
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Master's Theses Graduate College

6-1994

Floorplanning for Mixed Block and Cell Designs Floorplanning for Mixed Block and Cell Designs

Arun G. Shanbhag

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Shanbhag, Arun G., "Floorplanning for Mixed Block and Cell Designs" (1994). Master's Theses. 4904.
https://scholarworks.wmich.edu/masters_theses/4904

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4904&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/4904?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4904&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

FLOORPLANNING FOR MIXED BLOCK AND CELL DESIGNS

by

Arun G. Shanbhag

A Thesis
Submitted to the

Faculty of The Graduate College
in partial fulfillment of the

requirements for the
Degree of Master of Science

Department of Computer Science

Western Michigan University
Kalamazoo, Michigan

June 1994

To

My Uncle, Manjuf?,ath Nayak

and

My Parents

ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to my advisor,

Professor Naveed A. Sherwani, from whom I have learned many valuable skills,

both research and otherwise. His consistent support, accessibility and his constant

motivation, has been a source of encouragement for me. I expect our professional

working relationship to continue for many years to come.

Professor Donald Nelson, the Department Chair, has my gratitude for his

continued support in providing research facilities that has been a great help in

finishing this thesis work and conducting other research.

I am grateful to the members of my thesis committee, Professor Alfred

Boals and Professor Ajay Gupta, who accepted this additional task with high

enthusiasm.

I would like to thank both the old and the new 'nitegroup' members. Ja­

hangir Hashmi, Moazzem Hossain, Siddharth Bhingarde and Surendra Burman,

for their initial help, cooperation, and friendship. My sincere gratitude to Srini­

vasa, Praveen and Tim for their help on "ARCHITECT". I would also like to

thank Sandeep, Rajen, Shreekrishna, John and Aman for all their help and cheer­

ful company during the many long nights that we spent working together in the

VLSI lab.

I would also like to thank all my friends at WMU, who, in one way or the

other, made my study here an enjoyable one.

Special thanks to Suzanne Moorian and Phyllis Wolf from Computer Sci­

ence Department, who helped me in many administrative situations: their pleas­

ant characters and helpful personalities are assets to us all.

11

Acknowledgements - continued

Finally, I thank my parents for their encouragement, guidance and support

which has always helped me in accomplishing my goals.

Arun G. Shanbhag

lll

FLOORPLANNING FOR MIXED BLOCK AND CELL DESIGNS

Arun G. Shanbhag, M.S.

Western Michigan University, 1994

Floorplanning is one of the important phases of the VLSI Physical Design

cycle. The quality of a floorplan is usually not evident until the routing phase. A

bad floorplan can lead to an unroutable design requiring another iteration of the

floorplanning phase. Use of over-the-cell routing has led to zero routing footprints.

Any further reduction in area of the layout is possible only by reducing the white

space or the vacant space from the floorplan, that is by improving the floorplan

of the layout.

Currently, the Mixed Block and Cell {MBC) design style is gaining pop­

ularity. This evolving design style is generally used to design high performance

microprocessor chips. In the last three to four years, most of the microprocessors

have been designed using this design style.

In this thesis, we develop a floorplanning scheme for Mixed Block and Cell

designs which differs radically from all existing approaches. Existing algorithms,

deal with rectangular shaped flexible blocks while generating the floorplans. In

our algorithm, we exploit the flexibility of the standard cell regions by assigning

rectilinear shapes to these regions. This improves not only the area of the layout

but can also improve the performance of the design. We have developed an inter­

active tool, called "ARCHITECT" based on our algorithm, for floorplanning of

MBC designs.

TABLE OF CONTENTS

ACKNOWLEDGMENTS ..

LIST OF TABLES .

LIST OF FIGURES

I. INTRODUCTION

ii

VI

vii

1

Placement and Floorplanning . . 2

Design Styles 4

Floorplanning for MBC Designs . 6

II. AN OVERVIEW OF EXISTING FLOORPLANNING TECHNIQUES 9

Classification of Floorplanning Algorithms 9

Existing Algorithms for Floorplanning of MBC Designs 15

III. MOTIVATION FOR A NEW FLOORPLANNING ALGORITHM . . 16

Flexible Blocks and Shape Parameters

IV. AN OVERVIEW OF THE ARCHITECT SYSTEM

Preliminaries

Overview of the ARCHITECT Floorplanning System . . .

V. THE ARCHITECT FLOORPLANNING SYSTEM .

Partitioning the Netlist

The Initial Placement Phase

Flexible Block Reshaping Algorithm .

Standard Cell Assignment

IV

18

22

22

23

25

25

26

27

42

Table of Contents - continued

VI. EXPERIMENTAL RESULTS . 47

VII.CONCLUSIONS . 52

REFERENCES . 53

V

LIST OF TABLES

1. Floorplan Areas Generated by ARCHITECT. 48

VI

LIST OF FIGURES

1. A Mixed Block and Cell Layout. 6

2. Reduction in Area by Using Rectilinear Shaped Flexible Blocks. 16

3. Reduction in Critical Path Lengths by Reshaping Flexible Blocks. 17

4. Complex but Undesirable Shape for Flexible Blocks ..

5. Representation of Flexible Blocks.

6. Requirement of /3 Shape Parameter for Flexible Blocks.

7. The FBR Process.

8. A Depression in the Top Boundary.

9. The SBBA Problem and Its Solution ..

10. The SBBA Solution for an Example. .

11. The IRBBA Problem and Its Solution.

12. Assignment of a Fixed Block to the Top Boundary.

13. Reshaping of a Flexible Block.

14. Elimination of Line Segments Violating the /3 Constraint ..

15. Shape Generation of a Flexible Block.

16. Generation of New Top Boundary After Block Assignment ..

17. The IRBBAST Problem and Its Solution.

18. The ARCHITECT Floorplanning Tool With FBR in Action.

19. The Initial Placement of FP2 Used as Input for FBR. .

20. Layout of FP2 for a=6 and /3 = 15 ..

21. Layout of FP2 for a=8 and /3 = 8. .

vii

18

19

20

28

30

31

34

35

36

38

38

44

45

46

47

49

49

50

List of Figures - continued

22. Reduction of White Space During Each Iteration of FBR.

Vlll

51

CHAPTER I

INTRODUCTION

Floorplanning and Placement are important steps of the VLSI Physical De­

sign cycle. Both these steps are concerned with selecting good layout alternatives

for each block, as well as the enitre chip. During placement, the exact locations

of the blocks on the chip is determined. The objective of a placement algorithm is

to find a minimum area arrangement for the blocks such that all the interconnec­

tions required between the blocks can be carried out. Usually, placement is done

in two phases. In the first phase an initial placement of the blocks is generated.

The second phase is usually iterative and improves the initial placement until the

layout has minimum area and conforms to design specifications. The input to the

placement phase is a set of blocks, the number of terminals for each block and the

netlist. If the layout of the circuit within a block has been completed then the

dimensions of the block are also known. The blocks for which the dimensions are

known are called fixed blocks and the blocks for which dimensions are yet to be

determined are called flexible blocks. Thus during the placement phase, we need

to determine an appropriate shape for each block (if shape is unknown), location

of each block on the layout surface, and determine the locations of pins on the

boundary of the blocks. The problem of assigning locations to the fixed blocks

on a layout surface is called the Placement problem. If some or all of the blocks

are flexible then the problem is called the Floorplanning problem. Hence, the

placement problem is a restricted version of the floorplanning problem. The ter­

minology is slightly confusing as floorplanning problems are placement problems

as well but these terminologies have been widely used and accepted. Floorplan­

ning sets up the ground work for a good layout. However, it is computationally

quite hard. Very often the task of floorplan layout is done by a design engineer,

1

rather than by a CAD tool. Both the floorplanning and routing stages are quite

critical as the quality of the layout is not evident until the routing phase. A bad

floorplan may lead to an unroutable design thereby requiring another iteration

of the floorplanning phase. The performance of the chip depends heavily on the

floorplan generated.

Usually, several factors are considered by the placement and floorplanning

algorithms. These factors are discussed below:

1. Block Shapes: The blocks are assumed to be rectangular in shape.

This assumption is made in order to simplify the problem. The shapes resulting

from the floorplanning algorithms are mostly rectangular for the same reason.

Floorplanning algorithms use aspect ratios for determining the shape of a block.

The aspect ratio of a block is the ratio of the height to the width of the block.

Usually there is an upper and a lower bound on the aspect ratios, restricting the

dimensions that the block can have. More recently, other shapes such as L-shapes

have been considered, however dealing with such shapes is computationally hard.

2. Routing consideration: In order to generate a layout which is

routable, the placement and floorplanning algorithms need to estimate area re­

quired for routing. The blocks are placed in a manner such that there is sufficient

routing area between the blocks so that routing algorithms can successfully com­

plete the routing within these areas.

3. High Performance circuits: For high performance circuits the blocks

are to be placed such that all critical path lengths are minimized.

Placement and Floorplanning

The placement problem can be stated as follows: Given an electrical circuit

consisting of fixed blocks, and a netlist interconnecting terminals on the periph­

ery of these blocks and on the periphery of the circuit itself, construct a layout

indicating the positions of each block such that all the nets can be routed and

2

the total layout area is minimized. The objective for high performance systems

is to minimize the total delay of the system, by minimizing the lengths of the

critical paths. The quality of a placement can be judged by the area of the layout,

completion of routing and circuit performance.

The placement problem can be formally stated as follows: Let B1, B2, ... , Bn,

be the blocks to be placed on the chip. Each Bi, 1 $ i $ n, has associated with it

a height�, and a width wi. Hence, each block Bi, can be represented by a rectan­

gle �, with the coordinates of its lower left corner specified by (xi, Yi), 1 $ i $ n.

Let Oi, represent the orientation of block Bi , Oi = 1, if the block is rotated by

90°, else Oi = 0. Let N = {N1, N2, N3, ••• , Nm}, be the set of nets representing

the interconnection between different blocks. Let Q = { Q 1 , Q2, ... , Qk}, repre­

sent rectangular empty areas allocated for routing between blocks. Let Li, denote

the estimated length of net Ni, 1 $ i $ m. The placement problem is to find

the location (xi, Yi) and orientation Oi for each rectangle Ri, representing block

Bi, 1 $ i $ n, such that

1. No two rectangles overlap, that is� n R; = <p, 1 $ i,j $ n,

2. Placement is routable, that is Q;, 1 $ j $ k, is sufficient to route all

the nets.

3. The total area of the rectangle bounding 'R and Q is minimized.

4. The total wirelength is minimized, that is I:�
1

Li is minimized. In the

case of high performance circuiti, the length of longest net max{ Li I i = 1, ... , m}

is minimized.

Floorplanning is the placement of flexible blocks, that is blocks with fixed

area but unknown dimensions. It is a much more difficult problem as compared

to the placement problem. In floorplanning, several layout alternatives for each

block are considered. Usually, the blocks are assumed to be rectangular and the

lengths and widths of these blocks are determined in addition to their locations.

The blocks are assigned dimensions by making use of the aspect ratios. Usually,

3

there is an upper and a lower bound on the aspect ratio a block can have as the

blocks cannot take shapes which are too long and very thin. Initial estimate on

the set of feasible alternatives for a block can be made by statistical means, i.e.,

by estimating the expected area requirement of the block. Many techniques of

general block placement have been adapted to floorplanning.

As the placement problem is a restricted version of floorplanning all the

constraints and objective functions applicable for the placement problem are ap­

plicable. Usually, the input consists of B1 , B2, ••• , B" circuit blocks, with area

a1 , a2, • • • , a,u respectively. Associated with each block are two aspect ratios A:

and A�, which give the lower and the upper bound on the aspect ratio for the

block. The floorplanning algorithm has to determine the width wi and height, hi

of each block Bi such that A: � � � A�. In addition to finding the shapes of the

blocks, the floorplanning algorithm has to generate a valid placement such that

the area of the layout is minimized.

Design Styles

Placement and floorplanning algorithms are generally developed for a par­

ticular design style. The two most popular design styles are the full-custom design

style and the standard cell design style. The full-custom design style consists of

blocks of different sizes. In full-custom designs, blocks can be placed at any lo­

cation on the chip surface without any restrictions which allows very compact

layouts. However, the process of automating a full-custom design style has a

much higher complexity than other restricted models. Hence, this design style

is used only when minimum area layouts are required and there is no constraint

on the designing time required. The space not occupied by the blocks is used for

routing interconnecting wires.

4

On the other hand, the design process in a standard cell design style is

somewhat simpler than a full-custom design style. Standard cell architecture con­

siders the layout to consist of rectangular cells of same height. Several predefined

cells are available in a standard cell library. The cells are placed in rows and

the space between two rows, called a channel is used to perform interconnections

between the cells. The interconnections for cells which lie in two non-adjacent

rows and need to be connected is done by passing the wire in an empty space

between two cells in a row. This empty space is called a feedthrough. This design

style is well-suited for moderate size circuits and medium production volumes.

Physical design using standard cells is somewhat simpler compared to full-custom

and efficient using modern design tools.

Recently, a new kind of design style called the Mixed Block and Cell (MBC)

design style has been gaining popularity. This evolving design style consists of

a mix of both blocks and standard cells. Usually in an MBC design, regular

structures such as RAM and datapath blocks are implemented as full-custom

macro cells and other logic is implemented using standard cells. The MBC design

style offers a compromise between the performance of a full custom design style

to the relative simplicity of layout generation problem of the standard cell design

style. The time to market required for MBC designs is also considerably less

compared to that of the full custom design style as it allows reuse of macro blocks.

Hence, the MBC design style is being preferred· over other design styles. In an

MBC design, usually, the macro blocks are taken from existing designs and the

additional functionality is developed using standard cells. The macro blocks are

also called as fixed blocks as their areas, shapes and pin locations are well defined.

On the other hand, the functional blocks build using the standard cells are highly

flexible enough to be molded into a variety of different rectilinear shapes. Hence

these blocks are referred to as juice or flexible blocks. Typically, on a chip designed

5

with the MBC design style, there are about 10 fixed blocks and about 10,000

standard cells. Figure 1 shows the layout of a MBC design.

Figure 1. A Mixed Block and Cell Layout.

Floorplanning for MBC Designs

In this thesis, we consider the floorplanning problem for MBC designs.

We have developed a heuristic algorithm called Flexible Block Reshaping (FBR)

algorithm, which has been incorporated into "ARCHITECT", a floorplanning

tool for MBC designs. The floorplanning problem for MBC designs can be stated

formally as follows: Let B Ii, B h, B '3, ... , B /,. , be the set of fixed blocks. Each

fixed block B1; , is represented as a rectangle R1; , 1 � i � n, with width Wf; and

height h1,, 1 � i � n. Let 01,, denote the orientation of the fixed block B1,

and (xi., YtJ denote the coordinates of the lower left corner of the block. Let

Bv1, B112, Bv,, ... , Bvm , be the set of flexible blocks which are represented as a set

of rectangles Rv,, 1 � i � m. Each flexible block Bv,, actually consists of a

set of standard cells Sv;, 1 � i � m. Each flexible block Bv,, has an area Av,

and the orientation of the block is denoted by Ov;, 1 � i � m. Associated with

6

each flexible block B,,;, are two aspect ratios, a�in and a�az which represent the

lower and the upper bound respectively on the aspect ratio of the block B,,;. The

coordinates of the lower left corner of a flexible block B,,; are given by (x,,;,y,,;).

Let N = {N1, N2, Na, ... , Nm}, be the set of nets representing the interconnection

between the different blocks. Let Q = { Q1, Q2, ••• , Q,:}, represent rectangular

vacant areas or white space in the floorplan. Let Li, denote the estimated length

of net Ni, 1 $ i $ m. The floorplanning problem· for MBC designs is

1. To determine the location (:z:1;, Y1J and the orientation 01;, for each

rectangle Rt;, representing a fixed block Bi, 1 $ i $ n

2. To determine the location (x,,;, y,,;), the orientation 011; and an aspect

ratio a,,;, for each rectangle R,,;, representing a flexible block B,,;, 1 $ i $ m

such that:

1. a�in $ a,,; $ a�ax for each flexible block B,,;, 1 $ i $ m,

2. No two rectangles overlap,

3. The vacant area Q, is minimized,

4. The total wirelength is minimized, that is E�1 Li is minimized.

After the floorplan is generated, the placement of standard cells S,,;, within

the region specified by R,,;, 1 $ i $ m, has to be determined. This is the tra­

ditional problem formulation for the MBC floorplanning problem. Several algo­

rithms [1, 8, 9, 10, 11, 12, 13] have been developed for the traditional problem. In

the traditional problem, the shapes of flexible blocks are restricted to rectangular

in order to simplify the problem. The flexibility of the standard cell region is

not exploited because of the restriction on its shape. The standard cell regions

can be used to eliminate the vacant or white spaces in a floorplan. This can be

done only if rectilinear shapes are considered for flexible blocks. This is the main

difference between our approach and the traditional approach. In our approach,

we generate rectilinear shapes for flexible blocks. In order to control the shapes

of these blocks, we have defined two new shape control parameters.

7

We have incorporated our floorplanning algorithm in "ARCHITECT", a

tool for floorplanning of MBC designs. Our results indicate that the generation

of rectilinear shapes for flexible blocks leads to an improvement in the floorplan

areas for MBC designs.

Chapter II of this thesis has been devoted to the discussion of the vari­

ous existing techniques used for floorplanning. We have presented a classifica­

tion scheme for existing techniques. In Chapter · II, we also discuss the existing

approaches for floorplanning of MBC designs. In Chapter III, we give the moti­

vation behind developing a new floorplanning algorithm and discuss more about

the shape parameters used for controlling the rectilinear shapes generated by our

algorithm. Chapter IV, gives an overview of the ARCHITECT floorplanning tool.

The details of our floorplanning algorithm are described in Chapter V. Experi­

mental results and conclusions are presented in Chapter VI.

8

CHAPTER II

AN OVERVIEW OF EXISTING FLOORPLANNING TECHNIQUES

In this chapter we give an overview of existing techniques for floorplanning.

We will provide a scheme for classification of the :various existing algorithms and

briefly discuss one algorithm in each of these broad areas. As the focus of this

thesis is on MBC designs, we will discuss existing floorplanning algorithms for

MBC designs.

Classification of Floorplanning Algorithms

In this section, we present a classification scheme for existing floorplanning

algorithms. The floorplanning algorithms can be classified into three broad areas

depending on the approach used. These three areas are:

1. Constraint based methods.

2. Rectangular dualization based methods.

3. Hierarchical tree based methods.

We will discuss each of these categories in more details in the following

sections.

Constraint Based Methods

The constraint based methods or algorithms make use of certain constraints

that are either derived from the given problem or that are defined as input to the

problem. The constraint based algorithms are iterative improvement type of floor­

planning algorithms. At any given time, the solution generated is guaranteed to

satisfy the constraints specified by the constraint set. There are several very well

known algorithms in this area. The algorithm proposed by Vijayan and Tsay [1]

9

uses topological constraints while generating floorplans. Another approach devel­

oped by Sutanthavibul, Shragowitz and Rosen [2) uses an integer programming

formulation for generating the floorplan. The floorplanning problem is modeled

as a set of linear equations using 0/1 integer variables. Constraints considered

include overlap constraints and routability constraints. The overlap constraints

prevent any two blocks from overlapping whereas the routability constraints es­

timate the routing area required between the biocks. S. Dong, J. Cong and C.

Liu [3) have presented a floorplan design algorithm which is capable of sizing a

set of flexible blocks and placing them according to given constraints on rela­

tive positions as well as separation requirements in both horizontal and vertical

directions.

The method, proposed by Vijayan and Tsay [1), constructs a floorplan of

optimal area that satisfies (respects) a given set of constraints. A set of horizontal

and vertical topological (i.e., ordering) constraints is derived from the relative

placement of blocks. Given a constraint set, it is usually the case that there is

no reason to satisfy all the constraints in the set. This is especially true when

a majority of the blocks have flexible shapes. A floorplan is said to respect a

constraint, if for each pair of blocks, the floorplan satisfies at least one constraint

(horizontal or vertical). A constraint set is said to be overconstrained if it has

many redundant constraints. It is desirable to derive a complete constraint set

from the input relative placement and then to remove those redundant constraints

that result in reduction of floorplan area.

A topological constraint set of a set of blocks is given by two directed acyclic

graphs (G H, Gv): G H is the horizontal constraint graph and Gv is the vertical

constraint graph. In order to reduce the floorplan area, the heuristic iteratively

removes a redundant constraint from the critical path of either G H or Gv and also

iteratively reshapes the blocks on the critical paths of the two graphs. Critical

path is the longest path in G H or Gv . The input to the algorithm is a constraint

10

set (G H, Gv) of the set of blocks. To minimize the floorplan area, repeat steps 1

and 2 until there is no improvement in the floorplan area.

Step 1: Repeat the following steps until are no strongly redundant edges on PH

or Pv exist. GH and Gv are topologically sorted and swept. Either PH or Pv,

whichever is more critical is selected, where PH and Pv are the critical paths of

G H and Gv respectively. The strongly. redundant edge on the selected critical

path is ·eliminated.

Step 2: The current shapes of the blocks are stored and a path, either Pv or PH

is selected depending on which of the two is more critical. All the flexible blocks

on the selected path are reshaped. G H and Gv are scanned again to construct the

new floorplan. If the newly generated floorplan is better than the previous one

the stored block shapes are updated. All the steps described above are repeated,

a specified number of times.

Each pass of the algorithm constitutes one execution of two steps. Con­

straint reduction takes place in step 1 and step 2 does the reshaping of the blocks.

If the chip dimensions are fixed, the passes are repeated until the target dimensions

are reached. Otherwise the passes can be repeated until there is improvement in

the floorplan area. Typically three or four passes are required.

The purpose of removing a redundant edge on the critical path is to break

the path into two smaller paths. A good choice for such a redundant edge is the

one which is nearest to the center point of the path. The above heuristic removes

only one redundant constraint from a critical path at each iteration, and thus

seeks to minimize the number of constraints removed. An edge can be checked

for .strong redundancy in constant time if we maintain the adjacency matrix of

G H and Gv . It takes 0(n2) time to set up adjacency matrices. A topological sort

of a directed acyclic graph with n nodes and m edges takes 0(m + n) time. The

number of topological sorts executed depends on the number of redundant edges

11

removed, the user-specified value for the number of reshaping iterations, and the

number of passes.

Rectangular Dualization Based Methods

Rectangular dualization method· first originated in the field of computer

aided architectural design. This method has been the subject of extensive research

over the last decade for its application to chip floorplanning. Given a floorplan F,

a rectangular graph, G(V, E), represents the adjacency of blocks in F. Each vertex

in V corresponds to a distinct block in F and there is an undirected edge (u, v)

in E iff the block corresponding to vertex u and that corresponding to vertex

v are adjacent. It is easy to see that for a given floorplan a unique rectangular

graph always exists. By definition, a rectangular floorplan is embedded on a plane

which implies that its rectangular graph is a plane graph. The assumption about

all intersections except the corners of F being T-junctions leads to the fact that all

the internal faces of G are bounded by three edges. Thus, a rectangular graph is a

plane triangulated graph. Plane triangulated graphs depicting adjacency of blocks

are also known as neighborhood graphs. Given an n-vertex plane triangulated

graph G, its rectangular dual RD consists of n non-overlapping rectangles where

each vertex i in G corresponds to a distinct rectangle in RD. An edge {i,j) in G,

requires rectangles i and j to be adjacent in RD. The rectangular dual of G, if it

exists corresponds to a valid rectangular floorplan where the rectangles represent

the the blocks in the floorplan.

Kozminski and Kinnen [4] established necessary and sufficient conditions

for the existence of a rectangular dual when a graph is planar and satisfied the

following properties:

Pl: Every face (except the exterior) is a triangle.

P2: All internal vertices have degree � 4.

P3: All cycles that are not faces have length � 4.

12

Using their necessary and sufficient conditions, Kozminski and Kinn en de­

veloped an algorithm to obtain a rectangular du.tl, when one existed; in 0(n2)

time, where n is the number of vertices in the graph. Bhaskar and Sahni [5],

proved that only conditions Pl and P3 are necessary and sufficient and they

developed an O(n) algorithms to obtain a rectangular dual.

In order to modify a given logical network to have a rectangular dual, the

following steps are necessary. First, the network has to be planarized by deleting

a minimum number of edges or a set of edges with minimum total weight, which

has been proved to be NP-Complete. Second, the resulting planar graph has to be

triangulated to generate a plane triangulated graph, which can be done in linear

time. Third, all complex triangles have to be eliminated from the plane trian­

gulated graph, which is an open problem. Finally, the proper plane triangulated

graph has to be dualized yielding a dissection of a rectangle into rectangles - a

floorplan of the network. For a given ·proper plane triangulated graph, there are

many rectangular duals. If the rectangular dualization method is applied. to a

large network, the complexity is too high to be practical; if it is applied to a small

network, we might as well enumerate all possibl«:! floorplans. lf ence this technique

is not very practical.

Hierarchical Tree Based Methods

Hierarchical tree based methods represent a floorplan as a tree. Each

leaf in the tree corresponds to a block and each internal node corresponds to a

composite block in the floorplan·. A floorplan is said to be hierarchical of order

k, if it can be obtained by recursively partitioning a rectangle into at most k

parts. Physical hierarchy can be generated in two ways: top-down partitioning

or bottom-up clustering. Partitioning assumes that the relative areas (or number

of nodes) Within partitions, at a given level of hierarchy, may be fixed during

a top down construction of a decomposition tree (or partitioning tree). There

13

is no justification, except convenience, for this assumption. The optimal choice

of relative areas varies from problem instance to problem .instance, but there is

no way to determine a desirable ratio, in top-down construction. · Placements

performed by min-cut method, a popular partitioning algorithm, often creates

lot of vacant space or white space. Clustering on the other hand is a bottom-up

algorithm for constructing a decomposition tree (or cluster tree).

In [6] a hierarchical floorplanner for arbitrary size rectangular blocks using

the clustering approach has been proposed. At each level of the hierarchy, highly ·

connected blocks (or clusters of blocks) are grouped together into larger clusters.

At each level, the number of blocks is limited to five so that simple pattern enu­

meration and exhaustive search algorithms can be used later. Blocks (or block

clusters) which are connected by edges of greater than average edge weight are

grouped into a single cluster, if the resulting cluster has less than five members.

After forming the hierarchical clustering tree, a floorplanner and a global

router together perform a top-down traversal of the hierarchy. Given an overall

aspect ratio goal and I/ 0 pin goal, at each level of the hierarchy, the floorplanner

searches a simple library of floorplan templates and considers all possible room

assignments which meet the combined goals of aspect ratios and I/O pins. At each

level, the global routing pro�lem is formulated as a series of minimum steiner tree

problems in partial 3-trees. The global routing solution at the current level is

used as the I/O pin goal for the floorplan evaluation, and as base for the global

routing refinement at the next level. This floorplanning and global routing create

constraints on the aspect ratio or"_the rooms, and gives assignments of I/O pins

on the walls of the rooms, which. are recursively transmitted downward as sub­

goals to the floorplanner and global router. While evaluating the cost of a given

floorplan template and room assignment, both chip area and net path length

are considered. When undesirable block shapes_ and pin positions ar.e detected,

alternate floorplan templates and room assignments are tried by backtracking

14

and using automatic module generators. This algorithm performs better than

other well-known deterministic algorithms and generates solutions comparable to

random-based algorithms.

· Ting-Chi Wang and D. F. Wong (7) have presented an optimal algorithm for

a special class of floorplans called hierarchical ftoorplans of order 5. Two types of

blocks have been considered; L-shaped and rectangular. The algorithm takes a set

of implementations for each block as input and identifies the best implementation

for each block so that the resulting floorplan has minimum area.

Existing Algorithms for Floorplanning of MBC Designs

All the algorithms discussed in the previous section can be used for floor­

planning of MBC designs. However, these algorithms were not implemented as

a part of any tool which can generate floorplans for MBC designs. In this sec­

tion, we describe some of the algorithms that were developed as a part of a tool

specifically designed for floorplanning of MBC designs.

In [8), a heuristic algorithm has been developed for MBC designs. The algo­

rithm employs a combined floorplanning, partitioning and global routing strategy.

The main focus of the algorithm is in reducing the white space costs and the wiring

cost. In (12), the simulated annealing approach is used to solve the floorplanning

problem for MBC designs. In [9), "CHAMP", a floorplanning tool for MBC de­

signs using the hierarchical approach has been presented. In [10, 11, 13), the

floorplanning problem for MBC designs has been considered: All existing floor­

planning algorithms, except [13), for the MBC designs restrict the block shapes

to rectangular in order to simplify the problem at hand. Even in (13), only the

pre-designed block shapes are considered to be reciilinear and the shapes gener­

ated for soft modules are always rectangular with varying aspect ratios. None

of the existing floorplanning algorithms for MBC designs take advantage of the

flexibility of the standard cell regions.

15

CHAPTER III

MOTIVATION FOR A NEW FLOORPLANNING ALGORITHM

In this chapter, we present our motivation for developing a new floorplan­

ning algorithm for the MBC design style. We will discuss more about flexible

blocks, the reason behind their flexibility and the constraints. on the shapes that

can be assigned to the flexible blocks.

182

■ - Fixed Block

[illu] - Flexible Block

----110 ---­

Conventional Approaches

(a)

170

Our Approach

(b)

Figure 2. Reduction in Area by Using Rectilinear Shaped Flexible Blocks.

As we saw in the earlier chapter, the main drawback of existing floorplan­

ning algorithms is the inability to utilize the flexibility of the standard cell regions.

Figure 2{ a), shows a floorplan which is generated by restricting the shapes of flex­

ible blocks to rectangles. Notice that block 2 lies on both the horizontal as well

16

as the vertical constraint paths. If the shape of block 2 is changed by reducing its

height to reduce overall chip height, it will cause an increase in the width of the

chip and vice versa. Hence, the only way chip area can be reduced further is to

consider rectilinear shaped flexible blocks. As shown in Figure 2(b), by generating

rectilinear shaped flexible blocks the area of the floorplan shown in Figure 2(a)

has been reduced further. In addition to reduction in area, rectilinear shaped

flexible blocks also can cause a reduction in the length of criticai paths. As shown

in Figure 3, the consideration of rectilinear shapes for standard cell blocks not

only leads to reduction in chip area but most importantly it reduces the distances

between the terminals of a net thereby improving performance.

• Terminal -- Critical Path

(a) (b)

Figure 3. Reduction in Critical Path Lengths by Reshaping Flexibl� Blocks.

Most of the microprocessor chips designed in the last three years have been

developed using the MBC design style. Ev�n though the designer would like to

have blocks with rectilinear shapes, the CAD tools available in the industry are not

sophisticated enough to handle rectilinear shapes. The main difference between

other approaches and our approach is that we can generate rectilinear shapes for

flexible blocks. To the best of our knowledge, this work is the first of its kind in

17

generating truly rectilinear shapes. The most complex shapes considered by other

researchers have been limited to L-shapes.

Island of vacant space

Figure 4. Complex but Undesirable Shape for Flexible Blocks.

Flexible Blocks and Shape Parameters

Algorithms dealing with flexible blocks have to ensure that the shapes of

the flexible blocks generated by the algorithm are valid. Generally a block is

flexible if it consists of either standard cells or it is block for which only an area

estimation is available at the time of Physical Design Automation. In either case,

the block shapes generated by the floorplanning algorithm need to be controlled.

This is done in order to avoid long thin blocks which may be completely useless.

In case of standard cell blocks, the designer would like to restrict the minimum

size of the blocks so that a specific number of rows or columns of standard cells

can be placed within the block. Traditionally, block shapes have been restricted

to rectangular in order to simplify the problem. The shapes of the rectangular

blocks can be controlled by using the aspect ratio shape parameter. For each

flexible block a range of aspect ratios is specified. The floorplanning algorithm

has to generate a shape so that it adheres to the aspect ratio limitation on the

block.

18

In case of ARCHITECT, as we deal with. rectilinear shaped regions, the

aspect ratio shape parameter cannot be used to restrict the shapes of the flexible

blocks. Some complex rectilinear shapes as shown in Figure 4, are completely

useless. Some of the regions of the flexible block shown in Figure 4 are too thin

for assigning standard cells in those regions. Also, there are "islands" of vacant

space which is highly undersirable. In order to control the shape generation of

flexible blocks and to avoid undesirable shapes, we have defined two different shape

parameters which can control the shapes of these blocks. Each flexible block is

represented as a set of connected edges as shown in Figure 5(a). It is obvious that

; 1

l\3 l\2 ;
�----'------------'--�

l\4 C
5

'i C
4

C
g

e6

C7

(a) (b)

Figure 5. Representation of Flexible Blocks. .

we need one shape parameter which will control the number of sides or edges of

the flexible block. The shape parameter which controls the number of edges of

a flexible block is called a. When a = 4, the shapes of the flexible blocks are

restricted to rectangular shapes and as the value of a is increased, highly complex

shapes can be generated. A rectangular decomposition of a rectilinear region, as

shown in Figure 5(b), will yield rectangles of different widths and heights. For

these regions to be useful, we must ensure that standard cells can be assigned

within that region. It might so happen that some or all of these regions may

have dimensions which cannot be used for generating standard cell. rows within

19

these regions. To avoid this, we use another shape parameter, called /3 which can

enforce this limitation on the flexible block. {3 is the minimum length of each side

or edge of a flexible block. It is also the minimum distance between two parallel

sides of a flexible block. The requirement on the length of each side is obvious

but we also need to have the restriction between two parallel edges of the flexible

block in order to avoid shapes as shown in Figure 6. Each flexible block in the

design can have its own a: shape parameter but usually the {3 shape parameter is

the same for all the flexible blocks.

Figure 6. Requirement of {3 Shape Parameter for Flexible Blocks.

In addition to a: and {3, we define certain properties that any rectilinear

shape must have in order for it to be a valid shape. These properties are motivated

by our algorithm. It is obvious that any rectilinear shape will have an even

number of edges. Hence the value of a: should be an even integer. Apart from this

inherent property of the rectilinear blocks, we specify two more properties which

any rectilinear region should have for it to be valid. These properties are:

Bl: The topmost horizontal edge, or the horizontal edge which has max­

imum y-coordinate, is the longest horizontal edge among all the horizontal edges

of the rectilinear shape.

B2: The length of the topmost horizontal edge is equal to the sum of the

lengths of all the other horizontal edges.

Lemma 1 The aspect ratio range for a flexible block can always be expressed as

°'min � a � a�; .. , where, a is the aspect ratio of the flexible block and Omin is the

minimum aspect ratio for the flexible block.

20

Proof:

It is easy to see that a block having aspect ratio Omin, when rotated by 90°, will

have an aspect ratio -1
.-. Hence, the upper bound on the aspect ratio of a flexible

4m1t1

block is an inverse of its lower bound or vice versa.

Lemma 2 The shape parameters a and /3 can replace aspect ratios for rectangular

flexible blocks.

Proof:

If aspect ratio is defined as the ratio of height of the block to its width then,

or

where, hmin
is the minimum height of the block and Wmaz is the maximum width

possible for the block. Also, we know that if A is the area of the block then,

A = hmin X Wmaz

. h
A

i.e
min = --

Wmaz

AX Omin

hmin

h;.in
= A X amin

i.e hmin
= ✓ A X amin

Hence, shape parameters a and /3 act like aspect ratios for rectangular flexible

blocks when a = 4 and /3 = ✓ A X Omin •

,I

21

. C_HAPTER IV

AN OVERVIEW OF THE ARCHITECT SYSTEM

In this chapter, we present an overview of our ARCHITECT floorplanning

system. Before we present the overview·, we describe the terminology that will be

used along with the input requirements for ARCHITECT.

Preliminaries

The input to the ARCHITECT system consists of a set of fixed blocks,

B
p

= {bi,�' ... , b
p
}, a set of standard cells, S = { si, s2, ••• , s

q
}, a set of nets,

N
P

= { ni, n2, ••• , n,.}, a set of critical paths C
p

= { ci, c2, ••• , c.} and the target

chip width, W and height, H. Also specified for each fixed block bi, is a three

tuple (wi, hi, Tl), where, Wi is the width, hi is the height and Tl is the terminal in­

formation. The terminal information i:b
= {(ti, xi, Yi), (t2, x2, Y2), ... , (ti, Xt, Yt)},

where ti is a unique terminal number, (xi, Yi) give the coordinates of terminal,

ti, with respect to the lower left corner of bi and t is the number of terminals

for bi. A standard cell, si, 1 � i � q, is represented by a 2-tuple (wi, i:c), where

Wi is the width of si and i:c
= {(ti, xi, Yi), (t2, x2, Y2), ... , (t,., x., y.)}, is the set

of terminals which belong to si, where t. is a unique terminal number, (x., y.)

denote the coordinates of t. with respect to the lower left corner of the standard

cell and u is the number of terminals for Si. We assume that all the standard cells

belong to the same library and hence have the same height. A net ni, 1 � i � r,

is a wire which connects a group of temiinals given by Tn, = {ti, t2, ••• , t,,}, where

each terminal, ti, either belongs to a fixed block or a standard cell. Each critical

path, ci = {a;la; E B
p

or a; ES}, is a set of components through which the path

passes starting from the input to the output.

22

Let the length of a net, ni be given by l{ni) and that of a critical path

be given by l{<;). The objective of the ARCHITECT system is to identify the

locations, (xi, Yi) for each macro block and standard cell such that the area of

the chip, the total wirelength (E;=1
l{n:i)) and the length of each critical path

(E:=1 l(<;)) are minimized.

Overview of the ARCHITECT Floorplanning System

The ARCHITECT floorplanning system consists of the following four phases.

1. Partitioning the Netlist: The ARCHITECT system iteratively par­

titions the netlist N
p

till each partition consists either of a single macro block or

only standard cells and no macro blocks as is done in (8]. Hence this partitioning

process generates a new set of blocks consisting of the original fixed blocks and

some flexible blocks.

2. Initial Placement: The objective of the Initial Placement (IP) algo­

rithm is to determine the relative positions and orientations for the blocks ·gen­

erated by the partitioning phase. Either a constructive or iterative placement

algorithm can be used. We use a simple hierarchical approach to generate the rel­

ative placement of the blocks. The objective of our initial placement algorithm is

to identify the relative positions of the blocks with respect to one another, reduce

netlengths and critical path lengths.

3. Flexible Block Reshaping: The floorplan for the MBC design is

actually generated in this phase. The input to this phase is an initial placement

which consists of both fixed and flexible blocks. The Flexible Block Reshaping

(FBR) algorithm not only d�termines the shapes of the flexible blocks but also

compacts the floorplan. It uses the initial placement information to determine

the relative positions of the blocks. Hence the initial placement generated does

not have to be compact. · The FBR algorithm is an iterative algorithm and it

compacts the floorplan alternately in the x and y directions. Rectilinear shapes are

23

generated for flexible blocks in order to minimize the overall area of the floorplan.

The FBR algorithm is applied to the floorplan till no significant improvement

in the floorplan area is observed. The FBR problem is to determine the shapes

of the flexible blocks such that the overall chip area is minimized subject to the

constraints that the the relative positions of the blocks are maintained, the overall

critical path length generated by the initial placement is not exceeded, both a and

f3 constraints on each block are maintained and the properties Bl and B2 for all

flexible blocks are not violated.

4. Standard Cell Assignment: The standard cell assignment is carried

out after the floorplan for the MBC design has been determined. At this stage,

the locations of all the blocks are fixed and the shapes of all the flexible blocks

have been determined. In this phase, the placement of standard cells within each

flexible block is carried out. The channel estimation between standard cell rows

as well as the creation of feedthroughs is accomplished in this phase. We use the

SOAP [14) algorithm to assign standard cells within the flexible blocks.

24

CHAPTER V

THE ARCHITECT FLOORPLANNING SYSTEM

In this chapter we describe our Flexible Block Reshaping algorithm for

floorplanning of MBC designs. For the sake of cla_pty and continuity, we describe

each phase of ARCHITECT. However, the emphasis of this chapter is on the FBR

algorithm which is the most important phase of ARCHITECT. It is in this phase,

that we generate a floorplan for MBC designs with rectilinear shaped flexible

blocks.

Partitioning the Netlist

The ARCHITECT system iteratively partitions the netlist N
p

, till each

partition consists either of a single macro block or only standard cells and no

macro blocks as in [8). Any partitioning algorithm which satisfies this con­

straint can be used. Hence the partitioning process generates a new set of blocks,

B = {B1, B2, ••• , Bn}, consisting of macro blocks and flexible blocks. If a block

Bi , is a macro block then it is represented by a five tuple (xi , Yi , oi, wi , �), where,

(xi , Yi) represent the coordinates of the lower left corner of the block, Oi deter­

mines the orientation of the block, wi represents the width and hi represents the

height of the block. If the block Bi, is a flexible block then it is represented

by a five tuple (xi , Yi , oi , Si , Ei), where, (xi , Yi) are the coordinates of the origin

point of the flexible block which is initially the lower left corner of the block.

The origin is defined as a point which has the minimum y-coordinate among the

set of points which have minimum x-coordinate. Oi determines the orientation

of the flexible block before it is reshaped. Si is the set of standard cells· con­

tained within the flexible block, and Ei = { eL e�, ... , e�} gives the sequence of

line segments which define the boundary of the flexible block starting from the

25

origin point and proceeding in an anticlockwise direction. Partitioning the netiist

N
p
, gives rise to a new netlist, N = {N1 , N2 , • • • , Nm }; Each net Ni, is a set of

terminals of the blocks of B, which are to be connected by a wire. Also, a new

critical path list, C = {C1,C2, ••• ,C0} is constructed, where each.critical path

Ci = {a1,a2,a3, ... ,a
q
}, where each a; E B,1 �j � q.

The Initial Placement Phase

The main objective of the Initial Placement phase is to generate a relative

placement of blocks. The objective does not include generation of a minimum area

placement for the blocks. We use a hierarchical approach to generate the initial

placement. If l(Ni) denotes the length of a net Ni and l(C;,� denotes the length

of the critical path C;, then our Initial Placement (IP) algorithm determines the

coordinates (xi, Yi) and orientation, oi, for each block Bi E B subject to the

constraints that both I:�1 l(Ni) and Ef=1 l(Ci) are minimized. The generation of

initial placement is carried out in three steps which are described below.

1. Cluster tree formation: The first step is to generate a ·physical

hierarchy or the cluster tree T. The cluster tree T, is generated by clustering

the blocks B, in a bottom-up fashion. Each leaf node of the tree represents a

block Bi E B, where i � i � n. Hence, the number of leaf nodes is equal to n.

The leaves represent the l,evel O of the tree and the root of the tree represents the

highest level of the tree. At each level, l, of the hierarchy, blocks (or clusters)

which are highly connected are grouped t.ogether. Cluster CiJ represents a group

of blocks at node j in level i of T. If I Ci ,; I represents the size of the cluster then

I C1J I� 4, and I Ci,; I� 2, where i ;?: 2. The reason for doing this is to simplify

the search procedure used later.

2. Relative positioning of the clusters in the cluster tree: The

cluster tree, T, generated in the previous st�p identifies the clusters that· would

be placed close together in a floorplan but their relative positions are not yet

26

27

decided. In this step, relative positions of all the clusters are determined with

respect to one another. The root of T represents the floorplan of the entire chip.

The target aspect ratio of the chip sets the target shape for the root node of T. In

this step, a top-down traversal of T is performed. For distribution of aspect ratios,

we consider two templates, one which is split by a horizontal cutline and the other

which is split by a vertical cutline, for possible room assignments at each level.

We need to consider only two templates as each cluster I Ci,; I� 2, i > 1, \:/j. This

phase creates constraints on the aspect ratios of the rooms which are recursively

transmitted down the cluster tree T. Hence, the aspect ratios of the clusters of

Ci,; \:/l, j are determined from the aspect ratio of the respective parent clusters

C1+1,k \:/k. The traversal of T is stopped when C1,; \:/j have been assigned a target

aspect ratio. While traversing down T, in addition to the aspect ratio assignment,

the global routing information is also transmitted in terms of I/O pad assignment

to all of the clusters. Given an overall aspect ratio goal and 1/0 pad goal, at each

level, l, of the hierarchy, the floorplanner generates the aspect ratio goals and I/O

pad goals for C1,; \:/ j.

3. Relative positioning of blocks in a cluster: In this step we

determine the relative positions of the blocks in the cluster at level 1. ·Since all

the clusters at level 1 have a target aspect ratio and an I/O pad goal assigned

to them in the previous step, in this step, we position all the blocks and fix their

orientations within the cluster so that·the target aspect ratio and I/O pad goal is

achieved. Since there are at most four blocks within the cluster at this level, .we

can carry out an exhaustive search.

Flexible Block Reshaping Algorithm

In this section, we describe our FBR algorithm for floorplanning of MBC

designs. The FBR algorithm improves the initial layout generated by the ini­

tial placement algorithm by assigning rectilinear shapes to flexible blocks: The

floorplan _is improved by using a one dimensional compaction combined with re­

shaping of flexible blocks which reduces the white space in the floorplan. The

algorithm is iterative in nature. The floorplan is divided into several rows of

blocks. The blocks are processed one row at a time and are added to the already

processed set of blocks. Hence, we have two sets of blocks; one is a processed

set of blocks which is also called a partial floorplan and the other set consists of

unprocessed blocks. The top boundary of the partial floorplan is a set of line

OJrrent row being added to
the lop boundary --

___________ Top Boundary

----w----

0 Fixed Block

(a) CJ flexible Block (b)

Figure 7. The FBR Process.

segments, L = {li, l2, ... , lt}- Each line segment l,, is stored by its two end points,

i.e. l, = {(xt, yl), (x�, y�)}. Initially when none of the blocks are processed, the

top boundary is a straight line as shown in Figure 7(a). After a set of blocks are

processed and added to the partial floorplan the top boundary is modified accord­

ing to the blocks that were_added to the top boundary as shown in Fig_ure 7(b). In

a single iteration, all the blocks are processed and added to the partial floorplan.

After all the blocks are processed, the floorplan is rotated and the process is re­

peated in the other direction. This process is repeated until there is no significant

improvement in the floorplan area.

28

Each iteration of the FBR algorithm consists of three steps. In the first

step, the set of processed blocks is empty and the top boundary is a straight line.

Hence, when the first row of blocks is being processed, it has to be assigned to

a straight boundary as shown in Figure 7(a). Hence, this problem is called the

Straight Boundary Block Assignment (SBBA) problem. After assigning a row of

blocks to the top boundary, the top boundary is no more a straight line but it

consists of a set of vertical and horizontal line segments as shown in Figure 7(b).

The next row of blocks being processed has to be assigned to this irregular rec­

tilinear top boundary. Hence, this problem is called the Irregular Rectilinear

Boundary Block Assignment (IRBBA) problem. All further rows of blocks except

the last row can be assigned to the top boundary by using the IRBBA phase of

the algorithm. The last row of blocks has not only to be assigned to the irregular

rectilinear top boundary but also the new top boundary generated should be as

straight as possible. We call this problem the IRBBA problem with the Straight

Top or IRBBAST problem. Each of the phases of FBR is described in detail in

the following sections.

The line segments in L have a type associated with them. The type of a

line segment is defined as,

type(li) = h, if the line segment is horizontal

type(li) = v, if the line segment is vertical.

The line segments in L satisfy the following properties:

Pl: type(li) -/- type(li+i), 1 � i � t - 1.

P2: li n l; = ¢, 1 � i, j � t where the line segments k and l; are

horizontal.

P3: The first and last line segments of the top boundary are always

horizontal and number of horizontal line segments will be one more than number

of vertical line segments.

29

P4: If l(li) denotes the length of line segment li E L, then l(li) = /3, if

type(li) = h, 'vli E L.

A vertical line segment which has an end point with the y-coordinate

greater(less) than that of the immediate preceding horizontal line segment in L,

is called a rising vertical (falling verticaQ line segment and is said to be a Vr (v1)

segment. If a line segment li E L is av, line segment and the line segment li+2

is a Vr line segment, then the line segments li, l�+l and li+2 are said to define a

depression in the top boundary of the partial floorplan as shown in Figure 8.

[.

/ I li+I
falling line segment rising line segment

Figure 8. A Depression in the Top Boundary.

Straight Boundary Block Assignment

30

Initially, when none of the blocks of the floorplan have been processed, the

partial floorplan does not consist of any block and the partial floorplan boundary

is a straight line segment of width W. We process the first row of blocks together

so as to assign them within widt� W on the partial floorplan boundary. To solve

the SBBA problem, we restrict the value of a to 4 for all the flexible blocks i.e.

all the flexible blocks are.restricted to rectangular shapes only. The objective of

this problem is to assign a set of blocks to a straight top boundary such that

the difference in heights of the tallest flexible block and the shortest flexible block

after assignment to the top boundary is minimized. This can be done by reshaping

some or all of the flexible blocks. Let 87(= { B1 , B2, B3 , B4 ... , Bn}, be the set of

rectangular blocks such that, Bl E B7(is a flexible block and Bi E B7(is a fixed

block. Each block Bi (B;) has an area Ai (At), width wi (w:} and height h, (h:)

and 'Evs;eB,. wi + 'Evs:eB,. w; = W'. Let Bi � B1r, be the set of flexible blocks

in 8,r and let I Bi I= r. We define 6.:... max{hn - min{hn where max{hn is

the height of the tallest flexible block and min{ hn is the height of the shortest

flexible block in 8,r ,

W'

w

Figure 9. The SBBA Problem and Its Solution.

In SBBA, we are given,

1. Permutation B1r,

2. W � W', the total width within which the blocks must be assigned to

the partial floorplan boundary.

We have to assign the blocks in 8,r to the horizontal top boundary such

that 'Evs�eB,. w; + 'Evs;eB,. wi =· W, 6 is minimum, the given permutation of
'

blocks is not altered, the value of a is restricted to 4 for all flexible blocks and /3

constraint is not violated for any of the flexible blocks. A SBBA problem _1s shown

if Figure 9(a) and its solution is shown in Figure 9(b). For the sake of clarity, the

top boundary in Figure 9(b) has been displaced from the blocks.

31

It is clear that an assignment of all the blocks in B1r to the top boundary

such that the total width of the row is W is possible only if

r/3 + L Wi � W
VB;EB.,

Each flexible block in the set BI is initially assigned a width /3 i.e.

The height of each block can then be calculated as:

h! = At VB,� E B1 I /3 '

Since we have assigned the minimum possible width to the flexible blocks, there

is some excess width We which can be assigned to the flexible blocks. This excess

width is given by:

We = W - . L Wi + WI
VB;EB.,

where,

W1 = L w:
VBtEB.,

32

Initially when all the flexible blocks are assigned a width /3, W1 = r/3. The widths

of the flexible blocks have to be increased such that, We = 0, 8 is minimized and

J3 constraint is not violated for any of the flexible blocks. We sort the blocks in

81 in the non-descending order of their heights. When all the flexible blocks have

the same height, 8 = 0. This is the lower bound on the value of 8 and it may
. .

not be possible to achieve this lower bound because of the J3 constraint on the

flexible blocks. Our solution consists of two steps. In the first step, we identify a

flexible block B; from the sorted list, with height h; such that all other flexible

blocks Bl E B1,j > p can be assigned height h; and the new width W1, of all the

flexible blocks satisfies:

W1 �W- L Wi
·vB;EB.,

33

------ W' = 115

---- W= 85------

(a)

-40-

45 -

P= 10

(b) (c)

----- s�------

6=13.33

(d)

Figure 10. The SBBA Solution for an Example.

The block n; identified is such that, if all blocks with height greater than that

of block n;+l are assigned height h;+l then

W - L Wi - W1 :5 0
VB;EB.,

The search for block n; is carried out using a binary search among the sorted list

of flexible blocks. Let Wr =-W - Evs;eB., Wi-:-w,. In the second step, this widths

of all the flexible blocks, n; where q � p, is increased so that Wr = 0. The new

height of the flexible blocks n;, q � p is calculated as:

Using this new height, we recalculate the width of the flexible blocks, Bl, p <

i :5 r.

Theorem 1 SBBA problem can be solved in 0(r log r) time.

The sorting of the blocks according to their heights requires 0(r log r) time

and the search for the block in the first step requires O(r logr) time. The change

in widths and height of all blocks Bl ,P :5 i :5 r requires O(r) time. The second

step, in which the remaining width Wr is distributed, requires 0(r) time. Hence,

the enitre solution for the SBBA problem can be computed ·in O(r logr) time.

Figure 10 shows the SBBA solution for an example.

In Figur� lO{a) shows the input to the SBBA problem; there are two fixed

blocks (1 & 3) and four flexible blocks (2, 4, 5 & 6). W = 85, W' = 115 and

/3 = 10. We assign the width of all flexible blocks to /3 as shown in Figure lO{b).

Next we identify block 2 as block whose height should be assigned to all blocks

taller than block 2. This height assignment is shown in Figure lO(c). Finally the

remaining width Wr , is assigned to blocks 2 and 4 and the solution to the SBBA

problem is shown in Figure 10(d).

34

Irregular Rectilinear Boundary Block Assignment

After the first row of blocks has been processed, the top boundary of the

partial floorplan may not be a straight line. It may consist of a set of horizontal

and vertical line segments. Hence, the problem in this case is to reshape and assign

the blocks to an irregular rectilinear boundary with total width W, such that the

flexible blocks do not violate properties Bl or B2 and the a and /3 constraints

imposed on them. Ideally, we would like to reduce the height of the the resulting

partial floorplan. These complex and conflicting objectives make this problem

very hard. Hence we make use of heuristics to solve this problem.

In IRBBA, we are given,

1. Permutation Bn

2. W � W', the total width within which the blocks must be assigned to

the partial floorplan boundary.

3. L, the top boundary of the partial floorplan.

We have to obtain a placement of blocks in B,,, on the top boundary such

that Ev»�eB,. w; + Ev»;eB,. wi = W, the given permutation of blocks is not
•

altered, the value of a and /3 is not violated for any of the flexible blocks and all

flexible blocks retain their properties Bl and B2. An IRBijA problem and its

solution is shown in Figure 11.

Our heuristic solution to the IRRBA problem consists of two steps. In

the first step, we solve the SBBA problem for the blocks in B,,, as shown in Fig­

ure ll(b). This ensures Ev»;es,. w; +·Ev»;eB,. wi = W. In addition, we now

have a target range for each block on the top boundary as shown in Figure ll(b)

by the dotted lines. The target range � for a block Bi E 8,,, is given as,

The target range identifies the x-coordinate range for a block to be placed' on the

top boundary. Solving the SBBA problem identifies the Xi coordinate ofthe origin

35

36

--------w•--------

(SBBA)

w

Figure 11. The IRBBA Problem and Its Solution.

: 13 i

! /,. 17 1
4 !

---, � -,-

,
: ______ J '1

's �-----

(a)

---,
---,

"-----
·-------

(b)

Figure 12. Assignment of a Fixed Block to the Top Boundary.

37

point for each block in B1r • In the second step, we assign each block to its target

range on the top boundary. Blocks are assigned to the top boundary one at a

time. Before a block, Bi, is assigned, a set of edges, Li � Lis generated. This set

Li, consists of line segments of the top boundary which have their x-coordinates

between xi and xi + wi. If the block being assigned to the top boundary is a fixed

block, the set Li is scanned to identify a line segment li, such that type(li) = h

and y-coordinate for this line segment is maximum among all the line segments

in Li. The y-coordinate of the origin point is then set to the y-coordinate of li ,

Figure 12 shows the assignment process for a fixed block. In Figure 12{a), the set

of line segments Li, within the target range for block Bi are shown by continuous

lines. The dotted line indicates the rest of the top boundary. The final assignment

of the fixed block Bi to the top boundary is shown in Figure 12{b).

When the block to be assigned to the top boundary is a flexible block, the

line segments in Li, determine the shape of the block. The maximum number of

line segments the flexible block can have after reshaping is I Li I + 3. This is due

to the fact that the bottom of the block gets the shape defined by line segments

in Li and then three additional edges are required to generate a complete or

closed region; two vertical segments one with x-coordinate Xi and the other with

t

i

,-----------,
I I
I B1· I
I I

! r--, l
---, :,..:.._...J ' ,----,

I Li I
---, ; �/: .--·-, .

I � Lj /' t ____ _
: I

., ____ _ •------2 xi xi+ "i -------
(a) (b)

Figure 13. Reshaping of a Flexible Block.

x-coordinate Xi + wi and a horizontal segment joining these two vertical segments

at the top as shown in Figure 13{b). To avoid violation of the a constraint on the

block, the following equation must be satisfied:

a- I Li I -3 � 0

If the above equation is not satisfied, we identify a depression in Li which when

eliminated will cause the generation of the least amount of white space in the

floorplan and modify Li accordingly. The elimination of a depression reduces the

number of line segments in Li but increases the white space in the layout. This

---,
I

I l ,----,� 13 Violation , :

w L,c___i_

l ---,
l,i I Li

--/1 __ -:
t_____ I �

Li , ____ _·------- •------2 xi xi+ "i

(a) (b)

Figure 14. Elimination of Line Segments Violating the f3 Constraint.

38

---,
I

L·1

·-------

Yt

(xi, Ymin)

(a)

Ymax

·---,

---,

·-------

-------- -------,

� :

Ymax

rL __ _
(xi, Ymin)

(b)

·---,
---,

39

---,
I

L·1 I

·-----
I •-----

·

·-------

(c) (d)

Figure 15. Shape Generation of a Flexible Block.

process is carried out till the above equation is satisfied. The edges in Li are

now scanned for f3 violations if any. Only the vertical line segments need to be

checked as the horizontal segments will always have a length greater than /3. The

elimination of line segments which violate /3 constraint on the block is shown in

Figure 14. The modified Li , determines the shape of the bottom of the flexible

block. Figure 15(a) shows a block Bi and the new bottom shape determined by Li

for Bi. To complete the reshaping process we need to identify the y-coordinate of

the top horizontal edge of the block . For this we use a horizontal scanline of length

equal to the target range and scan the region between Xi and Xi + wi computing

the vacant area. Let Ymin (Ymaz) be the minimum (maximum) y-coordinate of a

line segment in Li. We compute the vacant area, Af, above the top boundary,

between {(xi, Ymin), {xi+ Wi, Ymin} and {(xi, Ymaz + /3), (xi+ Wi, Ymaz + /3) } as

shown in Figure 15{b). If A; > At, then we eliminate more depressions in Li till

A: -� At. The y-coordinate of the top edge, Yti of the block is then determined

by using,
A!-A�

Yt = Ymaz + /3 +
' '
w,

Figure 15{ c) shows the process of determining the position of the top edge of the

Top

Left Right

---,
, I

Lj
·---,

I
·-----

·-------

(a)

5

4

(c)

6

7

:' 8
1 : ·---,

---, Li , 9 ilO

6

2• � ·-----
·------- 11

.3

(b)

7

Figure 16. Generation of New Top Boundary After Block Assignment.

flexible block. The top edge of block, either fixed or flexible, is the horizontal edge

which has the highest y-coordinate among all the horizontal edges of the block.

Figure 15{ d) shows the final shape of the block B,.

After a block has been assigned to the top boundary, we need to modify

the top boundary. In order to do that, we eliminate the edges in Li from the

top boundary and add the left, top and right edge of the blocks in that order to

40

the top boundary as shown in Figure 16(b). Since we also add the left and the

right edges, there can be two overlapping vertical edges in L. Also, property Pl

maybe violated. In Figure 16(b), edges 4, 5 and edges 7,8 are two pairs of adjacent

vertical edges. Hence they violate the property Pl. The edges in the new top

boundary are scanned so as to eliminate any overlaps and to check that properties

Pl, P2, P3 and P4 hold true for the new top boundary. When two overlapping
.

.

edges exist, only the non-overlapping part of the edges is retained in L. In case

property Pl is violated, the two adjacent horizontal or vertical edges are merged

to form one edge. The final top boundary generated is shown in Figure 16(c).

Irregular Rectilinear Boundary Block Assignment with Straight Top

The problem of assigning the last row of blocks which form the top bound­

ary of the floorplan is slightly different from the IRBBA problem. This.is because,

after assigning the blocks to the top boundary, the new top boundary generated

must as straight as possible. Hence the problem of assigning the last row of blocks

is to place the set of blocks such that the increase in height of the chip is minimized

and the bounding rectangle for these blocks has a width no more than W.

In IRBBAST we are given,

1. A permutation B ... ,

2. W, the total width within which the blocks must be assigned to the

partial floorplan boundary.

3. L, the top boundary of the partial floorplan.

The objective is to assign the blocks to the partial floorplan boundary such

that, increase in height of the chip is minimum subject to the constraint that the

bounding rectangle enclosing all the blocks does not have a width greater than W,

the permutation of the blocks given by B ... is not altered, the a and /3 constraints

for the flexible blocks are not violated and 'all.flexible blocks retain the properties

Bl and B2.

41

Figure 17(a) shows an instance of the IRBBAST problem. This problem

is a much harder problem compared to the IRBBA problem. Hence, we use a

heuristic approach to solve this problem. Our solution consists of two steps. In

the first step, we solve the IRBBA problem, as shown in Figure 17(b). Since the

top boundary resulting after solving the IRBBA problem is irregular, there are

one or more blocks in B'lf which define the height of the overall floorplan. If all

these blocks are fixed, then a new iteration is siarted to try and achieve a more

compact chip. But if the block(s) are flexible then the next step is to reshape these

blocks by assigning these flexible blocks a new target range in order to reduce the

overall chip height.

Let, y; denote the y-coordinate of the top edge of a block Bi. Let, B
q

be

a fixed block in B'lf such that:

Yl = max{y[}, 'v B; E B'lf

We form a set, 81, of flexible blocks such that:

42

In Figure 17(b), the tallest fixed block is the block B4. Both flexible blocks, B2

and B5 have y-coordinates of their top edges greater than that of block B4. Hence

both these blocks will be selected for reshaping. The blocks in 81 are sorted in the

non-ascending order of the y-coordinates of their top edges. Since the top edge of

a block is represented by storing the coordinates of its end points, the top edge

of each block is of the form {(x;1, y;), (x;
2 , y;)}. Let, Bk and B, be the two blocks

either fixed or flexible that are adjacent to B; E B1, in the given permutation B'lf,

such that k < i < l. The flexible block being processed is removed from its current

position on the top boundary and the top boundary is updated. The range�, for

the flexible block B;, is changed to (xu, x;2), where m = kif Yt < y; else m = l,

if Yt > y; and Y! < y;. In· the Figure 17(b), the block B2 has space on its left

as well as to its right. But since we give precedence to the space on the left, the

43

-------w

(a)

(IRBBA)

(b)

(c)

Figure 17. The IRBBAST Problem and Its Solution.

range of the block B2 is extended on the left. The block B5 has space only on its

right. Hence, the range of B5 is extended on the right. Using this new range, the

block is reshaped as described earlier. This process is carried out for each block

in B1. Figure 17(c) shows the final assignment of shapes for the flexible blocks.

Standard Cell Assignment

At this stage, the floorplan for the MBC design has been generated; the

locations of all the blocks have been determined and the shapes of all the flexible

blocks are defined. In this phase, ARCHITECT generates the placement of the

standard cells within the flexible blocks. This phase is carried out in two steps.

The first step is to fix the locations of standard cells which are connected by a

critical path or are connected by a net interconnecting different blocks. For a

fixed block the position of the terminal of the net is also fixed. But in case of

flexible blocks, since the standard cells have not yet been placed, the terminals

are not fixed or are floating. Hence, for a given net or critical path, we have

two types of points; fixed points which represent terminals of a fixed block and

floating points which are actually terminals of a standard cell. The problem is to

identify a shortest path between these points, some of which are fixed and some

of which are floating within a rectilinear boundary. This problem of identifying

the location of such cells is similar to the Steiner Minimum Tree problem which

is known to be NP-Complete [15). Hence, we use a heuristic approach to solve

this problem. The locations for these cells are generated by using a modified

Minimum Cost Spanning Tree algorithm. For a cell in a flexible block, connected

by a critical path or a net, the corner points of the flexible block are identified as

possible target points to place the cells. That is, the floating terminals within a

flexible block are restricted to the corners of the flexible blocks. Hence, for a given

critical path Ci, or a net Ni, we have a set of points Pi, some of which are fixed

and some of which are floating. To pre-place the cells on this critical path or net,

44

we construct a complete graph of all the points in Pi. Next, we find a minimum

cost spanning tree for these points such that only one corner point of each flexible

block lies on the tree. The corner points for a flexible block which lie on the

spanning tree are used to pre-place the standard· cells. Notice that some of the

cells in a region may overlap due to this strategy. But these locations identified

for the cells are approximate locations and are improved upon in the next step.

The actual placement of the standard cells is generated by using the SOAP [14]

algorithm which can handle standard cell placements in rectilinear regions. The

SOAP algorithm uses the self organization principle to generate the placement for

the standard cells. SOAP is also capable of handling pre-placed cells. We have

made a minor modification to the row generation part of the algorithm, which

generates rows of standard cells, such that all overlaps between pre-placed cells is

eliminated in the final placement of standard cells.

45

"

CHAPTER@VI@

EXPERIMENTAL@ RESULTS@

. -: . . ·�, .:����.: :.::��f"•� ... '

�o□
c==

G
IJ□�□
DD

Figure@ 18.@ The@ ARCHITECT@Floorplanning@Tool@With@ FBR@in@ Action.@

The@ARCHITECT@floorplanning@system@has@been@implemented@ in@C,@using@

Xview@ on@ a@ SPARC@ station@ l+. Due@ to@ lack@ of@ industrial@ benchmarks,@ it@ was@

tested@ on@ randomly@ generated@ examples.@ Figure@ 18,@ shows@ the@ ARCHITECT@

floorplanning@ tool@ with@ the@FBR@ algorithm@ in@ action.@

Table@ 1,@ shows@ the@ layout@ areas@of@the@ various@ examples@ that@ were@ tested@

along@with@the@number@of@fixed@blocks,@ standard@cells@and@the@number@of@nets.@ The@

FBR@algorithm@drastically@ reduces@white@space@in@ the@floorplan.@ The@reduction@in@

white@ space@depends@ on@the@parameters@ a@ and@/3 set@by@ the@ user.@ It@also@depends@

on@the@relative@number@of@fixed@blocks@and@standard@cells@in@the@layout.@ The@layout@

areas@ indicated@ in@ Table@ 1,@ are@for@ a@ =@ 5@ and@/3 =@ 30@ units.@ Usually,@ the@ FBR@

algorithm@ requires@ 3@ to@4@ iterations@ to@converge@ to@ the@ best@ layout@ possible@ with@

the@given@values@of@a@and@/3. Notice@that@for@FP4,@the@layout@has@minimum@amount@

46

Table 1

Floorplan Areas Generated hr ARCHITECT

No. blks cells n:ets A/ A1* % ws·

Fl 3 800 400 40664 44204 8.01

F2 5 900 600 51242 55194 7.17

F3 8 1400 890 75947 83458 9.0

F4 12 5000 1400 22i941 234858 5.5

F5 15 1200 750 104153 118356 12.0

F6 10 2200 750 101032 108636 7.0

t Area of blocks & cells, *Floorplan Area, •White space

of white space. This is due to the large number of standard cells available in the

layout. As the number of blocks increases and the number of standard cells is

reduced (FP5), the white space in the floorplan increases. We have noticed that

initial size and shape of the blocks have influence on the initial placement but the

final floorplan is independent of the initial block sizes.

Figure 19 shows the initial placement for example FP2 that was used as

input for the FBR algorithm. Figure 20 shows the floorplan generated by FBR for

example FP2. The values of a and /J wete set at 6 and 15 respectively for all the

flexible blocks. Figure 21 shows the final layout generated for the same example

with a = 8 and /3 = 8 units for all blocks. Due to this change in values of a and

/J, blocks 12, 17 and 20 have been affected. In Figure 20, block 17 can have only 6

edges and hence the vacant space beneath this block cannot be utilized. Block 12

cannot utilize the vacant space underneath it due to the f3 constraint. Finally, in

the IRBBAST problem when the range of block 20 was changed to take advantage

of the vacant space over block 13, again the f3 constraint was violated. Hence, the

range of block 20 was not changed. When the values of a was increased to 8 and

47

48

Figure 19. The Initial Placement of FP2 Used as Input for FBR.

a=6, �= 15

Figure 20. Layout of FP2 for o:=6 and f3 = 15.

range of block 20 was not changed. When the values of a was increased to 8 and

the value of /3 was reduced from 15 to 8, as shown in Figure 21, the vacant space

under block 17 could be utilized. The reduction of the value of /3 allowed block

12 to utilize the vacant space underneath it. Also, the reduction in the value of /3,

allowed block 20 to change its range in the IRBBAST problem. Hence, when the

value of a is increased and the value of /3 is decreased, the amount of vacant space

in the floorplan is reduced and the layout area improves. The FBR algorithm

took 185 seconds for generating the floorplan for example FP2. Both Figures 20

and 21 were dumped into xfig format by ARCHITECT and then converted into

tex_format so that they could easily be incorporated as figures for this thesis.

a= 8, 13=8

Figure 21. Layout of FP2 for a=8 and f3 = 8.

Figure 22, shows the decrease in white space area during each iteration of

the FBR algorithm for example FP2. Each curve in the figure is for a given value

of a and f3. It is clear that as the a and f3 constraints on the blocks are relaxed,

the amount of white space in the final layout decreases.

49

While Space in floorplan

20%

18%

16%

14%

12%

10%

8%

6%

4%

2%

0

a= 6, P= IS

2 3 4

Number of lleralioos

Figure 22. Reduction of White Space During Each Iteration of FBR.

50

CHAPTER VII

CONCLUSIONS

In recent years, Mixed Block and Cell designs are increasingly becoming

popular due to the advantages offered by this .design style. The floorplanning

algorithms existing for MBC designs do not utilize the flexibility of the standard

cell regions while generating the floorplans for MBC designs. In this thesis, we

have developed a new floorplanning algorithm for MBC designs. Our floorplanner

generates rectilinear shaped flexible blocks which improves the layout area of a

design. To the best of our knowledge, this is the first time shapes much more

complex then 'L' have been considered. We have defined two new shape param­

eters, a and /3 which are used to control the shapes of rectilinear flexible blocks.

We have incorporated our algorithm into a tool for generating floorplans for MBC

designs. From our experimentation we can conclude the following:

1. The larger the number of standard cells in a design, the lower is the

white space in the layout. This is mainly due to the flexibility of the standard cell

regions.

2. As we relax the a and /3 constraints on the blocks in a layout, the white

space in the layout tends to decrease.

Our approach can be easily extended to handle fixed blocks with rectilinear

shapes.

51

REFERENCES

(1) G. Vijayan and R. Tsay, "A New Method for Floorplanning Using Topolog­
ical Constraint Reduction", IEEE Transactions on Computer-Aided Design,
December, 1991, pp 1494-1501.

(2) S. Sutanthavibul, E. Shragowitz and J. Rosen, "An analytical Approach to
Floorplan Design and Optimization", IEEE Transactions on Computer-Aided
Design, June, 1991, pp 761-769.

[3] S. Dong, J. Cong and C. Liu, "Constrained Floorplan Design for Flexible
Blocks", Proc. of the International Conference on Computer Aided Design,,
1989, pp 488-491.

[4] K. Kozminski and E. Kinnen, "Rectangular Duals of Planar Graphs", Net­
works, Vol.15, 1985, pp. 145-157.

[5] J. Bhasker and S. Sahni, "A Linear Time Algorithm to Check for the Ex­
istence of a Rectangular Dual of a Planar Triangulated Graph", Networks,
Vol. 17, 1987, pp. 307-317.

(6) W. Dai, B. Eschermann, E. Kuh, and M. Pedram, "Hierarchical placement
and floorplanning in BEAR", IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 8, December 1989, pp. 1335-1349.

[7] T. Wang and D. Wong, "An Optimal Algorithm for Floorplan Area Op­
timization", Proc. of the 27th ACM/IEEE Design Automation Conference,
1990, pp. 180-186.

[8] J. Apte, and, G. Kedem, "Heuristic algorithms for combined standard cell and
macro block layouts", Proc. of the Sixth MIT Conj. on Advanced Research in
VLSI, 1990, pp. 367-385.

(9) K. Ueda, H. Kitazawa, and, I. Harada, "CHAMP: Chip Floor Plan for Hi­
erarchical VLSI Layout Design", Proc. of IEEE Trans. on Computer-Aided
Design, Vol. CAD-4. No. 1, Jan 1985, pp. 12-22.

[10] M. Upton, K. Samii, and S. Sugiyama, "Integrated Placement for Mixed
Macro Cell and Standard Cell Designs", Proc. of 27th ACM/IEEE Design
Automation Conference, 1990, pp. 32-35.

[11] R. Putatunda, D. Smith, M. Stebnisky, C. Puschak, and P. Patent, "VITAL:
Fully Automatic Placement Strategies for Very Large Semicustom Designs",
International Conference on Computer Design, 1988, pp. 434-439.

52

(12) C. Sechen, "Chip-Planning, Placement, and Global Routing of
Macro/Custom Cell Integrated C ircuits Using Simulated Annealing". Proc.
25th Design Automation Conference, 1988, pp. 73-80.

(13) T. Lee, "A Bounded 2D Contour Searching Algorithm for Floorplan Design
With Arbitrarily Shaped Rectilinear and Soft Modules", Proc. of the 30th
ACM/IEEE Design Automation Conference, 1993, pp. 525-530.

(14) Sung-Soo Kim and Chong-Min Kyung, "Circuit Placement on Arbitrarily
Shaped Regions Using Self-Organization Principle", IEEE Transactions on
Computer-Aided Design, Vol.11, No.7, July 1992, pp. 844-854.

(15) M. Garey and D. Johnson, "The Rectilinear Steiner Tree Problem is NP­
Complete", SIAM Journal of Applied Mathematics, 32, 1977, pp. 826-834.

53

	Floorplanning for Mixed Block and Cell Designs
	Recommended Citation

	tmp.1571067692.pdf.fAcQM

