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ADAPTIVE CHANNEL EQUALIZATION TECHNIQUES 

Saied Razavilar, M.S.E. 

Western Michigan University, 1998 

Inter Symbol Interference (ISi) is a characteristic of band-limited 

communication channels that can severely degrade the digital communication system 

performance if not treated properly. Channel equalization techniques may be used to 

mitigate the effects of ISi in the system, thereby improving the system capacity and 

performance. In this thesis, the problem of Inter Symbol Interference caused by the 

nonlinear characteristics of band limited communication channels and adaptive 

equalization techniques to combat the effects of ISi are discussed. First, the analysis 

of ISi in a band limited communication channel using a concrete theoretical 

framework is presented. Next, various adaptive equalization techniques of band 

limited channels are presented. Computer simulations are conducted for various 

adaptive equalization algorithms such as least mean squares (LMS), normalized least 

mean squares (NLMS), recursive least squares (RLS), and recursive least squares 

lattice (RLSL) algorithms. Based on the simulation results, conclusions and 

comments are made on pros and cons of various adaptive equalization techniques 

studied in this thesis. 
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CHAPTER I 

INTRODUCTION 

1.1 General Perspective 

During the last three decades, a considerable effort has been devoted to the 

study of data communication systems that efficiently utilize the available channel 

bandwidth. Here we will consider the problem of an efficient receiver for digital 

information transmitted through a communication channel that is band-limited to W 

Hz. The optimum design of such receiver requires an exact knowledge of the 

communication channel statistics. In practice, channel characteristics are usually 

unavailable and often time varying. 

Theoretically, a communication channel can be modeled as a linear filter 

having an equivalent low pass impulse response c(t), with the corresponding 

frequency response c(f) being zero for If I >W, W being the channel bandwidth. Such 

band-limited channels cause symbols arriving at the receiver to spread over into 

adjacent symbol intervals, producing a distortion of the received symbols known as 

inter-symbol interference (ISl)[3]. In high-speed digital communication' systems, this 

kind of distortion plays a very important role in designing an efficient receiver. In 

fact, in such systems, an efficient use of the available channel bandwidth is almost 

exclusively limited by the presence of the ISi. 
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In practical digital communication systems, designed to transmit data over 

the band-limited channels, the frequency response characteristics C(f) of the channel 

is not known with sufficient precision for the design of a fixed (time invariant) 

demodulator for mitigating the ISI. Consequently, a part of this demodulator is made 

adaptive. The filter or signal processing algorithm foi handling the ISI problem at the 

receiver contains a number of parameters, which are adaptively adjusted on the basis 

of observable measurement of the channel characteristics. This technique is well 

known as adaptive channel equalization. 

Generally, a fast start up, a high tracking capability of the adaptive equalizer 

algorithm, and the equalizer computation efficiency, together with the independence 

of the equalizer on the eigenvalue spread of the correlation matrix of the tap input to 

the equalizer, are the most desirable performance characteristics in the high speed 

digital communication applications. Hence various algorithms for adaptive channel 

equalization have been developed and applied to compensate for the non-ideal 

characteristics of the communication channel. Adaptive algorithms can be divided 

into two classes, according to the type of the error function being minimized [3,4,6]. 

The first class consists of equalizers based on stochastic gradient approach, 

m which the statistical expectation of the squared error is approximated by its 

instantaneous value, and is then minimized at each iteration. The main drawbacks of 

these algorithms are the slow convergence and dependence of convergence on the 

eigenvalue spread of the correlation matrix. In addition, the algorithm has poor 

adaptivity for non-stationary channels, which may have rapid time variations. 
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However, simplicity and low computational complexity of LMS algo1ithms have 

made them so widely used thus far. 

The second class belongs adaptive filtering algorithms based on the method 

of least squares. According to this method, a cost function or index of performance 

that is defined as the sum of weighted error squares is minimized, where error or 

residual is defined as the difference between some desired response and actual filter 

output. These algorithms are generally considered as fast converging algorithms, and 

their rate of convergence is almost independent of the eigenvalue spread of the 

correlation matrix and therefore quite suitable for channel equalization problem. The 

recursive least squares family of linear adaptive algorithms fall into three distinct 

categories as follows [2,4,6]: (1) Standard RLS algorithm; (2) Square-root RLS 

algorithms; and (3) Fast RLS algorithms: (a) Order recursive adaptive filters (lattice 

structure) and (b) Fast transversal filters. 

The standard RLS and square root RLS algorithms have a computational 

complexity of O(M
2
), where M is the filter order. By contrast fast RLS algorithms 

have computational complexity of O(M). Low computational complexity, fast rate of 

convergence, and numerical stability of order recursive adaptive algorithms make 

them quite attractive for communication channel equalization. 

It is very important to point out that the adaptive equalization techniques 

considered in this thesis have been implemented for communication channels that 

introduce linear distortion, such as telephone channels. On the fading multi-path 

channels, which introduce nonlinear distortion, the decision feedback equalizers 
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(DFE) are appropriate [13]. However, these techniques are currently being used as 

channel equalizers on the fading multi-path channels, mainly because of their 

simplicity of implementation. 

1.2 Thesis Scope 

The objective of this thesis is to study and implement adaptive channel 

equalization techniques for the case of band limited channels and compare their 

performances. 

The thesis outline is as follows. Chapter II presents the background and 

problem formulation, Chapter III presents adaptive channel equalization techniques 

and discusses various aspects of them. Chapter IV presents the simulation 

environment and the results of the experiments on equalizing a band-limited channel 

using the linear adaptive algorithms discussed in Chapter III of this thesis. Chapter V 

presents conclusions and comments based on the results obtained in Chapter IV. 
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CHAPTER II 

BACKGROUND AND PROBLEM FORMULATION 

2.1 Problem Description 

In transmission over time dispersive channel, each symbol extends beyond 

the time interval allocated to it. The distortion caused by the resulting overlap of the 

received symbols is known as inter Symbol Interference (ISi). The efficient use of the 

available channel bandwidth is essentially limited by the ISi. Other disturbances like 

additive channel noise usually have fewer effects on the transmission rate. A basic 

block diagram of a digital communication system consisting of a data source, channel 

model, an additive noise source, receiving filter and an adaptive channel equalizer in 

the receiver front end is shown in Figure 1. 

x(t) 
Transmitter Channel 

Noise 

y(n) 

Receiver 

Adaptive 

Equalizer 

Figure 1. A Basic Block Diagram of a Digital Communication System. 
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The transmitted symbol sequence {x(n)} is passed through the channel. Prior 

to being inputted to the adaptive equalizer, the ISi distorted signal is further corrupted 

by an additive noise, n(t). The channel characteristics are not known a priori. The 

receiver objective is to accurately estimate the channel parameters and to compensate 

for the introduced ISi. The task of the adaptive equalizer at the receiver front is to 

provide estimates of the channel parameters and to reconstruct the transmitted symbol 

x(n), based on the channel output sequence, using some pre-specified adaptation 

criterion. Also, the adaptive equalizer must be able to track the time variations of the 

channel parameter. 

2.2 Band-limited Channel Characteristics 

In general, a band-limited channel, such as the telephone channel is 

characterized by a linear filter having an equivalent low pass frequency response 

C(f): 

C(f) = A(f)ejecn (2.1) 

where A(f) is called the amplitude response and S(f) is called the phase response. 

Another characteristic that is sometimes used in place of the phase response is the 

envelope delay or group delay, which is defined as 

l d0(f) 
-c(f) = ----

2 df 
(2.2) 
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The channel is said to be non-distorting or ideal if, within the bandwidth W 

occupied by the transmitted signal, A(f)=constant and 0(f) is a linear function of 

frequency or envelope delay 't(f)=const. On the other hand, if A(f) and 't(f) are not 

constant within the bandwidth occupied by the transmitted signal, the channel distorts 

the signal. If A(f) is not constant, the distortion is called amplitude distortion and if 

't(f) is not constant, the distortion on the transmitted signal is called delay distortion. 

As the result of the amplitude and delay distortion caused by the nonideal 

channel frequency response characteristic C(f), a succession of pulses transmitted 

through the channel at rates comparable to the bandwidth W, are smeared to the point 

that they are no longer distinguishable as well defined pulses at the receiving terminal. 

Instead, they overlap and, thus, we have Inter Symbol Interference (ISi). As an 

example of the effect of delay distortion on a transmitted pulse, Figure 2(a) illustrates 

a band-limited pulse having zeros periodically spaced in time at points labeled ±T, 

±2T, etc. If lhe pulse amplitude, as in pulse amplitude modulation (PAM) conveys 

information, for example, then one can transmit a sequence of pulses, each of which 

has a peak at the periodic zeros of the other pulses. Transmission of the pulse through 

a channel modeled as having a linear envelope delay characteristic 't(f) [quadratic 

phase 0(1)], however, results in the received pulse shown in Figure 2(b) having zero 

crossings that are no longer periodically spaced. Consequently a sequence of 

successive pulses would be smeared into one another, and the peaks of the pulses 

would no longer be distinguishable. Thus, the channel delay distortion results in inter 
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Symbol Interference. 

(a) 

-ST -'T -JT -1T -T 0 

-ST --4T 

Figure 2. Effect of Channel Distortion. 

(b) 

(c) 

T 

J.T 4T ST 

4T ST 

JT 4T ST 



As will be discussed in later chapters, it is possible to compensate for the 

nonideal frequency response characteristics of the channel by use of an equalizer at 

the demodulator. Figure 2(c) illustrates the output of s linear equalizer that 

compensates for the linear distortion in the channel [1,3]. 

In addition to linear distortion, signals transmitted through communication 

channels are subject to nonlinear distortion, frequency offset, phase jitters, and 

thermal noise. A channel model that encompasses all these impairments becomes too 

complicated to analyze. The channel models that are adopted in this thesis are linear 

filters with additive Gaussian noise [2,3]. 

2.3 Inter Symbol Interference (ISI) 

In this section, we shall present a model that characterizes the ISL The 

digital modulation methods to which this treatment applies are, pulse amplitude 

modulation(PAM), phase shift keying (PSK) and quadrature amplitude 

modulation(QAM). The transmitted signal for these three types of modulation may be 

expressed as [1,3] 

s(t) = v,(t) cos 2nfct - Vs(t) sin 2nfct 

= R e [ V (t) e j 2 nfc t ]
(2.3) 

where v(t)=Yc(t)+jvs(t) is called the equivalent low pass signal, fc 1s the carrier 

frequency, and Re[] denotes the real part of the quantity in brackets. 
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In general, the equivalent low-pass signal is expressed as 

v(t) = L)n
gr(t-nT) (2.4) 

n=0 

where gr(t) is the basic pulse shape that is selected to control the spectral 

characteristics of the transmitted signal, {/,i} the sequence of transmitted information 

symbols selected from a signal constellation consisting of M points, and T the signal 

interval ( l/T is the symbol rate). For PAM, PSK, and QAM, the values of In are points 

from M-ary signal constellations. The signal v(t) is transmitted over a bandpass

channel that may be characterized by an equivalent low-pass frequency C(j). 

Consequently, the equivalent received signal can be represented as 

r(t) = L, Inh(t- nT) + n(t) (2.5) 
n=O 

in the channel. To characterize the ISI, suppose that the received signal is passed 

through a receiving filter and then sampled at the rate 1/T samples/s. Let hR(t) denote

the impulse response of the receive filter and where h ( t) = gr ( t) * c ( t) and c(t) is the

impulse response of the equivalent low-pass local loop channel, where '*' denotes 

convolution and n(t) represents the additive noise x(t) = gr (t) * c(t) * h
R 

(t) . Then the

output of the received filter can be expressed as 
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y(t) = L lnX(t - nT) + v(t) (2.6) 
n=O 

wherev(t) = n(t) * h
R 
(t). Now if y(t) is sampled at times t=KT, k=0,1,2 ... we have 

y(kT) = yK = Lln:x(kT-nT)+v(kT) 
n=O 

= L lnXk - n + Vk, k = 0,1,2· · ·

The sample values {yd can be expressed as 

1 00 

yk = Xo(fk+- LlnXk-n) k =0 l 2 .. ·' ' ' 

XO n=O,n-#k

by setting the arbitrary factor x
0 
to unity we get 

Yk = !k + L lnXk - n + Vk

n=O,n-#k 

(2.7) 

(2.8) 

(2.9) 

the term Ik represents the desired information symbol at the kth
, sampling instant, the

term 

LfnXk-n (2.10) 
n=O,n-#k 
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represents the ISi, and vk is the additive noise variable at the k
th 

sampling instant

[1,3]. 

2.4 Communication Channel Models 

2.4.1 Time Invariant Channels 

Generally, the channel can be modeled with a time varying impulse response. 

However, if the time variations are much slower than the duration of the signaling 

interval, the channel can be considered as being time invariant over a large number of 

signaling intervals. This assumption is realistic not only for telephone channels, but 

also for some radio multipath channels such as tropospheric scatter channels. A 

common model of a communication channel is the transversal filter structure; i.e. 

tapped delay line (TDL). The transfer function of such channels may be written as 

H(z)= L,CiZ-; (2.11) 
i=O 

where Lis the number of signaling intervals spanned by the Inter Symbol Interference 

and Ci, i=O, ... Lare the TDL weights. The received signal is given by 

y(n) = I,c; x(n - i) + v(n) (2.12) 
i=O 

where x(n) is the symbol sequence at the channel input and v(n) is a sequence of zero 
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mean white Gaussian noise samples with variance <i .

2.4.2 Time Varying Channels 

The radio multipath fading channels are examples of time varying channels. 

The discrete-time transfer function of such channels may be written as 

H(z) = I,c;(n) z-; (2.13) 
i=O 

The variable channel coefficients { ci(n)} are modeled by passing white 

Gaussian noise (WGN) through a low pass filter[4,6]. The received signal is given by 

y(n) = LC;(n) x(n-1) + v(n) 
i=O 

2.5 Adaptive Filters 

(2.14) 

The· design of Wiener filter requires a priori information about the statistics 

of the data to be processed. The filter is optimum only when the statistical 

characteristics of the input data match the a priori information on which the design of 

the filter is based. When this information is not known completely, however, it may 

not be possible to design the Wiener filter or else the design may no longer be 

optimal. A straightforward approach that may be used in such situations is the 

"estimates" and "plug" procedure. This is a two-stage process whereby the filter first 

"estimates" the statistical parameters of the relevant signals and then "plugs" the 

13 



results so obtained into a non-recursive formula for computing the filter parameters. 

For real-time operation, this procedure has the disadvantage of requiring excessively 

elaborate and costly hardware. A more efficient method is to use an adaptive filter. 

Such a device is self-designing in that the adaptive filter relies its operation on a 

recursive algorithm, which makes it possible for the· filter to perform satisfactorily in 

an environment where complete knowledge of the relevant signal characteristics is not 

available. The algorithm starts from some predetermined set of initial conditions, 

representing complete ignorance about the environment. Yet, in a stationary 

environment, it is found that after successive iterations of the algorithm it converges 

to the optimum Wiener solution in some statistical sense. In a non-stationary 

environment, the algorithm offers a tracking capability, whereby it can track time 

variations in the statistics of the input data, provided that the variations are 

sufficiently slow. A wide variety of recursive algorithms have been developed thus far 

for the operation of adaptive filters. In the final analysis, the choice of one algorithm 

over another is determined by various factors [2]. 

1. Rate of convergence: This is defined as the number of iterations required

for the algorithm, in response to stationary inputs, to converge "close enough" to the 

optimum Wiener solution in the mean square sense. A fast rate of convergence allows 

the algorithm to adapt rapidly to a stationary environment of unknown statistics. 

2. Misadjustment: For an algorithm of interest, this parameter provides a

quantitative measure of the amount by which the final value of the mean-squared 

error, averaged over an ensemble of adaptive filters, deviates from the minimum 
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mean-squared error that is produced by the Wiener filter. 

3. Tracking: When an adaptive filtering algorithm operates in a nonstationary

environment, the algorithm is required to track statistical variations in the 

environment. Two contradictory features, however, influence the tracking 

performance of the algorithm, (a) rate of convergence, and (b) steady -state 

fluctuations due to algorithm noise. 

4. Robustness: In one context, robustness refers to the ability of the

algorithm to operate satisfactorily with ill-conditioned input data. A data set is ill 

conditioned when condition number of the underlying correlation matrix is large. 

5. Computational complexity: Here the issue of concern is the number of

multiplication's, divisions, and additions/subtractions required to make one complete 

iteration of the algorithm. 

6. Structure: This refers to the structure of information flow in the algorithm,

determining the manner in which it is implemented in hardware. For example, an 

algorithm whose structure exhibits high modularity, parallelism, or concurrency is 

well suited for implementation using very large scale integration. (VLSl)[2,4,6]. 

2.6 Linear Filter Structures 

The operation of a linear adaptive filtering algorithm involves two basic 

processes:(!) a filtering process designed to produce an output in response to a 

sequence of input data, and (2) an adaptive process, the purpose of which is to 

provide a mechanism for the adaptive control of an adjustable set of parameters used 
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m the filtering process. These two processes work interactively with each other. 

Naturally, the choice of a structure for the filtering process has a profound effect on 

the operation of the algorithm as a whole. There are two types of filter structure that 

are mostly used in adaptive filtering. These structures are as follows [2,4]: 

2.6.1 Transversal Filters 

The transversal filter, also referred to as tapped delay line (TDL) filter, 

consists of three basic elements, as depicted in Figure 3: (1) unit delay element, (2) 

multiplier, and (3) adder. The number of delay elements used in the filter determines 

the finite duration of its impulse response and is commonly refereed to as the filter 

order. The filter output is given by 

m-1

y(n)= Iw; u(n-k) (2.15) 
k=O 

This equation is called a finite convolution sum in the sense that it convolves 

the finite duration impulse response of the filter, w; with the filter input u(n) to 

produce the filter output y(n)[2]. 

2.6.2 Lattice Predictors 

A lattice predictor is modular in structure in that it consists of individual 

stages, each of which has the appearance of a lattice, hence the name "lattice" as a 

structural depictor. Figure 4 depicts a lattice predictor consisting of M-1 stages; the 
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Figure 3. Transversal Filter. 

Stage 1 Stage 2 Stage M - 1 

f, {n) 

Figure 4. Multistage Lattice Predictor. 



number M-1 is referred to as the predictor order. The mth stage of the lattice predictor 

in Figure 4 is described by the pair of input-output relations (assuming the use of 

complex-valued, wide-sense stationary input data): 

Im 
(n) = f m -1 (n) + r;bm-1 (n -1)

b
m 

(n) = b
m-i (n -1) + rmfm-i (n) 

(2.16) 

where m=l,2, ... , M-1, and M-1 is the final predictor order. The variable I
m 

(n) is the 

mth forward prediction error, and b"' (n) is the mth backward prediction error. The

coefficient r rn is called the mth reflection coefficient. The forward prediction error

Im (n) is defined as the difference between the inputs u(n-1), ... u(n-m) and its one step

predicted value. Correspondingly, the backward prediction error b"' (n) is defined as

the difference between the input u(n-m) and its "backward" prediction based on the 

set of m "future" inputs u(n), ... ,u(n-m+ 1 ). Considering the conditions at the input of 

stage 1 in Figure 4, we have 

f0 (n) = b0 (n) = u(n) (2.17) 

where u(n) is the lattice predictor input at time n. Thus, starting with the initial 

conditions of Equation (2.17) and given the set of reflection coefficients k 1, k 2, • • • k 
M 

we may determine the final pair of outputs /M-I (n) and bM.J (n) by moving through the

lattice predictor, stage by stage. 

For a correlated input sequence u(n), u(n), .. . ,u(n-M+ 1) drawn from a 

18 



stationary process, the backward prediction errors b0, b1(n), ... ,bM_1(n) form a 

sequence of uncorrected random variables. More over, there is one to one 

correspondence between these two sequences of random variables in the sense that if 

we are given one of them, we may uniquely determine the other, and vice versa. 

Accordingly, a linear combination of the backward ·prediction errors may be used to 

provide an estimate of some desired response between d(n), as depicted in the lower 

half of Figure 4. The arithmetic difference between d(n) and the estimate so produced 

represents the estimation error(n). The process described herein is referred to as a 

joint-process estimation. Naturally, we may use the original input sequence to 

produce an estimate of the desired response d(n) directly. The indirect method 

depicted in Figure 4, however has the advantage of simplifying the computation of the 

tap weights k
0

, k 1,- • • k"' , by exploiting the uncorrected nature of the corresponding

backward prediction errors used in the estimation [2]. 

2.7 Adaptive Algorithms 

The challenge facing the user of adaptive algorithms is, first, to understand 

the capabilities and limitations of various adaptive algorithms and, second, to use this 

understanding in the selection of the appropriate algorithm for the application at hand. 

Basically, we may identify two distinct approaches for deriving recursive 

algorithms for the operation of linear adaptive filters as follows: 
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2.7.1 Stochastic Gradient Approach 

Here we may use a tapped delay line or transversal filter as the structural 

basis for implementing the linear adaptive filter. For the case of stationary inputs, the 

cost function, also referred to as the index of performance, is defined as the mean 

squared error (i.e., the mean squared value of the difference between the desired 

response and the transversal filter output). There are two stages for updating the tap 

weights of the adaptive transversal filter recursively. First the system of Wiener-Hopf 

equations (i.e., the matrix equation defining the optimum Wiener solution)is modified 

through the use of the method of steepest descent, a well-known technique in 

optimization theory. This modification requires the use of a gradient vector, the value 

of which depends on two parameters: the correlation matrix of the tap inputs in the 

transversal filter and the cross correlation vector between the desired response and the 

same tap inputs. Next, the instantaneous values for these correlations are used so as to 

derive an estimate for the gradient vector, making it assume a stochastic character in 

general. The resulting algorithm is widely known as the least mean square (LMS) 

algorithm [1,2,3,4 ]. 

The LMS algorithm is simple and yet capable of achieving satisfactory 

performance under the right conditions. Its major limitations are a relatively slow rate 

of convergence and a sensitivity to variations in the condition number of the 

correlation matrix of the tap inputs to the equalizer. Nevertheless, the LMS algorithm 

is highly popular and is widely used in variety of applications [4]. 
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The stochastic gradient approach may also be pursued in the context of a 

lattice structure. The resulting adaptive filtering algorithm is called gradient adaptive 

lattice (GAL) algorithm [10]. In their own individual ways, the LMS and GAL 

algorithms are just two members of the stochastic gradient family of linear adaptive 

filters, although it must be said that the LMS algorithm is by far the most popular 

member of this family. 

2.7.2 Least Square Estimation 

The second approach to the development of linear adaptive filtering 

algorithms is based on the method of least squares. According to this method, a cost 

function or index of performance that is defined as the sum of weighted error 

squares, is initialized, where the error or residual is itself defined as the difference 

between some desired response and the actual filter output. Recursive least squares 

(RLS) estimation may be viewed as a special case of Kalman filtering and there is one 

to one correspondences between the kalman variables and RLS variables. We may 

classify the recursive least squares family of linear adaptive filtering algorithms into 

three distinct categories, depending on the approach taken [2,9]: 

1. Standard RLS algorithm, which assumes the use of a transversal filter as

the structural basis of the linear adaptive filter. This algorithm has the virtues and 

suffers from the same limitations as the standard Kalman filtering algorithm. The 

limitations include lack of numerical robustness and excessive computational 

complexity. 
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2. Square root RLS algorithms, which are based on QR decomposition of the

incoming data matrix. These linear adaptive filters are referred to as square-root 

adaptive filters, because in a matrix sense they represent the square-foot forms of the 

standard RLS algorithm. 

3. Fast RLS algorithm. The standard RLS. algorithm and square-root RLS

algorithms have a computational complexity that increases as the square of M, where 

M is the number of adjustable weights in the algorithm. Such algorithms are often 

referred to as O(M
2
) algorithms. By contrast, the LMS algorithm is O(M) algorithm. 

When M is large, the computational complexity of O(M
2

) algorithms may become 

objectionable from a hardware implementation point of view. There is therefore a 

strong motivation to modify the formulation of RLS algorithm in such a way that the 

computational complexity assumes an O(M) form. This objective is achievable, in the 

case of temporal processing, first by virtue of the inherent redundancy in the Toeplitz 

structure of the input data matrix and, second, by exploiting this redundancy through 

the use of linear least-square prediction in both the forward and backward directions. 

The resulting algorithms are known collectively as fast RLS algorithms; they combine 

the desirable characteristics of recursive linear least squares estimation with an O(M) 

computational complexity. Two types of fast RLS algorithms may be identified, 

depending on the filtering structure employed [2,4]: (a) order-recursive adaptive 

filters, which are based on a lattice like structure for making linear forward and 

backward predictions; and (b) fast transversal filters, in which the linear forward and 

backward predictions are performed using separate transversal, filters. 
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Certain (but not all) realizations of order-recursive adaptive algorithms are 

known to be numerically stable, whereas fast transversal filters suffer from a 

numerical stability problem and therefore require some form of stabilization for them 

to be of some practical use. 

2.8 Equalizer Modes of Operation 

The block diagram of a digital communication system in which an adaptive 

equalizer is used is depicted in Figure 5. There are two modes of operation of the 

adaptive channel equalizer, the training mode and the steady state mode. During the 

training mode, the switch (S) is in position 1, where a generated replica of the known 

transmitted sequence is used to train the equalizer by adjusting its coefficients so as to 

match those of the unknown channel. After the training period (acquisition time), the 

switch S is switched to position 2, and the transmitter starts to transmit the 

information sequence. To track the possible time variations in the channel parameters, 

the equalizer coefficients must continue to adjust in an adaptive manner while 

receiving data. This is accomplished, as illustrated in Figure 5, by using the estimates, 

x(n), of the desired sequence, in place of the reference x(n), to generate the error 

sequence. In the following chapter we describe the typical adaptive algorithms for 

recursively adjusting the equalizer coefficients. 
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CHAPTER III 

ADAPTIVE CHANNEL EQUALIZATION TEHNIQUES 

To compensate for Inter Symbol Interference (ISi) in digital communication 

systems, channel equalizers are placed at the receiver front end. They operate on 

baseband signals so that in band-pass systems, they appear after the demodulators. 

Most of the equalizer operations are performed using adaptive filtering algorithms, as 

mentioned in the previous chapter. Adaptive algorithms are used to continuously 

update the filter weights (coefficients) so as to track the possible moderately fast time 

variations of the channel. The equalization techniques can be accomplished by a 

variety of adaptive filtering algorithms. 

In this chapter we start with a rewiev of the equalizer coefficients 

optimization criteria. Then we discuss the steepest decent algorithm and the stochastic 

gradient least mean square (LMS) adaptive algorithms for the transversal filter 

structure realizations (TDL). The least squares (LS) minimization procedures will be 

discussed for both the TDL and the lattice filter structure realization, as they are the 

ones often used in adaptive equalization applications. Although both finite impulse 

response (FIR) and infinite impulse response (IIR) have been considered for adaptive 

filtering, the FIR filter are by far the most practical and widely used [2,4,6]. 
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3.1 Equalizer Coefficient Optimization 

The mean square error (MSE) criterion is the most frequently used 

optimization criterion in filtering applications. In the MSE optimization criterion, the 

filter coefficient vector w(n) is adjusted to minimize the mean square value of the 

following error function: 

/\ 

e(n) = d(n)-d(n) 

where e(n) is the estimation error sequence, d (n) represents the estimate of the 

desired response and d ( n) represents the desired response. 

(3.1) 

The M by 1 equalizer input data vector u(n) at the time instant n, where Mis 

the order of equalizer, may be written as 

u(n) = [u 1 
(n) u 2 

(n)- · ·UM 
(n)f (3.2)

The estimate of the desired sequence at time instant n is the inner product 

/\ 

d(n) = wr 
(n)u(n) (3.3) 

where w(n) is the Mth order equalizer tap weight vector. 

(3.4) 

Now mean square value of the error function e(n), denoted by �(n), may be 

defined as 
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�(n) = E[e
2 
(n)] = E{ [d(n)-d(n)]

2
} (3.5) 

= E{ [d(n)-w
T (n)u(n)]2 }

= E[d(n)]
2 
- 2w

T 
(n)E[u(n)u(n)] + w

T 
(n)E[u(n)u 

T 
(n)]w(n) (3.6) 

Defining the M by M correlation matrix of the equalizer inputs as 

R(n) = E[u(n)u
T 

(n)] (3.7) 

and the M by 1 cross-correlation vector between the unequalized input data and the 

desired sequence as 

q(n) = E[d(n)u(n)] 

then Equation (3.6) can be written in terms of R(n) and q(n) as 

�(n) = E[d
2 
(n)]-2w

T 
(n)q(n) + w

T (n)R(n)w(n)

The MSE is the energy of the difference between the desired af!d the 

estimated information symbol. 

(3.8) 

(3.9) 

There are two reasons in choosing this function as a performance index: (1) 

the uniqueness of the obtained solution, since the MSE is a quadratic function of the 

coefficients, w/s, and therefore has only one global minimum; and (2) the simplicity 

of the solution, since the coefficient vector w(n) is directly determined by a set of 

linear equations. 
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Invoking the orthogonality principle, the minimization of the quadratic 

function (3.9) yields the normal equations. The coefficient vector w(n) shall be so 

selected that it renders the error e(n) orthogonal to the input data u(n), thus 

E[e(n)ur 
(n)] = 0 (3.10) 

Substituting for e(n) from equation (3.1) with d(n) being defined by equation (3.3) 

into (3 .10), yields 

E[d(n)- w
r 

(n)u(n)u 
r 

(n)] = 0

or, equivalently, 

E[u(n)u
r 

(n)]w(n) = E[u(n)d(n)] (3.11) 

Using the definition (3.7) and (3.11), we obtain the discrete form of Wiener-Hopf 

normal equation. 

R(n)w(n) = q(n) (3.12) 

The direct solution of Eq. (3.12) yields the optimum (in the mean square sense) tap 

weights vector W0p1(n) 

W (n) = R-
1 
(n)q(n)

Opt 

= {E[d(n)uT 
(n)] }{E[u(n)uT (n)] r

1 

(3.13) 
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substituting the value of W0p1(n) into equation (3.9), we obtain the minimum output 

MSE as 

<;min (n) = E[d
2 

(n)]-q 
r 

(n)R-' (n)q(n)] 

= E[d
2
(n)]-q

r 

(n)w opt (n)] (3.14) 

Since R(n) and q(n) are, generally, not available, their estimates must be found first. 

The procedures for finding their estimates and thus, solving the normal Equation 

(3.12) are discussed in the following sections. 

3.2 The Gradient Least Mean Squares Methods 

3.2.1 The Steepest Descent Method 

One way to solve equation (3.12) is to use the steepest descent iterative 

method. Assuming that the autocorrelation matrix, R(n), and the crosscorrelation 

., 

vector, q(n), are known a priori, one may compute the gradient vector V(n) which is 

defined as 

V(n) = J <;(n)I Jw(n) 

= -2q(n) + 2R(n)w(n) (3.15) 

Equation (3.15) can be rewritten as 

V(n) = -2E[d(n)u(n)] + 2E[u(n)u 
r 

(n)]w(n) (3.16) 
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where the correlation matrix R(n) and the cross correlation vector q(n) are defined by 

(3.7) and (3.8), which are repeated here for convenience 

w(0)=0. 

R(n) = E[u(n)u T (n)] (3.17) 

q(n) = E[d(n)u(n)] (3.18) 

The steepest descent method can be summarized in the following steps: 

1. Initialize the tap weight vector, normally with the zero vector value i.e.

2. Use this value of w(n) to compute V(n) according to equation (3.15).

3. Compute the next time update of the weight vector w(n) according to:

w(n + 1) = w(n)- µV(n) (3.19) 

whereµ is a positive number known as the step size or adaptation parameter. 

4. Increment n by 1, go back to step 2 and repeat process.

It is intuitively reasonable that successive corrections to the tap weight vector in the 

direction of the negative of the gradient vector should eventually lead to the minimum 

value of the mean square error. However, the significant drawback of this algorithm is 

the lack of the knowledge of the exact values of the R(n) and q(n). 

3.2.2 The Stochastic LMS Algorithm 

The channel characteristics are not known beforehand. Therefore, the 

gradient vector can not be computed exactly, but must be estimated from the available 
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information. In other words, gradient and tap-weight vectors are iteratively updated 

with every incoming data sample. One method for performing this task is the least 

mean square(LMS) algorithm originally introduced by Widrow and Hoff [13]. This 

LMS algorithm does not require measurements of the pertinent autocorrelation 

function nor does it require matrix inversion. The algorithm obtains an estimate of the 

gradient vector V(n) by dropping the expectation operation operator E from equation 

(3.16), to yield the instantaneous estimate: 

V(n) = --2u(n)d(n) + 2u(n)u T (n)w(n) (3.20) 

Substituting V(n) into equation (3.19), we obtain the tap weight updating recursive 

relation: 

w(n + 1) = w(n) + µu(n)d(n)- µu(n)u T (n)w(n) 

= w(n) + µu(n)[d(n)-u
r 

(n)w(n)]

= w(n) + µu(n)e(n) (3.21) 

where e(n) is the posteriori estimate error, defined as 

e(n) = d(n) - u T (n)w(n) (3.22) 

The adaptive algorithm described by equation (3.21) and (3.22) is known as 

the LMS or the stochastic gradient algorithm. Summary of the LMS algorithm is 

given in Figure 6. 
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For small values of the parameter µ the algorithm provides a low initial 

convergence rate. Large values ofµ, on the other hand, lead to a noisy adaptation and 

may even cause divergence. Therefore choice of the step size parameter, µ,

determines the trade-off between the algorithms adaptation speed and the minimum 

attainable output MSE, sinceµ is the only controllable parameter. 

M: number of taps 
µ : step size parameter 

Initialization: 
w(O)=O 

Given u(n)= M-by-1 tap input vector at time n 

d (n)=desired response at time n 

Compute 

e(n) = d (n)- w H (n)u(n)

w ( n + 1) = w ( n ) + µu ( n ) e' ( n )

Figure 6. Summary of LMS Algorithm. 

Several variations of the basic LMS algorithm have been proposed to 

improve the algorithm performance, some use a fixed step size as in equation (3.21), 

others use variable step size. Normalized LMS algorithm is one variation of basic 

LMS algorithm where the fixed step size in equation (3.18) is replaced by: 

/3 
µ(n) = llu(n)ll2

(3.23) 
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We may view the normalized LMS algorithm as LMS algorithm with a time 

varying step size parameter. The normalized LMS is convergent in the mean square if 

the adaptation constant � satisfies O < {3 < 2 . 

When the tap input vector u(n) is small, numerical difficulties may arise 

because then we have to divide by a small value for the squared norm llu(n)ll2 . To

overcome this problem, we slightly modify (3.23) as: 

where a>O, as before O </3 < 2. 

{3 
µ(n) =a+ llu(n)ll2

The summary of Normalized LMS algorithm is given in Figure 7. 

M: number of taps 

0<�>2 

a>O 

Initialization: 
w (0)=0 

Given u(n)= M-by-1 tap input vector at time n
d (n)=desired response at time n 

Compute 

e(n) = d (n) - w H (n)u(n) 

{3 • 

w ( n + 1) = w ( n) +
II ll2 u 

( n) e ( n)
a+ u(n) 

Figure 7. Summary of Normalized LMS Algorithm. 

(3.24) 
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3.3 Least Square Adaptation Techniques 

The major advantage of the LMS gradient algorithms lies in its low 

computational complexity, 0 ( M) , where M is the order of the equalizer filter. 

However the price to pay is its slow convergence rate. Since the step size µ, which is 

the only adjustable parameter for controlling the algorithm adaptivity, has to be 

bounded for the stability purpose, the slow convergence is mainly due to this 

fundamental limitation. Consequently, in order to obtain faster convergence, it is 

necessary to devise more complex algorithms, which involve additional parameters. 

To do this, we adopt the deterministic least squares criterion instead of the statistical 

approach used in the LMS and the related gradient algorithms. In recursive 

implementations of the least square method, we start the computation with some 

known initial conditions and use the information contained in the new data samples to 

update the algorithm variables. 

3.3.1 The Recursive Least Square Algorithm (RLS) 

The RLS algorithm is based on the least squares estimate of the tap weight 

vector. With the estimate of the filter at time n-1, we can calculate the tap weight 

vector at time n upon the arrival of new data. An important feature of the RLS 

algorithm is that it uses the information in the input data from the instant of time the 

algorithm is initiated. This makes the rate of convergence faster by an order of 

magnitude in comparison with the LMS algorithm. The disadvantage is the 
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computational complexity of the algorithm and the sensitivity to round off errors that 

accumulate due to the recursive nature of the algorithm resulting in the numerical 

instability. The RLS algorithm makes use of the relation in matrix algebra known as 

the Matrix Inversion Lemma, which can be stated as follows: If A and B are two Nx N

matrices and C is a Nx M matrix , D is MxM positive definite matrix, related by 

(3.25) 

then, the inverse of A is given as 

(3.26) 

The above theorem can be proved by multiplying the equations (3.25) and 

(3.26), evaluating the product and by recognising that the product of a square matrix 

and its inverse is an identity matrix. 

The M-by-M exponentially weighted input correlation matrix is defined as 

<l>(n) = LA n-iu(i)u H (i) (3.27) 
i=l 

n-l 
= A [LA n-I-iu(i)uH (i)] + u(n)uH (n) 

i=I 

= A <l>(n -1) + u(n)u H (n) (3.28) 

where A is a positive constant close to, but less than 1. When A equals 1, we have the 

ordinary method of least squares. The inverse of 1-A is, roughly speaking, a measure 
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of the memory of the algorithm. The case of A=l corresponds to infinite memory. 

Assuming the input correlation matrix to be positive definite and non-singular, we 

shall apply the matrix inversion lemma to the above equation. From equation (3.26), 

and identifying 

A= <l>(n) 

B- 1 = /4 <l>(n -1) 

C = u(n) 

D=l 

we get the recursive expression for the input correlation matrix as: 

., 

substituting in the above Equation (3.27), 

and 

we have, 

k(n) = 
/4-1P(n - l)u(n) 

1 + /4 _,u H (n)P(n - l)u(n) 

(3.29) 

(3.30) 

(3.31) 
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P(n) =). -
1
P(n -1)-). -l k(n)u 

H 

(n)P(n -1) (3.32) 

k(n) =). -'P(n-l)u(n)-). -l k(n)u
H 

(n)P(n-l)u(n) 

= P(n)u(n) = <1>-1 
(n)u(n) (3.33) 

The M-by-1 cross correlation 8(n) between the tap inputs of the the 

transversal filter and the desired response is defined by 

8(n) = L An-lu(i)d • (i) (3.34) 

8(n) = .A.8(n -1) + u(n)d • (n) (3.35) 

The recursive equation for the tap weight vector is developed as follows: 

w(n) = <l>-
1
(n)8(n)

= P(n)8(n) 

= AP(n)8(n-1) + P(n)u(n)d*(n) 

substituting Equation 3.31 for p(n) in Equation 3.36, we get 

w(n) = P(n -1)8(n -1)-k(n)u H (n)P(n -1)8(n -1) + P(n)u(n)d* (n) 

= <l>-1
(n -1)8(n -1)-k(n)u H (n)<l>-'(n -1)8(n -1)

+ P(n)u(n)d *

= w (n -1) -k (n )u H (n) w (n -1) + P (n )u (n )d • (n) 

(3.36) 

(3.37) 
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Finally, using Equation (3.33) that P(n)u(n) equals the gain vector k(n); we 

get the desired recursive equation for updating the tap weight vector: 

w(n) = w(n -1) + k(n)[d*(n)-u H (n)w(n -1)]

= w(n-l)+k(n)e'(n) 

where e(n) is known as the a priori estimation error defined by 

e(n) =d(n)-u r (n)w*(n-1) 

(3.38) 

(3.39) 

The Equations (3.31), (3.39), (3.38) and (3.32), collectively and in that order, 

constitute the RLS algorithm. We note that, in particular, Equation (3.39) describes 

the filtering operation of the algorithm, whereby the transversal filter is excited to 

compute the a priori estimation error e(n). Equation (3.38) describes the adaptive 

operation of the algorithm, whereby the tap-weight vector is updated by incrementing 

its old value by an amount equal to the complex conjugate of the a priori estimation 

error e(n) times the time-varying gain vector k(n), hence the name gain vector. 

Equations (3.31) and (3.32) enable us to update the value of the gain vector itself. An 

important feature of the RLS algorithm described by these equations is that the 

inversion of the correlation matrix <l>(n) is replaced at each step by a simple scalar 

division. The applicability of RLS algorithm requires that we initialize the recursion 

of Equation (3.31) by choosing a starting value P(O) that assures the non-singularity of 

the correlation matrix <l>(n). We may do this by evaluating the following inverse. 
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[ LA -iu(i)uH (i)r1 

i=-no 

A simpler procedure, however, is to modify the expression slightly for the 

correlation matrix <l>(n) by writing 

<l>(n) = LA n-iu(i)u H (i)+8A nl (3.40) 
i=I 

where I is the M-by-M identity matrix, and 8 is a small positive constant. Thus putting 

n=O in Equation (3.39), we have 

<l>(n)= 8 I (3.41) 

correspondingly, for the initial value of P(n) equal to the inverse of the correlation 

matrix <l>(n), we set 

P(O) = 8 - 1 1 (3.42) 

It only remains for us to choose an initial value for the tap-weight vector. It 

is customary to set 

w(O) = 0 (3.43) 

where O is the M- by-1 null vector. The summary of RLS algorithm is given in Figure 

8. 

39 



Initialization: 

P co) = a-•1, 

w (0) = 0 

For each instant of time, n=l, 2, ... , compute 

).-'P(n - l)u(n)
k(n) 

= 1 + A-1u H (n)P(n - l)u(n)
e(n) = d (n)-w H (n - l)u(n)
w(n) = w(n-l)k(n)e'(n) 

P(n) = A-1(p(n -l)-A-1k(n)u H (n)P(n -1) 

Figure 8. Summary of RLS Algorithm. 

3.3.2 The Recursive Least Square Lattice Algorithm (RLSL) 

In this section we will describe another class of least square (LS) algorithms. 

This class is based on the lattice filter structure described in Chapter II. These 

algorithms are mixed time and order (MTO) recursive rather thari being time 

recursive as in the case of RLS, described in the previous section. These algorithms 

are rooted in recursive least-square estimation theory and therefore retain two unique 

attributes of the RLS algorithm: (1) fast rate of convergence; and (2) Insensitivity to 

variations in the eigenvalue spread of the underlying correlation matrix of the input 

data. However, unlike the RLS algorithm, the computational complexity of the 

algorithms considered in this section increase linearly with the number of adjustable 
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filter parameters. This highly desirable property is a direct result of order 

recursiveness, which gives the adaptive algorithm a computationally efficient, 

modular, lattice like structure. In particular, as the filter order is increased from m to 

m+ 1, say, the lattice filter permits us to carry over certain information gathered from 

the previous computations pertaining to the filter order. A recursive least-squares 

lattice (LSL) algorithm is a joint estimator in the sense that it provides for the 

estimation of two sets of filtering coefficients jointly. Forward and backward 

reflection coefficients that characterize a multistage lattice predictor optimized in the 

least-squares sense. The number of stages in the predictor equals the prediction order. 

Regression coefficients characterize a linear least-squares estimator of some desired 

response. A recursive LSL algorithm may be structured in basically three different 

forms, depending on the type of prediction and estimation errors used as variables, 

and the manner in which the reflection coefficients are computed. In version I, 

summarized in Figure 9, the variables are a posteriori forms of prediction and 

estimation errors, and the reflection coefficients are computed indirectly. In version II, 

summarized in Figure 10, the variables are a priori forms of prediction and 

estimation errors, and the reflection coefficients are again computed indirectly. In 

version ill, summarized in Figure 11, the variables are (as in version II) a priori forms 

of prediction and estimation errors, but the reflection and regression coefficients are 

all computed directly. As a result of this direct computation, error feedback is 

introduced into the operation of the algorithm. 
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Pri:dicrions: 

For n = I. 2. 3 .... compute the various order updates in the following sequence: m = I,
' ... H. where .H is the final order of the least-squares lattice predictor:

A .. -,fnl = ,U,.-,(n - I) + b,.-,(n - l)f!-,(n)
y,._,(n - I) 

r ) A,.-,(n) 
1 In = - ---'---·"' 

� .. -1(n - 1)

fb_,.(n) = - ::!-,(n)

:i',.-,(n) 

. J,.(n) = f,.-,ln) + fJ.,.(n)b,._,(n - I)

b,.(nl = b.,- 1(n - 1) + r:_,.(nlf,.- 1(n)

= . - ) 
IA .. -1(n)l2;J-,.(nl = :J',._,(n - "" ( Wm-In - I)

. I A,.-,(n) 12
� .. (nl = dl,.-1(n - I) - m:. 

( );';,._, n 

I b,.-,(n - I) 12y,.(n - I) = y,.-1(n - 1) = -
'2,ll,._,(n _ l)

Fi/re ring: 
For n = 1, 2. 3 .... compute the various order updates in the following sequence: m = 0 .
1 ,  ... ,,';/ 

_ b,.(n) • 
p,.(n) - Ap,.ln - 1) + -(-) e,.(n)

K,.(n) = 
p,.(n)
31,.(nl 

'Ym n 

e,.�1(ni = e,.(n) - K!(n)b,.(n)

lnirialization 

1. To initialize the algorithm. at time n = 0 set
A .. -,l0l = 0
� .. -1\0) = o. o = small positive constant 
� .. -,(0) = ()
'Yo(0l = 1

2. At each instant n � 1. generate the various zeroth-order variables as follows:
fo(n) = bo(n) = u(n) 
S-o(nl = �ln) = A�o(n - I)+ lu(n)l2
'Yo(n - 1) = 1

3. For joint-process estimation, initialize the algorithm by setting at time n = 0
p,.(0) = 0

At each instant n � 1, generate the zeroth-order variable 
eo(n) = d(n)

Note: For prewindowed data. the input u(n) and desired response d(n) are both zero for n :s 0. 

Figure 9. Summary of the Recursive LSL Algorithm Using Aposteriori Estimation 
Error. 
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Predictions: 
Starting with n = 1, compute the various order updates in the following sequence m = 1. 
2 .... M. where Mis the final order of the least-squares predictor: 

71,.(n) = 11 .. -,(n) + f/.,.(n - l)if,,__1(n - 1) 

1/1,.(n) = i/1 .. -,(n - I) + r:. .. (n - 1)71 .. -,(n) 

A,._,(n) = AA.,-,(n - 1) + y.,-1(n - l)i/l .. - 1(n ...: 1)71!_,(n) 

S-.,_,(n) = A� .. -,(n - I)+ y,.-,(n - l)J 11 .. -,(nll: 

� .. -,(n) = A� .. -,(n - I)+ y.,-1(n)Ji/l .. -,(n)l2

r ( ) _ A .. -,(n) 
,.,., n - -

� .. -,(n - 1) 

r ( ) _ A!_,(n) 
b n - ----.,., 

� .. -,(n) 

() _ () 
'Y�-,(n)li/1 .. -,(n)l2 

y .. n - 'Ym-1 n -
D> ( ) :Jlm-1 n 

Filtering: 
For n = I. 2, 3, ... compute the various order updates in the following sequence m = 0, 
l, ... ,M: 

p,.(n) = Ap.,(n - I) + y.,(n)tJ, .. (n)a!(n) 

a,..,(n) = a.,(n) - K!(n - l)tJ, .. (n) 

9l,.(n) = A � .. (n) + y,.(nll iµ.,(n) 12 

( ) -
p .. (n)

K,. n -
� .. (n) 

lniriali:arion 

1. To initialize the algorithm, at time n = 0 set
A.,-,(0) = 0 
S-.. -,(0) = 8, l3 = small positive constant 
� .. -,(0) = l3 
r, ... (o) = rb_ .. (o) = o 
Yo(0) = I 

2. At each instant n 2: I, generate the zeroth-order variables:
11a(n) = tJ!o(n) = u (n) 
S-a(n) = �o(n) = A S-o(n - 1) + I u (n) 12 

Ya(n) = I 
3. For joint-process estimation. initialize the algorithm by setting at time n = 0

p.,(0) = 0 
At each instant n 2: I, generate the zeroth-order variable 

ao(n) = d(n) 

Note: For prewindowed data. the input u(n) and desired response d(n) are both zero for n :5: 0 

Figure 10. Summary of the Recursive LSL Algorithm Using Apriori Estimation 
Error. 
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Predictions: 
Foe n = l. 2. 3, ... , compute the various order updates in the following sequence m = I. 
2, .... M. where Mis the final order of the least-squares predictor: 

ry,.(n) = 1'7 .. -1(n) + fJ.,.(n - l)I/Jr1(n - I) 

it,,.(n) = tJ,,.-,(n - I) + r:_,.(n - 1)17,.-,(n) 

:f.,_,(n) = A� .. -1(n - ll � -y .. -1(n - Ol11 .. -1(n)l2 

?Jl.,_,(n) = A ?.ll.,-1(n - I) � y,._,(n - 1)11/1,.-,(n) 12 

r (n) = r (n _ I) _ y .. -,(n - 1)1/1,.-,(n - ll11!(n)
1· '" 1· "' 9A,.-1(n - I) 

r ( ) = r ( _ I) _ y,,,_,(n - 1)17,._,(n)tJ,!(n)
b, M n b,M n 

al: ( ) :'J'.,_, n 

( ) _ ( ) 
'Y�-1(nli 1/J,._,(n) 12 

y,. n - y,._, n - ,c, ( ) wJJ,..-1 n 

Filtering: 
For n = I, 2, 3, ... , compute the various order updates in the following sequence m = 0, 
l, ... ,M: 

a.,.1(n) = a.,(n) - K!(n - l)if,.,(n) 

� .. (n) = A 9A.,(n - I) + y,.(n)I tJ,.,(n) 12 

( ) 
_ 

( 
_ 

I) 
y,.(n)I/J,.(n)a!.1(n) K,. n - K,. n + 

,,, ( ;:,,., n) 

lnitiali:ation 
1. To initialize the algorithm, at time n = 0 set

fi,._,(Q) = o, o = small positive constant
?Jl.,_,(Q) = 0 
r, ... (o) = rb_,.(o) = o 
-Yo(O) = I f.. 

2. At each instant n 2: I, generare the zeroth-order variables:
11o(n) = 1/lo(n) = u(n) 
�o(n) = '?Ao(n) = A 2fo(n - I) + I u (n) 12 

Yo(n) = I 
3. For joint process estimation. at time n = 0 set

K,.(O) = 0 
At each instant n 2: I, generate the zeroth-order variable 

•ao(n) = d(n)

Note: For prewindowed data, the input u(n) and desired response d(n) are both _zero for n s 0. 

Figure 11. Summary of the Recursive LSL Algorithm Using Apriori Estimation Error 
With Error Feedback. 
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In theory, assuming infinite precision, all three versions of the algorithms are 

mathematically equivalent. However, in practical situation involving the use of finite­

precision arithmetic, the three versions behave differently. In particular, version I and 

II suffer from a numerical instability problem. On the other hand, version III offers 

robust numerical properties due to the stabilizing influence of the error feedback built 

into the computation of the forward and backward reflection coefficients. All three 

versions of LSL algorithm have linear computational complexities just the same as 

LMS algorithm. An important property of all recursive LSL algorithms is their 

modular structure. The implication of this property is that the algorithm structure is 

linearly scalable. In particular, the prediction order can be readily increased without 

the need to recalculate all previous values. This property is particularly useful when 

there is no priori knowledge as to what the final value of the prediction order should 

be. Another implication of the modular structure of recursive LSL algorithm is that 

they lend themselves to the use of very large scale integration (VLSI) for their 

hardware implementation. The use of this sophisticated technology can only be 

justified if the application of interest calls for the use of the VLSI chip in large 

numbers. 
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CHAPTER IV 

SIMULATION ENVIROMENT AND RESULTS 

4.1 Simulation Setup 

This chapter presents the simulation set up of adaptive channel equalization 

and the results of computer simulation of various channel equalization experiments 

based on the adaptive algorithms discussed in Chapter III of this thesis. Figure 12 

shows the block diagram of the setup used to carry out the computer simulations. 

Random-signal a 

Generator ( l) Channel 

Delay 

Random signal 

Generator (2) 

Adaptive 

equalizer 

Figure 12. Block Diagram of the Adaptive Equalizer Simulation Setup. 
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4.2 Channel Impulse Response 

The impulse response of a typical band-limited channel is described by the 

raised cosine: 

{ 1 2n 
h
n

= 
2

[I+cos(W(n-2)], n=l,2,3

0, otherwise

where the parameter W controls the amount of amplitude distortion produced by the 

channel, with the distortion increasing with W. equivalently, parameter W controls the 

condition number of the correlation matrix of the tap inputs in the equalizer, with the 

condition number or equivalently eigenvalue spread x(R), increasing with W. 

4.3 Signal Generation 

Random number generator 1 provides the test signal, {an}, used for probing 

the channel. The random sequence { a(n)} applied to the channel input is in polar 

form, with a(n)= ±1, so the sequence has zero mean. Random generator 2 serves as 

the source of additive white noise { v (n)} that corrupts the channel output. These two 

random number generators are independent of each other. Random number generator 

1, after a suitable delay, also supplies the desired response applied to the adaptive 

equalizer. 
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4.4 Equalizer Type 

The FIR adaptive equalizer filter has been chosen to have M =11 taps. Since 

the channel has an impulse response {h11} that is symmetric about time n = 2, it 

follows that the optimum tap wegiths { w} of the equalizer are likewise symetric about 

time n = 5. Accordingly, the channel input {a(n)} is delayed by 2+5 =7 samples to 

provide the desired response for the equalizer. For LMS, Normalized LMS, and RLS 

the adaptive filter shown in Fig. 4.1 is the Transversal type and for RLSL it is a 

Lattice type filter. 

4.5 Correlation Matrix of the Equalizer Input 

The first tap input to the equalizer at time n is given by 

u(n) = Lh
k
a(n -k) + v(n) 

All the parameters in the above equation are real valued. Hence, the

correlation matrix R, of the 11 tap inputs of the equalizer, u (n ), U (n - I) .. · u (n - I 0), 

is a symmetric 11-by-11 matrix. Also, since h", has nonzero values only for n=l, 2, 

3, and noise process v (n) is white noise with zero mean and variance a.2 
, the 

correlation matrix is quintdiagonal. That is, the only nonzero elements of R are on the 

main diagonal and the four diagonals directly above and below it. 
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r(O) r(l) r(2) 0 0 

r(l) r(O) r(l) r(2) 0 

r(2) r(l) r(O) r(l) 0 

R = 0 r(2) r(l) r(O) 0 

0 0 0 0 

where r(O) = h,2 + h} + h; + a}

r(l) = h
1
h

2 
+ h

2
h

3 

r(2)=h,h
3 

r(O) 

Tables 1 and 2 show the eigenvalue spread, X(R) of the correlation matrix 

R, for W=2.9, W=3.I, W=3.3 and W=3.5 and signal to noise ratios of 30 dB 

(cr/=0.001) and 20 dB (cr/=0.001) respectively, where a
v 

is the vaiance of the input 

noise to the channel. The eigenvalue spread or the condition number of a matrix is the 

largest eigenvalue divided by the smallest eigenvalue of the matrix. As shown in 

Tables 1 and 2, as W increase the eigenvalue spread of the correlation matrix of the 

input to the equalizer also increases. Higher eigenvalue spreads of correlation matrix, 

indicate that the input to the equalizer is ill conditioned. It is also noted that the lower 

signal to noise ratios, reduce the eigenvalue spread of the correlation matrix, thus 

improving its condition. 
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Table 1 

Summary of the Correlation Matrix 
Parameters for S/N=30 dB ( cr/=0.001) 

w 2.9 3.1 3.3 3.5 

r(0) 1.0973 1.1576 1.2274 1.3022 

r(l) 0.4388 0.5596 0.6729 0.7775 

r(2) 0.0481 0.0783 0.1132 0.1511 

Amin 0.3339 0.2136 0.1256 0.0656 

Amax 2.0382 2.3761 2.7263 3.0707 

X(R) 6.0782 11.1238 21.7132 46.8216 

Table 2 

Summary of the Correlation Matrix 
Parameters for S/N=30 dB ( cr/=0.001) 

w 2.9 3.1 3.3 3.5 

r(0) 1.1063 1.1666 1.2364 1.3122 

r(l) 0.4388 0.5596 0.6729 0.7775 

r(2) 0.0481 0.0783 0.1132 0.1511 

Amin 0.3429 0.2226 0.1346 0.0746 

Amax 2.0385 2.3851 2.7353 3.0797 

X(R) 5.7145 10.7145 20.3278 41.2923 



4.6 Equalization Experiments 

The adaptive algorithms presented in chapter III are coded using MATLAB 

version 5.2, to simulate the adaptive channel equalizer shown in Figure 12. The 

random signals are generated by the two built in random number generators of 

Matlab. In the following sections of this chapter we shall present the simulation 

results of LMS, Normalized LMS, RLS and RLSL algorithms summarized in Figures 

6, 7, 8, and 11 of chapter III. 

4.6.1 Least Mean Square (LMS) Equalizer 

Experiment 1: Effect of Eigenvalue Spread. For each eigenvalue spread, an 

approximation to the ensemble-averaged learning curve of the adaptive transversal 

equalizer is obtained by averaging the instantaneous squared error versus n over 200 

independent trials. The results of this computation are shown in Figure 13. In this 

Figure, the ensemble averaged squared error is plotted versus number of iteration. 

These curves are also known as learning curves of the adaptive process. The step size 

parameter µ=0.075 is assumed for this experiment. The input noise to the channel is 

assumed to be white noise with zero mean and variance of cr/=0.001 or equivalently 

the signal to noise ratio equal to 30 dB. We see from Figure 13 that increasing W or 

the condition number of the correlation matrix of the tap input to the equalizer has the 

effect of slowing down the rate of convergence of the adaptive equalizer and also, 

increases the steady-state value of the averaged squared error. For example, when 

W=2.9, it approximately takes 135 iterations for the adaptive equalizer 
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10 �---�---�---��---�---� 

STEP SIZE=0.075

-3 10 '--___ _._ ___ ___._ ___ ___.'--___ .....___ ___ _, 

W=3.5 

W=3.3 

W=3.1 

W=2..9 

100 200 400 

N..rrber of iteratiors, n 

Figure 13. Leaming Curve of LMS Equalizer, Experiment 1. 

to converge in the mean square, and the averaged squared error after 500 iterations 

approximately equals 0.003. On the other hand when W=3.3 (i.e., the equalizer input 

is ill conditioned), the equalizer requires nearly 220 iterations to converge in the mean 

square, and resulting averaged squared error (after 500 iterations) approximately 

equals 0.028. 

52 



Experiment 2: Effect of Signal to Noise Ratio. In experiment 1, the input 

noise to the channel was assumed to be white noise with zero mean and variance of 

cr}=0.001 or equivalently, signal to noise ratio of 30 dB. Here we try cr}=0.01 or 

equivalently signal to noise ratio of 20 dB. As we see in Figure 14, the higher input 

noise to the channel has the effect of decreasing the rate of convergence of the 

adaptive LMS equalizer, as compared with the results of experiment 1. However, the 

steady-state value of the averaged squared error increases sharply. This would be well 

expected in the presence of low signal to noise ratio. 

Experiment 3: Effect of Step Size Parameter. For this part of the experiment, 

the learning curves of the channel equalizer are plotted with three different step size 

parameters for W=2.9, W=3.l and W=3.3. The results of computations are shown in 

Figures 15, 16, and 17. As we see in these figures, the rate of convergence of LMS 

algorithm is greatly affected by the step size parameter. For a very small step size 

µ=0.0075, the adaptation does not converge even after 1500 iterations. For µ=0.075, 

the algorithm converges considerably faster than for µ=0.025, while the final steady 

state value of averaged squared error of the algorithm is lower for µ=0.025 than for 

µ=0.075. We see in Figure 16, for a relatively ill conditioned correlation matrix of 

the tap input to the equalizer, the choice over the step size parameter of LMS 

algorithm is critical and requires careful adjustment. The overall performance of LMS 

equalizer is seen to be best for the step size parameter, µ=0.075, for the given 

conditions. 
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Figure 14. Learning Curve of LMS Eequalizer, Experiment 2. 
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10 ----------------

10 ,__ _____ __,_ ______ ..__ _____ ___, 
0 � 1� 1� 

N.nta d itaaicrs, n 

Figure 15. Learning Curve of LMS Equalizer, Experiment 3,W=2.9. 
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Nnhrdim� n 

Figure 16. Leaming Curve of LMS Equalizer, Experiment 3, W=3.l. 
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Figure 17. Learning Curve of LMS Equalizer, Experiment 3, W=3.3. 

4.6.2 Normalized LMS Equalizer (NLMS) 

1SX> 

Experiment 4: Effect of time varying step size parameter. In the NLMS the 

fixed step size parameter for updating the filter coefficients has been replaced by a 

time varying parameter, as shown in Table 2. In Figure 18 the learning curves of 

57 



ensemble averaged squared errors of this algorithm has been plotted versus number of 

iteration, n, for W=2.9, W=3.l, W=3.3 and W=3.5. Comparing Figure 13 with Figure 

16, we see that the rate of convergence of this equalizer for a relatively ill conditioned 

input to the equalizer, has been improved by the choice of a time varying step size 

parameter. In general the adaptation noise, final steady state averaged squared error 

10 �---�---�---�---�---

-3

10 �---�--------��-------�

W=3.5 

W=3.3 

W==3.1 

W=2..9 

0 100 200 300 400 

1\1.Jrber of iteratiors, n 

Figure 18. Learning Curve of Normalized LMS Equalizer, Experiment 4. 
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and the rate of convergence of the NLMS equalizers improve with introducing a time 

varying step size parameter in the equalizer algorithm. 

Experiment 5: Effect of Signal to Noise Ratio. Experiment 4 was carried out 

with a white noise input to the channel having cr}=0.001. As we see in Figure 19, by 

decreasing the signal to noise ratio, the convergence of the algorithm speeds up, 

while, the final steady state averaged squared error of the adaptation process 

increases. 

4.6.3 Recursive Least Square (RLS) Equalizer 

Experiment 6: Effect of Eigenvalue Spread. For each eigenvalue spread, an 

approximation to the ensemble-averaged learning curve of the adaptive transversal 

equalizer is obtained by averaging the instantaneous squared error versus n over 200 

independent trials. In this experiment the signal to noise ratio of 30 dB(cr}=0.001) is 

assumed. The forgetting factor, "A, which should take values less than or equal to unity 

is assumed to be equal to 1 in this experiment, meaning that the equalizer has an 

infinite memory. The result of this experiment is shown in Figure 20. As we see in 

Figure 20, the rate of convergence of RLS equalizer is almost unaffected by the 

eigenvalue spread of the correlation matrix of the input to the equalizer and is at least 

three to five times faster than LMS and NLMS equalizers. The adaptation process of 

RLS equalizer is less noisy compared with LMS equalizer and its final steady state 

averaged squared error is considerably lower than LMS and NLMS equalizers for 

severely corrupted input to the equalizer. 
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Figure 19. Leaming Curve of Normalized LMS Equalizer, Experiment 5. 
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Figure 20. Learning Curve of RLS Equalizer, Experiment 6. 

Experiment 7: Effect of Signal to Noise Ratio. In this experiment all the 

parameters are the same as the experiment 6 except that the signal to noise ratio is 

reduced to 20 dB (cr}=0.01). The results of this experiment are shown in Figure 21. 

As we see in this Figure, The reduced signal to noise ratio dose not affect the rate of 

convergence of the algorithm. This is mainly because the RLS equalizer in 

experiment 6 was seen to be insensitive to the eigenvalue spread of the correlation 
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matrix. However, the steady state averaged squared error increases due to the reduced 

signal to noise ratio. 

10 ,-------.------..------�------, 

0 

i10 

l 
I _, 
r W=3.5 

W=3.3 

W=3.1 

-2 W-:!2..9 10 '------�----�'------�----� 
0 100 1� 200 

N.nber of iteratiors, n 

Figure 21. Leaming Curve of RLS Equalizer, Experiment 7. 

Experiment 8: Effect of the Forgetting Factor, A. It was pointed out in 

Chapter III that; A represents the memory of the algorithm and it takes values less 

than or equal to unity. In this experiment, A is set equal to 0.8, while all other 
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parameters remam the same as in experiment 6. We see in Figure 22, rate of 

convergence of the algorithm decreases to about half the rate of convergence for A=l, 

while the steady state averaged squared error increases by a factor of two to three 

We also see that the adaptation noise of the algorithm increases by reducing the A. 

The forgetting factor A, plays an important role in the tracking performance of least 

square equalizers, just in the same way as the step size parameter in the least mean 

square equalizers. Depending on a specific case, a trade off may be made between the 

rate of convergence and the steady state averaged squared error of the algorithm. 

4.6.4 Recursive LSL Equalizer (RLSL) 

Experiment 9: Effect of eigerivalue spread. For each eigenvalue spread, an 

approximation to the ensemble-averaged learning curve of the adaptive transversal 

equalizer is obtained by averaging the instantaneous squared error versus n over 200 

independent trials. In this experiment the signal to noise ratio of 30 dB(o-/=0.001) is 

assumed. The forgetting factor, A, which should take values less than or equal to unity 

is assumed to be equal to 1 in this experiment, meaning that the equalizer has an 

infinite memory. The result of this experiment is shown in Figure 23. As we see in 

Figure 23, the rate of convergence of RLSL equalizers is insensitive to the eigenvalue 

spread of the correlation matrix of the input to the equalizer. In many ways RLSL 

equalizers perform in much the same way as the RLS equalizers. However, the 

computational complexity of RLSL equalizers is a linear function of M, the order of 

the equalizer, whereas for RLS equalizer it is a quadratic function of M. The effect of 
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Figure 22. Leaming Curve of RLS Equalizer, Experiment 8. 

signal to noise ratio and the forgetting factor A, in RLSL equalizers is the same as that 

in the RLS equalizer. The results of setting crv 

2
=0.01 and A=0.8 in RLSL equalizer are 

shown in Figures 24 and 25 respectively. As we notice, the lower forgetting factor A, 

has the effect of faster convergence in the RLSL equalizer. However, the final steady 

state averaged squared error increases considerably. 
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Figure 23. Learning Curve of RLSL Equalizer, Experiment 9, A=l, a,
2 =.001. 
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Figure 24. Leaming Curve of RLSL Equalizer, Experiment 9, A=l, a} =.01. 
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Figure 25. Learning Curve of RLSL Equalizer, Experiment 9, A=0.8, a} =.001. 



CHAPTER V 

CONCLUSIONS COMMENTS 

This chapter presents conclusions and comments on the simulation results of 

the linear adaptive channel equalizers, in accordance with the performance factors of 

adaptive algorithms presented in section 5 of Chapter II. 

5.1 Rate of Convergence 

As we see in Figures 26, 27, 28, and 29, the RLS and RLSL equalizers 

converge at least three to five times faster than LMS and Normalized LMS 

algorithms. RLS and RLSL algorithms are seen to be insensitive to the eigenvalue 

spread x(R) , of the correlation matrix of the equalizer input. The LMS equalizers, 

on the other hand, are quite sensitive to x(R) and they hardly converge when the 

correlation matrix is ill conditioned, W �3.3. The convergence rate of the LMS 

equalizer is mainly determined by the value of the fixed step size parameter in 

updating the equalizer coefficients. By introducing a time varying step size in the 

LMS equalizer, the resulting Normalized LMS equalizer converges somewhat faster 

than LMS equalizer and becomes less sensitive to the condition number of the 

correlation matrix. However, a choice over different channel equalizers is not solely 

governed by their rate of convergence, but other crucial factors such as computational 
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complexity, misadjustment and tracking capabilities of the equalizers must also be 

considered. 

10 .......... ----.------,-------.------�-----, 
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Figure 26. Leaming Curves of LMS, NLMS, RLS, and RLSL Equalizers for 
W=2.9. 
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Figure 27. Learning Curves of LMS, NLMS, RLS, and RLSL Equalizers for 
W=3.1. 
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Figure 28. Leaming Curves of LMS, NLMS, RLS, and RLSL Equalizers for W=3.3. 
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Figure 29. Learning Curves of LMS, NLMS, RLS, and RLSL Equalizers for W=3.5. 



5.2 Misadjustment 

For an algorithm of interest, this parameter provides a quantitative measure 

of the amount by which the steady state value of the averaged square error of adaptive 

equalizer, deviates from the minimum squared error-that is produced by the Wiener 

filter. In Table 3, the steady state averaged squared errors of LMS, NLMS, RLS, and 

RLSL adaptive equalizers are compared with that obtained by the Wiener filter. The 

steady state averaged squared error of LMS equalizer is affected by the fixed step size 

parameter, µ, and that of RLS and RLSL equalizers depend to some degree on the 

forgetting factor A. Here µ is assumed to be 0.075, and A equal to unity. The final 

steady state averaged squared errors are measured after 250 iterations of the adaptive 

equalization process. The LMS and NLMS equalizers do not converge for up to 250 

iteration, when W =3.5, therefore their misadjusment is not included in Table 3. 

Table 3 

Misadjustment of Adaptive Equalizers 

X(R) Wiener filter LMS NLMS RLS RLSL 

6.0782 0.0013755 135% 157% 14% 14% 

11.1238 0.0017524 211 % 194% 17% 17% 

21.7132 0.0024739 312% 92% 4% 3% 

46.8216 0.0041559 - - 11 % 9.5% 
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5.3 Tracking 

At first glance, one might conclude that since the RLS and RLSL adaptive 

equalizers have a faster rate of convergence than the LMS and NLMS adaptive 

equalizers in the case of a stationary environment; therefore, it will track a 

nonstationary environment better than the LMS and NLMS equalizers. However, 

such a conclusion is not justified because the tracking performance of an adaptive 

filtering algorithm is influenced not only by the rate of convergence but also by 

fluctuations in the steady state performance of the algorithm due to algorithm noise. 

With both algorithms tuned to minimize the misadjustment at the equalizer output by 

a proper optimization of their forgetting factor A for RLS and RLSL equalizers and 

the step size parameter µ for the LMS equalizer, the LMS algorithm is found to have 

a superior tracking performance compared to RLS and RLSL equalizers [2,7,8,14]. 

5.4 Robustness 

Robustness refers to the ability of the adaptive equalizer to operate 

satisfactorily with ill-conditioned input data. It has been shown throughout the 

adaptive equalization experiments and we also see in Figures 26 through 29, that the 

RLS and RLSL equalizers are insensitive to the eigenvalue spread of the correlation 

matrix of the equalizer input, therefore operate quite satisfactorily almost regardless 

of the channel input condition. On the contrary, the LMS equalizer is sensitive to the 

channel input condition and hardly converges when eigenvalue spread of the 

underlying correlation matrix is large. The Normalized LMS equalizer, however, is 
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relatively robust for large eigenvalue spread of correlation matrix, though, it 

converges much slower than RLS and RLSL equalizers. 

5.5 Computational Complexity 

At each iteration the number of multiplications, divisions, and 

additions/subtractions required to make one complete iteration of LMS, RLS and 

RLSL algorithms are found to be function of the order of the equalizer filter: 

LMS 

NLMS 

RLS 

RLSL 

O(M) 

O(M) 

O(M 
2
) 

O(M) 

Linear function of M

Linear functiom of M

Quadratic function of M

Linear function of M

5.6 Comments 

RLSL equalizer has a low convergence rate, low computational complexity, 

and low misadjusment percentage compared with the other equalizers and therefore 

is very suitable for applications where these three factors combined are of utmost 

importance. However, this type of equalizer has a relatively complicated structure 

and is more expensive in terms of its implementation as compared to the LMS and 

RLS equalizers. The RLS equalizer has a high computational complexity and despite 

its fast convergence, and low misadjustment, can hardly be justified for channel 

equalization where the order of the the equalizer filter has to be relatively high. 
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However in wireless communications where, the number of smeared symbols are 

about 10, the equalizer will be of an order of 10, therefore the high computational 

complexity of the RLS algorithm may be compensated with its fast convergence rate. 

Hence, making RLS algorithm quite suitable as a choice of equalizer. The LMS and 

Normalized LMS equalizers have low computational complexities and have simple 

structures, that have made them quite popular thus far, despite their sensitivity to the 

channel input condition and their relatively high misadjutment. 

With increasing availability of low cost, and highly efficient DSP chips in the 

market, Recursive Least Square Lattice (RLSL) equalizer may be more frequently 

used in channel equalization applications because of its superiority over other 

adaptive equalizers. The modular structure of this type of equalizer in particular, 

enhances the flexibility of the equalizer in terms of future modifications in order to 

meet the new system requirements. 
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