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DETERMINATION OF THE BULK MODULUS 
OF A LENNARD-JONES SOLID 

Spencer A. Van Roekel Jr., M.A. 

Western Michigan University, 1994 

The quantum Monte Carlo method is used to determine 

the bulk modulus of a Lennard-Jones solid. The quantum 

Monte Carlo method is discussed in detail and is compared 

with other numerical methods used previously. 

The zero pressure bulk modulus of a Lennard-Jones 

solid is computed at a number of different temperatures and 

compared with experimental data. 
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CHAPTER I 

INTRODUCTION 

The purpose of this thesis is to look at the quantum 

Monte Carlo simulation as a means to study the thermody­

namic properties of inert gas solids arising from atomic 

motion (vibrations). More specifically, this thesis aims at 

comparing the zero pressure bulk modulus of a Lennard-Jones 

pair potential (using nearest neighbor interactions 

calculated from the quantum Monte Carlo method) to experi­

mental data. The quantum Monte Carlo method is in some 

respects found to be much better than previous methods that 

have been used to treat these properties. The previous 

methods of studying such systems have a rather long history 

(60 years) while the quantum Monte Carlo method is only a 

recent development (last 20 years) and its application to 

study the vibrational properties of solids, particularly 

those of the inert gas solids has only been made in the 

last 3 years. Some of the methods that have been used in 

the long history of lattice vibrations include: (a) exact 

enumeration, (b) perturbation techniques, and (c) classical 

Monte Carlo method. Each of these methods has its relative 

strengths and weaknesses in solving for the properties of 

our thermodynamic system but as we shall see below the 
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quantum Monte Carlo method offers potential for an accurate 

(essentially exact) treatment which is not within the scope 

of previous approximate treatments. The purpose of this 

introduction will be to give a brief synopsis of the 

methods, including the quantum Monte Carlo, which have been 

used to study lattice vibrations of inert gas systems and 

to outline the problem addressed in this thesis. We will 

begin by discussing inert gas systems and why they are of 

interest to us. 

The inert gas solids are of particular interest for a 

number of reasons: 

1. The inert gas solids form the simplest crystals

with the weakest and best known atomic bonding characteris­

tics. All inert gas solids have a face-centered cubic 

structure which is a close packing structure arising from 

nondirectional Van der Waals forces. This arrangement has 

an atom at each corner of the cube and one centered on each 

face of the cube. This structure yields the most optimum 

volume packing. 

2. Inert gas solids have very weak short range

interactions, as is indicated from their low melting point. 

These short range interactions are called Van der Waals 

forces and arise from instantaneously induced dipole 

moments between pairs of neighboring inert gas atoms. Van 

der Waals forces provide very little distortion for the 
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electron cloud from the free space atomic configuration and 

are easily computed theoretically. The other bonding 

mechanisms in crystals (metallic, ionic, and covalent) all 

are much more difficult to characterize and are hence less 

well understood than the Van der Waals interaction in inert 

gas solids. In metallic bonding the valence electrons form 

a Fermi liquid of electrons in the metal and the precise 

nature of this Fermi liquid is difficult to characterize. 

The interatomic bonding is due to a decrease in the kinetic 

energy of the valence electrons and the electrons move all 

over the solid. The bonding in these systems represents a 

complex many body problem where the motion of one atom 

affects many other atoms through an interaction mediated by 

the electron gas. In ionic bonding, on the other hand, 

charges alternate in the crystal structure and interact via 

long range coulomb forces. The long range forces make this 

a complicated many body problem also. In covalent bonding, 

there are many shared electrons and much distortion in the 

electron cloud. The potentials of the inert gas solids 

which are of interest to us are the weak short ranged pair 

potentials given to a high degree of accuracy by the 

Lennard-Jones form. (A pair potential is the interaction 

between pairs of nearest neighboring atoms.) 

The quantum Monte Carlo simulation of vibrational 

properties of solids is a modification of past classical 
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methods to now correctly treat the true quantum nature of 

such problems. Within the past 20 years quantum Monte Carlo 

simulations on quantum systems have been found feasible 

having been initially applied to spin and many fermion 

systems and only recently to vibrational systems. The 

difficulty in simulating quantum vibrational systems comes 

from the numerical evaluation of properties derived from 

the quantum mechanical partition function. This difficulty 

is due to the noncommutivity of the operators in the 

quantum partition function. 

In the quantum Monte Carlo method we shall discuss a 

device known as the Trotter identity which maps the quantum 

mechanical partition function onto that of a corresponding 

classical system. This allows us to apply standard classi­

cal Monte Carlo methods to the mapped classical system in 

evaluating the properties of the quantum mechanical system. 

Using these methods Suzuki (1976) showed that a d­

dimensional quantum system can be converted to a d+l­

dimensional classical system, and one can then use Monte 

Carlo simulation techniques for classical systems to 

evaluate this d+l-dimensional system. The eventual applica­

tion of the quantum Monte Carlo simulation that we shall 

pursue is to find the pressure and bulk modulus of a many 

body quantum vibrational system and to compare that data 

with experimental results. 
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Before the Monte Carlo simulation technique the most 

common way to study the thermodynamic properties of a many 

body problem was through exact enumeration of configura­

tions in computing the partition function, or approximation 

techniques, such as perturbation theory and other analytic 

treatments. Exact enumeration requ1res knowing the proba­

bility of occurrence of all the different states of a 

system at some temperature. One can easily see, however, 

that this can only be done on a system of relatively few 

particles. The more particles that are involved, the more 

states that a particular system can have. The number of 

states grows in a combinatorial fashion as a function of 

the number of particles thereby making enumeration impossi­

ble even on the fastest computer for large systems. 

The classical Monte Carlo method, on the other hand, 

uses a technique called Metropolis sampling, or importance 

sampling. This involves taking a representative sample of 

particular states in a system based on the relative weight, 

or importance, that state has on the calculation of the 

partition function. This is done by using a Markovian 

process in which a state of the system is chosen at random. 

This state is then given a probability based on the 

importance it has in determining the partition function. A 

transition probability is then defined as the probability 

that state has to overcome before it is accepted. If the 
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probability of the state generated is greater than the 

transition probability, then it is accepted, otherwise it 

is rejected. This process of finding one acceptable state 

accounts for one Monte Carlo step. As more Monte Carlo 

steps are done, one gets a sampling of acceptable states. 

With this sampling of states one can then determine the 

thermodynamic properties of the system. 

Though this is a much better way of determining the 

partition function of a many body problem then with the 

method of exact enumeration, there are still problems with 

this method. The most obvious one, which was assumed from 

the beginning, was the lack of the true quantum nature of 

the system. Also, since a truly infinite system is not 

being used the nature of the phase transitions of the 

system are not fully realized. 

In the 1970's Suzuki(1976), using Trotter's identity, 

showed in general that a d-dimensional quantum system can 

be mapped onto a d+l-dimensional classical system. By the 

use of this mapping one can then use the classical Monte 

Carlo method just described. This method can be used on 

both Fermi and Bose systems of particles. The implementa­

tion of this method on either a Bose or Fermi system 

creates difficulties in either system that have to be 

overcome. When using the Monte Carlo method on Fermi 

systems, one can run into trouble getting a negative 
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partition function by the very nature of how the partition 

function is calculated using this technique. In Bose 

systems, on the other hand, a good transition probability 

matrix is very difficult to find. Part of the reason stems 

from the fact that it is impossible to generate the 

permutation moves needed in Bose systems without changing 

the position. Each of these problems had to be overcome 

before implementing the Monte Carlo technique. A number of 

different many body problems have been studied using the 

quantum Monte Carlo method. Barma and Shastry (1978) have 

used this method to study spin systems. Hirsch, et al. 

(1981,1982) have studied fermion systems, in particular the 

Hubbard model, by the implementation of this method. 

Ceperley, et al. (1986,1987) has used this method to study 

both the Fermi and Bose characteristics of liquid helium. 

Each of these studies on particular systems has been 

helpful in either proving or disproving a particular theory 

by comparing with experimental results. Of more recent 

interest in the use of this method is the study of lattice 

vibrations. Of particular interest in this system will be 

to compute the bulk modulus using the three dimensional 

Lennard-Jones model. This will be explained in Chapters II 

and III. 
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CHAPTER II 

QUANTUM MONTE CARLO METHOD 

To introduce the quantum Monte Carlo method, consider 

a single quantum mechanical particle in one dimension. This 

will serve to generalize the problem to three dimensions. 

The motion of this particle is described by the Hamiltonian 

operator, H which consists of two terms: (1) a kinetic 

energy term 

ll2 d2 H=----
o 2m dx2

and (2) a potential energy term 

H
1
-V(x) 

The resulting Hamiltonian then becomes 

ll2 d2 H=----+V(x) 
2m dx2 

(1) 

(2) 

(3) 

(4) 

H operates on a wave function 'Y
n

(x) to yield the eigenvalue 

equation 
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(5} 

We will show how to compute three physical quantities ener-

gy, U, the specific heat at constant volume, Cv, and the 

bulk modulus, MB. To calculate these physical quantities, 

the partition function needs to be used. The partition 

function is defined as 

(6} 

where 

(7} 

kB is the Boltzmann constant and T is the temperature in 

Kelvin. From the partition function, the energy U is found 

by 

the specific heat by 

and the bulk modulus by 

a 
U=--lnZ 

ap 

c _ au 
v aT 

(8} 

(9} 

(10} 

As previously discussed, the Suzuki-Trotter method 

takes a d-dimensional quantum system and maps it onto a 
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d+l-dimensional classical system. This is done using the 

Trotter identity. We shall now discuss the Trotter identity 

and then show how it can be used to get the mapping of the 

quantum mechanical to classical mechanical partition 

function. 

The Trotter identity is stated -as follows. For any two 

operators A and B with 

[A, B] ,t,Q 

(A+B) 

eAeB=lim(e_M_) M

M-oo 

(11) 

(12) 

When using this identity the partition function becomes 

.. 
-� (Ha+H1) Z-limI:<nl(e M ) M in> (13) 

M-oa n-0 

.. 
-�(�+�) -�(�+�) -�(�+�)

Z= L <nl [e M ] [e M ] ••• [e M ] In> (14) 

n-o

and inserting a complete set of states 

we find 

00 -�H -�H -�H -�H
z-I: <nle M

o

e M llm><mle M
o

e M lln> ... 
n-o

(15) 
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where we use 

- 1_ H -i_ Hi 1 ... <mle M
o

e M lm>+O(-)
M2 (16) 

By evaluating each of the individual matrix elements, the 

partition function then becomes 

where 

and 

M 

ff 
2 

M 

z-lim [ m ] 2J ( dx) exp [ - �Ti L (xi+1-x) 2 

M-m 21t�l'l2 i-1 2m i-1 

M 

-�L V(x)]
i-1 

In particular, for a harmonic potential of the form 

V(x) -l:..m<a>x2

2 

(18) 

(19) 

(2 0) 

(21) 

11 
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the partition function in one dimension becomes 

M -J1.. M 

Z-lim [ m 
2

] 2J �l ( dxJ exp [ -'tl'l
2 

L (xi+1 -xJ 2 

M➔oo 21t't1'l .1-l 2m i-O

M 

'tm<u
2 

L xJ] 2 i-1 

(22) 

The evaluation of Eq (22) for the limit as M approaches 

infinity gives the same results as the evaluation using 

standard enumeration techniques of statistical mechanics. 

A similar procedure is used for the 3-d fee system to 

obtain the partition function and to calculate the zero 

pressure bulk modulus at various temperatures for a rare 

gas solid and then to compare with experimental results and 

other numerical techniques. 

Generalizing the partition function to three dimen­

sions requires an expansion of the Hamiltonian. The 

Hamiltonian in three dimension becomes 

where 

H= _ --1{_ V 2 
+ V( .r)

2m 

-+ f' f' � r=xi+yJ+ZK 

(23) 

(24) 

is the position of the particle. Similar to Eq .18 the 

partition function becomes 
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where 

and 

3M M 1'12 M 

z-lim [ m ] 2JJJIT (dr1 ) exp [--'t"-:E Jr1+1-r1 J
2 

M-oo 2 7t 't"1'l2 
i-1 2m i-1 

M 

-'t"L V(r1 )] 
i-1 

XM+l-XM 

YM+l-yM 

ZM+l-ZM 

(25) 

(26) 

(27) 

(2 8) 

The potential that is used in the simulation of the 

quantum Monte Carlo method is the Lennard-Jones potential 

with nearest neighbor interactions. The Lennard-Jones 

potential has the form 

(29) 

From this potential and the use of the quantum Monte Carlo 

method, this thesis seeks to find the zero pressure bulk 

modulus at various temperatures. 

The bulk modulus is defined as 

(3 0) 

13 

M =-V( BP) 
B av T 



where Pis the pressure and Vis the volume. The volume is 

assumed to be cubic in nature, that is 

v-r
3 (31) 

where r is defined as the lattice constant. The zero 

pressure bulk modulus then becomes 

(32) 

With 

(33) 

the bulk modulus in its final form becomes 

M __ ..!_ ( ap) 
B 3 ar T 

(34) 

From the partition function the pressure can be found by 

l a
P=---lnZ 

p av 
(35) 

By entering both the temperature and the specific lattice 

constant of the quantum mechanical system, the pressure can 

then be found by implementing the quantum Monte Carlo 

method. By graphing the pressure versus lattice constant of 

the quantum mechanical system, and assuming a linear 

relationship between the pressure and the lattice constant 

of the system, the slope can then be found by using linear 

14 
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regression techniques. The results of the quantum Monte 

Carlo method to determine the zero pressure bulk modulus of 

a rare gas solid will now be discussed. 
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CHAPTER III 

RESULTS 

A system of 108 atoms with nearest neighbor interac­

tion governed by a Lennard-Jones pair potential was 

simulated. By entering the temperature and lattice constant 

of the system the pressure would be found. The zero 

pressure bulk modulus can then be found. Only nearest 

neighbor interactions were considered. 

In solving for the zero pressure bulk modulus of a 

rare gas solid using the quantum Monte Carlo method, the 

Metropolis importance sampling was set at a 40 to 60 

percent acceptance ratio. As explained previously, an 

acceptance is defined as the fraction of Monte Carlo steps 

used in averaging. Enough Monte Carlo steps are needed to 

bring the system into equilibrium before data is accumulat­

ed. A convergence of the system to equilibrium is required 

to get a realistic solution. The temperature is a key 

factor to the number of Monte Carlo steps needed. The 

higher the temperature is, more Monte Carlo steps are 

needed for convergence to equilibrium. In this thesis, at 

temperatures of 14.98K, 17.llK, 19.97K, 23.96K and 29.95K 

an M of 200 was used which resulted in 1,280,000 iterations 

used in computing averages, and at temperatures of 39.93K 

16 



and 59.90K, an M of 300 was used which resulted in 1,920,-

000 iterations to get the required number of Monte Carlo 

steps that were needed to compute the properties of the 

rare gas solid. The value of M was chosen to insure a 

reasonable degree of convergence. For the quantum Monte 

Carlo method there was a deviation of between .1% at low 

temperatures to 1% at the higher temperature runs. This 

deviation was due to the degree of convergence of the 

quantum Monte Carlo method. Though the quantum Monte Carlo 

method is superior to previous methods used as it treats 

both quantum and thermal effects in an essentially exact 

manner, the computer time required is quite large for the 

amount of data that was needed to find the zero pressure 

bulk modulus of a rare gas solid. For the number of 

iterations required to compute averages of the system, the 

total computer time took between 24 to 36 hours to get a 

single point. To speed up this time the computer program 

was parallelized so that many different points could be 

found in the same time frame as a single point could be 

found without parallelization. The parallelization was 

performed on an nCube computer that had the capacity to 

find 128 different points simultaneously. 
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CHAPTER IV 

DISCUSSION 

Graphs of the pressure versus lattice constant for 

each of the temperatures are shown in Figures 1-7. The 

crosses on the graphs represent the individual points from 

the quantum Monte Carlo method. The line on the graph 

represents the equation that best fits the points that are 

graphed. The percent error in the fitness of the line to 

the data varies approximately from 5% at the lower tempera­

tures to as much as 50% at the highest temperature. The 

slope of the line is the value of the derivative in 

Eq. (34). The lattice constant when the pressure is zero can 

be read directly off the graph. With both of these values 

and Eq. (34) the zero pressure bulk modulus can be found. 

Figure 8 is a graph of zero pressure bulk modulus 

versus temperature as found from the quantum Monte Carlo 

method described previously and a graph from Klein and 

Venables (1976) of zero pressure bulk modulus versus 

temperature of argon found from experimental methods. It 

should be noted that at the higher temperatures there is a 

larger margin of error than at lower temperatures. The 

graph of argon is being used to compare with the results of 

the quantum Monte Carlo method because it is a common rare 
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gas that can be described by a Lennard-Jones potential. For 

an accurate Lennard-Jones modeling, however, more than just 

nearest neighbor interactions are needed. We do not expect 

great accuracy in our comparison because of this. 

As can be seen from figure 8, the same generalized 

curve is observed. However the calculated values shown are 

reduced by approximately a factor of two compared to those 

arrived at experimentally. This discrepancy in the values 

will now be discussed. 

In the quantum Monte Carlo calculation of the zero 

pressure bulk modulus of a rare gas solid only nearest 

neighbor interactions of the Lennard-Jones potential were 

used. Most treatments by other methods use many more 

neighbors. A classical treatment of the zero pressure bulk 

modulus of a Lennard-Jones potential at OK by Kittel (1976) 

with infinite neighbor interactions (M8=75.32E/a3) was found

to be approximately twice the value obtained from the T=OK 

classical method when considering only nearest neighbor 

interactions(M8=48.0E/a3). This result indicates that the

major discrepancy between the quantum Monte Carlo method 

and experimental data arise from the restrictions to 

nearest neighbor forces. 

We conclude that, a further study of the quantum Monte 

Carlo method is needed that includes longer range interac­

tions of the Lennard-Jones potential for a more successful 
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comparison with experimental data. 
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