
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Master's Theses Graduate College

4-1997

Evolutionary Codesign Evolutionary Codesign

Karthikeyan Ethirajan

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Ethirajan, Karthikeyan, "Evolutionary Codesign" (1997). Master's Theses. 4855.
https://scholarworks.wmich.edu/masters_theses/4855

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/4855?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4855&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

EVOLUTIONARY CODESIGN

by

Karthikeyan Ethirajan

A Thesis

Submitted to the

Faculty of The Graduate College

in partial fulfillment of the
requirements for the

Degree of Master of Science

Department of Electrical and Computer Engineering

Western Michigan University

Kalamazoo, Michigan

April 1997

Copyright by

Karthikeyan Ethirajan

1997

ACKNOWLEDGMENTS

There are many people who helped me to complete this greatest venture of my

academic life, a thesis. First, I extend my deepest gratitude and sincere appreciation

to my major advisor, Dr. Sharon Hu for her continuous guidance throughout this

project. She offered her undiminished support even after having moved to a different

University. Second, I wish to express my thanks to the members of the thesis

committee for their many reviews and valuable suggestions. I am thankful to Dr.

Garrison Greenwood for letting me audit his course on Evolutionary Computation. I

also highly appreciate Praveen Jayamohan for having spent many hours teaching me

the fundamentals of Software Engineering. I am also very grateful to all my family

for being so patient with me and for their encouragement. Finally, I want to thank my

friends who have helped me in several ways from giving me access to computers to

buying refreshments for my thesis defense!

Karthikeyan Ethirajan

11

EVOLUTIONARY CODESIGN

Karthikeyan Ethirajan, M.S.E.E

Western Michigan University, 1997

We present our approach to hardware/software partitioning for embedded

systems based upon Evolutionary Algorithms. We have implemented it in a CAD

tool, EvoC - Evolutionary Codesign which does automatic hardware/software

partitioning of real-time embedded systems at the system level. Our objective is to

find good design configurations that are tuned towards user's preferences. We are

able to explore a large, often intractable design space using Evolutionary Algorithms

while evaluating solutions having multiple and sometimes conflicting attributes in the

light of Multi-Attribute Utility Theory. EvoC provides a generic format for

specifying a wide variety of design problems and the implementation assumes no

target architecture. A multiple bus and shared memory communication scheme has

been incorporated into EvoC which analyzes the behavior and produces connected

systems. Two design examples are given to illustrate the capability of our tool. Two

of the factors which caused the high execution time of EvoC were identified and the

appropriate corrective measures taken are discussed.

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... 11

LIST OF TABLES .. _... V

LIST OF FIGURES... Vl

CHAPTER

I. INTRODUCTION ... 1

II. RELATED RESEARCH 5

III. OVERVIEW OF EvoC .. 8

Formulation of the Partitioning Problem.. 9

A Generalized Evolutionary Algorithm.. 12

Imprecisely Specified Multi-Attribute Utility Theory 13

Integrating ISMAUT With EA ... 14

Handling Timing Constraints in RTES ... 17

IV. SOFTWARE DEVELOPMENT OF EvoC ... 19

Fundamental Concepts Underlying the

Design of EvoC Data Structure... 19

Description of EvoC Data Structure.. 22

User Input Files for EvoC ... 27

Partitioning.. 28

Ranking and Selection 31

111

Table of Contents-Continued

CHAPTER

Deterministic Selection of Parents .. 32

Mutation .. 35

V. MODELING OF COMMUNICATION .. 37

Multiple Bus and Shared Memory Communication Model.................. 3 7

Incorporating MBSM Model Into EvoC ... 39

Mutation With MBSM Communication Model.................................... 42

Rationale Behind Multiple Bus Selection ... 44

VI. DESIGN EXAMPLES AND EXECUTION TIME ANALYSIS 46

Example I 46

Example II & III.. 51

Timing Analysis.. 58

VII. CONCLUSIONS AND FURTHER WORK ... 61

APPENDICES

A. Input File Format of EvoC ... 64

B. Data Structure of EvoC 67

BIBLIOGRAPHY .. 70

lV

LIST OF TABLES

1. Set of FPs With (a, d, p) in Microseconds

and Their Components List.. 4 7

2. Component Libraries and Their Characteristics 48

3. Typical Solutions Found by EvoC When

Lower Cost is Preferred ... 50

4. Typical Solutions Found by EvoC When

Higher Feasibility Factor is Preferred .. 51

5. Set ofFPs With (a, d, p) in Microseconds

and Their Components List.. 52

6. Set of CPs... 53

7. Component Libraries and Their Characteristics .. 54

8. Exhaustive List of Feasible Solutions for Example III 55

9. Typical Solutions Found by EvoC When
Lower Cost is Preferred ... 56

10. Typical Solutions Found by EvoC When

Higher Power is Preferred .. 56

11. EvoC Run Time for the Examples ... 59

12. Improved Execution Time of EvoC ... 60

V

LIST OF FIGURES

1. System Level Hardware/Software Partitioning Approach............................. 8

2. The EvoC System .. , .. 16

3. Mapping for System Implementation .. 19

4. Hierarchy of EvoC Data Structure ... 20

5. Data Flow Graph Based on FPs and CPs ... 22

6. EvoC Data Structure .. 24

7. Mapping Between Fune_ Imp [] & Indi victual [] Arrays 25

8. Partitioning During Generation oflnitial Population 29

9. An Example System Configuration ... 38

10. Types of Component Modifications Due to Mutation 43

VI

CHAPTER I

INTRODUCTION

Recent advances in the Computer-Aided Design (CAD) field have raised great

interest in the hardware/software codesign of embedded systems [23]. Many aspects

of hardware-software codesign are being actively studied, such as co-specification,

co-synthesis, hardware-software partitioning. The objective of hardware/software

codesign is to produce computer systems that have a balance of hardware and

software components which work together to satisfy system specification. This

balance between hardware and software implementations is referred to as the

partitioning problem. Developing efficient means of performing hardware/software

partitioning is key to the automatic design of complex computer systems.

We are particularly interested in hardware-software partitioning for real-time

embedded systems (RTES). Such systems can be found in many applications, such as

powertrain control of automobiles, navigation and landing control of aircraft, and

networks and communications. The design of R TES, which are generally composed

of both hardware and software components, is quite challenging. In addition to the

usual design criteria for embedded systems, such as reliability, maintainability and

cost effectiveness, RTES must provide timely services. That is, the functional

behavior of thesie systems must not only logically correct but also temporally correct.

1

Hardware/software partitioning at the system level allows exploration of

hardware architectures as well as hardware-software partitions. Our experience

indicates that these combined decisions are the primary factors that define the cost

and performance of an embedded system [4]. At the system level, hardware is

modeled as resources with no detailed functionality and software is modeled as tasks

utilizing the resources. At this high level of abstraction, we are able to evaluate

various partitioning alternatives up front, which, in tum, guides lower level design

efforts.

It is our belief that system level partitioning of a RTES should address some

of the following questions:

1. Which processes should be implemented in dedicated hardware circuits

and which should be in software ?

2. What processors and ASICs should be used, and which software tasks

should be executed by which processor ?

3. Can an identified system configuration meet all of the temporal

requirements ?

4. How to form a system architecture so as to minimize the communication

overheads?

5. Which system configurations best reflect the designer's preferences with

respect to various performance measures ?

2

An automated CAD tool for the hardware/software partitioning of a RTES

must have an input format for capturing system specifications such as the desired

system functionality and their communication needs. It should also have the scope for

specifying system design constraints like the temporal constraints for RTES. This

stage is followed by exploration, which is the analysis and evaluation of several

design configurations (formed from the user input system specifications). The output

of the tool should yield good design configurations, which satisfies all the system

constraints and completely specifies the system. This is then submitted to the user for

his perusal.

The major contributions of this thesis are the following:

1. Development of a input format and a compatible data structure that

facilitates implementation of Evolutionary Algorithm in a new version of EvoC.

2. Incorporating a multiple bus and shared memory communications model

into EvoC.

3. Improving the execution speed of EvoC.

The remainder of the thesis is organized as follows. Chapter II gives a brief

literature survey on the different approaches of the concurrent design methodologies

of hardware and software. In Chapter III, some background on the techniques used in

EvoC are given. Chapter IV elaborates the software developmental aspects of EvoC.

A description of the communications modeling strategy is presented in Chapter V.

Chapter VI contains design examples that were tested on EvoC along with some

3

timing analysis. Chapter VII summanzes the salient features of our tool and

discusses the scope for future expansion of EvoC.

4

CHAPTER II

RELATED RESEARCH

Many CAD tools that have been developed (COSYMA [11], CODES [3],

COSMOS [15] and Genie [24]) so far demonstrate an increased enthusiasm in the

field of hardware-software codesign [23]. We briefly discuss some approaches taken

in the field of hardware/software codesign and thereby explain the need of our tool,

EvoC.

Most hardware/software codesign techniques perform partitioning at a level of

abstraction where the detailed functionality or behavior of a system is specified.

These tools [5,6,10,21] contain as their output, a software derivative and a hardware

derivative. The software partition is often expressed in a high-level programming

language like C or C++. The hardware partition is given in a hardware description

language (HDL) like VHDL, Hardware C, etc. A fundamental limitation of such

"low" level modeling is the complexity associated with exploration of even a

relatively small design space.

We feel that a hardware/software partitioning at a higher level than the

behavioral level is needed. This allows exploration of tradeoffs in hardware

architectures as well as hardware/software partitions. Of course, because detailed

5

implementations are not considered at the higher level, the accuracy of results is of

concern. However, the same problem also exists for lower-level partitioning [13].

Furthermore, by applying a hierarchical refinement design methodology [25], the

higher-level partitioning results are considered as an initial design, which will be

refined during lower-level design (e.g., using lower•level co-synthesis tools such as

COSYMA or VULCAN II [6,10]).

Some researchers restrict the candidate system implementations. For

example, in COSYMA, Ernst, Henkel and Benner assume a target architecture of one

general-purpose host processor and one customized coprocessor [6]. Gupta and

DeMicheli [1 O] also use a single, pre-defined processor while allowing the inclusion

of a few custom ICs. Usage of some partitioning algorithms [5,6,10] allows

examination of some basic block of operations in the system specification to see if the

original implementation can be altered so as to meet certain constraints (e.g., timing

and bus utilization). These approaches severely limits the possibility of exploring a

large design space and hence provides only a local optimization.

Manual or interactive partitioning schemes have also been developed [3, 20].

This again restricts the number of alternate design configurations that can be explored

in a reasonable amount of time as compared to an automatic hardware/software

partitioning approach.

Kumar, Aylor, Johnson and Wulf [17, 18] have worked at the system level.

But the actual partitioning is done at a lower level. The metric that is used to evaluate

6

the design is a linear combination (weighted sum) of system attributes such as cost

and execution time. The disadvantages of using a weighted sum approach is

discussed in the next 9hapter.

To minimize customized hardware in microcontrollers, hardware designers are

currently developing libraries of standardized peripheral components. This approach

allows fast design turnaround time [6]. This supports the idea of maintaining separate

component libraries for hardware and software when developing a CAD tool for

doing hardware/software partitioning.

Our observation suggests that a low-level, full fledged codesign approach

cannot concentrate on the partitioning process alone and explore multiple design

configurations, in order to attain a balance between conflicting objectives (e.g., cost

and speed). A high-level design approach, on the other hand, is more suitable for the

hardware/software partitioning process than any other aspects in the codesign field.

7

CHAPTER III

OVERVIEW OF EvoC

The general framework that we use for system-level hardware/software

partitioning is depicted in Figure 1.

Figure 1.

System
Specification

Designer
Preferences

EvoC

Potential
System Implementations

Simulator

Acceptable
System Implementations

,-- ----..

/Initial Architectur�
\ (optional) 1'
'

-

SW
Library

HW
Library

System Level Hardware/Software Partitioning Approach.

8

Based on the given system specifications, component (hardware and software)

libraries and designer preferences regarding various quality measurements (e.g., cost,

power consumption and expandability), system architectural configurations of

increasing quality are identified by the optimizer EvoC (Evolutionary Codesign).

Some of the configurations identified by EvoC may have to be simulated to verify

their acceptability. Currently this is achieved by using a commercial simulation tool

SES/Workbench'.

The simulation results may indicate that a design configuration is not

acceptable. This can be caused by any number of factors. EvoC does not have the

capability of resolving conflicting preference information furnished by the designer or

conflicting system specifications. Component libraries may have to be modified to

ensure that adequate resources are available. In certain cases the system

specifications may require reinvestigation. The scope of this report is, however,

limited only to EvoC. The following sections describe the partitioning problem

formally and the techniques that are used in EvoC in solving it.

Formulation of the Partitioning Problem

At the system level, hardware is modeled as resources (or components) with

no detailed functionality and software is modeled as tasks utilizing the resources. To

find an "optimal" implementation (a design configuration) for a given system

'A product of Scientific and Engineering Software, Inc., Austin, Texas.

9

specification, we need to quantify "optimality". Quite often, several attributes are

used to gauge the quality of a system, e.g., cost, chip area and power. In RTES,

timing related attributes, such as feasibility factor and critical excess MIPS are also

important attributes [4].

The partitioning problem has been stated as an optimization problem by

D'Ambrosio, Hu and Greenwood [14]. According to them, the system specifications

are modeled as a collection of processes, f. Associated with each function, there are

constraints and timing requirements, 91. The different components available for

implementing these processes are maintained in different libraries, Y. Let Gk be the k­

th attribute and Wk be the weight associated with Gk- Consequently, the partitioning

problem can be formulated as an optimization problem as follows:

Maximize: Lk WkGk (x)
Subject to: {uxex f(x)} � f

fR(x)
xcY

(1)

where f(x) represents the processes implemented by module x, and 91(x) represents

the set of constraints to be satisfied by an implementation X·

Generally the design space is too large and forbids an exhaustive search for

solving the above optimization problem. In the past, simulated annealing has proven

to be capable of finding good solutions. However, the long execution time has been

cited as a disadvantage of this technique [1]. Even randomized search has been

shown to outperform simulated annealing if the global optimum is sought [2]! Hence,

10

we resort to the Evolutionary Algorithm (EA) to solve the optimization problem. EAs

are stochastic search techniques based upon population genetics. EAs have generated

a great deal of recent research interest because of their ability to identify good

solutions to NP-hard problems [7].

Another hitch in solving the above described optimization problem is that of

combining multiple attributes as a single objective function. Typically, multiple

attributes have been combined in an ad hoc manner to form a scalar objective

function, usually through a linear combination (weighted sum) of the multiple

attributes, or by turning objectives into constraints (with associated thresholds and

penalty functions). The final solution is usually very sensitive to small changes in the

penalty function coefficients and weighting factors. A technique based on

Imprecisely Specified Multi-Attribute Utility Theory (ISMAUT) from the field of

decision analysis may be used to handle tradeoffs among the attributes based on user's

preferences.

The ISMAUT technique provides a method for combining multiple attributes,

but does not address the difficulty of searching large problem spaces. The EA, on the

other hand, are well suited to searching intractably large, poorly understood problem

spaces, but have mostly been used to optimize a single objective. EA and ISMAUT

are therefore complementary techniques for optimization and design. ISMAUT has

no specific method for handling intractable search spaces while traditional EA

11

assumes a single attribute. The direct combination of ISMAUT and EA is the next

logical step for multi-objective EA optimization [12].

A Generalized Evolutionary Algorithm

EAs are heuristic techniques based upon the principle of adaptive selection in

the natural world. A population consists of a set of individuals, where each individual

is a solution to the problem. The particular genetic encoding for an individual is

referred to as the genotype. Decoding this genetic material gives the set of observed

characteristics of the individual which is referred to as the phenotype. Genetic

operators (e.g., mutation and recombination) produce offspring by slightly altering

the genotype of the parents. Mutation operator takes a single parent to produce an

offspring. In the evolutionary framework, the fitness of an individual is measured

only indirectly by its growth rate in comparison to others, i.e., its propensity to

survive and reproduce in a particular environment. In EvoC, fitness is represented by

the rank that is assigned to an individual.

Each generation (iteration) of the EA takes a population of individuals

(potential solutions) and modifies the genetic material (genotype) to produce

offspring (new solutions). Only the highest fit individuals (Selection) survive for the

next generation. Tournament Selection is a type of selection in which candidates

(individuals competing for selection) are compared against a set of randomly chosen

12

individuals from the current population. EA have been successfully used to solve

various types of optimization problems.

The EA terminates after a fixed number of generations (r) have been

produced and evaluated or earlier, if an acceptable assignment has been found. The

EA algorithm is implemented as follows:

1. Create an initial population ofµ design alternatives by randomly assigning

functions as either hardware or software implementations.

2. Conduct a tournament to select alternatives for reproduction. Each

selected alternative generates one offspring by applying mutation operators. This

creates a population with a total of 2µ alternatives.

3. Rank all alternatives according to their fitness.

4. Deterministically select theµ alternatives with the highest fitness.

5. Proceed to step 2 unless an acceptable solution has been found or r

generations have been evaluated.

Imprecisely Specified Multi-Attribute Utility Theory

The ISMAUT technique is used in EvoC for evaluating the design

configurations and is explained in detail in [9]. A preference relationship is used to

assign fitness to each design configuration. Once a design configuration is identified,

its attributes (e.g., cost, power consumption or speed) can be quantified. To reflect

the designer's preferences in the trade-off of different attributes, we make use of

13

imprecisely specified value functions which are taken from the field of utility theory

[16]. Attribute raw scores are mapped to values in the interval [0.0, 1.0] by a value

function. An imprecisely specified multi-attribute value function corresponding to the

design configuration x has the following form:

V
x = L wkvk(ak(X))

k

(2)

where WkE R+ is the weight and Vk(ak) is the attribute value function for attribute ak.

All the weights must satisfy L'kwk= l; Wk>O. We denote a design configuration xis

preferred to a design configuration x' by x>x '. Design configuration x is said to have

a higher fitness over design configuration x if x>x'.

Vx
is imprecise in the sense that each wk does not have a specific assignment,

but is constrained by preferences among attributes. Such constraints can be

formulated based upon preferences between distinct design configurations (provided

by the designer or generated by an EA). Using the attribute value functions and the set

of Wk constraints, other configurations created by running the EA may be evaluated.

Integrating ISMAUT With EA

The approach used in EvoC to conduct hardware/software partitioning can be

summarized as follows (c.f, Figure 2). Initially, we obtain a small set of solutions or

implementations which can either be generated by our EA technique or can be given

by the designer. The designer ranks the implementations. The ranking can simply be

14

pair-wise comparisons of the implementations. No total order of the implementations

are needed. Based on the ISMAUT, the ranking information supplied by the designer

defines the designer's preferences, which are stored in a file ("PREF .in").

r "I

Create a small set
of solutions

(EA technique or designer)

\.. ,) r 'I

Generate
solution population

1,
(EA technique)

' \... ""

Rank the solutions
(Designer)

1r

\. r "'I

Evaluate each solution
(ISMAUT technique) �

1•

r ' \.. .)

Extract Preferences
(ISMAUT technique)

1•

\.. _.)
r "I

Select high-fitness solutions

��

(EA technique)
,,

_.)

Preference file

,r
r 'I

Create offspring to
form new a generation

(EA technique)

\.. _.)

Figure 2. The EvoC System.

It is important to emphasize that the initial ranking of the selected design

configurations is done merely to obtain the constraint subspace W', which is then used

15

in evaluating other design configurations considered during the EA implementation.

A detailed description of using preferences to represent fitness in EA can be found in

a forthcoming publication [9].

The EA works in a conventional manner of using genetic operators to generate

new potential solutions. ISMAUT compares a pair of individuals (say, x and x ') at a

time. If neither of the individuals dominates (i.e., solutions which at least as good as

any other solutions with respect to every attribute value) the other, then the preference

check is done by solving the following linear program.

Minimize (w.r.t. Wk): L
k
wk [vk (d k)-vk (ak)]

Subject to: Wk E W'

(3)

where, W' is the constrained weight space. If the result is greater than zero, then x' is

preferred to X· Based on the evaluation done by ISMAUT, EvoC assigns ranks to

individuals. The ranks are used as fitness measures for determining if individuals

survive.

In a multi-attribute optimization problem a set of solutions are non-dominated

in the sense that there exists no other solution that is superior in all attributes. In

attribute space, the set of all non-dominated solutions lie on a surface known as the

Pareto optimal frontier. The goal of EvoC is then to find and maintain a

representative sampling of solutions on the Pareto front that match the designer's

preferences.

16

Handling Timing Constraints in R TES

When a set of time-critical processes are assigned to a processor as a set of

software tasks, the partitioning process must determine if such an assignment can

satisfy all timing constraints, i.e., meet the deadline requirements of the processes. In

addition to considering only guaranteed feasible designs (which can be quite costly

and have a low processor utilization), we need to evaluate possibly feasible designs

also. Hence a metric called feasibility factor [4] is used to indicate the possibility of

an assignment being feasible.

The feasibility factor for processor P is defined as,

(4)

otherwise

where, TRp is the throughput rate of processor P (given in MIPS), TRL and TRu are

the lower and upper bounds of the minimum throughput requirement in order for

processor P to feasibly schedule all the processes assigned to it. In then follows that

the process set on processor Pis feasible if Ap = 1, and it is not feasible if Ap<O. For 0

� Ap � 1, the larger the value of Ap, the greater the chance for the process set to be

feasible. Hence, Ap indicates the possibility of processor P being able to meet all the

timing requirements of the processes assigned to it. Given the throughput rate of a

processor and the set of processes to be executed, the feasibility factor can easily be

calculated [4].

17

Other timing-related attributes may also be included for evaluating the

performance of RTES. An important property of an embedded system is its

expandability. To limit costs, much of the hardware and software of an embedded

system must be reusable through several design cycles and accommodate increasingly

demanding functionality over the life of the design.· Therefore, a designer may be

willing to tradeoff cost for expandability (i.e., to increase the task execution

requirement) in a particular design. To model the expandability of a RTES, we

introduce an attribute called critical excess MIPS, �c- It is defined as �c = TRp -

TR L- Clearly, the value of �c is an estimate of the amount of peak execution power

that a processor has after meeting the timing constraints of the current process

specifications. A larger �c will allow the current process to be expanded and still be

feasible. It may also allow the system to handle new time-critical processes.

18

CHAPTER IV

SOFTWARE DEVELOPMENT OF EvoC

EvoC (Evolutionary Co-design) is a CAD tool developed usmg CIC++

language on a UNIX operating system, for the automatic hardware/software

partitioning of RTES, based on EA. This chapter discusses the conceptual base for

forming the data structure in its present form and the implementation of this EA based

partitioning approach.

Fundamental Concepts Underlying the Design of EvoC Data Structure

A set of standard library of components exists, and is referred to when

forming a design configuration. This need not be completely replaced by a new set

when a different problem is considered. The user-given system specifications are,

however, problem specific. The system implementation, as shown in Figure 3, is a

mapping from the system specifications (processes) to the component library.

Figure 3. Mapping for System Implementation.

19

The objective of the EvoCs Data Structure is to capture the problem

parameters in the genotype of an individual for a wide variety of hardware/software

partitioning problems in RTES and to facilitate implementation of EA.

VOS

CDS

Figure 4. Hierarchy of EvoC Data Structure.

Figure 4 illustrates the hierarchy of the EvoC data structure. The actual data

structure is given in Appendix B. Some of the terminologies which also forms the

different levels of the hierarchy are defined as follows:

A configuration fully implementing the user's specifications of the system is

called as Individual or Alternative.

Process refers to a function or a task that a system has to perform.

Components are physical entities, an IC chip for example, that are available as

off-the-shelf items in the market or custom designed modules like ASICs or software

routines capable of implementing system processes.

20

Component Cells form the fundamental building blocks of any component.

For example, a microcontroller component may be composed of the following cells

(with the size or number indicated within brackets) - cpu[l], volatile memory[2000],

non-volatile memory[2000].

Attributes are used to determine the degree- to which properties of a good

alternative is met. Examples include cost, power consumption and critical excess

MIPS.

Characteristics are properties associated with components or processes. For

example, the real-time characteristics of user-defined system processes are activation,

period and deadline.

The Constant Data Structure (CDS) is composed of system process

specifications, components and cells with their associated characteristics as given by

the user (of EvoC) and they remain unmodified for a given design problem. CDS

serves as a reference library when new alternatives are created. The Variant Data

Structure (VDS), on the other hand, is the system implementation itself that keeps

changing every generation and can be considered as a subset of CDS. It also contains

the system attributes.

A processes can be a Functional Process (FP) or Communication Process

(CP). All functions or tasks that a system has to perform are categorized as FPs and

the point-to-point communication link between two FPs (implemented on different

resources) for exchange of data between the FPs are modeled as CPs. Note from

21

Figure 5 that if FP2 must send data back to FP i , another distinct CP is required. Also,

the quantity in brackets next to the CP indicates the number of bytes in the data

transfer.

Figure 5. Data Flow Graph Based on FPs and Cps.

FPs are further classified as User-Defined Processes (UDPs) and Additional

Processes (APs). UDPs are FPs defined by the user. APs are FPs "created" by EvoC

in order to satisfy the system's requirements for completeness (refer to the section

Partitioning) and are appended to the list of UDPs in the class Fune_ Imp []

CPs can be of two types, Regular CPs (RCPs) and Mono-link CPs (MCPs).

The basic difference between them is whether the CP has both input and output UDP

(defined as a RCP) or just one of them (defined as a MCP).

Description of EvoC Data Structure

The classes in EvoC's data structure are formed to support the different levels

in the hierarchy of the data structure. Each level typically has two classes associated

22

with it, one for specification (definition) and the other for implementation

(instantiation). For example, the functional processes are defined in the class

Fune Spec [] and the actual implementation details corresponding to all

individuals are contained in the class Fune_ Imp [] . A similar structure holds for

the class Attr_Type[] and Attr_Val[J that specify the attributes and

characteristics, and for the class Comm_ Spec [J and Comm_ Imp [] that specify the

communications.

It can be noted from Figure 6 that all specifications form part of CDS and the

implementation details are in VDS. Some other classes that define components,

component cells and individuals do not have this two-tier description as specification

and implementation classes.

All levels in the hierarchy have associated attributes or characteristics. The

characteristics are present in the specification classes to avoid multiple copies being

present for every individual in the implementation class. The implementation classes

contains the implementation details of all the individuals from the current generation.

This is shown in Figure 7. The top half of the implementation arrays,

Fune Imp [] & Indi victual [], contain parents and the bottom half contain the

off-spring.

Certain features unique to some of the classes are worth mentioning here. The

class Fune Spec [J lists the set of all components capable of implementing that FP.

23

-------------------,

System
[Individual]

rocess
Implemented
[Func_lmp,
Comm Im

r-------------------7
I

I

I

I

I

I

I

I

Cells
[Comp_subModule]

Components
[Comp_Module]

rocess
Specified

[Func_Spec,
Comm S ec

Attribute's Values/Characteristics' Values
[Attr_Val)

VDS

____. Pointers from the data structure

Figure 6. EvoC Data Structure.

I

I

I

I

I

Attribute's Definition/

Characteristics' Definition
[Attr_Type]

I-------------------
CDS

This can be conveniently utilized during the initial partitioning or mutation, for

choosing an implementation for the FP.

A CP might require many components (such as bus, memory, glue logic, etc.)

to implement and the class Comm_ Imp [] is flexible enough to handle it. The data

structure for the communication aspects are not tailored to the capabilities of the

present communication model alone. In fact, it is capable of supporting multiple

communication models in the same version of EvoC with none or very little

modifications to it.

24

n

n+UDP

n+UDP+

n+UDP+1+A F

n+MAX_FUNC

Func_lmp D

'

UDPs

MICRO

APs

empty

'

'
'
'

'
'

'

'
'

'
'

Individual []

'
-------t

nth Individual

Figure 7. Mapping Between Fune_ Imp [] & Individual [] Arrays.

The class Comp_ Module [J contains all component libraries as its different

objects. In addition, it also specifies the different cells a component may require or

supply. The following component libraries are found to cover the vast expanse of

available components:

l. Software library (SW_ LIB) contains software routines for the processes.

2. ASIC library (ASIC_LIB) contains custom made IC chips for

implementing different processes.

3. Programmableware library (PW _LIB) contains programmable

components like PLAs, FPGAs, etc.

4. Microprocessor library (MICRO _LIB) contains different microprocessors

and microcontrollers

25

5. Miscellaneous library (MISC_LIB) contains components such as memory

chips, timing channel !Cs, etc., which are used as auxiliary components rather than

components that implements FPs in the system.

An implementation type of a FP may be software, hardware or

programmbaleware.

Pseudo-Components

A special class of components called pseudo-components is discussed here.

The user can exploit this technique in order to consider programmable devices in the

system configuration. Certain components may not be selected to implement FPs on

a one-to-one basis. For example, more than one FP may be implemented on a single

FPGA chip.

EvoC assumes that any component specified under the component's list of a

FP can only be used by this FP. But, as we have pointed out, an FPGA chip may be

able to implement several FPs. To handle such shared allocations pseudo­

components are introduced. It allows the user to specify the FP's requirement of a

component in terms of number of cells. For example, a pseudo-component

(representing a programmable device) for a FP indicates the number of gates (a cell)

required by the FP if implemented on the programmable device. In addition, a

pseudo-component represents an implementation type for that FP.

26

Pseudo-components are effectively utilized during the different phases of

partitioning for assessing the number of physical components (e.g., FPGA) needed to

implement a partitioned set of FPs. This is discussed in length with examples in the

section Partitioning.

User Input Files for EvoC

The set of input files constructed for a design problem and their contents are

discussed here. Appendix A gives the detailed input file formats. The input file

formats of EvoC forms a generic platform for collecting system information from the

user.

The CDS is filled by reading in from the following input files:

1. attr.dat contains attribute's definitions for the individuals and

characteristics definition for processes and components, and is used to form the class

Attr Type[].

2. func.dat contains all UDPs to be implemented and is read into the class

Fune Spec[].

3. comm.dat specifies communication as in the form of CPs and fills in the

class Comm_ Spec [] .

4. PREF.in indicates the user preferences as phenotypical characteristics.

The following files contains components and are directly read into the corresponding

component libraries specified as objects of the class Comp_ Module [] .

27

l. sw.dat contains all software modules for different processes.

2. asic.dat consists of custom made I Cs or ASICs.

3. pw. dat contains pseudo-components for processes that can be

implemented on a programmable hardware such as timing channel, FPGA, PLA, etc.

4. micro.dat contains various microprocessors and microcontrollers.

5. misc. dat contains miscellaneous components that supports the functioning

of components from other libraries. Unlike the components described above, these

components can be considered as accessory components for system implementation,

which does not implement any UDP directly but is needed for system operation.

Typically this file contains memory chips, buses and also the physical entities of

pseudo-components.

Partitioning

Partitioning is the allocation of hardware or software components to FPs and

is carried out during the generation of initial population. Figure 8 illustrates the

sequence through which the partitioning is done.

Partitioning is purely stochastic in nature and is done in two phases. In the

first phase of partitioning, a component is chosen to implement each FP along with a

microprocessor. This is a random selection of a component from the component's list

of each FP specified in the class Fune Spec [] . The selected components may

28

include actual components that implement FPs on a one-to-one basis and pseudo­

components. In the second phase of partitioning, system accessory components and

Comp 1

Compm

Comp 1

Compm

Comp1

Compm

(PARTITIONING I)

Implementation
of

Processes

(PARTITIONING II)

Sys tem
Implementation

Individual

Figure 8. Partitioning During Generation of Initial Population.

the physical entities of pseudo-components are selected. System accessory

components include different kinds of memory chips selected to support the operation

of software components in the system. Also, a set of APs are attached to the list of

FPs in the class Fune Imp [] to account for the inclusion of accessory components

and physical entities of pseudo-components into the system. APs are created by the

software to be able to represent the components selected during the second phase of

partitioning in the class Indi victual [] and is transparent to the user.

29

This phased partitioning scheme is based on the observation that the accessory

components do not need to participate in the random selection process. Instead, EvoC

gets a complete count of the number of different cells required from all the primary

components selected during the first phase of partitioning. Based on this information

sufficient number of additional components (physical entity of pseudo-component or

accessory component) can be selected to completely specify the system, in the second

phase of partitioning.

For example, the total instruction memory requirements from all the SW

components (selected during the first phase) is unavailable during the first phase of

partitioning. Hence, it is during the second phase of partitioning that the memory

chips are selected based on the total memory requirement.

As another example, a set of FPs may be implemented on timing channels and

a peripheral chip may contain many timing channels. In such cases, a pseudo­

component can be introduced for those FPs, which will specify the number of timing

channels required to implement them. First phase of partitioning selects such pseudo­

components. In the second phase of partitioning the total number of timing channels

required is calculated from the selected pseudo-components and sufficient number of

peripheral chips are chosen.

Phased partitioning scheme often leads to "sharing" of components among

FPs. For example, a physical entity of a pseudo-component may be selected to

implement multiple FPs or several RAM chips may be used to support software

30

execution on the microprocessor selected. This results in better optimization. ASICs

may also exhibit sharing if it is capable of implementing multiple FPs. In short,

pseudo-components provides the user with yet another dimension of flexibility to

distribute the assignment of the processes among an optimized set of components.

The next step in partitioning is the selection of buses· and bus memory components to

implement CPs. This is discussed in Chapter V.

Ranking and Selection

After initial population is generated, EvoC needs to select highly fit

individuals for survival in the subsequent generations. Selection of off-spring for

survival is deterministic by a ranking procedure. Ranking is based on the preference

relationships between individuals determined by ISMAUT. The Heapsort

Algorithm is implemented to rank and sort µ individuals to be passed on to the next

generation, which are the fittest among a total population of 2µ individuals. It sorts

by comparison and requires only O(nlogn) comparisons to sort n individuals. It calls

the ISMAUT routines which in turn calls the linear programming (LP) software

lp_solve (ver. 2.0) for solving the LP problem set up by ISMAUT.

ISMAUT evaluates individuals having multiple and sometimes conflicting

attributes, as was explained in Chapter III. The types of system attributes that are

handled in the present form of EvoC are feasibility factor, critical excess MIPS and

several additive attributes (e.g., cost and power). Feasibility factor and critical excess

31

MIPS are special attributes to handle timing constraints in RTES. In addition to

being an attribute, feasibility factor is also considered as a system constraint. By this,

we mean that all individuals selected should have a feasibility factor greater than zero.

A more detailed background on feasibility factor and critical excess MIPS can be

found in [4].

Deterministic Selection of Parents

EvoC implements tournament selection to select individuals (parents) for

reproduction. This technique along with niching enables us to have a diversity among

the population in the design space. In tournament selection, a set of individuals

(comparison set) is randomly chosen from the current population and in a binary

tournament two randomly selected individuals are compared against this comparison

set. If one candidate is preferred by the comparison set, and the other is not, the later

is selected for reproduction. If neither or both are preferred by the comparison set, we

use Equivalence Class Sharing to choose a winner [12]. This ensures genetic

diversity along the population fronts and allows EA to develop a reasonable

representation of the Pareto optimal front. By adjusting the size of the comparison set

(tdom) we can exert some control over the amount of selection pressure. The

following pseudo-code, given by Hom and Nafpliotis [12], is implemented in EvoC.

PSEUDO-CODE 1

select():

begin

32

shuffle (Population[POP _ SIZE]);

candidate_ I =Population[!];

candidate_ 2=Population[2];

candidate_ 1 _preferred=true;

candidate_ 2 _preferred=true;

for pop_index = 3 to tournament_size+3

begin

end

if (Rank[candidate_ 1] > Rank[Population[pop _index]])

candidate_ 1 _preferred=false;

if (Rank[candidate_ 2] > Rank[Population[pop _index]])

candidate_ 2 _preferred=false;

if (candidate_ 1 _preferred and -, candidate_ 2 _preferred)

return candidate_ 1 ;

else if (candidate_ 2 _preferred and -, candidate_ 1 _preferred)

return candidate_ 2;

/* do sharing * /
else if (niche_ count[candidate_ I] >niche_ count[candidate_ 2])

return candidate _2;

else

return candidate_ 1;

end

Niching is employed in the implementation of Equivalence Class Sharing.

The goal of equivalence class sharing is to facilitate the exploration of the design

space. This is achieved by picking parents from regions (in the design space) that are

not densely populated with other individuals in the current population. A niche count

(m) is calculated for those individuals tied in a tournament selection. The niche

count is an estimate of how crowded the neighborhood (niche) of an individual is and

is calculated over all individuals in the current population.

33

d[i,j]-[�la,(x;)-a,(x)I' r (5)

where, d[ij] is the distance between individuals Xi and Xj, akf...xi) is the normalized

value of the k-th attribute of individual Xi and p (a value of 0.5 is used in EvoC) is the

degree of the Holder metric.

Once the distances are computed the niche count can be found using the

following pseudo-code.

PSEUDO-CODE 2

begin

end

for candidatei
= 1 to POP _SIZE

for candidate
j
= 1 to POP_ SIZE

if ((d[i,j] < Q) and (i * j))
niche_ counti

=niche _ counti+ 1;

where, Q is chosen to be a very small number, which defines the boundary for the

niches in the attribute space. A smaller value will be chosen for this constant if the

population size is large.

Equivalence class sharing assumes that most of the individuals in an

equivalence class may be labeled as "equally" fit. Individuals within close proximity in

the design space tends to have a higher niche count as they are all in the same niche.

Hence sharing (refer to pseudo-code 1) would select for reproduction the individual

(parent) with the smallest niche count.

34

Mutation

EvoC implements mutation operation to create off-springs (new system

implementations). Mutation operators are chosen based on what the user wants to

investigate since different operators have different effect on the genotype of an

individual. We have used three mutation operators (M 1, M2, M3)-M 1 for perturbing

the microprocessor chosen for an individual, M2 for selecting between hardware and

software implementations of FP and M3 for re-assignment of a hardware

implementation of FP. Each mutation operator is applied with a probability denoted

by P
M; . In the current implementation pMI, p

M2

and P
M3

are 0.15, 0.50 and 0.35,

respectively.

A mutation operation is always followed by second phase of partitioning for

the off-spring. This does not produce a drastic difference between the genotypes of the

parent and the off-spring because the components that gets replaced (in the second

phase of partitioning) fall under the category of system support components or

accessory components. Their effect on the values of the system attributes is relatively

small compared to that of the components implementing FPs. Hence this does not

perturb the position of the individual in the attribute space greatly. Mutation will be

revisited when the communication aspects are discussed in the next chapter.

This chapter explained how the data structure has been designed to capture the

system information from the user. The list of input files that have to be given by the

35

user and their contents are given. Finally, implementation details of the different

steps in an EA, such as partitioning scheme, selection procedure and mutation

operators were presented.

36

CHAPTER V

MODELING OF COMMUNICATION

We used a Multiple Bus and Shared Memory (MBSM) model for the

communication scheme in the design of embedded systems at the system level. The

components required for this model are buses and memory chips.

Multiple Bus and Shared Memory Communication Model

The MBSM communication model has been added to EvoC in version 3.0. In

this model, communication is modeled as CPs which are further divided into two

types, RCPs and MCPs [refer to Chapter IV]. A RCP specifies the communication

link between two FPs. A MCP is a communication link between a FP and shared

memory. This is the case when the system has to communicate with its environment,

e.g., some external signals are read into some internal buffers (memory) in the system

for later use. Figure 9 shows an example system configuration with its

communications links.

An inter-process communication need not be synchronized since processes

may run at different rates. Hence our MBSM model addresses the issue of

asynchronous communication. However, the cost and delay for inter-process

communication cannot be ignored. The communication cost is due to addition of

37

r----------------------------

Bus 1 Bus 2

ASIC 1 - - ASIC2

- CPU -

Bus Bus

- Memory - Memory

2

Figure 9. An Example System Configuration.

hardware and the delay is primarily the result of bus transfer time (i.e., arbitration

time and propagation delay) and bus memory access time (explained below). They,

of course, depend on the amount of data that needs to be transferred.

Some systems attempt to reduce bus transfer times by adding redundant buses;

a processor selects an available bus rather than waiting to arbitrate for a single bus.

EvoC has been modified to model such systems so that the impact of communications

can be ascertained. This becomes imperative when attempting to design systems with

real-time constraints.

We assume that the inter-process communication overhead between processes

implemented on a common resource to be zero. On the other hand, the

communication between processes implemented on different resources is via the bus

memory, which is local to every bus in the system. This means that there exists buses

38

connecting every subset of processes that needs to communicate with each other. The

MBSM model may result in multiple bus selections and every component may be

connected to one or more buses based on the communication requirement of the

processes implemented on that resource (or component).

Incorporating MBSM Model Into EvoC

The following characteristics are introduced to support the MBSM model:

1. BW denotes the bandwidth of a bus which is defined as the amount of data

it can transfer in unit time.

2. NB is the number of bytes per transfer for a CP.

3. NC is a characteristic of a SW component that indicates the

communication overhead in terms of the number of processor instruction counts if the

FP implemented by the SW component needs bus communication.

4. -r1 and 'ts are the initial and the subsequent memory access times associated

with a bus memory.

Selection of buses is done in a manner which minimizes the total number of

buses in the system and meets the throughput requirements of all CPs. Selection of a

new bus is avoided if the CP under consideration could be assigned to an already

selected bus (subject to bus throughput). This leads to better bus utilization. Let TPi

denote the throughput requirement associated with the i-th CP. TPi can be calculated

as follows:

39

TP; =

NB. NB.
--' +--'

P;,,p Poul
NB;

()
NB;

-- or --
P;,,P Poul

for RCPs

(6)
for MCPs

where, Pinp
and Pout are the periods of the input FP and the output FP, respectively.

Each CP assigned to a bus imposes a throughput requirement on that bus. Assigning

CPi to a bus B is considered infeasible if L TPk > BWn . In such cases a new
k:CPk eB

assignment is sought.

When computing the bus memory requirements, the NB from all CPs attached

to the bus are added together, irrespective of whether they are from a RCP or a MCP.

However, their difference is emphasized when computing throughput requirement TPi

since the rate of bus usage is twice for a RCP as compared to a MCP.

Communications overhead needs to be added to the processor executing the

input or output FPs. This is modeled as an increase in the instruction count of the

corresponding input and/or output FPs. Thus the instruction count of a software

component consists of two quantities: the instruction count of computations

(specified in the software component library) and the instruction count resulting from

associated CPs which force bus communication (calculated as the characteristic NC).

The instruction count for CPi is calculated as,

(7)

40

where M is the MIPS rate of the microprocessor executing the corresponding FP.

Equation (7) is a simple conversion of bus transfer latency added with the memory

access time to the instruction count of the processor executing the FP. This additional

workload is used to assess the feasibility of software assignment to the processor.

After successful selection of buses, memory requirements are aggregated and

sufficient memory is allocated. The communication cost arising due to the additional

hardware (bus and bus memory chips) selected to implement MBSM model is added

to the total system cost.

Representation ofMBSM Communication Model in the EvoC Data Structure

The class Comm_ Spec [J captures the system's communication needs as CPs

by explicitly specifying its input and output connections (FPs) and the NB associated

with it. The class Comm_ Imp [] gives the implementation details of each CP defined

in the class Comm_ Spec [J • The class Bus_ Comp [J helps to view the system as a

set of buses with attached components. It categorizes "buswise" the different

components and CPs of an individual.

Representation of Bus in the Input Files

Bus is a component in MISC_LIB. All HW components have a bus-list

which lists the buses that can be attached to this hardware. The SW components do

not need a bus-list, but rather the microprocessors (implementing SW components)

41

have them. In case of pseudo-components, the bus-list contains the buses which can

be attached to their corresponding physical components. Hence, the actual physical

component (present in MISC_LIB) need not have a bus-list.

Mutation With MBSM Communication Model

A mutation on a fully connected system may result in the following types of

modification on system components (as shown in Figure 10): (a) Reallocation 1s

reassignment of processes among the existing resource itself; (b) Addition is adding a

new component to the system; (c) Removal is removing an existing component from

the system and reassigning the process implemented on it on the remaining resources;

(d) Substitution is assigning all processes implemented on an existing resource

completely onto a new resource, and removing the unused resource from the system;

and (e) Processor Replacement is choosing a new processor in place of the old one

and reassigning all SW processes on the new processor and finding a different HW

implementation for all HW processes implemented on the old microprocessor (as

custom circuits).

Though mutation results only in a relatively small change with respect to

system components (chosen during the first phase of partitioning), its effect can be

large with respect to the overall system structure. For instance, some of the bus

connections of the "old" component (the parent) may have to be severed if the "new"

component (the off-spring) is not compatible with those buses. This leaves a hole in

42

the communication set-up, which needs to be filled by some other means, such as

introducing new buses or reusing the old compatible ones. This might very well lead

z

REALLOCATION

ASIC/PW CPU

SWs

FP2 Custom
Circutts

ASIC/PW ASIC/PW

FP2 FP3

PROC REPLACEMENT

CPU CPU

ADDITION

ASIC/PW ASIC/PW

FP2

Custom
Circuits

SUBSTITUTION

ASIC/PW ASIC/PW

REMOVAL

ASIC/PW

ASIC/PW

Figure 10. Types of Component Modifications Due to Mutation.

ASIC/PW

FP2

CPU

SWs

Custom
Circuits

to cascaded refinement of the entire communication system for the off-spring

considered. Hence considering communications for mutation and at the same time

trying to create an off-spring that has a system structure that is "similar" to its parent

is certainly not a trivial task.

We have developed a method for adjusting the communication setup for the

off-spring which addresses the above stated problem as much as possible.

Mutation operators are applied only to the set of FPs (before the assignment of

CPs) in the individual. Then the bus compatibility of the newly selected component

43

with the rest of the components which it needs to communicate with in the individual

is examined. The following three cases can handle all of the mutation effects that

were previously identified. This procedure is repeated for each CP that has the

mutated FP as its sending or receiving FP in an individual.

Case 1: A CP corresponding to a FP that is mutated, is implemented on the

same bus that implements the CP in the parent, if the newly selected component can

be attached to that bus.

Case 2: If a CP cannot be implemented as explained in step 1 due to bus

incompatibilities, then it is implemented on one of the existing buses in the individual

that can be attached to the newly selected component.

Case 3: If a CP cannot be implemented on any of the existing buses, then a

new bus is chosen to implement that CP from the bus-list of the new component.

Rationale Behind Multiple Bus Selection

A number of issues are worthwhile to be mentioned regarding the MBSM

model. First, we notice that the choices of buses and memory chips are often

constrained and their effects on the resulting architecture are relatively easy to predict.

Random selection of buses often leads to invalid system configurations. Hence,

though our EvoC tool selects hardware components and software allocation based on

EA, we use a greedy algorithm for bus and memory selection.

44

We allow component compatibility to be a selection constraint. This is

necessary when more than one family of processors are considered in the exploration

process. Yet, one may argue that this is redundant for ASIC components since they

can be made to be compatible with any buses. (Note that our EvoC tool does allow

the specification of such "generic" components.)· However, the capability of

specifying ASICs with different bus interfaces and costs gives a mechanism for

considering component reuse. For instance, if an ASIC with certain bus interface is

already available, its non-recurring engineering cost will be much lower than a to-be­

designed ASIC. Hence, we can model the two components of similar functionality

with two different costs and let EvoC evaluate their overall merits.

45

CHAPTER VI

DESIGN EXAMPLES AND EXECUTION TIME ANALYSIS

EvoC has been tested on three design examples, two (Example I & II) without

considering communications and the other (Example III) with communication

aspects. The computing environment includes Sun Spare IPC workstation, Sun OS

and GNU C++ compiler (ver. 2.4). In this chapter, Example I & III are discussed in

detail and the timing features with respect to all the sample runs are given.

Example I

This example is presented by Hu et al [4,14]. It involves the design of a

RTES implementing a subset of an engine control module. Table 1 summarizes the

set of FPs along with its characteristics and component list. The component libraries

are listed in Table 2. It contains a collection of components including processors,

ASICs, peripheral devices and memory chips. Table 2 gives an approximate value for

the instruction counts for the SW components based on a generic RISC architecture.

The number of cells implemented or required are indicated next to the cell itself,

inside the brackets. . The memory (RAM & ROM) size is given in bytes and timing

channels ("tc") as a number.

46

Table 1

Set ofFPs With (a, d, p) in Microseconds and Their Components List

Functional Activation Deadline Period Components
Process (a) (d) (p) List

FPl 0.00 46.00 104.17 SMl, ASICl, MCI, MC4,
MC5, MC6, FPl-PS

FP2 9895.83 10000.00 10000.00 SM2, ASICl, MCI, MC4,
MC5, MC6, FP2-PS

FP3 0.00 83.00 208.33 SM3, ASICl, MCl, MC4,
MC5,MC6

FP4 83.00 138.00 208.33 SM4, ASICl, MCl, MC4,
MC5,MC6

FPS 0.00 416.67 10000.00 SM5
FP6 0.00 208.33 416.67 SM6
FP7 833.33 1333.33 2500.00 SM7
FPS 1666.67 2500.00 2500.00 SM8
FP9 0.00 312.50 416.67 SM9

Population size(µ) chosen for this example is 45. Tables 3 and 4 summarizes

� representative sampling of the typical solutions obtained from several runs (number

of generations, r, is 20), when lower cost and higher feasibility factor value is

preferred respectively.

The following observations can be made from Table 3. The microprocessor

selected (MPl) is the least expensive of all available choices in MICRO-LIB. One or

both of the FPs, FPl and FP2 is implemented on a peripheral device (PIOl-1O) as

timing channels in order to off-load additional SW components from being executed

on the processor selected. Individual 2 from Table 3 should have had a larger �c

47

Tabl e 2

Component Librari es and Their Characteristics

Library Name Component Implemented Cells Required Cells

SW-LIB SMI ram[IO0], rom[I00]

SM2 ram[l 00], rom[l 00]

SM3 ram[200], rom[300]

SM4 ram[200], rom[300]

SM5 ram[l 00], rom[l 00]

SM6 ram[200], rom[200]

SM7 ram[500], rom[400]

SM8 ram[400], rom[300]

SM9 ram[IO0], rom[IO0]

ASIC-LIB ASICl

MICRO-LIB MCI ram[2000], rom[2000]

MC2 ram[2000], rom[2000], tc[32]

MC3 ram[4000], tc[16]

MC4 ram[4000]

MC5 ram[2000], tc[14]

MC6 ram[2000], tc[14]

MC7 ram[2000], tc[l 6]

MPl ram[2000], rom[2000]

MP2

PW-LIB FPl -PS tc[l]

FP2-PS tc[l]

Cost MIPS

($)

~

2.50

3..50 1.30

3.25 1.50

5.25 2.50

6.25 2.50

3.75 1.70

3.25 1.35

2.50 1.70

2.00 1.43

13.00 13.50

Instr.

64

32

30

30

30

20

480

100

40

�
00

Table 2--Continued

Library Name Component Implemented Cells

MISC-LIB RAMl ram[2000]
ROMl rom[2000]

PIOl-IO tc[16]

Required Cells Cost
($)

2.00
1.00
1.00

MIPS Instr.

+>-
1.0

Table 3

Typical Solutions Found by EvoC When Lower Cost is Preferred

No. Individual Cost Feasibility Critical Excess
($) Factor MIPS

1 FPl & FP2 on PIOl-IO, MPl 3.0 0.013 0.011
2 FPl on PIOl-IO, MPl 3.0 0.009 0.011

Note: Remaining FPs are implemented in SW

when compared to individual 1. But their difference is so small that the .0.c values

appears as equal with the precision in Table 3. The above solutions obtained by EvoC

can be simulated using the SES I Workbench to ascertain if the individuals are

indeed feasible.

The results from Table 4 shows a variety of microprocessor selections among

the individuals. All the solutions are definitely feasible since the feasibility factor is

1.0. Also, FPl through FP4 are implemented in HW, as ASICs, timing channels or

custom circuits on the microcontroller chips, in different combinations. This has the

effect of increasing the feasibility factor and the critical excess MIPS values for the

individual.

The solutions given by EvoC is ordered according to the user's preferences,

with the most preferred solutions appearing first followed by lesser preferred ones.

Some of the solutions from Tables 3 and 4 were part of the Pareto optimal solution set

identified from the branch-and-bound technique by D'Ambrosio and Hu in [4].

50

Table 4

Typical Solutions Found by EvoC When Higher Feasibility is Preferred

No. Individual Cost Feasibility Critical Excess
($) Factor MIPS

1 FPl, FP3 & FP4 on ASICl, MP2, 18.50 1.0 12.383
RAMl,ROMl

2 FPl, FP2 on PIOl-IO, MP2, 17.00 1.0 12.081
RAMl,ROMl

3 FPl, FP3 & FP4 as custom 7.25 1.0 1.382
circuits on MC4, MC4, ROMl

4 FPl, FP2, FP3 & FP4 on ASICl, 6.00 1.0 0.583
MC7,ROM1

Note: Remaining FPs are implemented in SW

Example II & III

The Example II is extracted from a multi-media application. The system

receives, processes and transmits streams of data representing text, voice or images.

Since the external links have restricted speeds, real-time constraints are imposed on

some of the FPs. Other timing constraints are derived from performance

requirements. Example III is merely an extension of Example II with the inclusion of

communications specification.

Table 5 defines the FPs along with their respective a, d, p values and their

components list. Some of the FPs involve simple input/output operations while

others manipulate large image files (e.g., JPEG). The CPs required to transfer data

among the FPs are indicated in Table 6. Finally, Table 7 describes the component

51

libraries. Static RAM (SRAM) is external to the processor and BUF represents an

internal memory to a processor. SRAM can be attached only to external buses (Ext-

8bit-B & Ext-16bit-B) and BUF only to internal bus (Int-32bit-B). The rest of the

devices can be attached to any of the buses defined in Table 7.

Table 5

Set ofFPs With (a, d, p) in Microseconds and Their Components List

Functional Activation Deadline Period Components

Process (a) (d) (p) List

FPl 0 2.2x10
-'

5.5 xl0
"'

SMl, ASIC2

FP2 0 1.1 x10
3

1.1 x10
3

SM2, ASIC2

FP3 0 5.5 xl0
2

5.5 xl0
2

SM3

FP4 0 5.0 xl0
2

1.1 x10
3

SM4

FPS 0 2.5 x10
2

1.1 x10
3

SMS, ASIC2

FP6 0 2.5 xl0
2

1.1 x10
3

SM6

FP7 0 1.0 x10
7

6.0 x10
8

SM7

FP8 l.0x10
7

3.0 x10
7

3.0 x10
7

SM8

FP9 0 6.0 x10
8

3.0 x10
7

SM9

FPl0 0 2.5 xl0
2

1.0 x10
3

SMlO

FPll 0 1.0 x10
3

2.5 x10
2

ASICl

Since this system specification results in only a small number of

configurations, we can identify all possibly feasible solutions (feasibility factor> 0.0)

and they are listed in Table 8. All the solutions have a feasibility factor of 1.0. All

the FPs other than FPl, FP2 and FPS are implemented on the single component

available for them in their component list. Note that the bus selected dictates the bus

memory selected because of the restriction in the specification.

52

Communication Sending FP
Process (input)

CPI FPl
CP2 -

CP3 -

CP4 FP2
CPS FP4
CP6 FPS
CP7 -

CP8 -

CP9 FP8
CPl0 -

CP11 -

CP12 FPl0
CP13 -

Table 6

Set ofCPs

Receiving FP
(output)

-

Fi>2
FP3
-

-

FP6
FP7
FP8
-

FP9
FP9
-

FPll

NB
(bytes)

64
64
64
64
64
64

128
1800

153600
360

2500
3

360

The Pareto optimal set of solutions from Table 8 were determined by a pair­

wise comparison of all the solutions. They include all individuals with AAS & Ext-

8bit-B and AAS & Ext-16bit-B selections; individuals with AAA & Int-32bit-B

along with MP3, MP4 or MPS; individual with AAS & Int-8bit-B along with MP2.

In fact, 40% of the entire set of feasible solutions are Pareto optimal. The lowest cost

solution is the individual with AAS & Ext-8bit-B along with MP4. The lowest power

solution is the individual with AAS & Ext-8bit-B along with MP3. The highest

critical excess MIPS solution is the individual with AAS & Int-32bit-B along with

MP2.

53

Table 7

Component Libraries and Their Characteristics

Library Name Component Cost Power MIPS BW 't1 'ts Instr.

($) (mW)

SW LIB SMl 34000

SM2 398000
SM3 1224

SM4 5431
SM5 100

SM6 304

SM7 640000

SM8 1488000

SM9 21004800

SMl0 17

ASIC LIB ASICl 5.5 300
ASIC2 5.5 300

MICRO LIB MPl 10 500 10.56

MP2 44 4500 87.5

MP3 14 160 28.0

MP4 9 424 25.13

MPS 10 220 28.0

MISC LIB SRAM 7 220 150 60
BUF 5 4 30 30
Ext-8bit-B 4 120 16.7

Ext-16bit-B 5 220 33.3
Int-32bit-B 8 400 66.7

Note: BW in Mbytes/Sec; 1"1 & 'ts in nanoseconds

Table 9 shows the 3 solutions obtained by EvoC, after running for 10

generations (r), when a lower cost is preferred. A population size (µ) of 10 was

chosen for this example. The solutions differ only in their microprocessor selection.

It also contains the best cost solution.

54

Table 8

Exhaustive List of Feasible Solutions for Example III

Individual with MP3 withMP4 with MPS withMP2

de Cost Power de Cost Power de Cost Power de
(MIPS) ($) (mW) (MIPS) ($) (mW) (MIPS) ($) (mW) (MIPS)

AAA, Bus8 14.11 34 1100 11.36 29 1364 14.11 30 1160 71.04
AAA, Bus16 14.40 37 1200 11.63 32 1464 14.40 33 1260 71.97
AAA, Bus32 14.87 38 1220 12.05 33 1484 14.87 34 1280 73.42
AAS, Bus8 14.32 34 1100 11.53 29 1364 14.32 30 1160 72.09
AAS, Bus16 14.52 37 1200 11.71 32 1464 14.52 33 1260 72.72
AAS, Bus32 14.83 38 1220 11.99 33 1484 14.83 34 1280 73.70
ASS, Bus8 - - - - - - - - - 46.34
ASS, Bus16 - - - - - - - - - 49.70
ASS, Bus32 - - - - - - - - - 47.26
ASA, Bus8 - - - - - - - - - 46.29
ASA, Bus16 - - - - - - - - - 46.66
ASA, Bus32 - - - - - - - - - 47.24
Note: 'A' or 'S', in the Individual, stands for ASIC or SW implementations of FPl, FP2 and FPS respectively;
Bus8 is Ext-8bit-B; Bus16 is Ext-16bit-B; Bus32 is Int-32bit-B

Cost

($)

64
67
68
64
67
68
64
67
68
64
67
68

Power
(mW)

5440
5540
5560
5440
5540
5560
5440
5540
5560
5440
5540
5560

V,

V,

Table 9

Typical Solutions Found by EvoC When Lower Cost is Preferred

No. Individual Cost Power Feasibility Critical Excess

Factor MIPS

1 AAS, MP4, Ext-8bit-B, 29 1364 1.0 11.535

SRAM

2 AAS, MP5, Ext-8bit-B, 30 1160 1.0 14.322

SRAM

3 AAS, MP3, Ext-8bit-B, 34 1100 1.0 14.322

SRAM

Table 10 gives the solutions found by EvoC, after running for 10 generations,

when lower power solutions yielding higher critical excess MIPS is preferred. The

best power and MIPS solutions are found in the above table. All the individuals

identified by Evoc, in Tables 9 & 10, are part of the Pareto optimal set of solutions.

Table 10

Typical Solutions Found by EvoC When Lower Power is Preferred

No. Individual Cost Power Feasibility Critical Excess

Factor MIPS

1 AAS, MP3, Ext-8bit-B, 34 1100 1.0 14.322

SRAM

2 AAS, MP5, Ext-8bit-B, 30 1160 1.0 14.322

SRAM

3 AAS, MP2, Ext-8bit-B, 64 5384 1.0 72.093

SRAM

4 AAS, MP2, Int-32bit-B, 68 5504 1.0 73.697

BUF

56

The following observations can be drawn from this example. Though FPl can

be implemented in either software or hardware, the SW component is never chosen as

it demands a very high processing power (MIPS rate), which none of the

microprocessors in the MICRO-LIB has. But, FP2 can be implemented in SW if

MP2 is chosen for an individual. In such individuals, since the time-critical processes

implemented in SW, especially FP2, consumes most of the processor's processing

power, the value of critical excess MIPS becomes very low compared to when FP2 is

implemented on ASIC2.

When comparing AAA and AAS configurations with external bus selections,

it is interesting to note that moving FPS from HW to SW results in an increased value

of the critical excess MIPS, which is somewhat contra-intuitive. This fact is due to

the additional communication overhead (CP6) incurred in all AAA configurations.

To illustrate this, consider two configurations, individual A (having AAA, MP3, Ext-

8bit-B, SRAM) and individual B (having AAS, MP3, Ext-8bit-B, SRAM). NC for

CP6 can be calculated, from Equation (7) as follows:

NC= (64 + 0.15 + (1 - 64) * 0.06) * 28 = 217
16.7

This gives rise to 217 additional instructions for FP6 (implemented in SW) in

individual A, compared to individual B which implements FPS in SW that has only

100 instructions. If communications were neglected for Example III then all the final

solutions would be of type AAA .

57

The difference in the critical excess MIPS values between AAA and AAS

individuals decreases with the selection of a bus having a higher bandwidth. This is

because, as the bandwidth of the bus increases the overall communication overhead in

the system decreases.

It could be noted from Tables 9 & 10 that the bus Ext-8bit-B is chosen

predominantly over the other types, because of its lower cost and power while still

being able to yield feasible solutions.

Timing Analysis

Table 11 gives the comparison of the run time of the three examples based on

the average of several runs for each on the latest version of the EvoC. Example I is a

more complex design problem compared to the other examples. The running time of

EvoC depends on many factors, including the complexity of system specification

(such as number of FPs and CPs), number of available components, population size

and number of generations.

Two of the factors that contribute to the relative long execution time of EvoC

were identified. The lp_solve (ver. 2.0) software was invoked through system calls in

the earlier versions of EvoC. In Unix shell, system calls are handled as child

processes and the main program as the parent process. The system call interface

amounted to unacceptably large execution times. On an average (based on the

58

examples used) parent process consumed only about 10-15% of the total program

execution time.

Table 11

EvoC Run Time for the Examples

Design Average Execution Time Population

Problems per Generation in Seconds Size

Example I 30 45

Example II 1.7 10

Example III 4.6 10

In the earlier ranking scheme given by Goldberg [8] (during Selection) used in

EvoC, the set of all preferred individuals in the current population receives the highest

rank and are removed from further contention. The remaining individuals then

compete for the next highest rank. The above procedure is repeated until all

individuals are ranked. This procedure involves many comparisons in every iteration

to determine winners (preferred solutions) among a set of individuals.

We implemented heapsort algorithm for ranking [refer to Chapter IV] and

procedural call interface to the lp_solve software to reduce the execution time of

EvoC. The former speeds up the program execution by reducing the number of calls

made to the lp _ solve software during the evaluation process in EA and the later by

eliminating the system calls. Table 12 summarizes the speed-up values gained

59

through the above methods for Example I and II. The speed-up value is calculated

from the total execution time of a run.

Table 12

Improved Execution Time of EvoC

Design Preferred Speed-up with Heapsort Speed-up with Proc. Call

Problem Attribute Algorithm Interface

Example I Feasibility 3.7 34.0

Cost 1.0 5.0

Example II Power 1.1 6.7

Cost 0.8 5.2

There is one case in Table 12 that has a speed-up of 0.8. Speed-up due to

heapsort algorithm is very much problem dependent and the number of individuals

per population also influences its value. The speed-up value less than 1.0 is mainly

due to the overhead involved with the heapsort algorithm itself which becomes

significant with a very small population size. This is proved by an increase in the

execution time of the parent process when implementing heapsort algorithm.

Finally, software implementation of EA algorithm demands a good random

number generator. We use a linear congruential pseudo-random number generator

that generates uniformly distributed random numbers.

60

CHAPTER VII

CONCLUSIONS AND FURTHER WORK

We presented the CAD tool, EvoC used for the automated hardware/software

partitioning of RTES at the system level. The highlights of our approach can be

summarized as follows:

1. A high level of abstraction, system level is used. It helps us to efficiently

explore many design alternatives and analyze the tradeoffs. 2. There are no

existing CAD tool which combines EA and ISMAUT to solve a RTES

hardware/software partitioning problem. The combination of EA and ISMAUT gives

EvoC the capability of exploring a large design space corresponding to a multiple

objective optimization problem.

3. EvoC targets its solution set to be a subset of the Pareto optimal set [14]

and will vary with user's preferences.

4. The modeling of communication does not merely result in adding

components to the system, but rather expresses the behavior of the system as an

integrated set of components - the compatibilities and tradeoffs between a connected

set of components.

5. EvoC has an input format that forms a generic platform for specifying a

variety ofRTES.

61

6. EvoC assumes no target architecture (for the monoprocessor case) and is

flexible enough to produce design alternatives that are drastically different in their

system architecture.

Though the current version of the tool can handle all the aforementioned

features, further improvements can be made to enhance this tool. Some of them are

given here.

A characteristic latency for ASICs may be introduced. The latency of an

ASIC represents the delay in the hardware circuitry. It can be used during selection

of components in the first phase of partitioning to form a constraint as follows:

Constraint_pass condition: latency + (NCi IM) < di (8)

where, NC is the communications overhead and M is the processor MIPS rate. An

allocation of a FP to an ASIC is acceptable only if the deadline (di) of the FP is

greater than the sum of the latency of ASIC and the communications overhead

(expressed in time units) incurred by the FP. The above constraint will serve as a

check for HW components on their "load", due to the implementation of one or more

UDPs, just like the system feasibility check for SW components. Added to this is the

effect of communications overhead, that is associated with the FPs implemented on

the ASIC.

While accounting for communication overhead in the system attributes, bus

arbitration time cannot be ignored especially if buses are heavily utilized. EvoC does

62

not presently include any bus arbitration overhead although a worst-case average bus

bandwidth requirement serves as a constraint used during bus selection.

In the present form of the tool, multi-processor implementations are not

considered. Hence, the next natural step for extending the features of EvoC would be

to include multi-processor cases. The data structure has been designed to be flexible

enough to handle such cases. For example, there is a provision in the data structure

for specifying multiple SW components (that can be implemented on different

processors) for each user-defined processes.

63

Appendix A

Input File Format of EvoC

64

Once the input files are formed, EvoC can be executed using the command

"evoc" . The user will then be prompted to enter the number of generations. The

output file "results" will be created on successful completion of a run. It contains all

the final design configurations, explicitly showing the hardware/software allocations

of all user-defined system processes and the component interconnections via buses. It

also gives the total system cost, critical excess MIPS available, feasibility factor and

other additive attributes specified by the user.

EvoC input file format is given in the following page. The words in lower

case are keywords and the words in upper case are variable names.

65

// attributes/characteristics in attr.dat input file

ATTRIBUTENAME (instructions, cost, mips, power, area, activation,
period, deadline, feasibility, xbytes, bandwidth, ..)

attribute-aper-type
ATTRTYPE (additive, feasibility-factor, mips-factor, ...)
attribute-goal-type
ATTRGOAL (minimize, maximize)
attribute-value-type
ATTRVAL (real, integer,long, ...)
attribute-util-type
ATTRUTIL (linear, ...) // lower case are keywords
end

// components in sw.dat, asic.dat, pw.dat, micro.dat & misc.dat input
files

COMPNAME
attributes
ATTRBUTENAME

ATTRBUTENAME

VALUE

VALUE
implemented-parts
PARTNAMEl (ram, rom, bus, ...) NUM

PARTNAMEn
required-parts
PARTNAMEl

PARTNAMEn
end

NUM

NUM

NUM

// functions or processes in func.dat input file

FUNCTIONNAME
attributes
ATTRBUTENAME

ATTRBUTENAME
components
COMPNAMEl

COMPNAMEn
end

VALUE

VALUE

LIBNAME (sw, asic, pw, micro, misc)

LIBNAME

// communication in comm.dat input file

COMMNNAME
attributes
ATTRBUTENAME

ATTRBUTENAME
input
FUNCTIONNAME
output
FUNCTIONNAME
end

VALUE

VALUE

66

Appendix B

Data Structure of EvoC

67

class Attr_Type
{

public:
Attr Type ();
char- name[MAX_LINE SIZE];
int aper type;
int goal-type;
int val type;
int utiI type;

II generic name e.g. cost

}attr_type[MAX_ATTR];

class Attr Value
{

public:
Attr_Value ();
char name[MAX LINE SIZE];
long index; -
Attr Type*type;
float value;

II specific name e.g. ProcCost
II unique ID

}attr_value[20*MAX_AVAL*MU_LAMBDA+l];

class Comp_subModule II all Cells
{
public:

Comp subModule ();
char- name[MAX LINE SIZE];

comp_submodule[MAX_PARTS];

class Comp_Module
{
public:

II all COMPONENTs

Comp Module ();
char name[MAX LINE SIZE];
Attr Value *attr list[MAX ATTR];
Comp-subModule *imp parts[MAX-PARTS];
long- num imp parts[MAX PARTS];
Comp subModule *req parts[MAX PARTS];
long- num_req_parts[MAX_PARTS];

sw lib[MAX SW], asic lib[MAX ASIC], pw lib[MAX PW],
micro_lib[MAX_MICRO]� misc_lib[MAX_MISC];

class Fune Spec
{
public:

Fune Spec ();
char
Attr Value
Comp_Module

name[MAX LINE SIZE];
*attr list[MAX ATTR];
*allsw imp func[MAX IMP FUNC],
*allasic imp func[MAX IMP FUNC],
*allpw imp func[MAX IMP FUNC],
*allmicro_Imp_func[MAX_IMP_FUNC];

func_spec[MAX_ FUNC];

68

class Func_Imp
{

public:
Fune Imp ();
char- name[MAX LINE SIZE);
int type; -// SW=l, ASIC=2, PW=3, MICRO=4, MISC=S
Comp Module *pos imp func;

func_imp[MAX_FUNC*2*MU_LAMBDA+l), func_impl[MAX_FUNC*MU_LAMBDA+l];

class Comm_Spec
{
public:

Comm_Spec ();
char name[MAX LINE SIZE);
Attr Value *attr list[MAX ATTR);
Func_Spec *input; -
Func_Spec *output;

comm spec[MAX_COMM];

class Comm Imp
{

-

public:
Comm Imp ();
char name[MAX LINE SIZE);
Comp Module *pos imp-comm[MAX COMP COMM);

comm_imp[MAX_COMM*2*MU_LAMBDA+l), -comm_=-impl[MAX_COMM*MU LAMBDA+l];

class Bus Comp
{

-

public:
Bus Comp ();
Comp Module *BusPtr;
Comp=Module *BusCompPtr[MAX COMP BUS);
Comp_Module *BusMem[MAX_COMP_BUS);
Comm Imp *BusCpPtr[MAX COMM);

bus comp[MAX_BUS*2*MU_LAMBDA+f], bus_compl[MAX_BUS*MU LAMBDA+l];

class Individual
{
public:

Individual ();
Attr Value *attr list[MAX ATTR];
Func_Imp *func- config; -
Comm Imp *comm-config;

alternative[2*MU_LAMBDA+l], temp_alt [MU_LAMBDA+l);

69

BIBLIOGRAPHY

[1] S. Bollinger and S. Midkiff, "Heuristic techniques for processor and link

assignments in multicomputers", IEEE Trans. on Computers, Vol 40, No. 3,

Mar 1991.

[2] B. Braschi, A. Ferreira and J. Zerovnik, "On the behavior of parallel simulated

annealing", in Parallel Comp. 89, D. Evans, G. Joubert and F. Peters (edt.),

Elsevier Science Publishers B.V. (North-Holland), '90.

[3] K. Buchenrieder and C. Veith, "CODES: A practical concurrent design

environment", International Workshop on Hardware-Software Codesign,

October 1992.

[4] J.G. D'Ambrosio and X. Hu, "Configuration-level hardware/software partition for

real-time embedded systems", Proceedings of the Third International Workshop

on Hardware-Software Co-Design, September 1994, pp. 34-41.

[5] P. Eles, Z. Peng and A. Doboli, "VHDL system-level specification and

partitioning in a hardware/software co-synthesis environment", Proceedings of

the Third International Workshop on Hardware-Software Codesign, Sept. 1994,

pp.49-55.

[6] R. Ernst, J. Henkel and T. Benner, "Hardware-software cosynthesis for

microcontrollers", IEEE Design & Test of Comp., Vol 10, no. 4, December 1993,

pp. 64-75.

[7] D. Fogel, Evolutionary Computation, IEEE Press, 1995.

[8] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley Pub. Co., 1989.

[9] G. Greenwood, X. Hu and J. D'Ambrosio, "Fitness Functions for

Multipleobjective Optimzation Problems: Combining Preferences with Pareto

Rankings", Foundations of Genetic Algorithms, R. Belew and M.Vose (Eds.),

Morgan-Kaufmann, San Mateo, CA (accepted, in press)

70

[10] G.K. Gupta and G. De Micheli, "Hardware-software cosynthesis for
digital systems", IEEE Design & Test of Comp., Vol 10, no. 3,
September 1993, pp. 29-40.

[11] J. Henkel, T. Benner, R. Ernst, W. Ye, N. Serafimov and G. Glawe,
"COSYMA: A software-oriented approach to hardware/software
codesign", J of Comp. & Software Engineering, 2(3), '94, pp. 293-314

[12] J. Hom and N. Nafpliotis, "Multiobjective optimization using the
niched pareto genetic algorithm", IlliGAL Report No. 93005, July
1993, U. of Illinois at Urbana-Champaign.

[13] X. Hu, J.G. D'Ambrosio, B.T. Murray and D. Tang, "Codesign of
Architecture for Automotive Powertrain Modules", IEEE Micro,

August 1994, pp. 17-25.

[14] J.G. D'Ambrosio, X. Hu and G. Greenwood, "An evolutionary
approach to configuration-level hardware/software partitioning",
PPSN JV, July 1996, pp. 900-909.

[15] T.B. Ismail, M. Abid and A. Jerraya, "COSMOS: A codesign approach
for communicating systems", Proc. of the Third Int'! Workshop on

Hardware-Software Codesign, September 1994, pp. 17-24.

[16] R.L. Keeney and H. Raiffa, Decisions with Multiple Objectives:
Preferences and Value Tradeoffs, John Wiley & Sons, NY, 1976.

[17] S. Kumar, J.H. Aylor, B.W. Johnson and W.A. Wulf, "Exploring
hardware/software abstractions & alternatives for codesign", The
Second International Workshop on Hardware-Software Codesign,

Cambridge, Massachusetts, October 1993.

[18] S. Kumar, J.H. Aylor, B.W. Johnson and W.A.Wulf, "Object-oriented
techniques in hardware design", Computer, Vol 27(6), 1994, pp. 64-70

[19] C.L. Liu and J.W. Layland, "Scheduling algorithms for
multiprogramming in a hard real-time environment", J of the
Association for Computing Machinery, Vol. 20(1), 1973, pp. 46-61.

[20] M.B. Srivastava and R.W. Brodersen, "Rapid-prototyping of
hardware and software in a unified framework", Proc. of Int'/ Conj

on CAD, November 1991, pp. 152-155.

71

[21) D.E. Thomas, J.K. Adams and H.Schmitt, "A model and methodology

for hardware-software codesign", IEEE Design & Test of Comp., Vol

10, no. 3, Sept. 1993, pp. 6-15.

[22) T.Y. Yen and W.W. Wolf, "Communication synthesis for distributed

embedded systems", Proc. of IEEE Int'/ Conj on CAD, Vol 28, Nov.

1995, pp. 288-94.

[23) W.W. Wolf, "Hardware-software codesign of embedded systems",
Proc. of the IEEE, 82(7), July 1994, pp. 967-989.

[25) S.Yalamanchili, L.T. Winkel, D. Perschbacher and B. Shenoy,

"Genie: An environment for partitioning and mapping in embedded
multiprocessors", IEEE Symposium on Parallel and Distributed

Processing, Vol 18, Dec. 1993, pp. 522-9.

[25) S. Yerramareddy and C.Y. Lu, "Hierarchical and interactive decision

refinement methodology for engineering design", Research in Engineering
Design, Vol. 4, 1993, pp. 227-239.

72

	Evolutionary Codesign
	Recommended Citation

	tmp.1570456698.pdf.hbXVB

