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IMAGE PROCESSING BASED ON A FUZZY LOGIC 
EDGE DETECTION ALGORITHM 

Jamshid Khazaai, M.S.E. 

Western Michigan University, 1998 

One of the major problems in image processing is that of efficient edge 

detection. This is because the automated determination of an edge requires a 

subjective interpretation of just what the image author intended to be an edge. By 

training an edge determination algorithm to be sensitive to edges in a consistent 

manner, efficiency can be improved. This is the central idea of this thesis in which I 

define edge occurrences for the intensity (monochrome) images using fuzzy sets. 

Edge characteristic functions are proposed for detecting edge pixels within a 

desired block of an (intensity and binary) image based on quadruple child windowing 

and binary edge patterns. I called these functions QCW-ECF. Fuzzy theory has been 

also applied to extend the QCW-ECF algorithm to the FQCW-ECF algorithm for 

edge detection within a block of a fuzzy intensity image. The (F)QCW-ECF results in 

a degree of edginess concerning the middle pixel of the processing block. 

Cyclic coordinate algorithm is adopted to minimize the desired performance 

index of the Edge Detector System (EDS) by tuning the input/output membership 

functions of the Fuzzy Logic Controller (FLC). This is an optimization applied to the 

FQCW-ECF algorithm of edge detection. Finally, I have all the methods simulated 

against classical methods. The result are very promising. 
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CHAPTER I 

INTRODUCTION 

1.1 Introduction· 

Edge extraction is the most significant image enhancing technique. It is a 

fundamental step in segmentation, object identification and motion estimation [2]. 

Most edge detection algorithms are implemented using block processing technique in 

the spatial domain by manipulation of the intensity value of each pixel and its 

neighborhood within a certain block of size W x W pixels. Edge detectors find edges 

in an intensity image by detecting pixels where the intensity values change abruptly. 

Using algorithms based on derivative methods, edge detection is accomplished by 

comparing the first derivative of the intensity to a threshold, or by checking the 

second derivative for a zero crossing. 

Most derivative edge extraction techniques such as Sobel, Roberts, Prewitt, 

and Wallis methods are limited to making some non-linear manipulation of pixels 

over a 2 x 2 or 3 x 3 block as a means of edge enhancement before thresholding. All 

these mentioned methods possess the disadvantage of sensitivity to noise and 

dependency on the size of the block. The Roberts algorithm is sensitive to diagonal 

edges. The Sobel algorithm is sensitive to horizontal and vertical edges. But the edge 

characteristic functions based on quadruple child windowing, QCW-ECF, which I 
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introduce here, are sensitive to diagonal, vertical and horizontal edges. This follows 

since the generalized QCW-ECF is defined according to possible edge patterns 

illustrated in Figures 26 and 27 on pages 67 and 68. One major problem in edge 

detection is finding the edge in intensity images at those pixels which have the same 

intensity with the background [9]. 

Also another problem in edge extraction is that, for many cases, the intensity 

edge techniques depend on the appropriate choice of thresholds. I have found that 

Edge detection algorithms based on fuzzy logic with tunable membership functions 

are an effective approach to address the above mentioned problems. The FQCW-ECF 

which will be introduced here is an effective tool in fuzzy image processing for edge 

detection. Further, QCW-ECF and its fuzzy extension FQCW-ECF are flexible and 

can be applied for any desired size of block. Their sensitivities to noises are very low. 

1.2 Image Processing 

The term image processing generally refers to improving the visual 

appearance of the images or preparing the images for measurement of the features 

and structures present. Edge detection, which is the main part of this paper, is 

generally considered as a process of image feature extraction. Image processing can 

be generally categorized into two domains, one in frequency domain involved with 

the Fourier transform of images and another in the spatial domain which deals with 

manipulation of pixels and their neighborhoods . 
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1.2.1 Image Definition and Modeling 

In an image processing system, the image is mathematically characterized as a 

deterministic or statistical model [2]. In a deterministic model, the image is 

functionally defined by pixel properties, such as the sum of two dimensional 

orthogonal functions called basis images. In a statistical model, the image is defined 

by statistical properties of pixels, such as mean and covariance functions. 

Generally any two or higher dimensional function which carries information 

can be considered an image. Images can be either continuous or discrete. The 

continuous one is presented as a n-dimensional function f(X1 ,X2 , . . .  , X11) where X11 is 

an independent variable and n� 2. Also a discrete image which is the result of 

sampling of a continuous image is represented by f(K1 ,K2 , ••• , K111) where (K1 ,K2 , ... ,

Km) refers to the coordinates of a physical image pixel. 

1.2.2 Digital Image Processing 

Following the given definition of an image as a discrete n-dimensional 

function, digital image processing refers to processing of any 2-dimentional data. A 

digital image / of M x N dimension can be considered as an array of real or complex 

numbers represented by a finite number of bits [2]. 

In digital image processing systems, we usually deal with arrays of numbers 

obtained by spatially sampling points of a physical image. After processing, another 

array of numbers is produced and these numbers are then used to reconstruct a 
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continuous image for viewing. Thus, digital image processing is the sequence of 

digitizing (sampling and quantizing) and processing of digital data. 

1 .2.3 Intensity Images 

A digital gray tone (monochrome) image II can be generally represented by a 

2-dimentional intensity function f(m,n) where (m,n) are the coordinates of an image

pixel and f(m,n) is the brightness value. A digital 2- dimensional image in spatial 

domain can be shown as a single M x N dimension matrix with L gray tone levels as 

[ ] 
{Xrm 

e[0,1] {m= 1,2, ... ,M
II= f(m, n) = x where for 

rm l e{l,2, ... ,(L-1)} n= 1,2, ... ,N 
(1.2.3-1) 

Intensity image is represented by a single matrix of size M x N containing 

double precision values within continuum interval [O, I] and a crisp gray level l 

ranging from O to L-1, with L discrete gray levels. Each element of this matrix 

contains the information of one image pixel. The gray level of intensity O refers to 

black and L-1 refers to white , the highest intensity. A black and white photograph is 

the best example of intensity images. 

The following 8x8 matrix II generated by the MATLAB image processing 

toolbox represents an intensity image II = f(m,n) with L=16 gray levels. The 

normalized gray scale is considered as an intensity scale which is over the interval 

[0,1]. The intensity value O indicates the black (the gray level 0th
) and I corresponds

to white (the gray level (L- l )th
). Consequently any intensity value within [O, I]
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corresponds to the gray level le { 0, l , ... ,L-1}. Figure l represents an physical intensity 

image, a ring. The relevant 8 x 8 matrix is processed in Chapter IV. This simple 

matrix which represents an intensity image of a ring is used as example of simulation 

further. 

Intensity level representation 

1 

1 1 1 1 1 1 

1 1 .28 .28 .28 .28 

1 1 .28 .7 .7 .28 

1 .28 .7 .7 .28 

1 .28 .28 .28 .28 

1 1 

1 

1 1 

1 l 

ll=f(m,n)=[ Xmnl 

M=8 , m=l, ... ,8 

N=8 , n =1, ... ,8 
L=l6 

X
mn

E (0, I] 

le {0,1, ... ,15) 

Figure 1. Illustrations of 8x8 Physical Image, 8x8 

Image Matrix, and Intensity Levels. 
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1.2.4 Binary Images 

A binary image can be considered as a special case of an intensity image. A 

binary image is a matrix M x N dimension with two levels, 0 (black) and 1 (white). 

Logical or Boolean matrices can be considered as binary images. We will see later 

that edge extraction from intensity image using threshold results in a binary image. 

1.2.5 Enhancing Images 

Image enhancement is the technique of processing an image to prepare it for 

further analysis or for monitoring [1]. Therefore, based on a specific application, 

some certain image features are accentuated for subsequent processing. Contrast 

stretching, smoothing and sharpening, edge extraction, noise filtering and magnifying 

are important image enhancing techniques. 

Contrast stretching changes the intensity level of an image by mapping the 

gray level into another level using a single-valued transformation in order to increase 

the total dynamic range of gray levels. This, in turn, increases contrast. 

Image smoothing is generally applied to reconstruct a noisy image. In the 

spatial domain, this is achieved by intensity modification of each pixel. In the 

frequency domain it is accomplished by applying a low pass filter, LPF. In this 

process each pixel and its neighborhood posses almost equal intensity. 

Defocusing, Averaging (which is a LPF) and Max-Min rule algorithms are 

some techniques applied for the smoothing operation [l]. For example, the averaging 

method applied to remove the noise is based on averaging the neighboring intensities 
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of each pixel. If Xmn is the processing pixel, then the smoothed pixel X'mn is 

computed based on N number of intensity values of neighborhoods within block B as 

where (i,j)EB-{(m,n)} (1.2.5-1) 

1.2.6 Block Processing 

Most algorithms of digital image processing in the spatial domain deal with 

modifying of an image matrix based on local algorithm. In other words, most 

algorithms in the spatial domain manipulate the intensity of each pixel by considering 

the intensities of the pixels only in immediate neighborhood. Since processing each of 

the M x N pixels serially is time consuming, block processing is desirable. Block 

processing is a suitable technique by which the image matrix is divided into some 

smaller matrix dimensions for processing, which can be done in parallel. 

Block processing can be achieved by rectangular partitioning of whole matrix 

into a group of smaller matrices of W x W dimension with no component overlap or 

by sliding a rectangular window W x W dimension from left to right and top to 

bottom of an image pixel by pixel. In sliding block processing, the center pixel of the 

block is processed considering neighboring pixels based on an algorithm and finally 

replaced by the result of processing. The process is repeated pixel by pixel with its 

own proper W x W block until the whole image is covered. 
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1.2.7 Median Filtering 

Median filter is a linear operation on neighboring pixels of the middle pixel in 

block B. Input of the filter is the intensity of the middle pixel and output is the 

computed intensity value from neighborhood B.

X =median{x .. } rm . .  IJ 
I,} 

where (i,j) E B-{(m,n)} (1.2 .7-1) 

Median filtering orders the pixel values in a neighborhood and chooses the 

median value as the result. In this process the center pixel in the block is replaced by 

the median of the intensity values of neighborhoods within the block B with W x W

dimension. 

1.2.8 Noisy Image 

Due to physical realities involved in image processing systems, there is 

always an additional unwanted signal, noise. For example [1], a general mathematical 

model for an Electro-Optical system can be expressed as 

V(x,y) = g[w(x,y)] + n(x,y) where w(x,y)=h(u(x,y)) (1.2.8-1 ) 

V(x,y) represents the observed image, h is a linear operation on the original 

image u(x,y) and g is a non-linear operation on w. The general model of additive 

noise denoted by n(x,y) has application in many situations and defined as 

n(x,y) = J[g[w(x,y)]]. n1 (x,y) + n2 (x,y) (1 .2.8-2 ) 
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Functions f and g are non-linear operation of decoder/recording mechanisms. 

First term of n(x,y) is the image-dependent random noise and second term is 

independent random noise. Noise pixels distributed randomly over the image are the 

result of errors in image transmission and noisy components of the electronic 

systems. Two important types of noise are Gaussian noise with zero mean and 

outliers, extreme pixel intensity values. Median filtering is useful for removing 

outliers and Wiener filtering works best when the noise is a constant power additive 

noise such as Gaussian white noise. 

1.2.9 Edge Definition 

A pixel at which the intensity or gray level value changes abruptly is 

considered an edge pixel. Figure 2 illustrates one-dimensional edge model. 

Intensity Level 

(i, m-1)1 

. 
m 

(i, m+I) 

X;,m+l 

X;,m 

X;,m-1 

I -dimensional edge model 

-------------··· ........ ....................... ____ 

-----•-----------" -�· -----

......................... ......... i, ... ... ... .... i ........................................................... ,,.,, .... ..... !. ........ i .... ,, ..... , .. ,,, .. , ............. . 

l I . l 

(i, m-1) i (i, m+I) 

m 

First derivative 

(i, m-1) i 
m! 

Second derivative 

Figure 2. Edge Model Based on Intensity Transition. 

Considering direction i of one dimensional edges, edge at point m on this 
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direction can be modeled based on one pixel wide-transition in intensity from Xi,m-1 

to Xi,m+J• Above figure shows edge model as a ramp increase in intensity level. Edge 

is characterized by its height h, the slope angle a and m coordinate of the slope 

midpoint Xi, m• 

According to this model we can say an edge exists if both the slope angle a 

and the height h are gre.ater than specified values (thresholds). Most derivative 

algorithms for edge detection are based on checking the approximation of first for 

exceeding the threshold or the second derivative for zero crossing. 

1.2.10 Edge Detectors 

Edge detectors find edges in an intensity image by detecting pixels where the 

intensity values change abruptly. Using certain algorithms such as derivative 

methods, edge detection is done by comparing the first derivative of the intensity to 

certain thresholds, or by checking the second derivative for a zero crossing. Roberts, 

Sobel, Wallis, Kirsch, Marr-Hildreth and Prewitts are some possible derivative 

methods of non-linear edge enhancement. Most techniques are limited to making 

some non-linear manipulation of pixels over a 2x 2 or 3x 3 blocks illustrated in 

Figure 3 as a means of edge enhancement before thresholding [13]. 

The Roberts method is a simple nonlinear cross operation on a window 2 x 2 

as a differencing method for edge sharpening and edge isolation. 

(1.2.10-1) 
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The Roberts approximation to derivative, ER(m,n), detects edges at those 

pixels where the gradient of f is maximum and is also sensitive to diagonal edges. 

Ao= f(m-J,n-1) , A4 = f(m+J,n+l) 

A1 = f(m-1,n) As= f(m+J,n) 

A2 = f(m-1,n+l) A6 = f(m+J,n-1) 

A3 = f(m,n+l) A7 = f(m,n-1) 

Ao 

A7 

A6 

Figure 3. A block of 3x 3 Pixels. 

A1 A2 

f(m,n) A3 

As A4 

The Sobel method is a non-linear operation on a 3 x 3 block described by 

pixel intensities in neighborhoods. 

Where 
Es(m,n) = ( X + Y)

2

X = (A2 + 2. A3 + A4) - (Ao + 2. A7 + A6) 

Y = (Ao + 2. A1 + A2) - (A6 + 2. As + A4) 

(1.2.10-2) 

(l.2.10-3) 

(1.2.10-4) 

The Sobel approximation to derivative, Es(m,n), also detects edges at those pixels 

where the gradient of f is maximum and is sensitive to horizontal and vertical edges. 

The Wallis method is based on the logarithm of image luminance at the 

center pixel and neighborhoods over a 3x 3 block. According to this non-linear 

method an edge exists if the magnitude of the logarithm of intensity value at the 

center pixel exceeds the magnitude of average logarithmic intensity of its four nearest 

neighbors by a fixed threshold value. 
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(1.2.10- 5) 

1.3 Fuzzy Theory 

In 1965 Zadeh suggested a fuzzy set theory in which each element of a set has 

a degree of membership (degree of belonging to the set) which continuously ranged 

over [0,1], rather than being either 0 or 1. He developed all set operations such as 

union, intersection and complement over a fuzzy set. Today fuzzy sets and their 

associated fuzzy logic are widely used in many scientific and commercial problem 

domains. 

1.3.1 Crisp Sets and Fuzzy Sets 

Considering a universal set M, an ordinary crisp set A is defined by identifying 

those elements of M which set A contains. The characteristic function PA(x) of set A

is defined so that each element of the set M has a corresponding value 1 or 0. The 

element x; of M belongs to set A if and only if PA(x;)=l. Said more formally, A={x I 

P A(x)= 1}. Fuzzy sets are based on the idea of extending the range of the 

characteristic function from the binary values 0 or 1 to the continuous real interval 

values [0,1]. Therefore, a fuzzy set A is defined by identifying its components x and 

their associated membership degrees µA(x). The membership function of fuzzy set A 

is defined to give each element of set A a corresponding real value within interval 

[0,1]. The mathematical notation of fuzzy set A is represented as 
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A= {(x,µ A (x)) I µ A E [0,1], x EM} (l.3.1-1) 

When the universal set M is discrete fuzzy set A is represented by Equation 

(l.3.1-1) where the I, referring to union operator in fuzzy set. 

A=±(µ,;/_)
i=l /x, 

(1.3.1-1) 

1.3.2 Fuzzy Logic 

Logic is the study of the methods and principles of reasoning in all its possible 

forms (13]. Classical logic deals with propositions that yield values over set { 0, 1}, 

false or true. Boolean logic or two-valued (binary) logic has been used in traditional 

logic and set theory to model the world as black and white, false and true, over set T2

= {0,1 }. Two-valued logic is suitable for systems which are modeled crisply. It has 

the advantage of being crisp in inferences but the disadvantage of not accurately 

describing the analog real world. 

Multi-valued logic was developed by Lukasiewicz in the 1930s. The set TN 

of truth values for integer N is assumed to be evenly divided over the closed interval 

(0, 1]. That is, N-valued logic can be extended to the case where N is countable, and 

the truth values are allowed correspond to the points on the interval (0, 1]. This case is 

known as Lukaiswics L 1 logic, and provides the base logic needed for working with 

fuzzy sets [ 4]. 
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The term fuzzy logic usually involves the manipulation of truth values such 

as 'nearly true' defined as fuzzy sets over the interval (0,1] of L 1 truth values. In 

fuzzy logic, usually the knowledge is linguistically expressed as rules in the form of 

'If x is A, then y is B' where x and y are fuzzy variables and A and B are fuzzy 

sets or fuzzy values. Fuzzy logic deals with propositions that possess values over 

interval [0,1] and also combinations of variables that stand for arbitrary propositions. 

These variables called fuzzy linguistic variables. The combination of truth values of 

these fuzzy variables is done by multi-valued logic operators such as complement, 

max, min operators. Table 1 illustrates the main operators used in crisp set and N­

valued logic. 

Table 1 

Operator Comparison 

Crisp set Two-valued logic N-valued logic Fuzzy logic 

A' 1-A 1-A 1-A

u +,v Max Max, t-conorm 

n . ' I\ Min Min, t-norm 

Fuzzy logic processing includes fuzzification of crisp sets, decision making 

logic (fuzzy inferencing), knowledge base (IF -THEN rules) and defuzzification. 

A simple architecture of a fuzzy logic system (FLC) is illustrated in Figure 4. This 

system, which is applied in image processing, will be described in detail later. 
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X 
Fuzzification 

µ(x)/x Fuzzy Inference µ(z)lz_ Defuzzification-

... 

Machine 
... 

Knowledge Base 

(Fuzzy Rules) 

Figure 4. Illustration of a Fuzzy Processing System. 

1.3.3 Fuzzy Membership Function, FMF 

4 

A MF is a curve that defines how each member x in fuzzy set A is mapped to a 

membership value µA(x) ( or degree of membership) over an interval [O, 1]. We 

mathematically represent this as 

(1.3.3-1) 

Membership function (MF) can be generated heuristically or generated by 

using clustering techniques, such as c-mean, adaptive vector quantization A VQ, and 

the self organizing map SOM. In this paper we simply apply a heuristic approach to 

generate membership function. Choosing the appropriate MF is application 

dependent. The most commonly used MFs are the triangular, trapezoidal, S-shaped, 

Z-shaped, bell-shaped, Sigmoid and Ggaussian. Following are the examples of MFs.

Triangular shape MF can be generated functionally using Equation (1.3.3-

2). Parameters a, b, c are the parameters by which to tune the MF as desired to make 

a symmetric or anti-symmetric MF. 
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0 if X $;a 
x-a

if a$;x$;b 
( . ( x-a c-x), o)= b-a

(1.3.3-2) A(x; a, b,c) = max mm -- , 

b-a c-b c-x
if b$;x$;c 

c-b
0 if x;;::c 

Trapezoid shape MF can be generated functionally using Equation (1.3.3-3 ).

Parameters a, b, c, d are also the tuning parameters by which to make a symmetric or

anti-symmetric MF.

0 if x�a 
x-a

if a$,x$,b 
b-a

( (x-a 1 d-x), o)= if b$,x$,c (l.3.3-3)I1(x; a, b, c) = max min -- ' ' 1 
b-a d-c 

d-x
if c$,x$,d 

d-c
0 if d�x 

S-shaped MF, the Zadeh's MF, is defined as Equation (1.3.3-4). Parameters

a, b, c are also the tuning parameters for this MF.

0 if x�a 

2(�r if a-<.x�b 
S(x; a, b, c) =

b-a 

1-2(�r if b-<.x�c 
x-a 

(1.3.3- 4)

0 if C-<.X 
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Bell-shaped MF is defined by Equation (1.3.3-5). Parameters a, b, c can be 

used to tune this MF as desired to make a symmetric or anti-symmetric MF.

IT(x; a, b, c) =

s(x· c - b c -!!_ c) ' ' 2, 

1 -s( x; c + � , c + b , c) 

if x�c 

(1.3.3- 5) 
if x>-c 

The generalized bell MF is represented in Equation (1.3.3-6). The parameters 

a, b, c are used to tune MF centered at point c over the x-axis. 

1
IT(x; a, b, c) = 2b 

l+lx

:
c l 

(1.3.3-6)

Consider the case of triangular MF. The most significant points in MF are the 

left and right points, peak point and the cross-point level. The peak point is the point 

Xpeak for which the value of the MF is equal to 1. Left and right points are 

respectively the least and the greatest value of fuzzy set A in which the value of MF is 

equal to 0. The peak value is an interval for membership function. Now we can define 

the left and right width based on the above mentioned points. The left width, Wieft is 

the length of the interval [X1eft . Xpeak] that is W1eft = Xpeak - X1ef1,- Similarly the right 

width, Wright is the length of the interval [Xpeak , Xnght] that is Wright = Xright - Xpeak•

Figure 5 illustrates the triangular MF and its corresponding parameters. 

In case of overlap between two MFs A and B, the cross-point Xcross and the 

cross point level are parameters which are useful in defining the percentage of 
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overlap. A cross-point Xc,oss is the point at which both membership functions have the 

same value (level). Cross-point level, which is the same on both MF, is the 

membership degree of Xcross• Two MFs A and B may have more than one cross-point. 

Now we can define percentage of overlap of A in B as a ratio of the length of interval 

[Xc,oss, Xnghr] and W,ighr in membership function A that is 

Xright,A - Xcross X,ight,A - Xcross 
Povl,A = = 

X,ight,A - Xpeak w,ight,A 
(1.3.3-7) 

And consequently the percentage of overlap of Bin A can be defined as 

Xcross - Xteft,B Xcross - Xteft,B 
Povl,B =------=------ (1.3.3-8) 

Xpeak - Xteft,B Wteft,B 

Figure 5 represents the triangular membership functions A and B and their 

corresponding parameters. 

x) 
i ...................

.
. w,,jl. B················ >k-

W_n_·,1u_.s
_

·······
>. 

x-+--.....-::;....._ _______ -i.... __ ....;.£ _ __,__.....::i,,......__-'--____ � _ _. 

X1,jl.A Xp,ut. 1< x,,11. B x,,.,,, Xnghl. 1< Xp,ak. B 

Figure 5. Illustration of Triangular MF. 

1.3 .4 Fuzzification 

Fuzzification is the process of producing a fuzzy set from a crisp set as 

illustrated by Figure 4. Using the fuzzy logic system to process any data, we have to 
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first convert the crisp data to the fuzzy data in order to apply fuzzy operators for any 

computation in rule-based inferencing stage. Fuzzification is done by associating the 

membership degree for inputs to the fuzzy logic system using certain membership 

functions. Fuzzification requires (a) identifying relevant input and output variables of 

the fuzzy logic system and ranges of their values, (b) selecting meaningful linguistic 

states for each variables and expressing them by appropriate fuzzy sets and ( c) 

defining membership functions for each input variable to express the associated 

membership degrees. 

In this paper (Chapter IV) inputs to the fuzzy system range over gray levels 

scaled from 0 (Black) to 255 (White). We have applied fuzzification methods by first 

partitioning the intensity scale [0, 1] ( or the discrete gray scale 0-255) into 5 

individual ranges, and second by defining linguistic variables Dark, Dark Gray, 

Bright Gray and Bright for these 5 ranges. Finally we have applied the fuzzy 

quantization over the range [0, 1] using 5 membership functions. We have used two 

trapezoid-shaped MFs for left and right ranges, and three triangular-shaped MFs for 

the other three ranges. You will see further, Figure 7 on page 27 represents the fuzzy 

plane applied for fuzzification over intensity scale [0, 1] or discrete gray scale 0-255. 

1.3.5 Fuzzy Inference Rules 

Fuzzy rules, which are often expressed in the form of IF -THEN statement, 

are essentially fuzzy relations or fuzzy implications [4]. In this step, the knowledge 

pertaining to the given problem is expressed in terms of fuzzy inference rules and 
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stored in fuzzy rule base. Figure 6 represents a rule base containing the 25 fuzzy rules 

applied in a fuzzy control system. Then the rule 25
th is expressed as follows. 

Rule 25
th

: IF (Xmn is G) and (Y is G), THEN ( d is Z) 

.....................................
..
.

lnout 

00 G BG B 

Z········· s M L 

Input 00 s ·······Z...\ s M L 

Output d 
Xmn G M s�· z s M 

BG L M s z s 

B >l. L M s z 

Figure 6. Illustration of the Rules for Fuzzy Logic Controller. 

The module consisting a number of fuzzy rules called fuzzy knowledge-base 

or fuzzy rule-base. In fuzzy knowledge-base all the possible rules can conveniently be 

represented in a matrix form. 

1.3.6 Fuzzy Reasoning 

Fuzzified input variables of fuzzy logic system are taken to fuzzy inference 

machine to be processed by relevant fuzzy information rules to make inferences 

regarding the output variables. This process is called fuzzy reasoning. There are 

various techniques to combine inputs with relevant rule in order to infer an 

appropriate fuzzy output. The most commonly applied are Max-Min and Max-Dot

fuzzy inference methods. Assume we haven rules in knowledge base as 

Rule 1: IF(xisA1 and yisB1), THEN z isZ1 
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Rule n: IF ( X is An and y is Bn ), THEN Z is Zn

For two fuzzy input variables Xo and yo, assume only two rules 2 and 4 are active as 

Rule 2: IF ( Xo is A2 and Yo is B2 ), THEN Z is C2 

Rule 4: IF ( Xo is A4 and Yo is B4 ), THEN z is C4 

Then, The corresponding fire strength parameters for rules 2 and 4 are respectively 

defined as 

(1.3.6-1) 

Then for Max-Min reasoning, Mamadani's minimum operation is used for fuzzy 

implication and the output membership function for consequent C can be inferred as 

(1.3.6-2) 

In Max-Dot reasoning, Larsen's product operation is used as fuzzy implication 

function [4]. The membership degree of the inferred consequence is obtained as 

(1.3.6-3) 

Note that in both methods, if x0 and y0 are crisp values then the above 

mentioned operations result in fuzzy singleton. 

1 .3.7 Defuzzification 

The conclusion resulting from a certain fuzzy reasoning technique in fuzzy 
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inference machine is expressed in terms of fuzzy set. This must be converted to a real· 

crisp value. This process of converting a fuzzy set to a single real number is called 

defuzzification. There are some defuzzification methods each of which leads to a 

different result. Assume the fuzzy set resulting from a fuzzy inference machine is a 

discrete fuzzy set C as 

where µk E [0,1] (l.3.7 -1) 

The most commonly used techniques are center of area COA, center of 

maxima COM, and mean of maxima MOM. These are defined as follows 

Center Of Maxima, COM, Consider fuzzy set M given by Equation (l.3.7-

2), where h(c) is the height of C (maximum membership degree in C). 

(l.3.7 -2) 

COM is defined as the average of the smallest value and the largest value of 

C with the same membership degree equal to h( c ). This is represented as 

min { Zi I Zi E M} + max { Zi I Zi E M} 
dcom (c) =

2 
(1.3.7-3) 

Mean Of Maxima, MOM, method which is the average of all members of 

above defined set M, is defined as 

Lzi 
z·eM 

dmom (c) = !Ml (l.3.7-4) 
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Center Of Area, COA, method indicates the value within the range of Zi in 

which the area under membership function C is partitioned into two equal sub-areas. 

This is represented as 

Icµi · z) 
() _i=I __

dcom C = n (1.3.7- 5) 

Iµi
i=l 

The results obtained from the above methods are application dependent. For 

example in our approach to edge detection which is explained further in Chapter IV, 

the concluded fuzzy set from the inference machine is 

(l.3.7 - 6) 

While the COA technique gives a better result than the MOM and COM 

techniques, using one of the edge characteristic functions (ECF) given in section 

(3 .1.4) results in a better value as a defuzzification technique. 

1.3.8 Membership Function Tuning Technique 

(1.3.7 - 7) 

As we will see, tuning of membership functions is important to optimize 

parameters. By reforming the membership function both the conclusion obtained 

from the fuzzy inference machine and, consequently the value resulting from the 
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defuzzification stage, change considerably. 

The shape of each MF depends on parameters a, b, c, d involved in 

constructing the MF. Thus, the variation of parameters a, b, c, d in membership 

functions has an effects on the resulting output of fuzzy logic system. We take an 

advantage of this effect to tune MF in order to obtain the desired result in output. The 

gradient decent and neural network algorithms are two of the most commonly used 

approaches to tuning membership functions. In this paper we use the 

multidimensional vector optimization technique called the cyclic coordinate 

algorithm. This technique is used to tune membership functions and consequently to 

optimize the defuzzification parameters simultaneously. 

Assume we have triangular-shaped MF defined by Equation (1.3.3-2) with 

W1eft and Wright• Then the variable vector used for tuning MF is a 3-dimensional vector 

as V= [W1eft ,b, Wright]. In our approach to optimal edge detection using fuzzy logic 

system, we have applied the percentage of overlap Povl (the same one for all 

membership functions), as well as peak points of membership functions, as the 

variables to tune the input/output MFs of fuzzy logic controller (FLC). This FLC has 

been designed to lead the edge detector system (EDS) toward an optimal output using 

cyclic coordinate algorithm. You will see further in Figure 7 on page 27, there are 

five MFs assigned for five input linguistic variables to the fuzzy logic system. The 

variable vector applied for tuning input MF has been chosen as V;n= [P0v1, b1, b2, b3

; b4, bs]. If IXcross - Xrightl = IX1eft - Xcrossl, then <Povt)A = (P<JVL)B. The cyclic coordinate 

algorithm is explained in section 1.5 in detail. 
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In Chapter N, the variable vector pertaining to the optimal fuzzy edge 

detection problem consists of the overlap percentages and peak points belonging to 

input/output membership functions. This variable vector is used to tune membership 

functions to obtain the optimal edge based on minimizing the error e between the 

desired edge trace and the actual resulting edge trace from EDS as the objective 

function. 

1.4 Fuzzy Image Processing 

Fuzzy logic has been applied to gray tone image processing such as gray level 

thresholding, edge detection, image enhancement, segmentation and so on. Several 

fuzzy operators have been used in fuzzy image processing which include max, min, 

INT [1]. Further, as we see, the use of fuzzy logic system (controller) is a significant 

choice in optimization of image processing. A gray tone image possesses some 

ambiguity within the pixels due to the pixel multi-valued levels of brightness. 

Therefore it is justifiable to apply the logic of fuzzy set rather than ordinary set to 

image processing problems. 

1.4.1 Fuzzy Intensity Image Definition 

In the spatial domain, a fuzzy intensity image FIi of dimension MxN with L 

gray tone levels is an array of fuzzy singletons that can mathematically be 

represented as Equation (1.4.1-1), for m=l,2, ... ,M and n=I,2, ... ,N. Xm11 denotes the 

intensity value of pixel (m,n)th and µm11 is its associated membership degree. 
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!Xrm 
e[0,1]

FIi = f(m,n)=[µ,fx
rm 

]=[FXrm ] w,ere l e{0,1, .... ,L-1} Gmylevel 

µ
rm 

e[0,1]

(l.4.1-1) 

Similarly, the definition of an intensity image given by Equation (1.2.3-1 ),

the normalized gray scale is also considered here as an intensity scale over the

interval [0,1]. That is, XmnE [0, 1]. Depending on the membership function(s) used for

fuzzificatin of digital image we define the fuzzy plane as

(l.4.1 - 2) 

Prefers to membership function(s) defined over the intensity value range [0,1]

( or gray level scale 0 to L-1 ). FXmn is a fuzzy singleton denoting the fuzzified

intensity image pixel (m,n). Xmn is the intensity value (or gray level l) at this pixel

and P(Xmn) defined by Equation (1.4.1-2) is the corresponding membership degree of

having grayness relating to some gray level l. Membership function(s) applied in the

fuzzy plane P can be selected as one of the functions explained in section 1.3.3. The

membership degree µmn takes a value between interval [0, 1].

In Chapter IV for fuzzy approach to edge detection, we apply triangular and

trapezoidal membership functions, defined by Equations (l.3.3-2) and (l.3.3-3 ) in the

fuzzy plane illustrated in Figure 7 to fuzzify the digital image array. As this Figure

shows, the fuzzy plane consists of three triangular membership functions concerning

linguistic variables DG, G, BG and two trapezoidal membership functions relevant to

26 



linguistic variables D, B. These five membership functions quantize the gray level 0-

255 within interval [0,1] as fuzzification. The positive constants a, b, c, d which are 

the tools for tuning membership functions, consequently have the effects of altering 

the ambiguity in the fuzzy plane by changing the cross-over point and slope of 

transformation function. 

Fuzzy intensity plane 
Merri>ership Functions (intensity fuzzification) 

1.2 -------------------

(I) 
(I) 

c, o.8 

0.6 

0.4 
� 

0.2 

0 

0 

I\ A 
f 

,•-•• 

/\ /\ /\ / 
/ \/' \,/ \ 

t :\ 

62.5 

I\ f \ 
/ \ \ i 

125 187.5 

Gray level or Intensity 

250 

D: Dark, DG: Dar1c: Gray, G: Gray, BG: Bright Gray, B: Bright 

Note: Normalized gray level is considered as intensity 

Figure 7. Fuzzy Intensity Plane. 

1.4.2 Fuzzy Image Enhancement 

_o 

-DG

- G 

-BG 

•• B 

As discussed in section 1.2.5, the purpose of enhancing an image is the 

modification of that image in such a way that the result is more suitable than original 

for a specific application. This modification is implemented by some manipulations 
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on pixel intensities in the fuzzy property domain. Figure 8 illustrates a block of image 

enhancement. The fuzzy operator INT, which is actually a contrast intensification 

function, is taken as an image enhancing tool. This function is defined as 

{ 2 2·µ 
Tl = INT(µ mn) = 

mn

( 
)2 

1-2· 1-µmn 

for 0� µ �0.5 
· mn 

for 0.5 � µmn � 1
(1.4.2-1) 

This function enhances the membership value of those elements whose 

membership is above 0.5 and diminishes that of those elements with membership 

below 0.5. This function is recursively applied for better contrast enhancement as 

Ts
= INT(Ts-1) (1.4.2-2) 

The subscript s represents the number of composites of INT function [l]. 

Assume P(Xmn) defines a fuzzy plane such as Figure 7. The block diagram illustrated 

in Figure 8 is considered as a block of image enhancement using intensification 

function in the fuzzy property domain. The parameters a, b, c, d are fuzzifiers and 

defuzzifiers ands in function Ts is used as an intensity tuner. 

Xnm Fuzzification 
l
µmn

► 
Recursive Intensification U'mn Defuzzification Ymn

�

Y'(µ'mn) _. P(Xmn) Tl�n) � 

j • 

, j � 

Tuners 
a. b. c. d. s

Figure 8. Image Enhancement Using Fuzzy Theory. 
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1.4.3 Fuzzy Image Smoothing Algorithms 

Image smoothing, which is classified as an image enhancing algorithm, is 

achieved by intensity modification of pixels in the spatial domain. Each pixel and its 

neighborhood possess equal brightness or gray level. The technique used for fuzzy 

image enhancement [1] is presented in Figure 9. 

Xmn Pre-Enhancing 
Ymn Smothing 

Y' 
Post-Enhancing 

X' 
� 

mn
.,. 

mn.._
.... 

E 
� 

s 
� 

E 
... 

Figure 9. Fuzzy Image Enhancement Sequence. 

The sequence consists of pre-enhancement of an image using the method 

described in section 1.4.2, block E followed by the smoothing process through block 

S and a post -enhancing of the smoothed image through block E again. All 

smoothing processes blur the images by removing the abrupt changes in intensity or 

gray level and consequently smooth the edges. Therefore, the post-enhancement is 

used to improve the intensity contrast in order to obtain sharp images. There are some 

methods to smooth an image which can be applied as tools in block S.

Defocusing technique is used as a smoothing algorithm using a linear non­

recursive filter. It is defined as 

Y' mn = 
ao · Y mn + a1 · L Yij + a2 · L Yij + · · · · · · · · · +as· L Yij

where 

QI Q2 Qs 

{
a.,+Nra1+N2·a2+ ......... +Ns·as=l 
o::;;a1::;;a2::;; ......... '.5as'.51 
(i,j)-:t;(m,n) , m=1,2, .. ,M , n=l,2, .. N 

(1.4.3-1) 
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Ymn represents the (m,n )
th pixel intensity of the pre-enhanced image to smoother S. It 

is also in the center of s circles Q1, ... Qs with radii R1, ... ,Rs. Each circle Qs contains 

Ns number of pixels (ignoring the middle pixel) on or within the circle but out of Qs-1• 

While the radius Rs of circle Qs decreases, the coefficient as also decreases and 

consequently the portion of intensity added to the middle pixel Y mn decreases. 

Averaging technique is considered as the special case of a single circle in the 

defocusing technique. Since a; = a
j 

for i=j=0, 1, .. . ,s, then 

(1.4.3 - 2) 

The other method called the max-min rule [1] is not explained here. As the 

name "defocusing algorithm" implies, smoothing algorithms also have the 

disadvantage of blurring the images. 

1.4.4 Edge Detection 

Edge detection can be applied as a final enhancement in the spatial domain. 

This is represented in Figure 10. As you observe ·block 'ED' is added to sequence 

processing illustrated in Figure 9 for edge enhancement as a final process. The edge 

enhancing algorithm can be achieved by the algorithms introduced in section 1.2.10 

or by our approach to edge detection discussed in Chapter II. Edge detection using 

min and max operators [1] is given in following equations. These equations can be 

applied for the block ED in sequence illustrated by Figure 10. 
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y Y' 
Pre-Enhancing mn 

E 
-------

Post-Enhancing 

E 

Edge-detection 

ED 

Figure 10. Smoothing and Edge Detection Sequence. 

X' 'mn = IX'mn - mJn{X'ij� 
or 

X''mn = IX'mn-ma.x{X'ij� 

or 

x · mn = lma.x{x ij }- mJn{x ij �

{
(i,j) -:t; (m,n)

for 
(i,j) E Q 

(1.4.4 -1) 

(l.4.4 - 2) 

(l.4.4 -3) 

Q is a circle of radius R centered at the pixel (m,n) and contains N pixels (i,j) 

located on/within circle. According to this set of equations, the better edge 

enhancement with high intensity trace will be achieved when the intensity contrast 

increases. These three equations have been examined on some different gray tone 

images and the results indicate that equation (1.4.4.2) generates better edge trace 

compared to two others. Generally the edge obtained by any desired methods can be 

mathematically represented as 

E II ( m, n) = [X'' mn] !
m = 1

,
2, ... ,M 

where 
n = 1,2, ... ,N 

(1.4.4- 4) 
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X"mn is the detected or computed intensity value of an edge pixel. The subscript II 

denotes original ( or smoothed and contrast intensified) image to edge detector. 

Briefly, the edge enhancing algorithm can be implemented in four stages: (1) 

pre-enhancing which consists of contrast intensification in the fuzzy domain; (2) 

Smoothing; (3) post-enhancing which consists of redoing the contrast intensification 

in the fuzzy domain; and (4) Edge detection by applying the appropriate algorithm. 

1.5 System Optimization 

The object of system optimization is to specify an input vector V(t), which 

drives a system to a specified target state in such a way that during the process a 

predefined performance index is minimized or maximized. 

Some different optimizations for linear and non-linear systems exist such as 

linear optimal quadratic control, switching curve strategy and dynamic programming 

which are most commonly used in control problems. They are all categorized as 

derivative methods involved with analytical solution (direct solution for differential 

equations) or numerical solution (approximation of differential equations, like Euler's 

method). Also there are some non-derivative methods such as sequential line 

searches, golden ratio sequential line search and cyclic coordinate applied in multi­

dimensional optimization. 

1.5.1 Discrete Nonlinear System Optimization 

A discrete non-linear system can be mathematically expressed as Equation 
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(1.5.1-1), where S"' Sk+J, Uk represent respectively the present state, next state and 

input variables. The term g denotes the system function at time k. This function as 

well as the aforementioned variables can be scalar or vector. 

(l.5.1 - 1) 

To optimize the above system, the performance index PI is defined by 

(l.5.1 - 2) 

The term f denotes the cost function at time k. Usually cost function during the 

optimization time is constant and can be denoted by f At the optimal point the 

system function is optimum, g(k*, Sk *,Uk*). And consequently the performance index 

is max or min, PI* = f(k* ,Sk *,Uk*). In Chapter IV, we consider image enhancement 

system as a discrete nonlinear system and will optimize the enhanced image using a 

multidimensional optimization, cyclic coordinate algorithm. 

1.5.2 Non-Derivative Methods 

The function f aimed to be optimized is called objective function. To find an 

explicit formula for an objective function can sometimes be so complicated or 

impossible, then a non-derivative method is adopted to optimization problem, such as 

sequential line search algorithm. 

1.5.3 Sequential Line Search Algorithm 

Assume objective function f is convex meaning the concavity does not 
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change, or is at least locally convex in the neighborhood of the optimal value. 

Without loss of the generality assume that one-dimensional function f is concave up 

.within interval [a;,bi] during iteration i of the algorithm . Then Equations (1.5.3-1) 

and (1.5.3-2) define two evaluation points lep; and rep; for thirds algorithm of 

sequential line search as 

(1.5.3 -1) 

(1.5.3- 2) 

Terms lep; and rep; are evaluations representing left-side and right-side evaluation 

points respectively for objective functionf at iteration i, that is, heft = f(lep;) and fright 

= f(rep;). The Figure 11 illustrates evaluation points within interval [a;, b;]. 

--*-i _zt.._i _ __._rt_i 
___.t....__i -► X 

Figure 11. Sequential Line Search on Direction x. 

The length of interval [a;,bi] is called length of uncertainty and denoted by l; = b; -

a;. According to convexity theorem [16], the uncertainty interval, [a;+1,b;+1l, in 

iteration i+ 1 can be computed as 

If f(lep;) <f(rep;) then 
If f(lep;) > f(rep;) then 
If f(lep;) = f(rep;) then 

a;+1 = a; , b;+1 = rep; 
a;+1 = lep; , b;+1 = b; 
a;+1 = lep; , b;+1 = rep; 

For a given initial interval [a,b] and the length of uncertainty l, the thirds 

34 



sequential search is given by the algorithm shown in Figure 12. 

INPUT L, a, b 
lep = (2.a + b )/3 
rep =(a+ 2.b)/3 
CALCULATE f{lep) 
CALCULATE f{rep) 
DO WHILE b-a > l 

IF f{lep) <f{rep) THEN

IF f{lep) > f{rep) THEN

IF f{lep) = f{rep) THEN

lep = (2.a + b)/3 
rep = (a + 2.b)/3 
CALCULATE f{lep) 
CALCULATE f{rep) 

ENDDO 

PRINT (a+b)/2 , f{(a+b)/2) 

b = rep 
a= lep 
a = lep , b = rep 

Figure 12. Third Sequential Line Search Algorithm. 

1.5.4 Golden Ratio Line Search Algorithm 

Let the evaluation points in line search algorithms be defined in terms of 

uncertainty boundary points ai, bi as 

lep; = a- a; + (1- a)-bi (1.5.4-1) 

(1.5.4-2) 

If constant a is equal to 1, then the evaluation points fall on end points. If a is equal 

0.5, then the evaluation points are identical and finally for 0.5< a <I , these points 

locate between boundary points a; , b;. The famous golden ratio from Greek antiquity 

is obtained approximately as a= 0.618, [16]. The golden ratio line search algorithm 

is given for one-dimensional objective function as shown in Figure 13. 
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INPUT L, a, b 

lep = (0.618).a + (0.382).b 
rep = (0.382).a + (0.618).b 
CALCULATE !,,ft = f(lep) 
CALCULATE frig/11 = f( rep) 
DO WHILE b-a > l 

IF ft,Jr <frig/11 THEN 
b = rep 
rep = lep 
lep = (0.618).a + (0.382).b 
CALCULATE f(lep) 
fright = ft,Jt 
!,,ft = f( lep) 

IF !,,ft >= fright THEN

a= lep 
lep = rep 
rep = (0.382).a + (0.618).b 

CALCULATE !(rep) 
F1,Jt = f,ight 
Fright = !(rep) 

END DO 

PRINT (a+b)/2 , f((a+b)/2) 

Figure 13. Golden Ratio Sequential Line Search Algorithm. 

1.5.5 Multidimensional Optimization 

Line search algorithms are techniques for optimization of a one-dimensional 

objective function. In system optimization, for many problems higher dimension is 

necessary to model system function as objective to optimize. In cases where there are 

no analytic means available, numerical methods are adopted for optimization. These 

methods may involve derivatives, but more often that not, the problems will require 

non-derivatives. 

Assume that the two-dimensional system function g(x,y) is considered to be 

optimized subject to the constraintfix,y). Sequential search methods adopted for one-
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dimensional line search in sections 1.5.3 and 1.5.4, are also applicable in higher 

dimensions. This is done in multidimensional optimization by choosing a direction, 

then looking for the min/max along this line. In general this will require a line search. 

Once the minimum is found along this line a new direction is chosen and the 

procedure repeats. This continues until a reasonable approximation to min/max is 

achieved. This approach to optimum point from origin is generally illustrated on 

contour lines of the surface j{x,y) in Figure 14. 

-·· 

_._., .. ---·-·

.................
....

.. •d2

O '-------------�X 

Figure 14. Sequential Line Search Illustration. 

As can be seen, the line search algorithm starts from origin and by 

sequentially choosing line d1, d2, d3 and finally d4 ends at an optimal point. The best 

directions can be found by gradient of f (that is, the partial derivations off). This is 

called steepest decent algorithm, [16]. 
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1.5.6 Cyclic Coordinate Algorithm 

As we told before the directions in the line search algorithm can be obtained 

by the gradient of function f In case there is no explicit formula for gradient, non­

derivative methods are helpful by cycling through a protocol of directions, 

independent of function f In this technique of optimization directions are adopted 

parallel to the coordinate axis. For example, in the case of a two dimension x-y, first 

try the x-axis and then the y-axis, again repeating this process. Extension to higher 

degree systems is obvious. 

To show this algorithm, consider a two-dimensional optimization problem for 

a function f(c1, c2). The main structure for the cyclic coordinate algorithm is given 

in Figure 15. 

INPUT c,, C2 

INPUT e, l, d 

DO WHILE II (c1 - c',)2 
+ (c2 - c'2)2 

II>= E 
c'1 = c1 
c'2 = C2 

FOR dir =l to 2 

CALL golden(cJ , c2 , dir, d, l; CJ, c2) 

END 

END DO 

C*J = CJ 
c*2 = C2 
f* =f(c*J, c*2) 

PRINT c*J , c*2 , f* 

Figure 15. Cyclic Coordinate Algorithm. 

This main program, called cyclic, requires the initial point c = (c1, c2), the 
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tolerance £ (by which we can tune the amount of closeness to optimal point) and l

(the length of uncertainty during a line search). The sub-algorithm GOLDEN (golden 

ratio sequential line search) is shown in Figure 16. 

GOLDEN(c1 , c2 , dir, d, l; c1 , c2) 

IF dir = 1 THEN a = c 1 - d , b = c 1 + d 
IF dir = 2 THEN a = c2 - d , b = c2 + d 

lep = (0.618).a + (0.382).b 
rep = (0.382).a + (0.618).b 

IF dir = 1 THEN CALCULATE !,,ft = f(lep, c2 ), CALCULATE fright = !(rep, c2 ) 
IF dir = 2 THEN CALCULATE !,,ft = f( c 1 , lep ), CALCULATE f,ight = f( c 1, rep) 

DO WHILE b-a > l 
IF /,,Ji < fright THEN

b = rep 
rep= lep 
lep = (0.618).a + (0.382).b

f,ight = /,,ft 
IF dir = 1 THEN CALCULATE J,,1; = f(lep, c2) 
IF dir = 2 THEN CALCULATE !,,ft = f( c 1 , lep) 

IF !,,ft > = f,ight THEN

a= lep 
lep = rep 

END DO 

rep= (0.382).a + (0.618).b 
F,,ft = f,ight 

IF dir = 1 THEN CALCULATE frigtrr =!(rep, c2 ) 
IF dir = 2 THEN CALCULATE fright = f( c 1 , rep) 

IF dir = 1 THEN RETURN c1 = ( a+b)/2 , c2 = c2 

IF dir = 2 THEN RETURN c1 = c1 , c2 = (a+b)/2

Figure 16. Golden Ratio as a Sub-Algorithm of Cyclic Coordinate Algorithm. 

In order for a line search be initiated, it is necessary to know just where to 

place the interval of uncertainty, [a,b]. This is done using a fixed distanced as 
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a=c1 - d, b= c1 + don direction V=(l,0) or flag dir =1 and a=c2- d, b= c2+ don 

direction V=(0, 1) or flag dir=2. The output from the cyclic is simply the final, min, 

point found by the algorithm. 

The cyclic must call a line search algorithm such as golden ratio line search, 

considered as the best sequential line search approach, to perform the actual line 

search. Parameters c 1 , c2 , l , d are passed from cyclic to golden and also flag dir is 

specified in cyclic to indicate which coordinate in golden is to be subjected to the line 

search algorithm. At the end, golden will pass the best point c=(c1 , c2) back to cyclic 

as well. The golden ratio line search algorithm is given as sequentially follows. 

The following chart, Figure 17, illustrates the inter-module communication 

requires for the cyclic coordinate algorithm. c* and f* represent respectively the 

optimal point ( or vector ) and optimal value as the output of algorithm. The block 

FUNCTION represents the calculation of JieJt and fright in an individual module. The

given algorithm which is for a two-dimensional system can be simply extended to a 

higher dimension. 

This algorithm is just for directions parallel to c1 and c2 axis. Choosing a 

diagonal direction may help to reach the minimal point faster. However for a n­

dimensional we can consider n directions parallel to the main axis and 2n -n-1 

diagonal directions. In the case of a two-dimensional function there are two directions 

(1,0) and (0, 1) parallel to main axis, and one diagonal direction (1, 1 ). This algorithm 

is applied in Chapter IV to minimize the performance index of edge detector system 

by tuning a vector V (with 12 components) as an input to this algorithm. 
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c,l,d,£ c*,f* 
A 

CYCLIC 

c,l,d ,dir C 

GOWEN 

C fieJt ,frigh 

FUNCTION 

f(c) 

Figure 17. Inter-Module Communication for the Cyclic Coordinate Algorithm. 

1.6 Some Mathematical Operations 

In this section some basic operations on matrices and vectors, applied further 

as image processing tools, are explained. 

1.6.1 Inner Product 

Let U and V be vectors in /?1 : U = (u1, u2, .. ,,un) and V = (v1, v2, .. ,,vn), The 

inner or dot product of U and V, denoted by U. V or < U, V>, is the scalar obtained by 

multiplying corresponding components and adding the resulting products. 

U. V = <U, V> = UJ.VJ + U2.V2 + ... + Un,Vn (1.6.1-1) 

U and V are said to be orthogonal or perpendicular if their dot product is zero: U. V=O. 
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1.6.2 Norms 

Let U be a vector in /(1: U = (u1, u2, ••• ,un) and A be a matrix in Rm x /(1: A 

= [aij] where i=l, ... ,m andj = 1 ,  ... ,n, then the norms of the vector U and the matrix 

A are defined as follows: 

1. Vector norm or the length of the vector U, written 11 UI I, 1s the

nonnegative square root of U. U as 

(1.6.2 -1) 

The norm of vector U which is actually the distance between vector U and vector 

zero, is obtained by root square of inner product <U, U>. 

2. Matrix norm, written IIAI I, is the minimum value of k such that

(l.6.2-2) 

Geometrically, multiplication by a matrix A changes the length of a vector. Choose 

the vector Xo whose length is increased the most, then IIAI I is the ratio of the length 

of A.X0 to length of X0• Two major properties of any matrix norm are 

11) 2) 

IIA · xoll $ IIAll · llxoll

IIAII = 0 iff A = 0 
(1.6.2-3) 
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1.6.3 Distance and Angle Definitions in Inner Product Space 

If U and V are two n-dimensional vectors defined in vector space R", then the 

distance between two vectors U and Vis defined by Equation (1.6.3-1 ). Where d( U, V) 

is the distance between vectors U = (u1, u2, ... ,un) and V = (v1, v2, ... ,vn), which can be 

also considered as the norm of vector U-V, written IIU-VII. 

(1.6.3 -1) 

The angle between these two vectors U and Vis defined by Equation (1.6.3-

2). If U and V are orthogonal, then the inner product <U, V> is zero and consequently 

the angle between the two vectors is 9rf degree. 

0 -1[<U,V>]
= cos

11u11 · IIVII 

1.6.4 Statistical Operation 

(l.6.3- 2) 

Let U be a vector in Rn : U = (u1, u2, ... ,un), then operators max, min, mean, 

median are defined over components of vector as follows: 

1. Operator 'max'. Maximum operation is defined on vector U by specifying

maximum component u; of U.

Ui=max(U) where Ui�Uj for j = l,2, .... ,n (1.6.4-1) 
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2. Operator 'min'. Minimum operation is defined on vector U by specifying

minimum component u; of U.

u;=min(U) where Uj::;;Uj for j = 1,2, .... ,n (1.6.4-2) 

3. Operator 'mean'. Mean operation is defined by averaging of components

of vectorU. 

Uavg = mean(U) where 
1 n 

Uavg = - L
uj 

for j=l,2, .... ,n
n i=I 

(1.6.4 -3) 

4. Operator 'median'. Median operation is defined on vector U by, (a)

increasingly sorting the components, ordering components of U and (b) finding the 

center value. This operation is expressed as 

Umed = median( U) (1.6.4-4) 

This operation can be easily understood by Figure 18. 

If n is odd, 
then Umed = U; urned 

Uo .... U+2 Ui-1 * U*t *2 .... * 
....... .. ....... ►If n is even , U 

( orderd U) 
then Um,,/ = ( U;+ U;,., )/2 UIN',t 

Figure 18. Illustration of Median Operation. 
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1.6.5 Mean and Square Errors 

If e is a matrix M x N, considered as a error between two matrices A =[aiJ]

and B = [ biJ] for i=l, ... ,M andj = 1, ... ,N, then e is defined as 

e = IA - Bl = [eij ] such that eij = laij - bijl � 0

E(m,n), mean error at pixel (m,n) can be obtained by 

(1.6.5-1) 

ME(m,n) = mean{e .. } 
. . I) 

for 
{i-� l, ... , m 

J -1, ... ,n 
(1.6.5-2)

I,} 

Consequently, total mean error TME is a mean error at point (M,N) as 

TME = ME(M, N) = mean{e··} 
. . I} I,) 

for 
{i-� 1, ... , M 

J -1, ... ,N
(1.6.5- 3) 

Let e be an array of M x N considered as a error matrix, then the square 

error can be expressed as 

SQerror = I lel 12 (1.6.5-4) 

The term llell is the norm of matrix e defined by Equation (1.6.5-1). In the case of e

is a vector, then the above defined square error represents the length of e.

1.6.6 Two Dimensional Correlation 

Consider two matrices A =[a;1] and B = [ biJ] for i=l, ... ,M andj = 1, ... ,N,

then two dimensional correlation between A and B matrices is defined as 
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TDC= --;::::=i===j==== 

LLat· LLbt 
i j i j 

for 
{i-� 1,2, ... ,M
J -1,2, ... ,N 

1.6.7 The t-norm. t-conorm, and Aggregation Operators 

(1.6.6 -1) 

The t-norm T and the t-conorm S are two algebraic operators defined over the 

continuous interval [0,1] by taking the combination of algebraic product(.), sum(+), 

min (A) and max (v). These operators map the 2-dimentional point (x,y)e [0,1] x [0,1] 

to the point ze [0,1]. Some t-(co)norm operators are given in Table 2. 

where x,y,z e [0,1] (1.6.7 -1) 

The t-norm operator T must satisfy at least the properties called axiomatic 

skeleton for all x,y,ze [0,1]. These properties are (a) boundary conditions: T(x,1) = x 

and T(x,0) = 0, (b) monotonicity: if y5 z , then T(x,y) 5 T(x,z), or strict monotonicity: 

if x1 5 x2 and Y1 Sy2, then T(x1,Y1) 5 T(x2,Y2), (c) commutativity: T(x,y) = T(y,x), and 

(d) associativity: T(x,T(y,z)) = T(T(x,y),z).

The t-conorm operator S must also satisfy at least the properties of 

axiomatic skeleton for all x,y,ze [0,1]. These properties are (a) boundary conditions: 

S(x,1) = 1 and S(x,0) = x; (b) monotonicity: if y5 z , then S(x,y) 5 S(x,z), or strict 

monotonicity: if x1 5x2 and y1 5y2, then S(x1,Y1) 5 S(x2,Y2); (c) commutativity: S(x,y) 
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= S(y,x); and (d) associativity: S(x,S(y,z)) = S(S(x,y),z). 

Table 2 

Illustration of Some t-norms and t-conorm 

Operators t-norm T(x,y) t-conorm S(x,y)

Standard operators 
Min: Max: 

min(x, y) , (xAy) Max(x, y) , (xvy) 

Algebraic operators 
Product: Sum: 

x.y x+y-x.y 

Bounded operators 
Difference: Sum: 
Max(O,x+y-l) , (Ov(x+y-1)) Min(l,x+y) , (1A(x+y)) 

The Quasi t-norm Q, and the Quasi t-conorm Qs 
[ 17] are the special kinds 

of t-norm and t-conorm operators which meet all above mentioned axiomatic 

skeleton properties except the associativity. These operators are represented as 

Q,(x,y) = T (T(x,y),S(x,y))

Qs,(x,y) = S ( S"(x,y),T (x,y)) 

(1.6.7-2) 

where x,ye[O,l],Q,< dual >Qs, T< dual >S,T< dual >S",S< dual >T"

T, T', T" are different t-norms and S, S', S" are also different t-conorms, If the 

operator T and Sare Demorgan's like dual, then S=S" and T=T". Quasi t-norms and 

Quasi t-conorms do not necessarily meet associativity property, therefore they are not 

necessarily t-norms and t-conorms. Q, and Qs are Demorgan's like dual, therefore we
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have Qs(x,y) = 1- Q,(l-x,1-y) = 1- T'( T(l-x,1-y) , S(l-x,1-y) ). The Quasi t-norm Q, 

satisfies at least boundary conditions, strict monotonicity, and commutativity 

properties of other t-norms as well as the property of inequality Q,(x,y) � T(x,y). Also 

The Quasi t-conorm Qs satisfies at least boundary conditions, strict monotonicity, and 

commutativity properties of other t-norms as well as the property of inequality Qs(x,y) 

� S(x,y). Table 3 illustrates how to make the desired t-(co)norms. 

Table 3 

Illustration of Constructing the Quasi Operators Using Some t-(co)norms 

Quasi t-nonn 

T(x,y)=a S(x,-v)=b T'(x,y) O,(x,-v) 

x.y x+y-x.y a.b x.y(x+y-x.y)

Hamacher product: Hamacher sum: (x ·y)·(x+ y- 2x·y)
x+y x+ y-2x.y a.b (x+ y- x·y)·(l - x ·y)x+y-x ·y 1 - x·y

Quasi t-conorm 

T"(x,y)=c S"(x,v)=d S'(x,y) Qs(x,y)

x.y x+y-x.y c+d+c.d X +y-x.y(x+y-x.y)

Hamacher product: Hamacher sum: 

x+y x+ y- 2x.y c+d+c.d (x+ y) + (x·y)·(l - 2x- 2y+ x·y)
x+y-x ·y J -X ·y (x+ y-x·y)· ( 1- x ·y) 

Aggregation operator g is an averaging operator defined over the continuous 

interval [0,1] by taking the combination of algebraic product(.), sum (+), min (A) 

and max (v). These operators map then-dimensional point (x1, ... , Xn)E [0,1]" to the 

point ZE [O,lt. 
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( XJ, ... , xn )-½z where XI, .. ,,Xn,Z E [0,J] (1.6.7 -3) 

All aggregation operations must satisfy at least the, (a) boundary conditions: 

g(0,0, ... ,0) = 0 and g(l ,1, ... ,1) = 1, (b) monotonicity: if Xn �y," then g(x1, ... ,xn) � 

g(y1, ••• ,yn), and (c) continuity. Table 4 shows some two-dimensional averaging 

operators dented by M.

Table 4 

Illustration of Some Averaging Operators 

Averaging Arithmetic Root Square Harmonic Quasi Linear 
Operator Mean Mean Mean Mean 

M(x,y) 
x+y 

rx; 
2x·y }�-(J' +1)

2 x+y 0 �p�1 

The t-norms and t-conorms are the tools to define respectively the intersection 

and union between two fuzzy set A and B. The aggregation operators are also used to 

combine the fuzzy sets such a way to produce the desired fuzzy set. In Chapter II we 

apply these operators to modify an intensity image to obtain the desired intensity 

image. Since intensity image processing is defined as an operation over the intensity 

interval [0,1] (with L gray level), then t-norm, t-conorm, and the aggregation 

operators can be used as the tools of image modification. We will also discuss about 

how these operators can be applied for extension of the two-valued algebraic 

operators (Boolean algebra) to n-valued algebraic operators. 
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The standard t-norm, min operator, results in the biggest value among the 

other t-norms. Also the standard t-conorm, max operator, generates the least value 

among the other t-conorms. If the aggregation operator g satisfies the additional 

property of idempotency which is g(x1, x1, .•• , x1) = x1, then the values of all 

aggregation operations fall between two values obtained by the standard t-norm and t­

conorm operators, max and min. Also As said, Since Quasi t-norms Qr and Quasi t­

conorms Qs does not necessarily· satisfy the associativity property, They are not 

necessarily t-norms and t-conorms. However, the following inequality is true between 

Qr, Qs, T, S operators and the standard operators, min (A) and max(v). 

Qr(x,y) � T(x,y) � min(x,y) � g(x,y) � max(x,y) � S(x,y) � Qs(x,y) (l.6.7-4) 

As seen, the Quasi t-norm Qr and its dual obtained by combinations of t­

norms and t-conorms. Consequently, by combinations of either t-norms T1, T2 or t­

conorms S1, S2, we can also define different operators such as the t-norm Ar and its 

dual t-conorm As or the t-norm B r and its dual t-conorm B5• 

{
A/x,y) = 

T(T 1 (x,y),T2 (x,y)) 

A/x,y) = 
s(s1 (x,y),s2

(x,y)) 

{
B/x,y) = s(ri (x,y),T2 (x,y))

B/x,y) = 
T(s 1 (x,y),S2 (x,y)) 

(1.6.7-5) 

(l.6.7 -6) 

(1.6.7 -7) 

(1.6.7 -8) 

dual dual S dual dual where x,y E [0,1], A, E >As , TE > , T 1---s1 , T2 E > S2
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The operators A1 and B1 must meet at least the boundary conditions, strict 

monotonicity and commutativity properties of t-norms plus the inequality property 

A1(x,y) $ min(TJ(x,y),Ti(x,y)) $ min(x,y) for operator A 1 and Bi(x,y) � 

max(T1(x,y),Ti(x,y)) for operator B1• Also the operators As and Bs must satisfy the 

boundary conditions, strict monotonicity and commutativity properties of t-conorms 

plus the inequality property As(x,y) � max(S1(x,y),Si(x,y)) � max(x,y) for operator As 

and Bs(x,y) $ min(T1(x,y),Ti(x,y)) for operator Bs. A1, As, B1, Bs are not necessarily 

associative. 

Compensatory operator C was first defined by Zimmerman to model the 

human use of the "and" more precisely. Since the use of the operator min (A) and 

algebraic product (.) is not very appropriate for this purpose, he defined the 

compensatory operators as: (a) by taking the combination of algebraic product and 

sum for example, (x.yf P. (x+ y-x.y)P. (b) by taking the convex combination of min 

(A) and max (v) operators such as, (xAy)( l -p) + (xvy)p. In general, we can define the

compensatory operator as 

1-p pC(x, y) = F(x,y) · G(x,y) 

C(x, y) = F(x, y) · (1- p) + G(x, y) · p 

(l.6.7 -9) 

(1.6.7 -10) 

The operators F and G can be the above defined operators, T, S, Q1, Qs, A1, As, 

B1, Bs, the averaging operators M (aggregation operators g(x,y)) and symmetric sums 
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operators can be defined by using different combinations of above mentioned 

operators. The compensatory operators C and its dual C*= 1-C(l-x, 1-y) must satisfy at 

least the boundary conditions C(O,O)=C*(0,0)=0 and C(l ,  I )=C*(l ,  1 )= 1, strict 

monotonicity and commutativity properties. Besides, They must also meet continuity 

and inequality as: if F(x,y) :S G(x,y) then F(x,y) :S C(x;y) :S G(x,y) for operator C, and

if F*(x,y) :S G*(x,y) then F*(x,y) :S C*(x,y) :S G*(x,y) for operator C*.

Generalized compensatory operator Cm is defined by averaging operation

M between previously defined F and Gas given in Equation (l.6.7-11). The dual of 

Cm denoted by Cm• can be derived by converting M, F, G to their dual M*, F*, c* 

respectively. 

Cm(x,y) = M(F(x,y),G(x,y)) 
* * • * 

Cm(x,y) 
= M (F (x,y),G (x,y)) 

(1.6.7 -11) 

(1.6.7-12) 

dual * dual * dual • dual * where Cm< > Cm, M < > M , F < > F , G < > G 

for x,y,p e [0,1] and F,G e {T,S,Q1,Qs•Ar•As•Br•Bs•M,sJ

The compensatory operator Cm and its dual C,,i* must satisfy at least the (a)

boundary condition: C(O,O)=C*(0,0)=0; (b) strict monotonicity; (c) commutativity; 

and (d) increasing, properties. Besides, They must also meet inequality such that if 

F(x,y) :S G(x,y) then F(x,y) :S Cm(x,y) :S G(x,y) for operator C, and if F*(x,y) :S

G*(x,y) then F*(x,y) :S Cm *(x,y) :S G*(x,y) for operator C*. Table 5 gives the idea of

how to construct compensatory operators from formerly defined operators T, S, Q,, 
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Qs, A,, As, B,, Bs, M (aggregation operators h(x,y)), and symmetric sums Ss which will 

be discussed later. 

Table 5 

Illustration of Some Generalized Compensatory Operators 

F(x,y) G(x,y) M(x,y) Cm(x,y) 

Arithmetic Mean: 

x.y xvy max(x,y) F+G x ·y + max(x,y) 
--

2 2 

Harmonic Mean: 
2-J;;+x+ yJ;; 

x+y 2F·G 
2 --

F+G 4 

Hamacher product: Hamacher sum: Root Square Mean: 
x+y x+ y- 2x.y 

,J;c; 
(x·y) ·(x + y - 2x·y) 

x+y-x ·y J - X •y ",J (x+ y- x·y)·(J - x·y) 

Quasi Averaging: 

'j F'; d p 

(x·yl + (x + y - x·yl x. y x+y-x · y  

0 �p�1 \ 2 

Self-dual operator D is the special case of generalized compensatory 

operators in which Mis defined by the operator M(F,G)=(F+G)/2 such that Mis an 

arithmetic mean derived from convex combination of F and G using compensatory 

operator of (FAG).(1-p)+(FvG)p, for p=0.5. The operators F and G are dual. 

Therefore, G=F* and finally, we can generally define the self-dual operators as given 

by Equation (1.6.7-13). The operator Fis one of the previously defined operators, T, 

S, Q,, Qs, A,, As, B,, Bs, M, and symmetric sums Ss which will be discussed later. 
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The self dual operators D(x,y) and its dual D*(x,y) must satisfy at least the, (a) boundary conditions D(0,0)=D*(0,0)=0 and C( l, l )=D*( l, 1 )= 1; (b) commutativity; (c) continuity and increasing; (d) self-duality D(x,y)= D(l -x, 1-y)=D*(x,y); and (e)D(x, 1-x), properties. 
{D(x,y) = F(x,y)�F•(x,y) (1.6.7-13) 

where x,y e [0,1 ] and Fe {T,S,Q
1
,Qs,At •As •Bi •Bs, M,sJ

Symmetric sum Ss is the special case of self dual operator which is first defined by Silvert. The general form of symmetric sums is given by Equation (l.6.7-14). The operator Fis one of the previously defined operators, T, S, Q,, Qs, A,, As, B,, 
Bs, M. Some examples of symmetric sum operators Ss(x,y) are given in Table 6. 

{s/x, y) = F(x,y) (1.6.7-14) F(x,y) + F(l- x,1- y)where x,y e [0,1 ] and Fe {T,S,Q
1
,Qs •A,,As •Bi •Bs, M'ss} 

Table 6 Illustration of Some Symmetric Operators 
Tvoe of F(x,y) F(x,y) Ss(x,y) 

t-norm, T
x·y 

x.y
1-x-y+2·x·y

t-conorm, S Max(x,y) 
max(x,y) 

I+ Jx-yJ 

Quasi t-norm, Q, x.y(x+y-x.y)
x·y·(x + y-x·y)

I - x - y + 2·x·y·(x + y - x·y)

54 



The symmetric operator Ss(x,y) and its dual S/(x,y) must satisfy at least, (a) all 

properties defined for self-dual operators; (b) the condition, S.lx, 1-x)=0.5; and (c) the 

continuity, if F(0,x)=0 for \/xe [0,1], then Ss(0, 1) is not defined, that is, Ss(x,y) is not 

continuous at points (0,1) and (1,0), otherwise Ss(x,y)= Ss(x,y)=0.5. 
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CHAPTER IT 

QCW EDGE DETECTION 

In this chapter an edge characteristic function (£CF) is proposed using a 

structure of ideal edge patterns based on quadruple child windowing (QCW) within a 

specified block of an image. Also, a correlation, using distance and angle, between 

QCW pattern ( defined within processing block) and an ideal edge pattern is applied to 

create an edge estimator within a processing block of an intensity image. 

2.1 Intensity or Gray Tone Distance 

Let Xu and Xmn be the respectively intensities (gray levels) of (i,j)th and (m,n)1h

pixels. The intensity distance is defined as 

d((m,n),(i,j)) = I Xmn -Xi) (2.1-1) 

Thus, the difference between the intensity values is called intensity distance. This is 

applied in section 2.1.3 to define ECF with respect to four defined distances within a 

specified block of an image based on QCW. 

2.1.1 Analyzing Structure (Morphological Operation) 

Morphological operations provide information concerning the form or 

structure of an image. Morphology is mathematically introduced by Matheron and 
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Serra [10]. The morphological operators decompose an image to its main features and 

characteristics of its objects. Operations on binary images such as dilation and erosion 

(respectively adding and removing pixels at the boundaries of objects), perimeter 

. determination (finding boundaries of objects), and area estimation (estimating for 

total area of the objects) are examples of morphological operations. The operations 

are applied to certain sub-groups of pixels within the running block( called filter 

window). We investigate sub-grouping of the pixels on/within a WXW block of an 

image based on an operation called quadruple child windowing (QCW). QCW divides 

each WxW block into four sub-groups, then applies certain operations to obtain 

desired features such as edges. 

2.1.2 Presentation of Binary Edge Patterns 

Let B be a running block 3x3 over an binary image BI at point (m,n) as 

illustrated in Figure 3. As known, edges are points where the intensity changes 

abruptly. To present edge patterns in a binary image, without loss of the generality, 

the edge points can be considered as white pixels surrounded by some black pixels in 

neighborhoods. Consider block B with a white pixel (high intensity) in the center. 

The possible structures of edge patterns can be classified as Figure 19. 

The illustrated configurations for classes 1 and 2 denote the vertical edge 

patterns in a binary image. Similarly, classes 3 and 4 indicate horizontal edge 

patterns. Therefore, according to the above classification, if any 3x3 block within a 
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binary image matches with one of these 9 patterns then the middle pixel of that block 

is considered as an edge pixel. 

Ao A1 A2 

BEP-1 BEP-2 BEP-3 BEP-4 BEP-5 BEP-6 BEP-7 BEP-8 BEP-9 A1 X,,m A3 

A6 A5 A4 

A block of 3x3 

Figure 19. Presentation of Nine Binary Edge Patterns Within a Block of 3x3. 

Using the intensity distance Equation (2.1-1 ), each of above defined edge 

patterns can be coded as 8-bit words (or vector), [do, d1, d2 , d3, d4, ds, d6, d7], where 

the components of this vector denote the eight intensity distances between middle 

pixel (m,n) and its eight neighborhoods. Generally these distances are found by 

dk = dk(m,n) = I Xmn -Aki for k=0,1,2, ... ,7 (2.1.2-1) 

Ak s are the intensities of neighbors of the middle pixel (m,n). This is illustrated in 

Figure 20. 

.-----. �Ao \iiA1 A�.---·-· 
do-·---._ \.. ____ .,,,,. d2

-1-· ---..==------�--�---1 -.........
...... 

X-·- .. -
-· -.,t\�-- .- = - --

A� ·-
d .,�.::-.::-.:..- ----- .... ····· ,' ··········. ..:.·-... --.::�.,._ d 7 ·····;;( 'A x··········· 3 

d6 .-::::::·:::::::::::::::
·:::: :::�

6 

1

1
: fa

5 4

◄··· 

:::::::::·::::::::::·,
d4I I 

,, ds 
Figure 20. Presentation of Intensity Distances 

Within the Block of 3x3. 
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According to this definition we can assign 9 codes for all 9 edge patterns as 

given in Table 7. 

Table 7 

Binary Edge Pattern Codes in Block of 3x3 

B B B B B B B B B 

Classes 
E E E E E E E E E 

P- P- P- P- P- P- P- P- P-

I 2 3 4 5 6 7 8 9 

I 0 I 0 0 I I I I 

0 0 I 0 0 I I 0 I 

0 I I 0 I I I 0 I 

Codes 0 I 0 0 I 0 I 0 I 

0 I 0 I I 0 I I I 

0 0 0 I I 0 0 I I 

I 0 0 I I I 0 I 

I 0 0 0 0 I 0 I I 

In edge extraction of a binary image, the edge characteristic function J can be 

derived according to the assigned edge pattern codes. This can be achieved by logic 

design (using Karnough-map) to define f in terms of d0, d1, d2, d3, d4, ds, d6, d7. 

Binary image edge detector can be easily designed to find edge pixels over a 

binary image using f As illustrated in Figure 21, the detect.or has eight binary inputs 

( eight distances obtained from each 3x3 processing block as inputs) and one binary 

output, Y. If any processing block (running block over a binary image) matches one 

of the 9 edge patterns, then the output of detector goes to 1 (the intensity value of 

middle pixel Xm11
= l ); otherwise the output is zero. 

Binary Edge Detector 

/(do, d1, d2, d1, d4, d5, d6, d7) 

y ... 

Figure 21. A Binary Edge Detector for 3x3 Block. 
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In the case of a noisy image this kind of detector has errors and may detect a 

noise pixel as edge. Therefore, noise removal algorithms must be used before using 

this method for edge detection. One technique by which we can remove the noise as 

well as decrease the number of inputs to the edge detector is to use representative 

pixels of sub-windows. That is, by dividing the pixels on/within the main block 

(window) into smaller groups (sub-windows), it is possible to find an appropriate 

representative pixel for each sub-group. Further we will find, to present the edge 

patterns in each processing block, we need at least four representatives neighboring 

the middle pixel (m,n). Thus, we choose four sub-widows within the block B of an 

image and we call these quadruple child windows, (QCW). We apply noise removal 

operations over each sub-window to find a proper representative intensity for each 

sub-window. Finally, by determining four intensity distances of d1, d2, d3, d4 between 

the middle pixel (m,n) and four representatives, we derive a four dimension ECF, 

written f(d1, d2, d3, d4), to detect the edge within any desired size of main block B.

2.1.3 Quadruple Child Windowing 

Let B be a running W><W block (where Wis odd) over an intensity image II at 

point (m,n). This block B can be defined as 

B = [x--] I} 

{. W-1 W-1

for 
i=m--2-•···•m+ -2-

W-I W-1j=n---, ... ,n+--
2 2 

(2.1.3 - 1) 
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Xmn denotes the intensity value of the middle pixel of the processing block. 

Now consider four specified child windows B1, B2, B3 , B4 defined inside the main 

block B. Each child window contains pixels XiJ on/within the main block B-{(m,n)}. 

The QCW on block B at pixel (m,n) is a partition which results in four groups of 

pixels as Bk ={(p,q),}for k= l ,2,3,4 where the elements (p,q)EB-{(m,n)}. Child 

windows are exhaustive and mutually· exclusive. This is mathematically represented 

in Equation (2.1.3-2). 

1) B QCW 
{{Bk,} I (m,n)rlBk for k=l,2,3,4} 

2) {{B1UB2UB3UB4}U{(m, n)}}cB

B1nB2nB3n B4 = 0

(2.1.3- 2) 

The structure of QCW (the configurations of these four child windows) within 

the running block B can be geometrically altered region by region over an image 

based on a specific application. For example, in an image smoothing algorithm, this 

structure can be fixed and for the edge detection may change region by region 

depending on the edge patterns within the block B.

We investigate the various structures of QCW (QCW patterns) within a main 

block B with different sizes of 3x3, 5x5, 7x7 as follows: 

1. Main Block of 3x3. The possible QCW patterns within block 3x3 can be 

illustrated as shown in Figure 22. We consider these structures an standard QCW 

configurations within block 3x3. 
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(a) Cross-QCW

r.-■■■■■.! r.-■■■■■.: 
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=
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;• B'� • i• B'4 •i 
,, •••• • •.. J 

...
................

.
. ...11 •

.
•
.
•• •■; 

(b) Diagonal-QCW (c) Combined Cross and
Diagonal-QCW

B1 = {(m-1, n)} , B2 = {(m, n+l)} 

B3 = {(m, n-1)} , B4 = {(m+l, n)} 

B'1 = {(m-J, n-1)} , B'2 = {(m-1), (n+l)} 

B'3 = {(m+J, n-1)} , 8'4 = {(m+l), (n+J)} 

Figure 22. QCW Configurations Within a Block of 3x3. 

As seen, some pixels on/within the block 3x3 participate in sub-grouping. 

parts a and b of Figure 22 illustrate respectively a cross-shaped and diagonal-shaped 

QCW. Further we will see the combination of the results obtained by pixel 

manipulation over cross-QCW and diagonal-QCW gives us a better result in edge 

detection. This combination of diagonal and cross QCW patterns is illustrated in part 

c of Figure 22. The type of structure of QCW affects the outcome of the operations 

over main block B. The cross-QCW results differ from the diagonal-QCW and also 

from the combination of cross and diagonal types. The result quality of each type 

depends on the edge pattern and the transition of gray scale within the main block B.

2. Main Block of 5x5. The possible structures for QCW patterns over block

5x5 are illustrated as Figure 23. We consider these structures an standard QCW 

configurations within block 5x5. 
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(c) Diagonal-QCW 2
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(d) Combined Cross and
Diagonal -QCW 1

81 = { (m-2, n) ,(m-1, 11)}, 82 = { ( m,n+J) ,(m, n+2)) 
83 = { (m, n-1) ,(m, n-2)), 84 = { (m+l, n) ,(m+2, n)) 
8'1 ={(m-2, n-2) ,(m-1, 11-1)) 
8'2 ={(m-1, n+l) ,(m-2, n+2)) 

8'1 ={ (m+2, n-2) ,( m+l, n-1)) 
B', ={(m+2, n+2) ,(m+l, n+J)) 

8" 1 ={ (m-2, n-2) ,( m-2, n-1), (m-1, n-2) ,( m-1, n-1)) 

8"2 ={ (m-2, n+2) ,(m-2, n+l), ( m-1, n+2), ( m-1, n+J)) 

8"3 ={ (m+2, n-2) ,( 111+2, n-1), (m+l, n-2) ,(m+l, n-1)) 

8"4 ={ (m+2, n+2) ,(m+2, n+J), (m+J, n+2) ,(m+l, n+l) ) 

Figure 23. QCW Configurations Within a Block of 5x5. 

The above QCW configurations are based on sub-grouping of the pixels which 

are diagonally or crossly located neighboring the middle pixel. Depending on 

specific applications, we may take all pixels into consideration in QCW. The possible 

morphological structures for 5x5 windows are illustrated in [10]. For example, one 
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possible configuration, which is applied for detecting the edge within a 5x5 block in 

Chapter IV, is illustrated in Figure 24. 

B, 

2x3 child-window B2 
3x2 child-

window 

(m.n) 

B3 
3x2 child-

B4 
window 

2x3 child-window 

Figure 24. A Possible QCW Configuration (Non­

Standard) Within a Block of 5x5. 

3. Main Block of 7x7. The possible structures for QCW patterns over a 7x7

block can be easily figured. Each sub-window in a cross-QCW structure within a 

block of 7x7 consists of three pixels. Consequently, it may contain three or nine 

pixels in the two possible diagonal-QCW structures. The other configurations in 

which all pixels are involved in structure of QCW pattern are given in [10]. As the 

size of the block B increases, the number of pixels participating in QCW increases. 

This obviously helps to improve the noise removal, but it also diminishes the quality 

of the output in edge enhancement. We have applied 5x5 and 3x3 block processing 

for edge detection algorithms. In the case of processing a noisy image, a 5x5 block is 

adopted to remove the noise by child window filtering. 
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2.1.4 Child Window Processing 

Let B1, B2, B3, B4 be an appropriate QCWover a WxWblock B. Each Bk can be 

considered as a child-filter specified by an operation (modification) g on pixels 

belonging in each the child window. This operation may apply for removing the 

noise, increasing the contrast or for other purposes. The result of this operation is a 

scalar function of each child window (output of each child filter) is considered as the 

representative intensity value for that child window. Commonly used tools for the 

operation g include max, min, median, mean operators or any aggregation operator 

defined in section 1.6.7. In section 1.2.7, we defined a median filter as a noise 

removal tool, now we can apply median operation on pixels belonging to each child 

window to remove noise before edge detecting process. Applying median filtering 

over four child windows results in four scalar outputs Y1, Y2, Y3, Y4 representing four 

intensity representatives respectively relating to four child windows B1, B2, B3, B4.

These representatives can be generally expressed by 

Yk = g{ Xu I (i,j) eBk } for k = 1,2,3,4. (2.1.4-1) 

By choosing an appropriate QCW pattern discussed in section 2.1.3, we apply 

median filtering over the four child windows to obtain Y1, Y2, Y3, Y4 as 

representatives of QCW. Consequently, QCW patterns which are equivalent to those 

QCW patterns introduced in section 2.1.3, can be reconstructed by means of 

representative pixel intensities Y1, Y2, Y3, Y4 in neighboring the middle pixel intensity 

Xmn· The possible QCW configurations are represented in Figure 25. 
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(a) Diagonal- QCW

ODO 

DOD 

ODO 
( c) Combined Cross and

Diagonal-QCW

Figure 25. Illustration of QCW Configurations. 

In case of processing of a noisy image, X,nn must be replaced with the 

representative intensity X'1nn obtained by the following operation g over the B -(m,n). 

Operation g can be either defined by Equation 1.6.7-3 or chosen from Table 4. 

X',nn = g{ XiJ I (i,j) E {B -(m,n)} } 
or 

2.1.5 Presentation of Binary OCW-Edge Patterns 

(2.1.4-2) 

(2.1.4-3) 

Assume B 1, B2, B 3, B4 denote an appropriate QCW within a WxW block B of a 

binary image. Also let Y1, Y2, Y3, Y4 be four intensity representatives of four child 

windows. Now we can represent possible binary QCW-edge patterns considering 

intensity values of middle pixel Xmn and the representatives Y1, Y2, Y3, Y4. Consider 

the diagonal configuration for QCW pattern illustrated in Figure 25. The physical 

binary edge patterns can be illustrated as Figure 26. Classes 1 and 2 (BEP 1 and BEP2) 

represent vertical edge patterns while class 3 and 4 indicate horizontal edge patterns. 

In all nine defined configurations, edge points posses high intensity (white). 
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Figure 26. Presentation of Binary Diagonal QCW-Edge Pattern Configurations.

The cross configuration of QCW can be considered as a 45° degree rotation of

the diagonal shape; that is, if we rotate an image 45° degree then the vertical and 

horizontal edges turn to diagonal edges. Now consider cross-shaped QCW as

illustrated in Figure 2.4.1-1, then QCW-edge patterns based on the representative

pixels Y1, Y2, Y3, Y4 and the middle pixel Xmn can be presented as Figure 27. 

As seen in Figure 27 for binary cross QCW-edge pattern configurations, the

patterns are characterized by a 45° degree clock-wise rotation of the respective 

diagonal QCW configurations from Figure 26. Classes 1 and 2 are results of rotation

of the vertical edges and now they represent the edges in a northeast to southwest 

direction. Classes 3 and 4 are results of rotation of the horizontal edges and now they 

represent the edges in a northwest to southeast direction. 
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Figure 27. Presentation of Binary Cross QCW-Edge Pattern Configurations. 

If any QCW pattern within a block B running over an binary image matches 

with one of the above ideal edge pattern classes, then the middle pixel Xmn is 

considered an edge point. This can be implemented by comparing the processing 

QCW pattern within block B with all nine ideal QCW-edge patterns. To achieve this 

purpose, we can assign a 4-bit code word addressing each of the above defined QCW­

edge patterns, BEP
p 

for p=l,2, ... ,9. These code words can be meaningfully 

constructed by means of four intensity distances between the binary middle pixel 

intensity Xmn and the four binary representatives Y1, Y2, Y3, Y4. These distances are 

generally obtained by following Equation. 

for k = 1,2,3,4. (2.1.5-1) 
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Yk represents the result of operation g over the pixels belonging to child 

window Bk, ( out put of child filter k-th). Here, the operation g is a median filtering as 

noise removal tool. These intensity distances d1, d2, d3, d4 are illustrated in Figure 28. 

(a) Diagonal-QCW (b) Cross-QCW

Figure 28. Intensity Distances in QCW- Patterns. 

By convention, we consider that a black pixel possesses O intensity value and 

a white pixel has intensity 1. We can now assign a code word for each of the binary 

QCW-edge patterns given in Figure 26 and 27 using Equation (2.1.5-1). These words 

are tabulated in Table 8. 

Table 8 

Binary QCW -Edge Pattern Codes 

Classes BEP.1 BEP2 BEP3 BEP4 BEP5 BEP6 BEP7 BEP8 BEP9 

Codes 1010 0101 l 100 0011 0111 1110 1101 1011 1111 

As seen in Table 8, the nine classes of edge patterns are specified by 9 code 

words BEP
p 

for p=l,2, .. ,9. These code words can be generally defined as 
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for p=l,2, ... ,9 and k=l,2,3,4 (2.1.5-2) 

The element dk is defined by Equation (2.1.5-1 ). As a comparison, the code 

word assigned for QCW-edge patterns in Table 8 possess fewer components than 

those code words given in Table 7. Since the number of intensity distances within the 

block B is decreased from at least 9 to 4 using QCW technique, the determination of 

binary ECF based on intensity distances d1, d2, d3, d4 is more efficient. This Binary 

edge characteristic function is determined in next section. 

2.1.6 OCW-Edge Characteristic Function for Binary Images 

In preceding sections, we have explained QCW over a WXW block B of a 

binary image, introduced the possible configurations of binary edge patterns based on 

QCW, and finally, assigned a 4-bit code word for each edge pattern as an 

identification based on defined intensity distances within QCW as d1, d2, d3, d4. 

Now our special attention is given to derive a logical function in terms of d1, 

d2, d3, d4 by using the tools of switching theory. These tools include switching 

algebra, truth tables, and the minimization procedures. By employing these tools, we 

derive the logical function considered as the binary QCW edge characteristic function, 

QCW-ECF. This system function, E
qcw(d,, d2, d3, d4), is illustrated in Figure 29. 

QCW-Edge detector 
E

qcw(d1, d2, d3, d4) 

E(m,n) = E 

Figure 29. Edge detector Functioning Based on QCW-ECF. 
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The binary QCW-edge detector can be designed based on logical function 

E
qcw• The vector PBP represents the QCW pattern within the processing block B. 

Now, we explain how to derive the binary QCW-ECF step by step by means of logic 

design as follows: 

1. Truth table. In the first step of our design; we construct the truth table. Let

d1, d2, d3, d4 (vector PBP) be the inputs and Ebe a single output, then the truth table 

can be constructed based on the idea that the output Eis active high ( =l), if and only 

if d1, d2, d3, d4 match with one of the code words assigned for edge patterns (PBP = 

BEP
p
). Since there are four input variables, then there are 24=16 possible 4-bit word

PBP while nine words out of 16 words are just the edge patterns BEP
p 

for p=l,2, ... ,9. 

Table 9 illustrates the truth table for this binary edge detector. 

Table 9 

Truth Table for the Binary QCW Edge Detector 

PBP E 

In D ut Mlnterms Pattern 0 utp ut 
uuuu u N t: u 

0001 1 NE 0 

0010 2 NE 0 

0011 3 E 1 

0100 4 NE 0 

0101 5 E 1 

UllU 6 N t: 0 

0111 7 E . 1 

1000 8 NE 0 

1001 9 NE 0 

1010 10 E 1 

1011 11 E 1 

1100 12 E 1 

1101 13 E 1 

111 0 14 E 1 

1 1 1 1 15 E 1 

Note: NE: nput1s Not an Edge pattern. 
E: lnoutis an Edae pattern. 
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Edge characteristic function according to this table is the sum of min-terms 

3,5,7,10,11,12,13,14,15 which is given in Equation (2.1.6-1). 

(2.1.6 -1) 

2 .  Minimization of Eqcw• In the second step, with the aid of the Karnough 

map, the algebraic expression corresponding to Eqcw can be minimized. Figure 30 

shows the map of edge classes along with their respective inputs, and the 

minimization procedure for ECF given in Equation (2 .1.6-1) is also illustrated where 

(+) and ( .) are respectively the Boolean logic operators OR and AND. To minimize 

Eqcw, we classify the above mentioned min-terms 3, 5, 7, 10, 11, 12, 13, 14, 15 as 

II 
II 

BEEEE 11 

d::3. d'4 II 10 

d'1 . d'2 

00 

1 

d'1 . d2 d1 . d2 

II 01 11 

1 
1 1 

1 

Figure 30. Karnough Map. 

Evl Ev2 

II d1 . d'2 

I 10 

1 

1 

E= I,(12,13,14,15) + I,(3,7,1 1,15) + I,(5,7,13,15) + I,(10,11,14,15) (2.1.6-2) 

Ehl Eh2

E hl = L (1 2 ,1 3 ,1 4 ,1 5 ) =d i · d 2

E h2 = L (3 ,7 ,11 ,1 5 ) = d 3 · d 4

E vi = I.(5 ,7 .13 .1 5 )= d 2 'd 4

E v 2  = I, (1 0 ,11 ,1 4,1 5 ) = di · d 3

(2.1.6 - 3) 

(2.1.6 - 4) 

(2.1.6 - 5) 

(2 .1.6 - 6 )  
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Considering diagonal configuration of QCW, the expressions Eh1 and Eh2 

denote the horizontal edges and the expressions Ev1 and Ev2 indicate vertical edges. 

The algebraic expression defining the horizontal edges can be obtained as 

(2.1.6-7) 

Consequently, the algebraic expression for the vertical edges is obtained as 

(2.1.6-8) 

As said, vertical and horizontal edges Ev, Eh is just defined for diagonal-QCW 

configurations. They are called diagonal edges for cross-QCW configurations. 

Obviously, when the QCW configuration is based on some interest pixels such as 

QCW configuration represented in Figure 24, then Ev and Eh do not precisely indicate 

the vertical and horizontal edges. Anyway, the minimal expression E, can be finally 

written in terms of algebraic expressions Eh and Ev as the Equation (2.1.6-9). This 

minimal expression corresponding to Eqcw expressed by the sum of products of input 

variables is considered as QCW-Edge Characteristic Function, QCW-ECF, for binary 

images. 

(2.1.6-9) 

The Equation (2.1.6-8) can be expressed in terms of product of sums and is valid for 

both the diagonal and the cross configurations of QCW. Inputs d1 , d2, d3, d4 can be 

obtained by Equation (2.1.5-1 ). 

73 



(2.1.6-10) 

Each processing block B may generally contain a diagonal, vertical or 

horizontal edges. Obviously, the diagonal-QCW works the best for diagonal edge 

detection and consequently the cross-QCW is good for vertical and horizontal edges. 

The combination of the detected edges by cross-QCW configuration, denoted by 

Ecross, and by diagonal-QCW, denoted by £diagonal, within each processing block B

improves the result. Since one of the configuration diagonal-QCW or cross-QCW 

may function well within each processing block, then we can combine the results of 

both configuration as 

Ecombined = (Ecross + Ediagonat) (2.1.6-11) 

Ecross can be obtained by Equation (2.1.6-11) based on d1, d2 , d3 ,d4 given in 

configuration (a) of Figure 28. £diagonal can be also obtained by Equation (2.1.6-11)

based on d1 , d2 , d3 ,d4 given in configuration (b) of Figure 28. 

2.1.7 QCW-Edge Characteristic Function for Intensity Images 

The two-valued (binary) logical function, binary QCW-ECF in Equation 

(2.1.6-10), possesses the value 1 if the variables d1, d2, d3, d4 are the binary values 

matching one of the edge pattern code words, otherwise it possesses the value 0. In 

an intensity image, the input variables d1, d2, d3, d4 possess a continuum of intensity 

values on [0,1] (a discrete gray level l between 0-255). Therefore, we should derive a 

multi-valued logical function Eqcw to define edge based on multi-valued input
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variables d1, d2, d3, d4. This can be achieved by applying the multi-valued logic 

operators instead of Boolean logic operators in Equation (2.1.6-10). Using operator 

conversions given in Table 1, the Equation (2.1.6-10) can be extended to Equation 

(2.1.7-2) as the generalized QCW-ECF for both binary and intensity images. It is 

possible to derive directly the ECF for intensity image from binary ECF, Equation 

(2.1.6-10), without the conversion of operators. One may consider the Boolean 

operators ( +) and (.) as the ordinary arithmetic operation. Since an intensity values for 

di, d2, d3, d4 are ranged over interval [0,1], the maximum possible intensity value 

resulted by Equation (2.1.6-10) for Eqcw is 4. Then, by dividing this equation by 4, 

we can define a function representing a normalized intensity ECF. This function can 

be simply expressed as Equation (2.1.7-2), but it results in a low intensity value. 

(2.1.7-1) 

Generalized QCW-ECF for intensity images based on t-norm and t-conorm 

can be defined by extension of Equation (2.1.6-10) to (2.1.7-2). For further reference, 

we call it the general JK-type edge characteristic function based on quadruple child 

windowing. 

dualfor dl 'd2 ,d3 ,d4
E[0,l ] , Tqcw < >Sqcw

where Tqcw E {r,Qt ,At ,Bt ,} ' Sqcw E {s,Qs ,As ,Bs} 

(2.1.7 - 2) 
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Eis the degree of edginess of PBP at middle pixel (m,n). Tqcw and Sqcw are t­

norm and t-conorm operators which can be desirably derived based on the given 

definitions in section 1.6.7 and Equations (1.6.7-1) and (1.6.7-2). As discussed in 

section 1.6.7, we can derive a lot of t-norms and t-conorms. Therefore, the 

generalized QCW-ECF given in Equation (2.1.7-2) is a base to generate a lot of edge 

characteristic functions. 

Consequently, we can extend the Boolean logical expressions concerning the 

horizontal and vertical edges, Eh and Ev for diagonal-QCW configuration, given by 

Equations (2.1.6-7) and (2.1.6-7), to multi-valued logical functions as 

Eh(d1, d2, d3, d4) = Sqcw( Tqcw(d1 , d2) , Tqcw(d3 , d4) ) 

Ev(d1, d2, d3, d4) = Sqcw( Tqcw(d2, d4) , Tqcw(d1 , d3) ) 

(2.1.7-3) 

(2.1.7-4) 

Also by extension of Equation (2.1.6-9), another expression 1s obtained for the 

intensity QCW-ECF as 

(2.1.7-5) 

Eh and Ev are defined in Equations (2.1.7-3) and (2.1.7-4). It is reassuring to note that 

the Equations (2.1.7-2) and (2.1.7-5) do not always result in the same value, since t­

norms and t-conorms do not satisfy the property of associativity. This is simulated in 

Chapter IV and, based on choosing the appropriate QCW configuration, the result is 

competitive with the best traditional algorithms in edge detection. 
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As said, since either the diagonal-QCW or cross-QCW configuration may 

work properly within each processing block, then we can combine the results of both 

configuration as 

Ecombined = Scorn(Ecross, £diagonal) (2.1.7-6) 

This equation is the extension of Equation (2.1.6-11). The operator Scorn is a t-conorm 

operator previously defined in section 1.6.7 such that Scorn E { S, Qs, As, Bs }. Both 

Ecross and Ediagonal can be individually obtained by Equation (2.1.7-2) or (2.1.7-5) 

based on d1, d2 , d3 ,d4 illustrated respectively in parts (a) and (b) of Figure 28. 

As discussed in section 1.6.7, we have Q1(x,y) � T(x,y) � min(x,y) � g(x,y) � 

max(x,y) � S(x,y) � Qs(x,y) given by Equation (1.6.7-4). We just consider Quasi t-

(co)norms and standard t-(co)norms to generate the least and the biggest values 

among the other t-(co)norms. Referring to the general operator given by Equation 

(l.6.7-8), Equation Eqcw(d1, d2, d3, d4) defined by t-norm combination of two t­

conorms must be a t-conorm operation over d1, d2, d3, d4• Based on the Table 10 

containing some desired t-(co)norms, we derive five special cases of QCW-ECF from 

general Equation (2.1.7-2). The quasi-type t-(co)norms mentioned in rows 3,4,5 of 

this table, are derived using the Equation (1.6.7-2) and the standard and algebraic t­

(co)norm operators represented in first and second rows. These five special cases of 

QCW-ECF are constructed based on the operators mentioned in rows 1,2,3,4,5 of 

Table 10. We call these edge characteristic functions JK-type 1, 2, 3, 4, 5 and can be 

obtained as follows: 
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No. 

1 

2 

3 

Table 10 

Illustration of Some t-(co)norm Operators Applied for QCW-ECF 

Operators 

Standard 
operators 

Algebraic 

operators 

Quasi 
operator 

Quasi 
operator 

Quasi 
operator 

t-norms, Tqcw

Min: 

Min(x, y) 

Product: 

x.y

Q,=T'(T,S): 

[min(x.y)].(x+y-x.y) 

Q,=T'(T,S): 

(x.y).[ max(x, y)] 

Q,=T'(T,S): 

(x.y).( x+y-x.y) 

t-conorms, Sqcw

Max: 

max(x, y) 

Sum: 

x+y-x.y 

Q .. =S'(S", T"): 

x.y+(l-x.y).[max(x, y)]

Q .. =S'(T'' ,S"): 

x+y-x.y+(l-x-y+x.y). [min(x, y)] 

Q.,.=S'(T",S"): 

X+y -(x.y).(x+y-x.y) 

1. JK-type 1 of generalized QCW-ECF can be obtained from Equation (2.1.7-

2) by simply using the standard operators min and max which are respectively t-norm

T
qcw and t-conorms S

qcw · Therefore, the JK-typel of QCW-ECF can be defined as 

(2.1.7-7) 

Consequently we can apply these operators to find JK-typel of vertical and horizontal 

edges, Ev and Eh, as follows 

(2.1.7-8) 

(2.1.7-9) 

(2.1.7-10) 
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In case of considering both diagonal and cross QCW-ECF, to combine these 

two configuration we can use Equation (2.1. 7-11) as the special case of Equation 

(2.1.7-6) where the t-conorm Scorn is considered the standard operator, max.

Ecombined = max(Ec,oss, Ediagonat) (2.1.7-11) 

2. JK-type 2 of generalized QCW-ECF can be derived from Equation (2.1.7-

2) by simply using the algebraic operators, product (x.y) and sum (x+y-x.y), ( refer to

the second row of table (2.1.7-1)) considered respectively t-norm Tqcw and t-conorms 

Sqcw• Therefore, the JK-type2 of QCW-ECF can be defined by Equation (2.1.7-14). 

S14= Sqcw(d1, d4)= d1+ d4 - d1.d4 

S23= Sqcw(d2, d3)= d2+ d3 - d2.d3 

(2.1.7-12) 

(2.1.7-13) 

E = Eqcw(d1, d2, d3, d4) = Tqcw( S14 , S23 ) = S14 . S14 

= (d1+ d4- d1.d4).(d2+ d3-d2.d3) (2.1.7-14) 

Consequently, we can apply this operators to find JK-type2 of vertical and 

horizontal edges, Ev and Eh. Therefore, using Equations (2.1.7-3), (2.1.7-4) and 

(2.1.7-5), we have T12= · Tqcw(d1, d2)= d1.d2, T34= Tqcw(d3, d4)= d3.d4, T13= Tqcw(d1, d3)= 

d1.d3, T24= Tqcw(d2, d4)= d2.d4. Finally we can write 

Eh =Eh(d1, d2, d3, d4) = Sqcw(T12 , T34) = T12 + T34 -T12 .T34 

= d1.d2 + d3.d4 - d1.d2.d3.d4 

Ev =Ev(d1, d2, d3, d4) = Sqcw(T24 , T13) = T24 + T13-T24 .T13 

= d2.d4 + d1.d3 - d2.d4.d1.d3 

(2.1.7-15) 

(2.1.7-16) 
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(2.1.7-17) 

To combine the values resulting from two. diagonal and cross-QCW 

configurations, we can apply the algebraic operator sum in Equation (2.1.7-6) as t­

conorm Scom(x,y)=(x+y+x.y) to derive the Equation (2.1.7-18). 

Ecombined = Scom(Ecross, Ediagona1)= Ecross + Ediagonal -Ecross • Ediagonal (2.1.7-18) 

3. JK-type 3 of generalized QCW-ECF can be derived from Equation (2.1.7-

2) by simply using the combination of algebraic and standard operators. For this

combination, we apply Quasi t-(co)norms as derived and mentioned in third row of 

Table 10. The Quasi operators Q, and Qs are considered respectively t-norm Tqcw and 

t-conorrns Sqcw• Therefore, the JK-type3 of QCW-ECF can be defined by Equation

(2.1.7-21). 

Su= Sqcw(d1, d4)= d1.d4 + (1- d1.d4).[max(d1, d4)] 

S21= Sqcw(d2, d1)= d2.d1 + (1- d2.d1).[max(d2, d1)] 

E = Eqcw(d1, d2, d1, d4) = Tqcw( Su , S21 ) 

= [min(S14, S23)].( Su+S23 -Su.S23) 

(2.1.7-19) 

(2.1.7-20) 

(2.1.7-21) 

Consequently, we can apply theses operators to find JK-type2 of vertical and 

horizontal edges, Ev and Eh. Therefore, using Equations (2. l .7-3), (2.1.7-4) and 

(2.1.7-5), we can write 

(2.1.7-22) 
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. (2.1.7-23) 

Eh =Eh(d1, d2, d3, d4) = Sqlw(Tn, T34) 

= T12.T34 + (1- T12.T34).[max(T12 ,T34)] (2.1.7-24) 

T24= Tqcw(d2, d4)= [min(d2, d4)] .( d2+ d4-d2.d4) (2.1.7-25) 

T34= Tqcw(d1, d3)= [min(d1, d3)] .( d1+ d3 - d1:d3) (2.1.7-26) 

Ev= Ev(d1, d2, d3, d4) = Sqcw(T24, T13) 

= Tu.T13 + (1- T24-T13).[max(Tu ,T13)] (2.1.7-27) 

E=E
qcw(d1, d2, d3, d4) = Sqcw(Eh, Ev) 

(2.1.7-28) 

In case of considering the combination of the diagonal and cross-QCW 

configuration to edge detection, we can apply the Quasi operator Qr (mentioned in the 

third row of the Table 2.1.7.1 for Equation (2.1.7-6) as t-conorm Scorn= Qs, to derive 

the Equation (2.1.7-29). 

Ecombined = Scom(Ecross, Ediagonai) 

= Ecross•Ediagonal + (1-Ecross•Ediagonal).[max(Ecross .Ediagona )] (2.1.7-29) 

4. JK-type 4 of generalized QCW-ECF can be derived from Equation (2.1.7-

2) by simply using the Quasi combination of algebraic and standard operators as

mentioned in fourth row of Table 10. Therefore, by considering Tqcw = Qr and Sqcw =

Qs, then the JK-type4 of QCW-ECF can be defined by Equation (2.1.7-32). 
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S23= Sqcw(d2, d3)= d2+d3 - d2.d3 +(1- d2 - d3 + d2.d3). [min(d2, d3)]

E = Eqcw(d1, d2, d3, d4) = Tqc,w( S14 , S23 ) 

(2.1.7-31) 

=(Su. S23).[max(Su, S23)] (2.1.7-32) 

Consequently, we can apply these operators to find JK-type4 of vertical and 

horizontal edges, Ev and Eh, Therefore, using Equations (2.1.7-3), (2.1.7-4) and 

(2.1.7-5), we can write 

T12 = Tqcw(d1, d2) = (d1.d2).[max(d1, d2)] 

T34 = Tqcw(d3, d4) = (d3.d4). [max(d3, d4)] 

Eh =Eh(d1, d2, d3, d4) = Sqcw(T12, T34) 

= T12+T34-T12.T34 + (1- T12 -T34+T12.T34).[min(T12 ,T34)] 

Tu= Tqcw(d2, d4) = (d2.d4). [max(d2, d4)] 

T13 = Tqcw(d1, d3) = (d1.d3).[max(d1, d3)] 

E v = Eh(d1, d2, d3, d4) = Sqcw(Tu, T13) 

(2.1.7-33) 

(2.1.7-34) 

(2.1.7-35) 

(2.1.7-36) 

(2.1.7-37) 

= Tu+T13-T24 .T13 + (l-Tu-T13+T24 .T13).[min(Tu,T13)] (2.1.7-38) 

E = Eqcw(d1, d2, d3, d4) = Sqcw(Eh, Ev)

= Eh +Ev - Eh.Ev + (1-Eh-Ev + Eh .Ev).[min(Eh .Ev)] (2.1.7-39) 

In case of processing both cross and diagonal QCW configurations, we can 

apply the Quasi operator Q, (mentioned in forth row of Table 10) for Equation (2.1.7-

6) as t-conorm Scorn= Qs to derive the following equation.

Ecombined = Scom(Ecross, Ediagonal) 
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= Ecross+ Ediagona - Ecross ,£diagonal 

+(1- Ecross -Ediagona+ Ecross,Ediagonat),[min(Ecross ,Ediagona )] {2.1.7-40) 

5. JK-type 5 of generalized QCW-ECF can be derived from Equat_ion (2.1.7-

2) by simply using the Quasi combination of algebraic operators as mentioned in fifth

row of the Table 10. Therefore, by considering Tqcw=Q, and Sqcw=Qs, then the JK­

type5 of QCW-ECF can be defined by Equation (2.1.7-43). 

S14 = Sqlw(d1, d4) = d1 + d4 -(d1.d4).(d1 + d4 - d1.d4) 

S23 = Sqcw(d2, d3) = d2+ d3 -(d2.d3 ).(d2+ d3 - d2.d3) 

E = Eq
cw(d1, d2, d3, d4) = Tqcw( S14 , S23 ) 

=(Su. S23).(Su + S23 - Su. S23)

(2.1.7-41) 

(2.1.7-42) 

(2.1.7-43) 

Consequently, using Equations (2.1.7-3), (2.1.7-4) and (2.1.7-5), we can apply 

theses operators to find JK-type5 of vertical and horizontal edges, Ev and Eh as 

follows. 

T12 = Tqcw(d1, d2) = (d1,d2),( d1+ d2 - d1.d2) 

T34 = Tqcw(d3, d4) = (d3.d4).( d3+ d4 - d3.d4) 

Eh = Eh(d1, d2, d3, d4) = Sqcw(T12, T34) 

= T12 + T34 - (T12. T34). (T12+ T34 -T12. T34) 

Tu= Tqcw(d2, d4) = (d2.d4).( d2+ d4 - d2.d4) 

T13 = Tqcw(d1, d3) = (d1,d3).( d1+ d3-d1.d3) 

Ev = Eh(d1, d2, d3, d4) = Sqcw(Tu, T13) 

(2.1.7-44) 

(2.1.7-45) 

(2.1.7-46) 

(2.1.7-47) 

(2.1.7-48) 
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E = Eqcw(d1, d2, d3, d4) = Sqcw(Eh, Ev) 

= Eh +Ev- (Eh.Ev).(Eh+Ev -Eh .Ev). 

(2.1.7-49) 

(2.1.7-50) 

Also, we can apply the Quasi operator Q, (mentioned in forth row of Table 10) 

for Equation (2.1.7-6) as t-conorm Scom = Qs, to derive the following Equation. 

Ecombined = Scom(Ecross, Ediagonai) 

= Ecross+ Ediagona -(Ecross ,EdiagonaJ).(Ecross+ Ediagona -Ecross ,EdiagonaJ). (2.1. 7-51) 

The edge detectors functionally find the edge (an intensity value for edge 

point) based on the above mentioned equations. Assume, B to be a processing block 

WxW at point (m,n) of an intensity image. Let B1, B2, B3, B4 be QCW within the 

block B, and also Y1, Y2, Y3, Y4 be representative intensity values for QCW obtained 

by Equation (2.1.5-2), then processing block pattern PBP is a vector defined by 

PBP = [dk]
p 

for k = 1,2,3,4. (2.1.7-52) 

The terms di, d2, d3, d4 are four intensity distances obtained by Equation 

(2.1.5-1) based on QCW within the block B. PBP is also considered as the 

characteristic vector of the intensity of QCW-pattern within the processing block B.

The processing block B with a certain pattern PBP can be evaluated by the edge 

detector which is operating functionally based on QCW-ECF given by the Equations 

(2.1.7-2) or (2.1.7-4) or (2.1.7-6). This has been illustrated in Figure 29. The function 
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E
qcw generates E as the evaluation value for the intensity pattern of processing block 

B. This evaluation value indicates the maximum degree of correspondence of

processing block pattern PBP to the binary edge patterns BEP
p 

(for p=l,2, .. 9) defined 

in section 2 .1.5. The evaluation value Eis obtained as 

(2.1.7-53) 

E possesses a value within [0,1] . The value E=l indicates a perfect 

correspondence between PBP and one of the binary edge patterns. Similarly, E=0 

shows no correspondence. It follows that a value between O and 1 for E refers to the 

degree of correspondence of PBP to the defined binary edge patterns. On the other 

hand, this degree of correspondence E indicates the degree of edginess of processing 

block pattern PBP. Since here we are dealing with normalized value of gray level 

(intensity value within [0,1]) and the degree of edginess is also between [0,1], we can 

directly consider the value E as the actual intensity value of the edge pixel. In the 

block processing technique for edge detection this value of E is replaced instead of 

middle pixel intensity Xmn of a running block B over an intensity image. 

2 .2 Correlation Between QCW- Pattern 
and Binary Edge Patterns 

Finding correlation coefficient is a an appropriate measurement for the degree 

of correspondence of the QCW pattern with the binary edge patterns. That is 

determination of maximum correlation between PBP vector and the space vector 

BEP={BEP
p 

I p=l,2, ... ,9}. Correlation between PBP and BEP is shown in Figure 31. 
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The correlation method results in a maximum evaluation value in interval 

(0, 1] as the maximum degree of correspondence between processing block pattern 

PBP to one of the 9 binary edge patterns BEP
p 

. This value represents the degree of 

edginess of pattern PBP. In the case of the normalized gray scale (intensity image), 

this degree of edginess can be considered as the actual intensity value of the edge 

pixel. The closer the PBP vector to the space vector BEP, the brighter the edge pixel. 

In processing a binary image this correlation result in a value 0 or 1, while in an 

intensity image it results in a value within interval (0, 1 ]. 

Possible binary code 
Words 24=16 ·············· ........... .

* 

* * 

* * 

* 

* 

.. 9 defined edge code 

..... •·········
···········'

··.
...
- words BEP

DC
p 

··-··-··-··-··-_@PBP

Figure 31. Illustration of Correlation Between Vectors PBP and BEP
p
.

2.2.1 Distance Correlation 

Consider a QCW within a processing block B of an image (binary or intensity) 

and let PBP be the relevant characteristic vector specifying this QCW pattern. Then 

the distances between the PBP vector and the BEP
p 

vectors are generally defined as 

DC
p 

by Equation (2.2.1-1 ). This equation represents the correlation between the 

processing block pattern and the binary edge patterns. 
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DCp = II PBP-BEPpll for p=l,2,3, ... 9 (2.2. 1-1) 

Distance correlation results in a value denoting the degree of closeness of 

PBP vector to BEPp vector. The space of the edge pattern vectors consists of nine 

vectors. Therefore, there are nine values indicating the degree of correspondence of 

PBP to the edge pattern vector space. Since we are looking for closest BEPp vector to 

PBP, then the minimum value of DCp meets our need. As DCp decreases toward zero 

the degree of edginess of PBP approaches the highest value I. We can define the 

degree of edginess of PBP as 

m,!n{IIPBP- BEPpll} 
Ed = 1-

n1 II} 
for p = 1,2,,3, ... ,9 

c m;x
ll

PBP- BEPp 

(2.2.1-2) 

According to this definition, the closer the vector PBP is to the binary code 

word space BEP, the function Ede results in the greater value as the degree of 

edginess for the processing block pattern. Considering this value directly as the actual 

edge intensity value, then the bigger value of Ede results in a brighter edge point. 

2.2.2 Angular Correlation 

Consider a QCW within a processing block B of an image (binary or intensity) 

and let PBP be a vector containing the intensity distances defined within this QCW 

pattern. The degree of correspondence of PBP to binary edge patterns BEPp is to find 

the minimum angle Bp (or maximum Cos(Bp)) between PBP vector and BEPp 
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vectors. The angular correlation between the processing block pattern and binary edge 

patterns is generally obtained by 

for p = 1,2, ...... ,9 (2.2.2-1) 

This equation results in a value within interval [0,1]. Therefore for p=l, ... 9, 

there are 9 different values representing the degree of correspondence of PBP vector 

to BEP
p 

vectors. When the PBP vector exactly matches with one of BEP
p 

vectors, 

then this equation possesses the value 1 (since angle between two vectors is zero) 

denoting the maximum degree of correspondence as well as maximum degree of 

edginess of PBP. 

By increasing the B
p
=O, the Cos( B

p
) is approaching O indicating no 

correlation while Cos( B
p
)= 1 is denoting the maximum correlation. The degree of 

edginess based on the defined angular correlation in Equation (2.2.2-1) is defined as 

for p = 1,2, ...... ,9 

2.3 Edge Detectors Based on QCW-ECF 

(2.2.2-2) 

In preceding sections, we have introduced edge characteristic functions (ECF) 

based on QCW within a processing block B of an image (binary or intensity). We 

showed that all these equations result in values denoting the degree of correspondence 
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of QCW pattern PBP to binary edge pattern space PEP. On the other hand, indicating 

the degree of edginess of middle pixel (m,n) centered on the processing block B. In 

the edge detection algorithm using block processing, the above equations can be 

directly applied to find the edge pixels. The result of the equation Eqcw is considered 

as intensity value of edge point and replaced by middle intensity pixel Xmn , Finally 

the output image represents an edge map considering degree of edginess for each 

pixel of main image. 

Edge detectors usually generate a binary edge map. The edge characteristic 

functions are applied to find the degree of edginess as an evaluation value for middle 

pixel Xmn. If this evaluation value is greater than some threshold (TH), then the edge 

detector send one to output (Xmn is replaced by 1) indicating Xmn is an edge point. 

Consequently, if this degree is less than some threshold (TL), then the edge detector 

sends O to output (Xmn is replaced by 0) denoting Xmn is not an edge point. The block 

diagram in Figure 32 depicts the edge detector functioning based on QCW-ECF and 

thresholding. 

Thresholding 

PBP� Edge Detector E(m,n)=E 

'U-t 
� l L.,_ 

E(PBP) .... 

0 I E 

.... 

Tl TH 

Figure 32. Edge Detection Using Thresholds. 
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Edge Detection algorithm based on QCW-ECF can be briefly written as 

follows: 

1. Choose a proper size of block B, WxW, with the middle intensity X,nn·

2. Do the QCW within block B using the diagonal, cross, or/and other desired

configurations (based on desired pixels neighboring ·the middle pixel), to find four 

child windows B1 , B2, B3, B4. 

3. Choose an appropriate aggregation operator g (such as averaging, median,

... )and apply it over each child window to find four representative intensities Yk= g{ 

XiJ I (i,j) eBd for k=l,2,3,4. Also, in case of processing a noisy image, replace the 

middle intensity pixel Xrnn with the intensity representative X'rnn where X'rnn = g{ XiJ I 

(i,j) E {B -(m,n)}}. 

4. Find the processing block pattern vector PBP=[d1 , d2, d3, d4] by finding the

four difference intensities (distances) dk = 1Xrnn -Ykl, for k=l ,2,3,4. 

5. Choose or construct a desired t-norm Tqcw and t-conorm Sqcw using Tables

2 and 10. 

6. Apply the JK-type generalized QCW-ECF, distance correlation, or angular

correlation given respectively by Equations 2.1.7-2, 2.2.1-2, and 2.2.2-2 for each 

individual QCW configuration (diagonally, crossly or any desired morphological 

structure), to find E=Eqcw(PBP)= Eqcw(d1, d2, d3, d4) the degree of correspondence of 

vector PBP to the binary edge pattern space BEP given by Table 8 ( or degree of 

edginess of PBP at middle pixel (m,n)). Since we applied the normalized gray scale 

indicating intensity is within continuous interval [O, 1], then this degree of 
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correspondence directly represents the intensity of edge pixel (if thresholding is not 

applied) and is replaced instead of middle pixel intensity Xmn . 

7. If there are more than one configuration, combine the result of each pair of

configurations obtained from step 6 using a proper t-conorm, Scorn, to find the 

Ecombined• 

8. In case of using thresholds for generating the binary edge, the edge detector

sends the binary digit 1 to output if E ( or Ecombined in case of combination) ;?: TH • Also, 

it sends binary digit O if E ( or Ecombined ) � TL· 
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CHAPTER ID 

FUZZY QCW EDGE DETECTION 

In this chapter, fuzzy tools are applied to define QCW-ECF based on fuzzy 

logic. One significant problem in edge detection occurs when an monochrome image 

has a background of varying intensity or gray level. Finding an edge of the object at 

those points that have a similar intensity with background is difficult. Also, another 

problem is that in many cases, edge detection techniques are dependent on the 

appropriate choice of thresholds. The edge detection algorithm based on fuzzy logic 

with flexible rules as well as tunable membership functions would be an effective 

approach to remove the above mentioned problems. 

3.1 Fuzzy Intensity Distances 

Let Xij and Xrrm be fuzzy intensity singletons of (i,j)1h and (m,n)
111 pixels within

a fuzzy intensity image defined by Equation ( 1.4.1-1 ). Fuzzy intensity distance is a 

fuzzy singleton with a fuzzy value d((m,n),(i,j)), obtained by Equation (2.1-1), and its 

corresponding membership degree µd obtaining on a certain fuzzy plane (such as 

fuzzy plane illustrated in Figure 7. This is defined as 

{
d((m,n),(i,j))= lxmn - xijl 

where 
µd= P(d((m,n),(i,j))) 

(3.1-1) 
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The term Fd is considered a fuzzy singleton indicating the fuzzy intensity distance 

between two fuzzy singletons FXmn and FXu representing two fuzzy intensity values 

of points (m,n) and (j,j) of image. Also, Pis a membership function(s) in fuzzy plane. 

3.1.1 Fuzzy Quadruple Child Windowing. FOCW 

Consider the fuzzy intensity image Fil represented by Equation (1.4.1-1). The 

QCW process defined in section 2.1.3 can be applied within a WxW block over the 

fuzzy intensity image, Fil. Let FB be a block (fuzzy intensity block) with size WxW 

over an fuzzy intensity image Fil. This block can be represented as 

{. W-1 W-1

for 
i= m --

2
-•···• m+ -

2
-

. W-1 W-1
J = n---, ... , n+--

2 2 

(3.1.1 - 1) 

Point (i,j) = (m,n) denotes the middle pixel of FB and FXmn is a fuzzy 

singleton which possesses intensity value of Xmn with membership degree of µ,nn• 

Also, FXu denotes the fuzzy singletons neighboring the middle pixel. FB can be 

considered as the result of fuzzification of block B defined by Equation (2.1.3-1) 

over an intensity image. Fuzzification of the intensity image II can be implemented 

by generating fuzzy blocks FB when the block B running over an intensity image. 

Now we apply again the QCW process to break down the block FB into four child 

windows as FB1, FB2 ,FB3 ,FB4. We call this process as Fuzzy quadruple Child 

Windowing (FQCW), which is mathematically represented by Equation (3.1.1-2). 
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1) FB-FQ�{FBk• I (m,n) E FBk fork= 1,2,3,4}

2) { FBi U FB2 LJ FB3 LJ FB4 LJ {X
mn

} }!;;; FB

FB1 n FB2 n FB3 n FB4 = 0

(3.1.1 - 2) 

This is exactly the fuzzy approach for QCW defined by Equation (2.1.3-1 ). 

The structure of FQCW within the running fuzzy intensity block FB can be 

geometrically altered based on application during the processing of fuzzy image. The 

structures of FQCW can be chosen as explained and illustrated for structures of QCW 

within the block of (3x3), (5x5), (7x7) in section 2.1.3. 

Considering the running block FB over an image Fil, one can apply either a 

fixed structure of QCW or different structure of QCW within block FB. In the case of 

the latter, all configurations of QCW are simultaneously considered to choose the best 

structure for QCW based on the results at each processing pixel Xmn • To process an 

image by applying various structures of QCW yields the best result but it takes more 

time than applying the fixed structure, because in each block all structures should be 

examined in order to find the best structure. 

3.1.2 Fuzzy Child Window Processing 

Let {FB1, FB2, FB3, FB4 }be an appropriate QCW over a WxWblock FB. The 

fuzzy child-filter can be defined by an operation (modification) g on pixels on/within 

each child window FBk. For our purposes, the filtering operation (we use median 

filtering ) over four child windows results in four fuzzy singletons FY1, FY2, FY3, FY4

which are respectively considered as four fuzzy intensity representative values for 
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child windows FB1, FB2, FB3, FB4• Finally the fuzzy singleton resulting from a fuzzy 

child window processing can be presented as 

for k = 1,2,3,4 (3.1.2 -1) 

According to Equation 2.1.4-1, we have Yk = g(Bk) for k=I,2,3,4. The 

membership degree µ1, µ2, µ3, � corresponding to these four fuzzy values Y1, Y2, Y3, 

Y4 are obtained using a certain fuzzy plain (fuzzification of these values). If P 

denotes the continuous membership function(s) defined in a fuzzy plane, then these 

membership degrees are generally defined as 

µ
k = P(Y k) where µ

k 
E [0,1] for k = 1,2,3,4 (3.1.2-2) 

Fuzzy child window processing is sequentially depicted in Figure 33 . 

FB" 

..................................... ____ --------

Filter yk Fuzzification 
-��.i P(Y) 

.............................................................................................................................................. ..1 

Figure 33. Fuzzy Child Window Processing. 

.. 

Fuzzy child window processing results in four fuzzy singletons FY1, FY2, FY3 

,FY4 within a fuzzy block FB. Consequently, FQCW patterns can be illustrated by 

Figure 34 using these four fuzzy singletons as representatives of child windows and 

the FXmn as the fuzzy singleton representing the middle pixel. 
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FY
O O

FY2 

cx ......................... FX
mn

FYP OFY4 

□ .
.
.
. •···

·
FX

mn

FY1 ... •····· 

FY3D 0TIFY2 

DFY4 

ODO 

DOD 

ODO 
(a) Diagonal- QCW (b) Cross-QCW (c) Combined Cross and

Diagonal-QCW

Figure 34. Illustration of FQCW Configurations. 

Figure 34 represents the geometrical configuration of fuzzy quadruple child 

windowing (FQCW), which is exactly like QCW but the pixels are fuzzy singletons. 

In case of processing of a noisy image, Xmn must be replaced with the representative 

intensity pixel X',nn obtained by the following operation g over the B -(m,n).

Operation g can be defined by Equation 1.6.7-3 or chosen from Table 4. 

X'mn = g{ Xij I (i,j) E {B -(m,n)} } 
or 

(2. 1 .2-3)  

(2. 1 .2-4) 

Consequently, the fuzzy singleton FX'mn can be defined by 

{m = 1,2, ... ,M
for 

n = 1,2, ... ,N 
(3.1.2 -4) 

, 
( , ) 

, 
fior {m_= 1,2, ... ,M 

µ P X where µ E [0,1] 
mn

= 
mn mn n -1,2, ... ,N 

(3.1.2 - 5) 
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3.1.3 FOCW Intensity Pattern 

Consider FQCW ( diagonal or cross structure) given in Figure 34 within a 

block FB. Let FY1, FY2, FY3, FY4 be 4 fuzzy singletons as the intensity 

representatives of four child windows and FXmn be the fuzzy singleton denoting 

middle pixel intensity. We can define 4 fuzzy singletons indicating the fuzzy intensity 

distances Fd1, Fd2, Fd3, Fd4 as 

for k = 1,2,3,4 (3.1.3-1) 

The intensity distances d1, d2, d3, d4 and their associated membership degrees 

can be obtained by 

(3.1.3-2) 

(3.1.3-3) 

P is a membership function(s) defined over continuous intensity scale [0,1] (or 

discrete gray level O to L-1 ). One may choose the fuzzification of dk using the fuzzy 

plane illustrated in Figure 7. The given fuzzy intensity block FB possesses an 

intensity pattern based on FQCW. This pattern can be specified by fuzzy vector FPBP 

containing intensity distances Fd1, Fd2, Fd3, Fd4 as 

FPBP = [Fdk] for k=l,2,3,4. (3.1.3-2) 

Therefore, each fuzzy intensity block FB which is under processing can be 
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specified by its pattern characteristic vector FPBP based on FQCW. This fuzzy vector 

FPBP can be considered as the fuzzified vector PBP which has been defined as a 

pattern characteristic vector for intensity block B based on QCW. This vector is 

applied to define FQCW-edge Characteristic function (FQCW-ECF) in next section. 

3 .1.4 FOCW-Edge Characteristic Function 

Consider FQCW within a fuzzy intensity block FB with its relevant code 

vector FPBP presenting the intensity pattern. If this FQCW intensity pattern 

corresponds with one of the nine binary edge patterns illustrated in Figure 26, or 27. 

In other words, if the fuzzy vector FPBP matches one of the binary code words 

defined in Table 8, then FQCW intensity pattern is considered an ideal edge pattern. 

This is true when the fuzzy singletons Fd1, Fd2, Fd3, Fd4 possess the ideal values like 

1/1, 1/0. Normally, the fuzzy intensity block which is under processing, for each 

fuzzy singleton Fdk in vector FPBP, the distance dkE [0,1] (or gray level l E {0,1, .. ,L-

1}) and its associated membership degree µ,dk E [0,1]. We are looking to find an 

appropriate function represented by Equation (3.1.4-1) to evaluate the FQCW 

intensity pattern (FPBP vector) by comparison with nine possible ideal (binary) edge 

patterns given in Figures 26 or 27. The binary QCW-edge patterns illustrated in these 

figures can be considered as a special case of FQCW-edge patterns when the FPBF 

vector contains fuzzy singletons 1/1, 1/0 which referring respectively to 1 and 0 in a 

crisp set. 
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(3.1.4-1) 

Etqcw is the edge characteristic function based ·on FQCW. The result E is a non­

fuzzy (crisp) number which represents the degree of closeness to maximum intensity 

of an edge point 1 or maximum gray level L-1. In other words, that is maximum 

degree of correspondence of the FQCW intensity pattern to the defined binary edge 

pattern space or degree of edginess of the middle pixel of the fuzzy block FB.

As the general Equation (2.1.7-2) was developed to define QCW-ECF ( in 

both diagonal and cross configurations) for evaluating the QCW intensity pattern (or 

pattern characteristic vector PBP ) based on degree of correspondence to the nine 

binary edge patterns, it is time to define the Equation (3.1.4-2). This equation 

represents the degree of correspondence of the FQCW intensity pattern to binary 

edge patterns. On the other hand, this equation defines the maximum degree of 

correspondence of the vector FPBP to the nine binary edge code word space, BEP = 

{BEP
p, } for p=l ,2, .. ,9. 

E = E (µd1/, µd2/, µd3j, µd4/) = fqcw /d1 /d2 /d3 /d4

= Tqcw[Sqcw (µd I ·d1' µd4 ·d4 ) •Sqlw (µd2 ·d2 'µd3•d3 )]

{
E,d1,d2,d3,d4,µd1 ,µd2,µd3,µd4 e [0,1]

where 

Tqcw
e {T,QpAr,Bi} • Sqcw

e {T,Qs,As,Bs} 

(3.1.4-2) 
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The operators Tqcw and Sqcw are respectively any t-norm and t-conorm defined 

in section 1.6.7. The function Etqcw is denoted here as FQCW-ECF. That is fuzzy 

QCW-edge characteristic function. Applying this function for edge detection has two 

important advantages, (1) thresholding is not needed. In this equation, since the four 

membership degrees µd1,µd2, µd3, µd4 associated with the distances d1, d2, d3, d4 play 

the roles of weights. Also, since these membership degrees are adjustable by 

properly tuning each membership function, then this makes the FQCW-ECF more 

flexible and powerful in edge extraction without using thresholds, and (2) Since the 

function Efqcw is a special operation over fuzzy variables d1, d2, d3, d4 and the result 

is a crisp value E, then it can be considered as a special defuzzification method by 

which simultaneously fuzzy singletons are mapped to a crisp value representing the 

degree of edginess. These two important advantages make this function powerful in 

edge detection and the resulted edge points by means of this equation are 

extraordinary as we will observe in Chapter IV. 

Consequently, by considering the diagonal QCW configuration and the 

Equations (2.1.7-3), (2.1.7-4) and (2.1.7-5), we can also express Etqcw for FQCW­

ECF by the terms of vertical (Ev)and horizontal (Eh) edges as follows. 

Eh = Sqcw [ T qcw (µd 1. d I , µd 2. d 2) , T qcw (µd 3. d 3 , µd 4. d 4)]

Ev = S qcw [ T qcw ( µd 2 · d 2 ' µd 4 · d 4 ) , T qcw ( µd I · d I • µd 3 · d 3 ) ]

E = Efqcw ( FPBP )EJqcw (FdJ>Fdz,Fd3,Fd4) = Sqcw (Eh •Ev) 

(3.1.4 - 3) 

(3.1.4 - 4) 

(3.1.4 - 5) 
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Also, Equation (2.1. 7-1) can be extended to Etqcw as 

(3.1.4-6) 

Since either the diagonal-FQCW or cross-FQCW configuration functions well 

within each processing block, then for better result, we can combine the results of 

both configuration as 

Efombined = Sqcw(Efcross, Efdiagonal) (3.1.4-7) 

Etcross and EfdiagonaI can be obtained by Equation (3.1.4-2) based on d1, d2, d3, d4 given 

respectively in configurations (a) and (b) of Figure 34. 

To develop the particular QCW-ECF (JK-typel,2,3,4,5 discussed in section 

2.1.7) for the fuzzy model FQCW-ECF, we can simply replace the variables d1, d2, d3, 

d4 respectively with (µd,1 . d1) , (µd,2 . d2), (µd,3 . d3), (µd,4 . d4). For simplicity, let 

define the parameter Dk as 

for k=O, 1,2,3,4 (3.1.4-8) 

The special cases of the generalized FQCW-ECF given by Equation (3.1.4-2) 

can be derived as follows: 

1. JK-type 1 of generalized FQCW-ECF can be obtained by using the Table

10 and Equation (3.1.4-2) as follows. 

(3.1.4-9) 
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Eh = Eh(FPBP) = max( min(D1 , D2), min(D3 , D4)) 

E v = E v (FPBP) = max( min(D2 , D4), min(D1 , D3)) 

E = Efqcw(FPBP) = max(Eh, E v) 

Ejcombined = max(Ejcross, EjdiagonaD 

(3.1.4-10) 

(3.1.4-11) 

(3.1.4-12) 

(3.1.4-13) 

2. JK-type 2 of generalized FQCW-ECF can be obtained by using the Table

10 and Equation (3.1.4-2) as follows. 

S14 = S qcw(D1, D4)= D1+ D4 - D1.D4 

S23 = S qcw(D2, D3)= D2+ D3 - D2.D3 

E = Ejqcw(FPBP) = T qcw( S14 , S23 ) = S14 . S14 

= (D1+ D, - D1.D,).(D2+ D3 - D2.D3) 

(3.1.4-14) 

(3.1.4-15) 

(3.1.4-16) 

We have T12 = T qcw(D1, D2)= D1.D2, T34 = T qcw(D3, D4)= D3.D4, T13 = T qcw(D1, 

D3)= D1.D3, Tu= T qcw(D2, D4)= D2.D4. Then, 

Eh =Eh(FPBP) = S qcw(T12 , T34) = T12 + T34 -T12 .T34 

= D1.D2 + D3.D4 -D1.D2.D3.D4 

Ev =Ev(FPBP) = S qcw(Tu, T13) = Tu+ T13-Tu .T13 

= D2.D4 + D1.D3 -D2.D,,.D1.D3 

E= Efqcw(FPBP) = Sqcw(Eh, Ev)= Eh+ Ev - Eh. Ev 

(3.1.4-17) 

(3.1.4-18) 

(3.1.4-19) 

Ejcombined = Scom(Ejcross, Ejdiagonai)= Ejcross + Ejdiagonal -Efcross • Ejdiagonal (3.1.4-20}
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3. JK-type 3 of generalized FQCW-ECF can be obtained by using the Table

10 and Equation (3.1.4-2) as follows. 

S14 = Sqcw(D1, D4)= D1.D4 + (1- D1.D4).[max(D1, D4)] 

S23= Sqcw(D2, D3)= D2.D3 + (1- D2.D3).[max(D2, D3)] 

E = Ejqcw (FPBP) = Tqcw( S14 , S23 ) 

= [min(S14, S23)].( S14+S23 -S14 .S23) 

Tn = Tqcw(D1, D2) = [min(D1, D2)] .( D1+ D2 - D1.D2) 

T34 = Tqcw(D3, D4) = [min(D3, D4)] .( D3+ D4-D3.D4) 

Eh = Eh(FPBP) = Sqcw(Tn, T34) 

= T12.T34 + (1- T12.T34).[max(T12,T34)] 

Tu= Tqcw(D2, D4)= [min(D2, D4)] .( D2+ D4 - D2.D4) 

T34 = Tqcw(D1, D3)= [min(D1, D3)] .( D1+ D3 -D1.D3) 

Ev =Ev(FPBP) = Sqcw(Tu, T13) 

= Tu.T13 + (1- Tu.T13).[max(Tu,T13)] 

E= Ejqcw (FPBP) = Sqcw (Eh, E v) 

= Eh.E v + (1- Eh .E v).[max(Eh .E v)] 

EfcombinetF Efcross• £/diagonal + 

= (1-Efcross•EfdiagonaL),[max(Efcross ,Efdiagona )] 

(3.1.4-21) 

(3.1.4-22) 

(3.1.4-23) 

(3.1.4-24) 

(3.1.4-25) 

(3.1.4-26) 

(3.1.4-27) 

(3.1.4-28) 

(3.1.4-29) 

(3.1.4-30) 

(3.1.4-31) 

4. JK-type 4 of generalized FQCW-ECF can be obtained by using the Table

10 and Equation (3.1.4-2) as follows. 
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S14= Sqcw(D1, D4)= D1+DrD1.D4 +(1- DrD4+ D1.D4).[min(D1, D4)] (3.1.4-32) 

S23= Sqcw(D2, D3)= D2+D3 - D2.D3 +(1- D2 - D3 + D2.D3). [min(D2, D3)] (3.1.4-33) 

E = EJqcw(FPBP) = Tqcw( S14, S23 ) = (Su, S23).[max(Su, S23)] (3.1.4-34) 

T12 = Tqcw(D1, D2) = (D1.D2).[max(D1, D2)] (3.1.4-35) 

T34 = Tqcw(D3, D4) = (D3.D4). [max(D3, D4)]" (3.1.4-36) 

Eh = Eh(FPBP) = Sqcw(T12, T34) 

= T12+T34-T12.T34 + (1- T12-T34+T12.T34).[min(T12,T34)] 

Tu = Tqcw(D2, D4) = (D2.D4). [max(D2, D4)] 

Tn = Tqcw(D1, D3) = (D1.D3).[max(D1, D3)] 

Eh= Eh(FPBP) = Sqcw(Tu, Tn) 

= T24 +Tn-T24 .T13 + (l-T24-Tn+T24 .T13).[min(T24,Tn)] 

E = Efqcw(FPBP) = Sqcw(Eh' Ev) 

= Eh +Ev - Eh.Ev + (1-Eh-Ev + Eh ,Ev),[min(Eh ,Ev)]

Efcombined = Scom(Ejcross, Efdiagonat) 

(3.1.4-37) 

(3.1.4-38) 

(3.1.4-39) 

(3.1.4-40) 

(3.1.4-41) 

= ( 1-Ejcross -Efdiagona+ Ejcross .Efdiagonat), [ min( Efcross .EfdiagonaD] + 

Efcross+ Efdiagona -Efcross .Efdiagonal (3.1.4-42) 

5. JK-type 5 of generalized FQCW-ECF can be obtained by using the Table

10 and Equation (3.1.4-2) as follows. 

S14 = Sqcw(D1, D4) = D1 + D4-(D1.D4).(D1 + D4- D1,D4) 

S23 = Sqcw(D2, D3) = D2+ D3 -(D2.D3 ).(D2+ D3 - D2.D3) 

(3.1.4-43) 

(3.1.4-44) 
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E = EJ
q
cw(FPBP) = Tqcw( S14, S23)

E = Efqcw(FPBP) = Sq
cw(Eh' Ev) 

Etcombined = Scom(Efcross, Eviagonat) 

(3.1.4-45) 

(3.1.4-46) 

(3.1.4-47) 

(3.1.4-48) 

(3.1.4-49) 

(3.1.4-48) 

(3.1.4-50) 

(3.1.4-52) 

(3.1.4-53) 

= Efcross+Efdiagona -(Efcross .Efdiagona/).(Efcross+Efdiagona -Efcross .£/diagonal) 

3.2 Correlation of FQCW Pattern With 
Binary Edge Patterns 

There is another method by which we can evaluate the FQCW pattern within 

A processing block FB. This method is similar to methods explained in section 

2.2, but here we deal with fuzzy vector FPBP which compares with edge code word 

space BEP. Since we can consider binary values as a special case of fuzzy values 0

and 1 with associating membership degree 1, ( 1/0 or 1/1), this comparison is 

possible. 
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3.2. 1 Distance Correlation of FOCW Pattern

Consider a FQCW within a processing block FB of an intensity image. Let

FPBP be a the fuzzy vector characterizing the FQCW pattern, then the distances

between FPBP vector and the BEP
p 

vectors are generally defined as Equation

(2.2.1-1). This equation represents the correlation between processing block pattern 

FB and the binary edge patterns.

FDC
p 

= II DV-BEP
p
ll for j=l,2,3, ... 9 (3.2. 1-1)

DV is a vector obtained by the conversion of the fuzzy vector FPBP to a crisp value

vector as 

DV = [µd 1 · d 1 , µd 2 · d 2 , µd 3 · d 3 , µd 4 · d 4] (3.2.1-2) 

Distance correlation results in a value denoting the degree of correspondence 

of the FPBP vector to the edge code word BEP
p
. We are looking for the maximum

degree of correspondence to the edge code word space BEP, then the minimum value

of FDC
p 

meets our need. We can define the degree of edginess of FPBP by Equation

(3.2. 1-3). According to this definition, the closer the FPBP vector is to the edge

pattern vector space, the greater is the degree of edginess Etdc is in value. 

�n{llnv- BEP
pll}

Ejdc = l-
{II II} m:x DV-BEPp 

for p = 1,2,3,4 (3.2.1-3)
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3.2.2 Angular Correlation of FOCW Pattern 

Consider a FQCW within a processing block FB of an intensity image and let 

FPBP be the characteristic vector of this FQCW pattern. Angular correlation is a 

proper measurement for degree of correspondence of FPBP to binary edge patterns 

BEP
p
. That is to find the minimum angle (or maximum cosine angle) between FPBP 

vector and BEP
p 

vectors. The angular correlation between the processing block 

pattern and the binary edge patterns is generally obtained by 

for p = 1,2, ... ,9 (3.2.2 - 1) 

DV is defined by Equation (3.2.1-2). This Equation results in a value within 

interval [0,1]. Therefore, for p=l, ... 9, there are nine different values representing the 

degree of correspondence of FPBP vector to BEP
p 

vectors. The maximum value for 

the cosine angle between vector DV and edge code word space will be obtained if the 

vector DV is completely matched with one of the edge code words. That means the 

maximum degree of edginess 1 occurs if Cos( <Pp) possesses the maximum value 1. 

Therefore, the degree of edginess based on the defined angular correlation in 

Equation (3.2.2-1) is defined by Equation (3.2.2-2). 

E Jae= m:x{ Cos( <I>
p
),} for p = 1,2, ... ,9 (3.2.2-2) 
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3.3 Tunable Edge Detector Based on FQCW-ECF

The edge detector based on FQCW-ECF can be designed using a fuzzy logic 

controller to extract the edge as desired. An edge detecting algorithm based on fuzzy 

logic with flexible rules as well as tunable membership functions would be an 

effective approach in edge detection. The Figure 35 illustrates a general idea of this 

edge detecting algorithm using the fuzzy logic controller for block processing of an 

image in order to detect the edge. 

PBP -1'
I / 

Fuzzy Logic 
Controller 

�� 

FPB� Fuzzy Edge Detector E(m,n) =
... 

Efqcw(Fd1, Fd2, Fd3, Fd4)✓

Membership 
function tuner 

� 

Figure 35. Illustration of Edge Detection Using Fuzzy Logic Controller. 

E 

The input is a processing block pattern (QCW intensity pattern of block B)

denoted by vector PBP. This pattern is fuzzified by fuzzy logic controller to generate 

the FQCW intensity pattern, FPBP vector, as an input to fuzzy edge detector. While 

this fuzzy detector is defuzzifying the fuzzy vector FPBP to a crisp value, it is also 

generating the maximum degree of correspondence of pattern PBP to the binary edge 

patterns BEP or degree of edginess of the middle pixel (m,n) centered on the block B.

The feedback is applied to tune the membership functions for gaining the appropriate 

membership degree µdk for dk (for k=l ,2,3,4) based on the result E in output. The 
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design of an edge detector based on FQCW-ECF using fuzzy logic controller is 

explained in detail further in Chapter IV. 

Edge detection algorithm based on FQCW-ECF algorithm can be 

summarized as follows: 

1. Choose a proper size of block FB, WxW, with the middle fuzzy singleton

indicating the intensity pixel FXmn. 

2. Do the FQCW within block B using the diagonal, cross, or/and other

desired configurations (based on desired pixels neighboring the middle pixel), to find 

four child windows FB1, FB2, FB3, FB4. 

3. Choose an appropriate aggregation operator g (averaging operator) and

apply it over each child window to find four representative intensities FY1 , FY2 , FY3 , 

FY4. It can be done by Equations (3.1.2-1 ), (3.1.2-2), (3.1.2-3). In case of noisy 

image, replace the fuzzy representative intensity pixel FX,nn with FX'17111 based on 

Equations (3.1.2-4) and (3.1.2-5). 

4. Construct the fuzzy processing block pattern vector FPBP=[µd1/d1 , µd2/d2,

µdyd3, µd,,fd4] using Equations (3.1.3-1 ), (3.1.3-2), (3.1.3-3). 

5. Choose or derive a desired t-norm T
qcw and t-conorm S

qcw using Tables 2

and 10. 

6. Apply the JK-type generalized FQCW-ECF, distance or angular correlation

given respectively by Equations (3.1.4-2 or 3.1.4-5), (3.2.1-3), and (3.2.2-2) for each 

individual FQCW configuration (diagonally, crossly or any desired morphological 

structure), to find E= E
q
cw(FPBP)= E

qcw( µd/d1, µd2ld2 , µdyd3, µd,,fd4) the degree of 
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correspondence of vector FPBP to the binary edge pattern space BEP given by Table 

8 (or degree of edginess of FPBP at middle pixel (m,n)). Since we applied the 

normalized gray scale indicating intensity within continuous interval [O, 1 ]. Therefore, 

this degree of correspondence directly represents the intensity of edge pixel (if 

thresholding is not applied) and is replaced instead of-middle pixel intensity Xmri• 

7. If there are more than one configuration, combine the result of each pair of

configurations obtained from step 6 using a proper t-conorm Steam, to find the Etcombined 

= Sfcom (Efcross, Efcross), 

8. Apply tuning of membership function to adjust µd1,µd2, µd3, µd4 till to

obtain the desired output in edge detector ( part 6 or 7), that is optimization of edge 

detection. 
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CHAPTERN 

SIMULATION AND MODELING 

Generally speaking, there are the three facets to engineering systems: (1) 

input(s); (2) output(s); and (3) system itself. If input and output of system are known, 

then creating the system is a design problem. In a simple system design, the important 

factor is a precise mathematical description by which the relation between input and 

output is defined for that system. For modularity, a complex system consists of a set 

of sub-systems, each with their own input/output characteristics. However, each sub­

system can be modeled by its own characteristic as a module to finally build up the 

main complex system model. Once modeling is completed, simulation can be done 

using computer software to demonstrate or to enhance the system performance, 

sensitivity and optimization. 

4.1 Optimal Edge Detector System Using 
Fuzzy Logic System 

In preceding chapter we attempted to find an appropriate characteristic 

function for edge extraction within a block B of an image. we now apply the obtained 

edge characteristic function (ECF) as a mathematical description of edge detector 

system. We are going to design a tunable edge detector system (EDS) which is 

controllable by a fuzzy logic controller system (FLC). The optimal edge is detected 

by means of multi-dimensional optimization module (MOM) which properly tunes the 
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membership functions of input/output variables of FLC. Fuzzy image processing 

module F-IPM, the controller FLC, and the optimizer system MOM are the fuzzy part 

of our EDS system. F-IPM provides the FLC and MOM with the necessary image 

data. The inter-module communication of EDS is represented in Figure 36. 
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Figure 36. Optimal Edge Detector System (EDS) Using FLC. 
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4.1.1 Introducing EDS Modules 

The designed and simulated EDS consists of 18 modules. EDS has been 

simulated according to the fuzzy and non-fuzzy algorithms which have been 

discussed in preceding chapters. Once modeling of EDS is completed and the tasks of 

EDS and its associated modules are specified, then the EDS can be simulated by 

individual simulation of each module and finally linking all modules together in order 

to obtain the desired task of the EDS. Here the simulation is done by MATLAB image 

processing and fuzzy logic tool box version 5.1. The simulation is capable of 

executing all defined algorithms simultaneously and making a comparison between 

algorithms. The simulated EDS modules are as follows: 

1. IMCM: Physical image to matrix conversion module. This module converts

the given color or monochrome images to an intensity (monochrome) image matrix. 

Each component of this matrix represents the intensity of respective pixel in a 

physical image and has a value within interval [O, 1] which is considered as the 

normalization of set {0,1,2, ... L-1} with L gray levels. 

2. MM: Main module initializes parameters and provides interfacing or

linking to the other modules. Also, it provides the desired information for displaying 

( monitoring). 

3. 1PM: Image processing module consists of a fuzzy section F-IPM and non

fuzzy section NF-IPM. This module is a base to provide other modules with the 

necessary data from the image matrix. This module applies the block processing 

method to properly modify the data for uses of the other modules (as you observe its 
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inter-communications with other modules in Figure 36). NF-IPM processes image 

data to make a suitable data for implementing the non-fuzzy algorithms. The F-IPM 

modifies image data to prepare the necessary data for implementing the fuzzy 

algorithms. 

4. PFM: Processing function module provides the non-fuzzy part of EDS

with the ECF in order to implement the non-fuzzy algorithms for edge detection. 

5. FLC: Fuzzy logic controller is designed with the flexible fuzzy rules and

tunable input/output membership functions to enhance the optimal edge trace. FLC 

consists of fuzzification, FIM, FRB, CIF, defuzzification and MOM modules. 

6. FUZZ: This fuzzification module is used to convert crisp data Y1, Y2, Y3,

Y4, X,nn, (concerning QCW-pattern within block B of an intensity image //) 

_ respectively to the fuzzy singleton data FY1, FY2, FY3, FY4, FX1nn. The fuzzified data 

are processed in FIM to make the decision for he output of FLC. 

7. FMFG: Fuzzy membership function generator is used to produce the

desired functions used in fuzzy plane P for fuzzification of image data. This module 

is able to generate triangular and trapezoid shaped functions (section 1.3.3) over the 

intensity interval [O, 1] or gray scale { 0, 1, ... L-1} as Figure 7. The membership 

functions are used in fuzzification of the input data to FLC and implicating the output 

membership degrees of the fuzzy inference machine FIM. 

8. FRB: Fuzzy rule base is the module where the knowledge concerning the

performance strategy of FLC is linguistically stored in the form of fuzzy rules. 

114 



9. FIM: Fuzzy Inference Module is used to implicate the membership 

degrees for output based on the fired fuzzy rules from the rule base. The input of FIM 

is fuzzy singletons FY1 , FY2, FY3, FY4, FXrrm and the implicated output based on fuzzy 

rules are fuzzy singletons Fd1 , Fd2, Fd3, Fd4. 

10. CIM: Contrast intensification module is used to intensify the membership

degrees of fuzzy singletons in FIM outputs. The outputs of FIM are brought to this 

module for intensification of membership degrees by using the function Ts (section 

1.4.2). 

11. DEFUZZ: This defuzzification module of FLC is applied to convert

fuzzy singletons (intensified or not) Fd1, Fd2, Fd3, Fd4 to a crisp value Errm which also 

indicates the degree of edginess of the middle pixel Xrrm . This module is capable of 

implementing the fuzzification according to COA, MOM, COM, and all defined Efqcw

(defined in sections 1.3.7, 3.1.5, 3.2.1, 3.2.2). 

12. MOM: Multidimensional optimization module which is applied to tune

input/output membership function(s) of FLC in order to optimize the edge trace in 

output of EDS. Cyclic coordinate algorithm (CYCLIC) along with the golden ratio 

line search algorithm (GOLDEN) are used to minimize the performance index 

P/=llell
2

• The term e is the error matrix between the desired edge matrix led and the 

actual edge trace matrix h in output of EDS. The vector V is constructed containing 

the overlap percentages and peak points of input/output membership functions of 

FLC as the tuning variables. 'V' is the input of MOM and the output is v* indicating 

the optimal value for vector V, (section 1.5.5). 
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13. I-Error: Image error module consists of two modules NFI-Error and FI­

Error which are used to determine the cumulative error, cumulative square error, 

matrix square error (SQE), mean error (ME), and matrix correlation (TDC) for all 

explained non-fuzzy and fuzzy algorithms of edge detection (sections 1.6.4, 1.6.5). 

4.1.2 EDS Task Descriptions 

Figure 37 illustrates a tunable edge detector system (EDS) which is able to 

find edge based on the explained fuzzy and non-fuzzy algorithms in the preceding 

chapters. The optimal edge is detectable through a certain optimization algorithm. A 

simple feedback system is used to take the output of EDS towards an optimal point. 

The following block diagram gives the general idea about the inter-communications 

between the fuzzy logic controller FLC, fuzzy image processing module F-IPM and 

multi-dimensional optimization module MOM. 

FLC 

QCW-pattem, 
PBP 

I e F-IPM /ep 

PI V, V*

MOM 

Figure 37. Inter-Communication of Fuzzy Part of EDS. 
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Child window filtering is properly implemented by NF-IPM for the non-fuzzy 

edge detection algorithm. Child window processing results in four representatives 

denoted by Y1, Y2, Y3, Y4• These four intensity representatives, as well as the middle 

pixel intensity Xmn, represent the QCW-pattern within block B and are also 

considered inputs to the FLC system. NF-IPM generates the proper QCW pattern(s) 

specified by its (their) patterning characteristic vector(s) PBP for the processing block 

B of the intensity image II. The QCW pattern(s) (Y1, Y2, Y3, Y4, Xmn) within the block 

Band its relevant vector(s) PBP are the input of FLC. The FLC output is the degree 

of edginess relating to the middle intensity pixel Xmn of the block B. 

Multidimensional optimization based on the cyclic coordinate algorithm 

(explained in section 1.5.6) is adopted to minimize the desired error function as 

performance index PI (cost function) of EDS by tuning the input/output membership 

functions of FLC. This optimization is used just for fuzzy approaches to edge 

detection. Block processing technique is applied to find the edge pixels of the image 

by using QCW techniques which have been explained in chapter 2. As you observe in 

Figure 37, the error matrix e= led - le (difference between the desired edge trace led 

and actual edge trace le) is used to derive performance index, P/=llell2 , as an 

objective function in the optimization procedure for conducting the EDS system 

towards an optimal state. The output of multidimensional optimization module MOM 

is the vector V which contains the tuning variables of the input/output membership 

function of FLC. 

The non-fuzzy part of EDS can be simply illustrated as Figure 38. The 
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input of NF-IPM is the intensity image II. After choosing proper QCW 

configuration(s) within block B, this module executes the suitable child window 

processing for the non-fuzzy algorithm and creates the QCW pattern(s) with its (their) 

relevant PBP as input to PFM. PFM which contains the functions relating to the non­

fuzzy edge detection algorithms generates Emn, the degree of edginess of the middle 

pixel intensity Xmn . 

QCW-patter 
PB 

II 

PFM 

NF-IPM 

Je _ e 

Figure 38. Inter-Communication of Non-Fuzzy Part of EDS. 

Tasks of the optimal edge detector system (EDS) depicted in Figure 36 can be 

summarized as follows: 

1. Converting the physical monochrome or color image to an intensity

(monochrome) image matrix II with size MxN and L gray levels, section 1.2.3. Done 

by the module IM CM. 

2. Constructing a movable block (window or mask) B with the selective size

of block WxW and middle intensity pixel Xmn , Done by the module 1PM. 

3. Sliding the block B over the given image pixel by pixel from top to bottom

to process all regions of the given image, section 1.2.6. Done by the module 1PM. 
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4. Selecting and constructing the suitable QCW configuration(s) (cross,

diagonal and combination of both), section 2.1.3. Done by module /PM. 

5. Child window processing (filtering) using median, min, max, mean

operators based on the inquiry of fuzzy or non-fuzzy algorithms to find representative 

pixels Y1, Y2, Y3, Y4, section 2.1.4. Done by the module /PM. 

6. Constructing the processing block pattern vector PBP=[ d1, d2, d3, d4] 

which is defined as the patterning characteristic of QCW within the processing block 

B, Equation 2.1.5-7. Done by the module /PM. 

7. Constructing the code words BEP
p 

for 9 classes of the defined binary edge

patterns, Table 8. Done by the module /PM.

8. Detecting edge based on non-fuzzy algorithms within the processing block

B, and individually storing the edge trace matrix h resulting from each algorithm, 

sections 1.2.10 (derivative methods), 2.1.6, 2.1.7, 2.2.1, 2.2.2 (QCW- ECF 

algorithms). Done by PFM. 

9. Generating tunable membership functions, trapezoid and triangular shaped,

over the gray level {0,1,2, . . .  ,L-1} or intensity interval [0,1], sections 1.3.3 and 1.3.8. 

Done by the module FMFG. 

10. Fuzzification of QCW pattern (crisp values Y1, Y2, Y3, Y4, Xmn) within the

block B in order to obtain FQCW pattern (fuzzy singletons FY1, FY2, FY3, FY4,

FXmn), section 3.1.2. Done by thefuzzification module in FLC. 

11. Storing information or knowledge pertaining to the desired performance of

FLC in the form of linguistic fuzzy rules, IF-THEN, in fuzzy rule base FRB. 
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12. Applying Max-Min fuzzy reasoning, to implicate the membership degrees

of FIM outputs based on the fired control rules from FRB, done by the module FIM, 

(section 1.3.6). The inputs to FIM are fuzzy singletons FY1, FY2, FY3, FY4, FXmn

defining FQCW pattern. The implicated outputs are fuzzy singletons Fd1, Fd2, Fd3, 

Fd4, which are components of vector FPBP, section 3.1.3. 

13. Defuzzifying the fuzzy vector FPBP=[Fd1, Fd2, Fd3, Fd4] based on

defuzzification methods COA, MOM, COM or FQCW-ECF, Etqcw, section 3.1.4 

(special cases of QCW edge characteristic functions JK-typel ,2,3,4,5 )). The value 

Emn indicates the degree of edginess of vector FPBP at point (m,n) and is replaced 

instead of middle intensity value Xmn in processing block. Done by the defuzzification 

module. 

14. Determining the error matrix e which is deference between desired edge

trace led and the actual edge trace matrix h in output of EDS (for normalization of 

components, each edge trace matrix before calculation of error is divided by its 

maximum component). Also, calculating the commutative error and commutative 

square error in each middle pixel while block B is sliding over the image. This is 

computed simultaneously for all running algorithm during the process, section 1.6.4. 

Done by the FI-Error and the NFI-Error modules. 

15. Determining the performance index (cost function) PI =llell2 • This is used

as an objective function to be minimized by MOM in order to optimize the EDS 

system, section 1.5-6. Done by Plieft, PI,igh t modules. 
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16. In case of optimization, optimizing the edge trace in EDS output based on

minimizing the P/=lle112 as the objective function. The optimization is done by 

tuning the input/output membership functions of FLC. The overlap percentages and 

peak points (the components of vector V) of the membership functions are used as the 

tuning variables. The cyclic coordinate algorithm is- applied to derive the result of 

defuzzification (Emn= Etqcw) in the FLC output toward an optimal value (E*mn= E*fqcw 

) by tuning µd1, µd2, µd3, µd4, section 1.5.6. Done by the MOM module. 

4.1.3 Experimental Results 

Due to different variation of intensities and also variety of objects from one 

image to the another one, an efficient edge detection algorithm must be such powerful 

to possess that flexibility to produce the proper edge traces for any type of images, 

disregards to the degree of smoothness, sharpness, noisiness, and pixel to pixel 

intensity transition. Also, it must generate the appropriate edge traces independent to 

the size of the objects and satisfactorily results in a same quality for small and big 

objects. Toward this purpose, To investigate the efficiency of the aforementioned 

algorithms, we find the experimental results through three examples over three types 

of M><M images as: (1) an image illustrating an small object in example one; (2) an 

image given in example two representing the similar foreground and background 

intensities (in some regions), smoothness, and various intensity transition in different 

regions; and (3) an image covered by Gussian and Salt & Pepper noises. 

To judge about the obtained results, we compare the M><M edge trace matrix 
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resulted from each algorithm (without thresholding), denoted by IE, with a MxM 

ideal binary edge trace matrix, denoted by Id. For this purpose, we apply three kinds 

of measurements as the performance indexes as; (1) mean error, ME, and total mean 

error TME defined by Equations (1.6.5-2) and (1.6.5-3); (2) square error, SQE, 

defined by Equation (1.6.5-4), but multiplied by 100/(M.M-NIEP) such that NIEP is 

the number of ideal edge pixels; and (3) two dimensional correlation ,TDC, given by 

Equation (1.6.6-1), where A=IE and B=ld in all three cases. 

The outputs, edge trace matrices /El, IE2, ... ,IE21, have been obtained 

without using thresholding technique. These matrices are respectively the results of 

the algorithm mentioned in the tables given in examples 1,2,3. The /El, IE2, and 

IE3 matrices are results of non-linear derivative algorithms. The IE4, IE5, and IE6 

matrices represent the results from simple intensity difference (classic) methods 

explained in section 1 .4.4. The IE7, ... ,/El 7 matrices are resulted from some special 

cases of generalized QCW-ECF. The /El 8 matrix is the optimal edge trace based on 

FQCW-ECF ( JK-typel )  generated by fuzzy logic system and optimized by the 

cyclic coordinate algorithm. The IE19, IE21 are also edge matrices based on FQCW­

ECF but not optimized. They are defuzzified in FLC respectively using COA and 

MOM methods. To obtain IE20, the membership degrees µd1, µd2, µd3, µd4 resulting 

from FLC are intensified 7 times (s=7) by means of recursive Equation (1.4.2-2) 

before applying COA defuzzification method. 

For QCW and FQCW within a block of 5x5, the morphological structure 

given in Figure 39 is applied. Also, for diagonal and cross QCW configurations (both 
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5x5 and 3x3), the structures represented in Figures 22 and 23 are applied. 

B1 
2x3 child-window B2 
Y1= median(B1) 3x2 child-

window 

Y2= 

median(Bz) 

B3 X.n 

3x2 child-
B4 

window 

Y3= 
2x3 child-window 

median(BJ) 
Y4

= median(B4) 

Figure 39. One Possible (F)QCW Configuration Within a 5x5 Block B. 

In case of noisy images in example 3, to remove the noises, the median 

filtering is applied within each child window Bk. Averaging operation is also used 

within the region B-{ (m,n)} and the result of this averaging (Equation 1.2.5-1) X'mn is 

considered as the representative of entire block B. That is, Xmn =X',nn• 

The fuzzy logic rule base designed for edge detection algorithm contains the 

rules given by Figure 40. 

Outputs d1, d2, d3, d4 
for input 

>rnn 

B XL L M z 

Figure 40. Fuzzy Rules Applied in FLC for Fuzzy Algorithms in Examples 1,2,3. 
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To find the optimal edge trace using fuzzy logic, we ·use cyclic coordinate 

algorithm to tune input/output membership functions of FLC in order to obtain the 

appropriate µd1, µd2, µi13, µd4. In this optimization, tuning the membership functions 

are done by adjusting the percentage of overlaps and peak points. 

We consider one fixed percentage of overlap for input MFs, denoted by P ovlin , 

and another fixed value for output MFs, denoted by P0v10111. Five peak points, denoted 

by Cinl, Cin2, Cin3, Cn4, Cns, for input MFs and five peak points, denoted by Courl, 

Cou12, Cout3, Cout4, Couts, for outputs are also considered along with mentioned 

percentage of over lap to adjust the MFs such that the performance index SQE = 

[10O/(M.M-NIEP)].llld -/£112 is minimized. The vector V=[ Povlin, Cinl, Cin2, Cn3, Cn4, 

Cns, Pov/out, Coutl, Cout2, Cour3, Cout4, C0urs] is considered for this multidimensional 

optimization using cyclic coordinate algorithm explained in 1.5.5 and 1.5.6. 

Cyclic coordinate algorithm finds the optimal components for the vector V

(containing the input/output MFs of FLC) by minimizing the SQE. That is, Vinirial ➔ 

V*optimal• 

For all three examples, the input and output membership functions of FLC are 

initialized symmetrically before optimization meaning that the vector Vis initialized 

as Vinitia1=[O.5, 0.167, 0.333, 0.5, 0.667, 0.833, 0.5, 0.167, 0.333, 0.5, 0.667, 0.833]. 
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Example 1. To represent the efficiency of QCW-ECF and its fuzzy associated 

FQCW-ECF against the other derivatives algorithm for small object edge detection, 

we have provided the first experiment as follows. A 8 x 8 intensity image matrix Ill

(L=l6) containing a small size object (ring) has been applied as an input to the EDS. 

The data and figures resulted from EDS are given in Table 11 and Figures 41 to 46. 

Table 11 

Comparison Table for Fuzzy and Non-Fuzzy Algorithms in Example 1 

Bio (F)QCW
Defuzzific 

SQE 
Trace Methods Eq. ck structure

ation 
TME 

% 
TDC 

size Fi2. 

/El Roberts 1.2.10-1 2x2 0.082 4.765 0.858 

IE2 Sobel 1.2. 10-2 3x3 0.092 5.495 0.836 

IE3 Wallis 1.2.10-5 3x3 0.063 4.282 0.884 

IE4 Classic 1.4.4-1 5x5 0.250 30.76 -.124 

IE5 Classic 1.4.4-2 5x5 0.026 1.335 0.967 

IE6 Classic 1.4.4-3 5x5 0.063 7.692 0.832 

IE7 Angular Corr. 2.2.2-1 5x5 39 0.064 7.408 0.833 

/EB Distance Corr. 2.2.2-2 5x5 39 0.012 0.077 0.998 

IE9 JK-typel 2.1.7-7 5x5 39 0.Ql8 0.654 0.984 

IEJO JK-type2 2.1.7-14 5x5 39 0.013 0.129 0.997 

/Ell JK-type3 2.1.7-21 5x5 39 0.013 0.129 0.997 

Q IE12 JK-type4 2.1.7-32 5x5 39 0.025 0.328 0.993 

C IE13 JK-typeS 2.1.7-43 5x5 39 0.019 0.197 0.995 

w IE14 JK-typel 2.1.7-10 5x5 23 (b) 0.005 0.053 0.999 

IE15 JK-typel 2.1.7-11 3x3 22 (c) 0.036 0.617 0.936 

IE16 JK-typel 2.1.7-11 5x5 23 (e) 0.018 0.654 0.984 

IE17 JK-typel 2.1.7-11 5x5 23 (d) 0.Ql8 0.654 0.984 

F IEJB JK-typel(Fuuy) 3.1.4-9 5x5 39 JK-typel 0.000 0.000 1.000 

Q IE19 Fuzzy model 1.3.7-5 5x5 39 COA 0.034 0.706 0.984 

C IE20 Fuzzy model 1.3.7-5 5x5 39 COA,(IN1) 0.022 0.369 0.988 

w IE21 Fuzzy model 1.3.7-4 5x5 39 MOM 0.034 0.706 0.984 
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Figure 41. Optimized Input/Output MF of FLC for Example 1 Obtained by MOM. 
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Ill (main image) Id (ideal edge matrix) /El 

I I I I I I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 I I I I I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I I .28 .28 .28 .28 I I 0 0 1 I 1 1 0 0 0 0 .40 .64 .53 .87 0 0 

I I .28 .7 .7 .28 I I 0 0 I 0 0 I 0 0 0 0 .40 .18 .64 .87 0 0 

1 1 .28 .7 .7 .28 l I 0 0 1 0 0 1 0 0 0 0 .18 .40 .40 .87 0 0 

I I .28 .28 .28 .28 I I 0 0 1 I I I 0 0 0 0 I I I .62 0 0 

I I I I I I I I 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I I I I I I I I 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

IE2 IE3 IE4 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 .92 .61 .66 .84 0 0 0 0 1 .85 .85 1 0 0 0 0 0 0 0 0 0 0 

0 0 .62 .66 .56 .78 0 0 0 0 .85 .71 .71 .85 0 0 0 0 0 I I 0 0 0 

0 0 .62 .66 .78 .47 0 0 0 0 .85 .71 .71 .85 0 0 0 0 0 I I 0 0 0 

0 0 .92 .74 .60 I 0 0 0 0 I .85 .85 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TF.'i TF.n TF.7 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 I I I I 0 0 0 0 I I I I 0 0 0 0 I .98 .98 I 0 0 

0 0 I .42 .42 1 0 0 0 0 1 I I I 0 0 0 0 .98 .87 .87 .98 0 0 

0 0 I .42 .42 I 0 0 0 0 I I I I 0 0 0 0 .98 .87 .87 .98 0 0 

0 0 I I I I 0 0 0 0 I I I I 0 0 0 0 I .98 .98 I 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

/EB IE9 IEJO 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.94 .87 I .94 0 0 0 0 I I 1 I 0 0 0 0 I .97 .93 I 0 0 

0 0 I 0 0 .87 0 0 0 0 I .29 .29 I 0 0 0 0 .93 .I I .II .97 0 0 

0 0 .87 0 0 .98 0 0 0 0 1 .29 .29 I 0 0 0 0 .97 .II .II .93 0 0 

0 0 0.94 I .87 .94 0 0 0 0 I I I I 0 0 0 0 I .93 .97 I 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 42. Illustration of Edge Trace Matrices Generated by EDS in Example 1. 
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/Ell IE/2 IE13 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 .97 .93 1 0 0 0 0 I .84 .78 1 0 0 0 0 1 .89 .83 I 0 0 

0 0 .93 .11 .11 .97 0 0 0 0 .78 .03 .03 .84 0 0 0 0 .83 .04 .04 .89 0 0 

0 0 .97 .11 .11 .93 0 0 0 0 .84 .03 .03 .78 0 0 0 0 .89 .04 .04 .83 0 0 

0 0 1 .93 .97 1 0 0 0 0 1 .78 .84 1 0 0 0 0 1 .83 .89 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

IEJ4 IE15 IE16 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 I 1 1 1 0 0 0 0 1 I I 1 0 0 0 0 1 1 I 1 0 0 

0 0 I .08 .08 1 0 0 0 0 1 .58 .58 1 0 0 0 0 I .29 .29 1 0 0 

0 0 1 .08 .08 1 0 0 0 0 I .58 .58 I 0 0 0 0 I .29 .29 I 0 0 

0 0 1 1 1 1 0 0 0 0 I I I I 0 0 0 0 I I I I 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

IE17 IE18 IEJ9 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 I I 1 I 0 0 0 0 1 1 I 1 0 0 0 0 1 .86 .80 1 0 0 

0 0 I .29 .29 1 0 0 0 0 1 .0001 .0001 1 0 0 0 0 .80 .20 .20 .86 0 0 

0 0 1 .29 .29 1 0 0 0 0 I .0001 .0001 1 0 0 0 0 .86 .20 .20 .80 0 0 

0 0 1 I 1 1 0 0 0 0 1 1 1 I O 0 0 0 1 .82 .86 I 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TT<?n FF.'J. I 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 .83 1 1 0 0 0 0 1 .86 .80 I 0 0 

0 0 1 .18 .18 .83 0 0 0 0 .80 .20 .20 .86 0 0 

0 0 .83 .18 .18 I 0 0 0 0 .86 .20 .20 .80 0 0 

0 0 I I .83 I 0 0 0 0 I .82 .86 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 43. Illustration of Edge Trace Matrices Generated by EDS in Example 1. 



Id= Ideal edge intensity surface /El= Sobel edge intensity surface 

0. 

IE2= Roberts edge intensity surface IE3= Wallis edge intensity surface 

0. 

IE9= JK-typel edge intensity surface IE18=JK-typel(fuzzy) edge intensity 

Figure 44. Illustration of Edge Intensity Surfaces for Comparison of 
Intensity Levels at Edge Points Between the Ideal Edge Trace and 
the Edge Traces Resulting From Some Algorithms in Example 1. 

129 



SQE LEVELS 
llustration of SOE level at each iteration during the optinization of edge trace IE18 (fuzzy version) 
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Iteration 

Edge trace IEB: JK-type1 (for fuzzy mod el) 

• In each i teration h, one component of Vis tuned by Cycli c Coordinate Algorithm to minimize SOE

Figure 45. Illustration of SQE Trajectory (SQE Minimization) During the 
Optimization of Edge Trace /El 8 Using Cyclic Coordinate 
Algorithm to Tune the Input/Output Membership Functions 
of FLC Illustrated in Figure 41 (a), (b). 
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Figure 46. Illustration of Mean Error at Each Pixel for Fuzzy and Some 
Non- Fuzzy Algorithms Obtained by EDS in Example 1. 
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As observed from obtained edge trace matrices (Figures 42 and 43) and the 

illustrated edge intensity surfaces (Figure 44), obviously, in small images the 

derivative methods (Sobel, Roberts, and Wallis) creates the scattered data at edge 

points. This makes some difficulties in choosing an appropriate threshold levels Ti 

and TH (Ti and TH are illustrated in Figure 32), since· the lower level and upper level 

thresholds can not be distinguished. In Roberts /El and Sobel IE2, some edge points 

have the less intensity than some other points which are not supposed to be edge 

according to the ideal edge trace Id. That is, it is not possible to find Ti and TH such 

that Ti � TH. In Wallis edge trace IE3, the Ti and TH are distinguishable, but 

difference between Ti and TH is small and it causes the selection range of threshold 

levels to be so limited. On the contrary, the QCW (specially FQCW which is not 

dependent on thresholding) does not possess the above mentioned problem. All data 

concerning the edge points generated by the algorithms of QCW-ECF family are 

organized and not scattered. Consequently, distinguishing the appropriate lower level 

and upper level thresholds (Ti and TH) is easy since we can easily find TH and Ti such 

that Ti� TH and TH -Ti>>O. 

Also a quick review on the Table 11 proves that generally the algorithms of 

QCW and specially FQCW families have three advantages in performances compare 

to the other derivative algorithms for small object edge detection as: (1) bigger 

correlation TDC (close to 1); (2) less total mean error TME (even mean error ME at 

each pixel, illustrated in Figure 46); and finally (3) less square error SQE. 
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One significant result, IE] 8, has been obtained by FQCW-ECF (JK-type 1) 

(fuzzy approach to edge detection) and optimized by cyclic coordinate algorithm. The 

optimal edge trace, IE] 8, generated by EDS without using threshold technique has the 

best correlation to the ideal edge trace Id and the least TME and SQE comparing with 

the non-fuzzy algorithms. 

The general conclusion of this example is that, for small object edge detection, 

the algorithms of QCW-ECF family (which are based on correlation or degree of 

correspondence to the binary edge patterns) performs better than the derivative 

algorithms such as Roberts, Sobel, and Wallis. They are all dependent on 

thresholding technique but implementation of thresholding for QCW-ECF family is 

much easier than the other compared algorithms. At the end, FQCW-ECF generates 

the better results without using threshold technique comparing to its non-fuzzy 

associates QCW-ECF and the other mentioned non-fuzzy algorithms. 

Example 2. To represent the efficiency of QCW-ECF and its fuzzy associated 

FQCW-ECF against the other derivative algorithms for edge detection of an image 

with a similar foreground and background intensity, we have provided the second 

experiment as follows. A 130xl 30 intensity image matrix II2 (L=256) has been 

applied as an input to the EDS system for edge detection without using thresholding 

technique. Some data and graphs resulted from EDS are given in Table 12 and 

Figures 47 to 51. 
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Table 12 

Comparison Table for Fuzzy and Non-Fuzzy Algorithms Applied for 

130x 130 Pixels Image //2 in Example 2, Illustrated in Figure 48 

Bio (F)QCW
Defuzzific 

SQE 
Trace Methods Eq. ck structure

ation 
TME 

% 
size Fie. 

IE/ Roberts 1.2.10-1 2x2 0.273 9.039 

IE2 Sobel 1.2.10-2 3x3 0.171 5.388 

IE3 Wallis 1.2.10-5 3x3 0.117 3.873 

IE4 Classic 1.4.4-1 5x5 0.152 3.642 

IE5 Classic 1.4.4-2 5x5 0.227 9.186 

IE6 Classic 1.4.4-3 5x5 0.259 10.14 

IE7 Angular Corr. 2.2.2-1 5x5 39 0.121 3.391 

/EB Distance Corr. 2.2.2-2 5x5 39 0.114 3.401 

IE9 JK-typel 2.1.7-7 5x5 39 0.147 4.216 

IE/0 JK-type2 2.1.7-14 5x5 39 0.117 3.407 

/Ell JK-type3 2.1.7-21 5x5 39 0.117 3.407 

IE12 JK-type4 2.1.7-32 5x5 39 0.113 3.473 

IE13 JK-typeS 2.1.7-43 5x5 39 0.112 3.411 

IE14 JK-typel 2.1.7-10 5x5 23 (b) 0.160 4.842 

IE15 JK-typel 2.1.7-11 3x3 22 (c) 0.163 4.863 

IE16 JK-typel 2.1.7-11 5x5 23 (e) 0.164 4.958 

IE17 JK-typel 2.1.7-11 5x5 23 (d) 0.164 4.956 

IE18 JK-typel(Fuu;y) 3.1.4-9 5x5 39 JK-typel 0.106 3.172 

IE/9 Fuzzy model 1.3.7-5 5x5 39 COA 0.147 4.313 

IE20 Fuzzy model 1.3.7-5 5x5 39 COA, (/N1) 0.140 4.297 

IE21 Fuzzy model 1.3.7-4 5x5 39 MOM 0.156 4.557 
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TDC 

0.186 

0.276 

0.128 

0.402 

-.124 

0.322 

0.372 

0.385 

0.430 

0.413 

0.413 

0.369 

0.381 

0.442 

0.435 

0.441 

0.444 

0.493 

0.321 

0.335 

0.434 
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Figure 47. Optimized Input/Output Membership Functions of FLC for Example 2. 

134 



1/2 

IE5 

/EB 

Id 

-n•�'
ll
, r--

l .' .. · ....• r.c :1 ..... •.··· .. · .. 
1, ..r. 

· I 1 '-1 
� I J . I . -:. � : . 

I 

'I 
1 . .. •·1• 1· .. . l 

I . . . - . . . ... 
J:.l :]·I ·•· •. ! . ··1 ·' 

�,___:._.�/,··- �·--='!.��A·: 
11 i'"- ', .\ 

IE3 

IE6 

l f 

·I I '!l ';11 JI lj·· •.iI l . ! ti ' 

·JE9

, I • 

I
I I 

I r, I I 
'\ I I I. 

.. . � 

/El 

IE4 

/El 

IEJO 

Figure 48. Illustration of Edge of Image /l2 Generated by EDS in Example 2. 
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IE14 IE15 IE16 

Figure 49. Illustration of Edge of Image //2 Generated by EDS for Example 2. 
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Figure 51. Illustration of Mean Error at Each Pixel for Some (Fuzzy and Non­

Fuzzy) Algorithms for Edge Detection of Image II2 in Example 2. 
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The image 112 displays a perspective of a building with different intensity of 

regions. All algorithms applied in example 1 have been reused to detect the edge of 

image 112. Table 12 contains the data resulting this experiment and helps to analyze 

the edge trace images !El, ... ,IE21 and the efficiencies of the given algorithms. Edge 

trace Id is a desired binary images (ideal) chosen as an comparison base for the other 

obtained traces. 

All QCW-ECF result in edge traces with a (a) less total mean error TME (even 

pixel by pixel mean error ME as illustrated in Figure 51), (b) less mean square error 

SQE, and ( c) bigger correlation, comparing to the Sobel and Roberts algorithms. 

Comparing to the QCW-ECF, Wallis algorithm produces an edge trace IE3 with the 

competitive TME and SQE, but the low correlation TDC. As observed in Figure 48, 

the Wallis algorithm results in a low intensity edge trace IE3. The edge trace IE16 

resulting from JK-typel possesses the maximum TME= 0.164 and SQE= 4.95 among 

the other QCW-ECF, but it has a high correlation TDC= 0.441 to ideal edge trace Id. 

The edge trace !El 6 is illustrated in Figure 49 and obtained by combining of diagonal 

and cross QCW configuration (illustrated in Figure 23 (e)) within a block of 5x5 

using the Equation (2.1.7-11). JK-typel generates a higher intensity edge among the 

other types, JK-type2,3,4 of QCW-ECF. Also, edge trace IE13 resulting from JK­

type5 possesses the minimum TME= 0.112 and competitive SQE= 3.401 among the 

other QCW-ECF but has a less correlation TDC= 0.441 to ideal edge trace Id. The 

edge trace /El 3 is illustrated in Figure 49 and obtained by QCW configuration 
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(illustrated in Figure 39 (a)) within a block of 5x5 using the Equation (2. l .7-42). JK­

type5 generates a lower intensity edges among the other types of QCW-ECF. 

As you see all above algorithms do not have enough sensitivity to detect the 

edges of an object which has similar intensity with background. Fuzzy logic 

algorithm with flexible rules and tunable membership functions (in inputs/output of 

FLC) is a significant approach in this regard. As a part of experiment 2, we apply the 

JK-type 1 of the proposed FQCW-ECF to remove the above mentioned problem. 

Edge traces /£18, /£19, IE20, and /E21 are resulted from fuzzy logic 

algorithms for edge detection. /£18 is resulted from JK-typel of FQCW-ECF (given 

by Equation (3 .1.4-9) )which functions as an edge characteristic function and the 

defuzzificator in FLC. /£18, /£19 are the edge traces obtained respectively by COA 

and MOM defuzzification methods in FLC. IE20 is an edge trace resulted from COA 

defuzzification method in which the membership degrees µd1, µd2, µd3, µd4 (output of 

inference machine of FLC) are intensified (s= 7 times) before defuzzification. IE21 

resulted from MOM defuzzification possesses bigger TME, SQE, and even higher 

TDC comparing to those of IE20 and /El 9. The edge trace /£21 resulted from fuzzy 

algorithm of JK-type 1 in which the membership functions (MF) of FLC have been 

trained in advance. The MFs are trained such a way to make the fuzzy edge detector 

system sensitive to those part of image which have similar intensity in foreground and 

background (like roof of the building in image Il2). For this purpose, a lOxlO block 

of image is cut from top of the image II2 where the roof of the building has very 

similar intensity to the background (both dark gray DG). Then, like example 1, we 
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tune the membership functions using cyclic coordinate algorithm regarding the 

minimization of performance index SQE (for lOxlO image sample illustrated in 

Figure 50). The optimal membership function resulted from this optimization using 

cyclic coordinate algorithm is depicted in Figures (a) and (b) of Figure 47. These 

membership functions tuned optimized for a desired part of the image l/2 have been 

applied for edge detection of entire images. This is illustrated as edge trace !El 8 in 

Figure 49. As seen in this edge trace, the edges of the roof of the building are 

appeared, but in other edge traces which the MF are not trained the edges are not 

detected. We can tune the membership functions to obtain the optimal edge trace for 

whole image //2. But, this example shows the flexibility of fuzzy algorithm for edge 

detection of desired part of an image. 

Example 3. In third example, we attempt to investigate the sensitivity of 

aforementioned edge detection methods against two types of noises, Gaussian and 

Salt & Pepper covering all over an image. we have provided the third experiment in 

two sections as follows. 

Example 3a. A 130x130 intensity image matrix NI3a (L=256), covered by 

Gaussian noise with zero mean and 0.005 variance, have been applied as an input to 

the EDS system for edge detection without using thresholding technique. Data 

obtained from this experiment are given in Table 13. Some relevant images and 

graphs are also represented in Figures 52 t0 55. 
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Table 13 

Comparison Table for Fuzzy and Non-Fuzzy Algorithms Applied for 

130x130 Noisy Image (Gussian Noise cr
2
=0.005) N/3a

Bio (F)QCW
Defuzzific 

SQE 
Trace Methods Eq. ck structure

ation 
TME 

% 
size Fh?, 

IE/ Roberts 1.2.10-1 2x2 0.271 8.913 

IE2 Sobel 1.2.10-2 3x3 0.208 6.277 

IE3 Wallis 1.2.10-5 3x3 0.121 3.502 

IE4 Classic 1.4.4-1 5x5 0.295 10.58 

!ES Classic 1.4.4-2 5x5 0.315 12.45 

IE6 Classic 1.4.4-3 5x5 0.387 18.14 

IE7 Angular Corr. 2.2.2-1 5x5 39 0.126 3.492 

/EB Distance Corr. 2.2.2-2 5x5 39 0.119 3.580 

IE9 JK-typel 2.1.7-7 5x5 39 0.182 5.222 

IEJ0 JK-type2 2.1.7-14 5x5 39 0.125 3.600 

/Ell JK-type3 2.1.7-21 5x5 39 0.125 3.600 

IE12 JK-type4 2.1.7-32 5x5 39 0.119 3.575 

IE13 JK-typeS 2.1.7-43 5x5 39 0.117 3.484 

IE14 JK-typel 2.1.7-10 5x5 23 (b) 0.186 5.564 

IE15 JK-typel 2.1.7-11 3x3 22 (c) 0.258 8.573 

IEJ6 JK-typel 2.1.7-11 5x5 23 (e) 0.188 6.120 

IEJ7 JK-typel 2.1.7-11 5x5 23 (d) 0.195 6.115 

IE18 JK-typel( Fuzzy) 3.1.4-9 5x5 39 JK-typel 0.116 3.251 

IEJ9 Fuzzy model 1.3.7-5 5x5 39 COA 0.176 5.313 

IE20 Fuzzy model 1.3.7-5 5x5 39 COA, (IN7) 0.165 4.822 

/E21 Fuzzy model 1.3.7-4 5x5 39 MOM 0.187 5.559 
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0.135 

0.229 

-.035 

0.329 

0.124 

0.247 

0.230 

0.261 

0.302 

0.273 

0.273 

0.227 

0.226 

0.300 

0.238 

0.313 

0.307 

0.432 

0.244 

0.229 

0.298 
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IE/ IE3 

IE9 /Ell IE/3 

IE/4 IE/6 IE/8 

Figure 52. Illustration of the Edge of a Noisy Image, N/3a, in Example 3a. 



Mean Error 

Illustration of rrean error at each pixel for edge detection of noisy irrage (Gaussian noise) 
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C 

Q) 

0 

(J 

.; 
C 

.Q 
-0 

Q) 

.§ 
-0 

0 

..... 

1�orrelation coeificient Vs Noise Variance 
Illustration of changes of TDC by variation of Guassian noise variance 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0 .1 

0 

-0 .1 

�---__ --a.. .... =�---�-_:

.__

. ____ -_ .... i ... _-_-_-_!
.__ 

__ -_-_ ... ! .... _-__ -_�:
._ 

__ -_-_ .. ·: 
····.......

... -a- - -Q. ... -a- - ....Q. - -a- - -a 

·············•·············
0 0.003 0.005 0.008 0.01 0.013 0.015 0.018 0.02 

Variance 

I.I TDC1 

♦ TDC2 

• TDC3 

ii TDC9 

♦ TDC13 

->!r TDC16 

♦ TDC18 

TDC 1 lo r robe rts IE 1 , TDC 2 lo r Sobe I IE 2, TDC 3 lo r W a Ills IE 3, TDC 9 lo r JK -type 1 IE 9 
TDC16 lor JK-type1 IE16, TDC13 lorJK-type5 IE13, TDC18 forJK-type1 (fuzzy) IE18 
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Example 3b. A 130x130 intensity image matrix N/3b (L=256), covered by 

Salt & Pepper noise with 0.02 density, have been applied as an input to the EDS

system for edge detection without using thresholding technique. Data obtained from 

this experiment are also given in Table 14. Some relevant images and graphs are also 

illustrated in Figures 56 to 59. 
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Table 14 

Comparison Table for Fuzzy and Non-Fuzzy Algorithms Applied for 

130x130 Noisy Image (Salt & Pepper Noise d=0.02) N/3b 

Bio (F)QCW 
Defuzzific 

SQE 
Trace Methods Eq. ck structure 

ation 
TME 

% 
size Fi2. 

IE/ Roberts 1.2.10-1 2x2 0.265 8.577 

IE2 Sobel 1.2.10-2 3x3 0.194 5.910 

IE3 Wallis 1.2.10-5 3x3 0.121 3.423 

/E4 Classic 1.4.4-1 5x5 0.271 6.850 

IE5 Classic 1.4.4-2 5x5 0.291 11.92 

IE6 Classic 1.4.4-3 5x5 0.407 20.41 

IE7 Angular Corr. 2.2.2-1 5x5 39 0.128 3.262 

IE8 Distance Corr. 2.2.2-2 5x5 39 0.121 3.273 

IE9 JK-typel 2.1.7-7 5x5 39 0.170 3.797 

IEJO JK-type2 2.1.7-14 5x5 39 0.124 3.256 

JEii JK-type3 2.1.7-21 5x5 39 0.124 3.256 

IE/2 JK-type4 2.1.7-32 5x5 39 0.121 3.324 

JE13 JK-typeS 2.1.7-43 5x5 39 0.119 3.274 

JE/4 JK-typel 2.1.7-10 5x5 23 (b) 0.172 4.245 

JE15 JK-typel 2.1.7-11 3x3 22 (c) 0.158 4.667 

JE16 JK-typel 2.1.7-11 5x5 23 (e) 0.184 4.385 

JEJ7 JK-typel 2.1.7-11 5x5 23 (d) 0.189 4.419 

IE18 JK-typel( Fuuy) 3.1.4-9 5x5 39 JK-typel 0.120 3.006 

IE/9 Fuzzy model 1.3.7-5 5x5 39 COA 0.160 3.848 

IE20 Fuzzy model 1.3.7-5 5x5 39 COA, (INT) 0.159 4.829 

IE21 Fuzzy model 1.3.7-4 5x5 39 MOM 0.179 3.828 

TDC 

0.130 

0.223 

0.014 

0.193 

0.045 

0.154 

0.225 

0.337 

0.317 

0.278 

0.278 

0.230 

0.228 

0.306 

0.293 

0.331 

0.332 

0.426 

0.262 

0.251 

0.313 
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Figure 56. Illustration of Edge of Image NI3b Generated by EDS in Example 3b. 
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Figure 58. Illustration of SQE Vs. Density d of a Noisy Image N/3b in Example 3b. 
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As observed in Figures 52 and 53, the derivative algorithms Roberts , Sobel, 

and Wallis algorithms are strongly sensitive to the noises. Wallis algorithm which 

generates very low intensity edge IE3 as seen in example 2 Figure 47, can not detect 

edge points properly since noises are brighter than image pixels. On the contrary, all 

methods derived from generalized QCW-ECF (such as JK-type l ,2, ... ) possess much 

less sensitivity to the noises comparing with derivative methods. This is because of 

using median filtering within each child window Bk and averaging operation within 

the main block B-{ (m,n)}. In fact, these two operations are noise removal tools 

applied in QCW-ECF algorithms for edge detection of noisy images. 

As seen in Tables 13 and 14, in case of noisy images, all of QCW-ECF 

significantly generate edge traces with a (a) less total mean error TME (even mean 

error at each pixel as illustrated in Figures 53 and 57), (b) less mean square error 

SQE, and (c) bigger correlation, comparing with the Sobel and Roberts algorithms. 

Comparing with the QCW-ECF, Wallis algorithm produces an edge trace with the 

competitive TME and SQE, but with negative or almost zero correlation TDC. The 

mean error at each pixel ME is illustrated in Figures 53 and 57 for both type of noises, 

Gaussian and Salt & Pepper. In these figures, the upper-bound and lower-bound of 

mean error curves (generated by QCW-ECF family) are illustrated. 

Figures 54 and 58 illustrate the changes of SQE respect to the changes of 

noise variance cr2 
(for Guassian noise) and density d for (for Salt & Pepper noise). As 

seen, the QCW-ECF family has the least SQE comparing to the derivative algorithms. 

Also Figures 55 and 59 represent the changes of TDC respectively by changes of 
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noise variance cr2 and noise density d. As seen, the QCW-ECF family has also the 

least TDC. 

As seen in Figures 52 and 56, some noise pixels on edge traces /El and IE2 

resulting from derivative algorithms are brighter than edge pixels. Thus, the 

thresholding technique does not help to eliminate these noise spots from edge traces. 

In spite of using noise removal operations in QCW-ECF, there are still some 

unwanted noise spots on some edge traces, specially on IE9 and /E16 (JK-type l). But 

these noise spots have very low intensity and are easily removable by thresholding. 

FQCW-ECF (JK-typel) is trained by tuning the membership functions (MF) 

of FLC to be sensitive to the noises. For this purpose, a lOxlO block of image is 

individually cut from a part of the image 113a and 113b where the noise spots are on 

the images. Then, like example 1 and 2, we tune the membership functions using 

cyclic coordinate algorithm through the minimization of performance index SQE. The 

optimal vector V* optimal containing the membership function parameters resulted from 

optimization using cyclic coordinate algorithm are (a) V* optimal = [.527, .303, .356, 

.445, .548, .715, .413, .167, .333, .518, .793, .862] for example 3a, and (b) V*optimal =

[.518, .299, .333, .4310, .547, .719, .403, .166, .333, .528, .791, .868] for example 3b. In

both case of noisy image, membership functions are tuned such that FQCW-ECF (JK­

type l) results in edge traces /El 8 illustrated in Figures 52 and 53 with a minimum 

SQE and maximum correlation TDC to the ideal edge trace Id. On the other hand, 

Figures 54, 55, 58, and 59 prove that, for edge detection of a noisy image, FQCW­

ECF (JK-typel) is a reliable tool in generating the edge traces with a least SQE and 
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highest correlation to the ideal one without using thresholds. It has the tuning 

flexibility to be adjusted for edge detection of any kind of noisy images. 

4.1.4 Summary of Experimental Results 

Most edge extraction techniques based on derivative approximation such as 

Sobel, Roberts, and Wallis methods possess the disadvantages of, (a) sensitivity to 

noise; (b) dependency to the size of object on image; (c) inflexibility to the size of the 

block for block processing; (d) insensitivity to all combinations of the edges 

( diagonal, horizontal and vertical); and ( e) difficulties in thresholding, specially in 

noisy images. 

But the proposed edge characteristic functions based on quadruple child 

windowing, QCW-ECF, possess the advantage of, (a) less sensitive to the noise 

comparing to the above mentioned; (b) independent to the size of object for edge 

detection; (c) flexible in size of block for block processing; (d) sensitivity to all kinds 

of edges, diagonal, vertical and horizontal; and (e) easy to use thresholding technique, 

thresholding sometimes is not needed. 

For many cases, the intensity edge detection techniques depend on the 

appropriate choice of thresholds. Thus, finding the edge in intensity images at those 

pixels which have the same intensity with background. Edge detecting algorithms 

based on fuzzy logic with tunable membership functions are an effective solution to 

remove the above mentioned problems. The proposed FQCW-ECF is an effective 

tool in fuzzy image processing for edge detection. FQCW-ECF possesses the 
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advantages of, (a) having the same advantages as QCW-ECF; (b) being double 

purpose tool for both edge detection and defuzzification method in FLC; ( c) 

independent of the threshold; (d) sensitive to similar foreground and back ground 

intensities; ( e) tunable membership degree provides a significant tool in training 

algorithms; (f) very low sensitivity to the noises; and (g) being an explicit edge 

detection function which can be easily applied in optimization. 

The Cyclic Coordinate Algorithm is straight-forward approach to tuning the 

membership function in FLC and optimization of edge detection. This optimization 

algorithm provides significant results. 
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CHAPTER V 

SUMMARY AND CONCLUSION 

Most derivative edge extraction techniques such as Sobel, Roberts, Prewitt, 

and Wallis methods are limited to making some non-linear manipulation of pixels 

over a 2 x 2 or 3 x 3 block as a means of edge enhancement before thresholding. All 

these mentioned methods possess the disadvantage of sensitivity to noise and 

dependency on the size of the block in block processing. Their efficiency depend on 

the size of object on image and have problem in small object edge detection. Finding 

the edge in an image in which the foreground object and its background are of similar 

intensity is difficult, especially in case of noisy images. 

Most of the edge detection techniques also depend on thresholds. Since 

choosing an appropriate thresholds is very difficult in case of a noisy and smoothed 

image, an edge detection algorithm based on fuzzy logic with tunable membership 

functions is an effective approach. The efficiency can be also improved by training 

an edge determination algorithm to be sensitive to edges in a consistent manner. The 

FQCW-ECF introduced in this paper is an effective tool in fuzzy image processing 

for edge detection. QCW-ECF and its fuzzy extension FQCW-ECF are flexible and 

can be applied to blocks of any size. The (F)QCW-ECF results in a degree of 

edginess concerning the middle pixel of the processing block. In other words, it 

indicates the maximum degree of correspondence of the processing block pattern to 
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the binary edge patterns. Also the FQCW-ECF is a double-purpose function used as 

both an edge detection tool and a defuzzification method in fuzzy logic system. They 

are also sensitive to the diagonal, vertical and horizontal edges. Due to tuning 

flexibility, the FQCW-ECF provides an ability to train the edge detection algorithm 

toward an optimal result by minimizing the performance index. This improves the 

efficiency of the edge detection. Flexibility in deriving the desired edge characteristic 

function from the proposed general QCW-ECF and its fuzzy associate FQCW-ECF 

makes these algorithms powerful in using for any kind of application of edge 

detection. I also developed other methods to estimate edge trace using distance and 

angle correlation between the processing block pattern (within a block of binary or 

intensity or fuzzy intensity image) and the binary edge patterns. 

Multidimensional optimization using the cyclic coordinate algorithm is a 

straightforward approach for edge detection optimization based on minimizing the 

desired performance index. The optimization is done by tuning the input/output 

membership functions of the Fuzzy Logic Controller (FLC) in order to adjust the 

membership degrees (as weights) of FQCW-ECF. 

5.1 Future Research 

We extended the binary QCW-ECF to the intensity QCW-ECF and its fuzzy 

version, FQCW-ECF, by employing the operator conversions (.),(A) to (t-norm) and 

also (+),(v) to (t-conorm). We also derived some special cases of QCW-ECF and 
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FQCW-ECF using the t-(co)norm operators given by Table 10. Deriving QCW-ECF 

using some other t-( co )norm may improve the performance. 

We also employed multidimensional optimization method, cyclic coordinate 

algorithm, to tune the membership functions in FLC (or the membership degrees µd1,

µd2 , µd3 , µd4 as weights in FQCW-ECF) and train the edge detection algorithm 

toward optimal result. Using neural network to train the FQCW-ECF for optimal edge 

detection can be effective approach for improving the results. 
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