
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Master's Theses Graduate College

12-1985

Direct Memory Acquisition of Fast Analog Signals Direct Memory Acquisition of Fast Analog Signals

Syed Javaid Iqbal

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Physics Commons

Recommended Citation Recommended Citation
Iqbal, Syed Javaid, "Direct Memory Acquisition of Fast Analog Signals" (1985). Master's Theses. 4866.
https://scholarworks.wmich.edu/masters_theses/4866

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4866&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4866&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/4866?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4866&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

DIRECT MEMORY ACQUISITION OF
FAST ANALOG SIGNALS

by

Syed Javaid Iqbal

A Thesis
Submitted to the

Faculty of The Graduate College
in partial fulfillment of the

requirements for the
Degree of Master of Arts

Department of Physics

Western Michigan University
Kalamazoo, Michigan

December 1985

ACKNOWLEDGEMENTS

My sincere appreciation is extended to Dr. John

Dr.

Dr.

Tanis, Dr.

Subramanian

Eugene

Ganesan,

Bernstein, Dr.

Dr. Larry

Gerald Hardie,

Oppliger, and

Michitoshi Soga. Their advice and.assistance with the

implementation of this project and with the writing of

this thesis were absolutely necessary and important.

I am especially indebted to Dr. John Tanis, adviser,

for his time, encouragement, understanding, and assistance

with the writing of this thesis. Without his extensive

efforts this thesis would not have been completed.

A particular note of appreciation goes to Dr.

Bernstein, chairman of the physics department, for

allowing me to use his physics laboratory.

Special thanks goes to my friends Miss Norma Awang

Hard and Miss Kay Pedersen for their love, encouragement,

and patience during the years of my study.

This thesis is dedicated to my sister, Syeda Naheed

Sultana, who died on March 21, 1983, during my study

period at Western Michigan University.

Syed Javaid Iqbal

ii

DIRECT MEMORY ACQUISITION OF
FAST ANALOG SIGNALS

Syed Javaid Iqbal, M.A.

Western Michigan University, 1985

A fast data transfer computer circuit is developed

using the direct memory acquisition (DMAC) technique. For

this purpose Z-80 microcomputer ·chips, manufactured by

Ziolog, were used. The direct memory acquisition

circuitry was developed in several stages and required

both hardware and software development. An erasable

programmable read only memory (EPROM) programmer was built

for reading and loading the system program. The design,

construction, and testing of the DMAC system are discussed

in detail and an example of the use of this system for

collecting data is given.

TABLE OF CONTENTS

ACKNOWLEDGEMENT

LIST OF FIGURES

CHAPTER

I. INTRODUCTION .

II. MICROPROCESSOR BASICS .

Memory Addressing and Memory Types

Registers

III. THE Z-80 MICROPROCESSOR

Pin Functions of the Z-80 CPU

Z-80 CPU Timing Diagrams

IV. EPROM PROGRAMMER

Address Counter

Data Generator

Programming Pulse Generator

V. Z-80 TEST CIRCUITS AND PROGRAMS

Test of CPU Operation

Parallel Input/Output Interfacing

VI. RAM AND DMAC .

Z-80 DMAC

Direct Memory Access Interfacing

APPENDICES

A.

B.

Timing Diagrams For The Z-80 CPU

System Test Program No. 1

iii

ii

V

. 1

• 4

• 6

• 8

10

13

18

19

20

22

23

26

27

27

31

33

35

42

43

Table of Contents-continued

APPENDICES

c. System Test Program No. 2

D. System Test Program No. 3

E. System Test Program No. 4

F. Circuit Diagram For EPROM Programmer

G. Circuit Diagram For DMAC

BIBLIOGRAPHY

iv

45

49

53

58

59

60

LIST OF FIGURES

1. Z-80 CPU . 10

2. Main Registers-Set A . 12

3. Alternate Register Set . . 12

4. Main Registers-Set B . 13

5. Central Processing Unit . 14

6. EPROM Programmer . 19

7. Address Counter . 20

8. Data Generator . 22

9. Z-80 CPU and EPROM . 26

10. Z-80 PIO . 28

11. Z-80 CPU and PIO . . 30

12. MCM6116 RAM . 31

13. RAM Interfacing . 32

14. Z-80 DMAC . 33

15. DMAC Interfacing . . 35

16. Timing Diagrams . 42

17. Flow Diagram For System Test Program No. 1 . . 43

18. Flow Diagram For System Test Program No. 2 . . 46

19. Flow Diagram For System Test Program No. 3 . . 50

20. Memory Map . . 53

21. Flow Diagram For System Test Program No. 4 . . 55

22. Circuit Diagram For EPROM Programmer . . 58

23. Circuit Diagram For DMAC . . 59

V

CHAPTER I

INTRODUCTION

The year 1971 marked the dawn of a new age in

integrated circuit technology. In that year Intel

corporation took advantage of large scale integrated

circuit {LSI) technology and introduced the world's first

microprocessor chip, a 4-bit computer named the 4004. In

1973 the 4-bit machine was replaced by a newer 8-bit

microprocessor, the Intel 8008. In the next few years the

semiconductor industry introduced literally dozens of

microprocessor circuits, each faster and more complicated

than its predecessor. In 1976 the Z-80 Central Processing

Unit {CPU) and its supporting chips were introduced by

Zilog, representing the state-of-the-art in 8-bit

microprocessors. Zilog is currently developing a

successor to the Z-80 line, the Z-80000 series consisting

of a CPU and several support chips. However, the Z-80000

series will be a 32-bit CPU with a computational capacity

comparable to medium sized computers thereby representing

a significant jump in capability for microcomputers.

Additional capabilities in microcomputers will be

manifested in very fast, mass memory systems. Since

32-bit microprocessors, which can address up to 4-billion

memory locations, and megabyte bubble memories are now

1

available, new computers must be very fast to take full

advantage of these chips.

2

In this thesis a very high speed data transfer

technique will be discussed. Presently about 95% of CPU

time is used in data transfer, from memory to memory,

input/output (I/O) to input/output, memory to I/O or I/O

to memory. To speed data acquisition the direct memory

access technique is used. In this technique data do not

go through the CPU but are transferred directly to memory

using a chip known as a Direct Memory Access Control

(DMAC). In the work described here, the data transfer

rate is 1.2 million bytes per second, which is about 100

times faster than that of the Western Michigan University

DEC-10 system. Nowadays scientists are using this

technique in sound pattern recognition, digital

communication and satellite communication. This technique

will also be used in fiber optics communication. In

libraries computer applications of fast data acquisition

will be very important as students try to access thousands

of books at the same time.

The microprocessor is a complicated chip and it has

many different sections and each section performs a

specific task. A brief description of a microprocessor

and its parts is given in Chapter II. In the work

described here a Z-80 microprocessor is used. This

microprocessor is explained in detail in the third chapter

in which a functional block diagram of the Z-80 CPU, the

main register set, and the alternate register set are

shown along with a pin diagram of the Z-80 and a brief

description of each pin.

For all types of computers, the designer has to

provide system programs (software) which tell the hardware

system what to do and how to do it. Once the software is

developed it has to be loaded into the system. These

topics are discussed in Chapter IV. In the present work

an Erasable Programable Read Only (EPROM) chip was used to

provide the system software and so it was necessary to

design and build an EPROM programmer.

In order to design a fast memory acquisition circuit

several steps were required. During each step test

circuits and programs (software) were used to show that

everything was working properly up to that stage. The

test circuits are described in Chapter V and the programs

are attached as appendices.

In many computer systems the memory which is most

often accessed by the end user is the Random Access Memory

(RAM). Storing the data in RAM and interfacing it with

the direct memory access controller (DMAC) are discussed

in the final chapter. A system program, written in

machine language, to control the data acquisition is also

attached as Appendix E.

3

CHAPTER II

MICROPROCESSOR BASICS

The microprocessor is the basic building block of any

microcomputer. If we examine a microprocessor carefully,

we find that it consists of five major sections: the

arithmetic logic unit (ALU}, storage (memory), control,

input and output. The ALU performs arithmetic operations,

such as addition, subtraction, multiplication, division

and other logical operations. The control section

regulates the transfer of data among the other sections.

The storage section contains the program, i.e., the

sequence of computer instructions that have been designed

to perform certain tasks, as well as intermediate results

of computations. The input section provides a means to

enter information to be processed by the computer. This

section varies technically from one computer to another,

but it is that section which accepts input from external

devices and transmits this information to the machine. If

the computer has no way to communicate information to the

outside world, then its computations are useless. This

capability is provided by the output section, which also

varies technically from one computer to another, but it is

that section of the computer which transmits the computed

results to some external device. The complete computer

4

can accept input data, process it, and output the results.

The term microprocessor means a single large scale

integrated (LSI) chip which contains the ALU and control

functions of a computer. Program and data storage, and

the input/output functions are performed by other support

chips designed

microprocessor.

especially for · one particular

5

Most computers are built around a microprocessor and

are known as microcomputers. The microcomputer is a

collection of ICs instead of a single IC and is usually

assembled on a printed circuit (PC) board. Though the

microcomputer on a printed circuit board is a complete

computer, it still requires other devices vital to its

operation, for example, a power supply to provide power

for operation. This aspect is of little relevance in an

overall discussion of microprocessor architecture, but it

is important to note that these peripheral devices may

exceed the cost of the entire computer.

Finally there must be a means for communication with

a human operator so that data may be put into the computer

and results obtained from it. This I/0 communication

capability provides a complete computer system.

Memory Addressing and Memory Types

In any computer system data must be transferred

between the storage section of, the computer and the

arithmetic logic unit. The technique for selecting data

to be transferred to or from memory is called addressing.

When the processor requires data from memory, it places

the particular address on the address bus (bus is the term

for a path of data bits). The memory responds to the

request, if activated, by placing the appropriate word on

the data bus. A similar technique is used for storing

data into memory. First the microprocessor places the

address where the data is to be stored on the address bus

and then the data itself on the bus.

There are four primary classes of memory, read-only

memory (ROM), random access memory (RAM), eraseable

programmable read-only memory (EPROM), and electrically

erasable programmable read-only memory (EEPROM).

A read-only memory does not allow the microprocessor

to store data in those memory locations. This memory is

typically used to store program instructions and other

unchangeable data. There are many subspecies of read-only

memories. One type of read-only memory is a mask

programmable read-only memory (ROM). This refers to a

single integrated circuit that is programmed by a

manufacturer during the construction process. This is

6

only used for high volume applications.

Programmable read-only memory (PROM) is a memory of

the same class, but this memory is progammed by the end

user. A PROM is programmed by "burning out" fused links

in those cells which are to contain a data zero or one,

depending on the particular PROM.

In a random access memory, the user is allowed to

read or write. This is done by the processor. First a

particular address is presented on the address bus, the

read line is activated and then the CPU responds to the

request by presenting data at that address. The same

process is used for writing with the exception that, this

time the write line is activated. Whenever a processor

writes data to a memory location the old data is deleted

and the new data remains in the memory as long as the

computer is switched on.

In an EPROM the memory is programmed by the user and

it can be erased by exposing it to ultraviolet light. All

data at all addresses are erased simultanousely.

An EEPROM is also programmed by the end user, but the

data at any particular address can be electrically erased.

This option is not available in any other kind of memory.

7

Registers

A register is the basic digital building block of any

CPU. A computer can be visualized as a set of registers

and pathways between the registers. A description of the

computer's registers provides a great deal of insight into

the capabilities of the microprocessor. There are several

types of registers within a microprocessor. An

accumulator register is dedicated to computational tasks.

This means that the arithmetic logic unit can use this

register as an operand and can store its results there.

There is another type of register called an index

register. An index register is used to provide address

selection and incrementing within memory. When the

program refers to a particular area of memory, the index

register can provide the address of the particular memory

location to be accessed. Every computer also contains a

special purpose register. This is the program counter

(PC). This register contains the address of the next

instruction that the computer is to execute. After

executing that instruction the PC register is updated.

This instruction itself is in memory.

program counter register is a

In other words the

marker for the

microprocessor so that it can "remember" which instruction

is to be performed next. The number of bits contained in

the program counter register determines the amount of

8

9

memory that can directly be accessed by the

microprocessor.

CHAPTER III

THE Z-80 MICROPROCESSOR

We have discussed microprocessors in general in the

last chapter. Here we shall discuss the Z-80

microprocessor in detail. First we shall look at a

functional diagram of the Z-80 microprocessor chip and

then we shall discuss the pin configuration of the 40-pin

dual in-line package (DIP) which comprises the Z-80

electronic device. Figure 1 is the functional

diagram of the Z-80 CPU (Components Data Book, 1984).

+--MI----01----------------10----A0--+
I ol o----Al I

SYSTEM I MREQ--ol o----A2 I
CONTROL I IORQ--ol o----A3 I

I RD----ol o----A4 I
+--WR----o o----AS I

o o----A6 I

block

+--RFSH--o o----A7 !ADDRESS
I o o----A8 I BUS
I WAIT--o o----A9 I

CPU I o o---Al0 I
CONTROL I INT---o Z-80 CPU o----All I

I NMI---o o----Al2 I
I o o---Al3 I
+--RESET-o o---Al4 I

o o---Al5--+
o o----D0--+

CPU BUS +--BUSREQo o----Dl I
CONTROL +--BUSACKo o----D2 I

o o----D3 I DATA
CLK---o o----D4 I BUS
+SV---o o----DS I

ol o----D6 I
GND---ol---------------- o----D7--+

Figure 1. Z-80 CPU
10

As the computer executes a program residing in its

external memory, each sequential instruction is read from

memory by placing the address contained in the program

counter (PC) register on the address bus at the same time

it generates proper control signals on the control bus to

activate the memory, and then reads the data on the data

bus into the proper register within the CPU. Timing is

critical to ensure that the addressed memory contents of

the location are on the data bus when the CPU reads the

data bus. The CPU control lines coordinate these tasks

and ensure that instruction operation codes placed in the

instruction register are properly decoded. The CPU timing

also controls the arithmetic logic unit (ALU) in

performing all the arithmetic and logic operations

supported by the Z-80 instruction set. Operations include

add, subtract, logical AND, logical OR, logical exclusive

OR, compare, left or right shift and rotates, increment,

decrement, set bit, and test bit.

The ALU, in performing these operations, communicates

via the internal data bus, shown in the diagram, with the

22 internal registers, the instruction register, and the

data bus controller. The controllers for the data and

address buses oversee all the activities relating to the

exchange of data between the CPU and the external world

via their respective buses.

while the address bus is

The data bus is bidirectional

unidirectional. No data is

11

received by the CPU on the address bus. A diagram of the

configurations of the CPU registers are shown in Figure 2,

Figure 3 and Figure 4 (Components Data Book, 1984).

A Accumulator F Flag Register

I
B General Purpose C General Purpose I

I

I
D General Purpose E General Purpose I

I

H General Purpose L General Purpose I
I

<-------- 8 Bits -------><------- 8 Bits ------->

Figure 2. Main Registers-Set A

A' Accumulator F' Flag Register
I
I
I

I
I
I

B'

D'

I
General Purpose I

I

General Purpose I
I

1

C' General Purpose I
I

E' General Purpose

1

I
I

H'

I
General Purpose I

I

I
L' General Purpose I

I

Figure 3. Alternate Register Set

12

IX Index Register

IY Index Register

SP Stack Register

I
I

PC Program Counter I
I
I

1

I
I Interrupt Vector R Memory Refresh I

I
I

<------- 8 Bits -------><-------- 8 Bits ------->

Figure 4. Main Register-Set B

The Pin Functions of the Z-80 CPU

The pin functions for the Z-80 CPU are shown in

Figure 5. These functions are briefly discussed below.

13

All----oll
Al2----ol2
Al3----ol3
Al4----ol4
Al5----ol5
CLK----ol6

D4----ol7
D3----ola
D5----ol9 CPU
D6----oll0

+5v----ol11
D2----oll2
D7----oll3
D0----0114
Dl----oll5

INT----oll6
NMI----0117

HALT----oll8
MREQ----oll9
IORQ----ol20

40lo----Al0
39lo----A9
38lo----A8
37lo----A7
36lo----A6
35 o----A5
34 o-:...--A4
33 o----A3
32lo----A2
3llo----Al
30lo----A0
29 o----GND
28 o----RFSH
27 o----MI
26 o----RESET
2510----BUSREQ
2410----WAIT
2310----BUSACK
2210----WR
2110----RD

Figure 5. Central Processing Unit

A0-Al5 (address bus)

Tri-state (high, low, and high impedance states),

output, active high. A0-Al5 constitute a 16-bit address.

The address bus provides the address for memory (up to

65536 bytes), data exchanges, and for I/O device data

exchanges. I/O addressing uses the eight lower address

bits to allow direct selection of up to 256 input or 256

output ports. Since four addresses are required for each

I/O device the total number of I/O ports which can be

directly connected to the Z-80 CPU are 64.

14

D0-D7 (data bus)

active high, 8-bit Tristate, input/output,

bidirectional data bus. The data bus is used for data

exchange with memory and I/O devices.

MI (machine cycle one)

Output, active low. MI indicates that the current

machine cycle is the op-code fetch cycle of an instruction

execution. During 2-byte execution· op-codes, MI is

generated as each op-code is fetched. These two byte

codes begin with CB, DD, ED, or FD (hex). MI also occurs

with IORQ to indicate an interrupc acknowledge cycle.

MREQ (memory request)

Tri-state, output, active low.

signal indicates that the address

The memory

bus holds

request

a valid

address for a memory read or memory write operation.

IORQ (input/output request)

Tri-state, output, active low. The Input/Output

Request signal indicates that the lower half of the

address bus holds a valid I/O address for an I/O read or

write operation.

MI signal when

indicate that

An IORQ signal is also generated with an

an interrupt is being acknowledged to

an interrupt response vector can be placed

15

on the data bus. Interrupt acknowledge operations occur

during MI time.

RD (memory read}

Tri-state, output, active low. RD indicates that the

microprocessor. wants to read data from memory or an I/O

device. The addressed memory or I/O device should use

this signal to gate data onto the CPU data bus.

WR .. (memory write}

Tri-state, output, active low. WR indicates that the

CPU data bus is holding valid data to be stored in the

addressed I/O or memory device.

RFSH (refresh memory}

Output, active low. RFSH indicates that the lower

seven bits of the address bus contain a refresh address

for dynamic memories and the current MREQ signal should be

used to do a refresh read to all dynamic memories.

HALT (halt state}

Output, active low. Halt indicates that the CPU has

just executed a halt instruction and is waiting for an

interrupt before operation can resume. While halted, the

CPU executes NOPs (no operation) instructions to maintain

memory refresh.

16

WAIT (wait)

Input, active low. WAIT indicates to the Z-80 CPU

that the addressed memory or I/0 devices are not ready for

data transfer. The CPU continues to enter wait states for

as long as this signal is active. This signal allows

memories of I/0 devices of any speed to be synchronized to

the CPU.

INT (interrupt request)

Input,

generated

active

by the

low. The interrupt

external device. A

request is

signal will be

acknowledged at the end of the current instruction if the

BUSRQ signal is not active and the internal software

controlled interrupt enable flip-flop (IFF) is enabled.

NMI (non-maskable interrupt)

Input, negative-edge triggered. NMI has a higher

priority than INT and is always recognized at the end of

the current machine cycle.

RESET (reset)

Input, active low. RESET forces the program counter

to zero and initilizes the CPU. During the reset time,

the address bus and data bus go to a high impedance state

and all control output goes to the inactive state.

17

BUSRQ (bus request)

Input, active low. The BUSRQ requests the CPU data

bus, the address bus, and the tri-state output control

signal to go to a high impedance state so that other

devices can control these buses. Usually this is used by

a DMAC (direct memory access control).

BUSACK (bus acknowledge)

Output, active low. Bus acknowledge is used to

indicate to the requesting device that the CPU address

bus, the data bus and the tri-state status are to be

controlled by the external device.

Z-80 CPU Timing Diagrams

Z-80 CPU timing diagrams are given in Appendix A.

These diagrams show the sequence of the events which are

allowed to take place. The timing sequence is one of the

most important aspects of any microprocessor.

18

CHAPTER IV

EPROM PROGRAMMER

The performance of a computer depends on its hardware

as well as software. These two things are interdependent.

In order to write a system software program it is

necessary to know how the control lines are connected to

the external devices. System software tells the CPU what

to do and how to do it. This program is always written in

a PROM or ROM.

In this work an Erasable Programmable Read-Only

Memory (EPROM) was used to provide the system software

because it is easy to program and mistakes are easily

corrected by reprogramming. For programming the EPROM, a

circuit called an EPROM Programmer was developed. A block

diagram of the EPROM programmer is given below.

-Read and writing mode switch
I

ADDRESS
COUNTER

1---------1

I ADDRESS I
I LINES (11) I
1---------1

2716
EPROM

2K

1----------1

I DATA I
!LINES (8) I
1----------1

I PROGRAMMING 1--- +25V
I PULSE I

Figure 6. EPROM Programmer

19

DATA
GENERATOR

The EPROM Programmer can be divided into three main

sections, address counter, data counter, and programming

pulse generator.

Address Counter

In order to program the EPROM, first the address bus

is activated.

given below.

A block diagram of the address counter is

I
I<- Seven Segment Displays

I

I
I

Address Lines (11)
I

Decoders I -----------
1 I

I 1---1 1----1 1------1
I 74471
I I

I 74471----1 74471------1
I I I 1------1

2716
EPROM

2K

I I I I --------

I74193 I 1741931 1741931 I I
I 1---1 1----1 1----1 742791-- SPOT-
------- ------- ------- I Latch! Switch

Up-down Binary Counters

Figure 7. Address Counter

In this circuit three different kinds of ICs are used.

The (74279) is a latch which is used to elminate "bounce"

(i.e., make and break in the connection due to mechanical

vibration) in mechanical switches. The up-down binary

20

counter (74193) is used for counting signal pulses and the

BCD decoders (7447) are used to drive seven segement

displays to show the selected address.

A signal is generated by pushing the SPDT (single

pole double throw) switch. First this signal is latched

and then it is counted by the binary counter. Data are

displayed with seven segment displays to make sure that

the correct address is on the address bus.

Each seven segment display can display digits from O

to 15 (0 to F). After counting to 15, the binary counter

generates a CARRY before receiving the next signal. This

carry is counted by the next binary counter and also

resets the first binary counter. This procedure is

repeated until the secound counter also generates a CARRY,

which resets both counters. The same procedure is

repeated for the third counter and so on. Three binary

counters were used in the present work, meaning 4K could

be addressed. This circuit can easily be expanded up to

64K by just adding one more counter.

Since the 74193 binary counter can count up as well

as down the SPDT switch can be used in its second position

to count down. Hence the address can count up from O to

4K or down from 4K to O. During reading or writing the

address bus is connected directly to the address bus of

the EPROM.

21

Data Generator

Once the address bus is activated, data must be

generated on the data bus. A block diagram of the data

generator is shown below.

Keyboard to enter data Seven segment displays

I
o 1 2 3 I

I

1

4 s 6 7 I
I

I I I I
I 8 9 I A I B I
I I I I

I I
BCD to ?-segment decoder

I I
I 74471
I I

I I
I 7447
I

------------------------- I I I
I
I C

I

I I
D I E I F

I I

I
I
I

I
14-lines

I
14-lines

l<--Data Bus
I (8 lines)
I ---------

------------ ------------ I I I
I MM74C923 I I I I I I 2716 I
I Keyboard 1---1 7475 1------1 EPROM I
I interface I I Latch I I I
------------ ------------ I I

I
Monostable Multivibrator I

----------- I
I I I

---SPST----------1 74121 1----------1
I I

Figure 8. Data Generator

22

A 20-pin encoder (MM74C923) chip was used to encode

the data entered from the keyboard. This is similar to

the chip used in a telephone. This chip changes a

hexadecimal number to a binary number. This binary number

is first latched with a 7475 and then connected to the

data bus of the EPROM. The binary number corresponding to

the data entry is displayed in the same way as in the

address generator using seven segment displays.

Programming Pulse Generator

In most EPROMs and PROMs a programming pulse of

specific duration is needed to enter the data into memory.

In the case of the 2708 EPROM, this duration is from 1 to

10 ms, while in the case of the 2716 EPROM this duration

is 50 to 55 ms. In this experiment the 2716 EPROM was

used.

To obtain a specific duration pulse a monostable

multivibrator (74121) was used as shown in figure (8).

This device generates a single pulse when the SPST switch

is closed.

Procedure for using the EPROM programmer:

The EPROM programmer described above can be used for

two purposes, reading a ROM (PROM or EPROM) and

programming a PROM or an EPROM.

23

Reading Mode

1. First the EPROM is inserted into its 24-pin

socket.

2. The +5V power supply used to power the circuit is

turned on and the address bus is reset.·

3. The mode switch is set to the read mode.

4. The data and the address (hex) are displayed on

the seven segment displays. Data at other addresses can

be read by changing the selected address using the SPDT

switch.

24

Programming Mode

1. First insert the proper EPROM into the 24-pin

socket.

2. Set the mode switch to the programming mode.

3. Turn the +5V power supply on and then turn the

+25V power supply on.

4. Select the desired starting address using SPDT

switch and enter the data through the keyboard.

5. A programming pulse of width 50 ms must be sent

by the SPST switch to enter the data into the EPROM at the

selected address.

6. The address is then changed by SPST switch and

the procedure is repeated.

When the entire program has been entered, first turn

off +25V power supply and then turn off +5V power supply.

The program can then be verified by examining it in the

read mode.

25

CHAPTER V

Z-80 TEST CIRCUITS AND PROGRAMS

We have already discussed the Z-80 CPU in Chapter

III. Here we will discuss two simple tests to check the

operation of the Z-80 CPU. One program uses only the CPU

while the other uses the parallel input/output interface

as well. A simple block diagram is given below.

WRITE LINE

1---------------

1 DATA LINES
EPROM 1---------------
2716 1---------------

1 ADDRESS LINES
1---------------

--------- CPU
READ LINE Z-80

+5V----
CLK----
GND-----

Figure 9. Z-80 CPU and EPROM

I
I LEDs
-------0

-------0

-------0

-------0

-------0

-------0

1-------0
1-------o
I
I

0

1

2

3

4

5

6

7

The test program is loaded from the EPROM. The EPROM

must, of course, be programmed using the EPROM Programmer

discussed in Chapter IV. Once the CPU is properly

connected (see Appendix D for a detailed drawing) and a five

volt square wave TTL (transistor-transistor-logic) signal

(1000 Hz) applied to the CPU at the CLK input, the CPU

26

the CPU will start reading the information from the EPROM.

Test of CPU Operation

A simple program to test the operation of the CPU is

given in Appendix B. This program loads the accumulator

register with the value 0000 0001 (binary) and the CPU

shows this number on the LEDs (light emitting diodes). A

left shift (SLA} command is used and so in the next loop

the number will be shifted one step left and this time the

second LED will light up and the first LED goes out. This

process continues until the 8th LED is lit. Then the

number is moved one more step left and all LEDs will be

off (all bits zero). The whole process will be repeated

again and again.

Test of Parallel Input/output Interfacing

In order for the CPU to accept input data from the

outside or to transfer data to the outside it is necessary

to interface another 40-pin chip called the parallel

input/output (PIO). The Z-80 PIO pin configuration is

given below. The PIO has two ports, Port A and Port B.

All lines of the PIO are connected to the CPU lines of the

same name. No address bus is needed for the PIO. Pin

number 4 is used for enabling or disabling the PIO. Pin

number 5 is used to indicate whether data on the data bus

should be treated as data (logic 0) or a control word

27

(logic 1).

D2----o 1
D7----o 2
D6----o 3
CE----o 4

C/D----o 5
B/A----o 6

A7----o 7
A6----o 8
A5----o 9
A4----o 10

GND----o 11
A3----o 12
A2----o 13
Al----o 14
A0----o 15

ASTB----o 16
BSTB----o 17
ARDY----o 18

D0----o 19
D1----o 20

Figure 10. Z-80 PIO

40lo----D3
39lo----D4
38lo----D5
3710----MI
3610----IORQ
35 o----Ro·
34 o----B7

Z-80 33 o----B6
32 o----A5

PIO 31 o----B4
30 o----B3
29 o----B2
28 o----Bl
27 o----B0
26 o----+5V
25 o----CLK
24 o----IEI
23 o----INT
22 o----IEO
21 o----BRDY

Pin number 6 is used for selecting Port A or Port B

of the PIO. Pin numbers 4, 5 and 6 of the PIO are

connected to the CPU at addresses A2, Al and AO

respectively. The PIO can be programmed in four different

modes, mode-0 (byte input), mode-1 (byte output), mode-2

(byte input/output for- port A only) and mode-3 (bit

input/output). Only mode-0 and mode-1 are used here.

A program is needed to configure and use the PIO. A

sample program for this purpose is given in Appendix C.

This program configures the PIO in such a way that Port A

28

acts as an input and Port B acts as an output. When input

data is present at Port A the program transfers it to the

CPU and the CPU then sends this data out through Port B.

The test program must first be stored in the EPROM.

After connecting all the circuits properly (as in Figure

9), the power is turned on and the CPU is reset by

bringing the reset line momentarily low which loads and

executes the program up to the HALT statement (see

Appendix C). To continue execution the interrupt line is

momentarily brought low. Now the PIO is properly

configured and the CPU is ready to receive data through

Port A of the PIO.

For example, if an ADC (analog-to-digital converter)

is used to generate digital input from an analog signal as

shown in Figure 11, the data will be input through Port

A. If a DAC (digital-to-analog converter) is used to

change the digital information back to analog at Port B

the original analog signal will be recovered at the

output. The input and output analog signals can be

observed and compared on an oscilloscope.

29

I
Analog signal out

DAC

I
I Data bus (8 lines).

Port A I

PIO

I Port B
Data bus I Data bus

(8 lines) I (8 lines)

ADC

I
I

Analog signal in

Figure 11. Z-80 CPU and PIO

EPROM

Address
bus
(11 lines)

Z-80 CPU

30

CHAPTER VI

RAM AND DMAC

In the last chapter we discussed interfacing the

EPROM and the PIO to the CPU. In this chapter we will

discuss interfacing the RAM and the DMAC to the CPU. As

stated before RAM is used for temporary storage. In this

work the 2048x8-bit static RAM (MCM6116) chip was used.

The following diagram shows the pin assignment for this

chip.

A7--.---o 1
A6-----o 2
A5-----o 3
A4-----o 4
A3-----o 5
A2-----o 6 MCM6116
Al-----o 7
A0-----o 8
D0-----o 9
D1-----o 10
D2-----o 11
Vss----o 12

Figure 12. MCM6116 RAM

24 o-----Vcc
23 o-----A8
22 o-----A9
21 o-----w
20 o-----G
19 o-----Al0
18 o-----E
17 o-----D7
16 o-----D6
15 o-----D5
14 o-----D4
13lo-----D3

The pin assignment of the MCM6116 RAM is exactly the

same as the MCM2716 EPROM; hence the RAM can be

interfaced to the CPU in the same way as the EPROM execpt

that pin 18 is connected to address line All of the CPU

through a NOR gate. To enable the RAM, bit one of this

31

address line should be high. A block diagram showing the

conventional method for storing data in RAM is given

below.

RAM EPROM

I Port A I
I I
----------- I

I I I I
I I I I
------------------1-------------------

1 I
I I
I I

Z-80 CPU

I.
I DAC

I

signal out
to scope

Z-80 - PIO

Port B

ADC

I
analog signal in I

Figure 13. RAM Interfacing

A simple program to store data into RAM is given in

Appendix D. This program takes the input data through

Port B and stores it in the first 128 memory locations of

RAM. Once the data is stored in RAM it can be output

through port A and displayed using a DAC, for example.

32

The data remains in RAM until it is replaced by new data

or until the power is turned off.

Z-80 DMAC (Direct Memory Access Control)

The Z-80 DMAC is a powerful and versatile device for

controlling and processing the transfer of data. The pin

diagram of the DMAC is given in Figure 14. The basic

function of the DMAC is to manage the transfer of data

between the two ports of the PIO, thereby optimizing

transfer speed and control with little external logic.

A5----oll
A4----ol2
A3----ol3
A2----ol4
Al----ol5
A0----ol6

CLK----017
WR----ol8
RD----o 9 Z-80

IORQ----o 10 DMAC
+5V----o 11

MREQ----o 12
BAO----o 13
BAI----o 14

BUSREQ----o 15
CE/WAIT----o 16

Al5----o 17
Al4----o 18
Al3----o 19
Al2----o 20

Figure 14. Z-80 DMAC

40 o----A6
39 o----A7
38 o----IEI
37 o----INT/PULSE
36 o----IEO
35 o----D0
34 o----Dl
33 o----D2
32 o----D3
31 o----D4
30 o----GND
29 o----D5
28 o----D6
27 o----D7
26 o----MI
25 o----RDY
24 o----A8
23 o----A9
22 o----Al0
21 o----All

Transfer can be done from any input (if more than one) to

any output. In addition, bit maskable byte searches (only

certain bits are masked in a byte) can be performed either

33

concurrently with transfer or as an operation in itself.

The DMAC can be programmed in three different modes,

one byte at a time , burst, and continuous.

One byte at a time

Data operations are performed one· byte at a time.

Between each byte operation the system buses are released

to the CPU.

Burst

Data operations continue until the read line (pin 9)

of the DMAC goes inactive. The DMAC then stops and

releases the system.

Continuous

Data operations continue until the end of the data is

reached before the system buses are released. The end of

the data is detected by comparing the next address with

address stored in DMAC during its programming.

The CPU must program the DMAC in advance of any data

search or transfer by addressing it as an I/0 port and

sending a sequence of control

instructions.

bytes using output

34

Direct Memory Access Interfacing

A block diagram showing how the DMAC is interfaced to

the system is shown below.

RAM EPROM

I
Port B I

DAC

I

analog output
signal

I Port A
I

Z-80 PIO

I I I
I I I o-------1 ADC l<-
----------1---------o---------------o I I I

I I I ----------- I
o-------------------------------------

1 I I I

Z-80 CPU

I I
I I
I I

Z-80 DMAC

I
analog
input
signal

Figure 15. DMAC Interfacing

All the DMAC lines are connected to the CPU pins of .the same

name. The lines BAI, CE/WAIT, IEI and ROY need some

explanation (see Figure 14).

35

BAI -Bus Acknowledge In (input, active low)

If this line is low then the DMAC is active.

Actually BAI (Bus Acknowledge Input) and BAO (Bus

Acknowledge Output) make a daisy chain for multiple DMACs.

Since only one DMAC is used in the present work the BAI

line is connected to ground.

IEI -Interrupt Enable In (input, active high)

This is used with IEO (Interrupt Enable Output) to

form a priority daisy chain when there is more then one

interrupt driven device.

used here, this line

resistor.

Since just one output device is

is connected to +SV through a lK

CE -Chip Enable (input, active low)

This line is connected to the A2 address line of the

CPU through a NOT gate. When this line is low the chip is

enabled.

RDY -Ready line (input, programmable, active low)

This line is monitored by the DMAC to determine when

a peripheral device associated with the DMAC is ready to

read or write.

DMAC programming is quite complex. As an example a

small program which will transfer the data from RAM to an

I/0 device is given in Appendix E.

36

As mentioned before the chip enable (CE) of the DMAC

is connected to address A2 of the CPU through a NOT gate,

so that when the PIO is enabled the DMAC will be disabled

and when the DMAC is enabled the PIO will be disabled.

The CPU can program both of these chips separately.

The sample program first configures the PIO and then

it stores 2K bytes of data in RAM before the computer

executes a halt instruction. The CPU restarts execution

when the interrupt line is momentarily brought low. The

CPU controls the DMAC in the following way:

1. The system program sets the DMAC to receive the

block length of the data to be transferred. Port A has

the starting address of the data in memory and Port B is

temporarily set as a source.

2. Port A is defined as memory with a

incrementing address.

fixed

3. Port B is set as a peripheral with a fixed

address.

4. The system program sets the DMAC to continuous

mode and sets the DMAC to expect the Port B address for

input.

5. The DMAC is set to auto reset and RDY is set to

high.

37

6. The Port B address is loaded and the block counter

is reset.

7. Port A is set as a source.

8. The DMAC is enabled to start operation.

When the CPU sends the last instruction to the DMAC the

CPU is put in a high impedence mode while the DMAC

transfers data from RAM to the output device.

The entire DMAC system is now complete and so it is

necessary to check its operation very carefully. As a

first check the system program given in Appendix D was

used with a 1000 Hz clock cycle. This program does not

use the DMAC but it takes the data from an input through

the PIO and stores it into the RAM. Here the ADC (see

Figure 15) is used for conversion of an analog signal to a

digital signal. A sine wave signal is converted to

digital and stored in RAM. After storing the data the CPU

executes a halt statement. Now the input signal is

disconnected. By bringing the interrupt line momentarily

low the CPU again starts running. The original signal is

recovered using a DAC and observed on the oscilloscope.

This ensures that every thing is working properly for a

1000 Hz clock cycle.

As a second check the 1000 Hz clock is replaced by a

2.5 MHz crystal clock and the DAC and ADC are replaced by

seven segment displays and digital signal switches

38

respectively. The program is executed and the output is

observed at the seven segment displays. This time the

same data is stored in all the memory locations of the

RAM, e.g., 87(hex). When the stored data is sent to the

seven segment displays the same number was observed for

each memory location.

conducted without the

The

ADC

reason that this test was

and the DAC is that these

devices were not capable of working at the 2.5 MHz clock

cycle.

As a final check the EPROM was replaced with another

EPROM with the system program given in Appendix E. This

program is used for programming the DMAC. Once the DMAC

is programmed it can transfer the data from memory to

input/output. Here the digital switches were also used as

input and the seven segment displays as output with the

2.5 MHz crystal clock. The same test was repeated, i.e.,

first the program stored the digital signal and then

stopped. The input signal was disconnected and the

interrupt line was momentarily brought low thereby giving

the output on the seven segment displays. The same output

was observed as that which was stored. This result

demonstrated that the DMAC was working properly. The

BUSRQ line of the CPU was also checked and found to be

high showing that the CPU was in the high impedence state.

The tests were repeated several times each giving the

expected results.

39

The successful completion of this work shows the

capabilities of the direct memory acquisition technique.

This technique will be used in future fast communication

systems like sound processing, digital communication, and

data base managment.

40

APPENDICES

41

APPENDIX A

TIMING DIAGRAMS FOR THE Z-80 CPU

-----------x--AO-Al5
----------- --

MREQ

RD

DO-D7 -----

------------------------------/

------------------------------/-----

<-----------------

-------�

Valid dat ------- -----------

Figure 16. Timing Diagrams

This diagram shows how the address bus, memory request,

read line and data bus timing are related to each other

during the four cycles of the clock.

42

APPENDIX B

SYSTEM TEST PROGRAM NO. 1

Before using the EPROM in the circuit shown in figure

(9) it must be programmed. A simple program providing a

quick check of the CPU operation is given below.

I Load register I
I A with binary l<--
1 value 00000001 I I
----------------- I

I
I

------------------- I
--->I Display register!
I I on LEDs I
I ------------------!
I I
I I
I
I I Left Shift I

I I
--------1

I

Branch
if

A<>O

I
I
I
I
I
I
I
I

I
I
I
I
I
I

Branch I I
I to 1-----1
I beginning!

Figure 17. Flow Diagram For System Test Program No. 1

0000
0001

3E
01

LD A, 01 Load 01 in Accumulator A.

43

0002 03 Out, 7F Display contents of A
on LEDs

0003 7F
0004 CB SLA Shift left
0005 27
0006 C2 JP NZ, 0002 Jump, if not zero to
0007 02 address 0002
0008 00
0009 C3 JP, 0000 Jump to address 0000
000A 00
000B 00

This program will load the accumulator register A

with the binary value 0000 0001 and the CPU will display

this number on the LEDs. A shift left is executed on the

A register and the new value is displayed. This process

continues until the logic 1 bit reaches the 8th position.

When the next shift left is carried out all bits become

zero. The program counter then jumps to address 0000 and

the whole process is repeated.

44

Appendix C

SYSTEM TEST PROGRAM NO. 2

A simple program for configuring the Z-80 PIO is

given below.

I Load 4F(hex) I
I in register Al

I Program PIO I
I Port A,outputl

I Load 0F(hex) I
I in register Al

I Program PIO I
I Port B,inputl

!Enable Interrupt!

!Disable Interrupt!

45

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B

0038
0039
003A
003B
003C
003D
003E
003F

I Receive Data l<---
1 through Port B I I

I
I

I Send data out I
I through Port A I

I
I
I
I
I
I

Jump 1-------1

46

Figure 18. Flow Diagram For System Test Program No. 2

3E
4F
DB
FA
3E
OF
D3
FB
ED
56
FB
76

F3
DB
F8
D3
F9
C3
38
00

LD A,4F

Out (FA), A

LD A, OF

Out(FB), A

IM 1

EI
Halt

DI
IN A, (F8)

Out(F9), A

JP 0038

First the number 4F(hex) is

Load 4F (hex)

Select Port A of
PIO as output
Load OF (hex)

Select Port B of
PIO as input
Interrupt mode 1

Enable interrupt
Halt

Disable interrupt
Receive data through
Port B
Send data out
through Port A
Jump to address
0038

loaded into the

accumulator. This number in binary number is

4 F

0100 1111

The llll(F) indicates that this word is a control word for

the PIO. The 0100(4) indicates mode one (output mode) for

the PIO.

Out(FA), A specifies accumulator A where FA is the

address of the output. FA can be written in binary as

F

1111

A

1010

When the Z-80 CPU executes the Out statment, the lower

8-bits of the address bus carry the address of the I/O

device. Pin 6(B/A), pin 5(C/D) and pin 4(CE) are

connected to address lines AO, Al, and A2, respectively.

The least significant digit of the binary number is zero,

so the CPU selects Port A. The second digit is one which

means that it is a control word. The third digit is zero

which enables the PIO. The rest of the bits do not do any

thing. In short this instruction programs the PIO such

that Port A will act as an output. Similarly the next two

instructions program the PIO such that Port B acts as an

input. The instruction at addresses 0008 and 0009

programs the CPU for interrupt mode one (input/output

mode). Then a halt instruction is executed bringing the

halt line low. The CPU will not execute the next

instruction until it is interrupted. This is done by

bringing the interrupt line momentarily low. Then the

program counter jumps to address 0038 (since the CPU is

47

programmed in mode one) and starts executing the rest of

the program.

After the interrupt is disabled the IN A, (F8)

instruction is executed.

binary as

F

1111

F8 (hex) can be expanded in

8

1000

The first digit (from the right hand side) is zero, so the

CPU selects Port A. The second digit is zero and so the

information on the data bus is treated as data. The third

digit is zero which enables the PIO. At this point the

PIO is ready to receive data from the outside.

48

APPENDIX D

SYSTEM TEST PROGRAM NO. 3

The following is a simple program to enable the system to

receive data through port B, store it in RAM, and output the

data through port A.

I Program PIO, Port A
I input, Port B output

I Program CPU I
I in interrupt mode one I

Load initial address I
I in pair register HL I
I and load maximum block I
I length in register B I

I Input data through I
I Port A and store data l<---1

at the given address I I

I Increase address by I
I one and decrease block!
I length by one I

I
I
I
I

I
---------------- I
I Jump if B<>0 1-------1

Halt I

49

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
oooa
000B
oooc
000D
000E
000F
0010

Momemtarily bring the interrupt line low (manualy).

I Start from address
I 0038 (hex)

l<------

1 I
I
I

I Load RAM address in pair I
I register HL and load block I
I length in registet B I

--->I Data out through Port A
I ----------------------------

1 I
I ------------------------------

1 I Increase address by one andl
I !decrease block length by onel
I ------------------------------

1
I ----------------

1---------1 Jump if B<>0 I

I Go to I
I 0038 (hex) 1-----------

I
I
I

Figure 19. Flow Diagram For System Program No. 3

3E LO A, 4F Load 4F in register A

4F
D3 Out (FA) ,A Select port A as an
FA output
3E LO A, OF Load OF (hex)
OF
D3 Out (FB) ,A Select port B as an input
FB
ED IM 1 CPU interrupt mode one
56
FB EI Interrupt enable
F3 DI Interrupt disable
21 LO HL,F800 Load F800 in pair
00 register HL
F8
06 LO B,FF Load FF in register B
FF

50

0011
0012
0013
0014
0015
0016
0017
0018
0019
001A

0038
0039
003A

003B
003C
003D
003E
003F
0040
0041
0042
0043
0044
0045
0046
0047
0048

DB
F8
77
78
23
05
C2
11
00
76

21
00
F8
06
FF
7E
D3
F9
23
78
05
C2
3D
00
C3
38
00

IN A, (F8)

LD(HL) ,A
LD A,B
INC HL
DEC B
JP NZ,0011

HALT

LD HL,F800

LD B,FF

LD A, (HL)
Out (F9) ,A

INC HL

LD A,B
DEC B

JP NZ,003D

JP 0038

Get input data through
port B
Put data at address in HL
Load data in A from B
Increase HL by one
Decrease B by one
Jump if not zero to 0011

Halt

Load RAM address in
Pair register HL

Load FF in register B

Load data from (HL)
Data out through port A

Increase data in HL
Load A from B
Decrease data in B by one
Jump if not zero to 003D

Jump to address 0038

The first part of this program (from address 0000 to

000B) is the same as in Appendix C. At address 000C the pair

register is loaded with F800 which is used for addressing RAM

and its memory locations. At address 000F the value FF is

stored in register B. Since only 128 or FF(hex) memory

location in RAM are used, this number acts as a counter. The

instruction IN A,(F8) instructs the CPU to get data from B,

where F8 is the address of port B.

51

In short this program receives the data through port B of

the PIO and stores it in RAM from address 0000 to 00FF(hex).

When the CPU executes the halt instruction, the next

instruction is not

momentarily brought low.

execution the next

executed until interrupt

When this is down the CPU

instruction. The remainder

line is

starts

of the

instructions are used for sending out the data which was

stored to port A.

52

APPENDIX E

SYSTEM TEST PROGRAM NO. 4

The program below directs the Z-80 PIO to receive

data through Port B and store these data into RAM. Then

the DMAC is programmed to receive data from RAM and send

them directly to the DAC.

EPROM
0000 TO 00EF

I DMAC
I 00F0 TO 0OF7

1 PIO
I 00F8 TO 00FF

1 RAM
I F800 TO FFFF

Figure 20. Memory Map

Program PIO
Port A, output
Port B, input
Program CPU in

interrupt mode one

I Disable interrupt I
I Load initial address!
I of RAM

53

I Load maximum length I
I of the block I

Get data through l<----
Port B I

lstore data in RAMI

I Increase address byl
I one, decrease blockl
I length by one I

I Jump if block I
I length is<>0 1------

HALT I

Bring the interrupt line momentarily low (manually).

lstarts at addressl<-----
1 0038 (hex) I

I Program DMAC I
I for continuous!

mode I

I Enable DMACI

I Transfer data I
I from RAM to PIOI
I through DMAC I

54

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
00OB
oooc

000D
000E
00OF
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
00lC
001D
00lE
00lF
0020
0021

0038
0039
003A
003B

I
I

Jump when lastl I
address of

block length
is reached

1------1
I
I

Figure 21. Flow Diagram For. Test Program No. 4

3E
4F
D3
FA
3E
OF
D3
FB
ED
56
FB
F3
21
00
F8
06
07
OE
FF
DB
F8
77
23
79
OD
C2
13
00
78
05
C2
11
00
76

3E
79
D3
F0

LD A, 4F

Out (FA) ,A

LD A, OF

Out (FB) ,A

IM 1

EI
DI
LD HL,F800

LD B,07

LD C,FF

IN A, (F8)

LD (HL) ,A
INC HL
LO A,C
DEC C
JP NZ,0013

LO A,B
DEC B
JP NZ,0011

HALT

LD A,79

Out (F0) ,A

Load 4F in accumulator A

Select Port A for output

Load OF in accumulator A

Select Port B for input

CPU mode one

Interrupt enable
Interrupt disable
Load F800 in pair
register HL

Load 07 in register B

Load FF in register C

Get data through
Port B
Store data in RAM
Increase contents of HL
Load C from register A
Decrease contents of C
Jump if not O to 0013

Load A from register B
Decrease contents of B
Jump if not O to 0011

Halt

Load 79 in accumulator A

Set DMA to receive
block length

55

56

003C 3E LD A,00 Load 00 in accumulator A

003D 00
003E D3 Out(F0) Port A lower address
003F F0
0040 3E LD A,F8 Load F8 in accumulator A

0041 F8
0042 D3 Out (F0) ,A Port A upper address
0043 F0
0044 3E LD A,00 Load 00 in accumulator A

0045 00
0046 D3 Out (F0) ,A Lower bits of block
0047 F0 length
0048 3E LD A,08 Load 08 in accumulator A

0049 08
004A D3 Out (F0) ,A Upper bits of block
004B F0 length
004C 3E LD A,14 Load 14 in accumulator A

004D 14
004E D3 Out (F0) ,A Define port A, memory
004F F0 with fixed address
0050 3E LD A,28 Load 28 in accumulator A

0051 28
0052 D3 Out (F0) ,A Define port Bas I/0
0053 F0 with a fixed address
0054 3E LD A,ES Load ES in accumulator A

0055 ES
0056 D3 Out (F0) ,A Set OMA to continuous
0057 F0 mode
0058 3E LD A,05 Load 05 in accumulator A

0059 05
00SA D3 Out (F0) ,A Port Blower address
00SB F0
oosc 3E LD A,AA Load AA in Accumulator A

005D AA

00SE D3 Out (F0) ,A Set OMA to auto reset
00SF F0
0060 3E LD A,CF Load CF in accumulator A

0061 CF
0062 D3 Out (F0) ,A Load Port B address
0063 F0 and reset block counter
0064 3E LD A,05 Load 05 in accumulator A
0065 05
0066 D3 Out(F0) Set Port A as the source
0067 F0
0068 3E LD A,CF Load CF in accumulator A
0069 CF
006A D3 Out (F0) ,A Load Port A address and
006B F0 reset block counter
006C 3E LD A,87 Load 87 in accumulator A

006D 87
006E D3 Out(F0) ,A Enable OMA to start
006F F0 operation

0070
0071
0072

C3
38
00

JP 0038

57

Jump to address 0038

A,,

APPENDIX F
.58

CIRCUIT DIAGRAM FOR EPROM PROGRAMMER

Vee..

• "·1/'F +5V

Dedo.. lines ·f,ol'Y\ Do1� 07
�o �o E PROrn

Ycc;i

· A. dJre�s Count�<
L�.:_:::·_::-:::�::: �: .. :.::=::-_. -�7=7-

•✓CC _ / / t--
---.

/_/

- ·-· I

1"
1�;-------,
18 1--------,
17i------�
,�i-----,
1<,-·

1�· � +sv1,
11 •. ,-,---,

"-�

'1«_ I I t----,

/_/
-1 "--

-- -1,, 1:;.
- J "-l ,�-
_,, .,!'- 11. o:t ii
- ,; __t- 11-

..-....-�-,-' II -
- 7 -......J 1•-

+ ;J 11-

/_/
/_I

,,_
,;-
14-

13
ll
II

' ,c.
2.--...J 15'·

·3 ,i,.
.,,..c-. 13·

·s·. . •1.·

' :...C"': 11-
'I. '-I , •. -91 'l ·

+sv

jD.
;D,

. 0..
03

! " "
I� I 3 ..t:-- 1/1

'•'..J I

; '-'l I7

f,'

I
J.. .I

A clJ<e,;s I 1'nes {,om Ao·t A,,
30 io '- 716 l=.P�OI{)

-Vc.c.

+5V

!=\., __ ..
A2-
fl, �-n, - - .

n
,..
.-..

. ' If.

:.t ·� -
. 'J '-J ,., .
•1, _£' 11·
·'j'- l,l

----(..0 II.

---· -] l.JJ ,., .J="-ff •j-

ns _ --· �..- - -

Pro3r Qmmio3 Pu \se Ge.l\erc�to,
�.:. -······-··· ------.. �r-7�z::•�;;n···1

It
IS··
It,·
11·
11.
1•-
1•-"'

h, ·-
f1,-

fl ;-- ·- -

Vc:c.

-t Vee +Vee

+o\/ ----1 +5Y __ __,
\00\<.

/--II�;
.-

i
rt

•'i�
...,.

�-.,..�9.,....':l �-1 ____ --1,-, ._ ____ _:-:_��-=--=-�':.. ____ o_vJ_r�P;o�
--� 1, 1, k {.l \O\<. � lt7k _ . .I..

+sv

Figure 22. Circuit Diagram For EPROM Programmer

t5'V

APPE:NlllX G

CIRCUIT DIAGRAM FOR DMAC

--'-1-------'
- ---1-1-t-1-------

- ====⇒-:1:-1:t-:j:j::j:l:�t!====.--=_=_=_=_=:_=_= _::___:_,
H--iH--+-++-,_,_ - -· ..

7'l3l. -H--11--1-l--H--1-1-1+,J._--_ -_ -_-__:_-_ -_ -_---l------+--------1

--:�-=-=:.���- :!-.;iJ],--Ycc
�-- - . . . ___;\ \.._ - .. --i--' .

. - - -i) >--' - \� :1 ll<
- :; :::! ::t!---�'•'--"'•- 1. 0) ;}-

-
-,-::. ,::.::.-:.-:.-::.:::- -- - -- --- � � �-- - -· _,_, - - -1ii ;o t·�

- ------l-1 --------? g /
,- ------·- ···-- -· 1-----· 1----1-1-1- - - - - - - - - - ------l-�-1- '--

1----1-
-1---4+-1-1-1-l+l--l--l--l-+ll-l-�---l-

__ ,_

--1----,

--=�---.-,-:-f-=-� .. =.�--·,=�.==�-:...=:=�-:...=:=�:=H
:=��=�==�=-:...�-:...�-::T�-_,·:
�_,_-,_,_,�-��:==-V-,-,----l

' -v "��'::ti, n i6:::=:....
1/,,- 7�17 N 1t i :'�•\;======-'
,� ' ,r,r"'it"

14,,r ·;�

-tG�)i
� .Z!l!'..'t

Figure 23. Circuit Diagram for DMAC

59

BIBLIOGRAPHY

CMOS Motorola Data Book. (1979). Austin, Texas,
Motorola Semiconductor Products Inc.

Components Data Book. (1983/1984). Mountain View,
Microword. California, Zilog Pioneering The

Joseph, C. Nichols. (1979). Z-80 Microprocessor.
Indianapolis, Indiana, E & L Instruments, Inc.

Leventhal, A. L. (1979). Z-80 Assembly Language
Programming. Berkeley, California, Howard w. Sams
& Co., Inc.

Leventhal, A. L.
Programming,
& Co., Inc.

(1980). Z-8000 Assembly Language
Berkeley, California, Howard W. Sams

TTL Data Book for Design Engineers, Second edition.
(1981). Dallas, Texas, Texas Instruments Incorporated.

60

	Direct Memory Acquisition of Fast Analog Signals
	Recommended Citation

	tmp.1570452938.pdf.Dqohx

