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MODEL PREDICTIVE CONTROL SYNTHESIS FOR THE INNOVATIVE CONROL
EFFECTOR TAILLESS FIGHTER AIRCRAFT

Christopher Proctor, M.S.

Western Michigan University, 2019

A nonlinear model predictive control law was developed F& Lockheed Martin Innova-
tive Control Effector tailless fighter aircraft to track wagints. In general, aircraft are described
by nonlinear dynamics that are dependent on the regime ditfligjdditionally strict require-
ments on state and actuator constraints are common to edhfiir Tailless aircraft are usually
overdetermined systems, meaning solutions to controllpnadare not unique, and the system is
non-affine. The proposed nonlinear control law considessdltonstraints during run-time, and
solves the nonlinear control problem for a range of pointhwidifferent flight regimes. The
control law was developed using a computer simulation otalikess fighter aircraft, and further
simulation was used to validate the control law when appbetthe aircraft. It was found that the
controller was able to track reference step commands tudétianywhere from sea level to 50,000
ft and remain stable. It is also shown that the single noalimentroller is able to handle lateral
translations at the same time as altitude commands, deratingtits authority over the entire 6
degree of freedom system. The controller is not real timdiegdge but research indicates that it
is possible to apply such a technique in real time. It was lkewled that nonlinear model predictive
control is a viable control synthesis technique for taglgghter aircraft if real-time algorithms can

be developed.
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CHAPTER 1

INTRODUCTION

In this chapter background information for the topic of tifissis is given. The first section
describes the motivation for this research, the second ieespublications on the topic, and the

final section outlines the content of the thesis.

1.1 Motivation

Aircraft are complex nonlinear dynamic systems with strezjuirements on performance
and robustness of controllers used. To describe the dysamiicraft are generally considered
rigid body structures whose equations of motion can be ddrivom Newton’s laws of motion.
Forces and moments experienced by an aircraft in flight lysaame from propulsion sources
such as: turbofans, turboprops ,propellers, turbojets, gtavity, and the aerodynamic forces of
lift and drag. The most complex forces to model are the aerachyc forces. These are usually
highly nonlinear functions that depend on a myriad of patansesuch as aircraft geometry, flight
conditions, and control surface deflections. For flight oairdesign it is common to split aircraft
dynamics into two pieces, longitudinal control, and latdngectional control. This can be done be-
cause the longitudinal states of the craft are not coupléudtive lateral directional states, assuming
no control surface contributions. Traditional aircrakt¢aadvantage of this and are designed such
that the primary control surfaces do not couple the dynantiis is not true for the ICE model
whose control surfaces are nonlinearly coupled. The tweaedynamics can then be linearized
and have controllers designed independently around amtpgipoint.

Aircraft are generally subject to constraints in both stated control inputs. Some com-
mon constraints are due to physical limitations of the $tm&; aerodynamics, and the pilot. There-

fore itis necessary that controllers can account for systamstraints and successfully operate near
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Figure 1.1: A rendition of the ICE tailless fighter aircradiogpted from Dorsett et al. [1]

them to maximize performance. In the case of fighter aircvelftich operate over a wide range
of conditions, in order to allow a pilot to focus on completithe mission, and not on limitations
of the aircraft, flight controllers have to be able to limietfesponse to pilot inputs so that events
such as structural failure, stall, or black out of the piloédo acceleration do not occur.

By adding constraints to states and control inputs the obptoblem becomes nonlinear,
even if the plant itself has been linearized. One synthesisrnique used for closed loop optimal
control of constrained systems is called Model Predictigatédl (MPC). In recent years MPC has
garnered attention by the aeronautical community. Rekeestave explored the validity of MPC
to impact flight control, but MPC has yet to become widely &ap[2] [3] [4]. A major research
topic in aerospace control is reconfigurable control, otr@maws that can adapt to unexpected
control surface failures or aircraft damage. MPC can batiagély applied to reconfigurable con-
trol due to the nature of its formulation [5] [6] [7].

The goal of this research is to lay the foundation to develoga&time MPC algorithm
to track commands in position for Lockheed Martin’s InnovatControl Effector (ICE) tailless

fighter aircraft, while respecting constraints in contrgduts.



1.2 Literature Review: Tailless Atmospheric Flight Veki€ontrol

Tailless aircraft suffer from several issues, with regdadsontrol, that traditional aircraft
do not [8].

1. The difficulties in generating enough yaw control power.

2. Multi-axis instabilities.

w

. Multiple control surfaces can influence any single axis.

N

. Highly nonlinear and coupled surfaces.

The most prominent of these issues is the control allocggroblem, which is the combi-

nation of redundant and nonlinearly coupled control s@$ac

1.2.1 Control Allocation

In general, tailless aircraft have multiple redundant pted control surfaces [8]. Therefore
it is of interest to determine how best to distribute conimpluts across those surfaces to achieve
a commanded state. The problem of control distribution @Akmas control allocation. Choosing
which control surfaces are necessary to achieve a desiseghsyesponse is not always intuitive for
an over actuated system such as the tailless aircraft. Titeotallocation problem can be solved
online via control methods or predetermined by the desigsig intuition and/or numerical tools.
Online control algorithms may find the control allocatioattminimizes some objective function.
A few examples might be prioritizing the input effectorstthave the highest control authority,
determining which combination of inputs results in the teasount of drag, or minimizing control
input power. The following section looks at several typesattrollers used for tailless aircraft,

and their allocation methods, if they employ one.

1.3 Dynamic Inversion

The concept behind dynamic inversion (DI) can be summaasagiven an invertible plant

dynamics, the control commands needed to produce a desspdirse can be calculated by simply

3



inverting the known plant dynamics [9]. By applying DI a nimglar system can be modified such
that linear control methods may be applied [10]. DI is ativacfor flight control because it has

an intuitive architecture, explicit model-following behar, the ability to be used to introduce

fundamental-level simulated failures within the aerodyiamodel for testing the performance
of advanced control elements, and it can be included in thiilgy proofs for many advanced

control schemes [11]. Some disadvantages of DI are thatkslan robustness due to its reliance
on a highly accurate model, it requires the system to betiieion some level, and in its simplest
form requires the system to be stable [8].

Ngo et al. [12] presents an outer loop robust controller,@méhner loop dynamic inver-
sion scheme to control the ICE tailless fighter model, deplich 1.2. The outer loop controller
was designed using synthesis. This controller adds robustness in the presarant dynamic
uncertainties, in this case imperfect inversion and sygiearameter variations within the model.
U is the smallest structured singular value related to uac#its within a model of a system. This
value can be used to determine whether or not the systemewiliin stable in the presence of plant
uncertainties, this is known as tluecondition. i synthesis is a class of techniques used to design
controllers that meet the condition, and thereby guarantee stability under a rangéeoft uncer-
tainties [13] [14]. After control inputs are available fraime robust controller decides on inputs
the DI determines how to achieve those inputs. The DI wagydesito decouple the longitudinal
and lateral axes, and steer the vehicle towards equilibifidisturbed. The DI linearizes the plant
by multiplying the plant by the inverse of its own nonlinearms, thereby modifying the system
dynamics to some desired dynamics. The desired dynamicsualethat the aircraft’'s modified
dynamic response is similar throughout the flight enveldjpe controller itself is a static gain ma-
trix that is updated as the flight conditions change. Thetsphosen as control variables are the
pitch rate augmented to include the angle of attack, yaw aaie roll rate. The controller assumes
full state feedback. Control allocation is handled by adintansformation from the generalized
commands, given by the DI, to actual control surface deflactiThe transformation is done by
applying the generalized commands to a control effectisemeatrix. The value of each of the ef-
fectiveness of the control surfaces is a functioModind altitude, to update these values the control
derivatives for several flight conditions are stored in abase. The controller was tested using
M 0.3 to 0.5 and altitudes ranging 10,000 to 20,000 feet. Theeay showed robustness against

4
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Figure 1.2: The ICE aircraft with control surfaces emphedjzadopted from Matamoros and
Visser [15]

control derivative uncertainties up to 15% and stabilityicive uncertainties up to 50%.

Bo et al.[16] compares two nonlinear dynamic inversion (N&dntrollers designed for a
general tailless unmanned aerial vehicle. One controies@an active disturbance rejection con-
trol (ADRC) technique to handle parameter modeling robesdrissues, and the other does not.
The study divides the system states into a fast response @maia slow response group. Con-
trollers are then designed for each group and cascadedh&rgétputs are provided to the control
algorithm by a trajectory planner, passed to the fast groDR& algorithm which passes gener-
alized control inputs to the fast group NDI algorithm. Thepuis of the fast group NDI are the
input to the slow group controller which is structured thesavay. The outputs of the slow group
controller are passed to a control allocation algorithmaohiransforms the generalized commands
into control surface deflections. The idea behind the ADR@Isgsis technique is to use a trajec-
tory planner, provide a noise tolerant tracking differatdr, employ nonlinear control laws, and
provide total disturbance estimation and rejection [1§}.aBding an unknown “total disturbance”
term modeled as a function of states and known disturbaaoesntroducing additional states, an
estimator can be built that will have inputs consisting @& gontroller command, and the known
plant outputs. The outputs of this observer are the estoatstem states and the previously un-

known total disturbance. Application of this techniqueutesin several tuning parameters that are
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largely independent of the system model, but do rely on teeesy time scales [17]. The controller
was tested with 30% variation in all aerodynamic coeffigetracking references in angle of at-
tack, side slip, and bank angle at seven different pointsiwthe flight envelope. The algorithm
was not reported to have been tested against output disiceba

Buffington [18] applies a multi-branch linear programmirantrol allocation technique in
conjunction with a DI algorithm on the ICE model for attitudentrol. DI inverts the command
variable dynamics and proportional/integral feedbackegates a desired robust loop shape. The
output of the DI is a virtual control that the allocation aliglom turns into real control surface
deflections. The multi-branch linear programming algenitban be conceptualized as follows:
check to ensure a command is feasible, if it is then use anetieer to determine the best way
to distribute that solution among control surfaces whil@rojzing a secondary objective. If the
solution is not feasible then the control input solved folt v as close to the desired reference as
possible and no further control objectives are optimizdte dontrol scheme was able to utilize all
available power without violating actuator limits, and mmizing drag. The flight regimes tested
span combinations d¥1 0.35-0.85 and altitudes of 15000 to 500 ft. The major draktzdchis
approach was not being able to account for nonlinear costndéace based interactions

Matamoros et al. [15] apply an incremental nonlinear dymamiersion (INDI) law cou-
pled with an incremental control allocation (INCA) algbrt to control the attitude of the ICE
model. The incremental approaches separates a contrdepralp into small pieces and solves
for small changes in control input that drive the states. dllgdinearizing the system dynamics
at every step using a first order Taylor series expansion asdnaing a small incremental time
change over which the state derivatives evolve much falsger the states themselves allows for
a virtual control input to be solved for. The virtual inputasly a function of a nonlinear control
surface mapping from moments to control surface deflectondghe states at the beginning of the
solution. Due to the ICE model being overactuated the Jacobi the control surface model is
not square. This prevents the direct inversion of the mdelaiher than inverting the Jacobian, the
INCA algorithm takes a portion of the INDI solution, whichrferred to as the pseudo control
input and determines an increment in the control input vestich that the Jacobian of the control
surface model multiplied by the increment is the pseudorobimiput. By doing so the INCA

completes the inversion solution and outputs a controlasertdeflection increment. The incre-
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mental formulation allows for the nonlinear allocation Iplerm to be solved with linear allocation
algorithms while still taking into account nonlinear irdetions among control surfaces. The op-
timization routine selected for control allocation was tme that found accurate solutions in the
least time, quadratic programming, which also took intaoacd control surface constraints. This
control scheme has been simulated in real-time at an atibdd@0000 ft andV 0.85. The group
was able to track commands in all body rates using irreguidrhped command references.
Bacon and Ostroff [19] use DI to synthesize a reconfiguralgétfcontrol law for Lock-
heed Matrtin’s reconfigurable control for tailless fighteceaft (RESTORE) program, that would
later become the ICE model. A reconfigurable control law isagally composed of three elements.
Failure detection and isolation to determine which surfiaa@o longer useful, on-line parameter
identification to provide a model of the damaged vehicle,@amdine control design which utilizes
the information from the other two elements to reestablmhtrol [19]. The need for a nominal
model is eliminated by an on-line parameter estimation ithapplied to the aircraft itself. This
estimation measures the rates of change of the states oirtihaftadirectly via instrumentation,
and feeds them back into the DI. The DI control output is fdated by evaluating a Taylor series
expansion using the previous states and control inputsdluate the needed partial derivatives.
This yields a required change in surface position from i&vjmus position, that is independent of
a nominal model of the aircraft. The allocation problem isbked via a minimum norm solution,
using a properly chosen weighting matrix. If surfaces agg, lthe weights within the allocation
problem that correspond to those surfaces can be changedaoand those surfaces will not be
considered in the solution. Itis shown the aircraft canki@mmands in body rates, sideslip angle,
angle of attack, and stability axes angular rates for sétygyas of failures including combinations

of both complete losses of control surfaces and controdsad being stuck in fixed positions.

1.4 Other Control Synthesis Techniques

Calise et al. [20] propose a direct adaptive reconfigurabteroller with a baseline dy-
namic inverter for a general tailless aircraft. When an @idegontrol is direct it does not attempt
to identify the plant, instead an explicit model is used dredgenerated error is used in the adaptive

control law [21]. Adaption is done by a feed forward neurdiveek that is trained using sigmoidal



activation functions. The weights of the neural networkgrdated on-line by a law that depends
on the feedback error of the states. The neural network taketsites of the system and outputs
an adaption signal that is subtracted from a filtered acatter and an error feedback to produce
a psuedo input which feeds into the DI. The output of the Dllecated by an unspecified control
selector. A simulation @ 0.6 and altitude 15000 ft with the left aft body flap stuck at@grees
was run. The simulation found that the neural net adapteddh&ol input to compensate and was
able to track longitudinal and lateral references betten thhe same system without adaption.
Eberhardt and Ward [22] apply indirect adaption to the REREQailless aircraft model.
Indirect control estimates the parameters of the unknowntgirom input-output data and, use
these estimates to adjust the parameters of a controllarteat the transfer function of the con-
trolled plant evolves to that of a model [21]. The indirecaption is done by a combination of
model predictive control (MPC) and on-line parameter ideation (PID). The PID estimates data
as the system s in use to update a linear model. This updaiddins used by the MPC to generate
control pseudo commands in the form of forces and momentisfmare given to a redistributed
pseudo-inverse algorithm that allocates the control cont®aThe simulation results were able to
track commands in pitch rate, roll rate, and side-slip aag/len unspecified flight condition with
unspecified solution times. However, it is stated that theugations were not run in real time.
Every work discussed above shares a common element: calit@ation. Every work also
has a different method for solving the control allocatioalgem. This is evidence the allocation
problem and algorithms designed to solve it are a major fouailless fighter control research.
Much of the published work on tailless control is based onyitsesis and solving the problems
associated with DI, due to DI naturally lending itself to #@ution of control for MIMO systems,
and therefore flight vehicles. Less work has been publisimelguthe guise of adaptive control,

and less still as predictive control.

1.5 Literature Review: MPC applied to Flight Vehicles

Simon [23] proposes using linear MPC with feedback linesdin to control the nonlinear
ADMIRE model. ADMIRE is an advanced generic simulation mioofea modern delta-canard
fighter aircraft [24]. The ADMIRE model configuration is shiewm 1.3. The MPC has a quadratic



pais

Figure 1.3: The ADMIRE aircraft with principal control sades emphasized, adopted from
Hagstrom [24]

cost function that penalizes angle of attack and pitch efexence tracking error and use of control
input. The cost function is quadratic, so it can be used inadratic programming solver. The
model of the aircraft is nonlinear in a single state, the maalr state is linearized through feedback
using the control input. This makes the constraints appbethe MPC nonlinear in the control
input, and dependent on the state. Simulation flight comatiwereM 0.6 and altitude 1000 m
with a sample rate of 60 Hz. The MPC regulated angle of attadkpéch rate to some equilibrium
point over the course of a few seconds simulation time. Thktmme solution times are not given.
Slegers et al. [25] present a nonlinear MPC technique foeggrunmanned air vehicles
suited for real-time application. The work presents a metbbfinding a closed form solution
to the nonlinear problem through expanding the output amdrobin a truncated Taylor series.
Through proper expansion the cost function can be repredesta quadratic whose optimization
parameters are the elements of each Taylor series. Themeofehe weighting matrix are given
as the square of the integral of the coefficients from thedrasgries expansion over the length
of the prediction horizon. This method assumes the systesrtfteasame number of outputs as
inputs. The algorithm is derived for a general case and egpb a simulated unmanned glider.
The control inputs are the deflections on aileron, ruddet,edevator, the tracked outputs are the

bank, pitch, and heading angles. The outputs converge atesieed values in seven seconds, but
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the solution times for control inputs are not commented on.

1.6 Chapter Summary

MPC synthesis for tailless aircraft is a relatively unexptbtopic in comparison to DI
based techniques. DI has been successful in implementhdimee solutions to the entire flight
envelope, with added complexity to address robustnessssaud reconfigurable flight. However,
the reviewed literature on DI do not discuss how states,admtuates, or actuator limits can be
taken into consideration while performing DI synthesisisllikely that saturation limits are im-
posed on control inputs that are unknown to the controlkelfitand handled by the allocation
algorithms.

MPC has been explored in many of the same ways DI has but ftititnaal aircraft, which
in general do not require advanced allocation algorithnestdunot having redundant and coupled
control surfaces. MPC in flight vehicles has been successfuhcking both longitudinal models,
and full 6 DOF models of traditional aircraft, while resgagt state, and actuator constraints.
Solution times in much of the literature are not mentionetplying that they may not be real-

time.

1.7 Thesis Overview

Chapter 2 of this work will attempt to lay the foundation foganeral understanding of
aircraft dynamics. It will begin with discussing axes folled by kinematic variables, aerodynamic
coefficients, body forces and moments, and ending with IGEifip parameters. Chapter 3 will
lay the foundation for a general MPC implementation. The &esction will discuss linear MPC
and the receding horizon idea, followed by a brief discussibnonlinear MPC. Chapter 4 will
deal with the MPC simulation specifics such as cost functioosstraints, and tuning parameters.
This will be supplemented with other discussion about tierimal model, and control allocation.
The final section of Chapter 4 will discuss briefly how infédl#tly and suboptimal solutions are
used during simulation. Chapter 5 will discuss the resdltsmulation, including flight profiles,
solution times, and control input values. There will be &bmention of how the MPC was tuned.

Chapter 6 is the final chapter and will begin by making coriohusbased on the simulation results

10



and research tribulations. This will be followed with soreeammendations for future work.
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CHAPTER 2

THE MODEL

This chapter begins by setting forth the general equatiémsadion for a fixed wing air-

craft. First relevant axes definitions are given for modglm aircraft. The second section dis-

cusses the kinematic state variables and their propagagjoations. The third and forth sections

discuss aerodynamic coefficient build ups and force and moeguations. The final section de-

scribes geometric properties and control inputs specificedCE model.

2.1 The General Fixed Wing Flight Vehicle Model
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Figure 2.1: The body frame, adopted from Kale and Chipperftl
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2.1.1 Axes Definitions

The study of aircraft dynamics requires applying multipbaties of reference to an aircratft.
The most relevant frames are the body frame, inertial fraand,stability frame. The body frame
is defined as positive out of the nose of the aircrégt, positive out of the right wing looking from
the back of the craftyg, and positive out of the bottom of the aircrafig. Additional notation
associated with the body frame are the body velocitjes w, which align with theXg, Yg,andZg
body axes respectively. These three axes are known as thpitch, and yaw axes respectively.
The origin of the body frame is placed at the center of maskettaft, seenin 2.1.

For many atmospheric flight dynamics applications the Eaatime is assumed to be iner-
tial. The origin of the inertial frame can be placed wherasaronvenient as long as it is aligned
with the Earth frame and fixed. The standard Earth frame has tiat are considered positive
north, positive east, and positive towards the center oé#rth.

To convert from the body and inertial frames a rotation matrjg, that transforms through

the Euler angles: bank angl®, pitch angle g, and heading angl&¥, is used.

CoCyw SSCyp —CoSy CoSeCy +SpSy
Lie = |CoSy S0SeSw+CoCy CoSpSy — SoCuy (2.1)
-5 SCo CoCo
For brevityC, S, andT are used to represent the trigonometric functions sin, ad tan,

respectively, when used in rotation matrices.

2.1.2 Kinematic State Variables and Propagation Equations

There are twelve kinematic states simulated in order to ¢etely represent the motion
of an aircraft. States that will be used hereafter are ligigdble 2.1. Therefore there are twelve
nonlinear differential equations that must be solved siamdously to model an aircraft during
flight in the body frame.

The first group of equations, 2.2, are the equations tharitbesihe angular accelerations,
p, g,f in the roll, pitch, and yaw directions respectively. In teguationl with subscript denotes

the moment of inertia about a particular axis, &nill, N are the rolling moment, pitching moment,
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Table 2.1: 6-DOF aircraft model state variables.

| Variable | State |

p Body axis roll rate
q Body axis pitch rate
r Body axis yaw rate
u Body axisX velocity
v Body axisY velocity
w Body axisZ velocity
) Bank angle
0 Pitch angle
W Heading angle
X| Inertial X position
Vi Inertial Y position
Z Inertial Z position
and yawing moment respectively.
, 1. .
p Ixx Ixy Ixz Ixx lyy Ixz| | P
al == [lyx lyy lyz lyx lyy lyz| |d
r l2x lzy |2z I-zx I-zy I.zz r
-1
0 -r ¢ Ixx lyy Ixz| | P Ixx lyy Ixz L

+1r 0 —p| [lyx lyy hz| {a] ¢+ |lyx lyy lyz M| (2.2)

-9 p O lzx lzy lzz| | T l2x lzy |2z N

The second grouping, 2.3 describes the linear accelesatiathe body frame along the,

Y andZ body axes.

U= Rv— Qw—gsin(8) + Fxg/m (2.3a)
V= Pw— Ru+gcog 8) sin(®) + Fyg/m (2.3b)
W = Qu— Pv+gcog ) cog ) + Fzg/m (2.3c)
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The Euler anglesp, 8 andW¥ propagation through time is shown next:

® = P+ Qsin(®)tan(8) + Rcog ®) tan(0) (2.4a)
6 = Qcog ®) — Rsin(d) (2.4b)
W = Qsin(®) sed 8) + Rcog ®) sed 0) (2.4¢)

The final grouping describes how the inertial posit@ry, z propagates in time. To see a

full derivation refer to [26]

X CoCy SoSHCy —CoSy CoSHCy+SoSy| | U
Yi| = [CoSy SoSHSw+CoCy CoSHSy—SCy| |V (2.5)
Z - SoCy CoCo w

2.1.3 Aerodynamic Coefficient Buildup

Aerodynamic coefficients are non-dimensional represiemsf the control surfaces and
aircraft geometry that are used to build a linear estimatefforces that act upon an aircraft;
there are two types of aerodynamic coefficients used in test@ates: stability derivatives, and
control derivatives. Control derivatives measure how mcighnge in force or moment occurs
when a control surface is deflected. Stability derivativesasure how much change in force or
moments occur when there is a change in flight parametersasiangle of attack. In practice
these coefficients are linear representations of how eatbrfan question effects each force and
moment individually. The significance of non-dimensionlg values is to allow for the data
received from the testing of small models in wind tunnelsdé®baled to the full size aircraft of the
same geometry. For example, the data for the ICE model wéectad using a 1/18th scale model
at the Subsonic Aerodynamic Research Laboratory at Wrighbtatories wind tunnel [27].

In order to elaborate on the previous concept and becomdidamith the notation con-

sider this small example.
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oa M

This is the general notation used hereon. It is read: theaparivative of the coefficient of
pitching momentCy, with respect to angle of attack, The forces and moments are then built in
the following manner.

CMq @ +Cpzede = Cy

This buildup method is at its essence a slope multiplied byndependent variable. A
compact way to represent these equations in general is giveguation 2.6 whererepresents a
general index standing in for one of the six forces and moseantin is an index that should be
substituted for every control surface and every flight patamthat has an impact on that particular

derivative.
G =Y Cyd (2.6)
n

2.1.4 Calculation of Body Forces and Moments

The group of variables representing the linear buildup afybforces and moments are
shown in equations 2.7 and 2.8 using the general summatoveafhere is one equation for each
kinetic value totaling six. These values are the body fqrégs, Fy g, andFzg aligned with the
Xg, Yg, andZg and the momentky, My, andNy along the roll, pitch, and yaw axes respectively.
These equations represent the six non-dimensional kimatiees that are then dimensionalized
to calculate forces and moments. The prefix C is used to shathiese are non dimensional

coefficients.

Cex = ) Cxg,n
Cey =) Grgdn (2.7)
Cez = Czg,n
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Table 2.2: Table containing the dimensionalizing factorskinetic values.

| Kinetic value| Dimensionalizing factot

FxB OoSefCxB
Fvs OoSefCrB
FzB OoSefCzB
LL 0o SefbCn
Lm OooSe fCOUN
Ln Ooo SeOCGuN

Cin =) Cin,n
n

Cun =) Cuvin,n (2.8)
n

Cun =D Crunyn
n

The dimensionalizing factors are listed in Table 2.2. Thas#ors are a direct result of
non-dimensionalizing the forces and moments using the BBgblam Pi theory [28]. Notice that
the factors for the body forces are in terms of only refereare&,S¢, dynamic pressurey, and
their respective coefficients while the factors for moméatge an additional length element, either
the spanb, or the chord lengtk.

The effects of propulsion cannot be ignored. The previobiketdoes not include additions
for thrust in any direction, or the moment caused by the thatus to being offset from the center
of mass of the vehicle. Thrust can be included by summingtthest in each direction with their

respective directions and summing the moment caused bythst to the body moments.

2.2 The ICE Model

The aircraft used in this research is the ICE model a highepwailless fighter concept
introduced in January of 2017 for the purpose of innovatighficontrol research. This nonlinear
flight model allows for 13 control inputs, including vectdrehrust. Table 2.3 below is a list of
constant geometric and mass properties of the craft usesinhardation.

The mass properties of the ICE model are presented in tahle 2.
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Table 2.3: Relevant geometrical parameters for the ICE inode

| Geometrical Attribute | Value |
Reference Wing Area, 806.6 ff
Reference Span,& 37.5ft

Mean Aerodynamic Chord (MAC)| 345in
Fuselage Station Leading Edge MACL.60.84 in

Table 2.4: Relevant mass parameters for the ICE model

| Mass and C.G. Locations Moment of Inertia Values

Weight 37084 Ib lyx 42576 slug-ft
Xog 0.36 ly | 81903 slug-R
Yeg 0 I, | 118379 slug-ft
Zeg 88.97 lyz -525 slug-ft

2.2.1 Control Inputs

The ICE model has thirteen control inputs, Table 2.5 listheand their respective deflec-

tion limits.
Table 2.5: Control inputs to the ICE model
Control Input Upper and Lower Limit [Degrees]

Inboard leading edge flaps left and right 40, -0.001
Outboard leading edge flaps left and right 40, -40

All moving wingtip left and right 60, -0.001
Elevons left and right 30, -30

Spoiler slot deflector left and right 60, -0.001
Pitch flap left and right (Deflects together) 30, -30
Pitch thrust vector deflection 15, -15
Yaw thrust vector deflection 15, -15

The six degree of freedom simulation that solves the statateans for the ICE model as-
sumes the mass of the aircraft will not change, meaning rics is calculated, and the moment
18



of inertia values remain constant. This is important to pasethe equations described by equation
2.2 are generalized to describe a time varying inertia maffhanges in mass are not considered in
the ICE simulation, to reflect this the matrix that involvke time rate of change of inertia values

will become a matrix of zeros during simulation.

2.2.2 The Aerodynamic Tables

The aerodynamic coefficients, presented previously, cawra & group of 108 lookup
tables. The six force and moment coefficients are comprisétecsum of up to 19 aerodynamic
coefficients. These coefficients are nonlinear functionseveral inputs and states. Each control
input or state is used to determine a specific flight coefftareninterpolation. An example such as
figure 2.2 takes iM, angle of attackg, and right spoiler slot deflector, left spoiler slot deflecto
and pitch flap deflection and calculates to contribution btlese t0,Cxg. These tables were
empirically gathered as stated before are non-smooth hwhikt later be discussed in relation to
controller performance. An example table, produced byalineterpolation to give a a 3-D slice

of the 5-D coefficient table discussed. is shown in fiaure 2.2.

0.03
0.02+

0.01+

C:Aépf

-0.01 -
0

20 -50
40 50 0
RSSD [deg] 60 100
Angle of Attack [deg]

Figure 2.2: An example of one of the tables used to determenedgnamic force coefficients

This table is a 3-D slice of the 5-D coefficient table discdssieove.
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2.2.3 Aerodynamic Data and Limits

The range of the angle of attack used during Lockheed Manind tunnel testing is -4
to 90°. The angle of attacky, is defined as the angle between incoming air and the chagdfin
the wing about the pitch axis. This is stated to clarify thet inodel can simulate flight at angles
greater than 90relative to the Earth frame. The sideslip angewas limited to+-30°. Similarly
this angle is measured relative to incoming wind from théawis about the yaw axis [27]. It is
important to note when discussing controller constrainé hot all 108 tables have data for the
full range ofa and3, meaning that some control surfaces are not accuratelgsepted for the

full range of test data.

2.3 Chapter Summary

There are 12 nonlinear differential equations of motiondoraircraft. These capture the
angular accelerations, Euler angle velocities, inerddeities, and linear body accelerations. The
acceleration equations for the ICE model consider the baniyents and forces that are built from
the 108 aerodynamic coefficients and propulsion forces.sé&la@rodynamic coefficients account
for aircraft geometry, control surface deflections, as wagNarious flight parameters. These equa-
tions and coefficients will be used in the solution to the myali control problem formulated in

Chapter 3, and applied in Chapter 5.

20



CHAPTER 3

MODEL PREDICTIVE CONTROL REVIEW

Model Predictive Control (MPC) is a form of optimal contrblat attempts to anticipate
how a model will react to certain control inputs and drivesitiodel based on these predictions to
minimize a cost function. The solution to such a problem ede & relatively long time depend-
ing on the optimization algorithm and the system dynamioge B this, in its infancy MPC was
generally used used for processes that were slow, as tolgveontroller time to find solutions.
Other major drawbacks include concerns about the fedgilmfionline optimization, model un-
certainty limitations, stability, cost function term pdiyaveight updating for different operating
points. Despite these drawbacks MPC is still alluring in sleeospace world, due to its ability
to handle multi-variable control, actively consider attwdimitations, and allow for operation at
performance constraints [29].

This section aims to convey a general mathematical undawefisig of MPC beginning with
the linear MPC and following with a brief discussion of nodar MPC. MPC is most commonly
formulated in discrete time, so the discussion will be ledito discrete time formulations. All
MPC formulations result in nonlinear controllers if inetjtyaconstraints are enforced on the sys-
tem. The term linear MPC refers to the plant model being line&ile nonlinear MPC refers to

the plant model being nonlinear.

3.1 Linear MPC
Assume the system dynamics can be described by a discret@tiference Equation 3.1.

Where the subscriftis a time index for sample timg,.

X1 = A%+ BUy (3.1)
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Figure 3.1: A convex function

Now consider a discrete time-constrained optimal controbfem, with state, inputUy,
two weighting matrice® andSand a horizorH,.

Hp—1
min - (x,) " Q(xu,) + % (%4} Qe Uiy jSUce ) (3.2)
j=

Uks 15+ UkrHp-1

subject to

Xictj+1 = At j + BUiy
Xeyj € X
Uk+j S %

prer

Where the sets?” and % are convex, this can be viewed as a general convex optimizat
convex function is one in which a function curve connecting points lies below a line connecting
the two points, this is shown in Figure 3.1, a more rigorouth@aatical description can be found
in [30]. Convex functions have only a single minimum, andsthive local minimum is a global
minimum. This makes convexity a very attractive propertyflofctions when applying typical

gradient descent optimization methods, because it guegamgobally optimal solutions.
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Rk)——>  MPC » _6DOF

Simulation

Xt

Figure 3.2: A block diagram of a high level closed loop MPC lempentation

The selection of the bounding function and constrainiss discussed at length in Mayne

et. al. [31].

Solving this optimal control problem once results in operpl@ontrol. To close the loop,

only the first control in the optimal control sequence is aggpfromk to k+ 1. At the next step,

k+ 1, we measure the current state and redo the optimizatidntivgt new current state ag.

This is known as Receding Horizon Control because the coptablem is solved over a finite

future horizon that moves into the future BRsncrements changes. The closed loop system can be

represented by the block diagram shown in Figure 3.2.

Using the predicted outputs of the systanthe cost function can be reformulated to track

a referencer;(k+ j), without a terminal penalty, whetg,, is the number of partitions [32].

Hp

min %(9k+j )T QPktj — Mkt j)

Uity UkirHp-1 =

3.2 Nonlinear MPC

Consider a nonlinear discrete time dynamic system

Xk+l =f (Xk7 Uk)

The MPC formulation takes the form
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Figure 3.3: The receding horizon idea visualized

Np—1
min () Q(x,) + Z) Pt Ukt ) (3.5)
J:

Ui, UkeNp-1

subject to

Xt j+1 = (Xt 5 Uit )
X+ j e (3.6)
Uk+ cew

XNpe r

The constraint set;, is generally difficult to determine for flight vehicles due \aria-
tions in dynamics. Techniques to do so, while guaranteeiakilgy, are outside the scope of
this research. The nonlinear system results in a noncomaiem. Some popular approaches
to solving this problem are to use Sequential quadraticnaragiing (SQP), Euler-Lagrange and
Hamilton-Jacobi-Bellman algorithms [33].

SQP is a method that models nonlinear programming (NLP) atem@gpproximate solu-
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tion by a quadratic programming subproblem. The approachablution of the subproblem is

used to construct a better approximation. By iteration aieege of approximations are created
that are hoped to converge to a solution [34]. The Euler-hlage and Hamiltion-Jacobi-Bellman
techniques circumvent solving the nonconvex optimizaposblem by taking advantage of the
nonlinear MPC problems formulation as an optimal controbpem. The Euler-Lagrange method
numerically solves the two point boundary value problen énses from Pontryagin’s Maximum

Principle and the Hamilton-Jacobi-Bellman approach ttesiumerically solve the Hamilton-

Jacobi-Bellman partial differential equation [23]. SQPhs method by which the proposed MPC
will solve its optimization problems. SQP was chosen as at&ol method for three reasons:
its ability to iterate through an infeasible solution spdseing able to be modified such that all
linear constraints are always satisfied and, the existehoeny algorithms that solve quadratic

programming problems [34].

3.3 Chapter Summary

MPC is a form of optimal control that predicts how a model wdkpond to inputs and
drives the model based on these predictions to minimize afenstion. The minimization can
be subject to both linear and nonlinear inequality and etyuabdnstraints that reflect the operating
limits of the system. A receding horizon is used to close tHfeéQvoop, so that it responds to
feedback from the plant, and can minimize an error. Thers@veral optimization methods used

to solve nonlinear optimal control problems the one emplapehis work is SQP.
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CHAPTER 4

SIMULATION SETUP

4.1 Trimming the Aircraft

Trimming an aircraft is finding an equilibrium point for a g flight condition. Generally
this means that the aircraft control inputs are set in suclaatat the craft experiences steady
level flight. To find the combination of control inputs to aefe such flight an optimization routine

is used to satisfy Equation 4.1 whea¥eas a vector of control surface deflections, thrust vectqgring

and thrust.
U
min'y 4 (4.1)
5 i;
subject to
del

and Equations 4.2-4.7.

The constraints, imposed to achieve level flight in termdatiesvariables are as follows:

1. The difference between the actual velocity and the désieéocity,Vy, must be zero.

WP+ +w? V2 =0 (4.2)

2. The flight path angley, must be zero.

y= 6 —arctarfw/u) =0 (4.3)

3. The linear accelerations must be zero.
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u=rv—qw—gsin(0)+Fxg/m=0 (4.4)
V= pw—ru+gcog 8)sin(®) +Fpg/m=0 (4.5)
W = qu— pv+gcog 8)cog®P) +Fzg/m=0 (4.6)

4. The angular accelerations must be zero.

p e Iy Ixz (Mo —r q | [ Iy Ixe| | P oy Ixe Tl o

al=—{lyx ly lyz r 0 —p| [y by Iy| [a] o+ |l lyy yz| [M]=|0

i lzx lzy 2z —q P 0| |l lzy Iz |r lzx lzy lzz|  |N| |0
(4.7

4.2 MPC Properties

Closed loop simulation of the ICE model and MPC was done usSiA§LAB. The refer-
ence,R(k), followed for all simulations is a series of discrete stateters with commanded step

changes. Where the state vecis defined by Equation 4.8.

X=xyzuvwdoWpqr' (4.8)

The input to fmincon is a column vector denofgd which will be referred to as the long
vector. The elements of the long vector are the initial stattor repeate#i, times concatenated
with the initial input vector repeated, times. After the first control input is found, the next
iteration is warm started using the previous solution.Zje= xi, ux. Warm starting the algorithm
near the last solution is done in hopes that the next solwtilmot be far from the last, and
computation time will be reduced.

The maximum magnitude of the bounds of each state were usestialize the inputs to
fmincon, a constrained gradient descent based optimiz&tiol developed by MATLAB. When
normalized the convergence rate of gradient descent isrli®itinded because the ratio of largest
and smallest eigenvalues of the Hessian is small, aidingdom in converging more quickly and
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more accurately [35].

4.2.1 The Internal Model

The general formulation of a continuous time nonlineareaysin Equation 4.9 can de-
scribe the ICE aircraft, and will be used as the internal rhtte MPC uses for prediction. In
this formulation let the input vectdd be comprised of the six force and moment coefficients.

Representing the system as Equation 4.9

X(t) = f(X(t),U(t)) (4.9)

Where this is a vector of the functions described in Equatidr2 - 2.5. During the search for
a solution to this problem the optimizer only predicts whdt hnappen when certain force and
moment coefficients are applied, to Equations 2.2 and 2.3dher does not consider how they
will be built from the aerodynamic data tables.

The internal model the MPC evaluates is a 6DOF continuous tigpresentation of the
aircraft without any aerodynamic data. In order to obtagtrhte approximations of the continuous
time state equations discussed in Chapter 2, two numerietdads are used: Runge-Kutta 45 and
collocation [36]. The first partitiork+ 1, is evaluated using the variable step solver Runge-Kutta
45. This was chosen to increase accuracy of the first part#iep to more accurately predict
the control input that will be applied. The remaining patis are predicted using collocation,
sacrificing accuracy for speed because the remaining ipagitire only used to anticipate the
aircrafts response. The difference between the internaehand the simulation model are the
rate at which they are sampled. The internal model is sangtledme ratds while the simulation
model is solved by MATLABS ode45 function, which is a variatep solver that provides more

accurate outputs, across much smaller time steps.

4.2.2 Pseudo Inputs

The objective of the MPC is to track the reference vector,fiynaizing across a prediction

horizon, Hp, and applying optimal control until a control horizoH¢, after which the control
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input is held constant. The pseudo inputs used to track feesrece consist of aerodynamic force
and moment coefficients, thrust, pitch thrust vectoringl gaw thrust vectoring. The variable
contains the three thrust inputs and is contained withifThe cost,J;, was selected to minimize
state error between the reference and actual states, wimimizing the thrust inputs. Assuming

full state information is available,

I =(Xrp— R(k+Hp))TQ(Xnp — R(k+Hp)
Hp—1

He—1 (4.10)
+ 3 (0% Rk D)7 QX — R(k++1))] + 2, T
J; was selected such that the cost is convex and quadratic te ihakitable to a minimization
problem. Both the states and references are normalizedenyrttaximum values as before. By
doing so the states whose maximum magnitudes are ordees taan those of the smallest states
will not dominate the direction the cost function traveléowing for more intuitive choices of the

weighting matrix,Q which is a 12 x 12 diagonal matrix whose diagonal elements are

Q11=0 Q22="5 Q33=150 Qs4=0
Qss=1 Qee=1 Qr7=1 Qss=1
Qoo=1 Quo10=1 Qu11=1 Qu212=1

and whose off-diagonal elements are zero. Elemen@wére chosen based on an iterative tuning
process. Notice that the 3,3 element of Q is heavily perdi#@s is because the inputs to the
cost function are scaled by the maximum magnitudes of thaimtds. The bound on altitude
is much larger than the bounds on the other states of thensyskberefore to penalize altitude
appropriately, the weight on that state was increased. iSHiy no means the only reasonable
choice ofQ, it can be modified and still be effective depending on whatdksigner requires.
Using J; the pseudo inputs are found by solving the following probleitih nonlinear equality

constraints and nonlinear inequality constraints,
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min  J; (4.11)

Uk7" '7Uk+Hcfl

subject to

Xitj+1—F (X j,Ukej) =0 j=0,...,Hp—1
Xerj € X
Uyl € % | =0, He—1
UktHp—1 =+ = UkyH, = UktHe—1

whereZ and% are closed and convel, is held constant past. and

Axrit1 45
il

—Oktj+1 -3
The constraints enforced in this optimization are:
1. The original nonlinear dynamics must be satisfied at thleaation points.
2. o cannot exceed 45

3. a cannot be less than®5

The additional constraints am were selected so that the craft did not operate outside thedso
of the aerodynamic table data, increasing the chance thatdhtrol allocation solution will be
feasible.

The solver proceeds in this manner until the predictedstatdch the internal model states.
When this occurs the solver outputs its final estimate of whagerodynamic force and moment

coefficients to drive the aircraft to the reference state.

4.2.3 Control Allocation

In order to determine the control deflections necessaryddume the obtained force and

moment coefficients, a second optimization is performest #fie first.. It takes in vect@, which
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is comprised of a single set of control deflections reprasgrihe control deflections to produce
the first partition’s pseudo input€ is normalized similar t&@,_ for the same reasons. This routine
iterates over the aerodynamic derivative tables atterggbinfind aC, that minimizes the cost
function J,. Within J,, Cgm is a vector of force and moment coefficients which resultsftbe
optimizers choices df; through the aerodynamic coefficient tables, the ma#ontains weights,

anddy is the current control surface deflections

J2 = (Cem —Ui) TA(Cem — Ui) + (8 — Oc-1)° (4.12)

Because the craft is a tailless fighter, and has redundatrotsarfaces, there are multiple
solutions to every set of coefficients. To try and reduce tiralver of acceptable solutions the cost
function penalizes the difference between the previousrcbmput and the new one. As before
the cost function is quadratic as to make it convex. The weighmatrixA is a 6x6 identity matrix,
so that no particular coefficient is favored.

Unlike the first optimization there are no nonlinear consts but linear bounds on the

limits of the control surfaces. The problem that must beewig then

minJ 4.13
ling, (4.13)

subject to

& e (4.14)

whereA is closed and convex. The entire process is summarized urd-#y1

In the problem formulation there are no constraints to antéar control rates, or engine
dynamics. An engine model was not provided by Lockheed Mdati this aircraft, and one was
not assumed. Transfer functions for the control surfaces ywevided but for this work were not

implemented.

4.3 Infeasibility and Suboptimal Solutions

It is not always possible to find an optimal control probleriuson in a reasonable amount

of time, or at all. For the ICE model if first order optimalitymearly O and constraints are not being
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violated and the cost function is no longer decreasing, ainiial solver guess for the states can
be implemented to try and change the optimizers, starting pad trajectory through the solution
space to come to an optimal solution. If after a certain nunatb@ttempts an optimal solution

still isn’t found the suboptimal solution is accepted. Tpiscess is shown by the block diagram
Figure 4.2. Generally speaking, suboptimal and infeasibletions only occur when the system is
forced to operate outside the nonlinear constraints. Whbogimal solutions are employed the
subsequent solutions can return to being optimal but, whigsability occurs the controller has
significant difficulty returning to an acceptable solutioptimal or otherwise.

The reason for infeasible solutions is due in part to poodgstrained pseudo control
inputs, and in other part by the shape of the aerodynamivatem tables. Without knowing
what the maximum and minimum magnitudes for pseudo inpetssnich would require a global
optimization over the aerodynamic tables for each pseuglatjithe first optimization routine may
ask for a solution that is not physically attainable. Thepghaf the aerodynamic tables, and
the nonlinear dependence on each other makes it very diffmuthe optimizer to find suitable
solutions. In many cases there are local minima on the téhdesselves, and sharp discontinuities
that might cause the solver to chatter across them. Seveatdgies were considered and explored

to address these issues, such as the use of radial basis metwarks to smoothly approximate
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the tables, or locally linearizing the tables at each partitising a least squares approximation and

bounding how far the solver could move on the linear planethidescheme was successful.

4.4 Chapter Summary

The aircraft is trimmed, to find an equilibrium point at whitthbegin simulation. The
conditions for this trim is are an altitude of 3000 ft with ai@rd velocity of 900 ft/s. The MPC
parameters that are used in this work are set forth in sedtinThe continuous time representa-
tions of the aircraft equations of motion are used to repretbe internal model of the system and
descritized using RK45 and collocation so that the disdrete MPC formulations can be applied.
The MPC will only choose pseudo inputs to drive the systemlendnother optimization routine
will choose control surface deflections to realize thoseigeenputs. Infeasibility is avoided and

suboptimal solutions are used when necessary as dictatibe lbygic described in Figure 4.2.
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CHAPTER 5

SIMULATION RESULTS

This chapter discusses how the MPC was tuned and the resurtigtiree simulation cases
are presented. The reference in the first scenario asksafieéacdrop in altitude by 1000 ft, climb
to 20,000 ft then take step commands to increase altitud®®0Q ft every 20 seconds until the
ceiling of 50,000 ft is reached, referred to as the altitudeep. The second simulation requires the
aircraft to decrease altitude by 1000 ft. Lastly the aircisafisked to track a 300 foot changeyin
position, and a 1000 ft increase in altitude simultaneousch section will begin by displaying
the pseudo control inputs, followed by the allocation ressudtate tracking, climb angle, speed,

and cost.

5.1 Initial Control Tuning

To tune MPC the sample time, prediction horizon, controlzwr, and the weights of the
optimization routine must all be chosen to obtain a desiedthlsior. The controller was tuned by
choosing a sample time based on knowledge of the system. arhpls time was chosen to be
small enough so that the faster evolving states of the systard still be regulated, but not so
small that the slower evolving states do not change. Theigifed horizon was then fixed at 5
partitions, making the quantitfsHp 1.25 seconds. This is how far ahead in time the controller
is looking when choosing control inputs, 1.25 seconds wdschosen by any specific criteria.
The weights were initialized such that all weights were égaad simulations were run until
a subjectively acceptable response was found. The cordraddn was tuned by starting with a
number of partitions equal to that of the prediction horizbat isH, = Hc and iteratively reducing
it by 1 after simulating the system, until the response wésfaatory. During tuning the aircraft

was asked to climb 3000 ft, from 3000 ft to 6000 ft, while miiging every state except forward
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Figure 5.1: Tuning: Commanded force and moment coefficieors the pseudo control optimiza-
tion
velocity. The results are shown in Figures 5.1 - 5.11.

Figure 5.1 shows the force and moment coefficients commalgléae psuedo controller.
The moments are small for a climb, while t6g gains magnitude to indicate a climb. Figure 5.2
shows the thrust parameters, as expected only pitch thea&inng is significant. Figure 5.3 shows
significant deflection in the inboard and outboard leadingeefthps, indicating their importance
in pitch control. Figure 5.4 shows the all moving wingtip agldvon deflections. Surprisingly
there is significant use of the wingtips. This can be attatub trying to stabilize yaw, by using
differential drag. Figure 5.5 shows the spoiler slot andtpftap deflections. The pitch flap is not
as heavily deflected as one might expect, likely due to theyhese of other control surfaces.

Figures 5.6 - 5.9 show the states for this simulation. FiguBancludes both position and
body velocity states, while Figures 5.7 and 5.8 take a clogk &t the two states with references.
There is some overshoot in the altitude track with no signooiverging, but the Y position seems
to meet its reference, with small variations. Figure 5.9&hthe euler angles during this motion.
As expected the pitch increases, but unexpectedly the baglke apikes near the beginning. As
mentioned before the all moving wingtips are likely actahin response to this.
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Figure 5.10: Tuning: Climb angle and velocity magnitude

Figure 5.10 shows the climb angle and speed for this mottaeathes a maximum of 44
before coming back down over the duration of the motion. Tgeed increases near the beginning
of the motion and drops off afterward once the craft has réactew altitude.

Figure 5.11 shows a normalized cost function for the staieking error.
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5.2 The Altitude Sweep

In this case the aircraft starts out at 3000 ft, is asked toedese altitude to 2000 ft then
climb to 20,000 ft. After which every 20 seconds step comnsaare given to climb by 10,000 ft
until a final altitude of 50,000 ft is reached. The resultsdisplayed in Figures 5.12 - 5.23.

The coefficient plots for this motion are shown in Figure 5.They oscillate with high
frequencies during any part of the motion that is not a lewghtl Figure 5.13 shows the thrust
parameters for this motion. The magnitude of thrust in@eakiring the climb phases as well as
the thrust vectoring magnitudes. During some motions, tloesdt attempts to create moment to
stabilize itself using yaw vectoring. Figure 5.14 showsubkage of inboard and outboard leading
edge flaps, they behave as expected based on the tuning dggee %15 shows the all moving
wingtip and elevon deflections. The elevon response seelagetdkat the 20 second mark, but as
the craft allocates stability to regulate the angular Vi, the elevons are prioritized for pitch
control. Figure 5.16 looks at the spoiler slot deflector aitchfdlap responses. The pitch flap seems
to be underutilized for these motions, while the spoilet dkflectors are given large commands.

Figures 5.17 - 5.20 show the state evolution for this motkigure 5.17 shows the overall
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position of the system plotted against its reference owee aind the body velocities of the system.
Unexpectedly there are largeandw velocities during each climb. The controller tracks in the
Y, andZ, directions very well until it gets near the final altitude. eTproblem was constrained
such that a 52,000 ft altitude was the maximum altitude alie. Operating near that constraint
and experiencing overshoot caused the solver to use sutal@dlutions that violated the altitude
constraint, which eventually led to infeasible solutios.close up of just the altitude track is
shown in Figure 5.18 and the Y track is shown in Figure 5.1§ufé 5.20 shows the Euler angles
and angular velocities, again there are large unexpecteditodes in they andr states.

Upon closer inspection we can see that the overshoot idfisigmi at higher altitudes. The
system was limited to an angle of attack of 45 degrees, whicfiected by the slope of the climb
decreasing as altitude increases. Figure 5.22 shows the @frettack plotted against time. While
a remains close to or at the maximum for most climb sectiongiradensity decreases, less lift
can be produced at that, and without thrust compensation the craft is unable to kiseqate of
climb. A changing dynamic pressure, resulting in less ardguthority, and an MPC that was

tuned at another operation point are likely the causes efaf¢rshoot. Additionally, due to loss
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Figure 5.17: Altitude Sweep: Positions and velocities

in control power because air density is changing and dyngneissure is not being compensated
for by increasing velocity, the system response to contrpuis is lessened, and the system is
responding slower. It was found that if states evolve towidhe optimization solver will lose
its ability to predict across small sample times, indicgtimeed for an adjustment to sample time
to account for control power loss due to dynamic pressurer Me end of the simulation the only
solutions that can be found are suboptimal or infeasiblab®e of exceeding the constraint. This
causes the large violations in the angle of attack consgrain

Figure 5.21 shows the climb angle and speed. The climb arsgidlaies near 0, and be-
haves as expected otherwise. The speed track oscillatethegaeaks likely in response to thrust
input. At each time step the speed seems to approach soneethialuvould be steady state if the
system were given enough time. This is speculated on wittrdsgo dynamic pressure in Chapter
6.

Figure 5.22 shows the angle of attack during the simulatidre angle of attack changes
rapidly during ascent, and becomes more regular while wéen step inputs.

Figure 5.23 shows the cost for the states during the sinomlalihere are unexpected spikes
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in the cost function during the first ascension but the cossdiecrease over time.
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5.3 Descent

In the second simulation the aircraft starts at an altitud#000 ft and is asked to drop to
2000 ft. The results from this simulation are shown in Figuse24 - 5.34. Because of the lower
limit on the angle of attack, and the need to minimize the Eagles, the aircrafts rate of descent
is very small. As previously discussed the lower limit on #mglle of attack is due to the limit on
the aerodynamic tables. What a pilot might have done in s és roll the aircraft and pull up,
essentially effecting a positive angle of attack while éasing altitude.

Figure 5.24 shows the commanded pseudo inputs. There isexplamed divergence in
the C; input that shows up in the state tracking which will be disagslater on. Figure 5.25
shows the thrust parameters for the system. The pitch vegtat behaves the same during the
first second as it did during ascent, which may be indicatia¢ the system cannot predict the non
minimum phase behavior of pitch. Figures 5.26, 5.27 and &ll2&dicate that during descent the
aircraft relatively stable with little aerodynamic cortsoirface input.

Figure 5.29 shows the position and body velocities. Figus@ Shows a better perspective

on the altitude track. As mentioned before @ecoefficient diverged and this is reflected in the
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altitude position coordinate. The reason for this diveogeis likely due to poor tuning of the
MPC for a descending motion. There is however, no overshidevdescending this is likely
do to how slow the descent is compared to the climb and how moehthe MPC has between
predicting meeting the reference altitude and actuallytmgét. This is indicative that the MPC
would benefit from having a larger prediction horizon, gitiee quarter second sample time.

Figure 5.33 shows the climb angle and speed. The climb aragieat be as negative as
it can be positive due to the angle of attack constraint. Tie=d drops off very quickly as the
aircraft glides to its refernce altitude.

Figure 5.34 shows the normalized cost for state trackingnduhe motion.
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5.4 Tracking References in Two Position Coordinates

The final simulation done was to track a reference in more tranposition coordinate.
The reference to track was a simultaneous step input chanfyandZ,. The two reference values
stepped were 300 ft in thg and 1000 ft in theZ;. The results are shown in Figures 5.35 - 5.47.

Figure 5.35 shows the coefficients of the system. This maeguires control over both
altitude state, and Y position state, this is reflected bydaroefficient commands a2y, andC,.
Figure 5.36 shows little involvement of the thrust vectgrsystem, and a relative to the other
climbing motions a small magnitude of thrust. Figure 5.3385and 5.39 indicate that no single
control surface meets a constraint for this motion. Rentdykthere appears to be very little
control authority exercised over the system in comparisoother simulations where a climb is
required. The reason for this is not known.

Figure 5.40 shows the position and body velocities. It casd®n in Figure 5.41 and 5.42
that the aircraft converges on both states. To get a better ad what the maneuver looks like

the positions were plotted in 3 space in Figure 5.43. Two sesnisparent planes represent the
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Figure 5.40: Two Position Reference: Positions and ve&xit

references for tracking. The pink plane, representsytheference, and the blue plane the
reference. If there were zero error the flight trajectory lddive on the intersection of these two
planes. Figure 5.43 clearly shows overshoot inthandZ, directions. The craft does converge
on theY, reference but does not converge in Bedirection within the given time. It was at first
suspected that this was due to allocation pseudo controhatch. Contrary to that suspicion,
Figure 5.44 shows a simulation of the same motion, but assype@rfect control allocation. While
there is much better behavior in tifedirection, the MPC still cannot find a solution that converge
on theZ, position within the simulation time. It seems that regasdlef the ability of the allocation
algorithm to meet the requested pseudo control inputs, réifé @nnot meet the reference. This
can be once again attributed to the aforementioned probfeattitnde overshoot recovery due to
constraints in angle of attack. Figure 5.45 shows the Euigtes and angular velocities for the
motion.

Figure 5.46 shows the climb angle and speed during the motiderestingly the climb
angle returns to a value close to zero even though the adtitsichot quite met. This is likely

because the system is trying to balance a Y position referand an altitude reference. Figure
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5.47 shows the normalized cost for the states. The oversihdio¢ Y position occurs at the peak
less than 1 second, and the Z overshoot occurs at the peatnadel and 2 seconds. Otherwise

the cost decreases as time goes on.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter will begin by drawing some major conclusionsulithe MPC design process
and MPC performance for the ICE aircraft. The final sectiorthi$ thesis will discuss what

improvements can be made on the proposed MPC.

6.1 Observations Based on Climb Angle and Speed

Each simulation has additional plots to show the climb argld speed of the aircraft.
During simulation these climb angles are limited not by aishto weight ratio but by the angle
of attack constraint. The thrust to weight ratio of the crafl.34, and without an engine model
that reflects changes in air density the craft does not logepwith altitude. This results in the
craft being able to climb at 9Celative to the inertial frame at any altitude. The limitifagtor for
this climb will be attitude stability when dynamic presstieromes negligent. Without dynamic
pressure the aerodynamic control surfaces cannot contpeosaircraft attitude, and everything
must be done by the engine. In reality an engine with rotasimgsystems such as a turbofan
couldn’t operate past a certain altitude because low aisitlea wouldn’t allow enough oxygen
into the engine for combustion.

The lowest speed employed by the control for any motion wésfdd. During the simple
tuning case, descent case, and two position reference, dhsespeed settles down around this
minimum. During the altitude sweep case speed at every stepnand speed increases during
climb, and decreases after altitude is attained and beffi@@eéw step command until instability
occurs. Each step command the apparent speed the systechsetilé on is slightly higher, this
is likely due to the system requiring more velocity to keemalyic pressure, due to losses in

air density as altitude increases. This demonstrates the'svability to properly compensate for
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changes to the dynamics of the system due to altitude.

6.2 MPC Performance Observations Based on the Simulations

It is clear that MPC has promise in the field of aircraft cohtrdhe position references
were tracked, and the craft remained stable while the siedilaircraft operated within the given
constraints. The algorithm was able to track step inputdtitude across the full flight envelope,
showing signs that it would converge given more time befbie riext reference update. This
demonstrates the ability of a single nonlinear control roédtogy to be applied to a problem
that would normally take several linear controllers. Utiioately the constraints am prevented
the craft from being able to track decreases in altitude imélar manner as increases, meaning
if there was overshoot in altitude the craft needed much riare to recover from it. It was
demonstrated by the third simulation that the control wads &b handle tracking lateral states
as well as longitudinal ones. This shows that it is capableawfdling the entire 6 DOF control
problem. In short, a single nonlinear MPC was developedwlaatshown to be able to optimally
operate the simulated craft anywhere in the flight envelope.

Control solutions were found to take on average 1 minute.e@bht is for every sample
time of 0.25 seconds the amount of real time it took to soleedptimal control problem was 60
seconds. In the final case where suboptimal solutions weepsed and infeasiblity occurred the
solution time was increased to an average of 2.3 minutes ifkinuates that solution times will
have to be at least 240 times faster to be implemented inireal tOne way that was attempted
to increase solution speed was to linearize the model atsmuople time and apply a MPC to the
newly linearized model. This was unsuccessful, likely dupdor choice in the length of sample
time, in that the system was evolving too much between eatiplgatime for a linear model to

properly represent the dynamics.

6.3 Future Work

While designing the nonlinear MPC several problems presktitemselves. Perhaps the
most difficult of these to deal with is determining adequatestraints to define the system. It was

observed that when the controller meets a constraint tleasdtutions quickly become poor for
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flight control. Perhaps one of the most restrictive constraias on the angle of attack. This can
be eased by constraint softening, gathering more aerodgrdata, or by implementing logic to
roll the aircraft and perform a pull-up maneuver whenevegdaaltitude descents are asked for.
Appropriate bounds for the coefficients of force and momeatadso difficult to determine. One
solution could be to apply a global solver such as a gengjarighm to the aerodynamic tables
to attempt to find the maximum and minimum attainable valoegé&ch coefficient individually.
One potentially simpler way around this is to make the MPGdieon forces and moment control
variables rather than coefficients of force and moment, ware more easily bounded because of
their more direct physical implications.

One way to eliminate infeasbility due to violation of statmstraints is to employ barrier
functions inside the cost rather than hard constraintsi@&@dunctions are those that cause the cost
to incur heavy penalties as some boundary is approachesdisThdreasonable way of handling the
state constraints because in reality an aircraft is nopabke of exceeding any hard state limits that
exist within its flight envelope. This solution would prevenfeasibility and cause the optimizer
to stay away from some boundary as it attempts to minimizedisefunction. This does of course
allow the craft to violate some constraints if need be, wisizhld be detrimental to pilot, structure,
or aerodynamic force generation.

Control input rate responses were not considered duringlatian. It is possible to imple-
ment them as linear constraints within the pseudo contral,c@ntrol allocation algorithms. The
control input rate likely to have the largest impact on coltér performance is associated with the
engine. As it stands engine thrust changes are considestzthtaneous which allows the craft to
compensate against undesired motion with instantaneasssho engine output in the vectoring
directions. This causes an instantaneous moment whicHesnabengine to be used for angu-
lar rate control, which is unrealistic. Including rate dymas in the aerodynamic control surface
would slow down reference convergence, but is not likelydaeeha large impact on the ability of
the controller to find optimal solutions.

Tuning an MPC is a difficult process. A more in depth study $thdoe conducted on
MPC tuning techniques for a general nonlinear system. Hpguifetter tuning strategy would
likely result in better performance over the entire flightelope, and may reduce or eliminate the

overshoot that was occurring at high altitudes. Relatedniog through choosing an appropriate
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sample time is implementing a strategy to control nonliratems whose states evolve on dif-
ferent time scales. It was observed through the tuning ggy@nd elaborated on in [15], that the
angular velocities evolve much quicker than the positi@®sng able to consider both time scales
would improve attitude stabilization which would in turnpnove the ability of the craft to track.
Lastly different methods of solving both the optimizatiaoiplems should be considered.
SQP is extremely computationally intensive, taking sigaifit computation time. Some of the
aforementioned works by other researchers have reforetuthe flight control problem to make it
more suitable for SQP algorithms, saving computation tivadidating these methods for a tailless
fighter aircraft should be explored in the interest of r@aletnonlinear MPC application. It was
observed during tuning that on average solving the contiatation problem took three times the
amount of time it took to solve the pseudo control problemer€rare many methods that could be

employed as per the Literature Review to shorten the timedatrol allocation.
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