the transverse optical phonon 

resonance frequency 

All the photonic band structures of dielectric systems with a frequency 

dependent dielectric function studied in my theses are one-dimensional system. But 

most systems in our natural world are two-dimensional or three-dimensional systems. 

So, the future work in this area can be done in the area of electromagnetic waves 

propagating in two-dimensional or three-dimensional dielectric structures with a 

frequency dependent dielectric function. 
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