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Increases in vehicle demand and fossil fuel consumption are major contributors to 

environmental problems, such as air pollution and climate change. This has led to research on 

alternative, energy-efficient vehicle technologies. Automobile users are now preferring 

comfortable vehicles with minimal fuel consumption and with more efficient engines. Hybrid cars 

are becoming common because of their advantage of running cleaner and with better gas mileage. 

A hybrid car runs on the power of both an electric motor and a gasoline engine. This mechanism 

helps cut fuel consumption and conserve energy. An additional advantage is a regenerative braking 

system that helps recharge the battery, which ultimately reduces load on the engine and hence 

produce lower emissions. In this thesis, components of hybrid electric vehicles are defined and a 

computational model of a typical hybrid system is developed. Modeling and simulation of these 

components is done in the Matlab/Simulink environment. This thesis underscores the HEV model 

that can be used in future and the importance of optimized powertrain components, especially the 

planetary gear ratio and its impact on vehicle performance and fuel economy. The planetary gear 

ratio ensures smooth transmission, propulsion capacity, acceleration, and fuel economy. This 

thesis investigates the effect of different gear ratios on fuel economy for the US06 and FTP75 

drive cycles and proposes a strategy for optimizing gear ratio to maximize fuel economy without 

compromising vehicle drivability. The study presented in this thesis also emphasizes battery 

stability and optimal energy management at different gear ratios. The forward-looking, velocity-

driven, power-split model developed in this study highlights the importance of gear ratio in engine 

operation and also ensures that generator does not overrun in the process. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Due to increasing demand for reduced fuel consumption and emissions, researchers are 

developing new automotive technologies, such as hybrid electric vehicles (HEV), plug-in hybrid 

electric vehicles (PHEV), electric vehicles (EV), and autonomous vehicles (AV). Stringent 

emission standards were set due to the influence caused by automobiles to the environment. To 

protect the environment, US emission standards were enacted in 1970 by the Environmental 

Protection Agency (EPA) [1]. The EPA regulates the air quality in general and the engine 

emissions.  

Hybrid electric vehicles offer an innovative solution to meet environmental standards. The 

technology was initially developed by Ferdinand Porsche in 1901[18]. Its modern roots were laid 

by Toyota motor corporation in 1997 under the first generation Prius, which features the Toyota 

Hybrid system (THS) and then by the Honda Insight in 1999.  

HEV are intended to achieve good fuel economy, high efficiency, and reduced greenhouse 

gases emission. As the name suggests, the vehicle uses a combination of an internal combustion 

engine and an electric power source to deliver requested vehicle drive power. HEVs can be 

categorized as full hybrid or mild hybrid considering the degree of hybridization. Hybridization of 

an HEV depends upon the ratio of power of the propulsion motor to the power of engine. For 

example, Toyota Prius is the full hybrid its hybridization being 62.3% and Honda Civic is the mild 

hybrid its hybridization being 15.9%  

HEV typically has limited features while the full HEV has numerous features such as 

power boost mode, mechanical mode, overdrive mode, electric mode, battery charge mode, etc. 

Full HEV can run on the combination of batteries and engine or only on batteries or on engine 

power. All-electric propulsion cannot be provided by turning off the engine with the mild hybrid 

electric vehicles while it can be provided with full hybrid electric vehicle. 
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There are three common types of configurations involved in hybrid electric vehicles: series, 

parallel, and series-parallel transmissions. A schematic of these configurations is shown in Figure 

1, which is from [2].  

 

 
Figure 1. Hybrid Electric Vehicle (HEV) configuration: A. Parallel, B. Series, C. Power-Split [2] 

 

In a series hybrid powertrain, electric power is connected in series with the mechanical 

input, which is comprised of the combustion engine and the generator. This mechanical 

configuration is not directly linked to the wheels. The generator does the job of transferring 

mechanical power to electric power. The electric motor does the job of converting electric power 

to mechanical power. This transmission always operates at optimal engine efficiency as the engine 

operation does not depend on the road conditions and vehicle speed. 

In a parallel hybrid powertrain, there is an additional power source, a battery, that is placed 

parallel to the mechanical power source. This mechanical power source is connected to the wheels. 
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The main advantage of the parallel hybrid transmission is its high efficiency. The disadvantage 

with this transmission is its inability to operate at optimal engine efficiency invariably as speed of 

engine is directly connected to the speed of vehicle and road condition. 

  In a series-parallel hybrid powertrain, the power is drawn from two branches: a mechanical 

and an electric branch. The mechanical branch transfers power generated by combustion engine to 

the wheels. The electric branch transfers power to the wheels via the generator and motor. There 

is a planetary gear set that sets the gear ratio. Since the split-type hybrid transmission is a 

combination of series- and parallel-type hybrids, it can operate at optimal engine efficiency. 

The powertrain configuration considered in this study is a split-type, series-parallel 

configuration. Power split hybrid electric vehicles are comprised of an internal combustion engine 

(ICE), planetary gear sets, motor, generator, battery, electronic control unit (ECU), mechanical 

brakes, and a transmission. In this thesis, the components are modeled and simulated in the 

MATLAB/Simulink environment. The overall goal of this effort is to develop a physics-based 

model for HEV fuel-efficiency research. This thesis focuses on reducing fuel consumption as well 

as increasing regeneration of energy due to braking.  

 

Literature Review 

 

 Series-parallel HEV can either be modeled based on velocity-driven, power-driven or 

torque-driven models. Computational modeling and simulation tools, as in this case 

MATLAB/Simulink, can be used to evaluate efficient results and to reduce the time required for 

modeling and simulation.  A steady state dynamic model based on power is presented by Huei 

Peng, H. [2] Toyota Prius HEV model was developed and its overall behavior was controlled using 

rule based control strategy. The research on a parallel HEV model is presented Shen, T. et al. [3] 

strategy for improving the fuel economy is proposed. A torque-based dynamic model is presented 

by T. Purnout [4]. The importance for steady-state mathematical model for power split device is 

presented by Rizoulis et al. [5]. A dynamic forward looking, velocity driven model was developed 

and simulated based on work presented by Dr. Can [6]. This work provides foundation for 

investigating optimal gear ratio at different driving cycles. A backward looking velocity driven 
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model to investigate the importance of optimal gear ratio and its impact on fuel economy and 

vehicle performance was presented by Li, Yanhe [7]. 

 Proper modelling of the planetary gear set is important since it is the heart of a power-split 

HEV [8]. The constants used in equations of planetary gear set remains consistent from [6] for 2.6 

gear ratio and for all other gear ratio the constants used are based on [7] and [19].  The planetary 

gear set ratio ensures smooth transmission and better fuel economy. It affects engine and generator 

operation and hence careful consideration needs to be taken while selecting the optimal gear ratio 

for the planetary model. Duoba et al. [9] state the effect of gear ratio on vehicle operation and 

illustrate its importance to minimize fuel consumption under various modes of operation for HEV.  

Components of the model developed in this thesis are based on several references. In a 

previous study related to this project [10], a novel ratio scheduling technique for a CVT 

transmission was developed using a backward-looking cycle-driven model. The work presents 

optimization techniques for generating an Optimum Operating Line (OOL), which is used in 

engine lookup tables in the model presented here [10]. The battery, which acts as secondary power 

source, ensures smooth acceleration in EV mode and stores energy during regenerative braking. 

Data presented in [11] is utilized for battery modelling and control. Relevant literature for engine 

operation without overrunning the generator is presented in [12]. 

 Control strategies can be achieved with both global and local optimization techniques. 

Global optimization strategies can be developed with dynamic programming [13] or Pontryagin’s 

Minimum Principle [14] and ECMS is a very popular local optimization technique [15]. Rule-

based control strategy developed in this work is based on [6]. The control logic developed in this 

study such motor control logic to decide either to accelerate or decelerate, engine control logic to 

get engine torque and engine RPM and generator on/off is based on [20]. This forms the basis for 

optimal energy management and helps investigate optimal gear ratio.  

 

Assumptions 

 

 For this study operating conditions were assumed to be in steady-state. It was also assumed 

that engine operates inefficiently at low speeds and data for engine speed vs. vehicle speed remains 
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consistent [6] and engine acceleration and deceleration lookup tables remains consistent from [12]. 

Benchmark data for development of the HEV model was obtained with the use of study presented 

in [6]. Finding of optimal gear ratio was done with the use of benchmark data obtained in [7] and 

[19]. Control logic developed for operating engine, motor and generator is based on [20]. 
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CHAPTER 2 

 

FORWARD-LOOKING DYNAMIC MODEL OF HYBRID ELECTRIC VEHICLE 

 

 

 
Figure 2. Overview of hybrid electric vehicle Simulink model 

 

Vehicles models can be configured depending upon their direction of calculations as 

Backward looking models and Forward looking models. Actual speed of vehicle is controlled to 

match the target speed during simulation in forward looking model. When using forward looking 

models the component losses and constraints are considered by the controller and it makes decision 

quickly for the whole system.  Control logic in backward looking model does not consider the 

systems constraints as feasible control options are allowed to the controller. An overview of the 

power-split hybrid electric vehicle Simulink model is shown in Figure 2. This forward-looking, 

velocity-driven HEV model has an input of a standard emission test cycle, such as the US06 and 

FTP-75 drive cycles, which specify a vehicle speed profile over a fixed time interval. The vehicle 

controller model is the brain of the hybrid system that controls the vehicle based on operating 

conditions. The battery model, motor and generator model, and engine model are used for 

generation of required or demanded power. The transmission and wheels model is used to find the 



	 7 

actual velocity of the vehicle. The measurement block is used for visualization of results after 

simulation.  

 

Planetary Gear 

 

The power split device includes the planetary gear set, which is connected to the generator, 

drive shaft, and the engine model as can be seen in Figure 3 [17]. 

 

 
Figure 3: Planetary Gear set model of Toyota Prius with its connections [17] 
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There are three nodes of the planetary gear: the sun gear connected to generator, the carrier 

gear connected to the engine, and the ring gear connected to the drive shaft. The power coming 

from engine is divided by the power split device between the drive shaft and the generator. 

An electronic control unit is used for controlling the power split device (PSD) and it acts 

as electronically controlled continuous variable transmission. It can allow the vehicle to use power 

from not only the engine but also from the motor and generator rotating at varying and dissimilar 

speeds. Generated power from the ICE can be carried to the vehicle via an electrical or mechanical 

path. Engine power transferred via the mechanical path is transferred from the carrier gear to the 

ring gear, which is attached to the vehicle’s drive shaft. Power can also be carried to the sun gear 

and transferred to the generator, where the generated electrical power is used by the electric motor 

or is stored in the battery. 

One of the most critical parameter of power split device is the gear ratio. The basic gear 

ratio equation of the planetary gear set is given by Eq. 1: 

	

K	 = 	 $%&'()	*+	,((,-	*+	./01	2(3)	
$%&'()	*+	4((,-	*+	5%0	2(3)

                                [Eq. 1] 

 

This ratio mentioned in Eq. 1 also sets the planet gears and carrier. Depending upon vehicle 

performance requirements, the planetary gear set is designed with the best gear ratio for various 

operating conditions, such as acceleration, maximum speed, and deceleration. Five gear ratios are 

considered further in this analysis based on literature review: 2.6, 2.75, 2.9, 3 and 3.4 [7]. For gear 

ratio 2.6, the number of teeth used by the ring gear is 78, planet gear is 23 and sun gear is 30. The 

number of teeth for the ring gear, planet gear, and sun gear remain consistent from the study 

presented in [4] based on the gear condition assembly. 

The gear set can achieve an unlimited gear ratio by adjusting the speed of different 

components. To get better efficiency, the main aim of this thesis is to obtain an optimized gear 

ratio. The E-CVT overall planetary gear set model is as shown in Figure 4.             
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Figure 4. Overall planetary gear set model 

 

Input to the subsystem in Figure 4 is the actual speed and engine RPM (ne). Motor RPM 

depends upon actual vehicle speed (Eq. 2) and generator RPM is evaluated from the planetary gear 

equation (Eq. 3). 

 
Figure 5. Simulink model of planetary gear set subsystem to find the Motor RPM 

 

Motor	RPM = R<-((= ∗ Actual	speed ∗
HIII
JK∗LI

∗ FDR                                  [Eq.2] 
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Figure 6. Simulink model of planetary gear set subsystem to find the Generator RPM 

 

The equation used for planet gear is as follows: 

Eng_RPM =		 (2(0_.TUHV(J.L∗U*,*)_.TU))
Y.L

                                 [Eq. 3] 

Therefore, Fcn3 = 3.6 ∗ Eng_RPM1 − 2.6 ∗ Motor_RPM2                                                 [Eq. 4]  

In Figure 6. 0.01 is used to avoid zero ratio coming out of Fcn3. 

 
Figure 7. Simulink model of planetary gear set subsystem to find torque coefficient of generator 
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Figure 8. Simulink model of planetary gear set subsystem to find torque coefficient of ICE 

 

Equations of CT (coefficient of torque) of generator and engine are as: 

 

CT_Gen	 = 	 bc((d	*+	(01/0(∗e.YL f(bc((d	*+	&*,*)∗L.gL)
bc((d	*+	(01/0(∗Y.L f(bc((d	*+	&*,*))

						     [Eq. 5] 

CT_ICE	 = 	 bc((d	*+	(01/0(∗Y.L
I.gJJV(bc((d	*+	1(0()3,*)∗J.L))

                             [Eq. 6] 

 

All numerical constants for gear ratio 2.6 in equation from 3-6 are adapted from Ref. [6]. 
The numerical constants for all other gear ratios were calculated using study presented in Ref. [19] 
and [7]. The constants in Eq. 3-6 are calculated as: 

 
$i

$iV$j
 = 0.722 , $jV$i

$j
 = 3.6, $i

$j
 = 2.6, $iV$j ∗$i

$jk
 = 9.36 and $i

k

$jk
 = 6.76 

 

Where, Nr is the number of teeth of ring gear and Ns is the number of teeth of sun gear. 
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Motor Model 

 

Figure 9. Overview of motor model 

 

A brushless DC motor is modeled in Simulink. This electrical machine can be used for 

regenerative braking or as a driving electrical motor; it can accelerate the vehicle up to about 

40km/h. Characteristics of torque vs. RPM and power vs. RPM based on the 35KW Toyota Prius 

motor [6] are determined by a lookup table. Motor speed, which is calculated in planetary gear set, 

is given as an input to the lookup tables. This motor speed is used to calculate the Torque and 

Power values. Control logic in the control subsystem block checks the condition of acceleration or 

deceleration i.e., regenerative braking depending upon pedal position of driver. The control logic 

is described in [20]. 
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Figure 10. Simulink model of motor 

 

Generator Model 

 

 
Figure 11. Overview of generator model 

 

Figure 12 illustrates the Simulink model of the generator. It is used for gear ratio adjustment 

as described by Eq. 3. The generator is connected to the PSD and driven by the excess engine 
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power. During full throttle conditions, the generator runs with full power. Characteristics of torque 

vs. RPM and Power vs. RPM are used in Lookup table of generator model. These maps are based 

on data for the 15KW Toyota Prius system [6]. Generator speed is used as an input to these lookup 

tables and this calculation of generator speed is performed in planetary gear set model. The 

generator model is also used by the vehicle to generate the desired torque for starting up. The 

generator’s on/off conditions is described in [20]. 

 

 
Figure 12. Simulink model of generator 
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Engine Model 

 

 
Figure 13. Overview of engine model 

 

 
Figure 14. Simulink model of engine 

 

Figure 14. shows the Simulink model of engine. Performance of the engine is modeled 

using lookup tables, with data from [12]. Input to the engine model is the actual speed and target 

speed of the vehicle. Depending upon the accelerating and decelerating conditions, the maximum 

and minimum speed values of engine are taken into consideration. The engine control logic [20] 

determines the operating condition and decides whether the engine is on or off. Figure 15 shows 

the OOL of engine from 1-D lookup table of ICE RPM vs ICE torque. OOL is the optimum 
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operating line that is indicated by red line as shown in figure 15. OOL is the line of minimum fuel 

consumption obtained by joining operating points for different power demand in engine’s torque 

and speed plane.  

 

 
Figure 15: ICE RPM vs ICE Torque 1-D lookup table 

 

Transmission Model 

 

Figure 16 show the transmission block modeled in Simulink. For calculating the vehicle’s 

speed, all torques from the machines and all the loads are taken into transmission model. Torque 

of the engine, generator, and motor is multiplied by the final drive ratio and transmission 

efficiency. This torque value obtained is subtracted from the total load torque value acting on the 

wheels and then integrated. Using wheels speed it is possible to calculate actual speed of the 

vehicle.          

Fcn2 = 	
4l_mnopf4qmnopV4r_mnop ∗st.∗4)30b&/bb/*0	(++/u/(0uv f4wp d,

Uo∗)wk
       [Eq. 7] 

 

V_act_spd = T(_*%,H − T1mnop + T&_*%,H ∗ FDR ∗ Transmission	effi − T<H dt ∗ r< ∗ 3.6               

                                     [Eq. 8] 

 



	 17 

Where, Te_out1, Tg_out1, Tm_out1 and Tw_out1 are the torque of engine, generator, motor and wheel,  Mt 

is the total weight of vehicle and rw is the wheel radius, FDR is final drive ratio. 

 
Figure 16. Simulink model of transmission and wheel 

 

Vehicle Dynamics 

Forces acting on the vehicle’s wheels are included in the vehicle dynamics model. The 

forces acting on vehicle are aerodynamic drag, rolling resistance, gradient resistance, tractive 

force, and the brake force. When the vehicle passes through air it experiences fluidic resistance, 

which is nothing but the aerodynamic drag. Rolling resistance acts on the vehicle due to the wheel 

rotation, and gradient resistance acts on the vehicle due to the slope of the road. Brake force is the 

required force for the vehicle to decelerate; traction force is the powertrain force used for driving 

the vehicle in the forward direction.  

The Toyota Prius body is taken into consideration for modeling the dynamics of the 

vehicle. Equations 9-13 are used for modeling the vehicle in Simulink. 

 

Aerodynamic Resistance, Fd)31	 = 0.5ρCd	A+VJ      [Eq. 9] 

Rolling Resistance, F)*== = 	C,mg cos θ                [Eq. 10] 
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Gradient Resistance, F1)3d = mg sin θ                [Eq. 11] 

Accelerating force, F3 = ma                  [Eq. 12] 

Vehicles linear dynamic equation can be represented as: 

F4 = 	 ma +	 0.5ρCd	A+VJ +	 C,mg cos θ +	 mg sin θ                        [Eq. 13] 

where ρ is the air density, Cd is the coefficient of drag, Af is the frontal area of the vehicle, V is 

the vehicle speed, Ct is the wheel rolling resistance, m is the vehicle’s total mass, g is the gravity, 

𝜃  is the slope of road and a is the acceleration. 

 

Table 1. Vehicle dynamics constants 

Abbreviation Definition Value (Units) 

𝐴 Vehicle frontal area 1.746 m2 

𝑔 Gravitational constant 9.81 m/s2 

𝜌 Air density 1.17 kg/m2 

𝐶d Drag coefficient 0.3 

m Vehicle’s total mass 1300 Kg 

Vact Actual vehicle’s speed m/s 

𝜃 Slope of the road radians 

Ct Wheel rolling resistance 0.01 
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Using the vehicle’s speed and road slope values as input, the above forces are calculated 

individually.  

The total load torque and wheel revolution speed are then calculated. Required brake power 

is applied in the mechanical brake block [20].  

 

 

Figure 17. Simulink model of vehicle dynamics 

Battery Model 

 

Figure 18. Block diagram of the battery model subsystem 
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The battery is used as the secondary power source in a Hybrid Electric Vehicle and thus its 

accurate modeling is very important. A 480V nickel metal hydride battery is modeled in Simulink 

as seen in Figure 18. The input to this model is the state of charge (SOC) of the battery and the 

power of the battery (Pbatt), which is calculated by subtracting the power of the generator from the 

power of the motor. A 1D-Lookup table of SOC vs. EMF is generated to find the EMF of the 

battery. The data in this table is based on [11]. Similarly, to determine the Rw that is the internal 

resistance of the battery, 1D-Lookup tables of SOC vs. Rdischarge and SOC vs. Rcharge are generated 

[11]. Output battery current and output voltage of the battery are then calculated using the above 

calculated values as: 

  

Output voltage, 	U	 = 	EMF1	– 	I	R<                           [Eq. 14] 

   

Current, I	 = 	 (�UsH	– (�UsHk	f�	T��oo	.w)	)
J.w

                           [Eq. 15] 

 

Then finally the SOC of battery is determined as shown in Figure 19. 

                      

Figure 19: Simulink model of battery 
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CHAPTER 3 

 

CONTROL STRATEGY 

 

 

The hybrid controller is the brain of the hybrid electric vehicle that controls and 

manipulates requested data and also manages operating characteristics. The engine speed, 

generator speed, and electric motor speed are the inputs to the controller that are feedback from 

the planetary gear set. From the battery model, the battery power and SOC are provided as 

feedback to the controller. 

For efficient energy management of the battery and for better driving results, control logic 

is developed. The control strategy used is a rule-based strategy that makes decision based on the 

mode of operation of the vehicle. The vehicle driving modes include vehicle startup, vehicle 

sudden acceleration, low speed of the vehicle, normal working conditions, battery recharge at rest, 

and regenerative braking. To avoid under charge and over charge of the battery, its SOC is kept 

near 50%. The vehicle runs in silent mode that is on electric mode when its speed level is less than 

40 km/h; the engine behaves inefficiently below this speed during heavy traffic and also while 

starting and stopping of the vehicle. Vehicle actual speed and SOC of battery are the two operating 

parameters for the control algorithm development. 

Fig. 20 shows the SOC level, which is from Ref. [6]. The SOC of the battery for proper 

energy management is separated into 5 different levels as: 

• When SOC of battery is less than 10%, all electric assist is canceled as the battery 

is undercharged. In this mode, the battery is charged until it increases the SOC level. 

• When SOC is between 10% and 40%, it runs the vehicle only at its most efficient 

high-speed points, as ICE is inefficient at low speeds. It cancels the silent mode 

operation and tries to charge the battery by taking excess power from the generator.  

• When SOC is between 40% and 60%, the SOC of the battery is in its adequate level. 

In this case, the engine runs at its optimum point and the vehicle runs silently when 
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speed level is below 40km/h. Extra generated power is stored in the battery to 

charge it and also to provide electric assist at full throttle conditions. 

• When SOC is between 60% and 90%, energy in battery is only stored via 

regenerative braking, and the excess power from the engine is used by the motor 

with the help of generator. 

• When SOC of the battery is between 90% and 100%, the vehicle runs as usual 

without any energy generation as the battery is overcharged. 

The vehicle control logic that implements these energy management conditions is 

described in greater detail in [20]. 

 

 

 
Figure 20. State of charge levels [6] 
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CHAPTER 4 

 

SIMULATION 

 

 

The power split Hybrid Electric Vehicle model was built on MATLAB R11 using Simulink. This 

model is run using US06 and FTP 75 driving cycles. Goals of these simulations are to test the 

model’s performance at different gear ratios and determine which gear ratios provide the best 

overall efficiency for both drive cycles. Initially the SOC of battery is taken as 60% to maintain 

battery in its adequate level. 

 

US06 Driving Cycle 

 

US06 was developed as a representation of driving behavior during startup, rapid speed 

fluctuations, high speed, and high acceleration. The driving cycle travels a distance of about 12.6 

km or 7.83 miles. Figure 21 represents the vehicle speed used for the US06 test [16]. US06 cycle 

is divided into three phases that is into bags for convenience, as shown in Table 2.   

 

Table 2. Phases of US06 cycle 

 

Bag# Time in seconds 

Bag 1 1 to 120 sec 

Bag 2 120 to 370 sec 

Bag 3 370 to 570 sec 
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Figure 21. US06 drive cycle 

 

Table 3: Fuel economy improvement compared with 2.6 gear ratio for US06 cycle 

 

Gear Ratio Fuel Economy 

improvement  

2.75 - 4.57 % 

2.9 - 4.74 % 

3 - 6.045 % 

3.4 - 3.73 % 
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Figure 22: Fuel economy (mpg) for US06 driving cycle for 5 different PSD gear ratios 

 

The US06 cycle was run with 5 different gear ratios: 2.6, 2.75, 2.9, 3, 3.4. The results of 

these simulations are shown in Table 3 and Figure 22. It is evident from Figure 22 that the best 

fuel economy is achieved for gear ratio 2.6. For gear ratio 3 the fuel economy obtained is less 

compared to all other ratios. 

Velocity profile, torque results, and battery results were studied at different gear ratios and 

comparison was done to obtain the optimal gear ratio. Differences in engine torque results were 

highlighted for minimum and maximum gear ratio, 2.6 and 3.4, and these results demonstrate that 

the engine operates over more time steps at 3.4 gear ratio because of sudden acceleration and 

deceleration. Thus, it hampers fuel economy results. Figure 23 and 24 represents these engine 

torque results for a 200 second time slot for the Bag 3 cycle. The results for 2.6 gear ratio depict 

that energy recovered by the regenerative braking is 1.671 KW-hr which is greater than all other 

gear ratios. 1.22 KW-hr of mechanical energy consumed at 2.6 gear ratio is less compared to 2.75, 

2.9, 3, 3.4 gear ratios. Thus, after analyzing the results obtained from the simulations, it is 

evaluated that 2.6 is the optimal gear ratio.  
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Figure 23: Engine torque results for gear ratio 2.6 for Bag 3 cycle 

 

The engine torque results shown in Figure 23. seems to be unpleasant to the occupants but 

could be addressed in the future work for smoothing it. This can be done using ramp brake. 
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Figure 24: Engine torque results for gear ratio 3.4 for Bag 3 cycle 
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US06 Cycle Results of Optimal Gear Ratio = 2.6 

 

 
Figure 25: Velocity profile of full US06 driving cycle and for optimal gear ratio = 2.6 

 

Figure 25 illustrates the velocity profile for 2.6 gear ratio of US06 cycle and the results 

represent that overall speed demanded by the vehicle (target speed) is satisfied by the actual vehicle 

speed. The root mean squared of the difference between target and actual speed over cycle is 

3km/hr. 
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Figure 26: Torque results for engine, motor, wheels and generator for full US06 cycle 
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Figure 27: Results of battery for full US06 cycle and optimal gear ratio = 2.6 

 

Figure 26-27 represents the torque results for engine, motor, wheels and generator and 

results of battery SOC, voltage, current and power for full US06 cycle and optimal gear ratio = 2.6 
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US06 Cycle Battery Results for Gear Ratios 2.75,2.9,3,3.4 

 

 
Figure 28: Results of battery for full US06 cycle and optimal gear ratio = 2.75 
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Figure 29: Results of battery for full US06 cycle and optimal gear ratio = 2.9 
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Figure 30: Results of battery for full US06 cycle and optimal gear ratio = 3 
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Figure 31: Results of battery for full US06 cycle and optimal gear ratio = 3.4 

 

Figure 28–31 represents the results of battery SOC, voltage, current and power for full 

US06 cycle with gear ratios 2.75, 2.9, 3 and 3.4. 
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FTP 75 Driving Cycle 

 

FTP-75 (Federal Test Procedures) cycle is used for testing fuel economy in the United 

States for light duty vehicles [16]. FTP-75 cycle has three phases: cold start phase, stabilized phase, 

and hot start phase. The driving cycle travels a distance of about 6.11 km. FTP-75 cycle is 

simulated for 570 secs and is divided into three bags for convenience: 

 

 

Table 4: Bags of FTP-75 cycle 

 

Bag# Time in seconds 

Bag 1 1 to 220 sec 

Bag 2 220 to 370 sec 

Bag 3 370 to 570 sec 

 

 

 
Figure 32. FTP 75 Driving cycle 
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Table 5: Fuel economy improvement compared with 2.6 gear ratio for FTP-75 cycle 

 

Gear Ratio Fuel Economy 

improvement  

2.75 1.91 % 

2.9 2.15 % 

3               - 0.98 % 

3.4                - 1.81 % 

 

 

 
Figure 33: Fuel economy (mpg) for FTP 75 driving cycle for 5 different PSD gear ratios 

 

FTP-75 cycle was run with 5 different gear ratios 2.6, 2.75, 2.9, 3, 3.4. Figure 33 shows 

that there are no major changes in fuel economy for FTP-75 cycle. The best fuel economy is 

achieved for gear ratio 2.9. For gear ratio 3.4, the fuel economy obtained is less compared to all 
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other gear ratios. There is no drastic improvement in fuel economy for 2.9 gear ratio compared to 

gear ratio 2.6 as can be seen from table 5.  

Velocity profile, torque results, and battery results were studied at different gear ratios and 

comparison was done to obtain the optimal gear ratio. Differences in engine torque results were 

highlighted for minimum and maximum gear ratio, 2.6 and 3.4, and these results demonstrate that 

engine operation is almost same for 2.6 gear ratio. This is because during sudden acceleration and 

deceleration, the engine has a lower capacity of propulsion than at a lower gear ratio. This is 

evident when the vehicle cycle changes from the cold start phase to the stabilized phase, as 

observed in velocity profiles for gear ratio=2.6 in Figure 34 and gear ratio=3.4 in Figure 35. 

 

 

 
Figure 34: Velocity profile of FTP 75 driving cycle for 570 secs and for 2.6 gear ratio 
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The root mean squared of the difference between target and actual speed over cycle is 2.48km/hr. 

 

 
Figure 35: Velocity profile of FTP 75 driving cycle for 570 secs and for 3.4 gear ratio 
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Figure 36: Engine torque results for gear ratio 2.6 and Bag 3 
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Figure 37: Engine torque results for gear ratio 3.4 and Bag 3 

 

Figure 36 and 37 represents the engine torque results for a 200 second time slot for the Bag 

3 cycle. It can be seen from these figures that there are chatters in engine torque with short on-off 

time periods and this could be addressed in the future work for smoothing it. This can be done by 

using ramp brake. Results for 2.6 gear ratio show that energy recovered by the regenerative braking 

is 1.2 KW-hr and for 3.4 is 1.43 KW-hr. This is because at higher gear ratio, there is more capacity 

of propulsion and thus more ability to regenerate energy. Thus, after analyzing the results obtained 

from simulation, it is evaluated that there not much difference in the results for gear ratio 2.6 and 

3.4. 
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 Results show that for the FTP-75 cycle, there is no drastic improvement in fuel economy 

over the optimal 2.6 gear ratio selected for the US06 cycle. Therefore, it is reasonable to use 2.6 

as the optimal gear ratio for all driving cycles. Torque results for engine, motor, generator, and 

battery results for gear ratio=2.6 are shown in Figures 38-39. 

 

FTP 75 Cycle Results for Optimal Gear Ratio =2.6 

 

 
Figure 38: Torque results for engine, motor, wheels and generator for FTP 75 driving cycle 
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Figure 39: Results of battery for FTP 75 driving cycle and optimal gear ratio = 2.6 
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FTP 75 Cycle Battery Results for Gear Ratios 2.75,2.9,3,3.4 

 

 

 
Figure 40: Results of battery for FTP 75 driving cycle and optimal gear ratio = 2.75 
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Figure 41: Results of battery for FTP 75 driving cycle and optimal gear ratio = 2.9 
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Figure 42: Results of battery for FTP 75 driving cycle and optimal gear ratio = 3 

 



	 46 

 
Figure 43: Results of battery for FTP 75 driving cycle and optimal gear ratio = 3.4 

 

Figure 40 – 43 represents the results of battery SOC, voltage, current and power for FTP 
75 driving cycle and optimal gear ratio 2.75, 2.9, 3, 3.4 
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CHAPTER 5  

 

CONCLUSION 

 

 

In this thesis, a forward-looking, velocity-driven, power-split, hybrid electric vehicle 

model is developed and simulation is run in the MATLAB R11/Simulink environment. This HEV 

model includes a planetary gear set model for obtaining optimal gear ratio to achieve the best fuel 

economy. The power-split HEV model is run for two driving cycles, US06 and FTP-75, with five 

different gear ratios. Velocity profile, torque results, battery results, energy recovered due to 

regenerative braking, and mechanical energy consumed were studied.  

Fuel economy results were in good agreement at optimal gear ratio 2.6 for US06 and FTP-

75 drive cycle. Although fuel economy was slightly better for 2.9 gear ratio for FTP-75 cycle, it is 

due to the greater propulsion capacity of the vehicle at higher gear ratios, which helps in 

regenerating more energy. But as there is not much difference in fuel economy between gear ratios 

for FTP-75 cycle, 2.6 is considered as optimal overall gear ratio. Velocity profile and engine torque 

results obtained after simulation of US06 cycle have also proven that 2.6 is the optimal gear ratio, 

as engine operates for less time steps for gear ratio=2.6. Also more energy is recovered by 

regenerative braking and less mechanical energy is consumed compared to all other gear ratios for 

gear ratio=2.6 in US06 drive cycle.  

This thesis underscores the HEV model that can be used in future and the importance of 

optimized powertrain components, especially the planetary gear ratio and its impact on vehicle 

performance and fuel economy. The planetary gear ratio ensures smooth transmission, propulsion 

capacity, acceleration, and fuel economy. This thesis investigates the effect of different gear ratios 

on fuel economy for the US06 and FTP75 drive cycles and proposes a strategy for optimizing gear 

ratio to maximize fuel economy without compromising vehicle drivability. The forward-looking, 

velocity-driven, power-split model developed in this study highlights the importance of gear ratio 

in engine operation and also ensures that generator does not overrun in the process. 
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This study underscores the dynamic model of hybrid electric vehicle that can be used in 

future studies for developing test designs, control systems, dynamic analysis and prototype 

simulation. This study also underscores the benefit of using optimal gear ratio for modeling of 

planetary gear set model of HEV for achieving better fuel economy. 
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