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AN EVOLUTIONARY APPROACH TO ALLOCATING TASKS 
IN HARD REAL-TIME DISTRIBUTED SYSTEMS 

Christian Lang, M.S.E. 

Western Michigan University, 1994 

In real-time systems, correctness not only depends on the result of the compu­

tation but also on the time at which this result is available. The violation of timing con­

straints in hard real-time systems can be critical to human life or environment. 

Therefore, the scheduling algorithm for distributed systems has to allocate tasks to pro­

cessing nodes so that no timing constraints can be violated. In addition to timing con­

straints, tasks have precedence and fault-tolerance constraints. 

Static scheduling allocates tasks to processing nodes before the tasks are exe­

cuted. Static scheduling problems are known to be NP-hard [4]. Therefore, heuristic 

techniques are necessary to find schedules. Evolutionary strategies (ES) have been 

used to find solutions to NP-hard optimization problems by performing a directed ran­

dom search in a complex fitness landscape. Recently, ES have been shown to effi­

ciently find low schedule length task allocations in non-real time distributed systems 

[7]. 

This thesis shows, ES algorithms can find solutions to the static scheduling 

problem in real-time distributed systems. The effect of the type of the genetic opera­

tors, the populations size, and the fitness function on the efficiency of the ES algo­

rithms were investigated. The ES approach was verified by solving two real-world 

scheduling problems from [10] and [24]. Solutions were found in less than one hour 

of CPU time on a Sun SPARC IPC computer. 
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CHAPTER I 

INTRODUCTION 

The use of computers in new areas demands properties which require the use of 

distributed real-time systems. Among such areas are laboratory control, aircraft avion­

ics, and autonomous land rovers. In real-time systems, correctness not only depends 

on the result of the computation, but also on the time at which this result is available. 

The use of distributed systems is necessary because of two reasons. 

1. A short reaction time often demands a high computational speed.

2. A fault in a real-time system can have catastrophic consequences.

Distributed systems can detect faults by comparing results from different pro-

cessors. They can recover from an error by migrating tasks to other processors. 

Many real-time systems in the past were designed ad hoc. Timing specifica­

tions were verified after designing the system by simulation. Slight changes required 

expensive new simulation of the whole system. The complexity of modern real-time 

systems makes it impossible to simulate all situations. Thus, a guarantee that timing 

constraints are met under all circumstances is difficult to obtain. This makes new 

design methods necessary if violation of timing constraints is critical. These methods 

have to include timing specifications in all stages of the design. 

Conventional design methods minimized the average response time to a given 

computational task. In real-time systems, the response time must not exceed a specified 

limit. The average response time is of secondary interest. Real-time systems have to 

be predictable and timely rather than just fast. 
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Scheduling is a part of the design process of real-time systems. A schedule 

allocates tasks to processors and determines the order of their execution. Scheduling 

algorithms for non-real-time systems minimize the total execution time for a given set of 

tasks. Real-time scheduling algorithms have to find schedules that satisfy the timing 

constraints of each task. There are two major classes of scheduling algorithms [6]. 

1. Off-line or static scheduling allocates tasks to processors before the tasks are

executed. This requires all information about the tasks, such as, the number of tasks 

and their duration, is known beforehand. 

2. On-line or dynamic scheduling allocates tasks while running the real-time

system. Therefore, the scheduling algorithms is part of the real-time system itself, and 

is subject to timing constraints as well. On-line scheduling is necessary if some infor­

mation about the tasks is only available when running the system. For instance, tasks 

can enter the system asynchronously as a result of sensor input. 

In general, off-line scheduling algorithms can find excellent schedules, but the 

computation time can be excessive. Modern real-time systems are likely to combine 

both, on-line and dynamic scheduling algorithms. Periodic tasks with known duration 

are scheduled off-line. All other tasks are allocated by an on-line scheduler at the time 

of their arrival at the system. 

Hard real-time tasks have to meet their timing constraints under all circum­

stances. Their violation can be critical to human life or environment. A schedule is 

said to be feasible if the timing constraints of all hard real-time tasks are met. Soft real­

time tasks may violate their deadlines, however repeated violation degrades the perfor­

mance of the system, or results in a loss of functionality. 

In addition to timing constraints, tasks have precedence and fault-tolerance 

constraints. Precedence constraints describe the data and other dependencies between 

tasks. They restrict the order of execution of the tasks. Fault-tolerant tasks must be 
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executed on different processing nodes so that correct results can be obtained even if 

some of the nodes fail. 

This thesis discusses the use of evolutionary strategy for off-line scheduling of 

hard real-time tasks. Even under simplifying assumptions, off-line scheduling is a NP­

hard problem [4]. This means, the complexity, for finding an optimal schedule, grows 

exponentially with the number of tasks. Thus, it is impossible to find optimal sched­

ules in a reasonable amount of time when the number of tasks is large. Heuristic tech­

niques are needed to find approximate solutions. Frequently used are rate-monotonic 

scheduling [14], critical-path methods [24], branch-and-bound algorithms [10], and 

evolutionary strategy [7]. Rate-monotonic scheduling and critical-path methods are 

greedy algorithms. Their potential to approximate the optimal solution is limited, how­

ever, they are fast and easy-to-use methods to find a rough estimates about the timing in 

early states of the design. Branch-and-bound algorithms perform a systematic search 

among all possible allocations of tasks to processors. Because of the huge number of 

possible allocations, branch-and-bound algorithms tend to have a large execution time. 

Evolutionary computation has been shown to be a fast method for non-real-time 

scheduling. This thesis investigates their application to real-time scheduling problems. 

EC is a method to approximate solutions to NP-hard optimization problems. 

The EC algorithm is given below: 

1. Generate a population µ of randomly generated chromosomes.

2. Evaluate the chromosomes in µ to find their fitness.

3. Generate offsprings A by application of genetic operators toµ.

4. Select highly fit chromosomes for the new population µ.

5. If no feasible solution is found, go to step 2.

Each chromosome represents a possible solution to the problem. Genetic 

operators produce offsprings by slightly altering parent chromosomes. The parameter 
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fitness indicates how close a solution, represented by a chromosome, is to the optimal 

solution. A solution is said to be feasible if a specified optimization criteria is met. 

EC can be applied to a wide range of problems because their functioning relies 

on the very basic principle of strong causality. Strong causality says that similar causes 

have similar consequences. Translated into the terms of evolutionary computation, this 

means small changes in the chromosomes cause small changes in fitness. 

Evolutionary strategy, ES is a subclass of EC. ES allows each member of the 

parent generation to produce a constant number n0 of offsprings. The µ chromosomes 

with the highest fitness are selected fromµ+}.., for the new population, whereµ is the 

size of the new population, Q.µ. 

Applied to scheduling, chromosomes represent schedules. Genetic operators 

alter the order of the execution of tasks, or swap tasks between processors. Schedules 

are evaluated by simulation. The fitness of a schedule is derived from the completion 

times of its tasks. 

This thesis shows an ES algorithms that can find solutions to static real-time 

scheduling problems in distributed systems. Event-driven simulation was used to 

simulate schedules. The effect of the type of the genetic operators, the populations 

size, and the fitness function on the efficiency of the ES algorithms were investigated. 

The optimized algorithms was used to solve two real-world scheduling problems. 

These problems consisted of 64 and 89 tasks. Solutions could be found on a Sun 

SPARC IPC computer in 8 and 54 minutes respectively. 

The remainder of the thesis is organized as follows. Chapter II gives an intro­

duction into other scheduling algorithms. In Chapter III, the principles of the evolu­

tionary strategy are explained. Chapter IV gives the assumptions, which were made 

about the computer model, to find the length of a schedule. A description of the ES 

algorithm can be found in Chapter V. Chapter VI shows the results of the parameter 
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optimization and the solution of the real-world problems. Possible extensions of the 

algorithm are discussed in Chapter VII. 
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CHAPTER II 

RELATED RESEARCH 

This section introduces various aspects of scheduling techniques. Scheduling 

determines the order of the execution of tasks on a processing node. In systems with 

more than one processing node, the scheduling algorithm also specifies the node on 

which a task is executed. Scheduling can be subject to precedence and timing con­

straints. The next section discusses the nature of these constraints and other criteria that 

classify scheduling problems. The second part of this chapter describes various 

scheduling algorithms and the type of problems that can be solved by them. A more 

detailed discussion can be found in [6]. 

Classification of Scheduling Problems 

There are numerous ways to categorize scheduling problems. Only those fac­

tors are described below that have an impact on the structure of algorithms. 

Deterministic Scheduling 

A scheduling problem is said to be deterministic if all information about the 

tasks is known before executing the tasks. Information about tasks includes the length 

of a task, precedence constraints, and the amount of communication with other tasks. 

Also, if applicable, timing constraints are given. 

In non-deterministic problems, at least some of this information becomes avail­

able only after executing some of the tasks. This situation occurs where the task exe-
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cution time depends on problem data. In systems with interrupts, the time when a task 

becomes ready for execution, is unknown. 

Number of Processing Nodes 

The computing system can have one or more processing nodes. In a single­

node system, a solution is a permutation of tasks. In a N-node system, the number of 

possible solutions increases since each task has to be assigned one of the N nodes. 

Solutions consist of N permutations llJ, ... , IIN of tasks where each task is member 

of one permutation. The tasks in permutation IIi are to be executed on node i. For two 

tasks 1Cm,1Cn E IIk (for some k) m<n implies 1Cm is executed before 1Cn. 

Communication 

Many scheduling algorithms neglect the time that is needed for communication 

between processors. This approach is only valid for tightly coupled systems with a 

large computation to communication ratio. 

If the amount of communication is small compared to the bandwidth of the 

communication network, it can be assumed to be congestion free. In such systems, the 

total communication time is equal to the message propagation time. As the amount of 

communication between processors becomes larger, messages may have to wait for 

some time until a link becomes available. This affects the mapping of tasks onto the 

processors. Algorithms that neglect communication tend to balance the load between 

processors. If communication time is large, minimizing dilation will give good sched­

ules [13, 25]. Dilation is the average number of links used to transmit a message. 

In [2] it is shown that strategies that find good schedules are likely to compro­

mise between load balance and dilation. 
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Preemptive Tasks 

In a non-preemptive schedule, tasks cannot interrupt each other. Once a task T 

has been started on a certain processor, this processor cannot execute any other task 

until the computation of T has been finished. 

If switching between tasks is possible at any time, the schedule is said to be 

preemptive. Preemptive schedules give less processor idle time and thus, larger 

speedup. However there is a certain amount of overhead for each preemption, which 

can reverse this effect. The speedup Sis defined as S=tJltN, where tJ is the execution 

time of the best sequential algorithm, and tN is the execution time on a distributed N­

node system. 

Precedence Constraints 

In many cases, precedence constraints are described by constraint graph. This 

is a directed acyclic graph (DAG) where nodes represent tasks. An arc leading from 

node i to node j indicates that the task at node i provides data to the task at node j. 

Thus, the task at node i must execute before the task at node j can begin execution. A 

set of tasks is said to be independent if there are no precedence constraints. That 

means, a task can be started without synchronization to other tasks. 

Timing Constraints 

Much research has been done to find schedules that maximize the total speedup, 

or minimize the finishing time of the last task [8,11,19,20]. Real-time systems impose 

additional constraints on the task execution time. These constraints can be earliest start 

times, latest start times, or deadlines for each task. The meaning of timing constraints 

depends on the type of the task. 
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1. Hard real-time tasks have to meet their timing constraints under all circum­

stances. Their violation can be critical to human life or environment. A schedule is 

said to be feasible if the timing constraints of all hard real-time tasks are met. 

2. Soft real-time tasks may violate their deadlines, however repeated violation

degrades the performance of the system, or results in a loss of functionality. Soft real­

time tasks can be scheduled by assigning a weight to each task. The scheduling algo­

rithm minimizes the total weight of the tasks that miss their deadlines. 

Periodicity of Tasks 

Periodic tasks arrive at the system at regular intervals. If it is possible to find a 

period common to all tasks, it is sufficient to schedule only those tasks that arrive in 

that common period [19]. Tasks that do not arrive at the system periodically are 

referred to as aperiodic. 

Scheduling Algorithms 

If the scheduling problem is non-deterministic, or if aperiodic tasks are present; 

some of the scheduling decisions have to be made at run-time. That implies that the 

scheduling algorithm has to be executed at the same time as the problem. To keep the 

amount of overhead small, the algorithms have to be fast. They are called on-line 

scheduling algorithms [ 6]. 

In deterministic scheduling problems, with only periodic tasks present, there is 

enough information to compute a complete schedule before running the system. Once 

the system has been started the allocation of tasks to processors, and their order of 

execution is fixed. 
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On-line Scheduling Algorithms 

These algorithms have to schedule tasks without complete knowledge about the 

problem. Therefore, their ability to optimize certain parameters (resource utilization, 

satisfying deadlines) is limited. Many of these algorithms assign some kind of priority 

to the tasks [1]. Tasks are executed in the order of their priority. 

Off-line Scheduling Algorithms 

Deterministic scheduling problems can be solved before executing the tasks. In 

principal, it is possible to find an optimal schedule. However, except for some trivial 

cases, scheduling problems are NP-complete [4]. Therefore, computing an optimal 

schedule becomes computationally prohibitive if the number of tasks is large. 

Heuristics are needed to approximate an optimal solution. 

Rate Monotonic Scheduling 

Rate monotonic scheduling (RMS) applies to the case of preemptive scheduling 

of independent tasks. It can be used for scheduling tasks with deadlines on a single 

processor. Tasks are assigned priorities in the order of their periods. The task with the 

shortest period is assigned the highest priority. It can be shown that the tasks will 

always meet their deadlines if the total utilization of the processor does not exceed a 

certain limit [14]. In [23], Sha and Sathaye introduced a generalized rate monotonic 

scheduling (ORMS), which extends RMS in that, that this technique is now applicable 

to multiprocessor environments, and to tasks with precedence constraints. This tech­

nique is computationally inexpensive, and gives a good theoretical understanding of the 

problem. However, RMS and ORMS can only be applied to preemptive systems, 
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which are difficult to implement. Because of the preemption overhead, the achievable 

speedup can be smaller than that of non-preemptive schedules. 

Critical-Path Method 

This method can be used for non-preemptive scheduling of tasks with prece­

dence constraints. The technique uses a latest start time (LST) to determine when a task 

should be scheduled. The LST of a task is defined recursively as the maximum LST of 

all of its successor tasks plus the execution time of the current task. A task is called 

ready task if the computation of all of its predecessors has been finished. The critical­

path method (CPM) assigns ready tasks to processors in the order of increasing LST 

[24]. Although this algorithm is very fast, the accuracy of the solution cannot be guar­

anteed. CPM is the basis for various branch-and-bound techniques. 

Branch-and-Bound 

Branch-and-Bound algorithms (BBA) can be applied to a variety of off-line 

scheduling problems. A systematic investigation of all possible assignments of tasks to 

processors would find an optimal schedule. Since the number of possible schedules 

increases exponentially with the number of tasks, this is only possible for small 

problems. BBA use heuristic techniques to find near optimal schedules first. 

Therefore, good schedules can be found by investigating only a small fraction of all 

possible schedules. 

BBA maintain a list of ready tasks, and another list of idle processors. At each 

point of time there are several possible assignments of ready tasks to idle processors. 

A heuristic gives the order in which these assignments are tried. For each assignment, 

the problem is solved recursively for the remaining tasks. Once a feasible schedule has 

been found, the search is terminated. 

11 



Ramaritham gave an example of the latest start time/maximum immediate suc­

cessors first heuristic for fault tolerant systems in [19]. Kasahara and Narita showed 

the use of the depth first/implicit heuristic search algorithms for the case of a robot-arm 

control in [10]. 

The total number of all possible schedules grows exponentially. Therefore, the 

number of schedules, which has to be investigated until a feasible schedule is found, 

can be rather large for a large number of tasks. This makes BBA computationally 

expensive for large problems. 
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CHAPTER III 

EVOLUTIONARY STRATEGY 

Evolutionary strategies (ES) are used to approximate solutions of optimization 

problems. They model the process of the biological evolution. A major advantage of 

ES is that they are not a priori limited to certain types of problems. However, ES are 

weak computational methods [221. If other types of algorithms can be applied, like 

greedy or divide-and-conquer algorithms, they may be faster because they exploit spe­

cific properties in the structure of the problem to find an solution. ES are only applied 

to NP-hard problems where finding an exact solution in a reasonable amount of time is 

impossible. Although there are many variations, all ES are based on the algorithm 

below: 

1. Create an initial populationµ of randomly generated chromosomes.

2. Evaluate the chromosomes in the population to determine their fitness.

3. N
g

=O.

4. Generate A offsprings by application of genetic operators to the individuals

in µ. Each chromosome in µ produces n0 offsprings. 

5. Evaluate the chromosomes A to determine their fitness.

6. Select the µ chromosomes with the highest fitness in µ+1 for ttie new

population µ. 

7. N
g

=N
g

+l.

8. If no feasible solution was found and N
g

<Nmax, go to step 4.

ES improve a population of chromosomes until a feasible solution is found. 

Each chromosome represents a potential solution to the problem. Genetic operators 
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produce offsprings by slightly altering parent chromosomes. The parameter fitness 

indicates how close a solution, represented by a chromosome, is to the optimal solu­

tion. A solution is said to be feasible if a specified optimization criteria is met. 

Potential solutions are usually encoded by arrays of real or integer numbers, 

and are referred to as genotypes. Simulation of a genotype reveals its behavior con­

cerning an optimization parameter. This behavior is called the phenotype. 

For example, consider the traveling-salesman problem (TSP) [17]. An instance 

of the problem consist of n cities where the distances between cities are known. TSP 

asks for the shortest closed-loop tour including all n cities. A possible solution, or 

chromosome, is a permutation of the n cities. An array of n integers can be used as 

genotype where each integer represents the number of a city. Computation of the 

length of the tour reveals the phenotype. Since the length L of the tour is to be mini­

mized, the fitness F can be computed by F=-L. This gives good solutions, with a small 

length L, the highest fitness. 

The remainder of this chapter discusses the parts of ES in greater detail. 

Representation of Individuals 

Simple genetic algorithms used bit strings as the most general representation of 

genotypes. For many problems, this is a rather unnatural encoding. ES frequently use 

arrays of integer for combinatorial optimization problems, such as, scheduling 

problems [8], or the TSP shown above. 

Genetic Operators 

There are two types of genetic operators which modify the parameter values 

encoded in the genotype. Mutation operators change one parent to produce an off­

spring. Recombination operators combine the properties of two parents in the new off-
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spring. The question, which type of operators should be used, has been the subject of 

much discussion, and it seems the answer depends on the problem to be solved. 

Rechenberg suggests to only use mutation [21]. Mtihlenbein and Schlierkamp-Voosen 

derived a relation between the convergence rate and the type of the genetic operator 

[18]. They could not show clear advantage for either recombination or mutation 

operators. Convergence rate is the average number of generations that has been 

computed when one genotype is distributed throughout the entire population. 

ES only work better than random search if there is a correlation between the 

fitness of a genotype and its offspring. This means highly fit genotypes should have a 

high probability to produce highly fit offsprings. This relationship can be expressed by 

the covariance of the fitness of parent and offspring. Manderick and Spiessens show 

how covariance coefficients can be used to select efficient genetic operators for combi­

natorial optimization problems [16]. Mutations must satisfy the principle of strong 

causality. That means small changes in the genotype have a high probability to result in 

small changes in the phenotype [21]. 

Correlation of the fitness between parent and offspring requires a small muta­

tion step size. However, if the mutation step size is too small the evolution may con­

verge to a local optimum instead of the global optimum. Therefore, efficient evolution 

only takes place within a small interval of the mutation step size. Some algorithms 

adapt the mutation step size according to the mean fitness of the population. It is also 

possible to optimize the mutation step size by evolution of the second kind. The muta­

tion step size is part of the genotype and optimized by evolution as well [21]. 

Generation and Selection of Chromosomes 

Selection determines the direction of the evolution. Off springs A are generated 

by application of genetic operators to a parent population µ. Selection determines 
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which individuals from µ+A are chosen for the next population. Selection can be based 

on the fitness, or on the rank of a chromosome in the population. Most ES use 

truncation selection, a rank-based method. Each individual of the population produces 

a constant number n0 of offsprings. Therefore, A contains n0*µ chromosomes. From 

the total µ*(n0+ 1) chromosomes in µ+A, the µ individuals with the highest fitness are 

selected for the new population. Usually n0=l is used. In situations where mutation 

operators can produce invalid off springs, no> l can provide a surplus of chromosomes. 

In this thesis, n0=l was used. 
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CHAPTER IV 

PROBLEM DESCRIPTION 

This section explains the details of the scheduling problem that can be solved by 

the algorithm described in Chapter V. 

The problem consists of p tasks, which are to be executed on a multicomputer 

with n nodes. Each task has precedence, timing, and fault tolerance constraints. The 

nodes of the multicomputer communicate by passing messages over a network. The 

scheduling problem is to find a feasible schedule, i.e., an ordered assignment of tasks 

to nodes; so that no precedence or fault-tolerance constraints are violated, and all timing 

constraints are satisfied. 

Tasks are non-preemptive and periodic. Once a task To has been started on a 

certain node this node cannot execute any other task until To was completed. All tasks 

have the same period. Therefore, it is sufficient to find a feasible schedule for one 

period [20]. 

Precedence constraints are given in the form of a directed acyclic graph, referred 

to as precedence constraint graph (PCG). Each vertex Vi of the graph represents a task 

Ti. An arc from vertex Vi to VJ requires that task Tj not be started before Ti has been 

completed. If Ti and Tj are executed on different nodes Nk and N[ of the multicom­

puter, a message has to be sent from Nk to Nz upon completion of Ti. Tj cannot be 

started until this message arrives at N[. 

Timing constraints consist of a deadline tdi for each task Ti. Timing con­

straints are violated if the completion time tci of a task is larger than its deadline, 

tci>tdi-
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It is assumed that all processing nodes are homogenous. That implies that the 

execution of each task is possible on any node, and that the length of the execution of a 

task is the same on each node. 

To describe fault tolerance, tasks are divided into classes. Each task is member 

of exactly one class. Fault tolerance constraints require that each member of a class is 

executed on a different node of the multicomputer. This implies that a class can have at 

most as many members as the multicomputer has nodes. The special case, where each 

class consists of one task, is equivalent to the case with no fault tolerance constraints. 

The nodes are connected by point-to-point links. Communication is assumed to 

be reliable and full-duplex. Each link has a buffer for messages that are waiting for 

access to the link. No store-and-forward scheme was used. At intermediate nodes, 

messages are relayed as soon as the outgoing link at the intermediate node becomes 

available. 

If task Ti completes on node Nk, messages have to be sent to all immediate suc­

cessors of Ti in the PCG that are scheduled on nodes other than Nk. The successor 

tasks cannot be started before these messages have been delivered. The time, between 

the completion of Ti and the delivery of a message, is referred to as communication 

delay de. The communication delay (de) is the sum of three parts: (1) transmission 

delay (dt), (2) propagation delay (d
p

), and (3) queuing delay (d
q
). Specifically: 

1. Transmission delay, dt, is due to the bandwidth of the communication chan­

nels; dt=B*IM, where Bis the channel bandwidth in byte/s, and lM is the length of the 

message M in bytes. In this thesis, all messages are assumed to be of same length. 

Therefore, dt is constant for all messages. 

2. Propagation delay, d
p

, is due to the finite speed, c, of signals; d
p

=c *d,

where d is the distance between nodes. Propagation delay was assumed to be small 

against the other two parts of delay. 
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3. Queuing delay, d
q
, occurs if a message has to be delayed because the sched­

uled link for this message is used by other messages. Queuing delay was modeled by 

introduction of communication tasks in the simulation of schedules. 

t 

dt 

Figure 1. Timing Scheme for Messages Routed Via Intermediate Nodes. 

Figure 1 shows the different types of delay for the transmission of a message 

MJ from node No via NJ to N2. MJ is delayed at the intermediate node NJ because 

the link from NJ to N2 transmits another message M 2. 

Routing of messages is oblivious to existing traffic, and messages in transit 

cannot be preempted. If more than one message requests access to a link, they are 

transmitted in the order of the requests. 
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CHAPTER V 

EVOLUTIONARY STRATEGY APPROACH 

This chapter shows how the scheduling problem from Chapter IV can be solved 

using an evolutionary strategy. The algorithm was implemented in C++. The object­

oriented concept of this language allowed an easy implementation of simulation of the 

schedules. 

The main program consists of a loop of generating and selecting schedules. 

The loop is terminated when a feasible schedule is found, or when the number of gen­

erations N
g 

exceeds the maximum number of generations Nma,x: 

1. Create an initial population of random schedules, N 
g

=O.

2. Create new schedules by mutation.

3. Simulate all schedules to determine their fitness.

4. Select the surviving schedules for the next generation, N 
g
=N 

g
+ 1

5. If no feasible schedule was found and N
g

< Nma,x, then go to step 2.

A schedule consists of n sequences of task numbers. There is one sequence for 

each node of the distributed system. The order in the sequence determines the order of 

execution on the node. 

The next sections describe these steps in greater detail. 

Initial Population 

The first generation consists of a population of random schedules. All tasks in 

the PCG are numbered by breadth-first search. Tasks are the assigned to processing 

nodes of the distributed system in increasing numerical order, where the processing 
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nodes are randomly selected. This method has the advantage of producing schedules 

that are deadlock free because no precedence constraints are violated. 

Generation of Off springs 

The algorithm only uses mutation operators to generate new offsprings. No 

recombination operator was used. There are many ways to mutate a schedule. Since it 

is difficult to derive the efficiency of a particular operator theoretically, the performance 

of 6 different mutation operators was tested. This section describes the operators. 

Examples are given for the task graph in Figure 2. 

1 
� 
2 8 
I I 

10 9 
I I 
3 11 

I 

I 

Figure 2. Precedence Constraint Graph for the Mutation Operators. 

The tasks are executed on a multicomputer with two processing nodes. The 

mutation operators were applied to the schedule below. 

NJ: 1(0,1) 2(1,2) 3(6,7) 4(7,8) 5(8,9) 6(9,10) 7(10,11) 

N2: 8(2,3) 9(3,4) 10( 4,5) 11(5,6) 
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The numbers in brackets are the start and completion time of the tasks. They 

refer to a message transmission delay of 1 unit of time. The duration of all tasks is 1 

unit of time. 

1. Operator M J randomly selects a processing node Ni and a task Tm sched­

uled on Ni. Tm and its immediate successor are swapped. For i=l and m=4, MJ gives 

the schedule: 

NJ:1235467 

N2: 8 9 10 11 

2. Operator M2 randomly selects a processing node Ni and two tasks, Tm and

T n, scheduled on Ni. Tm and T n are swapped. For i=2, m=8, and n=lO, M2 gives 

the schedule: 

NJ: 123 4 5 6 7 

N2: 10 9 8 11 

3. Operator M3 randomly selects two processing nodes Ni and Nj, It

randomly selects a task Tm and T n scheduled on Ni and NJ respectively. Tm and T n 

are swapped. For i=l, j=2, m=2, and n=9, M3 gives: 

NJ:1934567 

N2: 8 2 10 11 

4. Operator M4 randomly selects two processing nodes Ni and Nj- It ran­

domly selects tasks, Tm and T n, scheduled on Ni and Nj respectively. All tasks, 

scheduled after Tm and T n, are swapped. For i=l, j=2, m=3, and n=9, M4 gives: 

NJ: 123 10 11

N2: 8 9 4 5 6 7 

5. Operator M5 randomly selects two processing nodes Ni and Nj- It ran­

domly selects two tasks, T ml and T m2, scheduled on Ni, and one task T n scheduled 
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on Nj, The sequence of tasks from T ml to T m2 is inserted into the execution thread of 

Nj after T n• For i=l, j=2, mJ=4, m2=5, and n=lO, M5 gives: 

NJ:12367 

N2: 8 9 10 5 4 11 

6. Operator M6 works much like M4, but T n is not randomly selected. T n is

chosen so that the crossover point on Nj is close in time to the crossover point on Ni, 

Let T p and T q be the tasks scheduled immediately after Tm and T n respectively, see 

Figure 3. 

Ni 

Nj 

Tm Tp 

Tn Tq 

Figure 3. Schedule for the Crossover Operator. 

T n is selected so that the timing condition TC is satisfied. 

TC tsm < tcq and tsn < tcp 

t 

Let ts i denote the start time and tci the completion time of task Ti respectively. 

These times are known from the computation of the fitness for the schedules in the 

parent generation. Therefore, the start and completion time of the tasks have been 

computed previously to find the fitness. Assume that i=l, j= 2, and m=3 .  A valid 

choice for M6 is n= lO, which gives p= 4, q=l l, tsm
=8, tcq=9, ts n=6, tcp= lO. 

Therefore, TC is satisfied: 

NJ: 123 11

N2: 8 9 10 4 5 6 7 
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The reason for TC is that M6 always produces deadlock-free offsprings from 

deadlock-free parents. This is not the case if Tn is chosen randomly as in M4. The 

example for M4 had m=3, n= lO, q=lO, and tsm=8, tcq=7. This violates tsm<tcq in

TC. The schedule deadlocks after the execution of T2 because T3 is waiting for the 

completion of TJO, but TJO is never executed since it is scheduled on NJ after T3. 

Check for Fault-Tolerance 

Some mutation operators exchange tasks between processing nodes. This can 

result in schedules that violate fault-tolerance constraints. Each schedule is checked for 

violation fault-tolerance before simulation. If a schedule violates fault-tolerance con­

straints, it is removed from the population. 

Fault-tolerance constraints are given as a set G={gJ, g2, ... , g n
g

} of n
g 

groups. Each group gi={TiJ, Ti2, . . .  , Tik} consists of a set of fault-tolerant tasks, 

which have to be scheduled on different processing nodes. For example, let a schedul­

ing problem have 4 tasks T={TJ, T2, T3, T4}. Assume that TJ, T2, and T3 have to 

be scheduled on different processing nodes, then G={gJ} and gJ={TJ, T2, T3}. 

To check schedules for fault-tolerance, a two-dimensional array A[iJ], with 

i=l..n
g 

andj=l..nN, is used, where nN is the number of processing nodes. Assume

that the array is initialized with A[iJ]=O for all elements. Let g[Ti] be the number of the 

group to which Ti belongs (g[Tj]=O if Ti is not a fault-tolerance task). Let N[Ti] be the 

number of the processing node on which Ti is scheduled by a schedule S. The algo­

rithm below returns not_valid if S violates any fault-tolerance constraints: 
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1. for all tasks Ti in S

2. if g[Ti]>0

3. if A[g[Ti]][N[Ti]] > 0 

4. return not valid

5. A[g[Ti]][N[Ti]]=l

6. return valid

If two tasks, Ti and Tj, belong to the same group gk and are scheduled on the 

same processing node N[, A[gk][N[] is set to 1 by step 5 for Ti. The test in step 3 

detects the violation when the loop is executed for Tj. After the test, the original state 

of A is restored by the same algorithm The only change is in step 5: 

5. A[g[Ti]][N[Ti]]=0

Let nT be the total number of tasks. There can be at most n
g

�nT different 

groups in G. The initialization of A has the complexity of O(nT*nN). Each test of a 

schedule has the complexity of O(nT). Since A has to be initialized only at the begin­

ning of the evolution, the complexity of the check for fault-tolerance is O(nT) if many 

schedules (more than nN) have to be tested. This is faster than simulation of sched­

ules. Therefore, schedules are checked for violation of fault-tolerance first. 

Computation of the Fitness 

To determine the fitness of a schedule, the completion time tci of each task Ti is 

computed by simulation. The fitness is found by decreasing the fitness F for each task 

that does not meet its deadline tdi, (e.g., tdi < tci). 
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Event-Driven Simulation 

The completion time of the tasks is found by event-driven simulation. Events 

are the start and the completion of a task. The event heap contains the tasks that are 

being executed at a particular point of time. The insertion of a task into the event heap 

models the start of a task, and its extraction from the event heap models its completion. 

The heap-order is the completion time of the tasks. Except for the tasks starting with 

the begin of the simulation at t=O, the start of a task is always caused by the completion 

of another task. This is due to precedence and scheduling constraints. Therefore, the 

execution of the tasks can be modeled by the algorithm below: 

1. Insert all tasks into the event heap that are scheduled as the first task on a

processing node and have no precedences. 

2. Extract the task with the minimum completion time from the event heap.

3. Insert all ready tasks into the event heap.

4. If the heap is not empty, go to step 2.

A task becomes ready if all of precedences have been completed. Two types of 

tasks can be elements of the event heap: (1) computation tasks and (2) communication 

tasks. Computation tasks are the tasks of the schedule. Their number and their order 

of execution on a processing node are given with the schedule. Communication tasks 

are created dynamically in the process of simulation. They model the communication 

delay of messages. This leads to the data structure shown in· Figure 4. 

Computation tasks are denoted as Task, communication tasks as C_ Task. The 

event heap points to a set of tasks currently being executed. Each task points to its suc­

cessor and its descendants in the PCG. The successor is the task scheduled next on the 

same processing node. 
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N_Simu 

executing 

C_Simu 

C_Task 

next 

C_Queue C_ Task..----� 

Figure 4. Data Structure for Simulation of the Schedules. 

Communication queues, C_Queue (only one is shown in Figure 4), contain all 

tasks that are waiting for access to a link, which is the case if the event heap already 

contains another communication task for this link. Upon extraction of a task from the 

event heap, the precedences of all dependent tasks are updated. If the extracted task 

was the last precedence being extracted form the heap, the dependent task is inserted 

into the event heap. Communication tasks are created upon completion of a 

computation task and are deleted upon their extraction from the event heap. The objects 

N_Simu and C_Simu monitor the use of processing nodes and communication links. 

They ensure that at most one task for each processing node or link is member of the 

event heap. 

Modelin� of Communication 

Communication tasks are created upon extraction of a computation task To from 

the event heap if To has to send messages to other processing nodes. If To is sched-
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uled on processing node Ni, then let Tc be the set of tasks that are immediate succes­

sors of To in the PCG, and that are scheduled on processing nodes Ne different from 

Ni, Upon completion of To, a set of messages M has to be sent from Ni to the pro­

cessing nodes Ne . The messages in M are routed along the shortest paths from Ni to 

the processing nodes Ne . One communication task is created for each link that is used 

by the messages in M. Consider the example of Figures 5 and 6. 

Tl T2 T3 

Figure 5. Precedence Constraint Graph for Communication. 

The task To is scheduled on processing node No and has the descendants TJ on 

NJ, T2 on N2, and T3 on N3, then, Tc
= {TJ, T2, T3}, Nc

= {NJ, N2, N3}, and 

M={mJ(No->NJ), m2(No->N2), m3(No->N3)}. For the ring topology of Figure 6, 

the set of communication tasks is shown in Figure 7. The arrows between tasks indi­

cate the new precedence constraints. The links are denoted with Lo=No->NJ, LJ=NJ-

LO 

No -->-N1 

L2 l l LI 

N2--N3 

Figure 6. 4-Processing-Node Ring Topology. 
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To 

� + 
CO(L 0) C l(L 2) 

+ I i 
Tl C 2(L t) T2 

T3 

Figure 7. Set of Communications Tasks for a Ring Topology. 

Each computation task counts the number of its parents in the PCG that have 

been extracted from the event heap. Assume that task Ti is scheduled on processing 

node Nk immediately after task Tj- It is inserted as soon as all of its parent tasks and Tj 

have been extracted from the event heap. 

Queuing delay of communication is modeled by communication queues. A 

communication queue Qi for the link Li contains all communication tasks that are ready 

for execution and waiting for access to Li. No store-and-forward routing was used. 

Therefore, a communication task becomes ready for execution with the insertion of its 

preceding communications task into the event heap (store-and-forward would require to 

delay the start of a communication task until the extraction of its preceding task from the 

event heap). There is one communication queue for each link. When a communication 

task CJ for the link Li is created, it is inserted into the event heap if the event heap con­

tains no communication tasks for Li. Otherwise it is enqueued into Qi. Upon extrac­

tion of a communication task C n for link Lm, the top of Qm is dequeued and inserted 

into the event heap. 

Consider the example of Figure 7. Assume that the event heap and the com­

munication queues contain the following tasks before extraction of task To: 
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Event Heap: 

Qofor Lo: 

QJ for LJ: 

Q2 for L2: 

To, C7(No->N2), C5(N1->N3) 

empty 

empty 

C6(No->N2) 

Extraction of To from the event Heap would give: 

Event Heap: 

Qo for Lo: 

QJ for LJ: 

Q2 for L2: 

Fitness Function 

C7(No->N2), C5(N1->N3), Co(No->NJ) 

empty 

C2(NJ->N3) 

C6(No->N2), C 1(No->N2) 

A deadlock occurs when the event heap becomes empty before all computation 

tasks have been inserted into the event heap. In this case, the fitness is set to F =-oo 

(-00 is simulated by a number smaller than the smallest fitness possible). Otherwise the 

fitness is computed by 

F = -Li(tcf - tdi)E where TieM (1)

where M is the set of tasks Ti that missed their deadlines, i.e., tci > tdi• Eis 

referred to as fitness-function exponent. Results for 0.6 $ E $ 6.4 are given in Chapter 

VI. It follows from (1) that all feasible schedules have a fitness of F=O.

Selection of Schedules 

Assume that the population µg of generation g consists ofµ schedules. Each

schedule Si in µg produces one offspring by application of a mutation operator, see

Figure 8. 
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Mutation 

S1 

S2 -

S3 

SN -

µg 

Figure 8. Creation of Off springs by Mutation. 

SN+l 

SN+2 

N+3 

S2N 

This creates a collection A of J...Fµ off springs. The fitness is computed for each 

schedule in A. The 2µ schedules from µg+A are now sorted by decreasing fitness. A 

rank is assigned to each schedule. All schedules with the same fitness have the same 

rank. The schedules with the largest fitness get the rank r J, schedules with the second 

largest fitness get the rank r2, . .. Assume that the total number of ranks is n. Starting 

with r J, one schedule is randomly chosen from each rank and moved to the new popu­

lation µg+ J until µg+ J contains µ schedules. If n<µ, a second member is chosen from 

each rank, starting with r J.

Example: The notation Si()) means that schedule i has the fitness). Let be µ=4, 

µg = {SJ(-1), S2(-l), S3(-2), S4(-3)}, and "A= {S5(-2), S6(-1), S7(-3), SB(-3)}. 

There are three ranks: 

r3: S4, S7, SB 

A selection for µg+J can be µg+l = {S2, S3, S8, S6}. Truncation selection 

would have selected the best four individuals: SJ, S2, S6 and S3. 
' 
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The proposed selection method has the advantage that it is less likely to lose the 

genetic variety in the population. An example may show that. Consider the task graph 

in Figure 9. 

Figure 9. Task Graph for Selection. 

To 

Tl T2 

T3 

Assume that the tasks T J and T2 have the same duration and the same deadline. 

Let S be a highly fit schedule in the population µg. A mutation can produce the off­

spring S', where T J and T2 are swapped. S and S' have the same fitness. Let S be the 

schedule: 

NJ: TOTJ 

N2: T2 T3 

The schedule S' can be obtained from S by mutation operator M3: 

NJ: To T2 

N2: TJ T3 

Both schedules have the same fitness. Truncation selection is likely to select 

both schedules for µg+ J. Subsequent mutations can produce an exceptionally increas­

ing number of copies of Sand S' by swapping TJ and T2. Since both, Sand S', have 

the same fitness, they have the same rank. Therefore, it is unlikely that both schedules 

are selected for the population µg+ J. 

32 



CHAPTER VI 

RESULTS 

The efficiency of ES depends on various parameters (e.g. population size and 

type of the genetic operators). It is difficult to optimize these parameters theoretically. 

The relatively small problem, introduced in [19], was chosen to optimize parameters of 

the ES. The optimal values, found with the small problem, were used find a solution 

for two real-world problems. The problem in [19] consists of 11 tasks. The real­

world problems have 64 and 89 tasks. ES found a solution for the small problem in 2 

seconds and for the real-world problems in 8 to 54 minutes of CPU time on a Sun 

SPARC IPC. 

Parameter Optimization 

Figure 10 shows the task graph of the scheduling problem from [19]. 

�Deadline 
Duration 

Figure 10. Task Graph of the 11-Task Sample Problem. 
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The shaded boxes represent tasks that are the result of three replications of a 

fault-tolerant task. These tasks must be scheduled on different processing nodes. The 

tasks are executed periodically in 50µs intervals. The tasks were assumed to be exe­

cuted on a multicomputer with three processing nodes communicating over a ring 

topology. Transmission delay for all messages was 6µs. 

Three parameters were being optimized: (1) type of the genetic operators, (2) 

population size, (3) fitness-function exponent E (see fitness function (1) on page 30). 

T:xpe of the Genetic Operators 

Some of the mutation operators described in Chapter V cannot reach all possible 

solutions. For instance, M J and M2 do not exchange tasks between processing nodes. 

Therefore, combinations of mutation operators were tested. The offsprings of a 

schedule are produced with probability Pa by operator Ma and with probability Pb=l­

p a by operator Mb· The efficiency of five combinations was tested: ( 1) M J-M 4, (2) 

MJ-M5, (3) MJ-M6, (4) M2-M6, and MJ-M6. The diagrams in Figures 11 and 12 

show the average number of generations Ng that had to be computed until a feasible 

schedule was found. 

The x-axis shows the probability of application of the mutation operators. MJ, 

M2, and M3 were tested in combination with M6. M4, M5, and M6 were tested in 

combination with M J. The results were obtained with a population size p=50 and a 

fitness-function exponent E=2. The diagrams show the average over 100 runs. The 

search for a feasible solution was terminated after 200 generations. This was only 

necessary for the combinations MJ-M6 and M2-M6. The best results were obtained 

from M J-M 6 with P J =0.6 and P 6=0.4. This combination finds a feasible schedule in 

typically 27 generations. These values were used in all further work. 
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Figure 11. Performance of the Mutation Operators Ml, M2, and M3 Against M6. 
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Figure 12. Performance of the Mutation Operators M4, M5, and M6 Against Ml. 
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The results confirm the work of Manderick and Spiessens, who found that efficient 

genetic operators have a high correlation between the fitness of parent and off spring 

[16]. MJ and M6 only swap tasks that are close to each other in terms of completion 

time. This should introduce only a slight change in violation of deadlines and thus in 

fitness. The other operators exchange tasks without relation to the completion time. 

Population Size 

The influence of the population size µ on convergence is shown in Figures 13, 

14, and 15. Figure 13 shows the average number of generations N
g 

to find a feasible 

schedule. 

As expected, N
g 

decreases with increasing population size. The computational 

complexity depends on the total number of offsprings N0=N
g

*µ, which is shown in 

Figure 14. 

The diagrams show the average over R t=lOO runs. The search for a feasible 

schedule was terminated after Nmax.=200 generations. Figure 15 shows the probability 

Pj=Rj!R t for finding a feasible schedule where Rjis the number of runs that found a 

feasible schedule within Nmax generations. 

A small population converges faster, but small populations are more likely to 

converge to a local optimum, and do not always find a feasible schedule as shown in 

Figure 15. The parameter population size can be used to balance between computa­

tional complexity and accuracy of the solution. Large populations need more time to 

converge, but small populations may not always find feasible schedules if deadlines are 

tight. 
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Fitness-Function Exponent 

The fitness-function exponent E in (1) (see page 30) affects the way, in which 

the solution is approached. If E is small, ES tends to satisfy the deadlines of many 

tasks at the expense of a large violation of the deadlines of a few tasks. A large expo­

nent E leads to schedules where the deadline violations are more evenly distributed. 

For example, compare the fitness F J and F2 of two schedules SJ and S2. SJ 

has 5 tasks that violate their deadlines by 1 unit of time. S2 has one task that violates 

its deadline by 5 unit of time. All other tasks meet their deadlines. E=0.5 gives F J=-5 

and F2 =-2.2. E=2 gives F J=-5 and F2=-25. A fitness function with E=0.5 would 

select S2, while E=2 would select SJ. 

If only a few tasks violate their deadlines, most mutations do not affect the 

completion time of these tasks. As a result, progress in evolution is slow. With E<l, 

this point is reached earlier because solutions with a small number of violating tasks are 

preferred. For E> 1 the amount of the large deadline violations is reduced rather than 

the number of violating tasks. Therefore, feasible solutions can be found faster if E> 1. 

The average number of generations over Eis shown in Figure 16. The results are the 

average over 200 runs. 

Real-World Problems 

The ES could find solutions for two real-world problems. The problem P J was 

introduced by Shaffer in [24]. The tasks of P J are the control program for a turbojet 

engine. The controller processes the inputs from 15 sensors, and computes the output 

for 5 actuators. The controller gets position feedback from each of the actuators. The 

program consists of 64 control procedures. 
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The problem was partitioned so that each control procedure is one task. The PCG in 

Figure 17 is the result of a data-flow analysis. Each task is labeled with the maximum 

execution time in µs. 

Figure 17. Precedence Constraint Graph of the Turbojet-Engine Controller. 

The tasks were assumed to be executed on a multiprocessor with 4 processors 

where each processor had local RAM. The processors communicated by accessing 

global RAM over a bus. Shaffer found a near-optimal schedule by using a list­

scheduling method. The schedule was optimized for minimum total execution time. A 

speedup of 3.94 was shown, which results in a processor utilization of 98%. 
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Figure 18. Precedence Constraint Graph of the Robot-Ann Controller. 

Problem P2 was introduced by Kasahara and Narita in [10]. The tasks of a 

robot-arm controller were to be scheduled on a multiprocessor. The authors used the 

Newton-Euler method to compute force and torque for each joint of a 6-joint robot arm. 
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The Newton-Euler method results in equations in 3xl vectors and 3x3 matrices. Each 

task computes one equations. The data dependencies are shown in Figure 18. 

Each task is labeled with the execution times in µs. The tasks were assumed to 

be executed on a multiprocessor with 6 processors. Each processor had local RAM 

attached. A bus allowed access to global memory. The authors found a schedule that 

was optimal with respect to total execution time by ·using depth first/implicit heuristic 

search (a branch-and-bound method). The total execution time equals the length of the 

critical path. 

Since the original problems neglected communication delay and had no dead­

lines assigned to tasks, the problems were slightly changed. P J and P2 were assumed 

to be executed on a multicomputer with 4 and 6 processing nodes respectively. They 

communicate by a ring topology. The message transmission delay was assumed to be 

lO0µs for P J and 200µs for P2. The schedules from [24] and [10] were simulated to 

find the completion time of the tasks. An instance of a real-time scheduling problem 

can be created from these schedules by taking the completion times of the tasks as their 

deadlines. Since the schedules did not show much idle processor time, these deadlines 

are near optimal. It is unlikely to find schedules that close to the optimal schedule. 

Therefore, the deadline tdi of a task Ti was multiplied with a delay factor D, tdi=tci*D. 

Solutions were found for D=l.2 in 8 minutes for P J and 54 minutes for P2. The times 

are CPU time on a Sun SPARC IPC computer. A fitness-function exponent E=2 was 

used for both problems. The population size was µ=20 for P J and µ=100 for P2. No 

solution could be found with µ=20 for problem P2. 
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CHAPTER VII 

CONCLUSION AND FURTHER WORK 

Evolutionary strategy can be used find solutions to hard real-time scheduling 

problems in a small amount of time. Problems with up to 100 tasks can be solved in 

less than 60 minutes of CPU time on a Sun SPARC IPC. Event-driven simulation is a 

fast and flexible way to compute the fitness of schedules. The simulation can readily be 

adapted to other types of scheduling problems. Unlike many other algorithms, such as, 

shortest path methods, consideration of communication delay is not a problem. This 

makes ES especially suitable for distributed systems with a high communica­

tion/computation ratio. 

It could be shown that the type of the genetic operators chosen has a significant 

influence on the efficiency of the ES. Good genetic operators introduce only small 

changes. By using information about the execution time of tasks from previous simu­

lation, the performance of mutation operators could be improved. Population size is 

another major factor affecting the convergence of the ES. It seems difficult to 

determine the optimal population size before running the evolution. The optimal size of 

the population depends on the accuracy of the required solution with respect to the 

optimal solution, but the optimal solution is unknown. In general, more accurate 

solutions require larger populations. An open question is if the optimal population size 

can be estimated from other parameters, like amount of idle processor time or critical 

path length. 
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This work on ES for real-time scheduling can be extended in three basic direc­

tions: (1) parameters of the ES, (2) properties of the real-time scheduling problem, and 

(3) implementation of the ES on multicomputers.

Many more genetic operators can be investigated, for instance, no efficient 

recombination operator is known so far. The performance of new genetic operators 

cannot only be tested by running ES for sample ·problems, but also by statistical 

methods as proposed in [16]. Combinations of more than two operators with a fitness 

dependent probability may improve fine-tuning of a near-optimal solution. Other 

selection methods than truncation or rank-proportional selection may also prove to be 

useful. 

ES can be applied to other types of real-time scheduling problems, such as, 

those which include both hard and soft deadlines. A weight is assigned to each task, 

and ES minimizes the total weight of the tasks that miss their deadlines, but with the 

constraint that all hard tasks must be scheduled. 

Network traffic can also be optimized by ES. Instead of routing a message 

along a minimum-distance path, the genotype is extended by a path and a priority for 

each message. This can be of advantage for dense networks, such as, hyper-cube 

architectures, with many short paths between processing nodes. 

Since ES exhibits a high potential of parallelism, an implementation on a multi­

computer may give high speedup. Most of the computation time is needed for the 

simulation of the schedules. This part can be done in parallel until the number of pro­

cessing nodes reaches the population size. New selection methods that have only par­

tial knowledge about the population are necessary. 
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