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MODEL PREDICTIVE CONTROL SYNTHESIS FOR THE INNOVATIVE CONTROL
EFFECTOR TAILLESS FIGHTER AIRCRAFT

Christopher Proctor, M.S.

Western Michigan University, 2019

A nonlinear model predictive control law was developed for the Lockheed Martin Innova-

tive Control Effector tailless fighter aircraft to track waypoints. In general, aircraft are described

by nonlinear dynamics that are dependent on the regime of flight. Additionally strict require-

ments on state and actuator constraints are common to all aircraft. Tailless aircraft are usually

overdetermined systems, meaning solutions to control problems are not unique, and the system is

non-affine. The proposed nonlinear control law considers those constraints during run-time, and

solves the nonlinear control problem for a range of points within different flight regimes. The

control law was developed using a computer simulation of thetailless fighter aircraft, and further

simulation was used to validate the control law when appliedto the aircraft. It was found that the

controller was able to track reference step commands in altitude anywhere from sea level to 50,000

ft and remain stable. It is also shown that the single nonlinear controller is able to handle lateral

translations at the same time as altitude commands, demonstrating its authority over the entire 6

degree of freedom system. The controller is not real time applicable but research indicates that it

is possible to apply such a technique in real time. It was concluded that nonlinear model predictive

control is a viable control synthesis technique for tailless fighter aircraft if real-time algorithms can

be developed.
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CHAPTER 1

INTRODUCTION

In this chapter background information for the topic of thisthesis is given. The first section

describes the motivation for this research, the second examines publications on the topic, and the

final section outlines the content of the thesis.

1.1 Motivation

Aircraft are complex nonlinear dynamic systems with strictrequirements on performance

and robustness of controllers used. To describe the dynamics, aircraft are generally considered

rigid body structures whose equations of motion can be derived from Newton’s laws of motion.

Forces and moments experienced by an aircraft in flight usually come from propulsion sources

such as: turbofans, turboprops ,propellers, turbojets, etc., gravity, and the aerodynamic forces of

lift and drag. The most complex forces to model are the aerodynamic forces. These are usually

highly nonlinear functions that depend on a myriad of parameters such as aircraft geometry, flight

conditions, and control surface deflections. For flight control design it is common to split aircraft

dynamics into two pieces, longitudinal control, and lateral directional control. This can be done be-

cause the longitudinal states of the craft are not coupled with the lateral directional states, assuming

no control surface contributions. Traditional aircraft take advantage of this and are designed such

that the primary control surfaces do not couple the dynamics; this is not true for the ICE model

whose control surfaces are nonlinearly coupled. The two sets of dynamics can then be linearized

and have controllers designed independently around an operating point.

Aircraft are generally subject to constraints in both states and control inputs. Some com-

mon constraints are due to physical limitations of the structure, aerodynamics, and the pilot. There-

fore it is necessary that controllers can account for systemconstraints and successfully operate near
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Figure 1.1: A rendition of the ICE tailless fighter aircraft adopted from Dorsett et al. [1]

them to maximize performance. In the case of fighter aircraft, which operate over a wide range

of conditions, in order to allow a pilot to focus on completing the mission, and not on limitations

of the aircraft, flight controllers have to be able to limit the response to pilot inputs so that events

such as structural failure, stall, or black out of the pilot due to acceleration do not occur.

By adding constraints to states and control inputs the control problem becomes nonlinear,

even if the plant itself has been linearized. One synthesis technique used for closed loop optimal

control of constrained systems is called Model Predictive Control (MPC). In recent years MPC has

garnered attention by the aeronautical community. Researchers have explored the validity of MPC

to impact flight control, but MPC has yet to become widely applied [2] [3] [4]. A major research

topic in aerospace control is reconfigurable control, or control laws that can adapt to unexpected

control surface failures or aircraft damage. MPC can be intuitively applied to reconfigurable con-

trol due to the nature of its formulation [5] [6] [7].

The goal of this research is to lay the foundation to develop areal-time MPC algorithm

to track commands in position for Lockheed Martin’s Innovative Control Effector (ICE) tailless

fighter aircraft, while respecting constraints in control inputs.

2



1.2 Literature Review: Tailless Atmospheric Flight Vehicle Control

Tailless aircraft suffer from several issues, with regardsto control, that traditional aircraft

do not [8].

1. The difficulties in generating enough yaw control power.

2. Multi-axis instabilities.

3. Multiple control surfaces can influence any single axis.

4. Highly nonlinear and coupled surfaces.

The most prominent of these issues is the control allocationproblem, which is the combi-

nation of redundant and nonlinearly coupled control surfaces.

1.2.1 Control Allocation

In general, tailless aircraft have multiple redundant, coupled control surfaces [8]. Therefore

it is of interest to determine how best to distribute controlinputs across those surfaces to achieve

a commanded state. The problem of control distribution is known as control allocation. Choosing

which control surfaces are necessary to achieve a desired system response is not always intuitive for

an over actuated system such as the tailless aircraft. The control allocation problem can be solved

online via control methods or predetermined by the designerusing intuition and/or numerical tools.

Online control algorithms may find the control allocation that minimizes some objective function.

A few examples might be prioritizing the input effectors that have the highest control authority,

determining which combination of inputs results in the least amount of drag, or minimizing control

input power. The following section looks at several types ofcontrollers used for tailless aircraft,

and their allocation methods, if they employ one.

1.3 Dynamic Inversion

The concept behind dynamic inversion (DI) can be summarizedas given an invertible plant

dynamics, the control commands needed to produce a desired response can be calculated by simply

3



inverting the known plant dynamics [9]. By applying DI a nonlinear system can be modified such

that linear control methods may be applied [10]. DI is attractive for flight control because it has

an intuitive architecture, explicit model-following behavior, the ability to be used to introduce

fundamental-level simulated failures within the aerodynamic model for testing the performance

of advanced control elements, and it can be included in the stability proofs for many advanced

control schemes [11]. Some disadvantages of DI are that it lacks in robustness due to its reliance

on a highly accurate model, it requires the system to be invertible on some level, and in its simplest

form requires the system to be stable [8].

Ngo et al. [12] presents an outer loop robust controller, andan inner loop dynamic inver-

sion scheme to control the ICE tailless fighter model, depicted in 1.2. The outer loop controller

was designed usingµ synthesis. This controller adds robustness in the presenceof plant dynamic

uncertainties, in this case imperfect inversion and systemparameter variations within the model.

µ is the smallest structured singular value related to uncertainties within a model of a system. This

value can be used to determine whether or not the system will remain stable in the presence of plant

uncertainties, this is known as theµ condition.µ synthesis is a class of techniques used to design

controllers that meet theµ condition, and thereby guarantee stability under a range ofplant uncer-

tainties [13] [14]. After control inputs are available fromthe robust controller decides on inputs

the DI determines how to achieve those inputs. The DI was designed to decouple the longitudinal

and lateral axes, and steer the vehicle towards equilibriumif disturbed. The DI linearizes the plant

by multiplying the plant by the inverse of its own nonlinear terms, thereby modifying the system

dynamics to some desired dynamics. The desired dynamics aresuch that the aircraft’s modified

dynamic response is similar throughout the flight envelope.The controller itself is a static gain ma-

trix that is updated as the flight conditions change. The inputs chosen as control variables are the

pitch rate augmented to include the angle of attack, yaw rate, and roll rate. The controller assumes

full state feedback. Control allocation is handled by a linear transformation from the generalized

commands, given by the DI, to actual control surface deflection. The transformation is done by

applying the generalized commands to a control effectiveness matrix. The value of each of the ef-

fectiveness of the control surfaces is a function ofM and altitude, to update these values the control

derivatives for several flight conditions are stored in a database. The controller was tested using

M 0.3 to 0.5 and altitudes ranging 10,000 to 20,000 feet. The system showed robustness against

4



Figure 1.2: The ICE aircraft with control surfaces emphasized, adopted from Matamoros and
Visser [15]

control derivative uncertainties up to 15% and stability derivative uncertainties up to 50%.

Bo et al.[16] compares two nonlinear dynamic inversion (NDI) controllers designed for a

general tailless unmanned aerial vehicle. One controller uses an active disturbance rejection con-

trol (ADRC) technique to handle parameter modeling robustness issues, and the other does not.

The study divides the system states into a fast response group and a slow response group. Con-

trollers are then designed for each group and cascaded together. Inputs are provided to the control

algorithm by a trajectory planner, passed to the fast group ADRC algorithm which passes gener-

alized control inputs to the fast group NDI algorithm. The outputs of the fast group NDI are the

input to the slow group controller which is structured the same way. The outputs of the slow group

controller are passed to a control allocation algorithm which transforms the generalized commands

into control surface deflections. The idea behind the ADRC synthesis technique is to use a trajec-

tory planner, provide a noise tolerant tracking differentiator, employ nonlinear control laws, and

provide total disturbance estimation and rejection [17]. By adding an unknown “total disturbance”

term modeled as a function of states and known disturbances,and introducing additional states, an

estimator can be built that will have inputs consisting of the controller command, and the known

plant outputs. The outputs of this observer are the estimated system states and the previously un-

known total disturbance. Application of this technique results in several tuning parameters that are

5



largely independent of the system model, but do rely on the system time scales [17]. The controller

was tested with 30% variation in all aerodynamic coefficients, tracking references in angle of at-

tack, side slip, and bank angle at seven different points within the flight envelope. The algorithm

was not reported to have been tested against output disturbances.

Buffington [18] applies a multi-branch linear programming control allocation technique in

conjunction with a DI algorithm on the ICE model for attitudecontrol. DI inverts the command

variable dynamics and proportional/integral feedback generates a desired robust loop shape. The

output of the DI is a virtual control that the allocation algorithm turns into real control surface

deflections. The multi-branch linear programming algorithm can be conceptualized as follows:

check to ensure a command is feasible, if it is then use another solver to determine the best way

to distribute that solution among control surfaces while optimizing a secondary objective. If the

solution is not feasible then the control input solved for will be as close to the desired reference as

possible and no further control objectives are optimized. The control scheme was able to utilize all

available power without violating actuator limits, and minimizing drag. The flight regimes tested

span combinations ofM 0.35-0.85 and altitudes of 15000 to 500 ft. The major drawback of this

approach was not being able to account for nonlinear controlsurface based interactions

Matamoros et al. [15] apply an incremental nonlinear dynamic inversion (INDI) law cou-

pled with an incremental control allocation (INCA) algorithm to control the attitude of the ICE

model. The incremental approaches separates a control problem up into small pieces and solves

for small changes in control input that drive the states. Locally linearizing the system dynamics

at every step using a first order Taylor series expansion and assuming a small incremental time

change over which the state derivatives evolve much faster than the states themselves allows for

a virtual control input to be solved for. The virtual input isonly a function of a nonlinear control

surface mapping from moments to control surface deflectionsand the states at the beginning of the

solution. Due to the ICE model being overactuated the Jacobian of the control surface model is

not square. This prevents the direct inversion of the model.Rather than inverting the Jacobian, the

INCA algorithm takes a portion of the INDI solution, which isreferred to as the pseudo control

input and determines an increment in the control input vector such that the Jacobian of the control

surface model multiplied by the increment is the pseudo control input. By doing so the INCA

completes the inversion solution and outputs a control surface deflection increment. The incre-

6



mental formulation allows for the nonlinear allocation problem to be solved with linear allocation

algorithms while still taking into account nonlinear interactions among control surfaces. The op-

timization routine selected for control allocation was theone that found accurate solutions in the

least time, quadratic programming, which also took into account control surface constraints. This

control scheme has been simulated in real-time at an altitude of 20000 ft andM 0.85. The group

was able to track commands in all body rates using irregularly shaped command references.

Bacon and Ostroff [19] use DI to synthesize a reconfigurable flight control law for Lock-

heed Martin’s reconfigurable control for tailless fighter aircraft (RESTORE) program, that would

later become the ICE model. A reconfigurable control law is generally composed of three elements.

Failure detection and isolation to determine which surfaceis no longer useful, on-line parameter

identification to provide a model of the damaged vehicle, andon-line control design which utilizes

the information from the other two elements to reestablish control [19]. The need for a nominal

model is eliminated by an on-line parameter estimation thatis applied to the aircraft itself. This

estimation measures the rates of change of the states of the aircraft directly via instrumentation,

and feeds them back into the DI. The DI control output is formulated by evaluating a Taylor series

expansion using the previous states and control inputs to evaluate the needed partial derivatives.

This yields a required change in surface position from its previous position, that is independent of

a nominal model of the aircraft. The allocation problem is besolved via a minimum norm solution,

using a properly chosen weighting matrix. If surfaces are lost, the weights within the allocation

problem that correspond to those surfaces can be changed to zero, and those surfaces will not be

considered in the solution. It is shown the aircraft can track commands in body rates, sideslip angle,

angle of attack, and stability axes angular rates for several types of failures including combinations

of both complete losses of control surfaces and control surfaces being stuck in fixed positions.

1.4 Other Control Synthesis Techniques

Calise et al. [20] propose a direct adaptive reconfigurable controller with a baseline dy-

namic inverter for a general tailless aircraft. When an adaptive control is direct it does not attempt

to identify the plant, instead an explicit model is used and the generated error is used in the adaptive

control law [21]. Adaption is done by a feed forward neural network that is trained using sigmoidal
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activation functions. The weights of the neural network areupdated on-line by a law that depends

on the feedback error of the states. The neural network takesin states of the system and outputs

an adaption signal that is subtracted from a filtered acceleration and an error feedback to produce

a psuedo input which feeds into the DI. The output of the DI is allocated by an unspecified control

selector. A simulation atM 0.6 and altitude 15000 ft with the left aft body flap stuck at 30degrees

was run. The simulation found that the neural net adapted thecontrol input to compensate and was

able to track longitudinal and lateral references better than the same system without adaption.

Eberhardt and Ward [22] apply indirect adaption to the RESTORE tailless aircraft model.

Indirect control estimates the parameters of the unknown plant from input-output data and, use

these estimates to adjust the parameters of a controller such that the transfer function of the con-

trolled plant evolves to that of a model [21]. The indirect adaption is done by a combination of

model predictive control (MPC) and on-line parameter identification (PID). The PID estimates data

as the system is in use to update a linear model. This updated model is used by the MPC to generate

control pseudo commands in the form of forces and moments, which are given to a redistributed

pseudo-inverse algorithm that allocates the control commands. The simulation results were able to

track commands in pitch rate, roll rate, and side-slip angleat an unspecified flight condition with

unspecified solution times. However, it is stated that the simulations were not run in real time.

Every work discussed above shares a common element: controlallocation. Every work also

has a different method for solving the control allocation problem. This is evidence the allocation

problem and algorithms designed to solve it are a major focusof tailless fighter control research.

Much of the published work on tailless control is based on DI synthesis and solving the problems

associated with DI, due to DI naturally lending itself to thesolution of control for MIMO systems,

and therefore flight vehicles. Less work has been published under the guise of adaptive control,

and less still as predictive control.

1.5 Literature Review: MPC applied to Flight Vehicles

Simon [23] proposes using linear MPC with feedback linearization to control the nonlinear

ADMIRE model. ADMIRE is an advanced generic simulation model of a modern delta-canard

fighter aircraft [24]. The ADMIRE model configuration is shown in 1.3. The MPC has a quadratic
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Figure 1.3: The ADMIRE aircraft with principal control surfaces emphasized, adopted from
Hagström [24]

cost function that penalizes angle of attack and pitch rate reference tracking error and use of control

input. The cost function is quadratic, so it can be used in a quadratic programming solver. The

model of the aircraft is nonlinear in a single state, the nonlinear state is linearized through feedback

using the control input. This makes the constraints appliedto the MPC nonlinear in the control

input, and dependent on the state. Simulation flight conditions wereM 0.6 and altitude 1000 m

with a sample rate of 60 Hz. The MPC regulated angle of attack and pitch rate to some equilibrium

point over the course of a few seconds simulation time. The real-time solution times are not given.

Slegers et al. [25] present a nonlinear MPC technique for general unmanned air vehicles

suited for real-time application. The work presents a method of finding a closed form solution

to the nonlinear problem through expanding the output and control in a truncated Taylor series.

Through proper expansion the cost function can be represented as a quadratic whose optimization

parameters are the elements of each Taylor series. The elements of the weighting matrix are given

as the square of the integral of the coefficients from the Taylor series expansion over the length

of the prediction horizon. This method assumes the system has the same number of outputs as

inputs. The algorithm is derived for a general case and applied to a simulated unmanned glider.

The control inputs are the deflections on aileron, rudder, and elevator, the tracked outputs are the

bank, pitch, and heading angles. The outputs converge on thedesired values in seven seconds, but
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the solution times for control inputs are not commented on.

1.6 Chapter Summary

MPC synthesis for tailless aircraft is a relatively unexplored topic in comparison to DI

based techniques. DI has been successful in implementing real-time solutions to the entire flight

envelope, with added complexity to address robustness issues and reconfigurable flight. However,

the reviewed literature on DI do not discuss how states, actuator rates, or actuator limits can be

taken into consideration while performing DI synthesis. Itis likely that saturation limits are im-

posed on control inputs that are unknown to the controller itself and handled by the allocation

algorithms.

MPC has been explored in many of the same ways DI has but for traditional aircraft, which

in general do not require advanced allocation algorithms due to not having redundant and coupled

control surfaces. MPC in flight vehicles has been successfulin tracking both longitudinal models,

and full 6 DOF models of traditional aircraft, while respecting state, and actuator constraints.

Solution times in much of the literature are not mentioned, implying that they may not be real-

time.

1.7 Thesis Overview

Chapter 2 of this work will attempt to lay the foundation for ageneral understanding of

aircraft dynamics. It will begin with discussing axes followed by kinematic variables, aerodynamic

coefficients, body forces and moments, and ending with ICE specific parameters. Chapter 3 will

lay the foundation for a general MPC implementation. The first section will discuss linear MPC

and the receding horizon idea, followed by a brief discussion of nonlinear MPC. Chapter 4 will

deal with the MPC simulation specifics such as cost functions, constraints, and tuning parameters.

This will be supplemented with other discussion about the internal model, and control allocation.

The final section of Chapter 4 will discuss briefly how infeasibility and suboptimal solutions are

used during simulation. Chapter 5 will discuss the results of simulation, including flight profiles,

solution times, and control input values. There will be a brief mention of how the MPC was tuned.

Chapter 6 is the final chapter and will begin by making conclusions based on the simulation results
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and research tribulations. This will be followed with some recommendations for future work.
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CHAPTER 2

THE MODEL

This chapter begins by setting forth the general equations of motion for a fixed wing air-

craft. First relevant axes definitions are given for modeling an aircraft. The second section dis-

cusses the kinematic state variables and their propagationequations. The third and forth sections

discuss aerodynamic coefficient build ups and force and moment equations. The final section de-

scribes geometric properties and control inputs specific tothe ICE model.

2.1 The General Fixed Wing Flight Vehicle Model

Figure 2.1: The body frame, adopted from Kale and Chipperfield [5]
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2.1.1 Axes Definitions

The study of aircraft dynamics requires applying multiple frames of reference to an aircraft.

The most relevant frames are the body frame, inertial frame,and stability frame. The body frame

is defined as positive out of the nose of the aircraft,XB, positive out of the right wing looking from

the back of the craft,YB, and positive out of the bottom of the aircraft,ZB. Additional notation

associated with the body frame are the body velocitiesu, v, w, which align with theXB, YB,andZB

body axes respectively. These three axes are known as the roll, pitch, and yaw axes respectively.

The origin of the body frame is placed at the center of mass of the craft, seen in 2.1.

For many atmospheric flight dynamics applications the Earthframe is assumed to be iner-

tial. The origin of the inertial frame can be placed whereveris convenient as long as it is aligned

with the Earth frame and fixed. The standard Earth frame has axes that are considered positive

north, positive east, and positive towards the center of theearth.

To convert from the body and inertial frames a rotation matrix, LIB, that transforms through

the Euler angles: bank angle,Φ, pitch angle,θ , and heading angle,Ψ, is used.

LIB =











CθCΨ SΦSθCΨ −CΦSΨ CΦSθCΨ +SΦSΨ

Cθ SΨ SΦSθ SΨ +CΦCΨ CΦSθ SΨ −SΦCΨ

−Sθ SΦCθ CΦCθ











(2.1)

For brevityC, S, andT are used to represent the trigonometric functions sin, cos,and tan,

respectively, when used in rotation matrices.

2.1.2 Kinematic State Variables and Propagation Equations

There are twelve kinematic states simulated in order to completely represent the motion

of an aircraft. States that will be used hereafter are listedin table 2.1. Therefore there are twelve

nonlinear differential equations that must be solved simultaneously to model an aircraft during

flight in the body frame.

The first group of equations, 2.2, are the equations that describe the angular accelerations,

ṗ, q̇,ṙ in the roll, pitch, and yaw directions respectively. In thisequationI with subscript denotes

the moment of inertia about a particular axis, andL,M,N are the rolling moment, pitching moment,
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Table 2.1: 6-DOF aircraft model state variables.

Variable State

p Body axis roll rate
q Body axis pitch rate
r Body axis yaw rate
u Body axisX velocity
v Body axisY velocity
w Body axisZ velocity
Φ Bank angle
θ Pitch angle
Ψ Heading angle
xI Inertial X position
yI Inertial Y position
zI Inertial Z position

and yawing moment respectively.
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(2.2)

The second grouping, 2.3 describes the linear accelerations in the body frame along theX,

Y andZ body axes.

u̇= Rv−Qw−gsin(θ)+FXB/m (2.3a)

v̇= Pw−Ru+gcos(θ)sin(Φ)+FYB/m (2.3b)

ẇ= Qu−Pv+gcos(θ)cos(Φ)+FZB/m (2.3c)
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The Euler angles,Φ, θ andΨ propagation through time is shown next:

Φ̇ = P+Qsin(Φ) tan(θ)+Rcos(Φ) tan(θ) (2.4a)

θ̇ = Qcos(Φ)−Rsin(Φ) (2.4b)

Ψ̇ = Qsin(Φ)sec(θ)+Rcos(Φ)sec(θ) (2.4c)

The final grouping describes how the inertial positionxI yI zI propagates in time. To see a

full derivation refer to [26]
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CθCΨ SΦSθCΨ −CΦSΨ CΦSθCΨ +SΦSΨ

Cθ SΨ SΦSθ SΨ +CΦCΨ CΦSθ SΨ −SΦCΨ

−Sθ SΦCθ CΦCθ
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(2.5)

2.1.3 Aerodynamic Coefficient Buildup

Aerodynamic coefficients are non-dimensional representations of the control surfaces and

aircraft geometry that are used to build a linear estimate ofthe forces that act upon an aircraft;

there are two types of aerodynamic coefficients used in theseestimates: stability derivatives, and

control derivatives. Control derivatives measure how muchchange in force or moment occurs

when a control surface is deflected. Stability derivatives measure how much change in force or

moments occur when there is a change in flight parameters suchas angle of attack. In practice

these coefficients are linear representations of how each factor in question effects each force and

moment individually. The significance of non-dimensionalizing values is to allow for the data

received from the testing of small models in wind tunnels to be scaled to the full size aircraft of the

same geometry. For example, the data for the ICE model was collected using a 1/18th scale model

at the Subsonic Aerodynamic Research Laboratory at Wright Laboratories wind tunnel [27].

In order to elaborate on the previous concept and become familiar with the notation con-

sider this small example.
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∂CM

∂α
=CMα

This is the general notation used hereon. It is read: the partial derivative of the coefficient of

pitching moment,CM, with respect to angle of attack,α. The forces and moments are then built in

the following manner.

CMα α +CMδ eδe=CM

This buildup method is at its essence a slope multiplied by anindependent variable. A

compact way to represent these equations in general is givenin equation 2.6 wherei represents a

general index standing in for one of the six forces and moments andn is an index that should be

substituted for every control surface and every flight parameter that has an impact on that particular

derivative.

Ci = ∑
n

Cinδn (2.6)

2.1.4 Calculation of Body Forces and Moments

The group of variables representing the linear buildup of body forces and moments are

shown in equations 2.7 and 2.8 using the general summation above. There is one equation for each

kinetic value totaling six. These values are the body forces, FXB, FYB, andFZB aligned with the

XB, YB, andZB and the momentsLN, MN, andNN along the roll, pitch, and yaw axes respectively.

These equations represent the six non-dimensional kineticvalues that are then dimensionalized

to calculate forces and moments. The prefix C is used to show that these are non dimensional

coefficients.

CBX = ∑
n

CXBnδn

CBY = ∑
n

CYBnδn

CBZ = ∑
n

CZBnδn

(2.7)

16



Table 2.2: Table containing the dimensionalizing factors for kinetic values.

Kinetic value Dimensionalizing factor

FXB q∞Sre fCXB

FYB q∞Sre fCY B

FZB q∞Sre fCZB

LL q∞Sre fbCLN

LM q∞Sre fcCMN

LN q∞Sre fbCNN

CLN = ∑
n

CLNnδn

CMN = ∑
n

CMNnδn

CNN = ∑
n

CNNnδn

(2.8)

The dimensionalizing factors are listed in Table 2.2. Thesefactors are a direct result of

non-dimensionalizing the forces and moments using the Buckingham Pi theory [28]. Notice that

the factors for the body forces are in terms of only referencearea,Sre f , dynamic pressure,q∞ and

their respective coefficients while the factors for momentshave an additional length element, either

the span,b, or the chord lengthc.

The effects of propulsion cannot be ignored. The previous table does not include additions

for thrust in any direction, or the moment caused by the thrust due to being offset from the center

of mass of the vehicle. Thrust can be included by summing the thrust in each direction with their

respective directions and summing the moment caused by the thrust to the body moments.

2.2 The ICE Model

The aircraft used in this research is the ICE model a high-sweep tailless fighter concept

introduced in January of 2017 for the purpose of innovative flight control research. This nonlinear

flight model allows for 13 control inputs, including vectored thrust. Table 2.3 below is a list of

constant geometric and mass properties of the craft used forsimulation.

The mass properties of the ICE model are presented in table 2.4.
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Table 2.3: Relevant geometrical parameters for the ICE model

Geometrical Attribute Value

Reference Wing Area, 806.6 ft2

Reference Span, bref 37.5 ft
Mean Aerodynamic Chord (MAC) 345 in

Fuselage Station Leading Edge MAC160.84 in

Table 2.4: Relevant mass parameters for the ICE model

Mass and C.G. Locations

Weight 37084 lb
xcg 0.36
ycg 0
zcg 88.97

Moment of Inertia Values

Ixx 42576 slug-ft2

Iyy 81903 slug-ft2

Izz 118379 slug-ft2

Ixz -525 slug-ft2

2.2.1 Control Inputs

The ICE model has thirteen control inputs, Table 2.5 lists each and their respective deflec-

tion limits.

Table 2.5: Control inputs to the ICE model

Control Input Upper and Lower Limit [Degrees]

Inboard leading edge flaps left and right 40, -0.001

Outboard leading edge flaps left and right 40, -40

All moving wingtip left and right 60, -0.001

Elevons left and right 30, -30

Spoiler slot deflector left and right 60, -0.001

Pitch flap left and right (Deflects together) 30, -30

Pitch thrust vector deflection 15, -15

Yaw thrust vector deflection 15, -15

The six degree of freedom simulation that solves the state equations for the ICE model as-

sumes the mass of the aircraft will not change, meaning no fuel cost is calculated, and the moment
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of inertia values remain constant. This is important to note, as the equations described by equation

2.2 are generalized to describe a time varying inertia matrix. Changes in mass are not considered in

the ICE simulation, to reflect this the matrix that involves the time rate of change of inertia values

will become a matrix of zeros during simulation.

2.2.2 The Aerodynamic Tables

The aerodynamic coefficients, presented previously, come from a group of 108 lookup

tables. The six force and moment coefficients are comprised of the sum of up to 19 aerodynamic

coefficients. These coefficients are nonlinear functions ofseveral inputs and states. Each control

input or state is used to determine a specific flight coefficient via interpolation. An example such as

figure 2.2 takes inM, angle of attack,α, and right spoiler slot deflector, left spoiler slot deflector,

and pitch flap deflection and calculates to contribution of all these to,CXB. These tables were

empirically gathered as stated before are non-smooth, which will later be discussed in relation to

controller performance. An example table, produced by linear interpolation to give a a 3-D slice

of the 5-D coefficient table discussed, is shown in figure 2.2.

RSSD [deg]
Angle of Attack [deg]

C
A

δ
p

f

-50
0

50
100

0
20

40
60

-0.01

0

0.01

0.02

0.03

Figure 2.2: An example of one of the tables used to determine aerodynamic force coefficients

This table is a 3-D slice of the 5-D coefficient table discussed above.
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2.2.3 Aerodynamic Data and Limits

The range of the angle of attack used during Lockheed Martinswind tunnel testing is -4◦

to 90◦. The angle of attack,α, is defined as the angle between incoming air and the chord line of

the wing about the pitch axis. This is stated to clarify that the model can simulate flight at angles

greater than 90◦ relative to the Earth frame. The sideslip angle,β , was limited to±30◦. Similarly

this angle is measured relative to incoming wind from the roll axis about the yaw axis [27]. It is

important to note when discussing controller constraints that not all 108 tables have data for the

full range ofα andβ , meaning that some control surfaces are not accurately represented for the

full range of test data.

2.3 Chapter Summary

There are 12 nonlinear differential equations of motion foran aircraft. These capture the

angular accelerations, Euler angle velocities, inertial velocities, and linear body accelerations. The

acceleration equations for the ICE model consider the body moments and forces that are built from

the 108 aerodynamic coefficients and propulsion forces. Those aerodynamic coefficients account

for aircraft geometry, control surface deflections, as wellas various flight parameters. These equa-

tions and coefficients will be used in the solution to the optimal control problem formulated in

Chapter 3, and applied in Chapter 5.
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CHAPTER 3

MODEL PREDICTIVE CONTROL REVIEW

Model Predictive Control (MPC) is a form of optimal control that attempts to anticipate

how a model will react to certain control inputs and drives the model based on these predictions to

minimize a cost function. The solution to such a problem can take a relatively long time depend-

ing on the optimization algorithm and the system dynamics. Due to this, in its infancy MPC was

generally used used for processes that were slow, as to give the controller time to find solutions.

Other major drawbacks include concerns about the feasibility of online optimization, model un-

certainty limitations, stability, cost function term penalty weight updating for different operating

points. Despite these drawbacks MPC is still alluring in theaerospace world, due to its ability

to handle multi-variable control, actively consider actuator limitations, and allow for operation at

performance constraints [29].

This section aims to convey a general mathematical understanding of MPC beginning with

the linear MPC and following with a brief discussion of nonlinear MPC. MPC is most commonly

formulated in discrete time, so the discussion will be limited to discrete time formulations. All

MPC formulations result in nonlinear controllers if inequality constraints are enforced on the sys-

tem. The term linear MPC refers to the plant model being linear, while nonlinear MPC refers to

the plant model being nonlinear.

3.1 Linear MPC

Assume the system dynamics can be described by a discrete time difference Equation 3.1.

Where the subscriptk is a time index for sample timeTs.

xk+1 = Axk+BUk (3.1)
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Figure 3.1: A convex function

Now consider a discrete time-constrained optimal control problem, with statexk, inputUk,

two weighting matricesQ andSand a horizonHp.

min
Uk+1,...,Uk+H p−1

(xHp)
TQ(xHp)+

Hp−1

∑
j=0

(xT
k+ jQxk+ j +UT

k+ jSUk+ j) (3.2)

subject to

xk+ j+1 = Axk+ j +BUk+ j

xk+ j ∈ X

Uk+ j ∈ U

xHp ∈ Γ

Where the setsX andU are convex, this can be viewed as a general convex optimization. A

convex function is one in which a function curve connecting two points lies below a line connecting

the two points, this is shown in Figure 3.1, a more rigorous mathematical description can be found

in [30]. Convex functions have only a single minimum, and thus the local minimum is a global

minimum. This makes convexity a very attractive property offunctions when applying typical

gradient descent optimization methods, because it guarantees globally optimal solutions.
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Figure 3.2: A block diagram of a high level closed loop MPC implementation

The selection of the bounding function and constraints,Γ, is discussed at length in Mayne

et. al. [31].

Solving this optimal control problem once results in open loop control. To close the loop,

only the first control in the optimal control sequence is applied fromk to k+1. At the next step,

k+ 1, we measure the current state and redo the optimization with the new current state asx0.

This is known as Receding Horizon Control because the control problem is solved over a finite

future horizon that moves into the future asTs increments changes. The closed loop system can be

represented by the block diagram shown in Figure 3.2.

Using the predicted outputs of the system, ˆy, the cost function can be reformulated to track

a reference,r(k+ j), without a terminal penalty, whereHp is the number of partitions [32].

min
Uk+1,...,Uk+H p−1

Hp

∑
j=0

(ŷk+ j − rk+ j)
TQ(ŷk+ j − rk+ j) (3.3)

3.2 Nonlinear MPC

Consider a nonlinear discrete time dynamic system

xk+1 = f (xk,Uk) (3.4)

The MPC formulation takes the form
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Figure 3.3: The receding horizon idea visualized

min
Uk+1,...,Uk+N p−1

(xNp)
TQ(xNp)+

Np−1

∑
j=0

P(xk+ j ,Uk+ j) (3.5)

subject to

xk+ j+1 = f (xk+ j ,Uk+ j)

xk+ j ∈ X

uk+ j ∈ U

xNp ∈ Γ

(3.6)

The constraint set,Γ, is generally difficult to determine for flight vehicles due to varia-

tions in dynamics. Techniques to do so, while guaranteeing stability, are outside the scope of

this research. The nonlinear system results in a nonconvex problem. Some popular approaches

to solving this problem are to use Sequential quadratic programming (SQP), Euler-Lagrange and

Hamilton-Jacobi-Bellman algorithms [33].

SQP is a method that models nonlinear programming (NLP) at a given approximate solu-
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tion by a quadratic programming subproblem. The approximated solution of the subproblem is

used to construct a better approximation. By iteration a sequence of approximations are created

that are hoped to converge to a solution [34]. The Euler-Lagrange and Hamiltion-Jacobi-Bellman

techniques circumvent solving the nonconvex optimizationproblem by taking advantage of the

nonlinear MPC problems formulation as an optimal control problem. The Euler-Lagrange method

numerically solves the two point boundary value problem that arises from Pontryagin’s Maximum

Principle and the Hamilton-Jacobi-Bellman approach triesto numerically solve the Hamilton-

Jacobi-Bellman partial differential equation [23]. SQP isthe method by which the proposed MPC

will solve its optimization problems. SQP was chosen as a solution method for three reasons:

its ability to iterate through an infeasible solution space, being able to be modified such that all

linear constraints are always satisfied and, the existence of many algorithms that solve quadratic

programming problems [34].

3.3 Chapter Summary

MPC is a form of optimal control that predicts how a model willrespond to inputs and

drives the model based on these predictions to minimize a cost function. The minimization can

be subject to both linear and nonlinear inequality and equality constraints that reflect the operating

limits of the system. A receding horizon is used to close the MPC loop, so that it responds to

feedback from the plant, and can minimize an error. There areseveral optimization methods used

to solve nonlinear optimal control problems the one employed in this work is SQP.
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CHAPTER 4

SIMULATION SETUP

4.1 Trimming the Aircraft

Trimming an aircraft is finding an equilibrium point for a given flight condition. Generally

this means that the aircraft control inputs are set in such a way that the craft experiences steady

level flight. To find the combination of control inputs to achieve such flight an optimization routine

is used to satisfy Equation 4.1 whereδ is a vector of control surface deflections, thrust vectoring,

and thrust.

min
δi

14

∑
i=1

δ 2
i (4.1)

subject to

δ ∈ ∆

and Equations 4.2-4.7.

The constraints, imposed to achieve level flight in terms of state variables are as follows:

1. The difference between the actual velocity and the desired velocity,Vd, must be zero.

u2+v2+w2−V2
d = 0 (4.2)

2. The flight path angle,γ, must be zero.

γ = θ −arctan(w/u) = 0 (4.3)

3. The linear accelerations must be zero.
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u̇= rv−qw−gsin(θ)+FXB/m= 0 (4.4)

v̇= pw− ru+gcos(θ)sin(Φ)+FYB/m= 0 (4.5)

ẇ= qu− pv+gcos(θ)cos(Φ)+FZB/m= 0 (4.6)

4. The angular accelerations must be zero.
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(4.7)

4.2 MPC Properties

Closed loop simulation of the ICE model and MPC was done usingMATLAB. The refer-

ence,R(k), followed for all simulations is a series of discrete state vectors with commanded step

changes. Where the state vector,X is defined by Equation 4.8.

X = [xI yI zI u v wΦ θ Ψ p q r]T (4.8)

The input to fmincon is a column vector denotedZL, which will be referred to as the long

vector. The elements of the long vector are the initial statevector repeatedHp times concatenated

with the initial input vector repeatedHp times. After the first control input is found, the next

iteration is warm started using the previous solution. i.e.ZL = xk,uk. Warm starting the algorithm

near the last solution is done in hopes that the next solutionwill not be far from the last, and

computation time will be reduced.

The maximum magnitude of the bounds of each state were used tonormalize the inputs to

fmincon, a constrained gradient descent based optimization tool developed by MATLAB. When

normalized the convergence rate of gradient descent is better bounded because the ratio of largest

and smallest eigenvalues of the Hessian is small, aiding fmincon in converging more quickly and
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more accurately [35].

4.2.1 The Internal Model

The general formulation of a continuous time nonlinear system in Equation 4.9 can de-

scribe the ICE aircraft, and will be used as the internal model the MPC uses for prediction. In

this formulation let the input vectorU be comprised of the six force and moment coefficients.

Representing the system as Equation 4.9

X(t) = f (X(t),U(t)) (4.9)

Where this is a vector of the functions described in Equations 2.2 - 2.5. During the search for

a solution to this problem the optimizer only predicts what will happen when certain force and

moment coefficients are applied, to Equations 2.2 and 2.3 thesolver does not consider how they

will be built from the aerodynamic data tables.

The internal model the MPC evaluates is a 6DOF continuous time representation of the

aircraft without any aerodynamic data. In order to obtain discrete approximations of the continuous

time state equations discussed in Chapter 2, two numerical methods are used: Runge-Kutta 45 and

collocation [36]. The first partition,k+1, is evaluated using the variable step solver Runge-Kutta

45. This was chosen to increase accuracy of the first partition step to more accurately predict

the control input that will be applied. The remaining partitions are predicted using collocation,

sacrificing accuracy for speed because the remaining partitions are only used to anticipate the

aircrafts response. The difference between the internal model and the simulation model are the

rate at which they are sampled. The internal model is sampledat some rateTs while the simulation

model is solved by MATLABS ode45 function, which is a variable step solver that provides more

accurate outputs, across much smaller time steps.

4.2.2 Pseudo Inputs

The objective of the MPC is to track the reference vector, by optimizing across a prediction

horizon, Hp, and applying optimal control until a control horizon,Hc, after which the control
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input is held constant. The pseudo inputs used to track the reference consist of aerodynamic force

and moment coefficients, thrust, pitch thrust vectoring, and yaw thrust vectoring. The variableT

contains the three thrust inputs and is contained withinU . The cost,J1, was selected to minimize

state error between the reference and actual states, while minimizing the thrust inputs. Assuming

full state information is available,

J1 =(XH p−R(k+Hp))
TQ(XH p−R(k+Hp)

+
Hp−1

∑
j=0

[

(Xk+ j −R(k+ j))TQ(Xk+ j −R(k+ j))
]

+
Hc−1

∑
j=0

T2
k+ j

(4.10)

J1 was selected such that the cost is convex and quadratic to make it suitable to a minimization

problem. Both the states and references are normalized by their maximum values as before. By

doing so the states whose maximum magnitudes are orders larger than those of the smallest states

will not dominate the direction the cost function travels, allowing for more intuitive choices of the

weighting matrix,Q which is a 12 x 12 diagonal matrix whose diagonal elements are

Q1,1 = 0 Q2,2 = 5 Q3,3 = 50 Q4,4 = 0

Q5,5 = 1 Q6,6 = 1 Q7,7 = 1 Q8,8 = 1

Q9,9 = 1 Q10,10 = 1 Q11,11 = 1 Q12,12 = 1

and whose off-diagonal elements are zero. Elements ofQ were chosen based on an iterative tuning

process. Notice that the 3,3 element of Q is heavily penalized, this is because the inputs to the

cost function are scaled by the maximum magnitudes of their bounds. The bound on altitude

is much larger than the bounds on the other states of the system. Therefore to penalize altitude

appropriately, the weight on that state was increased. Thisis by no means the only reasonable

choice ofQ, it can be modified and still be effective depending on what the designer requires.

Using J1 the pseudo inputs are found by solving the following problemwith nonlinear equality

constraints and nonlinear inequality constraints,c.
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min
Uk,...,Uk+Hc−1

J1 (4.11)

subject to

Xk+ j+1− f (Xk+ j ,Uk+ j) = 0 j = 0, ...,Hp−1

Xk+ j ∈ X

Uk+l ∈ U l = 0, ...,Hc−1

Uk+Hp−1 = . . .=Uk+Hc =Uk+Hc−1

whereX andU are closed and convex,U is held constant pastHc and





αk+ j+1

−αk+ j+1



≤





45

−5





The constraints enforced in this optimization are:

1. The original nonlinear dynamics must be satisfied at the collocation points.

2. α cannot exceed 45o

3. α cannot be less than -5o

The additional constraints onα were selected so that the craft did not operate outside the bounds

of the aerodynamic table data, increasing the chance that the control allocation solution will be

feasible.

The solver proceeds in this manner until the predicted states match the internal model states.

When this occurs the solver outputs its final estimate of whatthe aerodynamic force and moment

coefficients to drive the aircraft to the reference state.

4.2.3 Control Allocation

In order to determine the control deflections necessary to produce the obtained force and

moment coefficients, a second optimization is performed after the first.. It takes in vectorCL which
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is comprised of a single set of control deflections representing the control deflections to produce

the first partition’s pseudo inputs.CL is normalized similar toZL for the same reasons. This routine

iterates over the aerodynamic derivative tables attempting to find aCL that minimizes the cost

functionJ2. Within J2, CFM is a vector of force and moment coefficients which results from the

optimizers choices ofCL through the aerodynamic coefficient tables, the matrixA contains weights,

andδk is the current control surface deflections

J2 = (CFM −Uk)
TA(CFM −Uk)+(δk−δk−1)

2 (4.12)

Because the craft is a tailless fighter, and has redundant control surfaces, there are multiple

solutions to every set of coefficients. To try and reduce the number of acceptable solutions the cost

function penalizes the difference between the previous control input and the new one. As before

the cost function is quadratic as to make it convex. The weighting matrixA is a 6x6 identity matrix,

so that no particular coefficient is favored.

Unlike the first optimization there are no nonlinear constraints, but linear bounds on the

limits of the control surfaces. The problem that must be solved is then

min
δk

J2 (4.13)

subject to

δk ∈ ∆ (4.14)

where∆ is closed and convex. The entire process is summarized in Figure 4.1

In the problem formulation there are no constraints to account for control rates, or engine

dynamics. An engine model was not provided by Lockheed Martin for this aircraft, and one was

not assumed. Transfer functions for the control surfaces were provided but for this work were not

implemented.

4.3 Infeasibility and Suboptimal Solutions

It is not always possible to find an optimal control problem solution in a reasonable amount

of time, or at all. For the ICE model if first order optimality is nearly 0 and constraints are not being
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Figure 4.1: A depiction of each optimization, their inputs,and outputs

violated and the cost function is no longer decreasing, a newinitial solver guess for the states can

be implemented to try and change the optimizers, starting point and trajectory through the solution

space to come to an optimal solution. If after a certain number of attempts an optimal solution

still isn’t found the suboptimal solution is accepted. Thisprocess is shown by the block diagram

Figure 4.2. Generally speaking, suboptimal and infeasiblesolutions only occur when the system is

forced to operate outside the nonlinear constraints. When suboptimal solutions are employed the

subsequent solutions can return to being optimal but, when infeasability occurs the controller has

significant difficulty returning to an acceptable solution,optimal or otherwise.

The reason for infeasible solutions is due in part to poorly constrained pseudo control

inputs, and in other part by the shape of the aerodynamic derivative tables. Without knowing

what the maximum and minimum magnitudes for pseudo inputs are, which would require a global

optimization over the aerodynamic tables for each pseudo input, the first optimization routine may

ask for a solution that is not physically attainable. The shape of the aerodynamic tables, and

the nonlinear dependence on each other makes it very difficult for the optimizer to find suitable

solutions. In many cases there are local minima on the tablesthemselves, and sharp discontinuities

that might cause the solver to chatter across them. Several strategies were considered and explored

to address these issues, such as the use of radial basis neural networks to smoothly approximate
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Figure 4.2: The feasibility loop
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the tables, or locally linearizing the tables at each partition using a least squares approximation and

bounding how far the solver could move on the linear plane. Neither scheme was successful.

4.4 Chapter Summary

The aircraft is trimmed, to find an equilibrium point at whichto begin simulation. The

conditions for this trim is are an altitude of 3000 ft with a forward velocity of 900 ft/s. The MPC

parameters that are used in this work are set forth in section4.2. The continuous time representa-

tions of the aircraft equations of motion are used to represent the internal model of the system and

descritized using RK45 and collocation so that the discretetime MPC formulations can be applied.

The MPC will only choose pseudo inputs to drive the system, while another optimization routine

will choose control surface deflections to realize those pseudo inputs. Infeasibility is avoided and

suboptimal solutions are used when necessary as dictated bythe logic described in Figure 4.2.
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CHAPTER 5

SIMULATION RESULTS

This chapter discusses how the MPC was tuned and the results from three simulation cases

are presented. The reference in the first scenario asks the craft to drop in altitude by 1000 ft, climb

to 20,000 ft then take step commands to increase altitude by 10,000 ft every 20 seconds until the

ceiling of 50,000 ft is reached, referred to as the altitude sweep. The second simulation requires the

aircraft to decrease altitude by 1000 ft. Lastly the aircraft is asked to track a 300 foot change inyI

position, and a 1000 ft increase in altitude simultaneously. Each section will begin by displaying

the pseudo control inputs, followed by the allocation results, state tracking, climb angle, speed,

and cost.

5.1 Initial Control Tuning

To tune MPC the sample time, prediction horizon, control horizon, and the weights of the

optimization routine must all be chosen to obtain a desired behavior. The controller was tuned by

choosing a sample time based on knowledge of the system. The sample time was chosen to be

small enough so that the faster evolving states of the systemcould still be regulated, but not so

small that the slower evolving states do not change. The prediction horizon was then fixed at 5

partitions, making the quantityTsHp 1.25 seconds. This is how far ahead in time the controller

is looking when choosing control inputs, 1.25 seconds was not chosen by any specific criteria.

The weights were initialized such that all weights were equal, and simulations were run until

a subjectively acceptable response was found. The control horizon was tuned by starting with a

number of partitions equal to that of the prediction horizon, that isHp=Hc and iteratively reducing

it by 1 after simulating the system, until the response was satisfactory. During tuning the aircraft

was asked to climb 3000 ft, from 3000 ft to 6000 ft, while minimizing every state except forward
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Figure 5.1: Tuning: Commanded force and moment coefficientsfrom the pseudo control optimiza-
tion

velocity. The results are shown in Figures 5.1 - 5.11.

Figure 5.1 shows the force and moment coefficients commandedby the psuedo controller.

The moments are small for a climb, while theCZ gains magnitude to indicate a climb. Figure 5.2

shows the thrust parameters, as expected only pitch thrust vectoring is significant. Figure 5.3 shows

significant deflection in the inboard and outboard leading edge flaps, indicating their importance

in pitch control. Figure 5.4 shows the all moving wingtip andelevon deflections. Surprisingly

there is significant use of the wingtips. This can be attributed to trying to stabilize yaw, by using

differential drag. Figure 5.5 shows the spoiler slot and pitch flap deflections. The pitch flap is not

as heavily deflected as one might expect, likely due to the heavy use of other control surfaces.

Figures 5.6 - 5.9 show the states for this simulation. Figure5.6 includes both position and

body velocity states, while Figures 5.7 and 5.8 take a close look at the two states with references.

There is some overshoot in the altitude track with no sign of converging, but the Y position seems

to meet its reference, with small variations. Figure 5.9 shows the euler angles during this motion.

As expected the pitch increases, but unexpectedly the bank angle spikes near the beginning. As

mentioned before the all moving wingtips are likely activated in response to this.

36



Pitch Thrust Vectoring
Yaw Thrust Vectoring

Time [s]

Ve
ct

o
r

A
n

g
le

[d
eg

]

Time [s]

T
h

ru
st

[lb
f]

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

1000

1500

2000

2500

3000

-1.5

-1

-0.5

0

0.5

Figure 5.2: Tuning: Thrust parameters
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Figure 5.10: Tuning: Climb angle and velocity magnitude

Figure 5.10 shows the climb angle and speed for this motion. It reaches a maximum of 44o

before coming back down over the duration of the motion. The speed increases near the beginning

of the motion and drops off afterward once the craft has reachits new altitude.

Figure 5.11 shows a normalized cost function for the state tracking error.
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Figure 5.11: Tuning: State tracking cost

5.2 The Altitude Sweep

In this case the aircraft starts out at 3000 ft, is asked to decrease altitude to 2000 ft then

climb to 20,000 ft. After which every 20 seconds step commands are given to climb by 10,000 ft

until a final altitude of 50,000 ft is reached. The results aredisplayed in Figures 5.12 - 5.23.

The coefficient plots for this motion are shown in Figure 5.12. They oscillate with high

frequencies during any part of the motion that is not a level flight. Figure 5.13 shows the thrust

parameters for this motion. The magnitude of thrust increases during the climb phases as well as

the thrust vectoring magnitudes. During some motions, the aircraft attempts to create moment to

stabilize itself using yaw vectoring. Figure 5.14 shows theusage of inboard and outboard leading

edge flaps, they behave as expected based on the tuning case. Figure 5.15 shows the all moving

wingtip and elevon deflections. The elevon response seems delayed at the 20 second mark, but as

the craft allocates stability to regulate the angular velocities, the elevons are prioritized for pitch

control. Figure 5.16 looks at the spoiler slot deflector and pitch flap responses. The pitch flap seems

to be underutilized for these motions, while the spoiler slot deflectors are given large commands.

Figures 5.17 - 5.20 show the state evolution for this motion.Figure 5.17 shows the overall
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Figure 5.12: Altitude Sweep: Commanded force and moment coefficients from the pseudo control
optimization
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Figure 5.14: Altitude Sweep: Inboard and outboard leading edge flap deflections
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Figure 5.16: Altitude Sweep: Spoiler slot and pitch flap deflections

position of the system plotted against its reference over time and the body velocities of the system.

Unexpectedly there are largev andw velocities during each climb. The controller tracks in the

YI andZI directions very well until it gets near the final altitude. The problem was constrained

such that a 52,000 ft altitude was the maximum altitude allowable. Operating near that constraint

and experiencing overshoot caused the solver to use suboptimal solutions that violated the altitude

constraint, which eventually led to infeasible solutions.A close up of just the altitude track is

shown in Figure 5.18 and the Y track is shown in Figure 5.19. Figure 5.20 shows the Euler angles

and angular velocities, again there are large unexpected magnitudes in theq andr states.

Upon closer inspection we can see that the overshoot is significant at higher altitudes. The

system was limited to an angle of attack of 45 degrees, which is reflected by the slope of the climb

decreasing as altitude increases. Figure 5.22 shows the angle of attack plotted against time. While

α remains close to or at the maximum for most climb sections, asair density decreases, less lift

can be produced at thatα, and without thrust compensation the craft is unable to keepits rate of

climb. A changing dynamic pressure, resulting in less control authority, and an MPC that was

tuned at another operation point are likely the causes of this overshoot. Additionally, due to loss
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Figure 5.17: Altitude Sweep: Positions and velocities

in control power because air density is changing and dynamicpressure is not being compensated

for by increasing velocity, the system response to control inputs is lessened, and the system is

responding slower. It was found that if states evolve too slowly the optimization solver will lose

its ability to predict across small sample times, indicating a need for an adjustment to sample time

to account for control power loss due to dynamic pressure. Near the end of the simulation the only

solutions that can be found are suboptimal or infeasible because of exceeding the constraint. This

causes the large violations in the angle of attack constraints.

Figure 5.21 shows the climb angle and speed. The climb angle oscillates near 0, and be-

haves as expected otherwise. The speed track oscillates near the peaks likely in response to thrust

input. At each time step the speed seems to approach some value that would be steady state if the

system were given enough time. This is speculated on with regards to dynamic pressure in Chapter

6.

Figure 5.22 shows the angle of attack during the simulation.The angle of attack changes

rapidly during ascent, and becomes more regular while in between step inputs.

Figure 5.23 shows the cost for the states during the simulation. There are unexpected spikes
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Figure 5.20: Altitude Sweep: Euler angles and angular velocities
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Figure 5.21: Tuning: Climb angle and velocity magnitude
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in the cost function during the first ascension but the cost does decrease over time.
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Figure 5.23: Altitude Sweep: State tracking cost

5.3 Descent

In the second simulation the aircraft starts at an altitude of 3000 ft and is asked to drop to

2000 ft. The results from this simulation are shown in Figures 5.24 - 5.34. Because of the lower

limit on the angle of attack, and the need to minimize the Euler angles, the aircrafts rate of descent

is very small. As previously discussed the lower limit on theangle of attack is due to the limit on

the aerodynamic tables. What a pilot might have done in this case is roll the aircraft and pull up,

essentially effecting a positive angle of attack while decreasing altitude.

Figure 5.24 shows the commanded pseudo inputs. There is an unexplained divergence in

the Cz input that shows up in the state tracking which will be discussed later on. Figure 5.25

shows the thrust parameters for the system. The pitch vectorinput behaves the same during the

first second as it did during ascent, which may be indicative that the system cannot predict the non

minimum phase behavior of pitch. Figures 5.26, 5.27 and 5.28all indicate that during descent the

aircraft relatively stable with little aerodynamic control surface input.

Figure 5.29 shows the position and body velocities. Figure 5.30 shows a better perspective

on the altitude track. As mentioned before theCZ coefficient diverged and this is reflected in the
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Figure 5.24: Descent: Commanded force and moment coefficients from the pseudo control opti-
mization
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Figure 5.25: Descent: Thrust parameters
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Figure 5.26: Descent: Inboard and outboard leading edge flapdeflections
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Figure 5.27: Descent: All moving wingtip and elevon deflections
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Figure 5.28: Descent: Spoiler slot and pitch flap deflections

altitude position coordinate. The reason for this divergence is likely due to poor tuning of the

MPC for a descending motion. There is however, no overshoot while descending this is likely

do to how slow the descent is compared to the climb and how muchtime the MPC has between

predicting meeting the reference altitude and actually meeting it. This is indicative that the MPC

would benefit from having a larger prediction horizon, giventhe quarter second sample time.

Figure 5.33 shows the climb angle and speed. The climb angle cannot be as negative as

it can be positive due to the angle of attack constraint. The speed drops off very quickly as the

aircraft glides to its refernce altitude.

Figure 5.34 shows the normalized cost for state tracking during the motion.

53



X
I

Y
I

Z
I

Ref Z
I

Ref Y
I

u
v
w

Time [s]

D
is

p
la

ce
m

en
t[

ft]
Ve

lo
ci

ty
[m

/s
]

Time [s]
0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

-500

0

500

1000

-1

0

1

2

3

Figure 5.29: Descent: Positions and velocities
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Figure 5.30: Descent: Altitude tracking
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Figure 5.32: Descent: Euler angles and angular velocities
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Figure 5.33: Descent: Climb angle and velocity magnitude
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Figure 5.35: Two Position Reference: Commanded force and moment coefficients from the pseudo
control optimization

5.4 Tracking References in Two Position Coordinates

The final simulation done was to track a reference in more thanone position coordinate.

The reference to track was a simultaneous step input change inYI andZI . The two reference values

stepped were 300 ft in theYI and 1000 ft in theZI . The results are shown in Figures 5.35 - 5.47.

Figure 5.35 shows the coefficients of the system. This motionrequires control over both

altitude state, and Y position state, this is reflected by large coefficient commands onCy andCz.

Figure 5.36 shows little involvement of the thrust vectoring system, and a relative to the other

climbing motions a small magnitude of thrust. Figure 5.37, 5.38, and 5.39 indicate that no single

control surface meets a constraint for this motion. Remarkably there appears to be very little

control authority exercised over the system in comparison to other simulations where a climb is

required. The reason for this is not known.

Figure 5.40 shows the position and body velocities. It can beseen in Figure 5.41 and 5.42

that the aircraft converges on both states. To get a better idea of what the maneuver looks like

the positions were plotted in 3 space in Figure 5.43. Two semitransparent planes represent the
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Figure 5.36: Two Position Reference: Thrust parameters

Left Inboard Leading Edge Flap
Left Inboard Leading Edge Flap

Left Outboard Leading Edge Flap
Right Outboard Leading Edge Flap

D
efl

ec
tio

n
[d

eg
]

Time [s]

D
efl

ec
tio

n
[d

eg
]

Time [s]

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

-0.5

0

0.5

1

1.5

0

0.5

1

Figure 5.37: Two Position Reference: Inboard and outboard leading edge flap deflections
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Figure 5.38: Two Position Reference: All moving wingtip andelevon deflections
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Figure 5.39: Two Position Reference: Spoiler slot and pitchflap deflections
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Figure 5.40: Two Position Reference: Positions and velocities

references for tracking. The pink plane, represents theYI reference, and the blue plane theZI

reference. If there were zero error the flight trajectory would live on the intersection of these two

planes. Figure 5.43 clearly shows overshoot in theYI andZI directions. The craft does converge

on theYI reference but does not converge in theZI direction within the given time. It was at first

suspected that this was due to allocation pseudo control mismatch. Contrary to that suspicion,

Figure 5.44 shows a simulation of the same motion, but assuming perfect control allocation. While

there is much better behavior in theYI direction, the MPC still cannot find a solution that converges

on theZI position within the simulation time. It seems that regardless of the ability of the allocation

algorithm to meet the requested pseudo control inputs, the craft cannot meet the reference. This

can be once again attributed to the aforementioned problem of altitude overshoot recovery due to

constraints in angle of attack. Figure 5.45 shows the Euler angles and angular velocities for the

motion.

Figure 5.46 shows the climb angle and speed during the motion. Interestingly the climb

angle returns to a value close to zero even though the altitude is not quite met. This is likely

because the system is trying to balance a Y position reference and an altitude reference. Figure
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Figure 5.41: Two Position Reference: Altitude tracking
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Figure 5.44: Two Position Reference: 3D positions assumingperfect control allocation
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Figure 5.45: Two Position Reference: Euler angles and angular velocities

5.47 shows the normalized cost for the states. The overshootin the Y position occurs at the peak

less than 1 second, and the Z overshoot occurs at the peak in between 1 and 2 seconds. Otherwise

the cost decreases as time goes on.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter will begin by drawing some major conclusions about the MPC design process

and MPC performance for the ICE aircraft. The final section ofthis thesis will discuss what

improvements can be made on the proposed MPC.

6.1 Observations Based on Climb Angle and Speed

Each simulation has additional plots to show the climb angleand speed of the aircraft.

During simulation these climb angles are limited not by a thrust to weight ratio but by the angle

of attack constraint. The thrust to weight ratio of the craftis 1.34, and without an engine model

that reflects changes in air density the craft does not lose power with altitude. This results in the

craft being able to climb at 90o relative to the inertial frame at any altitude. The limitingfactor for

this climb will be attitude stability when dynamic pressurebecomes negligent. Without dynamic

pressure the aerodynamic control surfaces cannot compensate for aircraft attitude, and everything

must be done by the engine. In reality an engine with rotatingsubsystems such as a turbofan

couldn’t operate past a certain altitude because low air densities wouldn’t allow enough oxygen

into the engine for combustion.

The lowest speed employed by the control for any motion was 440 ft/s. During the simple

tuning case, descent case, and two position reference cases, the speed settles down around this

minimum. During the altitude sweep case speed at every step command speed increases during

climb, and decreases after altitude is attained and before the new step command until instability

occurs. Each step command the apparent speed the system would settle on is slightly higher, this

is likely due to the system requiring more velocity to keep dynamic pressure, due to losses in

air density as altitude increases. This demonstrates the MPC’s ability to properly compensate for
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changes to the dynamics of the system due to altitude.

6.2 MPC Performance Observations Based on the Simulations

It is clear that MPC has promise in the field of aircraft control. The position references

were tracked, and the craft remained stable while the simulated aircraft operated within the given

constraints. The algorithm was able to track step inputs in altitude across the full flight envelope,

showing signs that it would converge given more time before the next reference update. This

demonstrates the ability of a single nonlinear control methodology to be applied to a problem

that would normally take several linear controllers. Unfortunately the constraints onα prevented

the craft from being able to track decreases in altitude in a similar manner as increases, meaning

if there was overshoot in altitude the craft needed much moretime to recover from it. It was

demonstrated by the third simulation that the control was able to handle tracking lateral states

as well as longitudinal ones. This shows that it is capable ofhandling the entire 6 DOF control

problem. In short, a single nonlinear MPC was developed thatwas shown to be able to optimally

operate the simulated craft anywhere in the flight envelope.

Control solutions were found to take on average 1 minute each. That is for every sample

time of 0.25 seconds the amount of real time it took to solve the optimal control problem was 60

seconds. In the final case where suboptimal solutions were accepted and infeasiblity occurred the

solution time was increased to an average of 2.3 minutes. This insinuates that solution times will

have to be at least 240 times faster to be implemented in real time. One way that was attempted

to increase solution speed was to linearize the model at eachsample time and apply a MPC to the

newly linearized model. This was unsuccessful, likely due to poor choice in the length of sample

time, in that the system was evolving too much between each sample time for a linear model to

properly represent the dynamics.

6.3 Future Work

While designing the nonlinear MPC several problems presented themselves. Perhaps the

most difficult of these to deal with is determining adequate constraints to define the system. It was

observed that when the controller meets a constraint that the solutions quickly become poor for
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flight control. Perhaps one of the most restrictive constraint was on the angle of attack. This can

be eased by constraint softening, gathering more aerodynamic data, or by implementing logic to

roll the aircraft and perform a pull-up maneuver whenever large altitude descents are asked for.

Appropriate bounds for the coefficients of force and moment are also difficult to determine. One

solution could be to apply a global solver such as a genetic algorithm to the aerodynamic tables

to attempt to find the maximum and minimum attainable values for each coefficient individually.

One potentially simpler way around this is to make the MPC decide on forces and moment control

variables rather than coefficients of force and moment, which are more easily bounded because of

their more direct physical implications.

One way to eliminate infeasbility due to violation of state constraints is to employ barrier

functions inside the cost rather than hard constraints. Barrier functions are those that cause the cost

to incur heavy penalties as some boundary is approached. This is a reasonable way of handling the

state constraints because in reality an aircraft is not incapable of exceeding any hard state limits that

exist within its flight envelope. This solution would prevent infeasibility and cause the optimizer

to stay away from some boundary as it attempts to minimize thecost function. This does of course

allow the craft to violate some constraints if need be, whichcould be detrimental to pilot, structure,

or aerodynamic force generation.

Control input rate responses were not considered during simulation. It is possible to imple-

ment them as linear constraints within the pseudo control, and control allocation algorithms. The

control input rate likely to have the largest impact on controller performance is associated with the

engine. As it stands engine thrust changes are considered instantaneous which allows the craft to

compensate against undesired motion with instantaneous bursts in engine output in the vectoring

directions. This causes an instantaneous moment which enables to engine to be used for angu-

lar rate control, which is unrealistic. Including rate dynamics in the aerodynamic control surface

would slow down reference convergence, but is not likely to have a large impact on the ability of

the controller to find optimal solutions.

Tuning an MPC is a difficult process. A more in depth study should be conducted on

MPC tuning techniques for a general nonlinear system. Having a better tuning strategy would

likely result in better performance over the entire flight envelope, and may reduce or eliminate the

overshoot that was occurring at high altitudes. Related to tuning through choosing an appropriate
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sample time is implementing a strategy to control nonlinearsystems whose states evolve on dif-

ferent time scales. It was observed through the tuning process, and elaborated on in [15], that the

angular velocities evolve much quicker than the positions.Being able to consider both time scales

would improve attitude stabilization which would in turn improve the ability of the craft to track.

Lastly different methods of solving both the optimization problems should be considered.

SQP is extremely computationally intensive, taking significant computation time. Some of the

aforementioned works by other researchers have reformulated the flight control problem to make it

more suitable for SQP algorithms, saving computation time.Validating these methods for a tailless

fighter aircraft should be explored in the interest of real-time nonlinear MPC application. It was

observed during tuning that on average solving the control allocation problem took three times the

amount of time it took to solve the pseudo control problem. There are many methods that could be

employed as per the Literature Review to shorten the time forcontrol allocation.
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