
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Masters Theses Graduate College

4-1997

Predicting Timing Behavior in Architectural Design Exploration of Predicting Timing Behavior in Architectural Design Exploration of

Real-Time Embedded Systems Real-Time Embedded Systems

Rajeshkumar Sambandam
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Sambandam, Rajeshkumar, "Predicting Timing Behavior in Architectural Design Exploration of Real-Time
Embedded Systems" (1997). Masters Theses. 4898.
https://scholarworks.wmich.edu/masters_theses/4898

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Masters Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/4898?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4898&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

PREDICTING TIMING BERA VIOR IN ARCHITECTURAL DESIGN

EXPLORATION OF REAL-TIME EMBEDDED SYSTEMS

by

Rajeshkumar Sambandam

A Thesis

Submitted to the

Faculty of The Graduate College
in partial fulfillment of the

requirements for the

Degree of Master of Science in Engineering

Department of Electrical and Computer Engineering

Western Michigan University

Kalamazoo, Michigan

April 1997

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my major thesis advisor,

Dr. Sharon Hu, for her unstinting support and guidance throughout this

work. I would like to express sincere thanks to my committee members

Dr. Garrison Greenwood and Dr. Frank Severance for their strong

encouragement and reviews on this work. I am grateful to Dr. Severance

for extending his laboratory facilities for this thesis. On a personal note, I

wish to thank all my friends for their timely help, cooperation and

understanding in the completion of this thesis.

Rajeshkumar Sambandam

11

PREDICTING TIMING BERA VIOR IN ARCHITECTURAL DESIGN

EXPLORATION OF REAL-TIME EMBEDDED SYSTEMS

Rajeshkumar Sambandam, M.S.E.

Western Michigan University, 1997

This thesis aims at developing efficient analytical techniques to

perform trade-off studies in the architectural design exploration phase of

real-time embedded systems. Real-time embedded systems (RTES) have

stringent timing requirements. In the process of designing such a system,

a key issue· is to determine if a system is able to meet all the timing re­

quirements imposed on it, though it may prove attractive in terms of cost

and performance. Traditional methods of using event-driven simulation

for modern RTES are very time consuming and are not guaranteed to

prove feasibility. Specifically, we identify a fiexibility metric to compare

various options in the design exploration task. This metric is obtained

based on certain schedulability bounds. The famous rate monotonic

scheduling theory was studied in detail. The new metric was evaluated by

comparing its results with the results of simulation for a real-world sys­

tem as well as systems composed of randomly generated tasks. Experi­

mental results show that our approach can be effectively used in the de­

sign evaluation stage of many real-time embedded systems.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . 11

LIST OF TABLES :........................ V

LIST OF FIGURES Vl

CHAPTER

I. INTRODUCTION........ .. 1

II. RELATED RESEARCH .. 5

Relevant Terminologies . 5

Scheduling Techniques . 7

Task Allocation Schemes . 7

Scheduling Strategies . 8

Priority Assignment Rules.................................... 8

Rate Monotonic Scheduling: Example 10

Existing Real-Time Analysis Approaches 11

Simulation Based Approach . 11

Average Processor Utilization Based Approach 12

Response Time Based Approach 13

Need for a Flexibility Metric ... 14

111

Table of Contents-Continued

CHAPTER

III. EXPERIMENTAL SET-UP FOR COMPARING POTENTIAL
METRICS .. 16

The Engine Control System : 16

RGT Systems...... 20

System Modeling and Assumptions 24

IV. STUDY OF POTENTIAL FLEXIBILITY METRICS 29

Pessimistic Analysis Based Approach . 30

Average Processor Utilization Based Approach 30

Response Time Based Approach . 33

A Lower Bound Based Approach . 35

A Tighter Lower Bound Based Approach 37

A Feasibility-Factor Based Approach 42

Behavior of Potential Metrics on Processor Overload 44

V. CONCLUSION AND FURTHER WORK 48

BIBLIOGRAPHY .. 50

IV

LIST OF TABLES

1. A Sample System to Illustrate RM Scheduling 10

2. Workload Specifications of an Engine Control Module 18

3. MIPS Rate of Various Host Processors on Which Software

Tasks Were Executed ... 19

4. A Sample System to Illustrate the Deficiency of Loose

Lower Bound ... 37

V

LIST OF FIGURES

1. Gantt Chart Based on RM Scheduling for the System Given

in Table 1 .. 10

2. Procedure to Generate RGT Systems 23

3. SES Model for Engine Control System 25

4. SES Sub-model for the Processor Referred in Engine Control

System ... 27

5. Graph Showing the Likelihood of Systems Being Feasible

When Upper Bound as Defined in (6) is Used as a Predictor ... 32

6. Graph Showing the Likelihood of Systems Being Feasible

When Upper Bound as Defined in (7) is Used as a Predictor ... 34

7. Graph Showing the Likelihood of Systems Being Feasible

When Lower Bound as Defined in (8) is Used as a Predictor ... 36

8. Graph Showing the Likelihood of Systems Being Feasible

When Lower Bound as Defined in (9) is Used as a Predictor ... 41

9. Ranges of Upper and Lower Bounds Showing Schedulability

Based on A... 43

10. Graph Showing the Likelihood of Systems Being Feasible

vs. "A .. 44

11. Behavior of Upper Bound for Various Levels of Processor

Overload ... 46

12. Behavior of Lower Bound for Various Levels of Processor

Overload .. 4 7

13. Behavior of Feasibility Factor for Various Levels of Processor

Overload .. 4 7

Vl

CHAPTER!

INTRODUCTION

Embedded systems encompass a variety of hardware and software

components which perform specific functions in host systems. Examples of

such systems include CNC (computer numerically controlled) machines,

aircraft avionics, defense systems and most automated systems in modern

factories. Many embedded systems in real life, must respond to external

events under certain timing constraints. Failure to respond to certain

events may either seriously degrade system performance or even result in

a catastrophe. Such systems are referred to as real-time embedded sys­

tems (RTES) and can be found in many applications, such as engine and

transmission control of automobiles, navigation and landing control of

aircraft, and communication networks. In designing real-time embedded

systems, in addition to the usual design criteria for embedded systems,

such as expandability, reliability, maintainability and cost-effectiveness,

a key issue is to guarantee that the system can provide timely services.

For a given RTES, one can identify the various functions which

have to be implemented using computers without much difficulty. A major

challenge lies in deciding which tasks should be implemented in dedicated

1

hardware circuits and which should be in software so that optimal cost,

performance and low power dissipation can be achieved. In order to com­

pete effectively, RTES must also meet various design constraints with

short time to market and at low cost. To efficiently explore various system

architectural options, a number of researchers have proposed to use the

system-level or configuration-level modeling ([1,3,4,8,12,22,24]). At this

level, hardware is modeled as resources with no detailed functionality and

software is modeled as tasks utilizing the resources.

One of the major issues to be considered during the system level ar­

chitectural design phase of RTES, is the feasibility of the system architec­

ture. This refers to determining if the processor is capable of meeting the

timing constraints of all software tasks currently assigned to it. Various

real time analysis techniques have been devised to check if the processor

is able to finish each software task before its deadline. Another related is­

sue is the system's flexibility. This refers to the processing power yet

available from the processor to process any possible future tasks or toler­

ate perturbation of current tasks. Determining the flexibility of a RTES is

an important issue because in most cases, the system specifications may

not be completely available. Even if it is fully specified, it is often the case

that the specification will be altered from the time of the first formulation

of the system requirements to the time of the final implementation of the

2

system. Furthermore, information on software tasks (e.g., execution time

and memory requirements) and hardware components (e.g., power con­

sumption and chip area) is quite often based on some kind of estimates.

Thus, it is desirable to have system designs which are more flexible and

can tolerate wide ranges of perturbation. Nonetheless, if there is a flexi­

bility metric, it can be used for trade-off studies during the architectural

design exploration.

3

One technique to determine the timing requirements of a RTES is

by means of event-driven simulation. However, this technique is not ap­

plicable in practice since an extensive simulation is very time consuming

and may not necessarily prove feasibility. Also, slight changes in the

specifications would mean expensive new simulation of the whole system.

The complexity of modern real-time systems makes it impossible to simu­

late all possible situations.

Some researchers have proposed analytical and algorithmic tech­

niques [14, 15, 17) to predict the timing behavior of RTES. However all

these methods intend to provide a yes or no answer to the question of

whether a system meets its timing specification. Given the binary nature

of such real time analysis approaches, one may have difficulty to use them

for measuring the flexibility of a system architecture. This thesis concen­

trates on arriving at a flexibility metric with respect to timing behavior in

real time embedded systems. We analyze certain existing real time

analysis approaches [8, 15, 17) to arrive at a flexibility metric and identify

the applicability of these metrics in evaluating initial system designs by

verifying through simulation.

The remainder of this thesis is organized as follows. In Chapter II,

we review some of the related work. This chapter also introduces some

scheduling techniques and existing real-time analysis approaches in brief.

Chapter III presents our experimental set-up in comparing various

flexibility metrics. In Chapter IV, we compare several potential metrics

from the real-time analysis field and identify some applicable metrics and

illustrate their effectiveness. Conclusion and further work are discussed

in Chapter V.

4

CHAPTER II

RELATED RESEARCH

Timing analysis for real-time systems are critical during the archi­

tectural design exploration stage. The goal of timing analysis is to check if

all the software tasks assigned to a processor meet their deadlines. At the

system architectural level, each software task ('ti) is associated with the

following parameters: computation time (ci), deadline (di), period (pi) and

activation (ai). In the following paragraphs, we will introduce some termi­

nologies commonly used in the real-time analysis field and describe some

scheduling techniques and existing real time analysis approaches.

Relevant Terminologies

l. Task: A task is any software routine that will be executed by a

processor.

2. Period: The period of a task is the inter-arrival time between any

two successive requests of the task. This is also the reciprocal of the fre­

quency.

3. Computation time: This is the time the processor takes to execute

a request from a task. If n is the number of instructions of a task and P is

5

the MIPS rate of the processor, then the computation time of this task

would be nP µsecs.

4. Deadline: The deadline of a task is the latest time by which a

given request can be completed by the processor. Each task instance also

has a deadline which will vary from request to request. For e.g., if the pe­

riod of a task is 20 and its deadline is 17, then the deadline of the 5th in­

stance of this task would be (5-l)x20 + 17 = 97, which is measured from

time zero. Note that the first instance of any task occurs at time zero.

5. Activation: This is the time for which a task is held after it is in­

stantiated and before it makes a request for execution to the processor.

6. Release time: This is the time at which a given instant of a task

makes a request to the processor. For e.g., if the period of a task is 10 and

its activation is 2, then the release time of the 10th instant of this task

would be (10-l)xlO + 2 = 92.

7. Response time: The response time of an instance of a task is the

time interval between its release time and the completion time of the re­

quest of this instance of the task by the processor.

8. Task set: This is the set of all tasks assigned to a processor. Each

task in a task set has their own period, computation time, deadline and

activation.

6

9. Feasible system: A real time embedded system is said to be fea­

sible if all tasks in the task set meet their deadline.

10. Critical instant: The critical instant for a task is defined to be

an instant at which a request for that task has the largest response time.

11. Worst case phasing: The worst case phasing for a task set occurs

when the activation of all tasks in the set is zero.

12. Worst case situation: Let S be the set of tasks and define

S'(t)-;;;;2S. S'(t) contains the tasks that must be executing at time t if tasks

are to meet their deadlines. Then, the worst case situation is given by

max IS (t)I.

Scheduling Techniques

Task Allocation Schemes

An embedded system may contain more than one processor and

hence the execution of a task can be allocated to any processor in the sys­

tem. Two different task allocation schemes exist: static and dynamic

[5,6,19,20,21]. Static task allocation is applied when the execution prop­

erties of all processes are known in advance. On the other hand, dynamic

task allocation is used whenever the task execution properties are not

completely known in advance. In our following discussion, we assume that

7

a fixed allocation is given and concentrates on the scheduling analysis of a

single processor system.

Scheduling Strategies

Given a processor and a task set, a scheduling strategy must be de­

veloped that describes the rule of assigning priorities to tasks and

whether the tasks are pre-emptable. A number of researchers have stud-

ied the scheduling analysis of real-time systems (e.g.,

[2,7,15,16,18,23,26]). The pre-emptive scheme, under which the execution

of a lower priority task can be interrupted by a higher priority task, has

become the most widely accepted scheme in RTES. Thus, we will assume

that the systems we study make use of the pre-emptive scheme.

Priority Assignment Rules

The rules of assigning priorities for tasks in a given task set can be

classified into two categories: dynamic (changing priority) and static

(fixed priority).

Static Scheduling Approach. In static scheduling approach, the pri­

orities of the tasks for every request for execution to the processor remain

the same at all times. One of the dominant static scheduling approaches is

8

the rate monotonic (RM) approach [14,15,17]. The RM algorithm assumes

that task requests are made periodically. It assigns priorities to tasks ac­

cording to the frequencies of their execution requests. The task with the

highest request frequency i.e., the smallest request period, gets the high­

est priority.

Dynamic Scheduling Approach. In this approach, the priority of a

task may change from request to request. A prevalent dynamic scheduling

approach is the deadline driven algorithm. This algorithm assigns the

highest priority to a task if the deadline of its current request is the near­

est and the lowest priority if the deadline of its current request is the fur­

thest. Liu and Layland in [17] have proved that the deadline driven algo­

rithm to be an optimal dynamic algorithm.

In RTES, static scheduling is more widely used than the dynamic

approach and hence our main focus in this thesis is on RM scheduling ap­

proach. Also, the RM scheduling algorithm has been proven to be the op­

timal static scheduling algorithm [17]. Furthermore, it has the following

advantages [10,15]: First, it can be used to ensure that the timing re­

quirements of the critical tasks are met in case of a transient overload in

the system. Second, aperiodic tasks can be easily handled while still

meeting the deadlines of periodic tasks. Third, this technique can be eas-

9

ily used where imprecise computation is required. Lastly, it is easy to im­

plement in processors, in I/O controllers and in communication media.

RM Scheduling: Example

Figure 1 shows the execution sequence (in Gantt Chart form) based

on RM scheduling for a three task system given in Table 1. In this figure,

w(ij) represents the response time for the jth instance of task 'ti. Notice

Table 1

A Sample System to Illustrate RM Scheduling

l, Pi Ci ai

1 100 20 5

2 150 40 7

3 300 50 5

T, T2
T• T, I T3 I I T2 I T,

I I I
0 20 40 60 80 100 120 140 160 180 200 220

..

w(1,1) w(1,2) w(1,3)

..
w(2,1) w(2,2)

w(3,1)

Figure 1. Gantt Chart Based on RM Scheduling for the System Given in

Table 1.

10

that this time-line is drawn assummg the pre-emptive scheme. The

7,157,307, ... and 5,305,605, ... respectively. Consider the first instance of

lease times for various instants for task t1 ,t2 , t3 are 5,105,205, .. ; task 't3.

Its release time is 5. However it starts execution only at time 65.when

the execution of the first instant of t2 is completed. Pre-emption of task t3

occurs at time 105 when the second instance of task t1 arrives.

Existing Real-Time Analysis Approaches

Given a task allocation, the pre-emptive scheme and a fixed­

priority scheduling algorithm, several researchers have proposed feasibil­

ity decision algorithms based on different techniques such as event driven

simulation, average processor utilization [15,17] and processor response

times [23]. In the following paragraphs, we will briefly discuss these

methods and identify their merits and demerits.

Simulation Based Approach

A straightforward method to determine if the timing requirements

of all tasks are met would be to simulate the system execution for the

given schedule. This requires that a time interval within which to con­

struct the schedule be defined. The interval should be as short as possible

to reduce the simulation time. Yet it needs to be long enough so that the

11

schedulability in this interval guarantees the schedulability over the en­

tire time span. In [12], Lawler and Martel proved the existence of such an

interval, [amax , amax + 2P], where P is the effective period of the task sys­

tem, and is equal to the least common multiple of all task periods, and

amax is the maximum among all task activation times. Unfortunately, this

interval can become very large and computationally inhibiting when task

periods are relatively prime. Thus, this exhaustive means of verifying the

timing performance is impractical for large complex systems. It has been

shown that predicting the timing behavior of a task set allocated to a sin­

gle processor is an NP-complete problem [16).

Average Processor Utilization Based Approach

One of the prevalent approaches in determining feasibility is rate

monotonic analysis (RMA) [14,15,17). The RMA technique uses the aver­

age processor utilization defined in (1) in estimating the timing behavior

ofRTES.

U= :f.5-
i=l P;

(1)

Liu and Layland, in [17) have demonstrated that, whenever the worst­

case phasing exists and when the period of each task equals its deadline,

the RM algorithm will guarantee a feasible schedule provided that the

12

task utilization factor, U, is bounded by

(2)

However, in many systems, the RM algorithm can often feasibly schedule

task sets having total utilization higher than the bound given above. This

has been shown by Lehoczky, Sha and Ding in [15]. In fact, it is not un-

common to have systems even with an average utilization around 0.9 and

that are schedulable by RM algorithm. While Lehoczky 's technique [15]

provides a significant improvement from the Liu- Layland's bound in de­

termining the feasibility, their method cannot be directly used for obtain­

ing the flexibility of a system architecture at the design exploration stage

since it is still based on worst case analysis 1
.

Response Time Based Approach

Another widely used method to predict the feasibility of RTES is

based on comparing the deadline of each task with the worst case re­

sponse time of the processor. Lehoczky in [13] proposed the "level-i" busy

period concept to determine the longest response time for the request of a

task initiated at a critical instant. This technique was also used by Yen

and Wolf [23] to determine the worst case response time through a fixed

1 In the last part of this chapter, we give more details on this.

13

point iteration technique. They also considered the case where tasks are

not initiated at a critical instant. They model this by dummy tasks with

data dependencies. Their approach can be computationally expensive

considering that many system configurations may need to be investigated

at the architectural design stage. Joseph and Pandya [10] have suggested

a interval arithmetic method to obtain the response times. However, their

method is again, based on the worst case phasing.

Need for a Flexibility Metric

Using the above techniques based on worst case phasing has been

widely accepted as an effective means to answer whether a given system

is feasible. In reality, we often confront with system design which do not

have worst case phasing. Depending on particular task compositions, the

situation corresponding to worst case phasing may never occur for sys­

tems which have activation. Thus, if these techniques when used to

evaluate design options for systems which have activation may lead to a

"over-specification" of the timing requirements. Therefore, these

"pessimistic approaches" when directly applied in the system architec­

tural design stage, some potentially valid system configurations may be

thrown away.

14

We later show in our thesis, how other approaches based on lower

boul_ld on processor utilization and certain schedulability bounds, feasibil­

ity factor etc. can be effectively used to overcome the shortcomings of pes­

simistic approaches. We also provide an analysis on these metrics in

terms of its effectiveness in re.fleeting the change in timing requirements

due to the change in timing parameters of the system_ These results gives

an estimation for the system designer, "how close" the system configura­

tions meet the timing requirements. They can be later used to study

trade-offs on system design specifically involving timing details.

15

CHAPTER III

EXPERIMENTAL SET-UP FOR COMPARING

POTENTIAL METRICS

The goal of this thesis is to identify a metric that can be used to

measure the flexibility of a real-time embedded system during the archi-

tectural design exploration phase. This requires a test environment where

we can study and compare certain potential metrics. We used a real-world

embedded system and systems composed of randomly generated tasks2

(RGT) instead of hand-crafted toy systems in our study. A commercial

simulation tool-SES/W orkbench3 was used as an event-driven simulator

to compare the results of various analytical methods. In this chapter, we

will first describe our real-world example and the generation of RGT sys­

tems. Later, we discuss the SES model used for the simulation.

The Engine Control System

We use an example presented by Hu, et. al. [9] to study the timing

requirements of a typical embedded computer system. The example in­

volves the design of a real time embedded system implementing a subset

2 Hereafter, we will refer to these systems as RGT systems.
3 Product of Scientific and Engineering Software, Inc., Austin, TX.

16

volves the design of a real time embedded system implementing a subset

of an engine control module. Since our concern is only on the timing de-

tails, we directly use the workload specifications given in [9] for our study.

This is shown in Table 2. In this table, p is the minimum time interval be-

tween engine events and µs denotes micro-seconds.

The instruction count of each function represents the worst case

(dynamic4) length of the primary section of the task. The primary section

is the portion of the function that is executed under normal operating

conditions and excludes other parts of the function containing the code for

handling extreme situations which are not time critical. The actual num-

her of instructions is estimated based on previous versions of engine con-

trol programs and current control algorithm complexities. Certainly, these

estimates depend on the particular processor on which the function is

running. The numbers shown in Table 2 are based on a generic RISC ar­

chitecture. Each function has a deadline and activation which may be ex­

pressed either in p or units of time. The numbers in parenthesis show the

µs equivalent (assuming an engine speed of 6000 rpm) of the values ex-

pressed in engine events. The frequency of a function indicates how many

times in one engine revolution, the function is executed. The numbers in

4 If the length of the software routine that implements the function is de­
pendent on a factor that could be decided only at run-time, then we con­
sider the worst-case value of the factor.

17

18

parenthesis in this column show the period (the reciprocal of frequency) in

µs.

Table 2

Workload Specifications of an Engine _Control Module

Task Instr. Deadline Frequency- Activation

Count 1/rev

(Period)

DigitalFilter 1 64 46 µs 96 (104.17) 0 (0)

(DFl)

Digi talFil ter2 32 lp 1 (10000) 95p

(DF2) (10000) (9895.93)

DecodeSPUB 30 83 µs 48 (208.33) 0 (0)

(DSB)

DecodeSPUA 30 55 µs 48 (208.33) 83 µs

(DSA)

ReadCAM (RC) 30 4p 1 (10000) 0 (0)

(416.67)

ServiceRoutine 20 2p 24 (416.67) 0 (0)

(SR) (208.33)

FuelCalc (FC) 480 500 µs 4 (2500) 8 p (833.33)

SparkCalc (SC) 100 8 p (2500) 4 (2500) 16p

(1666.67)

ReadMAP (RM) 40 3p 24 (416.67) 0 (0)

(312.5)

In order to construct a reasonable set of data points, we assume

that there are various architectural designs that contain different combi­

nations of the nine tasks implemented either as hardware or software. For

instance, a system configuration could be such that DFl and DF2 are im-

plemented as software running on a processo·r and the remaining tasks

are implemented as dedicated hardware. Therefore, the processor needs to

execute only DFl and DF2. Likewise, we can construct up to 29 system

configurations with different task combinations to be executed by a proc­

essor. The processor is from a pool of host processors listed in Table 3. The

list of host processors is obtained by taking advantage of the minimum

and maximum operating clock frequencies for a given processor. We

Table 3

MIPS Rate of Various Host Processors on Which

Software Tasks Were Executed

Processor MCI MC2 MC3 MC4

MIPS 1.30 1.35 1.43 1.50

Processor MC6 MC7 MC8 MC9

MIPS 2.00 2.10 2.20 2.30

MC5

1.70

MCl0

2.50

assume that we will be able to arrive at the various MIPS rate identified

in Table 3 by varying the clock frequency of the processor. It is essential

19

for us to have a varying MIPS rate in our study because it determines the

computation time of each task which is an important constituent in the

overall timing behavior of the system.

RGT Systems

A timing analysis based on the example embedded computer sys­

tem such as the engine control system described above may capture many

characteristics typically found in real time systems. However, one cannot

generalize the results obtained from the example system since all systems

found in real-world may not behave in the same fashion in terms of tim­

ing requirements. For instance, in the above system, the period and dead­

line of some of the tasks are integral multiples of each other. Clearly, the

timing behavior could be much different if the numbers are relatively

prime. Hence, the results we obtain for this system could be a biased one.

In order to ensure a fair comparison, it is imperative to perform timing

studies on RGT systems.

To compose an RGT system, we need to generate the parameters

such as period (pi), deadline (di) , activation (ai) and computation time (Ci)

for each task (ti) in the system. We chose to use a congruential pseudo

random number generator which returns numbers distributed uniformly,

to generate random numbers over a given range. The ranges for period

20

and computation time in our RGT systems were between [10,8500] and

[2,950] respectively. (Unlike the engine control system, we use the compu­

tation time of a task instead of instruction count and hence the processor

MIPS rate is no longer a factor in the timing behavior of RGT systems).

The lower and upper limits of period and computation time were chosen

so as to obtain reasonably good number of uniformly distributed values

for upper bound, lower bound and feasibility factor5 of systems. Another

limitation on the upper limit of periods is the fact that having a higher

value for periods would lead to unnecessarily long simulation time.

Clearly, the deadlines for any meaningful system should be greater than

their corresponding sum of computation time and activation. Also, since

we do not consider systems with deadline greater than period, the range

of the deadline is determined for each task individually. That is, for task

'ti, its deadline is a random number within [Ci, pi]. Fixing the above ranges

for period, computation time and deadline lead us to determine the valid

limits for the activation time as [0, di-Ci]. However, having such a wide

range for the activation time is not quite practical and often results in

generating unacceptable6 systems. Therefore, we reduce the range to [0,

5 The meaning of these terms will become clear in the next chapter.
6 A system is unacceptable if the value of a metric (under consideration) is

not within the range of our study. Legal values of a chosen metric are ex­

plained in the next chapter.

21

r(di-Ci)] where r is any random number between (0.1,0.9].

In order to do a fair comparison between various metrics that we

will be discussing later, it is necessary to generate meaningful systems

which will be fairly uniformly distributed over the legal values of the

metrics. The procedure given in Figure 2 illustrate our approach for gen­

erating RGT systems. It is evident from this figure that not all numbers

returned by the random number generator are suitable to be included in a

system. Therefore, at every stage in the generation of an RGT system, we

make certain validation tests. For instance, the utilization test ensures

that we do not include systems which have average processor utilization

greater than 1. Such systems are obviously, infeasible. The balance_check

routine performs a test of uniformity among the systems generated. The

inclusion of this procedure ensures that systems are generated fairly in

equal numbers in all ranges of the metrics we studied.

In the analysis based on RGT systems, each task set contains nine

tasks, which is the same as in the example system described in the last

section. The number of tasks in a system is not a matter of critical concern

in our study since we are mainly interested in the analysis of relative

timing behavior of potential systems at the architectural design stage.

However, the number of tasks would become an important factor when we

compare the computational needs of each potential metric. We will discuss

22

more on this aspect when comparing the metrics.

procedure: RGT System Generator

begin{

}

while number of tasks generated s number of tasks required){

generate period within [10, 8500]
generate computation time within [2, 950]

}
check for a legal value of processor utilization;
if(acceptable processor utilization){

for(each task generated above){

}

Generate deadline within [c;, p;]
Generate r within [0.1, 0.9]
Generate activation within [0, r(d,-c;)]

compute the value of the metric under investigation
if(acceptable value of the metric){

procedure: balance_check;
if(balance_check==FALSE){

discard this task set;
begin new system;

}

}
else {

}

}

discard this task set;
begin new system;

else begin new system;

end procedure

Figure 2. Procedure to Generate RGT Systems.

23

System Modeling and Assumptions

In order to measure the effectiveness of the various analytical

methods that we studied, an SES/Workbench model was developed to per­

form simulation of the engine control system and RGT systems described

above. The results of the simulation for every possible task combination

derived from the engine control system and RGT systems will be com­

pared against the values of various metrics to analyze its effectiveness in

estimating the flexibility of a system architecture.

SES/Workbench is a simulation tool that is used to evaluate the

correctness and performance of a system design. Event-based simulation

forms the basis of this tool. The main module page of the SES model for

the engine control system is given in Figure 3. The various requests from

the tasks in the SES model are processed as transactions. Transactions

are invisible entities that flow from node to node along the arcs. Every

transaction along the arcs on the graph, either picks up data from the

nodes or the nodes process the data carried by the transactions in order to

divert them through the right path. For instance, in the engine control

system, an architecture could have DFl, DF2 and SC implemented as

software and the remaining tasks as hardware. This configuration would

be modeled in the SES as follows: transactions that get generated from

24

8----□\
Gen_task_Dl"l task_Dl"l_defn

8--□�
Gen_task_DF2

8------­

Gen_ task_DSO

8-t•-}---t□
Gen_task_DSI\

LEGEND

Dl"l - Digital l"ilterl
DF2 - Digital l"ilter2
DSO - Decode SPUB
OSI\ - Decode SPUI\
RC - Read CI\M
SR - Service Routine
FC - Fuel Calculation
SC - Spark Calculation
RM - Read MI\P

8-+----+---->D � �e.ck7task ski� tasks

E)
Gen task RC � �

8 - 0
serve_tasks•s/'

Gen_task_SR
Reference

8-----¼----f
Gen_task_l"C task l"C defn

8--0/
Gen_task_SC task_SC_defn

8--□/
Gen_task_RM task_RM_defn

Figure 3._SES Model for Engine Control System.

to Processor

N)
01

the Gen_task_ * node picks up the required data (e.g., implementation

choice, period, deadline etc.) from the task_* _defn node and the node

check_task diverts transactions from DFl, DF2 and SC alone towards

the processor and all other transactions toward the sink. In this manner,

one can simulate all 512 possible system configurations for the engine

control module. We include all possible configurations so as to construct a

reasonable set of data points in the evaluation of various flexibility met­

rics. Using the definition given in Chapter II for ai, pi, Ci and di, we can

calculate the simulation time for each system configuration using the

formula amax+2P where P is the least common multiple of the periods and

amax is the maximum among the activations of all tasks. It should be noted

that the same SES model can be used for simulation studies of RGT sys­

tems also.

The main module page treats the processor as a reference to an­

other sub-model which is depicted in Figure 4. Every transaction that en­

ters the processor submodel is held at the node activation_delay be­

fore reaching the cpu node where the transaction is processed depending

on its priority. All transactions exiting the cpu node is checked for dead­

line violation before reaching the sink. The feas_calculator node col­

lects the required data from the transactions to calculate the value of the

metric under consideration for further analysis.

26

D----(9,-----�
proc_entry activation_delay cpu

divert_feas_calc

---➔• I) •D--+-----+----EJ�□/•ck_deadline proc_exit

feas_calculator

Figure 4. SES Sub-model for the Processor Referred in Engine Control System.

ts?
-1

As already pointed out, the analysis we are interested in are primarily

used during the initial system design evaluation stage and hence details

on overhead due to context switching, task scheduling and pre-emption

may not be available. We thus neglect these overhead in our model which

also greatly simplifies the realization of the processor in SES simulation.

However, these overhead may become a significant factor when the sys­

tem is actually implemented and therefore may affect the estimated tim­

ing requirements. We provide an analysis of potential metrics in handling

these factors in the next chapter.

28

CHAPTER IV

STUDY OF POTENTIAL FLEXIBILITY METRICS

If we knew the precise amount of processing power (such as in

terms of average clocks per instruction or MIPS) required to feasibly

schedule all tasks and the actual processing power of the given processor,

we would be able to precisely predict the system feasibility and its flexibil­

ity with respect to the timing requirements. We define pas the ratio of the

required processing power to the processing power of processor P. Clearly,

p can be used as a flexibility metric. However, as we have pointed out

previously, finding the required processing power is a computationally

inhibiting job. Hence, we need to investigate other possibilities of estimat­

ing the flexibility of a system.

This chapter focuses on evaluating the effectiveness of several pos­

sible metrics for measuring the flexibility. We also propose two new met­

rics towards predicting the timing behavior and illustrate its improve­

ment over the existing ones. As stated in Chapter II, we use RM algo­

rithm for task scheduling and assume pre-emptive scheme. We also as­

sume that tasks are independent and allocated on a single processor.

29

PessimisticIAnalysisIBasedIApproachI

AverageIProcessorIUtilizationIBasedIApproachI

OneI ofI theI frequentlyIusedImethodsI toI determineI feasibilityI isI viaI

anIupperIboundIonItheIprocessorIutilization.IWeIwouldIlikeItoIinvestigateI

ifI thisI isI anI appropriateI metricI forI measuringI flexibility.I TheI averageI

processorIutilizationIforIaIsetIofIn tasksIisIdefinedIasI

U= f 5-
i=I P;

(3)

LiuI andI LaylandI [17]I provedI thatI forI diI =IpiI andI underI theI worstI caseI

phasing,I feasibilityI isI guaranteedI ifI theI systemI satisfiesI (2).I WeI repeatI

thisIequationIhereIasI(I4)IforIconvenience.I

(4)

InIsomeIpracticalI systemsIsuchIasItheIoneIdescribedI inIChapterI 3,I whereI

diI* pi,IorIaiI* 0IforIsomeIti's,I(I4)IisInoIlongerIaIvalidIupperIbound.IAIsimpleI

modificationIgivesItheIfollowingIworstIcaseIfeasibilityIpredictionIformula.I

(5)

TheIinequalityIgivenIinI(5)IsuggestsIthatIanIupperIboundI onI pI canIbeIob-

tainedIasI

30

(6)

Notice that (6) can be treated as a generalized form of (4) since when di=pi

and ai=O, it reduces to (4). Accordingly, we call scheduling based on di-ai

as generalized RM (GRM) scheduling. Now, p.11
1 may be considered as a

flexibility metric provided that a smaller value ofp 111 indicates a higher

possibility of a system being feasible. Clearly, a system is feasible ifp 111
� 1.

Careful study is needed when p 111 > 1 since the systems may or may not be

feasible.

We examine the timing behavior for systems with p 111 > 1 as follows.

Given the example task systems and a large number of RGT systems, we

compute p 111 for each system and then simulate (based on GRM scheduling)

to determine its feasibility. Figure 5 depicts the results of such an ap­

proach. In this graph, the results obtained for various processor MIPS in

the engine control system example have been combined. The percentage

feasible systems over a given range indicates the ratio of the actual num-

her of systems feasible to the total number of systems whose p "1 values fell

in that range. From Figure 5, it is not difficult to note that even for an

upper bound value of around 2, more than 80% of the systems are actually

feasible. This shows the over-estimation of the schedulability of the tasks

31

when we use the worst-case prediction approach for determining the fea­

sibility. Another interesting yet somewhat counter-intuitive observation is

that there are ample number of cases where systems with higher values

ofp 111 are more likely to be feasible than systems with lower values ofp 111
•

This indicates that p 111 as defined in (6) is not an appropriate measure for

flexibility. That is, by simply computing p 111 's of two systems, one cannot

80

Q)

..91 60

Q)

�
40

1.5 2 2.5 3 3.5 4

Range of Upper Bound

I a Engine control system <> RGT Systems

Figure 5. Graph Showing the Likelihood of Systems Being Feasible
When Upper Bound as Defined in (6) is Used as a Predictor.

32

decide if one system is more flexible (or more likely to be feasible) than

the other.

Response Time Based Approach

Another worst-case analysis based technique is the fixed-point it­

eration method discussed in [14) and developed further by Yen and Wolf

in [23). It finds the worst case response time of 'ti as follows. Initially let

Then,

X = c; I(] -I,-j) andr
i-1 c

1
j=I pj

i-1

g(X) = C; + I,cJx I pj l
j=I

while (X < g(X))
{

X=g(X);
i-1

g(X) = c; + I, cJ XI pj l ;
j=I

It follows that g(X) converges to the worst case response time of 'ti,

n. Note that the tasks are assumed to be arranged in the decreasing or­

der of priorities. We can calculate the upper bound for a system based on

the worst case response time as

',
r +a,. p l =-'--

d
i

(7)

33

lfp u2 �1, then the systems are guaranteed to be feasible. If p u2 >1, then an

analysis as for p 111 is needed. The results are shown in Figure 6. Clearly,

the fixed-point iteration technique can give better prediction results than

(6). However, if the number of tasks in a system is large, this method can

be quite expensive. Furthermore, the fixed-point iteration approach as­

sumes the worst-case phasing which again, may lead to over specification.

120 �------------------ - - --------,

rJ) 80
E
Q)

rJ)

Q) 60

Q)

� 0
40

20

0 0.5 1.5

Range of Upper Bound

I -s Engine control system ◊ RGT Systems

Figure 6. Graph Showing the Likelihood of Systems Being Feasible
When Upper Bound as Defined in (7) is Used as a Predictor.

2

34

Yen and Wolf proposed an elegant method for handling the case

where not all tasks are activated at the same time. They model this by

dummy tasks with data dependencies [23]. Nonetheless, their algorithms

can be computationally expensive considering that many system configu­

rations may need to be investigated.

A Lower Bound Based Approach

The inferences on the results based on the upper bound based

techniques suggest that we may investigate its counter-part, the lower

bound based approach. It is well known that a task set is definitely infea­

sible if the average processor utilization defined in (1) is greater than 1.

This can be used to impose a lower bound on p. That is,

(8)

Consequently, ifp'1 > 1, the system is infeasible. We would like to see

whether the value of p 11 in the range [0,1] can indicate the flexibility of a

system. We can consider p'1 to be good flexibility metric if systems with a

lower value of p '1 indicate a higher percentage of feasible systems. In other

words, a similar analysis as for upper bound when carried out for

p 11 should result in a monotonically decreasing graph. The results de-

35

picted in Figure 7 indicates that this is not true since a peak can be no­

ticed for the RGT systems. However, it is relatively a reliable measure

than the upper bound since the results for p1
' show a better monotonic

trend than that ofp"'. Hence one may considerp1
' defined in (8) as a po-

tential candidate for predicting flexibility.

A significant drawback of using p 1' as a metric is that the percent-

age feasible systems drops quickly as the value of p 1
' increases. This

means that when we have a system with p 1
' relatively low (say 0.5), it is

(/)
E

2
(/)
>,

(/)

..91
,Q
(/)
"'
Q)

:,g 0

120 ,------,-------,--------,----�-- ---,

80 ···················

1

I I
········•·····-····-···••-··········

: : :
60 ! i t :

40

0 0.2 0.4

1 I
. t·········· .. ···· .. ···· ❖

0.6 0.8

Range of Low er Bound

I e Engine control system <> RGT Systems

Figure 7. Graph Showing the Likelihood of Systems Being Feasible
When Lower Bound as Defined in (8) is Used as a Predictor.

36

not clear whether it is worthwhile to investigate such system configura­

tion further. In addition, using p 11 as the only timing analysis parameter

may fail to detect certain obviously infeasible systems. For example, con­

sider a three system shown in Table 4. The value ofp 11 for this system is

46.7% which suggests that this system could be feasible. However, it is

easy to find from the timing parameters that the third task would never

meet its deadline since the minimum time it has to wait for higher prior­

ity tasks is 7 and hence the system is infeasible. Thus, p11 cannot be used

as the only measure to indicate the flexibility of a system.

Table 4

A Sample System to Illustrate the Deficiency of Loose Lower Bound

1, ai Pi Ci di

1 0 10 4 6

2 0 30 3 10

3 0 120 8 14

A Tighter Lower Bound Based Approach

We have seen that p'1 in (8) is close to being an appropriate candi-

date. In [81, a tighter lower bound on p was given , but no sufficient data

were provided to illustrate the effectiveness of this bound. We will give a

37

slightly modified lower bound calculation and study its behavior with re­

spect to timing prediction. Consider a task set of n tasks. For the first exe­

cution request of 'ti, any task requests that have deadlines preceding di

must be completed before di. Thus the total computation requirement be­

tween [O, di] includes at least satisfying all these task requests. We state

the following lemmas that can be used to calculate the number of task re­

quests in intervals [a1,di] for d1 � di and [ai,dd.

Lemma 1: For i tasks that are arranged in the ascending order of their

deadlines, define

otherwise

then the i tasks cannot be feasibly scheduled if

a . = mma. min
IS:j!i:i J

Proof: Let 'tJ (j=l,2, .. .i-1) represent all tasks with priority higher than 'ti.

It is clear that for the first execution request of task 'ti, any task requests

from 'tJ with deadlines prior or equal to di, must be completed before di in

order that the system is feasible. Therefore, the total time the processor is

occupied by all higher priority tasks than task 'ti may be given as k1 .c1,

where k1 is the minimum number of times task 'tJ needs to be executed in

38

the time interval [aJ, di].

The value of kJ can be calculated by considering those requests of 'CJ

which start before di. The number of requests for 'CJ within the interval [aJ,

di] is j(d; - a
j
) / p

j
l We need to decide whether the last request for task 'CJ

as determined by j(d; -a) I p
j
l must be finished before di. Notice if

(L(d; -a
j
)I p

j
j).p

j
+d

j
5,d; then, the last request of task 'CJ has to be com-

pleted before di. Otherwise, this request need not be finished before di and

hence only L (d; -a
j

) / p
j
J number of 'CJ requests need to be considered.

It follows that the amount of execution time required to process -ci's

initial request as well as all the higher priority tasks' requests within

i i

[amin, di] must be at least I,k
j
.c

j
. Then if, I,k

j
.c

j
> d; -a

min , the proces-
j=I j=l

sor would not be able to feasibly schedule the tasks within [amin, di].

Hence the system is infeasible. §

Lemma 2: For i tasks that are arranged in the ascending order of their

deadlines, let kJ be the same as that defined in Lemma 1. Define

if

Then, the i tasks cannot be feasibly scheduled if

39

Proof: The proof for this can be obtained along the same lines as Lemma

1. It is clear that h1=k1 if a1 � ai since the release time for task 'tJ is a1 and

within the interval [ai, a1], there will be no requests from 'tJ. Now, if a1 < ai,

the number of requests of 'tJ in the interval [ai, di] may be obtained as the

number of requests in the interval [a1, di] minus the number of requests in

the interval [a1, ai]. §

Based on these lemmas, we can now define a tighter lower bound as given

below.

(9)

To investigate the effect of p 12
, as given in (9), similar analysis as those

for upper bound and loose lower bound was performed. Figure 8 depicts

the results. Clearly, the graph is monotonic and hence is a good measure

of the flexibility of the system. It is interesting to note that the percentage

feasible systems is quite high even when p 12 is relatively large (e.g. 0.5).

Thus, p 12 is a quite reliable predictor for feasibility. Furthermore, let us

define critical excess requirement ratio as pc = 1- p 12
•

The value of pc provides an estimate of the additional load the proc-

40

essor6could6handle6after6meeting6the6current6task6specifications,6which6 is6

a6natural6measure6of6flexibility6given6that6 p6'2 is6monotonic.6 Hence,6during6

system6architectural6exploration,6we6can6use6 p6'2 or6pc as6a6flexibility6met-

ric6and6study6 the6 trade-off6of6 flexibility6against6 cost,6 power6 consumption6

etc.6

120 �------------------�

1 oo ... a a1-.....g1---o:::::----s---s--s-.:;;.::.::;:i;

� 80
Q)

>,

en
Q)

� 60
en
ca
Q)
u.

"if- 40

20

·········'······························ ' ···········\k·····
o�---'-----�'----�---�---�

0 0.2 0.4 0.6 0.8

Range of Low er Bound

I e Engine control system � RGT Systems

Figure68.6Graph6Showing6the6Likelihood6of6Systems6Being6Feasible6
When6Lower6Bound6as6Defined6in6(9)6is6Used6as6a6Predictor.6

Though6using6 p6'2 can6be6an6effective6means6 to6study6potential6de-

sign6 candidates6 in6 the6architectural6design6exploration6 of6 real6 time6 sys-

41

terns, this analytical technique may become computationally expensive

when the number of tasks grow larger. It would be desirable to have a

metric that is less computationally involved.

A Feasibility-Factor Based Approach

In [8], the authors introduced a feasibility measure called feasibil­

ity factor based on the upper and lower bounds of throughput require­

ments. We would like to generalize the definition of feasibility factor and

study its behavior. We define the feasibility factor as

(10)

where p1 could be any of the two lower bounds discussed earlier. Notice if

pu = p1, we have a precise prediction of p. As illustrated in Figure 9, a set

of tasks allocated on a processor are feasible if A� 1 and they are not fea-

sible if A < 0. For 0 ::;; A < 1, the feasibility of the system cannot be pre­

dicted solely based on A and needs to be carefully analyzed.

To examine the behavior of A, we performed a analysis similar to

those done for previous metrics. Since A can be computed based on any

given formula for p1 and pu, we have to obtain different A values by using

p'1 and p'2
• The data obtained are summarized in Figure 10. Notice that

42

43

this metric is monotonic for both p 1
' and p'2 based calculations. Using our

previous reasoning, A is a reliable predictor for feasibility. Furthermore, it

can be considered as an estimate of critical excess requirement ratio. In-

stead of using 1-p1 directly, the value of 1-p1 is scaled by (pu - p1). Such a

0 p"
0 p"

(a) (b)

0 p"

(c)

Figure 9. Ranges of Upper and Lower Bounds Showing Schedulability
Based on A. (a) Definitely Schedulable System (A>-1), (b) Defi­
nitely Not Schedulable System ('A<O), (c) Further Analysis 1s
Needed to Determine Schedulability (O�'A<l).

scaling gives better estimation since it includes the effect of pu. Therefore,

we can use A directly to measure the flexibility of a system architecture. A

larger value of A indicates that the system is relatively more feasible. Note

that when p '2 is used, the likely-hood of the system being feasible is

higher, compared with the case based on p 1
' • Of course, the computational

needs for the one based on p 12 is larger. Nevertheless, it is up to the dis-

cretion of the system designer to choose either of these methods, smce

both of them exhibit suitable characteristics.

120

100

� 80

60

40

20

0

0 0.2 0.4 0.6 0.8

Range of Feasibility Factor

B ECS (loose low er bound) ◊ RGTS (loose low er bound)

*ECS (tight low er bound) e RGTS (tight low er bound)

ECS - Engine Control System

RGTS - RGT Systems

Figure 10. Graph Showing the Likelihood of Systems Being

Feasible Vs. A.

1.2

Behavior of Potential Metrics on Processor Overload

We have seen that the lower bounds and feasibility factor to are po­

tential candidates for predicting the flexibility of a system. The analysis

we have done thus far concerns systems which are likely to be feasible. In

44

this section, we will discuss our results for analysis done on systems

which are guaranteed to be feasible.

As we have already pointed out, in real-time embedded systems,

the system specifications may not be fully available at the architectural

design stage. Quite often, the timing parameters such as Ci and di are

based on some kind of estimates and therefore, they are likely to change

when the system is actually implemented. Thus, we would like to see the

effectiveness of the metrics considered previously in reflecting the change

in timing requirements due to the change in the timing parameters of the

system.

From the RGT systems that we generated, we collect all feasible

task sets as determined by the simulation and perturb the value of Ci for

each task in a task set in order to achieve a specified overload (calculated

based on the metric under consideration) on the processor. We would like

to find out the possibility of a system being feasible under the overload

situation. We again perform the same analysis as we did in the previous

section. The results are depicted in Figures 11, 12 and 13. Clearly, the be­

havior of the upper bound is highly unpredictable. The lower bound based

on processor utilization performs better than the upper bound in reflect­

ing the processor's capability of handling the overload. However, as men­

tioned earlier, we measure the goodness of a metric in terms of the mono-

45

tonicity of the curve. Clearly, the results obtained for the lower bound are

not monotonic. We therefore conclude that the feasibility factor is a better

candidate in reflecting the change in timing requirements of an RTES as

evidenced from Figure 13.

120

100

80

� 60

40

0

20

0

0 2 3

Range of upper bound

-a- 10% overload -<>- 20% overload + 30% overload

-a- 40% overload + 50% overload -tr No overload

4

Figure 11. Behavior of Upper Bound (p 111) for Various Levels of Processor

Overload.

46

120

100

80

.!E 60

Q)

40

� 0

20

0

0 0.2 0.4 0.6 0.8

Range of low er bound

-e 10% overload -<>- 20% overload .,.. 30% overload

-e 40% overload + 50% overload -tr No overload

Figure 12. Behavior of Lower Bound (p 1') for Various Levels of Processor

Overload.

120

100

E
80

Q) 60

Q)

40

� 0

20

0

0 0.2 0.4 0.6 0.8 1.2

Range of feasibility factor

-a- 10% overload ♦· 20% overload * 30% overload

-a- 40% overload + 50% overload -tr No overload

Figure 13. Behavior of Feasibility Factor for Various Levels of Processor

Overload.

47

CHAPTERV

CONCLUSION AND FURTHER WORK

In this thesis, we motivated the need for a flexibility metric for an

efficient analysis of potential design candidates in the architectural de­

sign exploration of real-time embedded systems. We have shown that

some intuitive measures such as the upper bound based on average proc­

essor utilization are highly pessimistic and often leads to over­

specification of timing requirements. We have also seen that worst case

response time based techniques may also lead to over-specification. Fur­

ther the response time based techniques cannot be easily extended to sys­

tems where tasks have deadlines exceeding their periods and the fixed

point iteration approach may become computationally expensive. It has

also been exemplified that using the lower bound approach based on proc­

essor utilization as the only measure for obtaining the timing require­

ments may fail to detect certain obviously infeasible systems.

We have identified that the tighter lower bound and feasibility fac­

tor based approaches are effective in quantifying the timing require­

ments of a RTES. The feasibility factor based approach is also shown to

perform better in reflecting the changes in timing requirements of a sys-

48

tern. These metrics can be reliably used to compare potential design can­

didates at the architectural system design stage. They can also be used as

both a constraint as well as an attribute in hardware/software partition­

ing of real time systems [8]. In the constraint case, we eliminate the in­

feasible solutions and in the attribute case, we can efficiently evaluate

systems modeled at the configuration level.

The limitation of this work is that we have considered only uni­

processor systems and assumed that the software tasks running on the

processor do not have any dependency. We have also assumed that the

deadlines of the tasks do not exceed their periods. We intend to expand

our work to include these cases. Task dependency can be modeled as acti­

vation times between tasks.

Another approach that we are currently investigating to predict

the schedulability of a system is the integer linear programming (ILP)

approach. Specifically, we use the timing parameters such as Ci, di, pi, and

ai to develop a objective function which has to be optimized under certain

constraints. The "level-i" busy period concept proposed in [13] may be ef­

fectively used to model the scheduling problem as an ILP problem.

49

BIBLIOGRAPHY

[1] P. Athanas and H.F. Silverman, "Processor reconfiguration through
instruction-set metamorphosis," Computer, vol. 26, no. 3, 1993, 11-
18.

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell and A.J. Wellings,
"Applying new scheduling theory to static priority pre-emptive
scheduling," Software Engineering Journal, vol. 8, no. 5, 1993, 284-
292.

[3] J. Beck and D. Siewiorek, "Automated processor specification and
task allocation for embedded multicomputer systems: The packing­
based approaches", Proceedings of the 7th IEEE Symposium on Par­

allel and Distributed Processing, 1995, 44-51.

[4] K. Buchenrieder and C. Veith, "CODES: a practical concurrent de­
sign environment", Handouts from International Workshop on
Hardware-Software Codesign, 1992.

[5] S. K. Dhall, and C. L. Liu, "On a real-time scheduling problem", Op­

erations Research, Vol. 26, No. 1, 1978, 127-140.

[6] M. R. Garey, and D. S. Johnson, "Complexity results for multiproces
sor scheduling under resource constraints", Society for Industrial
and Applied Mathematics Journal of Computing, 1975.

[7] M.R. Garey, D.S. Johnson, B.B. Simon and R.E. Tarjan, "Scheduling
unit-time tasks with arbitrary release times and deadlines", SIAM

Journal on Computing, vol. 10, no. 2, 1981, 256-269.

[8] X. Hu and J.G. D'Ambrosio, "Configuration-level hardware/software
partitioning for real-time embedded systems", to appear in Journal
of Design Automation for Embedded Systems.

[9] X. Hu, J.G. D'Ambrosio, B.T. Murray, and D. Tang, "Codesign of Ar­
chitectures for Automotive Powertrain Modules", IEEE Micro, 1994,
17-25.

50

[10] M. Joseph and P. Pandya, 11 Finding response times in a real-time

system", Computer Journal, vol. 29, no.5, 390-395.

[11] S. Kumar, J.H. Aylor, B.W. Johnson and W.A. Wulf, "Object-oriented

techniques in hardware design", Computer, vol. 27, no. 6, 1994, 64-

70.

[12] E. L. Lawler, and C. U. Martel, "Scheduling periodically occurring

tasks on multiple processors", Information Processing Letters, Vol.

12, No. 1, 1981, 9-12.

[13] J. P. Lehoczky, "Fixed priority scheduling of periodic task sets with

arbitrary deadlines", Proceedings of the 11th Real time systems sym­

posium, 1990, 201-209.

[14] J. P. Lehoczky and S. Ramos-Thuel, "An optimal algorithm for

scheduling soft-aperiodic tasks in fixed-priority preemptive systems",

Proceedings of Real-Time Systems Symposium, 1992, 110-123.

[15] J. Lehoczky, L. Sha, and Y. Ding, "The rate monotonic scheduling al

gorithm: exact characterization and average case behavior", Proceed­

ings of the 1989 IEEE Real-time System Symposium, 1989, 166-171.

[16] J. Y-T Leung and J. Whitehead, "On the complexity of fixed-priority

scheduling of periodic, real-time tasks", Performance Evaluation,

vol.2, 1982, 237-250.

[17] C. L. Liu and J. W. Layland, "Scheduling algorithms for multipro­

gramming in a hard real-time environment", Journal of the Associa­

tion for Computing Machinery, vol. 20, no. 1, 1973, 46-61.

[18] A.K. Mok, "Fundamental Design Problems of Distributed Systems for

the Hard Real-Time Environment", PhD thesis, Department of Elect­

rical Engineering and Computer Science, MIT, 1993.

[19] R. R. Muntz, and E. G. Coffman, Jr., "Preemptive scheduling of real­

time tasks on multiprocessor systems", Journal of the ACM, Vol. 17,

No. 2, 1970, 324-338.

[20] R. Rajkumar, L. Sha, and J.P. Lehoczky, "Real-time synchronization

protocols for multiprocessors", Proceedings of 1988 IEEE Real-time

Systems Symposium, 1988, 259-269.

51

[21) K. Ramamritham, and J. A. Stankovic, "Dynamic task scheduling in

distributed real-time systems", IEEE Software, Vol. 1, No. 3, 1984,

65-75.

[22) M.B. Srivastava and R.W. Brodersen, "Rapid-prototyping of hard­

ware and software in a unified Framework", Proceedings of Interna­
tional Conference on Computer-Aided Design, 1991, 152-155.

[23) T.-Y. Yen and W. Wolf, "Performance estimation for real-time dis­

tributed embedded systems", Proceedings of the International Confer­
ence on Computer Design (ICCD'95), 1995, 64-69.

[24) T.-Y. Yen and W. Wolf, "Communication synthesis for distributed

embedded systems", Proceedings of the International Conference on
Computer-Aided Design, 1995, 288-294.

[25) J. Zalewski, "Real-Time Systems Glossary", Dept. of Computer Sci­
ence, The University of Texas of the Permian Basin, 1993.

[26) W. Zhao, K. Ramamritham and J. Stankovic, "Preemptive scheduling

under time and resource constraints", IEEE Transactions on Com­
puters, vol. 36, no. 8, 1987, 949-960.

52

	Predicting Timing Behavior in Architectural Design Exploration of Real-Time Embedded Systems
	Recommended Citation

	tmp.1571068994.pdf.35teQ

