
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Master's Theses Graduate College

8-1995

Addition of Automatic Dimensioning Feature to D-M-E’s Ultimate Addition of Automatic Dimensioning Feature to D-M-E’s Ultimate

Mold Base Design Software Mold Base Design Software

Cori L. Brown

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Industrial Engineering Commons

Recommended Citation Recommended Citation
Brown, Cori L., "Addition of Automatic Dimensioning Feature to D-M-E’s Ultimate Mold Base Design
Software" (1995). Master's Theses. 4901.
https://scholarworks.wmich.edu/masters_theses/4901

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4901&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4901&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/4901?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4901&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

ADDmON OF AUTOMATIC DIMENSIONING
FEATURE TO D-M-E'S ULTIMATE MOLD

BASE DESIGN SOFTWARE

by

Cori L. Brown

A Thesis
Submitted to the

Faculty of The Graduate College
in partial fulfillment of the

requirements for the
Degree of Master of Science

Department of Industrial and
Manufacturing Engineering

Western Michigan University
Kalamazoo, Michigan

August 1995

ACKNOWLEDGMENTS

I find it a challenge to find the words to express my gratitude and

appreciation to my mentor, Dr. Michael Atkins. He has been both an inspiration

and a great support to me throughout my entire thesis project, as well as, all my

years at Western Michigan University. I would also like to thank Dr. Paul

Engelmann for having confidence in my abilities every step of the way. He

always knew when I needed a boost . I also want to thank Dr. Ralph Tanner for

his continued assistance and knowledge throughout my project.

Another person that I want to thank is my friend Jim lgnatovich. He has

made it possible for me to carry on my educational career no matter what the

obstacle. And last but not least, I would like to thank my family. They helped

keep me sane and were always there when I needed them, even though they never

truly understood what I was doing.

Thanks to all of you.

Cori L. Brown

11

ADDfilON OF AUTOMATIC DIMENSIONING
FEATURE TO D-M-E'S ULTIMATE MOLD

BASE DESIGN SOFrW ARE

Cori L. Brown, M.S.

Western Michigan University, 1995

There have been many improvements in the plastics industry over the past

few years. One of these areas is in the design of injection molds. This area has

been enhanced by the use of Computer-Aided Design systems and furthered by the

creation of specialized mold design software. The IDtimate� design system from

D-M-E has made a mold designer's job much easier by automating much of this

process. This project extends the function of this software by adding an automatic

dimensioning feature that will make the mold design process less tedious and less

time consuming. This addition will also standardize mold drawing layouts created

in this software and for industry as a whole.

TABLE OF CONTENTS

ACKNOWLEDGMENTS ii

LIST OF FIGURES . vi

CHAPTER

I. INTRODUCTION 1

Background . 1

Problem Statement . 4

Significance of the Problem . 5

Expected Results . 6 ·

Assumptions . 6

Limitations . 7

IT.REVIEW OF LITERATURE 8

Application Development . 8

Programming Languages . 12

Mold Design . 15

Dimensioning Standards and Practices 18

ID. METHODOLOGY 21

Preliminary Review . 21

Compilers . 22

Ill

Table of Contents - Continued

CHAPTER

Development of Test Programs . 23

Background Information . 24

Standard Dimensions . 25

Final Mold Base Program . 27

IV. SOFfWARE DESIGN AND DESCRIPTION 31

Preliminary Review . 31

Compilers . 31

Development of Test Programs . 32

Background Information . 39

Standard Dimensions . 39

Final Mold Base Program . 45

V. CONCLUSIONS AND RECOMMENDATIONS 48

Conclusions . 48

Recommendations . 49

APPENDICES

A. Ordinate Dimensioning Example . 51

B. Gant Chart . 53

C. Tabulated Information From Survey 55

IV

Table of Contents - Continued

APPENDICES

D. Initial Programs . 61

E. D-M-E Mold Layout . 81

F. Data File Format . 83

G. IDtimate� Layout (Four Views) 88

H. Survey utter . 90

I. Final Program . 93

J. Final Mold Base Layout . 115

BIBLIOGRAPHY 117

V

LIST OF FIGURES

1. Dimensioned Rectangle . 35

2. Rectangle and Circle Graphics With Dimensions 36

3. Standard Dimensioning . 37

4. Ordinate Dimensioning 37

5. Format of External Data File . 38

6. Schematic of Testing Procedures 47

VI

CHAPTER I

INTRODUCTION

Background

The area of computer graphics has exploded over the past decade and the

applications are almost limitless. The creation of Computer-Aided Design (CAD)

software has greatly enhanced the engineering and technical field today. There are

several advantages in using CAD systems in design, these include: (a) easier

creation and correction of working drawings, (b) easier visualization of drawings,

(c) ease of reference for modification, (d) quick and convenient solution of

computational design analysis problems, (e) simulation and testing of designs, and

(f) increased accuracy (Earle, 1991). The majority of CAD systems are used only

as electronic drawing boards and not as true design and modelling systems (Taylor,

1992). The advanced capabilities of CAD, as compared with some of the less

advantageous capabilities available to the designer, such as electronic drawing

boards, are the focus of this project since it is in this arena where the true

advantages are recognized.

Optimization CAD tools are used for a variety of applications. For

example, finite element analysis (FEA) packages provide some form of shape and

structural optimization. This will include stress calculations when a force is

1

applied to certain areas of the part and deflection calculations by evaluating the

surface of that body. There are other analysis techniques, such as, the boundary

element method (BEM) for analyzing a surface or boundary of a part. This type

of analysis, BEM, usually requires less time for calculations than the FEA process

(CADK.EY, 1993).

Another example of an optimization CAD tool is that of mold design

software for the injection molding industry. There are a several packages that are

available for injection mold designers. One example is D-M-E Company's

Ultimate� software. This package can be classified as an advanced CAD tool

because it is an intelligent system. In this case, the intelligent system will check

to ensure that an added component of the mold design is suitable and consistent

with the mold designed up to this point. If there are any errors or conflicts with

other components in the design, the software will immediately alert the user to

enable them to make the necessary changes to the mold design (Tecnocad Ltd.,

1992).

Until recently, mold designers were only able to use the CAD system for

duplication of mold bases and components from supplier catalogs, which was very

time consuming. Tecnocad Ltd., located in Sligo, Ireland, recognized this

problem and decided to do something about it. The designers and programmers at

Tecnocad Ltd. composed a detailed outline of this new concept and the

components that should be included in this new software package (Taylor, 1992).

Their crucial goals included that the software must be able to operate

2

independently of the computer hardware platform and operating sy�tem and should

also operate independently of the CAD system. In order to fulfill these two goals

they decided to use the C general purpose programming language. Upon further

inspection of the desired mold design system, it was established that there were

other important aspects that needed to be met. These included:

1. Operation by the user should be easy and intuitive.

2. The modeling of the mold should be as complete as possible.

3. Many output forms should be available and automatic, these

include, general assembly drawings, detail drawings, bill of materials, and output

to a file for ease of ordering materials and cost estimation.

4. Components from different suppliers must be available and

intermixing of all of them should be possible.

The software package that Tecnocad Ltd. created was called CAMold

(The CAMold software is also marketed by the name Ultimate�). CAMold has

the d_esigner work in a CAD systems 2D environment, but the database that is

stored is a full 3D, topological, feature-based model. This model is stored

separately from the CAD system, but it has links to the CAD system so that

designers are able to utilize the capabilities of the standard CAD system as well

(Taylor, 1992).

The CAMold software is able to run on various CAD systems. One such

system is CADKEY version 6.0. CAMold is able to automatically create the

specific mold design chosen by the user in the CADKEY database and is also able

3

to take advantage of the CADKEY user interface for communication to and from

the user (faylor, 1992).

CAMold also runs on a variety of computers. The computers in which

CAMold can be run are a 386 or 486 Personal Computer (PC) with the DOS

operating system, Sun Spare stations, IBM RS6000, HP 9000 models 500,400,

and 700, SGI Indigo and Iris, DECstation 5000, and Apollo Domain (faylor,

1992).

The D-M-E Company has offered this software, CAMold, under the name

Ultimate• for the U.S. market. The two packages are the virtually the same

except that one is for the European market and one for the U.S. market. At this

time, the Ultimate• mold design system is only available on the PC and with the

CAD packages CAD KEY and Autocad only.

The D-M-E Company plans on updating their mold design software to

include a Windows application on the PC as well as a Windows package for the

Unix operating system with CAD KEY. They also want to make the output of the

mold base a true 3D solid or wire frame model since it only outputs 2D layout

drawings at this time. With the inclusion of these features, the Ultimate• software

will become an invaluable tool for mold designers in the injection molding

industry.

Problem Statement

One of the problems in the injection molding industry today is that, when

4

creating a mold base in a CAD environment, it is very time consuming to detail

and dimension the entire mold after is has been designed. Other problems arise as

well, such as, missing dimensions on the layout drawing and a lack of

standardin1tion of these detailed drawings when it comes to creating the final

layout design.

Significance of the Problem

Since the onset of CAD, designers of plastics parts have had increased

productivity when creating models and detail drawings (Forbes, 1989). For the

injection molding industry, mold and part analysis have become a true advantage

to all molders. But up to this point there has been very few software packages

developed specifically for injection mold base design. In the injection molding

industry, there is a great demand for software that can automatically create a

standard injection mold base (Mold Makers ... , 1993).

The D-M-E Company has created a software package that will

automatically create a standard D-M-E mold base. Unfortunately, D-M-E's

UltimateGD software package does not accommodate a major need of the mold

designer. The most time consuming step of designing a mold is dimensioning the

layout once the mold has been created on the computer. According to designers at

Tandy Electronics Tool Engineering, "Dimensioning has proven to be another

time-draining job, even when using some CAD packages" (Mold Makers ... ,

1993).

5

..

There are several other problem areas in the mold design industry that

would benefit from an automatic dimensioning feature in this software. These

include, standardization of mold drawings in industry and the possibility of

missing dimensions would become obsolete.

Expected Results

When the automatic dimensioning feature has been added to The D-M-E

Company's Ultimate• mold base design software, the following goals will have

been completed.

1. All dimensions will be determined per American National Standards

Institute (ANSI) standards and by mold design practices in the injection molding

industry.

2. Successful completion of compiled C program for the purpose of

automatic dimensioning of the mold base created by the user within the Ultimate•

software.

3. Successful completion of integrating the C compiled program into the

original Ultimate• program to inspect the execution of the automatic dimensioning

feature.

Assumptions

This study will be developed under the following basic assumptions:

1. Tecnocad Ltd. will provide the necessary 'hooks' into the existing

6

software so that an executable program can be developed incorporating the added

feature.

2. Tecnocad Ltd. will provide variable names or function names from the

original program for positions on mold base for dimensioning purposes.

3. Tecnocad Ltd. will provide pieces of the original IBtimate19 source code

if necessary to complete this project.

Limitations

The basic limiting factors pertaining to this study are as follows:

1. The IBtimate19 software will create standard and customized D-M-E

mold bases by given user dimensions.

2. This added feature for the Ultimate19 software will be created only for

CADKEY version 6.0.

3. The application software created will only run in CADKEY version 6.0

and will only run on hardware that will support CADKEY version 6.0.

4. The compiler for the source code is limited to the Metaware High C

compiler and the GNU C Compiler from the Free Software Foundation because of

the limitations of CADKEY version 6.0.

5. International Standards Organi:zation/ American National Standards

Institute (ISO/ ANSI) standards for dimensioning (Yl4.5M) will be used.

7

CHAPTER Il

REVIEW OF LITERATURE

Application Development

With the increased necessity of unique software for different applications in

industry today, companies are forced to create their own customized software

applications in-house. With this type of development comes difficulties, such as,

management and maintenance of the software (Baum, 1992). One company that

was experiencing new software development was The Hartford, an I'IT subsidiary.

The Hartford wanted to create a high quality application software package at low

cost and be able to maintain this software after it was in use. As this phase was

implemented, it was found that development was taking too long and was costing

too much. The solution for The Hartford was to install a new high level language

to support COBOL, the existing language, then training for their programmers to

submit good programs to the software library and finally the commitment of full­

time resources to supporting the productivity of the programmers (Crawford,

1986).

Software development strategies can help combat problems and formalize

methods for development with new software applications. This will also make the

steps in getting new software developed easier and more succinct (Jones and

8

r

Shaw, 1990). Some of these strategies and methods include Computer-Aided

Software Engineering (CASE), Software Engineering (SE), Rapid Application

Development (RAD), and the Vienna Development Method (VDM). All of these

strategies assist in the development of new software applications.

An area of development that has become somewhat of a standard practice

is in the area of custoniliation of existing software packages. These types of

packages are called add-on programs (Madsen and Shumaker, 1993).

With most CAD systems, there are options that allow users to customize

"off the shelr' packages to suit their own needs and to use enhancements created

by other users (Kramer, 1993). Some of these add-on programs and options

include Dynamic Link Libraries (DLL), Run-Time Linking {RTL), and shared

objects (CADKEY, 1993). There are two other add-on programs that will be

dealt with more in depth, AutoLISP for Autocad and CADKEY Dynamic

Extensions (COE) for CAD KEY.

The AutoLISP programming language is derived from LISt Processing

(LISP) which is the second oldest high-level language used by modern CAD

systems (the oldest is FORTRAN) (Kramer, 1993). AutoLISP was designed by

AutoDesk for use with Autocad. There are many advantages to using AutoLISP

to customize Autocad such as, automatically creating shapes with text placed

inside, drawing parallel lines by specifying beginning and end points, creating

multiple lines of text in a preset style (Madsen and Shumaker, 1993), or control

robot movements to make basic motions and to avoid obstacles (Kramer, 1993).

9

In addition to the previous add-on programs there exists another that may

have more of an advantage over the others. The CADKEY Dynamic Extension

(COE) mechanism takes advantage of the powerful features of CADKEY and goes

a step further by customizing ideas and programs created by the user. The COE

program contains the code and data for the given processes to be carried out

within CAD KEY. There are many COE programs that exist within the standard

package of CADKEY and with other third party application packages that can be

purchased. These include Picture It, CADKEY Analysis, the on-line CADKEY

tutorial, and the CADKEY Advanced Modeler.

Another example of a COE program in use today is MF/Link created by

Software Ventures, Inc. This program allows CADKEY part files to be

transferred to Moldflow part files by the use of menu selections created by the

COE code (Software Ventures, Inc., 1992). This is a software package that was

created by a third party company because of the need for this application by

cun:ent CADKEY and Moldflow users and made possible by the capabilities of the

COE mechanism within CAD KEY.

The COE mechanism provides a function that will call back and forth

between the COE module and CADKEY. The COE mechanism provides the

necessary loading of the code into CADKEY and then establishes the connection

for the call back between the two. One advantage of this process is that once the

COE module is loaded, it will run as if it is part of the standard CADKEY

software (CADKEY, 1993).

10

There are many other advantages to the CDE module, which include: (a) a

more productive channel for software development at CADKEY; (b) more power

to the developers for their applications, since this is a modular program; (c) more

versatile and responsive CADKEY programs for the user with more choices for

changes that the user feels necessary; (d) characteristics within the C programming

language; and (e) many other advantages over other add-on programs for

application development (CADKEY, 1993). The advantages are to the users and

the developers who are now able to create very large applications without loss of

performance because of the modularity of this mechanism. There is also another

advantage to the user because they are now able to pick and choose between the

available additions and applications and then build a CADKEY with only the

modules that are needed for their own unique applications.

There does exist one limitation to the CADKEY user when executing a

CDE module. While the CDE mechanism is running, the user is not able to use

the standard CADKEY functions accessible from the menus, such as, dimensioning

or addition of necessary entities that are not included in the CDE program. But

the user can exit the CDE module, perform the desired CADKEY function, and

then enter the CDE module again. This task takes very little time and does not

inhibit the user in any way.

Some of the experts in the CDE development field include Tecnocad Ltd.

in Sligo, Ireland where Ken Carrol has developed CDE mechanisms for CADKEY

for the plastics industry. Software Ventures, Inc. in Kalamazoo, Michigan has

11

r

created a link between CADKEY and the Moldflow process simulation software

for the plastics injection molding industry.

Programming Languages

When developers of Computer-Aided Design systems decide to create add­

on type of capabilities to their software they must choose a programming language

in which the code is written for execution. When choosing a programming

language there are many items to be considered. These include: (a) ease of

translation from design to code, (b) efficiency of the compiled code, (c) portability

of the source code, (d) availability of development tools, and (e) long term

maintainability of the code. This step is more important than may be realized at

the onset of the design process. Most software creators will tend to consider the

support tools and how they will work together to more quickly implement the

software rather than the type of programming language to use. This kind of

decision may lead to sub-optimal performance and maintainability of the

application software (Montgomery, 1991). (Unfortunately, the end user and third

party developer do not usually choose the programming language but must accept

the language that the supplier has chosen.)

There are many options that can be chosen for programming languages

depending on the end use of the software. This discussion focuses on those

associated with CAD software. All of the languages discussed are high-level

languages because of their portability and ease of use.

12

,.

FORTRAN

FORTRAN is the most popular programming language for engineering and

scientific work. FORTRAN is a second generation language (first generation is

represented by Machine and Assembler languages). Second generation languages

have the capabilities of huge software libraries and wide acceptance and familiarity

(Montgomery, 1991). Also, FORTRAN is a good language for number crunching

for analysis software applications (Lehmkuhl, 1983).

FORTRAN is a procedural approach to programming. A procedural

language is one that each statement in the language tells the computer to do

something and is basically a list of instructions. When these programs get very

large, it gets very difficult to decipher the code so subroutines are created

according to certain functions within the program to make it easier for the

programmer (Lafore, 1991).

One disadvantage to FORTRAN is the method it uses to saves data. The

manner in which the data is stored is critical and if the arrangement of data

changes, all of the functions that call to this data in the program must change as

well. This can be a very difficult task because many lines of code will have to be

adjusted (Lafore, 1991).

c Lan�ua�e

The C programming language has its roots in the development of the

13

UNIX operating system from AT&T Bell Laboratories. Even though this is why

C was created, C is now used across many operating systems and most of the

major personal computer software uses this language for creation of its

applications. This language is used for creation of graphics packages, spread

sheets, word processors, scientific and engineering applications, and CAD/CAM

applications (Hutchison and Just, 1988). Chas many powerful features which

make it a more advantageous programming language. These features include

complex data structures, extensive use of pointers, and many operators for

computation and data manipulation (Montgomery, 1991). This project will be

using the C programming language.

Compilin& and Linkin&

For every high level language, a compiler is needed to translate the

program from man-readable to machine readable. This translation is necessary

because the source file that is created by the programmer is in ASCII format and

the computer reads files in binary format or machine language. The source file

that is created by the programmer is not an executable file (Lafore, 1991).

To create an executable program there are two steps that must be

accomplished successfully. These include compiling and linking. A compiled

program contains machine-language instructions that can be executed by the

computer. But these instructions are not complete. This compiled file is usually

called an object file (Lafore, 1991).

14

r

Once the program is in machine language instructions (object file), the

program must be linked to create an executable file. This file can then be

executed or run by the programmer or end user to accomplish the intended task of

the program.

In customizing existing CAD software, there arises some limitations when

using a compiler. For CDE development in CADKEY, there are only three types

of compilers that are accepted, Metaware High C compiler, the Watcom compiler

and the GNU C compiler (GCC) from Free Software Foundation. These

compilers will produce the object and executable files for the source program.

The reason that a programmer must use this compiler is because CADKEY is a

32-bit application and all extensions used with it must be 32-bit applications as

well. Since CAD KEY was compiled using Metaware High C compiler, this is the

compiler that is recommended for all applications used with CADKEY

(CADKEY, 1993). The Watcom compiler is another 32-bit compiler. But the

GNU C compiler, which can be downloaded from CADKEY's Bulletin Board, can

also be used to develop CADKEY Dynamic Extension modules. Hopefully this

limitation will change in the future, since this may inhibit the software developer

and certain companies from using CDE modules for creating customized

applications.

Mold Design

Computers and computer-aided engineering (CAE) have become an integral

15

part of the plastics industry. Since the onset of CAD, designers of plastics parts

have had increased productivity when creating models and detail drawings

(Forbes, 1989). Most part design done today is modeled in either two­

dimensional or three-dimensional geometry on a CAD system.

For the injection molding industry, mold and part analysis have become a

true advantage to all molders. Finite element analysis and process simulation have

eliminated wasteful trial-and-error methods of the past and have given companies,

who use these types of tools, an edge on their competition (Forbes, 1989).

Most of these analysis tools are targeted for part design. Programs, such

as, Moldflow, C-Flow and Plastics and Computers have finite element methods

for determining and analyzing flow front advancement, weld line placement,

pressure to fill cavity, and air and gas trap locations (Vallens, 1993). Software

has been developed for cooling analysis of the mold and part, as well. This type

of software analyzes the placement of cooling lines and the effects they have on

the temperatures in the part and the mold (Vallens, 1993).

These software packages were the first step in analyzing the mold instead

of just the part. There is also analysis software that will determine the shrinkage

rates across all critical dimensions of a molded part. This type of analysis

drastically reduces lead times and costs for precision mold tooling, while

preventing production delays caused by mold revision (Mold Design Software ... ,

1989). In other words, there are several software packages available to companies

in the plastics injection molding industry for part analysis but there seems to be a

16

shortage of software for those involved in injection mold design.

Computer-Aided Design has helped this shortage but usually does not

handle dimensions or part features in ways that work well with the machining

operations required to make injection molds. A few software packages do exist

that aid the designer in the mold creation on a CAD system. One such package is

Micro Cadam Plus from Altium. One advantage of this system is that it

automatically draws a side view using the user-picked geometry from the plan

view of the injection mold. Another advantage of the Micro Cadam Plus system

is for Electric Discharge Machine (EDM) operations. It can compensate for the

overbum created by the EDM machine as they cut the graphite tool (Mold

Makers ... , 1993). Unfortunately, this is not a true injection mold design system.

A software package was developed by Engineering Technology students at

Western Michigan University named Design-A-Mold. This software uses

CADKEY Advanced Design Language (CADL) for system code and can be

ex�uted with the CADKEY design system. The program creates a three­

dimensional model of the injection mold and its standard components based on

D-M-E standard catalog A and B series mold bases. From this three-dimensional

mold model, layout drawings of the ejector system, cooling system, and other

external systems needed to create the tool can be added with standard CADKEY

operations (Branch, Brown and VanderKooi, 1992). This system represents a true

mold design system since everything that comes with a standard mold base from

D-M-E is drawn automatically by the Design-A-Mold software.

17

Another mold design system is R12/MOLD from AutoCAD. This software

uses the AutoCAD dialogue boxes for dimensioning and detailing in AutoCAD

much easier and faster. Features in this new software include ordinate

dimensioning and automatic doglegging. A library containing both National and

D-M-E mold bases are included in the software package (E D Sales and Service,

1994).

Other types of mold base design systems that exist or have existed in the

past include: (a) Unisys' CAD/CAM system that will design and draw customized

mold bases automatically, (b) MoldMate from Vector Automation contains all of

the D-M-E mold bases as preset drawings that can be called up from inside this

system, and (c) the CADK.EY division of Micro Control Systems, Inc. developed

an interface to D-M-E's mold base-building software that could create three­

dimensional mold bases within CADK.EY (Lodge, 1988).

There are a few others that have become more popular than the previous

software packages discussed. These include Engineered Dynamics from National

Dynamics in Chicago, Illinois and MoldMaker from Matra Datavision in Israel.

The National software is an electronic library or catalog which allows designers to

become more efficient when designing injection molds using Autocad as the base

system (National, 1993).

Dimensioning Standards and Practices

In order to complete any design that has been created on a CAD system, a

18

two-dimensional detailed layout drawing usually must be created. This layout

drawing is used to communicate effectively with the manufacturer that will

produce the part. Therefore, it is very important to include all detailed

information required to manufacture the part. A detailed drawing usually consists

of an orthogonal layout of the part along with the dimensions necessary to convey

the proper information and describe the part correctly. Which is why it is very

important to include all of these dimensions on the layout drawing.

The American National Standards Institute (ANSI) and the International

Standards Organization (ISO) have specific standards that are setup for detailing a

drawing. These standards are documented in the ISO/ ANSI manual in the Y

series, especially Yl4.5M, Dimensionin� and Tolerancin� for En�ineerin�

Drawin�s (ANSI, 1988). This section specifies the standards that are to be used

for dimensioning and tolerancing a layout drawing. These standards include rules

for measurement units, standards for dimensioning various shapes, and rules for

specifying repetitive features within a drawing. This project will adhere to these

standards for all dimensioning of the mold base layout drawings.

In addition to the ISO/ ANSI standards, there are also industrial practices

that are used for dimensioning mold base drawings. Unfortunately, there is not

just one uniform practice for the entire mold design industry. Each company has

its own practices for the way that the mold layout drawing should be dimensioned.

For example, A-Tech Mold uses ordinate dimensions to describe the mold base.

They use the center of the mold base as the datum feature and measure all

19

dimensions from this datum (See Appendix A). A-Tech Mold views this type of

dimensioning as an advantage since it takes up less space on the drawing (Brown,

1994).

Ordinate dimensioning seems to be the norm in industry, but there is still

some variation within this aspect as well. Although there are differences in the

way that industry dimensions mold base layout drawings, the features on the mold

base layout which they dimension, are basically the same. For example, most

designers will always dimension the overall length and width of the mold base, as

well as, all the plate thicknesses with standard horizontal and vertical dimensions.

Other common dimensions include the centerline locations of all pins and holes,

labels and notes describing the diameter or radius of these holes and pins, the total

stackup dimension for all of the plates, and centerline measurement of water lines

from the center of the mold.

The combination of the ISO/ ANSI standards for dimensioning layout

drawings and industry practices will facilitate the dimensions used in this project

and will be accepted by most mold designers in the injection molding industry.

20

r

CHAPTER III

METHODOLOGY

This project will entail the creation of an automatic dimensioning feature

which can be added to the D-M-E Company's Ultimate� mold base design

software. In order to complete this project, there were several steps that were

completed. A gant chart is available in Appendix B which shows a time line of

all the steps about to be explained.

Preliminary Review

Step One: Made Initial Contacts

Initial steps were made to contact the D-M-E Company and Tecnocad, Ltd.

in order to begin procedures to acquire one copy of the Ultimate� mold base

design software. Once this software had been sent and received by Western

Michigan University, it was loaded on one machine within the Industrial and

Manufacturing Engineering department. To become familiar with the Ultimate�

mold base design system by the D-M-E Company, review of the software began.

This step, review and analysis of the software, continued throughout much of the

project.

21

Ste,p Two: CADKEY Information

Contact was made with CAD KEY, Inc., since this is the parent Computer­

Aided Design (CAD) software package that the IDtimate� software executes on.

Initial contact was with Tom Landry, the Regional Manager for CAD KEY, Inc.

CAD KEY, Inc. sent the necessary information and literature needed to start

development in the use of CADKEY's Dynamic Extension (CDE) protocol. The

CDE module enables the IDtimate� software to run in the CADKEY environment

while utilizing the advantages of the standard CAD KEY software (CAD KEY,

1993).

Compilers

Step Three: Found Compilers

The necessary compilers were found to create the executable files once the

C program has been created for the CDE module. There are only three compilers

that can be used with CADKEY. These include the Metaware High C compiler,

the Watcom compiler and the GNU C compiler (GCC) from the Free Software

Foundation (FSF). The GNU C Compiler was ported from the Unix platform to a

compiler for use on a 386 or 486 MS/DOS Personal Computer (PC) (CAD KEY,

1993). The GNU C compiler was used first since it was readily available and it

was free. It was decided to use this compiler until it was found necessary to

purchase one of the others.

22

Step Four: senu, GNU C Compiler

The GNU C compiler was downloaded from the CAD KEY, Inc. bulletin

board for use in the development of CDE programs for this project. This

compiler was loaded onto a personal computer (PC) and the files were extracted

from the original downloaded file and put into the correct directories on the PC

per directions from CAD KEY. Environment variables had to be added to the

initialization files on the PC (autoexec.bat and config.sys) in order to execute the

GCC in an organized fashion. Once this was done, the GNU C compiler was

ready for utilization. It is at this point that development began on the C programs

that would become CDE modules. It was also necessary to determine the

differences between the three compilers. (This will be discussed in an upcoming

step.)

Development of Test Programs

Step Five: Initial C Pro�rams

Initial programs were created that were relatively simple in order to test

the GCC and become familiar with the methods in creating a CDE module from a

C program. The first program created showed text in the command line once it

was executed in the CADKEY environment. This was a sample program that is

shown in the Explorin� CADKEY's Open Architecture manual obtained from

CADKEY.

23

Ste.p Six: Graphical C Pro1:ram

The next step was to create a program that will create graphics on the

screen, such as lines and arcs. Once this step had been accomplished, a COE

module that created a rectangle on the screen and then dimensioned the length and

width of this rectangle was developed and compiled.

Background Information

Step Seven: Research

While the development of these COE programs were being performed,

research continued to gather sufficient background information for this project.

This research included information on C programming and other mold design

software on the market.

Step Eieht: Formal Aereement

During this phase of the project, a proposed formal agreement was created

between Tecnocad Ltd. and Western Michigan University regarding necessary

information that was needed to complete this project. This type of information

included time frames for answers between both parties, the license agreements

regarding the software, time frames for completion of program, warranties and

disclaimers, and use of the new feature in the original UltimateaD software after it

was completed.

24

Step Nine: D-M-E Competitors

Contact with D-M-E and Tecnocad Ltd. also continued on a need-to-know

basis as the project progressed. Information regarding competitors of the

Ultimate� mold base design software were researched and reviewed. The main

competitor was National Tool since they have also created software which created

mold bases from their catalog.

Step Ten: Tecnocad Information

Constant contact with Tecnocad Ltd. was necessary for a more in-depth

view of the software regarding the details of the programming language. Other

information was also desired regarding their programming techniques which aided

in the development of this new feature of the software.

Standard Dimensions

Step Eleven: Determine Standard Dimensions

One very important aspect of this project was the determination of the

correct standard dimensions to use on the mold base layout that is created using

the D-M-E Ultimate� software. This was vital because the mold layout drawing is

really a communication tool to relay information to the mold maker from the

customer. If this communication is not clear, there can be serious problems with

the end result or in this case the mold itself (Lange, 1984). This can result in

25

difficulties in relations between the two companies and possibly a loss of an

account.

To combat these types of problems, it is important to make sure that all of

the necessary information is on the mold design layout drawing. One way to

make sure that this is accomplished is to make it almost impossible not to include

all standard information on the mold base layout.

The determination of necessary dimensions and the placement of these

dimensions was determined by sampling several mold design practices from both

industry and training institutes. A survey of mold designers in the West Michigan

area was conducted which aided in determining the necessary mold dimensions for

proper communication and practice of mold layout drawings used today. Names

of mold designers and injection mold design companies in the West Michigan area

were contacted for permission to send out the survey to them. Those that

accepted were sent a letter and a mold layout for them to dimension as they would

any other mold layout produced by their company.

Another source of information was the area community colleges which

train mold designers. Kalamazoo Valley Community College (KVCC) was

contacted for training materials and techniques that are used in training mold

designers. All of these sources were used to determine the data positions on the

mold base layout for dimensioning purposes. The compilation of the data from

the survey can be found in Appendix C.

26

Ste,p Twelve: ANSI/ISO Standards

Along with the survey of industry practices, International Standards

Organization (ISO) and American National Standards Institute (ANSI) standards

were researched so that the dimensions created will comply with these standards.

The combination of ANSI/ISO standards and industrial practices ensures that the

automatic dimensioning feature will be advantageous and useful to all who use the

UltimateGD mold base design software and its added feature.

Final Mold Base Program

Ste,p Thirteen: Variable Names

Detailed information was obtained from Tecnocad Ltd. concerning the

locations on the mold base layout that were used for dimensioning positions. At

this point, it was decided that an external data file would be created by Tecnocad

Ltd. which outputs X and Y coordinates of the predetermined positions on the

mold base. The new feature program would then read from this data file for all

necessary information on dimension placement and positions.

Step Fourteen: Mold Base CDE Module

Creation of CDE modules continued with the development of more

complex programs for continued progression toward developing the automatic

dimensioning feature. One such program took one mold layout created by the

27

Ultimate• software and created the determined dimensions by reading the X and Y

coordinate points from an external ASCII data file.

The data file was created by creating a new mold base in the Ultimate

software. Once this was displayed on the screen, the coordinates for the

dimensioning positions were recorded in the data file. The program then retrieved

the coordinates from the data file to be used to create dimensions on the mold

base layout. This was the first programming step that incorporated a mold base

in the actual COE module.

Step Fifteen: Met with Tecnocad Ltd.

At this time, the personnel from Tecnocad Ltd. were in the United States

for a meeting with The D-M-E Company. While they were here, a meeting was

scheduled for a discussion on the external data file and the ability of the Ultimate•

software to generate the data file automatically. After this meeting, several

probl�ms were worked out with the format of the data file. And a new set of

software was loaded that would generate the data file from within Ultimate•

automatically.

Step Sixteen: Final Pro�ram- Phase 1

Once successful compilation of the program with the sample mold base and

dimensioning feature had been done and the new software had been loaded, the

final program was started. This program will include the necessary information

28

for reading from the external file created by UltimateGD and Tecnocad Limited. At

this point, the external data file was only partially finished. It only incorporated

the first two views of the four view mold layout. So the final programming for

phase one was done so that it only incorporated the two views that were included

in the data file.

Step Seventeen: Final Pro�ram - Phase 2

Once the final version of the UltimateGD software was received and

installed, the rest of the programming was finished. This updated version of

UltimateGD is able the generate the data file with information from all views. This

software was able to create a complete external data file so that the rest of the

automatic dimensioning program could be finished.

Step Ei�hteen: Testing

It was very important to test the capabilities of this new automatic

dimensioning feature with many of the mold bases within the D-M-E software.

This testing was very extensive but was necessary to make sure that all

information was correct and displayed correctly.

The new feature program runs as a separate CDE module that must be run

after the UltimateGD software has been used and a mold base saved to disk. This

will not inhibit the testing of the module but it will be accessed differently once it

has been added to the original UltimateGD software.

29

When the final program had been thoroughly tested, a copy of the final

program was sent to Tecnocad Ltd. for possible addition to the original IDtimate•

software program.

30

CHAPTER IV

SOFfW ARE DESIGN AND DESCRIPTION

Preliminary Review

In the early stages of this project, it was necessary to become acquainted

with the companies and people that were going to be involved with this project.

This included contact with CADKEY, Inc., the D-M-E Company, and Tecnocad

Limited. CADKEY is the Computer-Aided Design (CAD) software package with

which the IBtimate� software executes and D-M-E is the company that markets

the Ultimate• software. Tecnocad Ltd. is the company who created the original

IBtimate• software and gave the necessary information about the software to

enable the creation of the automatic dimensioning feature for Ultimate•.

Within this phase of the project, it was necessary to obtain the vital

information from CADKEY to create the CADKEY Dynamic Extensions (CDE)

modules. Once these formalities were taken care of, the next steps were started.

Compilers

At the beginning of the project, three compilers were found that could be

used. However, it was unknown if any of them would actually work. The first

two compilers were the Metaware High C compiler and the Watcom compiler

31

which create 32-bit applications and are accepted by the COE loader in CAD KEY.

The third compiler is the GNU C Compiler from the Free Software Foundation

(CADKEY, 1993). This compiler was readily available from the CADKEY

bulletin board. The GNU C compiler and the software development kit (SOK) for

COE development from CADKEY were downloaded from the CADKEY bulletin

board. The SOK contains the necessary executables, header and object files for

creating CDE's using the GNU C Compiler (CADKEY, 1993).

The first two compilers cost over one thousand dollars each. So it was

decided to start with the GNU C Compiler, since the only cost was the phone

connection to CADKEY's bulletin board. After the final program had been

completed, it was found that the GNU C Compiler worked adequately for creating

all COE files to run the new feature and complete the project and it was not

necessary to purchase either of the other two compilers.

Development of Test Programs

In order to gain a good understanding of all of the characteristics of

programming using the CADKEY Dynamic Extension (COE) module and C

programming in general, several programs were created. These programs ranged

from very simple text output to more complex graphics and dimensions displayed

in the CADKEY environment. The following is a list of several of the programs

that were written for the express purpose of learning the different attributes

necessary to complete this project.

32

The first programs that were created were relatively simple but were

necessary to test the capabilities and format of the COE module. The first step in

creating any C program is to write the program using a text editor, such as Word

Perfect or Microsoft Word. But when using these types of editors, it is necessary

to save the file in ASCII format so that the compiler is able to read the program.

Since the C programming language is a high level language, the ASCII text

program that was produced in the text editor must be comiled from a man­

readable file to a machine-readable file. A compiled program contains machine­

language instructions that can be executed by the computer but these instructions

are not complete (Lafore, 1991).

Once the program is in machine language instructions (or object file), the

program must be linked to the correct libraries to create an executable file that can

be run by the user. These libraries contain the necessary information for the

computer to understand the types of functions that were used in the program.

Once the file has been linked successfully, it can be executed or run by the

programmer or end user to accomplish the intended task of the program. For

every program that was created for this project, these steps (editing, compiling,

and linking) must be executed in this order.

The first program that was successfully developed simply printed text in

the prompt area of the CADKEY screen (See Appendix D, page 65). This

33

program was created to test the capabilities of the compiler and linker. And to

check the ability to create a CDE module that would execute successfully in

CADKEY.

Graphics Pro�rams

The next programs included graphics as well as text. These programs

drew lines to user specified locations and to predetermined locations set within the

program (See Appendix D, page 66). All of the graphics and text were displayed

in the CADKEY environment.

The next interactive graphic program was able to draw a rectangle by user

defined positions for the comer points (See Appendix D, page 68). A progression

into other areas for graphics development was explored for further understanding

of CDE characteristics. This included creation of circles and arcs. This was done

with user entered information for placement in the CADKEY environment. Once

these graphics programs were executed successfully, the next step was to create

programs that dimensioned the graphics that had already been created.

Dimensionin� Pro�rams

The first dimension program that was created just used standard horizontal

dimensions which were dependant on user input for the text position (Appendix D,

page 70). The dimension programs were added to the graphical programs so that

once the object, such as a rectangle, was created it could then be dimensioned

34

(See Figure 1).

2.65

7

l. 30

...___ __ ___, _l

Figure 1. Dimensioned Rectangle.

The dimensions created were dependent on the size of the rectangle that the

user entered and would change as the rectangle changed size (See Appendix D,

page 72). These programs only used standard overall horizontal and vertical

dimensions.

The next program sample developed had the capability of creating a

rectangle, with user entered comer positions, and a user positioned circle. After

these graphics were created, the program dimensioned these two objects (See

Figure 2).

The user had to choose the position of the dimension text on the CADKEY

screen with the cursor (See Appendix D, page 74). All these programs ran

continuously, or in a loop, until the user pressed the RETURN key on the

keyboard. This was done so that the program could run several times to test the

integrity of the program.

35

2.65

7
l. 30

-----,...-� _J

� 0.50

Figure 2. Rectangle and Circle Graphics With Dimensions.

Once both graphics and horizontal and vertical dimensions could be

displayed successfully, other dimensioning programs were created. The survey of

mold designers showed that many used ordinate dimensioning for detailing their

mold layouts. (Refer to Figure 3 and 4 for differences between standard

dimensioning and ordinate dimensioning.) The next programs that were created

incorporated ordinate dimensioning to reflect the type of dimensioning used in the

results of the survey. The ordinate dimensioning program used both vertical and

horizontal ordinate dimensioning (See Figure 4 and Appendix D, page 77).

Within the ordinate dimensioning option in CAD KEY, there were several

areas had to be examined to make sure that it was understood how this function

operated. These areas included positioning of relative points from the base

position and editing an ordinate dimension once it was created.

36

Figure 3. Standard Dimensioning. Figure 4. Ordinate Dimensioning.

Once these obstacles were overcome, other areas had to be explored

before the final program could be started.

External File Pro�rams

After talking with Tecnocad Ltd., regarding the final program, it was

decided that the automatic dimensioning COE module would read from an external

file for the X and Y coordinates for dimensioning position on the mold layout.

The information in the file included all positions for dimensioning the mold

layout, including return pin locations, stop pin positions, and the clamp slot

location (Refer to Appendix E for a mold layout drawing with these components

included).

At this point it was vital that a program be written to pull the coordinates

from the external file into a program that could use this information for

37

dimensioning. Several programs were created to open and extract these data

points from the file (See Appendix D, page 80).

One program was developed to output this one data line from the external

data file to the CADKEY prompt line as text. This step was necessary because

the coordinates that were read from the data file were retrieved as one line of text

(a string character), even though it was actually three distinct positions (Refer to

Figure 5).

Figure 5. Format of External Data File.

The external file consisted of four lines of
data with three coordinate positions in each
line. Each line was read in as one character
(5.5,7.75,0.0) and then
divided (unpacked) into seperate variables
((5.5), [7.75), (0.0)).

After this program was completed, a function was needed to break the text

line into separate entities to retrieve the X, Y and Z coordinates of the dimension

position. This was accomplished with the sscanf C function (See Appendix D,

page 81).

Once these initial programs were created, the actual external data file

format was given by Tecnocad Limited. This file format was not the same as had

been used in the previous programs that retrieved information from the data file.

38

Because of this difference, more programs had to be developed to test the

functions necessary to retrieve this new format. In this new data file, there was

exrtraneous information provided that was not necessary for the automatic

dimensioning function but was necessary for other functions within the Ultimate

software. Only the X and Y coordinate positions were needed. An example of

the new data file format is shown in Appendix F. After this obstacle was

overcome, the final program was started.

Background Information

Throughout the project, continued research was done to collect information

in several areas, including application of functions within the programming

language of C, continued review of the UltimateGD software, and the development

of the formal agreement between Western Michigan University and Tecnocad

Limited. Also more information was obtained from Tecnocad Ltd. concerning the

type of functions that were used within the original UltimateaD software, such as,

sorting functions for the X and Y coordinate positions, which were necessary for

the automatic dimensioning feature.

Standard Dimensions

Before the final program was started, the standard dimensions for the

automatic dimensioning feature within the UltimateGD software needed to be

determined. This determination started by contacting the D-M-E Company and

39

asking what their recommendations for this feature would include. The only

suggestion that they had was to follow the dimensioning format of the D-M-E

catalog that shows layouts for most mold bases that can be purchased through D­

M-E (See Appendix E for an example of the D-M-E layout).

After reviewing the dimensioning format of the D-M-E catalog, it was

concluded that more research needed to be done to identify the practices of mold

designers in industry today. To accomplish this, a list of mold designers and

plastics engineers in the West Michigan area and other possible sources in the

United States was developed. The names of individuals, companies, and

professional societies came from the thesis committee members and other industry

reference materials, which included the Plastics Encyclo_pedia and a listing of

plastics industry professionals produced by the Society of Plastics Engineers.

The first step in determining the required dimensions and their locations

was to contact the Society of the Plastics Industry (SPI) and the National Tooling

and Machining Association (NTMA) for possible publications on detailing and

dimensioning standards of mold base design layout. The Introduction to Mold

Makin2 by E.L. Buckleitner and Moldmakin2 and Die Cast Dies for Am,rentice

Trainin2 by John Kluz were two books recommended by the NTMA. Both books

were acquired and reviewed. Unfortunately, neither book provided standard

practices in dimensioning within the injection mold making industry.

From all industry contacts that were made, there did not appear to be any

written documentation on detailing and dimensioning mold base layouts. Because

40

of this lack of formal standards, it was necessary to conduct a survey of mold

designers in the plastics industry to determine industry practices on mold layout

dimensioning.

The first step in this survey was to make personal contacts with mold

designers and engineers that were directly involved ·with Western Michigan

University. This was done to obtain individual detailing specifications used within

those companies or to get direction in finding information on detailing mold layout

drawings

After contacting several companies and individuals, it was found that

formal specifications were not documented within many companies or in any

possible reference materials. One of the companies didn't even produce paper

copies of the mold designs; instead, everything was kept in an electronic database

for each project. Although this portion of the survey was not successful in

obtaining written documentation on dimensioning mold bases, several other

contacts were obtained from these companies for possible reference materials.

The next step in determining dimensioning practices was to contact mold

shops in the West Michigan area for assistance. Thirteen plastics companies were

contacted and seven of them agreed to participate in the survey. It was decided

that a hard copy of a sample mold base that had no dimensioning or detailing

would be sent to these participants . The mold base was a standard D-M-E mold

base created by the Ultimate� software (See Appendix G for layout). A letter was

sent out with the mold layout drawing to the participants (See Appendix H). The

41

letter requested an example of a mold base layout produced by these companies be

returned with the survey. Five of the surveys were returned for evaluation

including samples of company mold layouts.

Another source for the survey was current Ultimate• users. Four

Ultimate• users' names were received from the D-M-E Company's support staff.

These users were contacted and three agreed to participate in the survey. All

agreed that they would rather send samples of mold base layouts with dimensions

from their company instead of the previous mold base that was used in the survey

of West Michigan mold designers.

The most usable information on dimensioning a mold base layout was

acquired from the actual mold designers that participated in the survey and sent

back the required information. It was this information that was reviewed and

applied to aid in producing an automatic dimensioning feature that would follow

general industry practices that were defined and described by the survey. The

results and details of the survey are shown in Appendix C. All of the dimensions

that were used in the automatic dimensioning CDE module were determined by

the results of the survey of mold designers in industry today.

From the survey, it was found that when dimensioning the top view of the

mold base, also known as the B Plan View, both overall horizontal and vertical

dimensions were used, as well as, ordinate dimensioning for specific locations of

holes and components. The base ordinate position was the center of the mold (See

Appendix G, page 87). From all of the surveys collected, while focusing on the

42

top view, all but one participant used ordinate dimensioning and all but three also

used overall horizontal and vertical dimensions. So it was determined to

incorporate both types of dimensioning into the new automatic dimensioning

feature for the top view. All of the locations that were dimensioned on the mold

base were similar from one survey to the next. These locations included the

overall width and height of the mold base and the center positions of the

components.

The next view is the cavity layout, also called the A Plan View. After

reviewing the survey, it was found that there was not a clear distinction on the

type of dimensioning used. Four of the eight surveys used standard horizontal and

vertical dimensions, while five of the eight used ordinate dimensioning. Three of

the surveys used both types of dimensioning. The ordinate dimensioning was the

majority type but upon further investigation into the surveys that used this type of

dimensioning, it was found that the components that were used with ordinate

dim�nsioning had already been dimensioned in the top view (B Plan View). It

was determined that it was not necessary to dimension these components again.

The dimensions that were necessary were the standard overall dimensions and the

clamp slot location (See the A-Plan View in Appendix G, page 87).

The next standard view of the mold base was the section view, also called

the Stack-up Length. In this view, standard overall dimensions for the height and

width were used on the mold layout from the results of the survey. Also some of

the survey participants dimensioned the thicknesses of the different plates of the

43

mold in this view. Some participants dimensioned the thickness of the plates in

this view and the End View. Other components dimensioned in this view were

the locator ring, the sprue bushing radius and the sprue diameter (Refer to

Appendix G for Ultimate� mold layout). These were all incorporated into the

final automatic dimensioning feature.

The last view on the mold base layout is the end view or the Stack-up

Width. After reviewing the results of the survey, six of the eight surveys used

overall dimensions to describe the mold base. Five of the eight surveys also

dimensioned the plate thicknesses and the width of the ejector bar and the pin

retainer plate in this view. Other components dimensioned in this view are the

locator ring, sprue bushing, and clamp slot width. Since all of these types of

dimensioning techniques are necessary to describe the mold accurately, both were

used with the automatic dimensioning feature.

The other aspect of determining the necessary dimensions was to review

the International Standards Organization (ISO) and the American National

Standards Institute (ANSI) dimensioning standards for engineering layout

drawings. These standards are not specifically set up for injection mold design

layouts but for any dimensioned/detailed engineering drawing layout produced

today. The specific ISO/ ANSI standard that was adhered to was entitled

Dimensionine and Tolerancine for Eneineerine Drawines, section Y14.5M. This

standard was reviewed and adhered to throughout the project.

44

Final Mold Base Program

The final program must read the data from the external data file and use

this data to dimension any mold base created by the Ultimate� software. To

accomplish this goal, it was necessary to get the correct information from the file.

Because the file contained more information than was needed, functions were

created to read in just the X and Y locations of the features on the mold from the

external data file.

Within this data file, there were four sections that related to the four views

generated by the Ultimate� software. They include the top view (B Plan View),

the cavity layout (A Plan View), the section view (Stack-Up Length) and the end

view (Stack-Up Width). The final program was also divided into four sections

which corresponded to the four views in the data file. Each view was a unique

view with unique dimensioning types as explained in the previous section (See

Appendix G page 87). Some views had standard horizontal and vertical

dimensions, others had ordinate dimensioning, while others had a combination of

all types.

The major challenge was to retrieve the correct data in the correct format.

Once the X and Y positions were extracted from the file, it had to be determined

which components they were describing. This was accomplished through the use

of decision statements in the program. Once the decision was made, the correct

dimension types were used to output the dimension to the CADKEY screen. This

45

was done for each view of the mold layout (Refer to Appendix I for a copy of the

final program).

All of the dimensions created through the automatic dimensioning feature

will be on a separate CADK.EY layer and in a different color so that they are

easily hidden or edited by the Ultimate• user. Also, all dimensions will have

three decimal places to the right of the zero for accuracy.

A new updated version of the Ultimate• software was obtained from

Tecnocad Limited. This included the option to automatically output the

dimensioning file for the injection mold created in the Ultimate• software. This

option is available from the main menu in Ultimate•. The dimensioning data file

will only be created if the user chooses this option within Ultimate•.

An environment variable can be set up on the computer running Ultimate•

to specify the path name of the directory in which to store the dimension data file.

This file will have a filename that is the same as the part file saved by the user

within CADK.EY with an extension of .COO (CAMold (Ultimate•) Dimensioning

Output).

Once the external data file feature had been added to the CAMold

software, the testing of the automatic dimensioning feature was done. Testing

was done by executing the automatic dimensioning COE function after the .COO

file had been created by CAMold which is run using the CADKEY software (See

Figure 6).

46

[AOKEY
Software

COE Module
Ultinote

Auto Din

Feature

Other Fi I es·

* .cdo Fi le

____ _,

Figure 6. Schematic of Testing Procedures.

Many mold bases were selected and the dimensioning output files were

created. All of the mold base layout drawings were checked for any errors or

display problems. An example of a fully detailed mold base layout after the

automatic dimensioning feature had been executed is shown in Appendix J.

There were some minor changes made to the CDE file regarding dimensioning

text position. Once these changes were made and tested, the program was

finalized and sent to Tecnocad Limited for possible addition to the original

Ultimate mold base design software.

47

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The purpose of this project was to create an automatic dimensioning

feature for plastic injection mold base design software. The new feature runs in

conjunction with the UltimateGD mold design software from D-M-E. The automatic

dimensioning feature was created to aid the mold designer in cutting tedious

detailing and dimensioning work.

The following conclusions and observations were made based upon the data

and information received throughout the project:

1. After completing the automatic dimensioning program, it was concluded

that the GNU C compiler from the Free Software Foundation was adequate for

creation of the COE modules necessary to complete this project.

2. It was found, after researching competitors of the UltimateGD software,

that no other mold design software incorporated an automatic dimensioning

feature.

3. After conducting the survey of mold designers in industry, dimenioning

practices were found for detailing and dimensioning a standard D-M-E mold base.

These results can be found in Appendix C.

48

4. After receiving the final Ultimatefj installation software from Tecnocad

Limited, it was found that the automatic dimensioning output option did not output

all of the data determined necessary from the survey. The data file that is output

does not contain the necessary data positions for the Stack-Up Length view, as well

as some other data positions for the locator ring, sprue bushing and the clamp slot

width. This project was completed by creating a data file that followed the original

format from Tecnocad Limited (Refer to Appendix F for the data file format).

This data file was used to assist in creating the dimensions for the automatic

dimensioning feature used with the Ultimate� software. The only problem that this

creates is in testing several of the mold bases with the automatic dimensioning

feature. But the original data format provided by Tecnocad Limited has been

followed and when the automatic dimensioning ouput feature has been corrected,

further testing may be performed.

Recommendations

Since there were some difficulties in getting a working copy of the updated

Ultimate� software, it is recommended that this be obtained before any further

work or changes be made to the new feature. It is suggested that all mold bases be

tested using this new updated Ultimate� software and the new automatic

dimensioning feature since it was impossible for it to be done during this project. It

is also suggested to get a copy of the Ultimatefj software with the automatic

49

dimensioning feature already incorporated into the software so that a complete test

can be conducted to test the new feature.

It is also recommended that a more comprehensive survey of national and

international mold designers be completed to confirm the dimensioning styles used

in this project.

It is also suggested that background research be undertaken to determine if

there are other new mold design software packages with an automatic

dimensioning feature incorporated into them. This may lead to other possible

changes and updates in the new feature created for this project.

50

Appendix A

Ordinate Dimensioning Example

51

L.n
c--

.00
�� ---+-----+- • 50

--1.25

.---------. --- 2 . 00
��-2.so

Ordinate Dimensioning Example

52

Appendix B

Gant Chart

53

Appendix B - 1994/1995 Gant Schedule

Ultimate Automatic Dimensioning Feature
A Scheduled Event■ .6. Completed Event ◊ Revl■ed Schedule ♦ Comnleted Revl■lon■

s.........._ October November Docember Jam,arv f,,hruarv March

ID# Tasks 2 9 16 2J 30 714 21 21 4 11 11 25 2 916 2J 30 6 13 20 27 3 10 17 24 3 10172431

• Preliminary Review !

1 Made Initial Contacts - -

2 CADKEY Information
-

• Compilers I
3 Found Compilers

.

4 Setup GNU C Compiler
• Devel. of Test Progs .
5 Initial C ;-______ -

6 Graphical C m>llI1llll
• BackRround Inform .
7 Research
I Formal A t
9 D-M-E Comoetitors
10 Tecnocad Information
• Standard Dimensions I

11 Determine Std. Dunen.
12 ANSI/ISO Standards ..-
• Final Mold Base Prol(. i
13 Variable Names '

14 Mold Base CDE Module
15 Met with Tecnocad
16 Final rnnmun-Phasc 1
17 Final!':, _____ Phase 2

II Tcstirur.

Amil May

7 14 21 21 S 12 19 26

◄

Jwio

2 9 16 23 30

VI
�

Appendix C

Tabulated Information From Survey

55

TABULATED INFORMATION FROM SURVEY

Example Number B Plan View A Plan View Staok-U I Lenath

NUM

1

2

3

4

5

6

7

8

••

LEGEND:

NUM:

REL:

STD:

ORD:

OVR:

THICK:

REL STD ORD STD ORD OVR

1A X X X

1B X X X X X

2A X X X

3A X X X

4A X X

5A X X X

5B X X X X X

6A X X X X

Refer to the following mold layout for a graphic view of the Information

contained In this appendix

The number of the survey tabulated

The relationship of the surveys. Some companies

sent more than one survey or example back.

For example, company number 5 sent back two examples, A and B.

Standard horizontal and vertical dimensions

Horizontal and vertical ordinate dimensions

Overall width, height, and length dimensions

Dimensions for thickness of all plates

THICK

X

X

X

X

X

X

56

Staok-Ui, Width

OVR THICK

X X

X X

X X

X X

X X

X

57

0.00------,1---------"E'.)l------------ -- 7.BB

Ordioote
Di nens ion i ng

B Plan View

� l:rdl1111te --.........,.,;
Dlnenslml!YJ

B
c:i

s� �L L--2.75 :i· 2.75-J
D1nens11ns 3.94 ----•-

A Plan View

B
,.,;

58

7:�..I

J l

�,

-

I
'
- -

i;� 'I I
-

l ! r
�

- I
I
'

I
I

lo
I

I
,4.,

I
I

I

11
I
I

I

I

I

17 " ,..,

I Li

·1 o.m
�

I

,..._..._

J

0.00

=J
I.]7

_j

1.00

=t
L Thickness

Dinensions

Stack-Up Length

59

r. --7.IE--•
I O.IE I

Thid<ness �
Dinensions /

r
l.]l

J�

�

I

_J

H

?
�

I

I

1 : r
I

I

L ,..
I
'

'

I
I

I
'

II

II
I

I 't 1 r�,
I

I

s
'

I

I
I

I
'

I

Slack-Up Width

7.]8

Dvern II
Oinensions

60

Appendix D

Initial Programs

61

Appendix D· Examples of JnitiaJ Programs - Text

Description: This program was created to test the capabilities of the CDE
module. It will output the text "Hello, world!" to the CAD KEY
prompt line.

#include "/gccsdk/include/ck_cdl.h"

void helloO

{
ck _pause ("Hello, world! ");

}

62

Appendix D· Examples af Toitia) Programs - I jne

Description: This program was created to test the CDE module for creating
graphics. It asks the user to indicate two positions on the screen for
the start and end point of the line. It will output to the CADKEY
screen one line using the default attributes set by CAD KEY.

#include < stdio.h >
#include "c: \gccsdk\include\ck _ cdl.h"

int
ln_plus O

{
int opt, stat, dblevel;
double xl, yl, zl, x2, y2, z2 ;
CK_ ENTA TI att;

/* Get start and end positions for line */

opt= 1;

getl:
do {

stat = ck_getpos ("Indicate start point", opt);
} while (stat = = CK_RETURN);

if ((stat = = CK_BACKUP) 11 (stat = = CK_ESCAPE)) {
return (O);

}
opt = stat;

ck_getvar ("@xworld", &xl);
ck_getvar ("@yworld", &yl);
ck_getvar ("@zworld", &zl);

do {
stat = ck _getpos ("Indicate end point", opt);

} while (stat = = CK_RETURN);

if (stat = = CK_ ESCAPE) {
return (O);

63

}

}
if (stat = = CK_BACKUP) {

goto getl;

}
opt = stat;

ck_getvar ("@xworld", &x2);
ck_getvar ("@yworld", &y2);
ck_getvar ("@zworld", &z2);

ck_getvar ("@COLOR", &att.color);
ck_getvar ("@LEVEL", &att.level);
ck_getvar ("@LTYPE", &att.ltype);
att.ltype = att.ltype + 1;
att.grpnum = O;
att. subgrp = O;
ck_getvar ("@PEN", &att.pen);
ck_getvar ("@LWIDTH", &att.lwidth);

dblevel = O;

if (ck_getvar ("DEBUG", &dblevel) = = CK_BAD _VAR) {
ck_mkvar ("DEBUG", CK_ V _INT, 0, NULL);

}

if (dblevel = = 1) {

}_

printf ("LINE %f, %f, %f, %f, %f, %t\n", xl, yl, zl, x2, y2,
z2);

else if (dblevel = = 2) {

}

printf ("LINE %f, %f, %f, %f, %f, %f, %d, %d, %d, %d, %d,
%d, %d\n" ,xl, yl, z l , x2, y2, z2, att.color, att.level,
att.ltype,att.grpnum, att.subgrp, att.pen, att.lwidth);

ck_line (xl, yl, zl, x2, y2, z2, &att);

goto get l ;

64

Appendix D· Examples of JoitiaJ Programs - Rectangle

Description: This program was created to further test the graphic capabilities of
the CDE module. It will ask the user for the bottom left-hand
comer of a rectangle and the top right-hand comer of a rectangle.
The program will take these points and create a rectangle in the
CADKEY environment using default attributes.

#include < stdio.h >
#include "c: \gccsdk\include\ck _ cdl.h"

int
rectangle O

{
int opt, stat, dblevel;
double xl, yl, zl, x2, y2, z2;
CK_ ENTA TT att;

/* Get comer positions rectangle */

opt = 1;

getl:
do {

stat = ck_getpos ("Indicate bottom left comer", opt);
} while (stat = = CK_ RETURN);

if ((stat = = CK_BACKUP) 11 (stat = = CK_ESCAPE)) {
return (O);

}
opt = stat;

ck_getvar ("@xworld", &xl);
ck_getvar ("@yworld", &yl);
ck_getvar ("@zworld", &zl);

do {
stat = ck_getpos ("Indicate upper right comer", opt);

} while (stat = = CK_RETURN);

if (stat = = CK_ESCAPE) {
return (O);

65

}

}
if (stat = = CK_ BACKUP) {

goto get l;

}
opt = stat;

ck_getvar ("@xworld", &x2);
ck_getvar ("@yworld", &y2);
ck_getvar ("@zworld", &z2);

ck_getvar ("@COLOR", &att.color);
ck_getvar ("@LEVEL", &att.level);
ck_getvar ("@LTYPE", &att.ltype);
att.ltype = att.ltype + 1;
att.grpnum = O;
att. subgrp = O;
ck_getvar ("@PEN", &att.pen);
ck_getvar ("@LWIDTH", &att.lwidth);
dblevel = O;
if (ck_getvar ("DEBUG", &dblevel) == CK_BAD_VAR) {
ck mkvar ("DEBUG", CK V INT, 0, NULL);
- - -

}
if (dblevel = = 1) {

printf ("LINE %f, %f, %f, %f, %f, %f\n", xl, yl, zl, x2, y2,
z2);

}
else if (dblevel = = 2) {

}

printf ("LINE %f, %f, %f, %f, %f, %f, %d, %d, %d, %d, %d,
%d, %d\n" ,xl, yl, zl, x2, y2, z2, att.color, att.level,
att.ltype,att.grpnum, att. subgrp, att. pen, att.lwidth);

ck_line (xl, yl, zl, xl +(x2-xl), yl, zl, &att);
ck_line (xl +(x2-xl), yl, zl, x2, y2, z2, &att);
ck_line (x2, y2, z2, xl, yl +(y2-yl), z2, &att);
ck_line (xl, yl +(y2-yl), z2, xl, yl, zl, &att);

goto get l;

66

Appendix D· Examples of Initial Programs - Dimensions

Description: This program was created to test the capabilities of the
dimensioning features within the CDE module. It asks the user to
enter the first and second positions that the horizontal dimension
will cover. Then it asks the user for the text position. Once these
questions have been answered, it will create the dimension in the
CADKEY environment using the positions defined by the user.

/* lindim.c */

#include < stdio.h >
#include "c: \gccsdk\include\ck _ cdl.h"
void
lindim 0

{
double pos[3];
unsigned long id;
int vpno, stat, defopt = 3 ;
CK_REFLN refln;
CK_LOCDEF locdef[2];
CK ENTATI att = { CK LNG DFLT, CK INT DFLT, CK INT DFLT,
- - - - - - -

CK_INT_DFLT,CK_INT_DFLT, CK_INT_DFLT, CK_INT_DFLT, 0, 0 };

get_pos _ defl :

do {
stat = ck_getpos_def ("Indicate 1st position for HORZ dimension", defopt,

&locdef[0]);
} while (stat = = CK_RETURN);

if (stat = = CK_ESCAPE 11 stat = = CK_BACKUP) {
return;

}

ck_getcoord (NULL, pos, NULL, NULL);
refln.x l = pos[0];
refln.yl = pos[l];
defopt = stat;

do {
stat = ck_getpos_def ("Indicate 2nd position for HORZ dimension", defopt,

67

}

&locdef{ 1]) ;
} while (stat = = CK_ RETURN);

if (stat = = CK_ESCAPE 11 stat = = CK_BACKUP) {
return;

}

ck__getcoord (NULL, pos, NULL, NULL);
refln.x2 = pos[0];
refln.y2 = pos[l];
defopt = stat;

do {
stat = ck__getpos ("Indicate text position for HORZ dimension", l);

} while (stat = = CK_RETURN);

if (stat = = CK_ESCAPE 11 stat = = CK_BACKUP) {
return;

}

ck_inquire (CK_INQ_CURVP, &vpno);
ck_inquire (CK_SET_ VIEW, &att.vnum, vpno);
ck__getcoord (NULL, pos, NULL, NULL);

ck_lindim (pos[0], pos[l], 0.0, NULL, &refln, 0.0, CK_LDM_HORZ,
NULL,NULL, NULL, &att);

c�_inquire (CK_INQ_LASTID, &id);
ck set locdef (id, 2, locdef);
goto get_pos _ defl;

68

Appendix D· Example of Rectangle with Standard Dimensions

Description: This program used the rectangle that was created previously, and
added both horizontal and vertical dimensions to it. The program
asks the user for the horizontal and vertical positions for the text
position.

#include < stdio.h >
#include "c: \gccsdk\include\ck _ cdl.h"

int
dimension 1 O
{

double pos[3]; 7
int opt, stat, dblevel; I .45
double xl, yl, zl, x2, y2, z2;
CK_ ENT A TT att;
CK_REFLN refln;
CK_REFARC refarc;

...._ __ ___, _J

double x,y;

Output of program shown above.

do {
stat = ck_getpos ("Indicate text position for horizontal dimension", l);

} while (stat = = CK_RETURN);

if (stat = = CK_ESCAPE) {
return (O);

}

if (stat = = CK_ BACKUP) {
goto getl;

}
opt = stat;

ck_getcoord (NULL, pos, NULL, NULL);
refln.x l = xl ;
refln.yl = y2;
refln.x2 = x2;
refln.y2 = y2;

69

}

ck_lindim (pos[0], pos[l], 0.0, NULL, &refln, 0.0, CK_LDM_HORZ,
NULL, NULL, NULL, &att);

do {
stat = ck_getpos ("Indicate text position for vertical dimension" ,1);

} while (stat = = CK_ RETURN);

if (stat = = CK_ESCAPE) {
return (0);

}

if (stat = = CK_BACKUP) {
goto getl;

}
opt = stat;

ck_getcoord (NULL, pos, NULL, NULL);
refln.xl = x2;
refln.yl = yl;
refln.x2 = x2;
refln.y2 = y2;

ck_lindim (pos[0], pos[l], 0.0, NULL, &refln, 0.0, CK_LDM_ VERT, NULL,
NULL, NULL, &att);

goto getl;

70

Appendix D· Example of Dimensions far Rectangle and Circle

Description: This program furthered the study of dimensions with CDE modules.
After creating the rectangle, this program asks the user for
placement of the horizontal and vertical dimensions for the rectangle
and then will also dimension a circle that is placed by the user.
The text position of the circle dimension is also determined by the
user.

#include < stdio.h >
#include "c: \gccsdk\include\ck _ cdl. h 11

int
dimension_ 1 O
{

double pos[3];
int opt, stat, dblevel;
double x l , y l, z l , x2, y2, z2;
CK_ ENT A TI att;
CK_REFLN refln;
CK_REFARC refarc;
double x,y;

7
l.45

�---� _j
� 0.50

Output of program is shown above.
do {

stat = ck _getpos ("Indicate text position for horizontal dimension 11
, 1);

} while (stat = = CK_RETURN);

if (stat = = CK_ESCAPE) {
return (O);

}

if (stat = = CK_BACKUP) {
goto get l ;

}
opt = stat;

ck_getcoord (NULL, pos, NULL, NULL);
refln.xl = x l ;
refln.yl = y2;
refln.x2 = x2;
refln. y2 = y2;

71

ck_lindim (pos[0], pos[l], 0.0, NULL, &refln, 0.0, CK_LDM_HORZ,
NULL, NULL, NULL, &att);

do {
stat = ck_getpos ("Indicate text position for vertical dimension", l);

} while (stat = = CK_ RETURN);

if (stat = = CK_ ESCAPE) {
return (0);

}

if (stat = = CK_BACKUP) {
goto getl;

}
opt = stat;

ck_getcoord (NULL, pos, NULL, NULL);
refln.x l = x2;
refln.y l = y l;
refln.x2 = x2;
refln.y2 = y2;

ck_lindim (pos[0], pos[l], 0.0, NULL, &refln, 0.0, CK_LDM_ VERT, NULL,
NULL, NULL, &att);

do {
stat = ck_getpos ("Indicate position for hole" ,l);

} while (stat = = CK_RETURN);

if (stat = = CK_ESCAPE) {
return (0);

}

if (stat = = CK_BACKUP) {
goto get l;

}
opt = stat;
ck_getvar ("@xworld", &x);
ck_getvar ("@yworld", &y);

ck_circle (x, y, 0.0, 0.25, &att);

do {

72

}

stat = ck_getpos ("Indicate text position for hole dimension" ,l);
} while (stat = = CK_RETURN);

if (stat = = CK_ESCAPE) {
return (0);

}

if (stat = = CK_ BACKUP) {
goto getl;

}
opt = stat;

ck_getcoord (NULL, pos, NULL, NULL);
refarc.sang = 0.0;
refarc.clang = 360.0;
refarc.x = x+.25;
ref arc. y = y;
refarc.rad = .25;

ck_cirdim (pos[0], pos [l], 0.0, NULL, &refarc, NULL, CK_CDM_DIAM,
NULL, NULL, NULL, &att);

goto getl;

73

Appendix D· Examples af ToitiaJ Programs - Ordinate Dimensians

Description: This program was also created to test the dimensioning capabilities
of the COE module but it used ordinate dimensioning instead of
standard horizonatl dimensions. It will prompt the user for the base
ordinate position and then successive positions to dimension from
this base position. The program will keep prompting the user for
the next position until the RETURN key is pressed.

/* hrzordim.c */

#include < stdio.h >
#include "c: \gccsdk\include\ck _ cdl.h"

void
horz _ orddim O

{
c:::>
LJ7 I..{"')

r--- 8

74

int stat, num, i, defopt = 1;

double base_pos[3],
text_pos[3], pos[3];

unsigned long idlst[lO];
CK_LOCDEF locdef[lO];
CK_REFPNT refpnt[3];

....-------,1------,

1
- • 00

get_ base _pos:

.________, ---+---+- .50

+--+-- I. 25

.----� ----+- 2.00

��-2.so

Output of program is shown above.
(dimensions only)

stat = ck_getpos_def ("Indicate base ordinate position",
defopt, &locdef[O]);

if ((stat = = CK_ESCAPE) 11 (stat = = CK_BACKUP)) {
return;

}

defopt = stat;
ck_getcoord (NULL, base_pos, NULL, NULL);

stat = ck_getpos ("Indicate text position", l);
if ((stat = = CK_ESCAPE) 11 (stat = = CK_BACKUP)) {

return;

}
ck_getcoord (NULL, text_pos, NULL, NULL);

num = 0;
refpnt[0].x = base_pos[0];
refpnt[0]. y = base _pos[l];

refpnt[l].x = text_pos[0];
refpnt[l].y = text_pos[l];

refpnt[2].x = base_pos[0];
refpnt[2].y = base_pos[l];

ck_orddim (text_pos[0], text_pos[l], 0.0, NULL, refpnt, 0.0,
CK_ODM_HORZ,NULL, NULL, NULL, NULL);

ck_inquire (CK_INQ_LASTID, &idlst[num++]);

do {
stat = ck _getpos _ def ("Indicate position (RET to end)",
defopt,&locdef[num]);

if ((stat = = CK_ESCAPE) 11 (stat = = CK_BACKUP)) {
ck_del_entity (CK_ENT_LIST, num, idlst);
return;

}
if (stat = = CK_ RETURN) {

break;

}
defopt = stat;
ck_getcoord (NULL, pos, NULL, NULL);

refpnt[0]. x = base _pos[0];
refpnt[0]. y = base _pos[1];

refpnt[l].x = text_pos[0];
refpnt[l].y = text_pos[l];

refpnt[2].x = pos[0];
refpnt[2].y = pos[l];

ck_orddim (text_pos[0], text_pos[l], 0.0, NULL, refpnt, 0.0,
CK ODM HORZ,NULL, NULL, NULL, NULL);
- -

75

ck_inquire (CK_INQ_LASTID, &idlst[num+ +]);
} while (num < 10);

}

ck_makecoll (num, idlst);
for (i = O; i < num; i++) {

stat = ck_set_locdef (idlst[i], 1, &locdef[i]);
}
goto get_base_pos;

76

Appendix D· Examples af Initial Programs - Open External Ei]e

Description: This program was created to test the external capabilities of the
CDE module. It was necessary to extract information from an
external data file. This program opened an external file named
'frog.dat'. If the file was not found or had problems opening, a
prompt was issued in CADKEY that stated it was not able to open
this file. If the fie opens, text is places in the prompt area in
CADKEY that says 'The file opened!.'.

#include < stdio.h >
#include "c: \gccsdk\include\ck _ cdl.h"

int
open_one O

{

}

FILE *ioptr;
CK_ ENT A TI att;

ck_pause("This is first...Press Return");

ioptr = fopen("c:\\frog.dat", "r");
if (ioptr = = (FILE *)NULL)

{
ck_pause("Sorry, cannot open file ... Press RETURN!");

}
ck_pause("The file opened!");

77

Appendix D· Examples of Initial Programs - Opening EiJe and Use of YarlabJes

Description: This program is an extension of the previous program. After
opening the external data file, it was necessary to extract
information from this file and use this information for data positions
within the CADKEY environment. The information in the external
file was read one line at a time. This line came into this program
as all one variable. It was necessary to take this variable and
extract the three coordinate positions· from it. This was done by use
of the sscanf C function. Once these three positions were found, a
line was created using these positions in the CADKEY
eenvironment.

#include < stdio.h >
#include "c: \gccsdk\include\ck _ cdl. h"

int
open_one O
{

}

FILE *ioptr;
char input_line[25];
float x, y, z;
CK_ ENT A TI attr;
ck _pause("This is first. .. Press

ioptr = fopen("c:\\frog.dat", "r");
if (ioptr = = (FILE *)NULL)
{

Return");

ck_pause("Sorry, cannot open file ... Press RETURN!");
}
while(fgets(input_line, 25, ioptr) ! = (FILE *)NULL)
{

}

sscanf (input_line, "%f, %f, %f', &x, &y, &z);
ck_line (0.0, 0.0, 0.0, x, y, z, &attr);

ck _pause(input_ line);

78

Appendix D· Examples af Initial Programs - Data EUe and Dimensions

Description: The goal of the final program is to extract X, Y and Z coordinates
from an external data file and then use these positions form creating
dimensions. This program is an extension of the previous program.
This program will extract the first two lines of data from the
external file and then use these points to create a horizontal
dimension in the CADKEY environment. From this point, other
types of dimensions were tested which included ordinate
dimensions.

#include < stdio.h >
#include "c: \gccsdk\include\ck _ cdl.h"

int
open_one O

{
FILE *ioptr;
char input_line[25];
float x, y, z;
CK_ENTATT attr = { CK_LNG_DFLT, 5, CK_INT_DFLT,

CK_INT_DFLT,
199,CK_INT_DFLT, CK_INT_DFLT, CK_INT_DFLT, CK_INT_DFLT };

int counter;
CK_REFLN refln;
CK_ REFPNT refpnt[2];
ck set(CK SET COLOR, 5);
- - -

ck_set(CK_SET_DEC_FR, 3);
ck set(CK SET DIMMODE, 2);
- - -

ck set(CK SET LDZERO, 1);
- - -

ck set(CK SET TRZERO, l);
- - -

ck set(CK SET LEVEL, 199);
- - -

counter = 1;

ioptr = fopen{"c:\\frog.dat", "r");
if (ioptr = = (FILE *)NULL)

{
ck_pause("Sorry, cannot open file ... Press RETURN!");

}
counter = 1;

file extract:
while(fgets(input_line, 250, ioptr) ! = (FILE *)NULL)

79

}

{
sscanf (input_line, "%f, %f '', &x, &y);

if (counter = = 1)
{

}

refln.xl = x;
refln.yl = y;

if (counter = = 2)
{

refln.x2 = x;
refln. y2 = y;

ck lindim (10.0, 29.0, 0.0, NULL, &refln, 0.0, CK LDM HORZ,
- - -

NULL, NULL, NULL, &attr);
}
counter++;

}

80

Appendix E

D-M-E Mold Layout

81

7¥a X 7¥a
D-M-E Standard

A-Series
Mold Bases

GENERAL DIMENSIONS
I• --•LDCIDa­

C&IIL_.. •• �...._
C&IIL - UIII a..,,..
.. -..... -..... 111-111

r•aasn•m111111
,-.11..,,r••

,-smu.••----­

Jr..1'•J5i
■ -..-a-•-­
....

82

IJE'UM
0

SIR0UDAT&

C 21' r' 31' r ft ..

• " ," 1% a. a.

c
·------------
u-...... --r..-

� --,..-

------71,------t

I I

••

•

u,p• •
��l;;i;�hiii1.:t:Ht�-t

�---�---
Jr..lllUf I am

1' ••

,.._
I .

___ l ___ *-*
• .._J

I

--M'

'i••••...

Appendix F

Data File Format

83

Appendix E· Format of Data Ei1e

Description: This is an example of the data file that is created automatically by
the Ultimate• software. This is the file that is read to dimension
the mold base. It is divided into four different areas that pertain to
the four views of the mold base that are generated by the llitimate•
software.

BEGIN VIEW "B PLAN-VIEW"

Name = "B PLAN-VIEW"
Type= PLAN
Projection = RIGHT
Datum = (20.000, 44.000)
Width = 12.0
Height = 10. 875
BEGIN DIMENSIONING
(SPRUEPULLERPIN ,STRAIGHT, "Sprue Puller
Pin" ,FJECTORCOVERPLA TE, "Ejector
Retainer Plate" ,20.000,44.000)
(RETURNPIN ,STRAIGHT, "Return Pin" ,FJECTORCOVERPLA TE, "Ejector
RetainerPlate" ,25.375,46.813)
(RETURNPIN ,STRAIGHT, "Return Pin" ,EJECTORCOVERPLA TE, "Ejector
RetainerPlate" ,25.375,41.187)
(RETURNPIN,STRAIGHT, "Return Pin" ,EJECTORCOVERPLATE, "Ejector
RetainerPlate" ,14.625,41.187)
(RETURNPIN ,STRAIGHT, "Return Pin" ,EJECTORCOVERPLA TE, "Ejector
RetainerPlate" ,14.750,46.813)
(SETSCREW ,MOVINGHALF, "Socket Head Cap
Screw" ,FJECTOR_HOUSING, "EjectorHousing" ,23.188,48.469)
(SETSCREW,MOVINGHALF, "Socket Head Cap
Screw" ,EJECTOR_HOUSING, "EjectorHousing" ,16.812,39.531)
(SETSCREW ,MOVINGHALF, "Socket Head Cap
Screw" ,FJECTOR_HOUSING, "EjectorHousing" ,23.188,39.531)
(SETSCREW ,MOVINGHALF, "Socket Head Cap
Screw" ,EJECTOR_HOUSING, "EjectorHousing" ,16.812,48.469)
(STOPBUTTON ,NOTYPE, "Stop Button" ,FJECTOR _HOUSING, "Ejector
Housing" ,14.625,41.187)
(STOPBUTTON ,NOTYPE, "Stop Button" ,FJECTOR _ HOUSING, "Ejector
Housing" ,20.000,41.187)
(STOPBUTTON,NOTYPE, "Stop Button" ,EJECTOR_HOUSING, "Ejector
Housing" ,25.375,41.187)
(STOPBUTTON,NOTYPE, "Stop Button" ,EJECTOR_ HOUSING, "Ejector
Housing" ,25.375,46.813)

84

(STOPBUTION ,NOTYPE, "Stop Button" ,FJECTOR_ HOUSING, "Ejector
Housing" ,20.000,46.813)
(STOPBUTION ,NOTYPE, "Stop Button" ,FJECTOR _HOUSING, "Ejector
Housing", 14. 750,46.813)
(GUIDEPILLAR,STRAIGHT, "Leader Pin" ,CAVITYPLATE, "A
Plate" ,25.125,39.437)
(GUIDEPILLAR,STRAIGHT, "Leader Pin" ,CA VITYPLATE, "A
Plate" ,25.125,48.563)
(GUIDEPILLAR,STRAIGHT, "Leader Pin" ,CAVI'tYPLATE, "A
Plate", 14.875,39.437)
(GUIDEPILLAR,STRAIGHT, "Leader Pin" ,CA VITYPLA TE," A
Plate" ,15.062,48.563)
(SETSCREW ,FJECTORPLA TE, "Socket Head Cap
Screw" ,FJECTORPLATE, "EjectorPlate" ,24.563,47.313)
(SETSCREW ,FJECTORPLATE, "Socket Head Cap
Screw" ,FJECTORPLATE, "EjectorPlate" ,24.563,40.687)
(SETSCREW ,FJECTORPLATE, "Socket Head Cap
Screw" ,FJECTORPLATE, "EjectorPlate" ,15.437,47.313)
(SETSCREW,FJECTORPLATE, "Socket Head Cap
Screw" ,FJECTORPLATE, "Ejector Plate" ,15.437,40.687)
END DIMENSIONING
END VIEW "B PLAN-VIEW"
BEGIN VIEW "A PLAN-VIEW"
Name = "A PLAN-VIEW"
Type= PLAN
Projection = LEFT
Datum = (61.4375, 44.000)
Width = 12.0
Height = 10.875
BEGIN DIMENSIONING
(SPRUEBUSH,NOTYPE, "Sprue Bushing" ,CLAMPINGPLATE, "Top Clamp
Plate" ,62.000,44.000)
(LOCATIONRING,STANDARD, "Locating Ring" ,CLAMPINGPLATE, "Top
ClampPlate" ,62.000,44.000)
(SETSCREW,FIXEDHALF, "Socket Head Cap Screw" ,CLAMPINGPLATE, "Top
ClampPlate" ,58.812,48.469)
(SETSCREW ,FIXED HALF, "Socket Head Cap Screw" ,CLAMPINGPLA TE, "Top
ClampPlate" ,58.812,39.531)
(SETSCREW,FIXEDHALF, "Socket Head Cap Screw" ,CLAMPINGPLATE, "Top
ClampPlate" ,65.188,39.531)
(SETSCREW,FIXEDHALF, "Socket Head Cap Screw" ,CLAMPINGPLATE, "Top
ClampPlate" ,65.188,48.469)
(GUIDEPILLAR,STRAIGHT, "Leader Pin" ,CAVITYPLATE, "A
Plate" ,56.875,39.437)
(GUIDEPILLAR,STRAIGHT, "Leader Pin" ,CA VITYPLATE, "A

85

Plate" ,56.875,48.563)
(GUIDEPILLAR,STRAIGHT, "Leader Pin" ,CAVITYPLATE, "A
Plate" ,67.125,39.437)
(GUIDEPILLAR,STRAIGHT, "Leader Pin" ,CA VITYPLATE, "A
Plate" ,66.938,48.563)
(CLOSED_ CLAMP_ SLOT ,NOTYPE, "Closed Clamp Slot" ,CA VITYPLA TE," A
Plate" ,61.4375,38.875)
(CLOSED_ CLAMP _SLOT ,NOTYPE, "Closed Clamp Slot" ,CA VITYPLA TE," A
Plate" ,61.4375,48.8125)
END DIMENSIONING
END VIEW "A PLAN-VIEW"
BEGIN VIEW "STACK-UP LENGTH"
Name = "STACK-UP LENGIB"
Type= SECTION
Projection = FRONT
Datum = (20.000, 20.000)
Width= 12.0
Height = 7. 875
BEGIN DIMENSIONING
(MOULD-WIDTH,NONE, "",NONE,"" ,14.0,21.75,26.0,21.75)
(MOULD-HEIGHT,NONE, "",NONE,"" ,26.0,13.875,26.0,21.75)
END DIMENSIONING
END VIEW "STACK-UP LENGTH"
BEGIN VIEW "STACK-UP WIDTH"
Name = "STACK-UP WIDTH"
Type = SECTION
Projection = BOTTOM
Datum = (62.000, 20.000)
Width = 10.875
Height = 7. 875
BEGIN DIMENSIONING
(MOULD-WIDTH,NONE," ",NONE,"" ,66. 875, 13. 875 ,56.000, 13.875)
(MOULD-HEIGHT,NONE, "",NONE,"" ,66.875,21.750,66.875,13.875)
(CA VITYPLA TE,CLOSED _CLAMP_ SLOT," A Plate" ,CA VITYPLATE, "A
Plate" ,56.000,20.875,56.000,20.000)
(COREPLATE,CHAMFEREDPLATE, "B Plate" ,COREPLATE, "B
Plate" ,56.000,19.125,56.000,20.000)
(SUPPORTPLA TE,CHAMFEREDPLA TE, "Support
Plate" ,SUPPORTPLATE, "SupportPlate" ,56.000,17.250,56.000,19.125)
(FJECTOR _ HOUSING,RECT ANGULAR_ WITH_ SL, "Ejector
Housing" ,FJECTOR_HOUSING, "EjectorHousing" ,56.000,13.875,56.000,14.750,
56.000,15.563)
(FJECTOR_HOUSING,RECTANGULAR _ WITH _SL, "Ejector
Housing" ,F.JECTOR_HOUSING, "EjectorHousing" ,57.6875,14.75,65.1875,14.75,
57. 75,14.9774,65.125,14.9774)

86

(CLAMPINGPLA TE,CHAMFEREDPLA TE, "Top Clamp
Plate" ,CLAMPINGPLATE, "TopClamp Plate" ,56.000,21.750,56.000,20.875)
(FJECTORPLA TE,OVERHUNGPLA TE, "Ejector
Plate" ,EJECTORPLATE, "EjectorPlate" ,65.0856,15.938,65.0856,14.938)
(FJECTORCOVERPLA TE,CHAMFEREDPLATE, "Ejector Retainer
Plate" ,EJECTORCOVERPLATE, "Ejector Retainer
Plate" ,65.086,16.438,65.0856,15.938)
END DIMENSIONING
END VIEW "STACK-UP WIDTH"

87

Appendix G

Ultimate� Layout (Four Views)

88

B Plan View

I IU �
l r

.....

-

-,

I

Stack-Up Length

d,,.r1ro
-j-
/1'.,..�''--------f��»-◄--- ----
,, -'/

' .J. /
,

0-11. + J:LO
I

! Plan View

I

l r
I

I

'11 -

� � �

Stack-Up Jidth

89

Appendix H

Survey Letter

90

Appendix R · Survey 1 etter

February 13, 1995

Dave Williamson
S&K Tool and Die
424 Harrison
Kalamazoo, MI 49007

Dear Mr. Williamson:

I would first like to thank you for speaking to me on the phone and agreeing to
participate in a survey which will assist me in completing my Master's thesis
project.

As I mentioned on the phone, this project is in conjunction with the new mold
design software (Ultimate) offered by The D-M-E Company. This project will
enhance the already existing capabilities of the Ultimate software by adding an
automatic dimensioning feature to it. I am conducting this survey to accumulate
information on industry practices when it comes to creating a mold design layout
drawing.

I have included a sample mold layout drawing for your review. As we discussed
on the phone, I would like you to look over this mold layout drawing and follow
these directions:

1. Review the mold layout drawing produced by the Ultimate software

2. Sketch the necessary dimensions, on this sheet that I have included, to
complete the mold layout drawing

Please include all dimensions as you would for any mold layout
drawing that you would produce in your company.
Precise values are not necessary. All that is needed
are the positions on the mold layout that you would
dimension to and from. (See Figure 1 for an
example).

Figure 1: Dimensioning Example

91

3. Sketch any notes or labels that you would include on a standard mold
layout drawing produced by your company

4. If there is anything that has been left out on this drawing, please note
this down and send it back to me when you return the layout drawing.

Also, if you have any examples of mold layout drawings that you have done,
please send these back with the layout drawing I supplied you with. This would
also help me in determining dimensioning practices· in industry.

I would appreciate it if you could finish this activity as soon as possible (before
February 20th). When you have finished, please use the enclosed envelope to
send this layout drawing back to me at Western Michigan University. If you have
any questions regarding this drawing or the project in general, please feel free to
call me at (616)387-6597.

Again, thank you for your time and input on this project, I appreciate it.

Sincerely,

Cori L. Brown
Graduate Student
Western Michigan University

enc/layout

92

Appendix I

Final Program

93

Appendix T · EioaJ Mold Base Program

#include <stdio.h>
#include < string.h >
#include "c: \gccsdk\include\ck _ cdl.h"

#define TOL 0.001
#define GTR(a, b) ((a)-(b) > TOL)
#define LTR(a, b) GTR(b, a)
#define EQR(a, b) (abs((a) - (b)) < TOL)

typedef struct {
float x, y, xl, yl, x2, y2, x3, y3;
} T _ dimension _location;

int get_dimension_location(char *line, float *x, float *y);
int get_dimension_location_two(char *line, float *x, float *y, float *xl, float
*yl);
int get_dimension_location_three(char *line, float *x, float *y, float *xl, float
*yl, float *x2, float *y2);
int get_dimension_location_four(char *line, float *x, float *y, float *xl, float *yl,
float *x2, float *y2, float *x3, float *y3);
char *copyString(char *string);
void readDimensions(FILE *ioptr, T_dimension_location *locations, int *number);
void readDimensions _ two(FILE *ioptr, T _ dimension _location *locations, int
*number);
int compareOnX(T_dimension_location *key, T_dimension_location *elem);
int compareOn Y (T _ dimension _location *key, T _ dimension _location *elem);
int Get_ horizontal _locations(T _ dimension _location *locations,
T_d!mension_location *horiz_locations, int number);
int Get_ vertical _locations(T _ dimension _location *locations, T _ dimension _location
*vert locations, int number);

/*char *findxy (char *string);*/
char *ptr;
/*int counter;*/
#define ELEMENTS(a) (sizeof(a) / sizeof(a[0]))

/*int main (int argc, char **argv)*/
int auto_ dimension O

{
FILE *ioptr = NULL;
char input_line[250], c = '(', e = '= ';
float xd, yd, width, height, xp, yp, xpl, ypl, xp2, yp2, xp3, yp3, clamp;
T _dimension_ location locations[200], horiz _locations[200],

94

vert_ locations[200];
int max locations = ELEMENTS(locations), i;
CK_REFPNT refpnt[3];
CK_REFLN refln;
CK_ENTATI attr = { CK_LNG_DFLT, 5, CK_INT_DFLT,

CK INT DFLT, 199,
- -

CK_INT_DFLT, CK_INT_DFLT, CK_INT_DFLT,
CK_INT_DFLT };

ck set(CK SET COLOR, 5);
- - -

ck set(CK SET DEC FR, 3);
- - - -

ck set(CK SET DIMMODE, 2);
- - -

ck_set(CK_SET_LDZERO, 1);
ck_set(CK_SET_TRZERO, 1);
ck set(CK SET LEVEL, 199);
- - -

ioptr = fopen("\ \program\ \thesis\ \data2.cdo", "rt");
if (ioptr = = (FILE *)NULL)

{
printf("Sorry� cannot open file ... Press RETURN!");
return 1;

}

/* B Plan View */

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "Datum") = = NULL) {

/*printf(input_ line);*/

}
ptr = strchr(input_line, c);
ptr++;
sscanf(ptr, "%f, %f'', &xd, &yd);

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_ line, "Width") = = NULL) {

/*printf(input_line); */

}
ptr = strchr(input_ line, e);
ptr++;
sscanf (ptr, " % f'', &width);

while (fgets(input_line, 250, ioptr) ! = NULL

95

I*

&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "Height") = = NULL) {

/*printf(input_line);*/

}
ptr = strchr(input_line, e);
ptr++;
sscanf(ptr, "%f", &height);

Read in all the dimension data

Find the start of it.
*I

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "BEGIN DIMENSIONING") = = NULL) {

}
/* read in each line */
readDimensions(ioptr, locations, &max_locations);
Get_ horizontal _locations(locations, horiz _ locations, max_ locations);
Get_ vertical_ locations(locations, vert _locations, max_ locations);

/* creates overall horizontal and vertical dimensions */
refln.xl = xd-width/2.0;
refln.yl = yd+height/2.0;
refln.x2 = xd +width/2.0;
refln.y2 = yd+height/2.0;

ck_lindim (xd, yd +(height/2.0 + 3.0), 0.0, NULL, &refln, 0.0,
CK_LDM_HORZ, NULL,

NULL, NULL, &attr);

refln.xl = xd +width/2.0;
refln.yl = yd+height/2.0;
refln.x2 = xd+width/2.0;
refln.y2 = yd-height/2.0;

ck_lindim (xd + (width/2.0 +3.0), yd, 0.0, NULL, &refln, 0.0,
CK_LDM_ VERT, NULL,

NULL, NULL, &attr);

/* creates the base ordinate position */
refpnt[0].x = xd;
refpnt[0]. y = yd;

96

refpnt[l].x = xd;
refpnt[l].y = yd + (height/2.0 + 1.0);

refpnt[2].x = xd;
refpnt[2].y = yd;

ck_orddim (refpnt[l].x, refpnt[l].y, 0.0, NULL, refpnt, 0.0,
CK_ODM_HORZ,

NULL, NULL, NULL, &attr);

for (i = 0; i < max _locations; i + +)

{
/* Horz for upper left */

if (locations[i].x < xd){
if(locations[i]. y > yd){

refpnt[0].x = xd;
refpnt[0].y = yd;

refpnt[l].x = locations[i].x;
refpnt[l].y = yd + (height/2.0 + 1.0);

refpnt[2].x = locations[i].x;
refpnt[2].y = locations[i].y;

ck_orddim (refpnt[l].x, refpnt[l].y, 0.0, NULL, refpnt, 0.0,
CK_ODM_HORZ,

NULL, NULL, NULL, &attr);
}
}

/* Horz for upper right comer */
if (locations[i].x > xd){

if(locations[i]. y > yd){

refpnt[0].x = xd;
refpnt[0]. y = yd;

refpnt[l].x = locations[i].x;
refpnt[l].y = yd + (height/2.0 + 1.0);

refpnt[2].x = locations[i].x;
refpnt[2].y = locations[i].y;

ck_orddim (refpnt[l].x, refpnt[l].y, 0.0, NULL, refpnt, 0.0,

97

CK_ ODM_HORZ,
NULL, NULL, NULL, &attr);
}
}

/* Vert for upper right comer */
refpnt[0].x = xd;
refpnt[0].y = yd;

refpnt[l].x = xd + (width/2.0 + 1.0);
refpnt[l].y = yd;

refpnt[2].x = xd;
refpnt[2].y = yd;

ck_orddim (refpnt[l].x, refpnt[l].y, 0.0, NULL, refpnt, 0.0,
CK_ODM_VERT,

NULL, NULL, NULL, &attr);

if (locations[i].x > xd){
if(locations[i]. y > yd){

refpnt[0].x = xd;
refpnt[0]. y = yd;

refpnt[l].x = xd + (width/2.0) + 1.0;
refpnt[l].y = locations[i].y;

refpnt[2].x = locations[i].x;
refpnt[2].y = locations[i].y;

ck_orddim (refpnt[l].x, refpnt[l].y, 0.0, NULL, refpnt, 0.0,
CK_ODM_VERT,

NULL, NULL, NULL, &attr);
}
}

/* Vert for upper left comer */
refpnt[0].x = xd;
refpnt[0]. y = yd;

refpnt[l].x = xd - (width/2.0) - 1.0;
refpnt[l].y = yd;

98

refpnt[2].x = xd;
refpnt[2].y = yd;

ck_orddim (refpnt[l].x, refpnt[l].y, 0.0, NULL, refpnt, 0.0,
CK ODM VERT,
- -

NULL, NULL, NULL, &attr);

if (locations[i].x < xd){
if(locations[i].y > yd){

refpnt[0].x = xd;
refpnt[0]. y = yd;

refpnt[l].x = xd - (width/2.0) - 1.0;
refpnt[l].y = locations[i].y;

refpnt[2].x = locations[i].x;
refpnt[2].y = locations[i].y;

ck_orddim (refpnt[l].x, refpnt[l].y, 0.0, NULL, refpnt, 0.0,
CK_ODM_VERT,

}

NULL, NULL, NULL, &attr);
}
}

/* A-Plan View */

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "Datum") = = NULL) {

}
ptr = strchr(input_line, c);
ptr++;
sscanf(ptr, "%f, %f', &xd, &yd);

refln.xl = xd-width/2.0;
refln.yl = yd+height/2.0;
refln.x2 = xd+width/2.0;
refln.y2 = yd+height/2.0;

ck_lindim (xd, yd +(height/2.0 + 3.0), 0.0, NULL, &refln, 0.0,

99

CK_LDM_HORZ, NULL,
NULL, NULL, &attr);

refln.xl = xd+width/2.0;
refln.yl = yd+height/2.0;
refln.x2 = xd +width/2.0;
refln.y2 = yd-height/2.0;

ck_lindim (xd + (width/2.0 +3.0), yd� 0.0, NULL, &refln, 0.0,
CK_LDM_VERT, NULL,

NULL, NULL, &attr);

refln.xl = xd;
refln.yl = yd+height/2.0;
refln.x2 = xd +width/2.0;
refln.y2 = yd+height/2.0;

ck_lindim (xd + (width/4.0), yd + (height/2.0 + 1.0), 0.0, NULL,
&refln, 0.0, CK LDM HORZ, NULL,

- -

NULL, NULL, &attr);

refln.xl = xd+width/2.0;
refln.yl = yd;
refln.x2 = xd+width/2.0;
refln.y2 = yd+width/2.0;

ck_lindim (xd + (width/2.0+ 1.0), yd + (height/4.0), 0.0, NULL,
&refln, 0.0, CK_LDM_ VERT, NULL,

NULL, NULL, &attr);

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "(CLOSED_CLAMP_SLOT") = = NULL)

{}
get_ dimension_ location(input_ line, &xp, &yp);
locations[0].x = xp;
locations[0].y = yp;

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "(CLOSED_CLAMP_SLOT") == NULL)

{}
get_ dimension _location(input_ line, &xp, &yp);
locations[l].x = xp;
locations[l].y = yp;

100

refln.xl = locations[l].x;
refln.yl = locations[l].y;
refln.x2 = xd+width/2.0;
refln.y2 = yd+height/2.0;

ck_lindim (locations[l].x + (width/2.0 + 1.0), yd +(height/2.0 +
1.5), 0.0, NULL, &refln, 0.0, CK_LDM_ VERT,
NULL, NULL, NULL, &attr);

if (width = = 7.875){
clamp = 1.1875;
}

if ((width = = 9.875) && (height = = 8.0)) {
clamp = 1.375;
}

if ((width = = 9.875) && (height = = 11.875)) {
clamp = 1.3125;
}

if ((width = = 9.875) && (height = = 16.0)) {
clamp = 1. 625;
}

if ((width = = 9.875) && (height = = 20.0)) {
clamp = 1.375;
}

if (width = = 10.875) {
clamp = 1. 625;
}

if ((width = = 10.875) && (height = = 12.0)) {
clamp = 1.5;
}

if ((width = = 11.875) && (height = = 12.0)) {
clamp = 1. 625;
}

if ((width = = 11.875) && (height = = 15.0)) {
clamp = 1. 625;
}

if ((width = = 11.875) && (height = = 20.0)) {
clamp = 1.875;
}

if ((width = = 11.875) && (height = = 23.5)) {
clamp = 1. 875;
}

if(width = = 13.375) {

101

clamp = 2.1875;
}

if ((width = = 13.375) && (height = = 15.0)) {
clamp = 1. 625;
}

if ((width = = 14.875) && (height = = 17.875)) {
clamp = 2.3125;
}

if ((width = = 14.875) && (height = = 23. 75)) {
clamp = 2.375;
}

if((width = = 14.875) &&(height = = 29.5)) {
clamp = 1.4375;
}

if (width = = 15. 875) {
clamp = 1. 625;
}

if ((width = = 16.5) && (height = = 23. 75)) {
clamp = 2.375;
}

if ((width = = 16.5) && (height = = 29.5)) {
clamp = 1.4375;
}

if (width = = 17.875) {
clamp = 1.875;
}

if ((width = = 19.5) && (height = = 23.75)) {
clamp= 2.0;
}

if ((width = = 19.5) && (height = = 29.5)) {
clamp = 2.5;
}

if (width = = 23. 75) {
clamp = 2.25;

else {
}

clamp= 0.0;
}

refln.xl = xd + (width/2.0 - clamp);
refln.yl = yd + height/2.0;
refln.x2 = xd +width/2.0;
refln.y2 = yd+height/2.0;

/* ck_lindim (xd + (width/2.0), yd + (height/2.0 + 0.75), 0.0, NULL,

102

&refln, 0.0, CK_LDM_HORZ,
NULL, NULL, NULL, &attr);

*I

/* Stack-Up Length View */

while (fgets(input_ line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input line, "(MOULD-WIDTH") = = NULL)

{} -

get_dimension_location_two(input_line, &xp, &yp, &xpl, &ypl);
refln.xl = xp;
refln.yl = yp;
refln.x2 = xpl;
refln.y2 = ypl;

ck_lindim ((xpl - xp)/2.0 + xp, yp+2.0, 0.0, NULL, &refln, 0.0,
CK_ LDM_HORZ, NULL,

NULL, NULL, &attr);

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "(MOULD-HEIGHT") = = NULL)

{}
get_dimension_location_two(input_line, &xp, &yp, &xpl, &ypl);
refln.xl = xp;
refln.yl = yp;
refln.x2 = xpl;
refln.y2 = ypl;

ck_lindim (xpl + 2.0, (ypl - yp)/2.0 + yp, 0.0, NULL, &refln, 0.0,
CK_LDM_VERT, NULL,

NULL, NULL, &attr);

/* Stack-Up Width */

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "Datum") = = NULL) {

}
ptr = strchr(input_line, c);
ptr++;
sscanf(ptr, "%f, %f'' , &xd, &yd);

103

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "Width") = = NULL) {

}
ptr = strchr(input_line, e);
ptr++;
sscanf(ptr, "%f'' , &width);

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "Height") = = NULL) {

}
ptr = strchr(input_line, e);
ptr++;
sscanf(ptr, "%f'' , &height);

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "(MOULD-WIDTH") = = NULL)

{}
get_dimension_location_two(input_line, &xp, &yp, &xpl, &ypl);
refln.xl = xp;
refln.yl = yp;
refln.x2 = xpl;
refln.y2 = ypl;

ck_lindim (xd, yp - 4.5, 0.0, NULL, &refln, 0.0, CK_LDM_HORZ,
NULL,

NULL, NULL, &attr);

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "(MOULD-HEIGHT") = = NULL)

{}
get_dimension_location_two(input_line, &xp, &yp, &xpl, &ypl);
refln.xl = xp;
refln.yl = yp;
refln.x2 = xpl;
refln.y2 = ypl;

ck_lindim (xpl + 3.0, yd, 0.0, NULL, &refln, 0.0, CK_LDM_ VERT,
NULL,NULL, NULL, &attr);

104

while (fgets(input_ line, 250, ioptr) ! = NULL
&& !ferror(ioptr} && !feof(ioptr}
&& strstr(input_line, "(CAVITYPLATE"} == NULL)

{}
get_dimension_location_two(input_line, &xp, &yp, &xpl, &ypl);
refln.xl = xp;
refln.yl = yp;
refln.x2 = xpl;
refln.y2 = ypl ;

ck_lindim (refln.xl - 1.0, (yp - ypl)/2.0 + yp, 0.0, NULL, &refln, 0.0,
CK_LDM_ VERT, NULL,

NULL, NULL, &attr);

while (fgets(input_line, 250, ioptr} ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "(COREPLATE"} = = NULL)

{}
get_dimension_location_two(input_line, &xp, &yp, &xpl, &ypl);
refln.xl = xp;
refln.yl = yp;
refln.x2 = xpl ;
refln.y2 = ypl;

ck_lindim (refln.xl - 1.75, (yp - ypl)/2.0 + yp, 0.0, NULL, &refln,
0.0, CK_LDM_VERT, NULL,

NULL, NULL, &attr);

while (fgets(input_line, 250, ioptr} ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "(SUPPORTPLATE") = = NULL)

{}
get_dimension_location_two(input_line, &xp, &yp, &xpl, &ypl);
refln.xl = xp;
refln.yl = yp;
refln.x2 = xpl;
refln.y2 = ypl;

ck_lindim (refln.xl - 1.0, (ypl - yp)/2.0 + yp, 0.0, NULL, &refln, 0.0,
CK_LDM_ VERT, NULL,

NULL, NULL, &attr);

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)

105

&& strstr(input_line, "(EJECTOR_HOUSING") = = NULL)

{}
get_dimension_location_three(input_line, &xp, &yp, &xpl, &ypl, &xp2,

&yp2);
refln.xl = xp;
refln.yl = yp;
refln.x2 = xpl;
refln.y2 = ypl;

ck_lindim (refln.xl - 1.0, (yp - ypl)/2.0 + yp, 0.0, NULL, &refln, 0.0,
CK_LDM_ VERT, NULL,

NULL, NULL, &attr);

refln.x2 = xp2;
refln.y2 = yp2;

ck_lindim (refln.xl - 2.0, (yp - ypl)/2.0 + yp, 0.0, NULL, &refln, 0.0,
CK_LDM_ VERT, NULL,

NULL, NULL, &attr);

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "(EJECTOR_HOUSING") = = NULL)

{}
get_dimension_location_four(input_line, &xp, &yp, &xpl, &ypl, &xp2,

&yp2, &xp3, &yp3);
refln.xl = xp;
refln.yl = yp;
refln.x2 = xpl ;
refln.y2 = ypl;

ck_lindim (xd, ypl - 4.0, 0.0, NULL, &refln, 0.0, CK_LDM_HORZ,
NULL,

NULL, NULL, &attr);
refln.xl = xp2;
refln.yl = yp2;
refln.x2 = xp3;
refln. y2 = yp3;

ck_lindim (xd, yp3 - 3.0, 0.0, NULL, &refln, 0.0, CK_LDM_HORZ,
NULL,

NULL, NULL, &attr);

while (fgets(input_line, 250, ioptr) ! = NULL

106

&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "(CLAMPINGPLATE") = = NULL)

{}
get_dimension_location_two(input_line, &xp, &yp, &xpl, &ypl);
refln.xl = xp;
refln.yl = yp;
refln.x2 = xpl;
refln.y2 = ypl;

ck_lindim (refln.xl - 1.75, (yp - ypl)/2.0 + yp, 0.0, NULL, &refln,
0.0, CK_LDM_ VERT, NULL,

NULL, NULL, &attr);

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "(FJECTORPLATE") = = NULL)

{}
get_dimension_location_two(input_line, &xp, &yp, &xpl, &ypl);
refln.xl = xp;
refln.yl = yp;
refln.x2 = xpl;
refln.y2 = ypl;

ck_lindim (refln.xl + 4.0, yp + 1.0, 0.0, NULL, &refln, 0.0,
CK_LDM_VERT, NULL,

NULL, NULL, &attr);

while (fgets(input_line, 250, ioptr) ! = NULL
&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "(FJECTORCOVERPLATE") = = NULL)

{}
get_dimension_location_two(input_line, &xp, &yp, &xpl, &ypl);
refln.xl = xp;
refln.yl = yp;
refln.x2 = xpl;
refln.y2 = ypl;

ck_lindim (refln.xl + 3.0, yp + 1.0, 0.0, NULL, &refln, 0.0,
CK_LDM_ VERT, NULL,

NULL, NULL, &attr);

fclose(ioptr);
return (O);

}

107

int get_dimension_location(char *line, float *x, float *y)

{
char *the line = NULL·
-

,

char *token = NULL;
char *first = NULL;
char *value = NULL;
int i;

if (line == NULL 11 x == NULL 11 y == NULL
11 (the_line = copyString(line+ 1)) = = NULL) {
return O;

}
the_line[strlen(the_line)-2] = '\O';
/*printf("Look in: %s\n", the_line);*/

token = strtok(the line 11 11

)
·

-

, , ,

/* printf(11Token: %s\n 11

, first);*/

for (i = 1; i < 5; i + +) {
token = strtok(NULL, 1

1,
11

);

/*printf("Token: %s\n 11

, token);*/

}
value = strtok(NULL 11 11

)
· , , ,

/* printf(11Read X from %s\n 11

, value); */
sscanf(value, 11 %f', x);

value = strtok(NULL, ", ");
/* printf(1

1Read Y from %s\n 11

, value);*/
sscanf(value, "%f', y);

}

/*printf(11X = %f, y = %f\n 1

1, *x, *y);*/

free(the_line);
return 1;

int get_dimension_location_two(char *line, float *x, float *y, float *xl, float *yl)
{

char *the line = NULL·
-

,

char *token = NULL;
char *first = NULL;
char *value = NULL;
int i;

108

if (line == NULL 11 x == NULL 11 y == NULL
11 (the_line = copyString(line+ 1)) = = NULL) {
return O;
}

the_line[strlen(the_line)-2] = '\O';
/ll<printf("Look in: %s\n", the_line);*/

token = strtok(the line 11 11)·
- ' ' '

/* printf(11Token: %s\n 11

, first);*/

for (i = 1; i < 5; i + +) {
token= strtok(NULL, ", 11);

/ll<printf(11Token: %s\n 11

, token);*/
}

value = strtok(NULL, ", 11);

/* printf(1

1Read X from %s\n 11

, value); */
sscanf(value, "%f '', x);

value = strtok(NULL, ", 11);

/* printf("Read Y from %s\n", value);*/
sscanf(value, "%f'', y);

/*printf(11X = %f, y = %f\n 11

, *x, *y);*/
value = strtok(NULL 11 11)·

' ' '

/* printf("Read Y from %s\n 11

, value);*/
sscanf(value, 11 %f'', xl);

value = strtok(NULL, 11

,
11);

/* printf(11Read Y from %s\n", value);*/
sscanf(value, 11 %f', y l);

free(the line);
return 1;

}

int get_dimension_location_three(char *line, float *x, float *y, float *xl, float
*yl, float *x2, float *y2)
{

char *the line = NULL·
-

'

char *token = NULL;
char *first = NULL;
char *value = NULL;
int i;

109

}

if (line == NULL 11 x == NULL 11 y == NULL
11 (the_line = copyString(line+ 1)) = = NULL) {
return O;

}
the line[strlen(the line)-2] = '\O';
- -

token = strtok(the line 11 11
)

·
-

' ' '

for (i = 1; i < 5; i + +) {
token = strtok(NULL 11 11

)
·

' ' '
}

value = strtok(NULL, 11

,

11
);

sscanf(value, "%f", x);

value = strtok(NULL, 11

,

11
);

sscanf(value, "%f'', y);

value = strtok(NULL, 11

,

"
);

sscanf(value, "%f'', x l);

value = strtok(NULL 11 11
)

·
' ' '

sscanf(value, "%f '', y l);

value = strtok(NULL 11 11
)

•
' ' '

sscanf(value, 11 %f'', x2);

value = strtok(NULL, 11

,

11
);

sscanf(value, "%f '', y2);

free(the line);
return 1;

int get_dimension_location_four(char *line, float *x, float *y, float *xl, float *yl ,
float *x2, float *y2, float *x3, float *y3)

{
char *the_line = NULL;
char *token = NULL;
char *first = NULL;
char *value = NULL;
int i;

if (line == NULL 11 x == NULL 11 y == NULL
11 (the_line = copyString(line+ 1)) = = NULL) {
return O;

110

}

}
the_ line[strlen(the _line)-2] = '\O';

token = strtok(the line 11 11)·
-

, , ,

for (i = 1; i < 5; i + +) {
token = strtok(NULL, 11, 11);

}
value = strtok(NULL, 11, 11);

sscanf(value, "%f'', x);

value = strtok(NULL, 11, 11);

sscanf(value, "%f'', y);

value = strtok(NULL 11 11)·
, , ,

sscanf(value, "%f'', x l);

value = strtok(NULL 11 11)·
, , ,

sscanf(value, "%f '', yl);

value = strtok(NULL 11 11) •
, , ,

sscanf(value, " % f'', x2);

value = strtok(NULL, 11, 11);

sscanf(value, "%f'', y2);

value = strtok(NULL 11 11)·
, , ,

sscanf(value, 11 %f", x3);

value = strtok(NULL, 11, ");

sscanf(value, "%f", y3);

free(the_line);
return 1;

char *copyString(char *string)

{
char *copy = NULL;

if ((copy = (char *)malloc(strlen(string) + 1)) = = NULL) {
return NULL;

}
strcpy(copy, string);

111

return copy;
}

int compareFloat(float *key, float *elem)
{

if (LTR(*key, *elem)) {
return -1;
}

else if (GTR(*key, *elem)) {
return 1;
}

else {
return O; /* the same */
}

}
int compareOnX(T_dimension_location *key, T_dimension_location *elem)
{

if (LTR(key->x, elem->x)) {
return -1;
}

else if (GTR(key-> x, elem-> x)) {
return 1;
}

else {
return O; /* the same */
}

}
int compareOnY(T_dimension_location *key, T_dimension_location *elem)
{

if (LTR(key->y, elem->y)) {
return -1;
}

else if (GTR(key->y, elem->y)) {
return 1;
}

else {
return O; /* the same */
}

}
void readDimensions(FILE *ioptr, T _ dimension _location *locations, int *number)
{

int max_ number = *number;
int i = O;
char input_line[250];

112

}

float xp, yp;

/* read in each line */
while (fgets(input_line, 250, ioptr) ! = NULL

&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "END DIMENSIONING") == NULL
&& get_dimension_location(input_line, &xp, &yp)
&& i < max_ number) {

/*get_dimension_location(ioptr, &xp, &yp);*/
locations[i].x = xp;
locations[i].y = yp;
i++;

}
*number= i;
return;

void readDimensions_two(FILE *ioptr, T_dimension_location *locations, int
*number)

{

}

int max_ number = *number;
int i = O;
char input_line[250];
float xp, yp;

/* read in each line */
while (fgets(input_line, 250, ioptr) ! = NULL

&& !ferror(ioptr) && !feof(ioptr)
&& strstr(input_line, "END DIMENSIONING") = = NULL
&& get_dimension_location(input_line, &xp, &yp)
&& i < max_number) {

/*get_dimension_location(ioptr, &xp, &yp);*/
locations[i].x = xp;
locations[i]. y = yp;
i++;

}
*number = i;
return;

int Get horizontal locations(T dimension location *locations,
- - - -

T _ dimension_location *horiz _locations, int number)

{

113

memcpy(horiz_locations, locations, number * sizeof(T_dimension_location));
return;

}
int Get_ vertical_ locations(T _dimension_ location *locations,
T _ dimension _location *vert_locations, int number)

{
memcpy{vert_locations, locations, number * sizeof(T_dimension_location));

return;

}

114

Appendix J

Final Mold Base Layout

115

! !!!

� .�
'i. - - -,- - - 3

cg) __ , __ 0

ll'Ult-¥11'1

j U I IU
I

'

t- I

I

I
'

I

SlKHf lMllt

·-

.....

116

AI\IIHIPI

I I
7. 1 I

'

I ..
"

f 'i
I n r I -
'

SlKl-lJI Wllllll
,.,,_

·•-

..

BIBLIOGRAPHY

American National Standards Institute. (1983). Dimensionine and Tolerancine,
ANSI Y l4.5M-1982. New York: The American Society of Mechanical
Engineers.

Baum, D. (1992, September 15). Go Totally RAD and Build Apps Faster,
Datamation,�' pp.79-81.

Borland International. (1992). Turbo C++ 3.0 User's Guide, Scotts Valley, CA.

Branch, D., Brown, C., & VanderKooi, M. (1992) Creation of Software for the
Mold Base Component Desien (Tech. Rep. No. TR-ET485-0492-002).
Kalamazoo, MI: Western Michigan University, Department of Engineering
Technology.

Brown, Cori. (1994, November). [Interview with Dan Branch, Design Manager of
A-Tech Mold].

CADKEY. (1993). Software Development Kit Manual Version 6. Windsor, CT.

CADKEY. (1993). Explorine CADKEY's Qpen Architecture: Usine CADL and
CDE's Trainine Kit. Windsor, CT.

CADKEY. (1992). CADKEY Analysis Manual. Windsor, CT.

Crawford, J.T. (1986). Development and Maintenance of Application Software.
Electrical Communication, @, no.3-4 pp.270-277.

D-M-E Company. (1993). The D-M-E Cataloe. Madison Heights, MI.

Earle, J. H. (1991). Graphics for Eneineers with CADKEY, Massachusetts:
Addison-Wesley Publishing Company.

E D Sales and Service. (December 1994). Mold Software for AutoCAD Release
12. Plastics Eneineerine. �, no. 12 pp. 34.

Forbes, G. (1989, May). How Well Integrated? Plastics Technoloey, �, pp.71-
74.

117

Hutchison, R. C., & Just, S. B. (1988). Proi:rammini: Usini: the C Lani:uai:e,
New York: McGraw-Hill.

Jones, C. B., & Shaw, R.C. (1990). Case Studies in Systematic Software
Develo.pment, New York: Prentice Hall.

Kramer, W., & Kramer, D. (1993). Understandini: Autolisp. Proi:rammini: for
Productivity. New York: Delmar Publishers Inc.

Lafore, R. (1991). Object Oriented Proi:rammini: in Turbo C+ +, Emeryville,
California: Publishers Group West.

Lange, J. C. (1984). Desii:n Dimensionini: with Computer Graphics Applications�
New York:Marcel Dekker, Inc.

Lehmkuhl, N. K. (1983). FORTRAN 77: A TQ.P:Down Ap_proach. New
York: Macmillan Publishing Co.

Lodge, C. (1988, March). New Software Speeds Part Design, Mold Making.
Plastics World, !6 pp. 55-58.

Madsen, D. A., & Shumaker, T. M. (1993). AutoCAD and Its Applications,
Release 12. South Holland, Illinois: The Goodheart-Willcox Company,
Inc.

Mold Design Software Makes Part Shrinkage Predictable. (1989, January).
Modern Plastics, .6Q, pp.10-11.

Mold Makers Slash Lead Times with CAD (Micro Cadam Plus). (1993,
September 24). Machine Desii:n, �' p. 124.

Montgomery, S. L. (1991). AD/Cycle: IBM's Framework for Ap_plication
Develo.pment and CASE. New York: Van Norstrand Reinhold.

National Tool and Manufacturing Company. (1993). National Electronic Library.
A-series Mold Sets and Component Parts. Version 3.01. Kenilworth, NJ.

Software Ventures, Inc. (1992). MF/LINK User's Manual. Kalamazoo, MI.

Taylor, P. (1992, July). Adding Designer Intelligence to CAD Draughting.
British Plastics and Rubber, pp. 4-5.

Tecnocad, Ltd. (1992). CAMold - Intelligent Flexibility. Sligo, Ireland.

118

Vallens, A. (1993, April). Software brings speed, economy to moldmaking.
Modern Plastics, pp. 59-61.

119

	Addition of Automatic Dimensioning Feature to D-M-E’s Ultimate Mold Base Design Software
	Recommended Citation

	tmp.1571068422.pdf.QnYKy

