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TRAINING SET DENSITY ESTIMATION FOR TRAJECTORY PREDICTIONS USING
ARTIFICIAL NEURAL NETWORKS

Zachary Reinke, M.S.E.

Western Michigan University, 2019

Demand on earth orbiting object surveillance systems is increasing as more equipment is

put into orbit. These systems rely on predictive techniques to periodically track objects. The

demand on these systems may be reduced if object trajectories could be predicted further into the

future. This research developed techniques that analyze state trajectory data to develop scalable

training sets used for training artificial neural networks (ANNs) to predict trajectories of a dynamic

system. These methods use multi-variable statistics to analyze data energy content to provide the

ANN with low density, feature-rich, training data. The developed techniques have been shown

to increase ANN prediction accuracy while reducing the size of the training set when applied

to a linear dynamic system. These methods may find future application in predicting satellite

trajectories.



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 MODELING PERTURBATIONS WITH AN ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 TRAINING DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 SCALING THE TRAINING DATA DENSITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Example: Multivariate Variance using SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 DYNAMIC SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 SVD ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 GENERATING TRAINING DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 ARTIFICIAL NEURAL NETWORK ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

10 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iii



LIST OF TABLES

4.1 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 The Column Variance of BRot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 System Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.1 SVD State Components (m = 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.2 Initial Condition Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7.1 Initial Condition Combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

9.1 Initial Condition Data from Second Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



LIST OF FIGURES

1.1 Orbital State Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 High and Low Fidelity State Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 State Space Trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 SVD Example Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1 Mass Spring Damper System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 Dynamic System State Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.1 Step Size Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2 Data Energy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.3 Time Series Data Modes (Columns of U) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7.1 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8.1 Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

9.1 LCM Training Routine Best Trained Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9.2 Time Series Neural Activations in First Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9.3 ANN Performance from I.C. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9.4 ANN Performance from I.C. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



CHAPTER 1

INTRODUCTION

There is an increasing number of objects orbiting the earth. These objects vary from active

satellites to space debris. It has become an increasing challenge to track these objects. The Space

Surveillance Network (SSN), part of the United States Space Command (USSPACECOM), tracks

more than 8,000 objects via ground based sensors [1]. These objects range from large satellites

to small spent rocket parts. The SSN currently tracks objects that are 10 centimeters or larger.

Approximately 7% of these objects are operational satellites and the rest are debris [2]. Space

debris is becoming a growing concern for the hazard it poses for current and future space missions.

Every year more debris is introduced into low earth orbit, increasing the risk of collision with

active space missions. At high relative velocities, even collisions with small objects can result in

significant damage [3].

Due to the large number of space objects the SSN cannot track objects continuously. In-

stead, the SSN uses a predictive technique to monitor space objects. It spot-checks the objects

periodically to identify them and record their state dynamics. This spot-check technique is used

since the number of sensors, geographic distribution, capability, and availability of the SSN sensors

limits the frequency at which objects can be tracked. Once an object is tracked, the network uses

a predictive technique to periodically identify the object based on the system dynamic previously

measured. The accuracy of this identification relies heavily on the prediction method and also on

the accuracy of the SSN sensors.

A constellation of 48 small satellites in low earth orbit (LEO), known as Flock2K, was

used as a case study [4]. Two-line elements (TLE) sets form a standard convention for organizing

satellite tracking data [5]. Gathered from the Combined Space Operations Center (CSpOC) cata-

log, TLEs were used to estimate the update frequency for the Flock2K tracking information [6].

The elapsed time between measurements was found to be several hours. From this analysis it was
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also observed that the satellites may not have always been accurately identified. Sharp jumps in

the data indicate that the prediction model may have misidentified satellites.

Several research projects have sought to improve tracking accuracy using statistical and

model driven approaches [7, 8, 9]. Methods for state estimation of orbiting objects for improved

tracking have also researched [10]. In recent years artificial neural networks (ANN) have been

applied to many different types of problems. Advances in computers have made their application

widespread with great success [11, 12]. ANNs have also made an emergence in aerospace applica-

tions, such as adaptive allocation of sensing resources for improved tracking and space situational

awareness [13]. ANNs could be applied to trajectory predictions for improved tracking accuracy.

An ANN may be trained to model the perturbations acting on the system dynamics of an orbiting

object. This could provide a way to more accurately perform state trajectory predictions for passive

objects orbiting the earth. Figure 1.1 shows the orbital state elements of a satellite in orbit. This

could be a good alternative to conventional tracking methods and provide better prediction models

than traditional techniques .

Simple orbital trajectories can be modelled using the equations that describe two masses

in mutual orbit around one another [14]. While this forms the foundational physics that govern

two orbiting bodies, this is an incomplete model of the orbital trajectory. Additional factors such

as atmospheric density, solar pressure, and the magnetic field of the earth influence the orbits.

These factors, referred to as perturbations, form complex motions caused by forces other than the

gravitational force [15]. One of the biggest challenges of orbital trajectory predictions comes from

predicting the perturbations acting on the satellite. There has been research conducted to use ANNs

to model the behavior of the individual constitutes of these perturbations such as solar activity,

electron flux, atmospheric density, and geomagnetic activity, to name a few [16, 17, 18, 19].

A possible solution may be to implement an ANN designed to add unmodeled perturbations

to a baseline trajectory prediction [20]. The input to the ANN is a simulated trajectory based on

known system dynamics and perturbations that are well modelled. From this incomplete simulated

trajectory, the ANN will add missing high level perturbations. This is achieved by training the

ANN output on real satellite trajectory data.

Training data is a vital element in developing an ANN. The quality of the training data sets a

limit for the performance the ANN can achieve. Training data must include sufficient information

2
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Figure 1.1: Orbital State Elements

about the system that is to be emulated. The system must be well exercised to properly extract

features of its behaviour. Assembling training data that is dense with information about system

behaviour will aid in increasing the accuracy of the resultant ANN. The goal of this research is to

develop methods to assemble effective and efficient training data for training an ANN for trajectory

predictions. These methods will use data driven analysis to analyze the information content of

real-world trajectory data. From this analysis, the training set density can be reduced while still

maintaining prediction accuracy. Training an ANN using low density and feature rich data could

allow the network to train faster without loss of performance. This could reduce the overall time to

train and update the ANN. The time saving could be significant as complex systems often require

a large amount of information to train.

Several different architectures may be considered for trajectory predictions. Recurrent Neu-

ral Networks (RNN) are often used for modelling the behavior of dynamic systems [21]; however,

3



this application does not call for modelling the dynamic system but rather to add information to the

system trajectory. Another common neural network architecture is the Multi-Layer Feed-Forward

(MLFF) neural network [22]. This architecture is often used for non-linear regression and its ap-

plication is straight forward. Because of its straight forward application, a MLFF will be used for

this research. The goal here it to test the proposed methods and lay a baseline performance result.
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CHAPTER 2

MODELING PERTURBATIONS WITH AN ANN

The state trajectory of an orbiting system can be described in varying complexity. The

simplest model for an orbiting object is described by the “Two Body Problem” [14]. Equation

(2.1) describes the motion of one orbiting body relative to another

F =
G m1 m2

r2 r̂ (2.1)

where F is the force acting on the two bodies, r̂ is a vector pointing from one center of mass to

the other, r is the distance between the two mass centers, G is the gravitational constant, and m1

and m2 are the mass of each body. The physics described by Equation (2.1) are the basis of every

model for two body motion. However, there are perturbations present in a real-world system that

Equation (2.1) does not capture and thus much of the information about the system is missing.

This type of model shall be referred to as a low fidelity model. The high fidelity model will be

comprised of real-world data which includes all the perturbations present in that data.

In this work, an ANN is used to provide a high fidelity state estimate ~XH given a low fidelity

state estimate ~XL, its derivative ~̇XL, and the time of the estimate t. The ANN weights are adapted

to minimize the error E between the its output ~O and p examples of ~XH from observed data, where

E =
1
P ∑

p

∥∥∥ ~O(~XLp , ~̇XLp , t, W
)
−~XH p

∥∥∥2
. (2.2)

The state ~XLp and ~̇XLp are computed using a low fidelity model. a successfully trained ANN can be

used to provide a high fidelity estimate from a low fidelity estimate based on relationships captured

in the p examples of the training data. In essence, the ANN is ’learning’ the error ~e = ~XH −~XL.

The trained ANN can be repeatedly applied to estimate state trajectories.

5



Figure 2.1 shows the state space graph of the dynamic system depicting the input and output

trajectories. A similar approach was used by Peng and Bai [20] for testing the orbital prediction

accuracy limits of machine learning. More accurate low fidelity information reduces the difference

between the high and low fidelity estimates, and therefore the fewer features the ANN is required

to learn.
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Figure 2.1: High and Low Fidelity State Estimates
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CHAPTER 3

TRAINING DATA

Obtaining in-world data for training an ANN can be a challenge. There is a limit, not only

the amount of data, but also on the quality of the data. It can be a far greater challenge to acquire

and condition the data needed for training than it is to design and train the ANN. In these cases,

it may be beneficial to reduce the size of the training set. This may be required if there is limited

data or if the computational expense is high for processing the data. It may also be beneficial to

reduce the training set in order to speed up the training of the network.

Each trajectory is initiated by an initial condition. The system dynamics are propagated

forward in time tracing out the state trajectory that originates from a particular set of initial con-

ditions (ICs). The neural network should be able to predict high fidelity states along the complete

set of state trajectories that encompass the system dynamics initiated from any set of valid ICs

within a state’s valid range of values. The question then becomes, what size should the step size

between data points be for an effective training set? There are two different step sizes to consider.

The first is the time step taken when propagating a state trajectory forward in time. This step size

must be small enough to preserve system behavior. The second is the step size between the ICs

that initiate the state trajectories. It too must be small enough that the system behavior is captured.

It must also be small enough that the ANN can accurately interpolate the system behavior when

providing information that falls between the points that were used in training. Figure 3.1 shows a

local grid of initial conditions in 2 dimensional state space. While depicted here in 2 dimensions,

this discussion extends to n dimensional state space. A state trajectory is propagated from each

IC giving the content of the training set. The two step sizes are shown. One is the time steps of

the trajectory, ∆t, and the other is the distances between the IC grid, ∆i and ∆ j. The ANN will be

trained with trajectory data initiated by ICs 1 through 4. By increasing ∆i and ∆ j the training set

density is reduced. However, increasing these step sizes will directly affect the network ability to

7
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reproduce the trajectory initiated by the nominal IC. The nominal IC represents a ”worst-case” in

terms of trajectory prediction as it falls at a point farthest from all ICs used for training. Therefore,

trajectory data initiated from the nominal IC will be one metric used to measure the performance

loss of lowering the training set density. In this work the time step size is fixed while methods to

estimate an effective spatial step size are investigated.
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CHAPTER 4

SCALING THE TRAINING DATA DENSITY

One method for setting the step size for the grid of initial conditions would be to consider

the variance of each state. It is assumed that a state with a higher variance would have more

information about the system characteristics than one with a lower variance. Therefore a higher

variance would suggest that smaller spatial steps should be taken for that state. Taking smaller steps

would provide the training set with more information about the system dynamics and therefore

present the network with a richer set of data when training. It is also assumed that a state with a

lower variance would suggest that larger spatial steps for that state could be taken. This could be

very useful since it would provide some measure of the minimum size for the training set that still

encompasses the system characteristics.

One problem with using the variance of an individual state is that there is no consideration

for the interaction between the states of the system. Each state would be analyzed in isolation.

To understand the multivariate variance of the system, the covariance matrix will be analyzed

using Singular Value Decomposition (SVD). The SVD is a matrix decomposition that provides a

hierarchical representation of the data in terms of an alternate coordinate system defined by the

dominant correlations within the data.

4.1 Example: Multivariate Variance using SVD

Consider the state matrix X (4.1). The columns of X contain time samples of the states.

Figure 4.1a shows a scatter plot of the example data.

9



X =


| |
xi x j

| |

 (4.1)

Once the state matrix is assembled the column-wise means are calculated. Here n is the number of

elements in xi and x j. Thus

x̄ j =
1
n

n

∑
l=1

xl j (4.2)

x̄i =
1
n

n

∑
l=1

xli (4.3)

X̄ =


| |
1 1

| |

�[x̄i x̄ j

]
. (4.4)

Subtracting the column-wise mean from the state output matrix X− X̄ yields

B = X− X̄ =


| |
bi b j

| |

 (4.5)

and centers the data about the mean as shown in Figure 4.1b. The covariance between two variables

is calculated as

Covariance =
1

n−1

n

∑
l=1

(xli− x̄i)
(
xl j− x̄ j

)
. (4.6)

The covariance matrix of X is

C =
1

n−1

 − bi −
− b j −



| |
bi b j

| |

 =
1

n−1
BT B. (4.7)

λ is a diagonal matrix whose values are the eigenvalues of C, (Table 4.1). V is a matrix whose

columns are the eigenvectors of C, (Table 4.2). Note that taking the eigenvalues and eigenvectors

of the covariance matrix is part of calculating the SVD of the covariance matrix.
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Figure 4.1: SVD Example Data

Table 4.1: Eigenvalues

λ1 1.309
λ2 0.103

Table 4.2: Eigenvectors

V1 [ 0.676,0.736]
V2 [-0.736,0.676]
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The eigenvectors of the covariance matrix are an orthogonal set of basis vectors. They have

also been normalized as unit vectors. This makes the matrix V a rotation matrix. This rotation

is a transformation from the original coordinate system. The corresponding eigenvalues are the

variances of the data projected onto these eigenvectors. Figure 4.1c shows the centered state space

data with the scaled eigenvectors super-imposed onto the plot. Notice how the vector formed by

λ1V1 appears to lie along a line going through the most densely populated part of the plot. Also

notice how the vector formed by λ2V2 is orthogonal and much shorter than the other vector.

As V is a rotation matrix, the state data can now be transformed into the eigenspace using

BRot = BV. (4.8)

The columns of BRot are the state variable outputs transformed into eigenspace Mode 1 and Mode

2. Figure 4.1d shows a plot of the state variable outputs in eigenspace. If we now take the variance

of the columns of BRot we find that they are the eigenvalues of the covariance matrix of X as seen

in Table 4.3. The eigenvalues and eigenvectors of the covariance matrix provide a way to calculate

Table 4.3: The Column Variance of BRot

variance(Mode1) 1.309
variance(Mode2) 0.103

the variance of combinations of states rather than considering each state in isolation. This may

provide a more meaningful way to calculate the training set step size.
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CHAPTER 5

DYNAMIC SYSTEM

The dynamic system for an orbiting body is harmonic in nature. An accurate model for

this system is complex and non-linear but might be approximated with a linear model. This might

suffice for the low fidelity model, but high fidelity state trajectory information will come from

actual tracking data. Collecting the online data will take time and will require a good deal of

processing to properly condition. In order to demonstrate the method, a simple dynamic model

was used to generate data for both the high and low fidelity models. This allows for more flexibility

when iterating through step sizes. A simple mass spring damper system will provide the harmonic

system for our analysis. Figure 5.1 shows a free body diagram of the system. The model consists

of three masses each connected via a spring and damper. There is an input Ui acting on each

mass. The datum X0 is ground fixed while Xi is fixed to each mass. It is assumed that each mass

rolls without friction. Table 5.1 shows the constants used in the simulation model. Equation (5.1)

Figure 5.1: Mass Spring Damper System

shows the matrix form of the linear differential equations of motion for the system. This equation is

expanded to show the mass-spring-damper system dynamics in Equation (5.2). In order to simulate

high and low fidelity state trajectory information, the system inputs are varied. For the low fidelity
13



Table 5.1: System Constants

k1 = 50 b1 = 0.05 M1 = 10
k2 = 25 b2 = 0.05 M2 = 2
k3 = 10 b3 = 0.05 M3 = 2

data the system inputs Ui are set to zero. A sinusoidal input is applied for the high fidelity state

trajectory data. Table 5.2 shows the equations used for input. The system is linear with

ẋ = Ax+Bu (5.1)

Ẋ1

Ẍ1

Ẋ2

Ẍ2

Ẋ3

Ẍ3


=


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X1

Ẋ1

X2

Ẋ2

X3

Ẋ3


+



0 0 0 0 0 0

0 1
M1

0 0 0 0

0 0 0 0 0 0

0 0 0 1
M2

0 0

0 0 0 0 0 0

0 0 0 0 0 1
M3


·



0

U1

0

U2

0

U3


. (5.2)

Table 5.2: Inputs

Low Fidelity High Fidelity

U1 = 0 U1 = 0
U2 = 0 U2 = 15sin(2πt)
U3 = 0 U3 = 20sin(2πt)

The system was numerically integrated to produce time series state outputs for both high and low

fidelity models. The times series data starts at t = 0 and ends at t = 80s. Figure 5.2 shows the low

and high fidelity state output data where m is for meters and s is for seconds.
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CHAPTER 6

SVD ANALYSIS

In order to develop the training set data, the initial condition step size for each state must

be calculated. As discussed before there are two approaches for calculating step size that will

be considered. One will consider the variance of each state output in isolation and the other will

consider the variance of combinations of states. The SVD will extract the dominant correlations

of the state output data. Analyzing these correlations will provide statistical information about

the state components associated with feature-rich patterns in the data [23]. The accumulation of

information within each pattern represents the data energy of the matrix. This analysis will be

performed on the high fidelity state output data. It is assumed that this data exhibits all of the

characteristics of the real-world system, and therefore, performing the step size analysis on this

data will yield the most accurate step size. Once the step size for each approach is calculated, the

training data can be generated from the dynamic system model and used to develop an ANN.

State data is organized into the matrix S where the columns of S are time series samples of

each state. Equation (6.1) shows the state output matrix S where n is the number of data points in

the time series and m is the number of states.

Sn×m =

 state1 state2 · · · statem

=

 s1 s2 · · · sm

 (6.1)

Before performing a statistical analysis on the data, it is normalized. Normalizing the data will help

ensure the output magnitude does not bias the analysis. First, the mean is taken of each column as

shown in Equation (6.2). The column mean is then vectorized in Equation (6.3) to perform matrix
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subtraction from matrix S.

s̄ j =
1
n

n

∑
l=1

Sl j (6.2)

s̄ j =


1
...

1

 s̄ j (6.3)

Equation (6.4) shows the data centered matrix D.

Dn×m =

 d1 d2 · · · dm

where: d j = s j− s̄ j (6.4)

Next the absolute maximum element from each column of D is taken and assembled in vector q

shown in Equation (6.5).

q 1×m =
[
max(|d1|) max(|d2|) · · · max(|dm|)

]
(6.5)

Once the vector q has been calculated, its components are used to scale the columns of matrix D

by dividing every element in the jth column of D by the jth component of vector q. Shown in

Equation (6.6), matrix B contains the state output data that is centered and scaled such that the

column-wise means of B is zero and the absolute max value of any column element is 1.

Bn×m =

 b1 b2 · · · bm

where: b j =
1
q j

d j (6.6)

As previously discussed, a simple method for calculating the IC step sizes would be based

on the standard deviation on the columns of B. However, this will not account for the state co-

variance. Developed from this research, Equation (6.7) shows the step size calculation using the

Standard Deviation Method (SDM)

SDMState j = q j

(
1− std(b j)

)
(6.7)
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where q is given by Equation (6.5). The step size metric for state si is calculated by taking the

standard deviation of the normalized time series data b j. To calculate the step size using the SDM

the step size metric is subtracted from 1 and then scaled back to its original magnitude.

A multivariate standard deviation analysis is performed by calculating the SVD of the nor-

malized data in matrix B. Note that the approach shown here is a deviation from the SVD example

shown previously. Equation (6.8) shows the SVD calculation for B√
n−1

. This will give similar

singular values. The SVD of B√
n−1

will yield the square root of the singular values calculated with

the eigenvalue decomposition of the covariance matrix of B. The division by
√

n−1 is necessary

for calculating the standard deviation of the projected data in the alternate coordinate system. The

matrix V is the same for both. Additionally, calculating the SVD will also yield the matrix U where

the columns of U are the time series modes of the normalized state output matrix B. The matrix

dimensions shown here are in the truncated SVD form. The diagonal components of Σ are orga-

nized such that σ1 corresponds to the largest singular value, and so on. Equations (6.8) and (6.9)

show the SVD in truncated form with the corresponding matrix dimensions of U, the left singular

vectors of B, the diagonal matrix Σ, the singular values of B, and V, the right singular vectors of

B. Equation (6.10) shows the SVD equation in expanded form

B√
n−1

= UΣV∗ where: Un×m Σm×m Vm×m (6.8)

B√
n−1

=

 u1 u2 · · · um




σ1 0 0 0

0 σ2 0 0

0 0 . . . ...

0 0 · · · σm


 v1 v2 · · · vm


∗

(6.9)

B√
n−1

=
m

∑
k=1

σkukv∗k = σ1u1v∗1 +σ2u2v∗2 + · · ·+σmumv∗m (6.10)

where * denotes the matrix transpose.

As seen in the previous example, the columns of V are unit vectors in state space. Each

vector v j defines a line that spans state space and corresponds with the singular value σ j. The scalar
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value σ j is the standard deviation of all data projected onto that line. This information provides

a covariance analysis of the states. The constituents of v j represents the amount that each state is

contributing to σ j. The state components of v j will be used to calculate the step size for each state.

Keeping in mind that the magnitude of v j is 1, Equation (6.11) shows that the sum of the squared

components of v j is equal to 1.

‖ v j ‖2 = v2
1 j + v2

2 j + · · ·+ v2
m j = 12 = 1 (6.11)

Equation (6.12) shows that the sum of the squared components of v j multiplied by σ j is equal to

σ j.

σ j(v2
1 j + v2

2 j + · · ·+ v2
m j) = σ jv2

1 j +σ jv2
2 j + · · ·+σ jv2

m j = σ j (6.12)

Next the matrix M is assembled as shown in Equation (6.13). As demonstrated in Equation

(6.12), Equation (6.14) shows that the sum of the elements of m j are equal to σ j.

Mm×m =

 m1 m2 · · · mm

 (6.13)

m j = σ j

[
v1 j

2 v2 j
2 · · · vm j

2
]T

where:
m

∑
i=1

mi j = σ j (6.14)

Each vector m j corresponds to a dominant correlation within the data and each element of m j

corresponds to a state. To better visualize this, Table 6.1 displays matrix M with each row labeled

with the corresponding state variable and each column labeled with the corresponding singular

value for the example mass-spring-damper system. In order to find the step size metric for state

Table 6.1: SVD State Components (m = 6)

State σ1 σ2 σ3 σ4 σ5 σ6

s1 X1 m11 m12 m13 m14 m15 m16
s2 Ẋ1 m21 m22 m23 m24 m25 m26
s3 X2 m31 m32 m33 m34 m35 m36
s4 Ẋ2 m41 m42 m43 m44 m45 m46
s5 X3 m51 m52 m53 m54 m55 m56
s6 Ẋ3 m61 m62 m63 m64 m65 m66
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si, the row mi is searched for the largest element of any data correlations calculated by the SVD.

Developed from this research, Equation (6.15) shows the step size calculation using the Linear

Combination Method (LCM)

LCMState j = q j

(
1−max

([
mi1 mi2 · · · mim

]))
(6.15)

where q is given by Equation (6.5). The larger the step size metric found in mi the more data

energy is dependent on si. Therefore, the more dependence the overall data energy has on si, the

smaller the step size should be. To calculate the step size using the LCM the step size metric is

subtracted from 1 and then scaled back to its original magnitude. Subtracting from 1 will yield a

smaller step size when the data energy is more dependent on s j.

Table 6.2 shows the step sizes for both methods calculated using state trajectories propa-

gated from the initial condition shown. Figure 6.1 shows a bar plot of the step size values from

Table 6.2: Initial Condition Data

X1 Ẋ1 X2 Ẋ2 X3 Ẋ3

Nominal IC −1.118 −0.608 −2.515 −1.194 −5.858 −2.318
SDM Step 0.580 0.834 1.199 2.236 2.913 3.830
LCM Step 0.897 1.189 1.495 3.460 2.244 4.756

Table 6.2. This shows the relative difference of corresponding state step sizes between methods.

It can be seen that, while some states have similar relative magnitudes, others are completely dif-

ferent. These differences are a result of covariance in the data. In general, larger step sizes are

preferred, as they reduce the amount of data in the training set, provided the accuracy is preserved.

The singular values plot in Figure 6.2 show the singular values from greatest to smallest. The total

energy plot shown in Figure 6.2 shows the cumulative sum of each singular value divided by the

total sum. This displays the data energy totals of successive combinations of singular values. For

example, calculating the matrix B√
n−1

using only the first two singular values would, as shown

in Equation (6.10) where m = 2, reconstruct approximately 65% of the original data. Figure 6.3

shows the times series modes of the left singular vectors from matrix U.
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CHAPTER 7

GENERATING TRAINING DATA

The data used to perform the step size analysis is used as the nominal state trajectory data

when testing the ANN. The initial condition that created this nominal data is used as the test

point on the initial condition grid. The ANN is trained on data generated from initial conditions

surrounding the nominal initial condition. The step size between the nominal initial condition and

training initial condition is based on the LCM and SDM step sizes calculated previously. This will

force the ANN to recreate a state trajectory on which it was not trained. The accuracy with which

it recreates the nominal data is one metric by which the two step size methods are measured.

The ANN is trained on every combination of state initial conditions around the nominal IC.

There are 6 states for this system giving 26 = 32 initial condition combinations. Table 7.1 shows

an example of the initial condition combinations for a three state system in terms of step high and

step low from the nominal initial condition. These correspond to vertices on a 3-dimensional cube.

‘High’ and ‘Low’ refer to the relative position of the vertices. From each initial condition a full time

Table 7.1: Initial Condition Combinations

IC 1 High High High
IC 2 High High Low
IC 3 High Low High
IC 4 High Low Low
IC 5 Low High High
IC 6 Low High Low
IC 7 Low Low High
IC 8 Low Low Low

series state trajectory will be generated from the dynamic system to train the ANN. To test each

method, multiple ANNs will be trained with data assembled from varying the overall magnitude

of each step size mode. Starting with a reduced magnitude for all step sizes, the magnitude is
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incrementally increased thus sweeping outward from the nominal IC.
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Figure 7.1: Training Data

In Figure 7.1, the red curve in all three plots is the nominal state trajectory X1. Figure 7.1a

shows the X1 state trajectory data with the initial condition step size swept out from the nominal

initial condition. This displays the difference in training data between the ANNs tested. Figures

7.1b and 7.1c show the state trajectory data generated from all initial condition combinations for

X1 for a single mode step size.
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CHAPTER 8

ARTIFICIAL NEURAL NETWORK ARCHITECTURE

The ANN architecture used is comprised of six fully connected layers. Low fidelity state

data X jL is input into the network along with its derivative and the time t. High fidelity state data

X jH is the network output. There are ten input neurons in the first layer. Six inputs are for each state

of the system, one input is used for the elapsed time where t = 0 at the initial condition, and three

inputs are for the accelerations of X1, X2, and X3. It was found that the ANN works best when the

derivatives of the time series inputs were included. This provides the ANN with information about

where each input is headed. Since Ẋ j is already included in the training data, only Ẍ j is added.

Ẍ j data is generated during the training routine by numerically differentiating the Ẋ j data. Figure

8.1 shows the network architecture. The number of neurons in hidden layers 1 through 4 are 200,

1000, 800, and 400, respectively.

All four hidden layers are activated with ReLU activation functions. The ReLU activation

function, a(z) = max(0,z), is computationally inexpensive to compute and therefore reduces the

time require to update the network when training [24]. The Adam Optimizer [25] was used in

back propagation for training the ANN. The training performance loss was measured by Mean

Squared Error (MSE) and the validation performance loss was measured by Mean Absolute Error.

The training data was randomly reordered with 80% of the data allocated for training and 20%

allocated for validation. A limit of 100 epochs was set for training. One epoch is when the training

routine has trained on all of the data. After each epoch the network parameters are updated and the

training data is again run through the ANN for further training. Also, in the event that the network

performance did not improve after 10 epochs, the training routine was stopped and the parameters

for the best network were saved.
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CHAPTER 9

RESULTS

Figure 9.1 shows the output of an ANN trained using the LCM method. The desired nom-

inal high fidelity state trajectory data is plotted on the same plot as the network output. Note that

the results from the ANN are virtually indistinguishable from the given data. The mean squared

error is approximately 0.00609 between the generated nominal data and the network output. Here

the network accuracy is very good but the step size is small and therefore the computation cost for

training is higher. In order to measure the high fidelity output accuracy between step size methods,
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a Step Size Index (SSI), defined by Equation (9.1), was used. This makes the assumption that

the valid range for each state is 100 regardless of units or system constraints. Since the goal is to

reduce the number of initial conditions needed for training, a greater step size is desirable. The

lower the SSI, the larger the overall step size across all state initial conditions.

Step Size Index =
m

∑
i=1

100
2 Step si

(9.1)

While the step size plays a large role in the computational cost for training the ANN, the number

of training epochs is also important. For very large networks, one epoch can take a considerable

amount of time. Reducing the number of epochs is desirable as it will require less computation to

train the ANN.
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Figure 9.2: Time Series Neural Activations in First Layer

Figure 9.2 shows the time series neural activation for the first layer. The harmonic nature

of this system can be clearly seen in the cyclic activation. Figure 9.3a and 9.3b show the network

performance against the SSI for the nominal data and training-evaluation data respectively. Figure

9.3a shows the network MSE performance when tested with the nominal data. Note that the ANN

was not trained on this data, therefore, this is information that the network must interpolate to pro-
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duce. At lower SSI the SDM achieved better results, but at higher SSI the performance between

the two methods becomes more evenly matched. It should be noted that a MSE of at least 0.08 was

necessary to produce reasonable results. Therefore, much of the lower range of the SSI produced

poor performance. Figure 9.3b shows the network MSE performance when tested with the training

and validation data. Here the data shows that the LCM achieved better performance with respect

to the training and validation data. This suggests that the LCM achieves better performance with

respect to the training set data. This may be desirable because while local performance is impor-

tant, global performance plays a greater role in overall network performance. Figure 9.3c and 9.3d

show the network performance against the epochs required for training. Figure 9.3c shows the

network MSE performance when tested with the nominal data. The SDM and LCM achieved good

performance with relatively few training epochs. Note that the LCM produced the best performing

network at 34 epochs. Figure 9.3b shows the network MSE performance when tested with the

training and validation data. The LCM produced much better results in fewer epochs for multiple

training cycles. Again, the LCM produced the best performing network.
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Figure 9.3: ANN Performance from I.C. 1
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An additional test was run using a different nominal initial condition. Table 9.1 shows

the nominal initial condition used for the second analysis. Figure 9.4a and 9.4b show the second

Table 9.1: Initial Condition Data from Second Analysis

X1 Ẋ1 X2 Ẋ2 X3 Ẋ3

Nominal IC −0.023 −3.3618 −1.044 −1.203 −2.684 3.921
SDM Step 0.902 1.813 1.007 3.096 2.726 4.319
LCM Step 1.159 2.425 1.443 3.180 3.693 6.348

analysis network performance against the SSI for the nominal data and training-evaluation data

respectively. Figure 9.4a shows the performance between the two methods is similar when com-

pared the nominal data. Similar to the first analysis, 9.4b shows that the LCM again achieves better

performance with respect to the training and evaluation data, again producing the best performing

network. Figure 9.4c and 9.4d show the second analysis network performance against the epochs

required for training. Figure 9.4c shows that the SDM achieved better performance in fewer epochs

while the LCM takes more epochs to achieve the same performance. Figure 9.4d shows that the

LCM achieved the best network overall performance.
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Figure 9.4: ANN Performance from I.C. 2
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CHAPTER 10

CONCLUSION

Reducing training set density can have a significant impact in the time required to train a

ANN. The training set density can only be reduced by eliminating redundant information from the

training data. Using a SVD analysis of state data, a method for calculating the initial condition

step size to produce example training trajectories has been developed that preserves the data that

characterizes the system dynamics.

The examples indicate that the LCM achieves better performance with respect to the en-

tire training set. This may be due to the fact that the step size mode was calculated based on the

dominant correlations or patterns within the data set. The LCM used for setting training data den-

sity and the ANN architecture tested here show the potential for use in predicting state trajectories

for systems represented by low fidelity models and subject to unmodeled perturbations. Orbital

state prediction is one application where efficiency in ANN training and reduction of training data

density could make a significant impact. More work is needed to test these methods with systems

exhibiting non-periodic non-linearity. Since the investigated system was linear, future work should

also seek to compare simulation results with analytical solutions based on classical linear system

theory.

Due to time and resource constraints, this work was not applied to orbital trajectories after

the methods were developed using the example linear system. The next step is to gather real satel-

lite data from a data base. From this data, a statistical analysis, using SVD, could be performed for

training data selection and an appropriate low fidelity model could be developed. Algorithms for

extracting training data from the gathered data has yet to be developed. Further ANN architecture

development is needed to scale this application to a larger data set.
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