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DEVELOPMENT OF A KOHONEN NEURAL NETWORK APPLICATION 
AS A PATTERN RECOGNITION SYSTEM 

FOR AN ELECTRONIC NOSE 

Lori Lynn Evesque, M.S. 

Western Michigan University, 2003 

Electronic noses are used to identify and characterize unknown odors in 

industry. Chemometrics and neural network algorithms are used as pattern 

recognition systems for these devices. Experimentation with Kohonen clustering as 

the pattern recognition system for electronic noses was not noted prior to 1997. 

[BEG] This thesis investigated the use of a Kohonen neural network algorithm as a 

clustering algorithm for electronic nose data using the chemometrics algorithms built 

into the electronic nose as a performance standard. A secondary aim was to improve 

the clustering and identification capabilities of the Kohonen network. 

The unsupervised Kohonen network was not able to cluster the electronic nose 

data. Duplicating the data pre-processing performed by the electronic nose, fine­

tuning the visualization of clustering data, and varying the learning and weight update 

rates offered minor improvements but did not allow for accurate identification of 

samples. Significant improvements were obtained when the network was changed to 

a semi-supervised network by incorporating average sensor values of the known 

odorant samples into the network weights. This improved the clustering effectiveness 

of the network to 60-70% compared to a 100% effectiveness of the chemometrics 

system built into the nose. Several avenues were identified for further study to 

improve the effectiveness of the neural network for use with the electronic nose. 
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CHAPTER I 

INTRODUCTION 

The Limitations of the Biological Nose 

This thesis investigates the use of an artificial, electronically based nose to 

supplement and improve upon the capabilities of the human nose. The effectiveness of 

two different approaches to a pattern recognition problem using electronic nose sensor 

data is compared. Specifically this project develops an artificial neural network clustering 

system and compares its effectiveness to the "chemometric" methods built into the 

commercially available nose. Chemometrics is defined as the use of mathematical methods 

to extract important but often hidden information from data. [BEG] 

Human beings have been using their senses in work environments for thousands of 

years. All five senses are used to different degrees in varying occupational areas. For 

most of the senses, human beings have developed enhancements to aid in the capabilities 

of the senses. Eye glasses, microscopes, binoculars, etc. all increase the capabilities of the 

eyes to see objects beyond the normal range of human sight and to correct deficiencies in 

sight. Many other devices have been developed as aids to sight in places where conditions 

are difficult or dangerous for humans to work. These include cameras and infrared 

sensors, which can be used in high and low temperature, high pressure, or other extreme 

environments. Hearing aids, both to improve deficient hearing and to "listen" beyond the 

scope of the human ear are also widely used. Equipment is available in industries to "feel" 

and "look" for faults in manufactured products removing the reliance on human hands and 

eyes. Senses that have not been elevated much beyond the capabilities of humans are 
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those of taste and smell. 

While there are a few cases where humans utilize the superior sense of smell of 

certain animals, particularly dogs, it is noteworthy that applications in which taste and 

smell are important usually rely on human beings. This is especially true in the food and 

perfume industries, which utilize both highly trained individuals and average ability people 

in the development and improvement of perfumes and food products. 

Unfortunately, the human nose is limited for many of these tasks. Human beings 

are predominantly visual mammals and do not use smell as a dominant sense. Therefore, 

the sense of smell is not as highly developed as it is in other animals, such as dogs. With 

many people, it can almost be said to be dormant or vestigial. It is possible for some 

people to be trained to better discriminate between different odorant molecules but such 

training is time consuming, expensive, and not all people can learn to develop this innate 

ability. The salaries paid to qualified "smellers" in the perfume industry (who can easily 

make six-figure salaries) amply support this claim. 

There are other disadvantages to using humans where a sense of smell is 

important. The human nose tires easily, limiting the duration a person can accurately 

discriminate between smells. It is also possible for a person's sense of smell to be 

temporarily blocked after smelling very strong or noxious odors ( such as when a person 

smells a skunk) or from exposure to odors for long periods, inducing anosmia or smell 

blindness. [Si] Reliance on human sensory panels, widely used in the food, perfume, and 

flavor industries, have other disadvantages such as a high degree of subjectivity. This 

results in poor reproducibility due to varying degrees of the health of panel members, 
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differences in the time of day, the effect of previous odors analyzed by panel members, 

time requirements for panel testing and high costs. There are also many instances where 

human sensory panels cannot be used due to the presence of hazardous odors, 

requirements for continuous operation and sensing needs in remote or difficult locations. 

There are myriad motivations for developing an "electronic nose". 

The Electronic Nose 

"Electronic noses" are used in a wide variety of industries and settings to 

characterize and identify individual odor molecules and complex mixtures of odors. 

Bartlett et al. (1997) define an electric nose in Food Technology magazine as "an array of 

chemical sensors, where each sensor has only partial specificity to a wide range of odorant 

molecules, coupled with a suitable pattern recognition system." The operation of an 

"electronic nose" is based on the way the biological mammalian nose works. In a 

mammalian nose, there are many chemical receptors known as olfactory receptors which, 

when combined with signal preprocessing in the olfactory bulb and pattern recognition in 

the olfactory cortex of the brain, make it possible for the mammal to smell and recognize a 

particular scent or odor. No single receptor identifies a specific odor. It is the collective 

effect of the odorant on all or many of the receptors that allows specific identification. [K] 

The design is similar in the electronic nose. Equivalent to the olfactory receptors 

in an electronic nose are chemical sensors designed to react to odorant molecules. These 

sensors can be made of a variety of materials including organic, conducting, or non­

conducting polymers, metal-oxide semi-conductors, surface acoustic wave devices, liquid 

crystal sensors, fiber optic sensors and others. [K] The sensors react to the odorant 
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molecules producing a measurable change in the sensor. Each sensor is designed to be 

slightly different from every other sensor in the unit. This results in a unique and 

characteristic "fingerprint" for each individual odor. [S-S] After the sensors measure the 

"fingerprint" of the odor, the pattern recognition phase can be used to identify the odor. 

There are several different approaches used for the pattern recognition systems in 

electronic noses. These include statistical methods, often called "chemometric" methods, 

artificial neural networks (ANNs or NNs), and neuromorphic models. These approaches 

can be used singly or in combination to improve the robustness of the pattern recognition 

over those from individual techniques. [K] 

Several chemometrics methods are used in conjunction with electronic noses to 

identify and classify odors. These methods include principle components analysis (PCA), 

least partial squares, discriminant analysis, discriminant factorial analysis, and cluster 

analysis. [K] Both supervised and unsupervised algorithms are used for pattern 

recognition. PCA is an unsupervised technique that is often used to reduce the 

dimensionality of a system and identify outliers. Supervised learning techniques such as 

K-nearest neighbor, K-means, and Canonical Discriminant Analysis are used for building

an identification model and predicting unknowns. [L] 

Electronic noses incorporating ANNs have been demonstrated in numerous 

applications. [K], [HKKK], [SHG], [Sa] In many of these applications, the number of 

detectable chemicals is generally greater than the number of unique sensors and less 

selective sensors can be used. [K] Some of the ANN algorithms used in conjunction with 

electronic noses include supervised algorithms such as back-propagation feed-forward 
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networks, learning vector quantizers, and fuzzy-ART maps. In some cases, fuzzy-neural 

networks produced considerably better performance than back-propagation networks. 

[BEG] Unsupervised ANNs include self-organizing maps (SOMs) and adaptive resonance 

theory networks. [K] Some unsupervised learning algorithms mimic the way the human 

brain works, as there is no separate learning stage. As of 1997, unsupervised learning 

neural network algorithms had yet to be applied in conjunction with an artificial nose. 

[BEG] 

Neuromorphic approaches are based on building plausible models of olfaction 

based on biology and implementing them in electronics. [K] These approaches are not as 

well developed as other approaches and are not investigated in this paper. 

The electronic nose used in this investigation was the Cyranose 32or1.1

manufactured by Cyranose Sciences of Pasadena, CA The Cyranose electronic nose was 

originally released in early 2000 and was chosen because of its practicality for use in the 

food and flavor industry. The unit was the first nose on the market to be portable enough 

for field use and economically feasible for even smaller companies to purchase. The 

system includes the sensing unit and associated pattern recognition software to be installed 

on a PC. The hand-held unit is lightweight, battery operated, and suitable for a variety of 

environments. There is an easily readable LED display in which instructions can be 

entered, samples taken, etc. 
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Goals of this Thesis 

The primary aim of this thesis is to develop an unsupervised ANN to cluster 

odorant data for discrimination between different samples. The pattern recognition or 

clustering effectiveness of the ANN will be compared to the best capabilities of the 

Cyranose 32QTM electronic nose. Pattern recognition consists of two phases: (1) training 

and clustering using the sensor data and (2) identification of unknowns. Only the first 

phase will be compared in this investigation. The data used for both pattern recognition 

methods was collected using the Cyranose unit and odorant chemicals provided by GLCC 

Co., a Michigan flavor house. A secondary aim was to investigate strategies to improve 

on the pattern recognition capabilities of the neural network. The neural network 

achieved partial success in clustering of the chemicals compared to the built-in 

chemometrics methods used by the Cyranose unit. This thesis is organized into the 

following chapters: 

Chapter II presents basic background information about the three main subjects 

covered in the thesis. These include artificial neural networks, chemometrics pattern 

recognition methods, and the Cyranose 320™ electronic nose. The purpose is to give the 

reader enough knowledge about unfamiliar subjects and terminology to follow the 

discussions. 

Chapter III describes the collection of data samples using the Cyranose 320™

electronic nose unit and training of the electronic nose using the build-in chemometrics 
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pattern recognition algorithms. Training consists of the development of a working pattern 

recognition method for successfully recognizing all of the chemical odorant samples used 

in the experiments. 

Chapter IV introduces the basic framework of the experimental methodology used 

in the development of the project's neural network pattern recognition system using a 

known neural network software library. Data pre-processing and training details for the 

neural network are also included. This neural network evolved gradually as the 

experiments progressed with each experiment determining the next steps to be taken. 

Chapter V is a narrative of the experiments indicating how and why each step was 

taken. The results of each step or experiment are discussed and these results helped to 

determine other possibilities for improving the pattern recognition abilities of the neural 

network system. 

Chapter VI is a discussion and analysis of the results and discussion of the clustering 

capability of the NN compared to the chemometric methods used by the nose. Possible 

directions for future research in this area are also identified. 
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CHAPTER II 

BACKGROUND 

Artificial Neural Networks 

The ability of computers to perform complex, sequential, logic-based information 

processing is immense. Computers have the ability to perform computations once 

considered beyond the scope of human endeavor. However, there has long been interest 

in other information processing systems, including artificial neural networks have certain 

performance characteristics m common with biological neural networks. Neural 

networks are characterized by (a) the pattern of connections between the neurons 

(architecture), (2) a method of determining weights on these connections (training or 

learning algorithm), and (3) a function applied to the net input to determine its output 

signal (the activation function), (often but not always present). 

Warren McCulloch and Walter Pitts are generally recognized as the developers of 

the first neural network in 1943. They combined simple neurons into a network that had 

increased computational power. The weights on their simple network were set to perform 

simple logic functions. Combinations of these neurons could be arranged to perform 

more complex logic functions. One feature of McCulloch-Pitts networks that is used in 

many artificial neurons today is the idea of a threshold. If the net input to the neuron is 

greater than the threshold, the unit fire$, or turns on; otherwise, it remains in the 'off' 

state. [F] 

Over the next 30 years, investigations into neural networks continued with 
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researchers including Hebb (Hebb learning), Rosenblatt (Perceptrons ), Widrow & Hoff 

(Adeline), Kohonen (Kohonen self-organizing networks), and others developing more 

complex and varied neural networks. In the late 1960's enthusiasm about NNs waned 

after clear demonstration of the limitations of simple single layer NNs. [MP] As methods 

for propagating errors from the output units back to the hidden layers and improved 

methods for training networks gained wide-spread publicity, research on NNs gradually 

picked up speed. Their complexity and performance improved with more powerful 

learning algorithms, incorporation of bias components, more complex activation rules, 

multiple layers, and other advances. 

Methods for adjusting weights and training a network can be characterized as 

either supervised or unsupervised. In supervised training algorithms, training begins with 

the presentation of a sequence of training vectors to the network, each with an associated 

target output vector. The propagation of the training vector through the network results in 

a certain output. The difference between the output and the target determines how the 

weights are changed in the network as the training proceeds. In other words, supervised 

training assumes some amount of a priori knowledge about the system. For example, in 

an alphabet recognition system a particular input vector would refer to a particular letter. 

The amount the link weights need to be adjusted will be determined by the difference 

between the calculated output and the target output. Most supervised learning algorithms 

also incorporate an activation level for each neuron that is a function of the inputs it has 

received. The activation is sent as a signal to other neurons in multi-layer networks. 

Unsupervised learning algorithms do not require a priori knowledge of the system but 
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work to group similar input vectors together. No target vectors are specified. The 

network modifies the weights so that the most similar input vectors are assigned to the 

same output unit. Examples of supervised algorithms include back propagation, learning 

vector quantization and counter propagation. Unsupervised learning algorithms include 

Kohonen self-organizing maps and adaptive resonance theory. 

Neural networks are currently being utilized in many areas. Automatic 

recognition of handwritten characters or spoken speech recognition and production 

applications is increasingly common. General-purpose multi-layer neural nets are being 

used for recognition of zip codes. [F] Easily available software makes it possible to 

speak into a computer and have the spoken words typed into a word-processing program. 

Applications for neural nets abound in the medical industry. An application called 

"Instant Physician" [F] is a neural net designed to organize large numbers of medical 

records and be able to give a "best" diagnosis and treatment for a new set of symptoms. 

In business, applications include insurance underwriting networks, mortgage application 

processing networks, and others. 

The basic architecture of a simple neural network can be seen in figure 1. A 

common notation for describing neural networks is indicated below the figure. This 

notation, where applicable, will be used here. 
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Figure 1: Single Layer Neural Network 

Neural Network Notation 

Xi Input unit, number of units equals n 

Yi Output unit, number of output units equals m

wii Weight on connection from unit Xi to unit Yj 

L\wii Change in weights before and after weight updating 

a Leaming rate: the rate to control the amount of weight adjustment at each step in 

training. 

/{x) Activation function 

The neural network algorithm used for clustering and pattern recognition in the 

application investigated in this paper is the Kohonen "self-organizing" network, an 

unsupervised neural network algorithm. Self-organizing maps construct a topological 

map consisting of clusters of similar data points from the presented data. Interestingly, 

this property has been observed in the brain but is not found in other artificial neural 

networks. [F] The architecture of the Kohonen self-organizing map is essentially the 
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same as that shown in figure 1. The 'm' output cluster units are generally arranged in 

one, two, or three-dimensional arrays depending on the purpose of network. For 

example, a character recognition network could be arranged as a two-dimensional output 

array (figure 2). 

• # •

• • • • • # •

• • • • • # •

• • • • • # •

• • • • . # •

• • • • • # • 

. # . # • 

. # . # . 

. . # # # 

Figure 2: Two Dimensional Output Cluster Array 

During the 'self-organization' or training process for a Kohonen network, the 

training input vectors are sequentially presented to the network. The difference between 

the input vector and the weights of the cluster units are calculated as in the following 

equation. 

[2.1] D(j) = L (wy-x;)2 

The cluster unit with the minimum difference, whose weight vector most closely 

matches the input pattern, is chosen as the ''winner". The weights to the winning unit and 

neighboring units are then updated. The updating is calculated using the following 

equation. 

[2.2] wu(new) = wu(old) + a[xi-wu(old)] 
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This weight updating preserves and strengthens the topology that assigned the 

input vector the specific winning cluster. Typically, the winning cluster weights are 

changed by the greatest amount, with neighboring clusters being changed to a gradually 

lesser degree as the distance from the winner increases. Input vectors continue to be 

presented to the network until some pre-determined stopping condition is reached. In the 

fully trained network, the weight vector to a particular output cluster serves as an 

exemplar of the input patterns assigned to that cluster. Subsequent data vectors presented 

to the network which have values close to the weight vector of that cluster will be 

assigned to that cluster. Initial weight values for the network are generally randomly 

assigned. However, if some information exists concerning the distribution of the clusters 

that might be pertinent to a particular problem, the initial weights can be chosen in such a 

way as to reflect this knowledge. [F] (Refer to Appendix A for a more detailed 

description of the Kohonen neural network algorithm.) 

Chemometric Analysis Methods 

Chemometric analysis methods are common statistical computational techniques 

used to extract relevant but often hidden information from data. [BEG] These techniques 

are used in many other areas of science but the term "chemometrics" is commonly used in 

the chemical and food industries. In general, chemometrics covers areas of data sample 

and variable pre-processing, and pattern recognition algorithms. 

Pre-processing of the data is an important initial step for data analysis in order to 

reduce the concentration and environmental effects of the sampling methods. Two types 

of pre-processing are available: sample and variable pre-processing. Sample pre-
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processing is done to reduce systemic variation and works on the entire input sample 

vector, or row, of data. Sample pre-processing methods include normalization, which 

scales all samples uniformly; weighting, giving some samples more weight than others; 

smoothing, which reduces the amount of random variation; and base-line corrections 

which minimize systemic variation. Variable pre-processing works on each variable, or 

column, of data and is done to remove any inadvertent weighting that arises due to 

arbitrary units, as from vastly different samples. [Li] Methods used for variable pre­

processing include mean centering, auto-centering, and variable weighting. 

Following data pre-processing, a variety of statistical approaches to pattern 

recognition analysis are included in a chemometrics approach. These include principal 

component analysis (PCA), partial least squares, discriminant analysis, discriminant 

factorial analysis (DF A), and cluster analysis. [K] PCA is an unsupervised method that 

manipulates the feature matrix in order to represent the data using a smaller number of 

factors, or dimensions, making it possible to view the data in a smaller number of 

dimensions. This makes it possible for human pattern recognition to be used to identify 

structures, making PCA an extremely useful first step in multi-dimensional data analysis. 

PCA analysis is most useful when the dimensionality of the measurement space is large 

but where the samples reside in a small dimensional space. (i.e., small inherent 

dimensionality) PCA is also an excellent preliminary data exploration method for 

examining data vectors for expected or unexpected clusters or for outlier diagnosis. 

[BPS] 
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Several supervised statistical pattern recognition algorithms are then used when the 

goal is to construct a model to be used to classify future samples. These include K-nearest 

neighbor (KNN), Kmeans, and Canonical Discriminant Analysis (CDA). [Cyl] These 

methods conduct a cross-validation of the data samples as an initial step in the clustering. 

Cross-validation is the action of validating the training set by leaving out one data point 

from each class to build a model and predict the left out data points. [Cyl] All data 

points are left out once during the process. The overall correct prediction rate will 

indicate the quality of the training set and the applicability of the model. 

K-nearest neighbor classifies unknowns according to a majority vote of the 'K'

nearest neighbors in the training set in n-dimensional space. The value of K is determined 

during cross validation. Kmeans classifies unknowns based on the Euclidean distance 

between the class centroid and the sample in the sample space. Canonical Discriminant 

Analysis assigns unknowns to a class based on the Mahalanobis distance between the 

sample and the cluster centroid in canonical space. The clustering results are viewed on 

plots in two or three dimensions based on the dimensionality reduction accomplished using 

PCA. For more details concerning chemometrics methods, refer to Appendix B. 

Cyranose 320™ Electronic Nose 

Internally, the Cyranose 32QTM electronic nose consists of 32 composite polymer 

odorant sensors. Different types of polymers are used in the nose but they are all 

nonconductive, absorbing polymers. [S-S] In the middle of each sensor is the non­

conducting absorbent polymer. Electrodes bring an electrical current to one side of the 
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conducting absorbent polymer. Electrodes bring an electrical current to one side of the 

polymer and take current away from the other side. Embedded in the polymer are 

conductive carbon chains that bridge the electrical current from the electrode on one side 

of the polymer to the electrode on the other. (figure 3) When the nose is exposed to an 

odorant, the polymers absorb differing amounts of the odorant molecules. As molecules 

are absorbed onto the polymer, they break the circuit made by the carbon chains, 

increasing the resistance. The resultant 32 resistance values produce a result that is 

unique to that odorant chemical and is its "fingerprint" and can be compared to other 

fingerprints to find a match. [S-S] 

ln9J cti ng La,er 

Potertialy A:Jti-..e SJbslrci:e 

Figure 3: Structure of the Cyranose Sensor 
Source: Cyrano Sciences, Inc, Cyrano Sensor Array. doc obtained from and used 

with permission of Cyrano Sciences, Inc. via email, 3/25/03. 

The pattern recognition system that comes with the nose is a chemometrics based 

system. The system includes pre- and post-processing of the signal data and algorithm 
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utilization for pattern recognition. [Li] The raw data is filtered to eliminate high 

frequency noise and reduced using a baseline correction method. Finally, the data is 

normalized and scaled using a choice of several techniques. The pattern recognition 

algorithms include PCA for outlier detection and supervised algorithms including K­

nearest neighbor, K-means and CDA for building models and prediction of unknowns. 

The data gathering capacity of the Cyranose 320™ electronic nose is substantial 

but the terminology for the individual data packages and their interconnectedness can be 

confusing. A description of the terms used in this thesis is shown below: 

1. Sample Set: The Cyranose unit and software can hold 5 complete sets

of data. These are unfortunately called 'methods' in the built-in

software. For clarity, this investigation will refer to these methods as

sample sets.

2. Odorant: Each of the sample sets contains readings from 6 different

chemical odorants. These odorants are referred to as chemicals, odors,

and odorants interchangeably in this thesis.

3. Data Vector: For each chemical in each sample set, there are at most 10

exposures to the odorant. These exposures are called data vectors. The

term data vector is commonly used with respect to the ordered set of

numbers used as the input pattern presented to a neural network.

4. Resistance values: Each data vector consists of 32 resistance readings

from the 32 sensors in the electronic nose.
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An unlimited number of sample sets can be stored on computer disk for future 

reference. Sample sets are imported for use in the computer software and hand-held unit. 

This allows for a greatly increased sensing "library" for future sample identification. 
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CHAPTER ill 

ELECTRONIC NOSE DATA COLLECTION AND TRAINING 

Determination of Chemical Odorant Samples 

The odorant samples used for this series of experiments were supplied by GLCC 

Co., a flavor house located in Paw Paw, MI. The company supplied six odorant samples 

that were as different from each other as possible. The samples included allyl caproate, a 

pineapple-like odor; methyl salicylate, a "liniment" odor; isoamyl acetate, candy banana 

odor; myrcene, tropical fruity, mango-like odor; decanal, a powerful component of the 

orange peel aroma; and diacetyl, a powerful butter odor. The odorant chemicals were 

first diluted at 5% by weight in 95% grain alcohol. Those solutions were then diluted 

with water resulting in odorant concentrations of approximately 150 ppm. These 

chemicals are extremely strong in their original concentrations and are typically diluted 

by these amounts in normal use. The samples were put into 2 oz glass bottles, 70 gm per 

bottle. This left a headspace of about an inch in which the volatile odor chemicals could 

accumulate prior to sampling with the nose. 

Electronic Nose Data Collection 

Prior to the collection of data, the sampling and data processing parameters were 

pre-set through the software supplied with the nose. These parameters included flow 

settings for the actual sampling pump, digital filtering, substrate temperature control, 

choice of sensor activity, algorithm choice, preprocessing, normalization type, and 

identification quality. Choice of algorithm, preprocessing, normalization, and 
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identification quality can be altered after all sampling has been completed during the fine­

tuning of the identification and clustering process. 

Flow settings for the sampling pump require fine-tuning in order to achieve the 

best performance. The Cyranose operating manual includes examples of different 

sampling experiments for different substrates. An initial starting point was chosen from 

the example that most closely matched this situation, an experiment to identify a sample 

that is one of three possible liquid fragrances. The flow settings were adjusted during 

early sampling tests to optimize the method. Figure 4 shows the flow setting screen 

where adjustments are made. Table 1 indicates the starting flow setting and data 

processing settings. 
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Flow Settings 

Time (sec) Pump Speed 

Baseline Purge 10 Medium 

Sample Draw 6 Medium 

Sample Draw 2 0 Medium 

Snout Removal 0 

1st sample gas purge 0 High 

1st air intake purge 5 High 

2°0 sample gas purge 30 High 

2°0 air intake purge 0 High 

Digital Filtering On 

Substrate heater On 42 

Training repeat count 1 

Identifying repeat count 1 

Data Processing 

Active Sensors All 

Algorithm Kmeans 

Preprocessing Mean-centering 

Normalization Normalization 1 

Table 1: Initial Flow Settings from Cyranose Operating Manual 

Sampling procedures were also developed. These required knowledge of the 

odorant chemicals and how they behave in closed containers. The sampling procedure 

adjustments included varying the amount of time allowed for the sample to rest and re­

equilibrate between sampling, sampling order, and sample concentration. The sampling 

was done randomly among the sets to eliminate any sampling bias. Using the odorant 
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samples described above, the Cyranose 320TM electronic nose was used to collect 

experimental samples. Five sample sets of sensor data for six chemicals, for a total of 

300 data vectors, were collected. Once this was completed, training the nose using the 

chemometrics software built into the electronic nose could begin. These results became 

the basis to which the clustering effectiveness of the neural network was compared. 

Training the Electronic Nose 

Pattern recognition software is part of the Cyranose 320™ system. The software 

operates through both the hand-held unit and a PC. Pattern recognition consists of two 

phases: (1) training and clustering using the sensor data and (2) identification of 

unknowns. Only the first phase was used for this investigation. To run the first step in 

the pattern recognition operation, the cross-validation operation is selected from the 

options on the hand-held unit. This operation consists of several steps. The unit 

performs pre-processing and normalization routines, runs PCA to reduce the 

dimensionality of the system and detect outliers, and runs the cross-validation check 

using the modeling algorithm. The internal cross-validation results could be viewed on 

the hand-held unit. These results indicate the number of correct identifications within the 

sample set. More extensive results, including details of the cross-validation, Mahalanobis 

distances (for CDA only), PCA plot, smell prints, distance vectors, and Canonical plots 

can be viewed on the PC. A flowchart for training the nose can be seen in Figure 5. 
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Training the nose required considerable re-sampling after the initial 60 data 

vectors for each sample set were obtained. Each time the pattern recognition algorithm 

was run, the cross-validation was viewed. If the internal identification of the samples was 

not 100%, outliers were identified, removed, and re-sampling done. Outliers could be 

identified several ways. There may have been one or more points that were significantly 

different from the others. These could be seen as obvious outliers on the PCA plot or as 

points that had Euclidian distances much larger than the other samples in the class. This 

testing, resampling, and retesting continued until a 100% cross-validation was achieved 

for all five sample sets. 

During the pattern recognition phase, fine-tuning of the pre-processmg, 

normalization, and algorithm was also performed. The final parameters are shown in 

figure 3, previously mentioned. Possible options for normalization were no 

normalization, 1-norm, and 2-norm. After much testing using the different normalization 

options, the best results for this application were obtained using 2-norm. It is calculated 

by dividing each value in the data vector by the 2-norm of the set, shown below. 

[3.1] 2-norm = Jj1 x2; where x1 = input variable value 

Variable pre-processing was the second data preparation step. Options included 

no pre-processing, mean centering, and auto-centering. As with normalization, testing 

using all pre-processing methods showed that auto-centering worked best in this situation. 

Auto-centered values were calculated by dividing each value in the data column by the 

standard deviation of that column shown below. 
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(3.2] Xj = X.,i 

J I(x;-x)2/n where x1 = the initial variable value

x; = the auto-centered value 

x = mean of the variables 
n = total number of variables 
X; = each variable value in the set 

The three algorithms available to build the pattern recognition model included 

KNN (K Nearest Neighbor), K-means, and Canonical (Canonical Discriminate Analysis­

CDA). During the sampling, training, and analysis period, all algorithms were tested in 

order to determine the most effective clustering algorithm for the data. This algorithm 

turned out to be the Canonical algorithm. In CDA, "the total variation between the 

objects can be partitioned into 1) the variation due to the differences between the groups 

or 2) the variation within the groups, due to the differences between individuals." [BEG] 

In the CDA, an unknown sample is assigned to the class with the shortest Mahalanobis 

distance between its centroid (the point equidistant from the points already assigned to 

that cluster) and the sample in canonical space. [Cyl ]  (Refer to Appendix B for detailed 

chemometric information.) 

Once the training was complete, the results could be viewed in several formats. 

The cross-validation screen showed the results of the internal cross-validation and 

measurement of Interclass Mahalanobis distances (M-distances). The cross-validation 

table shows the number of samples that were correctly identified in the internal 

comparison. The Mahalanobis distances look at the variance between the responses of 

the data vectors for the same sensor but also the inter-sensor variations (co-variance). 

[Th] The PCA plot indicates whether outliers exist. Once a 100% cross-validation was 
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achieved, further fine-tuning could still be done by improving the interclass M-distances 

through additional re-sampling. The CDA plot showed the final clustering results for the 

pattern recognition. The closer together the individual data vectors were for each 

chemical, the better the clustering capability was. Refer to figures 6 and 7 for examples 

of the Cross-validation screen and Canonical plot provided by the Cyranose software. 
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Canonical Projection Plot 
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The initial step in pattern recognition by the Cyranose unit was now complete. 

The resultant plots indicate the best clustering capabilities of the built-in pattern 

recognition algorithms of the unit based on the data collected. The aim of the pattern 

recognition step was to separate the data from the six chemicals into six distinct clusters 

such that identification of unknowns would be possible. These results for the baseline 

against which the subsequent neural network pattern recognition approach could be 

compared. 
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CHAPTERN 

OVERVIEW OF KOHONEN ALGORITHM ADAPTATION 

A neural network library called "Monarch", (available in the Computer Science 

Department at Western Michigan University as a result of a master's thesis [Fr]) was used 

as the base neural network library for this project. After considerable experimentation 

and adaptation, the final neural network program was run on the data collected using the 

Cyranose unit. 

Initially, the Kohonen algorithm was implemented at a very elementary level with 

only two output clusters available and a neighborhood consisting only of the winning 

cluster. For this application, it was decided that the network would have better 

discriminating power if the neighborhood weights were updated as well as the winner. 

During the first several tests, the output cluster array was set up as a 6x6 two-dimensional 

array. 

Numerous data preparation techniques were tested. The pre-processing technique 

initially used was a simple sample normalization procedure. As experimentation 

progressed variable pre-processing was added. The most effective pre-processing turned 

out to be the same as those used for the chemometrics-based system connected with the 

nose. These were 2-norm normalization sample pre-processing and auto-centering 

variable pre-processing. 
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As previously noted, the data samples collected with the Cyranose unit were used 

as input data to the neural network. Five sample sets each containing 60 data vectors 

were available for training the network. For a majority of the tests, sample set 2 was used 

as the input neural network data sample. The concept of neighborhoods was incorporated 

into the network. With each presentation of data, the winning cluster unit was updated 

with output cluster units in the neighborhood around the winner updated to a lesser 

degree. The largest neighborhood in the network (3 in this case) had a radius of the 

ceiling of the square root of the number of chemicals to be identified. As training 

progressed, the maximum size of the neighborhood was gradually decreased until, as the 

stopping condition was approached, only the weight matrix of the winning cluster was 

updated. (Refer to figure 8). Because the initial radius of the neighborhood is half the 

size of a side of the array, the outer neighborhood is incomplete. Neighborhoods do not 

"wrap around" the array. Missing units are simply ignored. As experimentation 

continued, it was decided to change the cluster array to a three-dimensional array to make 

the comparison between the two pattern recognition techniques more accurate. As a 

result, the neighborhood around the winning cluster changed from a two dimensional ring 

of neighborhoods to a more complex three-dimensional neighborhood. 
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Figure 8: Two-dimensional Neighborhoods for E-nose Kohonen Network 

The stopping condition for network training is chosen to be when the learning rate 

has decreased to a predetermined level. Each time the network completes an epoch 

(presentation of the entire data sample); the learning rate is decreased geometrically. In 

this case, the decrease ranged between 25-50%. Initially, the network weights were set 

randomly and were in the same numerical range as the normalized and pre-processed 

data. Ultimately, in a final attempt to improve the clustering ability, some of the weights 

were set equal to the averages of the known data from the electronic nose sensors, 

creating a semi-supervised neural network environment. Different arrangements of 
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designated winning clusters were tested to see if greater discriminating ability could be

obtained. Different weight update rates were also tested. 

All the data collected from the electronic nose was run through the senu­

supervised neural network. The results were plotted using Maple™ and compared to the 

clustering results from the electronic nose software. 

In order to ensure that the network was accomplishing real clustering and not 

merely accidentally making some data points appear to be clustered together, completely 

random data was also run through the network. 
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CHAPTERV 

DETAILS OF NEURAL NETWORK TRAINING 

Preparation of NN Input Data Files 

Prior to training the Kohonen network, the input data sample files from the 

electronic nose were converted into a file format convenient for use as input to the neural 

network. The input data files for the electronic nose are called "Method setting files" 

(.met) and included all the information needed to re-import the data into the nose and run 

sample identification testing using that sample set. An example of part of a .met data file 

can be viewed in Figure 9. The data stored in the method files had already been filtered 

and reduced by the Cyranose unit. The data was in the form of the response of the 

electronic nose sensors, defined in the following equation and was used as input to the 

pattern recognition algorithms: 

[5.1] � RfRo = Olmax-Ro)/Ri 

where �= change in sensor resistance 

Ro= average of base resistance calculated by taking 5 data points before 
sample exposure and 5 from the end of the purge step in the sampling 
Rmax

= average maximum resistance 
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Figure 9: Example Method File from the Cyranose Unit 

0 .0119697 
0 .0111514 
0 .008302 
0 .0093797 
0 .0070408 
0.0068582 
0 .0069942 
0 .006934 
n nnnnn,:::,:-

0.0025728 
0 .002909 
0.0022241 
0 .0025239 
0.0022781 
0.0024116 
0.0021882 
0 .0020886 
n """"",:::.,. 

0.0031912 
0.0036934 
0.0025014 
0.0029711 
0.002576 
0.002995 
0 .0023862 
0 .0021862 
n nn?.,nn? 

The conversion programs extracted the sensor response data from the '.met' files, 

performed various nonnalimtion and pre-processing routines and output the data to the 

neural network input data files. The final data conversion and pre-processing programs 

can be viewed in Appendix C. 

Evolution of the Kohonen Neural Network Application 

A series of experiments drove the development of the Kohonen neural network to 

cluster the electronic nose data. The aim of each succeeding experiment was determined 

based on the results of the preceding one. Sometimes, more than one avenue was 

investigated based on result of a particular experiment. 
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Test 1- Artificial Data 

The first neural network experiments ran artificial data through a 2-dimensional 

Kohonen network which did not include updating of the neighborhoods. The data sample 

consisted of eight artificial data vectors each containing four "sensor" outputs. The initial 

pre-processing was normalization of the samples of data by the equation below: 

[5.2] normxi = (xi - Xmm)l(Xmax-Xmin) 
where: Xi = each individual data value 

Xmin = the minimum sample data value 
Xmax = the maximum sample data value 
normxi = normalized individual value 

The normalized data represented four very different clusters with data points 

between O ➔ 50. The data sample is shown in Table 2. 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 

Data vector 1 17.7152 15.5059 17.2873 19.08797 

Data vector 2 43.3402 49.954 46.6652 41.793 

Data vector 3 0.38741 0.54312 0.36369 0.233522 

Data vector 4 8.5227 10.3975 9.49619 7.72074 

Data vector 5 50 50 50 50 

Data vector 6 18.4488 19.1176 16.2311 17.50617 

Data vector 7 10.3857 9.96675 9.26804 8.8177 

Data vector 8 0 0 0 0 

Table 2: Test 1 Data 

Each time a data vector was presented to the network, a "winning" cluster was 

chosen as the output unit whose weight vector most closely matched the input data vector. 
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The weights of that unit were then updated to improve the match using the following 

equation: 

(5.3] Wij(new) = Wij(old) + a[xi-Wij(old)] 
where Wij = weight on the input to output link 

Xi = input value 

a = the learning rate. 

The network successfully clustered this data into four distinct clusters. The 

results can be seen in figure 10. The output below lists the integer values of the input 

data and the group in which the input was placed. The numbers indicating the output 

cluster indicate the row and column of the output cluster unit. The complete output from 

the program showed the clustering results after each epoch as the network gradually 

reduced the learning rate. With this artificial data, there were no changes in the clustering 

from the first to the last epoch indicating the network easily clustered the data from the 

first epoch. 

-------------- Alpha = 0.000003 
18 16 17 19 -> [group: 3, 5] 
43 50 47 42 -> [group: 1, 6] 
0 1 0 0 -> [group: 1, 4] 
9 10 9 8 -> [group: 1, 5] 
50 50 50 50 -> [group: 1, 6] 
18 19 16 18 -> [group: 3, 5] 
10 10 9 9 -> [group: 1, 5] 
0 0 0 0 -> [group: 1, 4] 

Figure 10: Test 1 Results 
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Test 2- Subset of Actual Nose Data 

The second test consisted of a data sample containing 18 sets of data, 3 for each 

chemical, 10 sensor readings for each data vector. The data was randomly mixed. This 

data sample came from actual Cyranose data. 

At this point, the code for updating the neighborhood around the winner was added 

to the weight adjusting function. Updating the winner and the neighbors was 

accomplished in several stages. First, the winning cluster was determined. Then, a loop 

started which gradually updated clusters from the outer to the inner neighborhoods. The 

code ensures weights were not changed unless they actually belong to nodes in the 

neighborhood and are not a "wrap-around" node. The data structure of the output clusters 

is in the form of an array with output cluster units on different levels of the 2-dimensional 

arrangement being numbered consecutively. If a neighborhood is not complete, the code 

has to ensure that the next array index is not assumed to be in the incomplete cluster 

neighborhood. (Refer to figure 11). Finally, the winning cluster's weights were updated. 

The distance from the winner determines how much the weights are updated. The winner 

was updated using the equation [5.3]. The update equation for neighbors at distances of 

'I' from the winner is: 

[5.4] Wij(new) = Wij(old) + (all )[xi-Wij(old)] 

where a = learning rate 
I = distance from winner 
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* * �- * !i: * 

* * �, * * * 

* * * * # * 

* * * * * * 

This neighborhood, N=2, ends here, 

* * :!· ,. � * *� it does not "wrap around" to the
next line. 

* * * * * * 

Figure 11: Neighborhoods End at Edge of Cluster Array 

The second test included the above-mentioned code changes and corrections. The 

same sample set, 18 data vectors, three from each of 6 chemicals, was used. After each 

training epoch, the size of the neighborhood was reduced. As the network became more 

trained, each presentation of a data vector should have resulted in a winning cluster 

whose weight vector was closer and closer to the presented data vector. If this were the 

case, there would be less and less need to alter the weights of the neighboring clusters as 

well. Test 2 resulted in the classification of the data into 13 clusters. Refer to figure 12 

for results. Despite correction of errors in the code, the network was still unable to 

correctly cluster the data. 
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--------------Alpha = 0.000003 
7114636461271937 -> [group: l, 4] 
3323101653610 -> [group: 5, 6] 
3423292873725 -> [group: 3, 3] 
47241428641220 -> [group: 5, 2] 
89681310981113 -> [group: 6, 1] 
3322293072728 -> [group: 3, 5] 
0100212620318 -> [group: 5, l] 
50505050505050505050 -> [group: 6, 5] 
2211191641416 -> [group: 4, 6] 
3322454182837 -> [group: l, 4] 
3513002380 -> [group: 6, 6] 
2211233141521 -> [group: 2, 2] 
00007140006 -> [group: 5, 6] 
33333132142430303425 -> [group: 6, 5] 
2211202741422 -> [group: 5, 5] 
2311403851535 -> [group: 1, 4] 
1211232851520 -> [group: 2, 2] 
4323233263723 -> [group: 4, 3] 

Cluster [1,4] [5,6] [3,3] [5,2] [6,1] [3,5] [5,1] [6,5] [4,6] [6,6] [2,2] [5,5] [4,3] 
# in group 3 2 1 1 1 1 1 2 1 1 2 1 1 

Figure 12: Test 2 Results 

When updating neighborhoods, it is possible to change not only the size of the 

neighborhood but also the magnitude of the changes to the weights in the neighborhoods. 

It was hoped this approach would improve the clustering. Several combinations were 

tested. None improved on the clustering capability. Therefore, it was decided to return to 

the original multipliers. Refer to table 3 for the multipliers tested. 
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Distance from Initial Multiplier Multiplier for Test Multiplier for Test 
wmner 2a 2b 
R=O Cl Cl a.*100 

R=l Cl al2 al2 

R=2 al2 al4 al4 

R=3 al3 al6 al6 

Clusters in Result 13 15 13 

Table 3: Test 2 Learning Rate Multiplier Table 

Test 3- Additions to Aid Visualization of Clustering Results 

Even though at this stage the network was not clustering well, it was decided to 

convert all five sample sets to the normalized format for running on the network. This 

normalization was the simple single normalization referred to previously. This resulted 

in six data files to run through the network. Several different normalization ranges were 

investigated to see which range worked best. It was decided to use a normalization of 

O➔l at this stage. The data files were named method.x.dat where x was a number 1 ➔5 

for the different sample sets. 

Prior to running test 3, several other additions were made to the code. The initial 

clustering code indicated in which cluster a particular data vector was placed. If this were 

plotted, it would result in numerous data points at each cluster, making it impossible to 

see how many points were assigned to each cluster. In order to separate the data points, 

the error values calculated by the network were incorporated into the x and y coordinates 

of the winning cluster resulting in a new data point which was located a distance equal to 

the error value away from the winning cluster. A random angle was chosen to locate the 
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point around the output cluster. The resultant x and y coordinates artificially separate the 

data points around the winning cluster but greatly aid in visualizing the clustering results. 

See figure 13 for code to convert data points. 

for(int j=0;j<N_ TESTS;j++ ){ 
//calc normed err 
err[j] = ( err[j]-min)/(max-min); 
//choose angle in radians 
z = randQ%360; 
a_rad[j] = z*Pl/180; 
// Calculation of plottable winning cluster coordinates 
x[j] = x[j] + cos(a_rad[j])*err[j]; 
y[j] = y[j] + sin(a_rad[j]) * err[j]; 
//Output to data file 
final_data<<x[j]<<" "<<y[j]<<" "<<chem[j]<<endl; 

Figure 13: Output Cluster Data Point Conversion 

Prior to this stage, no cross-referencing was done to determine if the clusters 

created by the network actually held data points from the same chemical samples. In 

order to make this comparison possible the program imported a file containing a list of 

the six chemical odorants used to create each data vector. This information was 

incorporated into the final data files which contained the x and y coordinates of each 

clustered data point and a number indicating to which chemical the point refers. 

Test series 3 was the first run using the above-mentioned alterations. This series 

consisted of three runs of the neural network. Tests 3a and 3b used sample sets 1 and 2. 

Test 3c used all 300 data vectors from the five data samples. 

The network clustered test3a (data sample 1) into 13 clusters. There did not appear 

to be a logical way to group the clusters into a smaller number of mega-clusters. There 
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was a large concentration of data points around [ 4,0] and [ 4, 1 ], many more than would be 

expected if this consisted of two chemicals that were similar according to the network. 

Refer to figure 14 for a plot of the clustering results. 

Method 1- NN Clusters 
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Figure 14: Test 3a Results by Cluster 
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When the same plot was examined with respect to the chemical odorants, there 

appeared to be little if any clustering of the individual chemicals. (See figure 15) Two 

chemicals, myrcene and decanal, appear loosely clustered away from the mass of data 

points in the lower right comer of the plot. It is unlikely that a statistical analysis of the 

results would confirm definite clusters. Test 3b produced similar results. 
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Test 3a- Data Sample 1- by chemical 
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Figure 15: Test 3a- Results by Chemical Odorant 
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Test 3c, using the entire 300 set data sample, showed little improvement. While 

the imaginative eye might see approximately seven mega-clusters in the plot, the realistic 

clustering capabilities of the network were still marginal at best. There is simply too 

much overlapping of the clusters for any definite identification to occur. (Refer to figure 

16) 
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Test 3c- All Data- by Chemical 
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Figure 16: Test 3c- Clustering of 300 Data Vectors 

Test 4- More Visualization Improvements 
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At this stage, an additional factor was added to make the visualization more 

realistic in the hope of improving the apparent clustering of the network. When 

calculating the 'x' and 'y' coordinate values for each data point, the cluster with the 

second lowest error value was used to determine the directional angle of the point from 

the center of the cluster. In other words, if the winning cluster for data point 1 was ( 4, 1) 

and the cluster with the second lowest error was (5,3), then the new 'x' and 'y' values 

would be located at a distance of the minimum error towards (5,3) from (4,1). These 

code changes are shown in figure 17. Whilst it was not thought that this would improve 
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the actual clustering capabilities of the network, it was hoped it might improve the 

visualization of the results. 

for(int j=O;j<N_ TESTS;j++ ){ 
//calc normed err 
err[j] = ( err[j]-min)/(max-min); 
//determined directed angle 
rad[j] = angle_det(x[j],y[j],x2[j],y2[j]); 
x[j] = x[j] + cos(a_rad[j])*err[j]; 
y[j] = y[j] + sin(a_radu]) * err[j]; 
//Output to data file 
final_ data<<x[j]<<" "<<y[j]<<" "<<chem[j]<<endl; 

where (x[j],y[j]) = 'winning' cluster 
(x2[j],y20]) = second place cluster. 

Figure 17: Calculation of Directional Plotable Data Points 

Test series 4 incorporated these directional adjustments to the resultant coordinate 

points of the winning clusters for each of the data vectors. The directed clustering 

resulted in tighter concentration of data points around the cluster centroid, but no real 

improvement in the apparent clustering capabilities. Plots of test 4a and 4b using data 

sample 1 can be seen in Figure 18: "Randomly Assigned Clustering" and Figure 19: 

"Directed Clustering". While directed clustering appears to improve the appearance of 

the graph, it doesn't improve the clustering done by the network. It will be retained, as it 

does appear to reduce the randomness of the resultant graphs. 
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Test 4a - R,mclom Clustering Visualization 
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Figure 18: Test 4a Results- Randomly Assigned Clustering 

Tes1 �b - Directed Clustering Visualization 
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Figure 19: Test 4b Results- Directed Clustering 
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Test 5- Higher Learning Rate 

Thus far, none of the fine-tuning changes had improved the clustering to any great 

extent. Another avenue to investigate for potential improvement was to increase the 

value of alpha, the learning rate, and slow the speed at which the learning rate was 

decreased. If the learning rate were higher, the network would go through more epochs 

before it quit. Slowing the rate of the decline of alpha would also increase the amount of 

time the network has to learn to classify the data. In test 5, alpha was increased from 0.9 

to 1.9 and the rate of decrease was cut in half. Thus after each epoch, the learning rate 

was decreased by one quarter. Both changes resulted in the network working longer on 

the training stage before the stopping condition was reached. The results, which are 

shown in Figure 20, indicated little improvement. The data points appeared more closely 

grouped around the cluster centroids, indicating a tighter error range, but the clustering of 

the different chemical odorants was no better than before. 
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Test 5- Data Sample 1, Alpha= 1.9 
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Figure 20: Test 5 Results- Higher Leaming Rate 

Test 6- 3-Dimensional Output Clustering 
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At this stage, it was decided to try to more closely mimic the plotting used by the 

Cyranose unit. Specifically, the Cyranose clustering algorithms displayed the clustering 

results in a 3-D format. It was hoped that with a 3-D format, the capabilities of the neural 

network would be improved. Major changes were made to the Kohonen code as well as 

additions to the main neural network library to allow incorporation of the three 

dimensional cubical output matrix where the length of the side equaled the number of 

different odorant chemicals used in the data. The weight updating step was changed to 

take into account the 3-dimensional neighborhood. (Refer to Appendix D: "Kohonen 
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Source Code" and Appendix E: ''Neural Network Driver Code" to see source code.) The 

output from the network now included a 3-D coordinate (x,y,z) and the chemical 

identifier for each data vector presented to the network. 

Test 6 was a 3-D neural network run. Whereas the change to 3-D did appear to 

spread out the data points, there was no improvement in the clustering results. For test 6, 

the plotted results were spread over three 'z' layers. Two of the chemicals, myrcene and 

decanal, were located on the z=O and z= 1 planes. The other four chemicals were widely 

scattered on z=2. There appeared to be no pattern to the arrangement. (Refer to Figure 

21) 

Test 6 3-0 Plot 

4 4 

Figure 21: Test 6, Three-Dimensional Clustering 
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Test 7- Semi-supervision ofKohonen Algorithm 

Unfortunately, up to this point the unsupervised Kohonen network simply was not 

able to cluster the data to any useful degree. A review of the clustering algorithms used 

by the chemometrics system on the Cyranose unit indicated that all were supervised 

algorithms. The question now was to determine if there were any ways to make the 

Kohonen algorithm semi-supervised, using the sensor data as a training reference. It was 

mentioned in Fausett [pl 72] that, whereas link weights are often assigned randomly, if 

knowledge of the distribution of the clusters in the specific problem is known, it may be 

appropriate to use this knowledge in setting the weights. It may appear that the network 

is being given ''the answers". On the contrary, the purpose is that same as with a 

supervised neural network, supervised chemometrics pattern recognition algorithm, or 

many forms of human learning. The a priori incorporated into the weights guides the 

learning but does not control it. Ideally, the result will be a network with weights set such 

that unknown samples can be properly identified. 

In this case, the data from the nose contained information about the identity of all 

data vectors. If the input data samples were separated for each chemical and averages of 

each sensor reading for each chemical were calculated, those averages could be assigned 

as the initial weights to specific clusters in the output matrix. Six specific output clusters 

were designated as the "winners" and roughly corresponded to the locations in the three­

dimensional clustering diagrams produced by the Cyranose clustering diagrams. The 

Cyranose clustering diagrams produced clusters for all the chemicals that were in roughly 

similar locations for all tests. It was thought that by choosing similar winning cluster 
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locations, the comparison between the methods could be more precise. This method was 

termed "semi-supervised Kohonen clustering". In the figure below (Figure 22), the 

calculations of average sensor values for one chemical are shown. These averages 

correspond to the weight variable names listed below each average. Allyl Caproate was 

designated as chemical one and 'j' corresponds to a particular output cluster in the 

network. 

Allylcaproate Data vector 1 

Data vector 2 

Data vector 3 

Data vector 4 

Data vector 5 

Data vector 6 

Data vector 7 

Data vector 8 

Data vector 9 

Data vector 1 0 

Average 

S1 

2.02114 

2.20283 

2.18628 

2.0699 

2.52311 

2.45053 

2.02982 

2.02668 

2.144TT 

2.23785 

2.189491 

W1j 

S2 S3 

2.27287 1.22585 

2.42379 1.23985 

2.4789 1.29925 

2.18876 1.1487 

2.71523 1.5115 

2.57163 1.3TT65 

2.22701 1.2n0 

2.1906 1.24287 

2.25396 1.28326 

2.47987 � 

2.380262 1.293962 

W2j W3j 

S4 S5 S31 S32 

1.56243 4.66837 4.57156 1.87565 

1.71518 4.90609 4.35008 2.75209 

1.7273 5.00605 4.35627 2.27012 

1.66736 4.98214 4.38528 2.58351 

1.98418 5.05256 3.93106 2.15884 

1.9121 4.81552 3.88237 3.22489 

1.62434 4.69212 4.35678 2.20155 

1.62353 4.78665 4.54783 2.4672 

1.62861 4.84952 4.67096 1.92899 

1M2§2. MQfil � 2.71731 

1.728765 4.876499 4.288162 2.418015 

W4j Wsj W31j W32j 

Figure 22: Calculation of Semi-Supervised Cluster Weights for 1 Chemical 

By forcing the weights of six clusters to correspond to the averages of the six input 

data subsets ( one subset for each chemical), it was hoped that this a priori knowledge 

would aid in the clustering ability of the network. 

In addition to forcing the weights in the network to specific values, it was decided 

to change the pre-processing of the data so that the same pre-processing methods were 

used for the neural network data as were used by the Cyranose chemometrics system. 
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This required incorporating functions for a 2-normali7-a.tion procedure and an auto­

centering procedure to be applied to all the data samples. 

In the driver program, the Kohonen network was instantiated with random weights. 

To incorporate the "semi-supervision", a file was imported into the program containing 

the average weights for the data vectors from each chemical odorant. The average weight 

files were calculated for each of the five data samples collected from the electronic nose. 

These values were then incorporated into the weight matrix in positions corresponding to 

six pre-determined output clusters. The network was then ready for training. This use of 

a priori knowledge in the training of the network is similar to the internal cross-validation 

used in the Cyranose pattern recognition in that knowledge of the identity of each data 

vector allows a determination if the clustering is effective. 

Test series 7 incorporated semi-supervision of the Kohonen algorithm and 2-

normali7-a.tion but not auto-scaling of incoming data, and a random assignment of target 

clusters. The target clusters in the network were: allyl caproate- (0,0,0]; methyl 

salicylate- (4,4,1]; isoamyl acetate- (2,3,2]; myrcene- (3,2,3]; decanal- (3,1,4] ; and 

diacetyl- (5,5,5]. The results from the best of these runs are shown in figure 23. 
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Clustering results for network run 
tally[0][64] = 10 
Network clustered 10 input vectors of Allylcaproate to cluster (4,4, l) 

tally[ l][l53] = 7 
Network clustered 7 input vectors ofMethylsalicilate to cluster (3,1,4) 

tally[2][153] = 5

Network clustered 5 input vectors of Isoamylacetate to cluster (3, 1,4) 

tally[3][73] = 8 
Network clustered 8 input vectors ofMyrcene to cluster (1,3,2) 

tally[4][126] = 10 
Network clustered 10 input vectors ofDecanal to cluster (2,2,3) 

tally[5][152] = 5

Network clustered 7 input vectors ofDiacetyl to cluster (2,1,4) 

Figure 23: Test 7 Results 

As can be seen from the above results, there was some improvement in the 

clustering capabilities of the network. The network assigned at least half of the data 

vectors of three of the chemical odorants to clusters that had been designated as target 

clusters. The target clusters were not always the clusters to which the chemicals had been 

pre-assigned. For example, all the allyl caproate samples were assigned to cluster [4,4,1] 

which had initial weight values equal to the averages of the methyl salicylate samples. 

This could indicate a greater similarity between the weights of all the data vectors than to 

any of the randomly assigned weight sets. That the assignments no longer appeared 

completely random appeared to be progress but the network was still not working in the 

desired manner. 
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Test 8- Incorporation of Auto-scaling of Input Data 

The next series of test runs incorporated auto-scaling of the data samples. At this 

point, the preparation of the data was identical to that used by the Cyranose system. The 

results of test run 8 are shown below in figure 24. 

Clustering results for network run 
tally[0][0] = 7 
tally[0][l 5 3] = 1 
tally[0][15 4] = 2 
max = 7 index = 0 i = 0 
Network clustered 7 input vectors of Allylcaproate to cluster (0,0,0 ) 

tally[l][64] = 1 
tally[l][65] = 4 
tally[l][l 2 2] = 3 
tally[l][l 5 3] = 1 
max = 4 index = 65 i = 1 
Network clustered 4 input vectors ofMetbylsalicilate to cluster (5,4, 1) 

tally[2][64] = 3 
tally[2][65] = 6 
tally[2][12 2] = 1 
max = 6 index = 65 i = 2 
Network clustered 6 input vectors oflsoamylacetate to cluster (5,4,1) 

tally[3][214] = 6 
tally[3][215] = 4 
max = 6 index = 214 i = 3 
Network clustered 6 input vectors ofMyrcene to cluster (4,5,5 ) 

tally[4][92] = 3 
tally[4][93] = 6 
max = 6 index = 93 i = 4 
Network clustered 6 input vectors of Decanal to cluster (3,3,2 ) 

tally[5][64] = 5

tally[5][65] = 5

max = 5 index = 64 i = 5 
Network clustered 5 input vectors ofDiacetyl to cluster (4,4,1) 

Figure 24: Test 8 Results 

The above results showed slight improvement. Clearly, the data pre-processing 

steps were helpful. In this test, the network assigned seven data vectors of allyl caproate 

to cluster [0,0,0], which was the cluster assigned to that chemical. The remaining 3 data 
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points were assigned to points far from the [0,0,0] cluster and were clearly incorrectly 

assigned. Half of the diacetyl data vectors were assigned to cluster [4,4,1] which, 

although not the designated diacetyl cluster was one of the designated clusters. The 

remaining 5 data points were assigned to cluster [5,4,1], right next to [4,4,1]. This 

essentially creates one large cluster. Six of each myrcene and decanal data vectors were 

assigned to clusters within one space of a designated cluster with their remaining data 

points assigned right next to the major cluster, thus creating two more multiple point 

clusters. Two chemicals, methyl calculate and isoamyl acetate, had a majority of their 

data vectors assigned to the same cluster, which was also only one value away from a 

designated cluster, cluster [4,4,1], to which the diacetyl was assigned. In effect, the 

network created 4 clusters, three of which contained individual chemicals. The fourth 

cluster, that consisting of points [4,4,1] and [5,4,1] grouped three chemicals together, 

essentially not being able to differentiate between the chemicals. Using these results, the 

network successfully clustered 36 out of 60 data points, a validation percentage of 60%, 

with some difficulty differentiating two of the chemicals from a third one. These were 

the best results thus far. 

Test 9- Corners Designated as Winners 

Clearly, whilst improvements were being made at increasing the clustering 

capabilities of the network, it was significantly less able to differentiate between the 

samples than was the Cyranose chemometrics system. Several others avenues were 

pursued in an attempt to improve the neural network capabilities. The first avenue was to 
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try to separate the designated clusters as much as possible in the 3-dimensional output 

arrangement. Six corners of the cluster cube were designated as "winners", each assigned 

to a different chemical odorant. The assignments can be seen in the following figure. 

z 

[0,5,5], Cluster 210 

[5,0,5], Cluster 185 er 215 

[0,5,0], Clust 0 

X 

Figure 25: Designated Clusters for Test Run 9 

Test 9 was run 10 times. The results are listed in table 4. Results indicate the 

winning cluster index and in parenthesis, the number of data points assigned to that 

cluster. A winning cluster is designated as the first cluster to which the greatest number 

of data points for a chemical has been assigned. The efficiency value in the table is a 

measure of the total number of data points assigned to a distinct cluster. Assigning the 

corners to be the designated winning clusters seemed to have the effect of pulling the 
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actual winning clusters toward the comers. However this still did not seem to either 

cause a majority of the winning clusters to end up at the comers, nor spread out the 

different chemical clusters to allow better differentiation. 

Chemical Run 9a 9b 9c 9d 9e 9f 9g 9h 9i 9j 

AllylCaproate 33(4) 209(6) 184(9) 184(5) 209(9) 29(9) 184(7) 31(4) 184(10) 184(9) 

MethylSal 212(4) 26(5) 28(6) 208(5) 28(6) 208(7) 25(4) 29(5) 184(9) 34(6) 

IsoAmyl 208(4) 26(7) 28(9) 208(9) 28(6) 209(8) 27(6) 29(9) 184(7) 34(9) 

Myrcene 28(6) 182(6) 213(10 200(6) 214(10) 181(4) 206(6) 33(10) 207(6) 28(10) 

Decanal 184(5) 34(8) 208(8) 202(5) 213(6) 206(6) 208(9) 33(8) 34(7) 28(9) 

Diacetyl 207(5) 27(9) 28(10) 208(10) 183(8) 209(10) 27(9) 29(10) 209(9) 34(10) 

Efficiency 46% 6()0/o 62% 43% 65% 60% 58% 40% 53% 48% 

Table 4: Test 9 Results 

Test 10- Fix Designated Output Cluster Weights 

The next possible area for improvement was that of fixing the link weights of the 

six designated winning units at the start of the neural network run, in other words, not 

updating them at all throughout the run. The theory with this test was that the ideal 

weights of the winning units should be very close to the averages of the input sets that 

belong in that cluster. It was thought that holding the weights to the average input values 

would force the correct inputs to the appropriate clusters. These tests were run with the 

designated winning clusters being assigned to the original units from test runs seven and 

eight. (Refer to figures 23 and 24) Whilst the winning weights were not altered, the 

57 



weights in the neighborhood were updated using the equation [5.5]. (Refer to Figure 26 

for Test Run 10 results.) 

Run 10a Run 10b Run 10c 

Cluster # in cluster Cluster # in cluster Cluster # in cluster 

Allyl Caproate 0 6 0 6 0 6 

153 4 153 4 92 4 

Methyl Salicylate 0 3 0 3 0 3 

153 6 153 5 92 6 

152 1 

lsoamyl Acetate 0 1 0 1 0 1 

153 9 153 6 92 9 

152 3 

Myrcene 0 5 0 2 0 5 

153 5 153 4 92 5 

152 4 

Decanal 0 3 0 3 0 3 

153 6 153 6 92 6 

Diacetyl 0 0 0 0 0 0 

153 10 153 2 92 10 

152 8 

Figure 26: Test 10 Results 

As can be seen from the results above, when the neighborhood was updated but not 

the winner, the network was unable to discriminate between any of the chemical odorants. 

At most, data vectors were assigned to three clusters with significant overlap between the 

clusters. This avenue of investigation appeared to be a dead end. 

Test 11- Neighborhood Weight Adjustment Multiplier 

The results from test 10 did suggest that the degree to which the winner and its 

neighborhood were updated might not have been sufficiently investigated previously. In 

test 11, it was decided to try a different multiplier from those previously investigated in 
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test 2. For this test, the amount the weights were adjusted was proportional to the 

distance from the winner with the winner being assigned the distance of 1 instead of 0, 

which was the previous practice. This avoided division by zero and the possibility of 

using the same multiplier for the winner as for the closest neighborhood. Therefore, 

weight update equation for all units, including the winner, became: 

[5.6] Wij(new) = Wij(old) + (all )[xi-Wij(old)] 

where a = learning rate 

I = distance from winner starting at lwinner = 1 to lfurthest = 4 (third ring out 
from the center) 

Test 11 uses the same target nodes for the output clusters as have been used 

previously. This test was run several times. As the aim of this pattern recognition 

algorithm is to separate the six chemicals into 6 distinct clusters such that identification 

of unknown samples is possible, there was some improvement due to the changes made 

to the weight updating noted above, over the results from test 9. The results from the best 

of the test 11 runs are shown below in Table 5. It can be seen that the network was able 

to separate three of the chemicals widely enough to discriminate between them. If the 

network were run using only data for isoamyl acetate, methyl salicylate, myrcene, and 

diacetyl, there might be very little overlapping of clusters. The results were plotted in 

Figure 27. 
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Test 11 
Results 

Chemical Cluster # 
AICap [0,0,0] 2 

[4,4,1] 1 
(3 3. '] 1 

MethSal [4,4, 1 l 6 

[5,4, 1] 3 

lsoAmyl [5,4, 1 l 9 

(44 1] 

Myrcene (3,2,3] 4 
(4,2,3] 6 

Decanal (3, 1,4] 8 

[4,1,4] 1 

Diacetyl [5 4.1] 10 

Clustering 78% 
Efficiency 

Table 5: Test 11 Results 
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Test 11 3-0 Plot 

4 

-1
. -1 -1 y
X 

4 

Legend: Allyl Caproate Green Diamond 
Methyl Salicylate: Red Circle 
iso Amyl Acetate: Blue Box 
Myrcene: Magenta Cross 
Diacetyl: Gold Diamond 
Decanal: Aquamarine Box 

Figure 27: Test 11 Results 

Test 12- Removal of Outliers 

During the initial training of the Cyranose unit using the built-in software, after the 

initial 60 data vectors were collected, the pattern recognition algorithm was run to 

determine the effectiveness of the clustering. If the clustering, as indicated by the internal 

cross-validation, was not 100% effective, outliers were removed and new sets obtained to 

complete the sample. The choice of which specific samples needed to be removed was 

different depending on which pattern recognition algorithm was run. The data used in the 

NN experiments had been selected to obtain a 100% cross-validation result using the 
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CDA algorithm. Therefore, the data vectors removed may not all have been outliers 

when the initial data was run through the Kohonen semi-supervised NN algorithm. In the 

next test, several of the data points which appear to be outliers in test 11 were removed 

from the data sample and the sample was rerun through the network. 

Test 12 started with the results from test 11. As can be seen in Table 5, 7 out of 10 

allyl caproate samples were grouped together at point [3,3,2] with a single outlier at 

[4,4,1] and a pair at [0,0,0]. In test 12, the single outlier was removed and the data was 

run through the network again. The results can be seen in figure 28. It was noted that the 

locations of the clusters in this plot were different from those in figure 27. This was due 

to the random presentation of data to the network during the training phase, leading to a 

different arrangement of final clustering. However, it was also noted that the overall 

clustering seen in the previous test remains. The main difference is that allyl caproate 

(green diamonds) appear in only two positions instead of three, and the single green 

diamond that had been in the middle of the magenta and blue figures is now gone. 
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Test 12 3-D Plot 

4 

3 

Figure 28: Test 12 Results- Removal of One Outlier 

Test 13- Further Outlier Removals 

The following three tests investigated the removal of different data vectors. In test 

13, the two additional outliers of allyl caproate were removed which resulted in a more 

distinct allyl caproate cluster than had been seen previously. Evidence of the interaction 

between the data vectors can be seen in these results. (Refer to figure 29). Previously, 

the diacetyl data points were reasonably well clustered or more loosely clustered but 

significantly away from the other data points. With the removal of the two additional 

allyl caproate points, the diacetyl cluster split into two much more separated clusters. 

This occurrence was also noticed with the CDA algorithm on the Cyranose system and is 

therefore not unique to the NN application. It was found previously that in this greatly 

reduced dimensional representation, the apparent location of a particular data point could 
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be misleading and not adequately indicate its importance to the system. With test 14, it 

may have been that one of the outliers could have been removed without causing a 

reduction in the clustering effectiveness but removing both caused a different set of 

interactions to come into play. 

Test 13 3-D Plot 

4 

Legend: Allyl Caproate Green Diamond 
Methyl Salicylate: Red Circle 
iso Amyl Acetate: Blue Box 
Myrcene: Magenta Cross 
Diacetyl: Gold Diamond 
Decanal: Black Cross 

4 

Figure 29: Test 13 Results: Removal of Remaining Allyl Caproate Outliers 

Test 14- Complete Removal of One Chemical 

The NN appeared to have difficulty discriminating between methyl salicylate, 

isoamyl acetate, and decanal, with all being clustered together as the red, blue, and black 

symbols above. Test 14 involved removal of one chemical sets completely in an effort to 
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allow better discrimination between the remaining data vectors. In this test, all of the iso 

amyl acetate data vectors were removed and the NN was rerun. (Refer to figure 30). 

These changes made the results worse than before. The diacetyl and ally! caproate have 

ceased to be distinct clusters. Diacetyl has merged with the decanal and methyl salicylate 

grouping. This may be because this test was run using the results of test 13 where 

removal of the two apparent outliers of ally! caproate changed the data interactions. 

Different results may have been seen if this test had been run with those two points 

included. 

Test 14 3-0 Plot 

4 

Legend: Ally! Caproate Green Diamond 
Methyl Salicylate: Red Circle 
Myrcene: Magenta Cross 
Diacetyl: Gold Diamond 
Decanal: Black Cross 

4 

Figure 30: Test 14 Results: Removal of All iso Amylacetate 
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Test 15- Removal of Three Samples from Test 13 

The final test where data vectors were removed was test 15. Preparation for this 

test began with the results from test 13, after the removal of the single allyl caproate 

point. Two points from methyl salicylate and one of myrcene were removed. (Refer to 

figure 31) This test was an improvement on all the tests 12-14. Distinct clusters are 

apparent for allyl caproate, myrcene, and diacetyl. Decanal consists of a tight cluster of 

black crosses within the concentration of methyl salicylate and iso amylacetate data 

points showing no discrimination. 

Test 15 3-D Plot 

4 

Legend: Allyl Caproate Green Diamond 
Methyl Salicylate: Red Circle 
iso Amyl Acetate: Blue Box 
Myrcene: Magenta Cross 
Diacetyl: Gold Diamond 
Decanal: Black Cross 

Figure 31: Test 15 Results- Removal of Three Additional Outliers 
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Test 16- New Designated Clusters 

There were three more series of investigations to close out this series of 

experiments. The first was an idea that if the designated clusters were chosen to roughly 

coincide with the approximate locations of the clusters created using the CDA algorithm 

on the Cyranose, which were similar for all data samples, the NN might have an easier 

time assigning the data vectors to clusters. This was test 16. (Refer to figure 32). For 

comparison, the plot from the CDA Cyranose run using the same data sample as was used 

for the previous tests can be seen in figure 33. The clusters from this test were used to 

assign the designated clusters for test 16. 

Test 16 3-D Plot 

Figure 32: Test 16 Results 
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Canonical Projection Plot 

F3 

. \.ib 
ii 1 \ 9 

Figure 33: Comparable Results from Cyranose Unit 

Test 17- Sequential Presentation of Input Data 

allylcap 
rnethylsal 

Jsoa1Uj1lac 

myn:ene 
lee n II 
dlacetyt 

The neural network program is designed to present the data to the network in a 

random order. This results in the data vectors having a varying degree of effect on each 

other and the clustering produced. In test 17, the data was presented in a sorted order, 

with the data vectors for each chemical presented sequentially. There was no 

improvement in the clustering. In fact, the order of the presentation of data to the 

network does not appear to significantly affect the clustering capabilities of the network. 

(See figure 34.) 
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Test 17 3-D Plot 

Figure 34: Test 17 Results: Non-Random Data Presentation 

Test 18- Random Data 

Finally, in order to ensure that the apparent clustering seen in these tests was not 

due to random chance, a new set of data was created made entirely from randomly chosen 

numbers in the same range as the actual data. Test 18 shows absolutely no clustering. 

(Refer to figure 35) This indicates that the clustering seen in the NN plots does indicate 

ability to group similar data into clusters. 
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Test 18- Random data values 
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Figure 35: Test 18 Results: Random Data 
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CHAPTER VI 

CONCLUSIONS 

Kohonen Neural Network Clustering Ability 

The unsupervised Kohonen neural network was unable to cluster the electronic 

nose data obtained from the Cyranose 320™ Electronic nose. As previously mentioned, 

as of 1997, unsupervised neural network algorithms had not been applied to electronic 

nose data. [BEG] It has also been noted by Singh et al. [SHG] that real-world electronic 

nose data tends not to be well behaved and is often noisy and distorted. This may 

partially explain why unsupervised neural network algorithms had not been applied to 

electronic nose data. There did not appear to be any ability to group the input vectors 

together based on chemical type. It is also interesting to note that according to Sun et al. 

[SCK], self-organizing neural networks tend to perform worse than K-means clustering 

even though unsupervised neural networks appear to better suit clustering strategies. 

Numerous changes were made to the program in an attempt to improve the 

clustering ability of the network. The data pre-processing was improved such that it 

mimicked the pre-processing performed in the chemometrics based pattern recognition . 

system in the Cyranose unit. While this was an important change, making an accurate 

comparison between the results of the two systems possible, it brought only incremental 

improvements to the system. Numerous learning rates and neighborhood multiplier 

update schemes were tested yielding some positive results. The network configuration 

was changed from a two dimensional cluster array to a three dimensional cluster array 
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making the neural network results match the configuration of the Cyranose unit, although 

this did not improve the clustering ability. 

Reasonable results in clustering were seen only after the clustering algorithm was 

changed from an unsupervised to a semi-supervised Kohonen algorithm. Network 

weights in an unsupervised Kohonen network are usually assigned randomly. If 

knowledge exists about the ultimate distribution of clusters for a particular problem, this 

knowledge can be incorporated into the architecture of the network. [F] The input data 

from the electronic nose contained information about the identity of each input data 

vector. This knowledge was used in training the neural network to give specific clusters 

in the network weight values equal to the average values of the input data vectors. This a 

priori knowledge resulted in a network described in this thesis as 'semi-supervised'. 

With this change, the network was able to cluster the inputs at an efficiency rate of about 

50-70%. This compares to a clustering capability, based on internal cross-validation

results, of 100% for the Cyranose unit's build-in chemometrics pattern recognition 

system. Whilst this level of efficiency from the Kohonen semi-supervised network is not 

considered sufficient to identify unknown samples with any degree of accuracy, it is a 

major improvement over the unsupervised network results. The semi-supervised neural 

network algorithm could be combined with the Cyranose electronic nose by adding the 

data manipulation and neural network code into the built-in software available with the 

Cyranose 320™ Electronic nose. 

The 3-D clustering graphs indicate that the semi-supervised Kohonen network 

was able to successfully separate three of the six distinct chemical odorant samples: allyl 
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caproate, myrcene, and diacetyl. The remaining three samples were assigned to the same 

or very closely positioned clusters. Although the electronic nose's built-in chemometrics 

system successfully separated all six chemicals, three of those chemicals were not as well 

separated as would be ideal. The chemometrics system consistently separated myrcene, 

decanal, and allyl caproate. The other three chemicals: methyl salicylate, isoamyl acetate, 

and diacetyl, were more closely concentrated. When choosing the chemicals to use for 

the initial testing, several were tried and discarded because there were difficulties getting 

sufficient discrimination from Cyranose built-in identification system. It is highly likely 

that different combinations of chemicals, concentrations, solvents, or sampling methods 

would significantly affect the clustering capabilities of the neural network, although 

possibly in a different way from the effects on the Cyranose pattern recognition system. 

It is also a possibility that, as was found with the three built-in chemometrics algorithms, 

a neural network system might work well in cases where the chemometric algorithms did 

not. This possibility was not tested here. 

During the training phase of the Cyranose unit, the pattern recognition algorithm 

was run many times as data vectors were collected, discarded as outliers, and new sets 

collected. The data samples ultimately used to achieve the 100% cross-validation on the 

Cyranose pattern recognition system were then applied directly to the neural network. 

There was no ability to do any re-sampling once the neural network evaluation 

commenced. The comparison between the two systems was thus not a fair evaluation in 

the sense of a scientific comparison and thus gave only an indication of the neural 

network's capabilities. Experience from training the Cyranose unit on the pattern 
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recognition algorithms available indicated that the data sample that resulted in a 

successful clustering for one algorithm did not always result in successful 100% 

clustering with the other algorithms. It is highly likely that the same situation exists with 

respect to the neural network algorithm. If the same degree of human supervision of the 

data sampling had been available for the neural network system, it is highly likely that its 

performance would have greatly improved. 

A venues for Future Work 

There are several avenues for future research into improving the clustering 

abilities of this semi-supervised Kohonen neural network. The assignment of average 

input data to weights of the network gave the network some direction in clustering. In the 

literature, there are references to the use of a combination of PCA analysis to reduce the 

dimensionality of the incoming data with a neural network as a promising way of 

clustering data. [K] The Cyranose chemometrics system utilized both PCA for reducing 

the dimensionality and for identifying outliers and one of three pattern recognition 

algorithms to successfully cluster the data and make identification of unknowns possible. 

Linking the data sampling with the neural network program in order to improve 

the selection of a workable data sample and avoid the necessity of using a data sample 

selected for a different pattern recognition system could greatly improve the ultimate 

performance. This would require close cooperation between a researcher and Cyrano 

Sciences, Inc. A true comparison of the two systems would start with a random set of data 

74 



for six chemicals, with no additional sampling, and control of all other variables. The 

efficiency rates of the two systems could then be compared. 

Finally, other neural network algorithms could be applied to electronic nose data. 

Algorithms such as fuzzy ART maps and learning vector quantization are both algorithms 

for clustering input data. 

75 



APPENDIX A 

KOHONEN NEURAL NETWORK 

ALGORITHM 
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KOHONEN NEURAL NETWORK 
ALGORITHM 

The Kohonen self-organizing neural network was developed by Teuvo Kohonen. 

His original work on self-organizing maps was conducted in the early 1980's and was 

further developed into a more formal neural network algorithm in 1989. [F] The 

development of the algorithm followed discoveries that detailed maps of interrelated 

signals can be formed in a one or two-dimensional array of processing units which had 

no structure initially. [Ko2] Self-organizing neural networks are also called topology­

preserving maps. 

During the self-organization process, each input pattern is presented to the 

network. The cluster unit whose weight vector most closely matches the input pattern is 

chosen as the winning cluster. In this way, it can be seen that the weight vector serves as 

a typical input pattern for any particular cluster. As the distance from the winning cluster 

increases, the similarity between its weight vector and those of the neighbors increases. 

Each time a winning cluster is chosen for a particular input pattern, the weight vector is 

updated to more closely match the input vector, improving the chances that the next time 

a similar input pattern is presented to the network, it will also be assigned to the same 

winning cluster. 

Architecture 

The processing units that execute these topological maps are similar to 

perceptrons. [K] There is a set of input units linked to the output or cluster units. Each 

link is given a distinct weight value. The methods for choosing weight values is 

explained later in this appendix. There are m cluster units and they are typically arranged 
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in a one- or two-dimensional array. A one-dimensional topology is shown in figure Al 

below. 

WJJ 

Figure Al: Single Layer Kohonen Network 

Each cluster unit has a designated 'neighborhood' around it. The neighborhoods 

are designated by a radius (R) indicating the distance from the specific cluster unit. The 

size and shape of the neighborhoods can be varied and is dependent upon the 

characteristics of the particular problem and on the shape of the cluster array. Figures A2 

and A3 show two possible neighborhood arrangements for two-dimensional cluster 

arrays. Each time the winning cluster's weights are updated, the neighboring cluster unit 

weights are also updated. The degree to which the neighboring units are updated is 

dependent upon the distance of the unit from the winning unit. 

Note that if the winning unit is near the edge of the grid, some neighborhoods will 

have fewer units than if the winning cluster were in the center of the array. The 

neighborhoods do not wrap around from one side of the grid. Missing units are ignored. 
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Figure A2: Neighborhoods for Rectangular Cluster Array 
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Kohonen described more complex systems for incorporating neighborhoods in a 

self-organizing network in a paper in 1982. [Ko2] In this example, the units in the 

neighborhoods immediately around the winning cluster were updated to make their 

weight vectors more similar to the winner as before. Additional neighborhoods further 

from the winner were given an inhibitory update, decreasing any likelihood of similar 

input vectors being assigned in this region. There is both anatomical and physiological 

evidence that this type of activity takes place between biological neurons. [K] 

Step 0: Initialize weights wy. 

Set neighborhood parameters. 

Set learning rate parameters. 

Algorithm 

Step 1: While stopping condition is false, do steps 2-8. 

Step 2: For each input vector x, do steps 3-5. 

Step 3: For eachj, compute: 

D(i) = L (wy-x;)2 

Step 4: Find the index J such that D(J) is a minimum. 

Step 5: For all unitsj within a specific neighborhood of J, and for all i: 

wy(new) = wy(old) + a[x;-wy{old)]. 

Step 6: Update learning rate. 

Step 7: Reduce radius of topological neighborhood at specified times. 

Step 8: Test stopping condition. 
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Weight Assignment, Learning Rate and Neighborhood Reducing Alternatives 

Weights in the network are generally assigned random values. If there is some 

information known about the system or the distribution of the cluster for a particular 

problem, it may be appropriate that the choice of weights in some way reflect that a priori 

knowledge. 

The learning rate is a slowly decreasing function of time or training epochs. It has 

been shown that a linearly decreasing function works well for most practical 

computations [Ko]. It is also possibile to use a geometrically decreasing function to 

reduce the learning rate. 

The maximum size of the neighborhood also decreases as learning progresses. As 

the network approached the stopping condition, the maximum size of the neighborhood 

decreases in size. The neighborhood can be reduced one unit each time the learning rate 

is reduced, one unit for every epoch or several epochs, or any method that fits the 

situation. 
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A BRIEF INTRODUCTION TO 

CHEMOMETRICS 
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CHEMOMETRICS 

Chemometrics is defined as the use of multivariate mathematical and statistical 

techniques to extract valuable but often hidden information from data. [BEG] [Li] These 

methods have proven essential in areas such as the chemical and flavor industries due to 

their ability to analyze many variables simultaneously. 

Chemometrics includes many methods of data analysis techniques which are 

applicable to sensor array data analysis. These include data pre-processing techniques, 

principal components analysis, and pattern recognition algorithms. 

Data Pre-processing 

Data pre-processing is an important first step in data analysis. Pre-processing of 

the data is performed on data for a number of reasons. Pre-processing can remove or 

reduce the effects of systemic and random variations in the data, reduce random and low 

frequency noise, reduce baseline effects, account for data intercepts, and give more 

weight to some samples rather than others. The choice of which pre-processing 

techniques to apply to different data depends on the specific details of the data and the 

problem being investigated. Often, the exact choice of techniques to apply cannot be 

determined without testing various techniques on the data. 

In general, there are two types of data pre-processing: variable and sample pre­

processing. [BPS] Variable pre-processing contains tools that operate on each variable of 

the data, in other words, on the data columns. Sample pre-processing operates on the 

individual samples of data, operating on the rows of data. 
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Variable pre-processing methods include mean-centering, auto-centering, and 

variable weighting. Mean centering is a common tool that is applied to account for an 

intercept in the data. Performing the mean centering calculation on the variable data 

results in the removal of the mean sample vector from all vectors in the data set. This 

operation generally does not hurt the data analysis and often is beneficial. [BPS] Mean 

centering is calculated by subtracting the mean of a particular variable vector from each 

of its elements. The calculation is shown below in equation B 1. 

[Bl] Ximc = X; - (�:; Xj )/ n 
j=l 

where X;mc = mean-centered variable element 
n = total number of elements in data column 
xi = variable element prior to mean-centering 

Auto-centering to unit variance removes any inadvertent weighting from the data 

arising from arbitrary units such as from vastly differing samples. [Li] Auto-centering 

captures information from sensor responses that are very repeatable. Auto-centering is 

usually not the best variable pre-processing method if the data contains sensors with 

relatively small responses containing little meaningful information. [Cy2] Auto-centering 

is calculated by dividing each element of the variable vector by the standard deviation of 

the vector. This calculation is shown in equation below. 

where Xiac = auto-centered variable element 
x = mean of variable elements 

A variation on the previous two centering methods is a combination of the 

methods. It is possible to standardize each variable by subtracting the mean of the 

variables from each individual value then dividing by the standard deviation. [B] 
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Variable weighting is the last variable pre-processing method. Variable weighting 

is used to emphasize some variables over others to increase the influence of those 

variables on the model. Variable weighting would consist of multiplying all entries for a 

particular variable by some constant to increase its effect on the data analysis. 

There are four types of sample pre-processing used to prepare data for analysis. 

These are normalization, of which there are several methods, weighting, data smoothing, 

and baseline corrections. [BPS] 

Normalization of a sample vector is accomplished by dividing each variable in the 

sample set by a constant. There are three types of normalization: '1-norm', '2-norm', and 

max intensity, or 'infinity-norm'. The '1-norm' normalization involves dividing the sum 

of the absolute values of all entries for a particular sample vector from each entry. (See 

equation B3.) 

nvars 

[B3] x-' = x-1 CE I x-1 ) 
'l 'l J=l 'l 

The 2-norm is the normalization of each value to unit length and is calculated by 

dividing each value by the square root of the sum of the squared values of the sample 

vector as indicated in equation [B4]. 

nvars 

[B4] x-' = x-1 sqrt( L x-
2

) '} '} j=O '} 

There are potential difficulties with 2-norm as it is possible to lose the variability 

in some of the variables. A compromise approach would be to selectively normalize 

certain variables. With this method, the summation would include only those variables 
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that are being normalized instead of all variables. The third normalization method, oo­

norm, is normalization to a maximum intensity. If the maximum intensity equals one, 

this is calculated by dividing each element by the oo-norm, which is the maximum, in 

absolute value, of the sample vector. Normalization is applied specifically to remove 

systemic variations. 

nvars 

[B5] x; = x1 I (max I x1 I) 
j=I 

Sample weighting, like variable weighting, involves multiplying each element in 

the sample vector by some constant. Weighting should only be applied when very 

reliable information is available about the relative importance of some samples over 

others. 

Sample smoothing is used to mathematically reduce the random noise in a sample 

with the goal of increasing the signal to noise ratio. 

Baseline corrections remove low-frequency sources of variation, which are not 

related to the chemistry of the system being investigated. [BPS] These variations can be 

large relative to the changes in the signal of interest. An explicit modeling approach is 

used to remove the baseline effect. 

If a sample vector is r = f(x), and 

[B6] r = r' + a + Px + yx2 + 8x3 + ... 

where r' is the signal of interest and the remainder is the baseline effect. By postulating a 

model for the baseline (offset, linear, polynomial, etc.), the offset can be a�counted for 

through subtraction. 
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Principal Components Analysis 

Principal Components Analysis (PCA) is an unsupervised mathematical 

manipulation of a data matrix where the goal is to represent the variation present in many 

variables using a smaller number of 'factors' or dimensions. [BPS] This allows the 

investigator to view the true multivariate nature of the data in a relatively small number of 

dimensions, allowing human pattern recognition to be used to identify structures within 

the data. PCA is an excellent tool for preliminary data exploration. It is useful for 

examining data sets for expected or unexpected clusters and for the presence of outliers. 

PCA can be used to filter out noise in a system and can provide the amount of variation 

contained by each measurement variable. 

Supervised Pattern Recognition Algorithms 

There are several supervised pattern recognition algorithms available for in-depth 

data analysis. These methods are used when the goal is to construct a model to be used to 

classify future samples. Supervised learning is accomplished using a set of data with 

known classifications to "train" the system to distinguish between classes. The 

algorithms include K-nearest neighbor, K-means, and Canonical Discriminate Analysis. 

K-nearest neighbor is a general approach for classifying unknown samples. The

assignment of an unknown is accomplished according to the majority vote of its K­

nearest neighbors in the training set in the multi-dimensional space. To classify an 

unknown, the distance is calculated between it and a set of samples of known class. The 

closest k samples are then used to make the classification. The choice of the value of k is 
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determined by a cross-validation procedure and is often equal to the maximum number of 

samples in the class with the fewest members. [Cyl] 

K-means is similar to K-nearest neighbor. This prediction algorithm assigns

unknowns to a class based on the Euclidian distance between the class centroid and the 

sample in the multi-dimensional space. [Cyl] The predicted class of an unknown is 

assigned to the class of the sample(s) lying nearest to it in multi-dimensional space. The 

Euclidian distance is commonly used to measure the nearness between samples. The 

Euclidian distance is calculated by the equation below [B7]. 

[B7] Euclidian Distance = sqrt((x1-yi)2 + (x2-y2)2 + ... + (Xnvars -Ynvarsi) 

Canonical Discriminant Analysis is a supervised learning algorithm, which 

assigns unknown samples to classes based on the criterion of the shortest Mahalanobis 

distance between its centroid and the sample in canonical space. [Cyl] The Mahalanobis 

distance is measured in terms of the standard deviation from the mean of the training 

samples. It differs from the Euclidian distance in that it takes into account sample 

variability. It weights the differences by the range of variability in the direction of the 

sample point. [Th] 

In chemometrics data analysis, the aforementioned methods are often used in 

combination to improve the data analysis. [K] Extensive testing is done to determine 

which combinations work best with a particular data set. 
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DATA CONVERSION AND PREPROCESSING 
PROGRAMS 

Program Name: 'dataConvert.cxx' 

/* This program is designed to convert enose data 
* from the file format from the cyranose unit into
* a data file usable with the NN for the enose.
* The program will take several data files and
* convert and combine them so that adequate data
* samples are available to train the NN
*/

/* Created 1/18/01 
* Program works for old and new data files
*Will use ANSI std include files and notation
* 2/12/01 including randomizing of file
* works for randomizing 2 data files of 60 datasets each 2/14/01
* 2/12/01 including normalization of data

*/ 
/* Edited for final data file format 11/01 

* Will take data file directly from nose
* Files will be named 'trainl' ... 'trainS'
* Works 11/13/01
* Determined that randomization of training data is required, 11/14/01
* Code included 11/14/01
* Testing started

*/ 

#include <iostream> 
#include <stdio.h> 
#include <fstream> 
#include <stdlib.h> 
#include <string> 
#include <ctime> 

using namespace std; 
using std::fstream; 
using std::ostream; 
using std::ofstream; 

const int SIZE = 480; 

void random_array(string[], int); 
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int main() 
{ 

//read in name of file 
char firstLine[80]; 
string classNumber; 
char fileNamein[30]; 
char fileNameOut[30]; 
int i=0, j =0; 
char convert = 'n'; 
double data; 
//temp var to hold data read from file 
char ans = ' y' ; 
int dataset = 0, row = 0; 

do{ 
//This allows conversion of multiple files 
cout<<"Enter the name of the file to convert: "; 
cin>>fileNamein; 
cout<<"fileName = "<<fileNamein<<endl; //this works 
ifstream infile(fileNamein , ios::in); 

if ( ! infile ) { 
cerr<<"Input file could not be opened."<<endl; 
exit (1); 

//open output file 
//Make this general- ie add line to enter outfile name, 11/12/01 
cout<<"Enter the name of the output file: "; 
cin>>fileNameOut; 
ofstream outfile(fileNameOut, ios::app); 
if ( ! out file ) { 

cerr<<"Output file could not be opened."<<endl; 
exit(l); 

infile>>firstLine; 
//get to first line of valuable information 
while(firstLine[0] ! ='E') { 

//Get next line 
infile>>firstLine; 

cout<<"\n"<<firstLine<<"\n"; 
infile>>data; 
cout<<data<<endl; 
//Put first data point into outfile 
outfile<<data<<" "; 
row=0; 
while (!infile.eof()){ 

j =0; 
infile>>data;
outfile<<data<<" "; 
if(data >=1){ 

outfile<<endl; 
dataset++; 
row++; 
infile>>firstLine; 

} //end if 
if(row == 60) 

break; 
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data 

} // end while 
//ask if user wants to convert another file 
do { 

cout<<"Do you have another file to convert? "; 
cin>>ans; 
} while(ans != 'y' && ans != 'n'); 

outfile.close(); 
infile.close(); 
} while(ans == 'y'); 

//start of randomization portion of program 
//Use same file for input as used for output above 
ifstream infile(fileNameOut , ios::in); 
if ( ! infile ) { 

cerr<<"Input file could not be opened."<<endl; 
exit(l); 

cout<<"Enter the name of the final output file: 
cin>>fileNameOut; 
ofstream outfile(fileNameOut, ios::app); 
if ( ! out file ) { 

" .
, 

cerr<<"Output file could not be opened."<<endl; 
exit(l); 

//grabs each line of data file char firstline[SIZEJ; 
string dataLine[300]; //pointers to strings holding each line of 

int fill[300] = {0}; 
int k = 0; 
int sets=0; 
cout<<"How many data sets in infile?\n"; 
cin>>sets; 

//read in data from file 
while (!infile.eof()) { 

cout<<"In while\n"; 
j = rand() %sets; 
cout<<"j = "<<j<<endl; 
while(fill[j] == -1) { 

//find another j 
j = rand()%sets; 

} 
infile.getline(firstline,SIZE, '\n'); 
cout<<"firstline: "<<firstline<<endl; 
dataLine[j] = firstline; 
f i 11 [ j ] =-1 ; 
cout<<"Data line "<<j<<": "<<dataLine[j]<<endl; 
k++; 
cout<<"k = "<<k<<endl; 
if(k == sets) 

break; 

cout<<"k "<<k<<endl; 

//randomize data lines 
random_array(dataLine,sets); 

//Now put lines into output file 
for(i=0;i<sets;i++){ 
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outfile<<dataLine(i]<<endl; 
cout<<"Line "<<i<<" : "<<dataLine(i]<<endl; 

return 0; 

/* each line in the incoming data file should be put into 
* strings before being sent to this function
* Function: random array()
* Input: string(],-an ordered array of strings
* Output: string(], a randomized array of strings
*/

void random array(string B(], int size) 
{ 
-

//Initialize variables 
int i,j; 
string R[size]; //string to hold randomized array 

//random seed 
srand(time(0)); 
cout<<"In random array()\n"; 
for(i=0;i<size;i++) { 

} 

j=rand()%size; 
//correct the comparison below 

while(B(j] == ""){ 
//find another value 
j = rand()%size; 

cout<<"in for, j = "<<j<<endl; 
R[i] = B[j]; 
//set B[j] to 0 so not used again 
B[j] = ""; 

//put mixed up values back into B[] 
for(i=0;i<size;i++){ 

B[i]=R[i]; 

for(i=0;i<S;i++) 
cout<<"B("<<i<<"]: "<<B(i]<<endl; 

} // end random_array() 
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Program Name: 'enose_fullnorm_k2.cxx' 

/*This program takes raw enose data and normalizes it for inclusion into 
a neural net testing program using the Monarch library. 
*/ 
//This program creates enosetrain.dat as of 2/14/01 
/* This program was altered 11/16/01 to create data to use for Kohonen 
networks 

* Data normalized to between 0 and 1

* 3/7/02 Normalize up to 300 data sets of entire data from enose
* 3/25/02 Change normalization to 0-1.0
* 9/3/02 Change normalization to match that done by Cyranose unit
* 3:10 pm test on 2-norm only
* twonorm works @3:30 pm
* 10/21/02 alt preprocessing added- auto-scaling 

*/ 

#include <iostream.h> 
#include <fstream.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <ctime> 

void twonormal (double [300) [35), int, int, double [300] [35)); 
//double[rows] [columns] rows == 300, cols == 35 

// two norm operates on rows 
void meancenter (double [300) [35), int, int, double [300) [35)); 
//preprocessing on columns 

void autocenter(double [300) [35), int, int, double[300] [35)); //another 
preprocessing on columns 

int main() { 
//int seed; 
srand(time(0)); 
//Internal variables 

ifstream in file; 

char fileNamein[30]; 

char fileNameOut[30]; 

ofstream out file; 
double value; 
ofstream middata; 

//double subscript array: row, column 
//enose kohonen up to 300 data sets, 35 inputs 
double raw[300] [35), train1[300] [35), train2[300] [35); 
int i=0; 
int j=0,k = 0, m=0; 
int cols; 
int rows; 
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//Open files 
//open raw data file and neural net data file 

cout<<"Enter the name of the file to normalize: "; 
cin>>fileNamein; 
//cout<<"fileName = "<<fileNamein<<endl; 
in_file.open(fileNamein , ios::in); 

cout<<"Enter the name of the output file: 
cin>>fileNameOut; 
out_file.open(fileNameOut, ios::out); 

if (!in file){ 
cout<<"Error opening a data file.\n"; 
exit(-1); 
} 

if (!out file) { 

" .
, 

cout<<"Error opening secondary output file.\n"; 
exit (-1); 
} 

//middata.open("intermed.dat", ios::out); 
//input number of rows of datasets in input file 

cout<<"Enter the number of datasets in input file.\n"; 
cin>>rows; 

//Bring in all data from raw data file for testing data 
while(k<rows) { 

if(k == 0) 
in file>>value; 

j=0; 
while(j<=32){//End of characteristic array not reached 

//read in each array 

raw[k] [j] = value; //change raw- need different array 
j++; 
in_file>>value; 

}// end inner while 

cols = j; 
k++; 

//end of read in while loops 

//Normalize train data, i =#of train sets 
// For Kohonen, normalization between 0 and 1 
II 9/3/02; to match Cyranose, use 2-norm 
II 2norm = sqrt(SUM(xjA2)), j=l to nvars 
// Send whole array to function 
// Only normalize cols 0-31, not 32- chem col 
int n; 
for(k=0; k<rows;k++) { 

twonormal(raw, k, cols,trainl); 
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//end for loop 

/* 
//mean centering of columns, except for chem column 
for(j=0;j<cols-1; j++) 

{ 

//send column to function 
meancenter(trainl, j, rows, train2); 

} 

*/ 

// 10/21/02 auto-scaling for preprocessing 
for(j=0;j<cols-1; j++) 

{ 

//send column to function 
autocenter(trainl, j, rows, train2); 

// Add chem number to train2 martix 
for(i=0;i<rows;i++) 
{ 

train2[i] [32]=raw[i] [32); 

//Then output characteristic sets to NN data file 
k=n=0; 
//Fill train data file, 300 data sets 
II No randomizing of order 
for(k=0;k<rows;k++) 

{ 

n=0; 
for(n=0;n<cols;n++) 

{ 
//middata<<trainl[k] [n]<<" "; 
out file<<train2[k] [n]<<" "; 

out file<<endl<<endl; 
//middata<<endl; 
} 

in file.close(); 
-//in fileTrain.close(); 

out file.close(); 
//middata.close(); 

} //end main 

void twonormal(double b[300] (35), int row, int cols, double 
twonorm[300] (35)) 

{ 

//operates on rows 
int i=0; 
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double sum = 0; 
double sqvalue; // square of value in row 
double srvalue; //square root of sqvalue 
//sum the squares of all values in row 
for {i=0;i<cols-1; i++) 

{ 
sqvalue = pow{b[row] [i],2); 
sum = sum + sqvalue; 

} 
//cout<<"sum = "<<sum<<"\n"; 
srvalue = sqrt{sum); 
for (i=0;i<cols-1; i++) 

{ 
twonorm[row] [i] b[row] [i] /srvalue; 

} 

// Enter chem value in last column into new matrix 
twonorm[row] [cols]= b[row] [cols]; 
} //end twonormal() 

void meancenter(double c[300] [35], int col, int rows, double 
meancntr[300] [35]) 

{ 

//mean centering operates on columns 
// subtract the mean of that variable vector from each element 
int i=0; 
double mean =0; 
double sum = 0; 
//calculate mean of variable vector 
for (i=0; i< rows; i++) 

{ 

sum = sum + c[i] [col]; 

} 
mean = sum/rows; 

//calculate new element value 
for (i=0; i<rows; i++) 

{ 

meancntr[i] [col]= c[i] [col] - mean; 
} 

void autocenter(double c[300] [35], int col, int rows, double 
autocntr[300] [35]) 

{ 

//auto centering operates on columns 
// mult each value in column by inv of std dev 
int i=0; 
double mean =0; 
double sum = 0; 
double difsum = 0; 
double stddev; 

//calculate mean of variable vector 
for (i=0; i< rows; i++) 

{ 

cout<<c[i] [col]<<" "; 
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sum = sum + c[i] [col]; 
} 

cout<<"\nsum "<<sum<<endl; 
mean = sum/rows; 
cout<<"Mean = "<<mean<<endl; 
for (i=O; i<rows; i++) 
{ 

difsum = difsum + pow((c[i] [col]-mean),2); 

cout<<"difsum = "<<difsum<<endl; 
// calculate standard deviation 
stddev = sqrt(difsum/rows); 
cout<<"stddev = "<<stddev<<endl; 
//calculate new element value 
for (i=O; i<rows; i++) 

{ 
autocntr[i] [col]= c[i] [col]/stddev; 
} 
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KOHONEN NEURAL NETWORK 
SOURCE CODE 

File Name: "setup.h" 

#define N INPUTS 32 
#define N-OUTPUTS 6 
// enose has 32 sensors and 6 "outputs" or clusters 
// 11/21/01 smaller test set of data to work out bugs 

#define DATA SIZE n inputs 
#define N TESTS 60 -

real Layer 
real Layer 

f(real x) 
f_dot(real x) 

return purelin(x); 
return purelin_dot(x); 

static real Gain=DEFAULT GAIN, Eta=DEFAULT ETA, Alpha=DEFAULT ALPHA; 
static real Epsilon=DEFAULT EPSILON; 

- -

static integer n_inputs=N_INPUTS, n_outputs=N_OUTPUTS; 

void alpha(char *s) { Alpha 
void -eta(char *s) { Eta 
void =gain(char *s) { Gain 

atof(s); 
atof(s); 
atof(s); 

#define N PARMS 5 

parameters test ini[N PARMS] = { 
{ "echo", (function) echo } , 
{ "*", (function) comment }, 
{ "alpha", (function) =alpha }, 

} ; 

{ "gain", (function) _gain }, 
{ "eta", ( function) eta } , 
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File Name: "App.h" 

// Altered 3/6/02 for neighborhoods 

#include <kohonen.h> 

// adjust for neighborhoods, 2/25/02 

class App : public MonarchApp 

} ; 

private: 
array *dummy target; 

public: 
-

InputLayer *il; 
OutputLayer *ol; 
KoNet *net; 

void Simulate(array&, matrix3&, int); 

App(int argc, char *argv[]); 
~App (void); 

// out changed to matrix, 2/25/02 
void App::Simulate(array& in, matrix3& out, int r) { 

il->from (in); 
net->simulate(*durnmy target, r); // Kohonen nets are self 

orgainizing ... no target� 
ol->to(out); 

App::App(int argc, char *argv[]) : 
MonarchApp(argc, argv, "enose k.ini", N PARMS, test ini) { 

il = new InputLayer("Inputs", n inputs); 
//output layer a matrix of n outputsA2, changed 2/25/02 
//output layer for a 3D matrix n outputsA3, changed 4/26/02 

ol = new OutputLayer("Outputs", n_outputs*n_outputs*n_outputs); 

net = new KoNet("Ko", 2, Alpha, Epsilon); 
net->add(new KoLink(il, ol)); 

durnmy_target = new array(0); 

App: :~App(void) 
delete net; 
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File Name: "kohonen.h" 

/* 
** This was originally written by John and Jet (jettero@voltar­
confed.org) 
** This is known to not work quite right. We think it's pretty 
** close though. 
** 11/01 Additions and corections added by Lori Evesque 
** 11/27/01 Add function to reduce size of weight matrix to get 
rid of biases 
** 2/25/02 
neighborhoods 
** 
** 3/5/02 

Adding changes for incorporation of 

May need to add class KoLayer 
Don't need KoLayer due to inheritance but do 

need KoNet simulate fn 
** to get size of neighborhood data to simulate fn 
*/ 

#ifndef KoHoH 
#define KoHoH 

#include "monarch.h" 

#define DEFAULT EPSILON 0.0001 
#define DEFAULT-K ALPHA 2 

class KoNet; 

class KoLink : public Link { 
protected: 

} ; 

KoNet *net; 
array *activation; 

public: 
KoLink(Layer *from, Layer *to); 
virtual ~KoLink(void); 
KoNet *netOf(void) { return net; }; 
void netis(KoNet *n) {net = n; }; 
virtual void propagate(void); 
void adjustk(int&); 
void update(int,int); 
void update_wts(double[], int) ; 

class KoNet : public Net { 
protected: 

real alpha, epsilon; 
public: 

KoNet(char *n, integer 1, 
real e=DEFAULT_K_ALPHA, real ep=DEFAULT_EPSILON 

) ; 
~KoNet(void) { }; 
void add(KoLink *l) 

1->netis(this); 
links[next++] = l; 

} ; 
void addAt(integer i, KoLink* 1) { 
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} ; 

#endif 

} ; 

1->netis(this); 
links[i] = l; 

real alphaOf(void) { return alpha; }; 
void setAlpha(real alin) {alpha = alin; 

real epsilonOf(void) { return epsilon; }; 
virtual void sirnulate(array&, int); 
virtual void adjustk(int&); 
void update_wts(double[], int); 
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File Name: "kohonen.cpp" 

#include <string.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <time.h> 
#include <iostream.h> 

#include "kohonen.h" 
//#define DEFAULT ALPHA 2 
#define ALPHA (net->alphaOf()) 
//#define ALPHA 2 
#define EPSILON (net->epsilonOf()) 

KoLink ~KoLink(void) { delete activation; 

KoLink .. KoLink(Layer *from, Layer *to) : Link(from, to) { } 

void KoLink :: propagate(void) { 
real sum; 
//cout<<"In KoLink propogate\n"; 
for (integer i = 1; i <= upper->numberUnits(); i++) { 

sum = 0.0; 
for (integer j = 1; j <= lower->numberUnits(); j++) { 

sum += sqr(((*weights)[i][j]) - (*(lower->output))[j]) 
} 
upper->output->addAt(i, lower->f(sum)); 

//Streamlines adjustk function 
//Performs weight updating 
II 5/2/02 
II 

void KoLink :: update(int 1, int m){ 
real wOld; 

if(m>= 0 && m < upper->numberUnits()){ 
//index m is within array 
for(int i=l; i<= lower->numberUnits(); i++) { 

wOld = weights->getAt(m,i); 
weights->addAt(m,i,wOld + ALPHA/(1+1) * ((*(lower­

>output)) [i]- wOld )); 
} 

} // end update 

// Change for neighborhoods 
II 2/26/02 adjust nearest neighbors by half amount as winner 
// will try runnng 3/6/02 
// Change to incorporate 3D., 5/2/02 
// 11/5/02 a)Adjust neighbors only-- not winner 
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// 11/05/02 b) adjust neighbors by ALPHA/(1+1) and winner by ALPHA/1 
// therefore, update() above also edited 11/5/02 

void KoLink :: adjustk(int& r){ 
real sum; 
real wold; 
real least MAX REAL; 
integer J; 
integer i,j; 
int l=r; //1 and k determine neighbor 
int k,m; // m is neighbor index 
int n; 
int nout = pow(upper->numberUnits(), 1/3); //N OUTPUTS 
int nout2 = pow(nout,2); 

// find 'winner' 
for (j=0; j<= upper->numberUnits(); j++) 

sum = 0.0; 
for(i=0; i<= lower->numberUnits(); i++) { 

sum += sqr( ((*weights) [j] [i]) - (*(lower->output)) [i] 
) ; 

if(sum < least) { 
least = sum; 
J

= 
j; 

int z = floor(J/pow(nout,2)); //level winner is on 
//cout<<"in adjustk winner = "<<J<<endl; 
// what is J? take out after debugging 
//cout<<"J = "<<J<<" l="<<l<<endl; 

//change entire neighborhood 
//start changing weights furthest from winner to winner 

while (1>0) { 
for (k = -1; k<=l; k++){ 

//check for neighbors on left side of array 
if(J%nout-l >= 0){ 

//there are neighbors on left side 
m = J-1-(k*nout); 
if(m>= (z*pow(nout,2))){ 

// m on same level as J 
update (l,m); 

//cout<<"wOld = "<<wOld<<" Alpha/1/2 = 
"<<100*ALPHA/(1*2)<<endl; 

//check for neighbors on right side of array 

if (J%nout+l < nout){ 
//neighbors on right side exist 
n=J+l+(k*nout); 
//make sure n is on same z level 
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if(n> (z+l)*pow(nout,2)){ 
//n on same level 
update(l,n); 

} // end outer for loop for left and right sides 

// top and bottom neighbors 
k = 1 - l; 
// determine 1 node right of leftmost top node 
m= J + l*nout + k; 

//assign one right of bottom left node 
n = J - l*nout + k; 

//move across top and bottom rows left to right 
while(k<l) { 

} 

if((J+l*nout)< ((z+l)*(pow(nout,2)))){ 
//top row exists 
update(l,m); 

if((J-l*nout)>= z*pow(nout,2)){ 
//bottom row exists 
update(l,n); 

k++; 

m J + l*nout + k; 
n = J - l*nout + k; 

//Adjust for third dimension 
//Does upper boundary exist? 
if(z+l < nout) { 

//top plane exists 
//adjust nodes on plane within neighborhood 
for(int i = -1; i<=l; i++){ 

for(int j = -1; j<=l; j++) { 
//calculate index 
m = J + i*nout + j + l*int(pow(nout,2)); 
//determine if index on correct level 
if(m>=(z+l)*pow(nout,2)&& 

m<(z+l+l)*pow(nout,2)){ 

(J+l+i*nout+l*pow(nout,2))){ 
if(m>= (J-l+i*nout+l*pow(nout,2)) && m < 

update(l,m); 

if(z-1 >= O){ 
//bottom plane exists 
//adjust nodes on plane within neighborhood 
for(int i = -1; i<=l; i++){ 

for(int j = -1; j<=l; j++) { 
//calculate index 
n = J + i * nout + j - l*int(pow(nout,2)); 
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//determine if index on correct level 
if(n>=(z-l)*pow(nout,2) && n < (z­

l+l)*pow(nout,2)) { 
if(n>= (J-l+i*nout+l*pow(nout,2)) && n< 

(J+l+i*nout+l*pow(nout,2))){ 

z+s 

update(l,n); 

//Adjust square of nodes on levels between top and bottom 
for(int s=l-1; s<l; s++){ 

//adjust lower levels to upper 
for(k = -1; k<=l; k++) { 

//check for neighbors on left side of array 
if(J%nout-l >= 0 && ((z+s)<nout && (z+s) >= 0)) { 

//there are neighbors on left side and on level z+s 
m = J-1-(k*nout)+ s*int(pow(nout,2)); 

} 

cout<<"m = "<<m<<endl; 
if(m>= ((z+s)*pow(nout,2))){ 

//m is s levels from j 
update(l,m); 

//check for neighbors on right side of array 
if(J%nout + l < nout && ((z+s)< nout && (z+s) >=0)){ 

//neighbors on right side and on level (z+s) exist 
n = J+l+(k*nout) + s*int(pow(nout,2)); 

} 

//make sure n on same z level 
if(n< (z+s+l)*pow(nout,2)){ 

//n is levels from J 
update(l,n); 

} // end outer 'for' loop for left and right sides 
//top and bottom neighbors 
k = 1-1; 
//determine 1 node right of leftmost top node on level 

m = J + l*nout + k + (s*int(pow(nout,2))); 

//assign one right of bottom left node on level z+s 
n = J - l*nout + k + (s*int(pow(nout,2))); 

//move across top and bottom rows ieft to right 

while(k<l){ 
if(J+l*nout+(s*pow(nout,2))< (z+s+l)*pow(nout,2)) { 

//top row exists 
update(l,m); 

} 
if((J-l*nout + (s*pow(nout,2)))>= (z+s)*pow(nout,2)){ 

//bottom row exists 
update(l,n); 
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k++; 
m= J + l*nout + k+ (s*int(pow(nout,2))); 
n = J - l*nout + k + (s*int(pow(nout,2))); 

} 
} // end for loop to adj btw levels 
1--; 

} // end l>0 while 

// A) Don't change winner at all, 11/06/02 
// B) Change winner by ALPHA, 11/06/02 
//change winner separately 
for(i=l; i<= lower->numberUnits(); i++) 

wOld = weights->getAt(J,i); 
weights->addAt(J, i, 

wOld + ALPHA * ((*(lower->output)) [i] - wOld)); 

} //end KoLink::adjustk() 

/* 
* update weights() -- updates weight matrix for specific weights
* Input= weight values (array) and 3-D matrix location of output,

single variable 
*/ 

void KoLink .. update_wts(double a[], int out) 
{ 

// go through all inputs and change weights for specified output 
for(int i=l; i<= lower->numberUnits(); i++) { 

weights->addAt(out,i,a[i-1]); 
} 

KoNet :: KoNet(char *s, integer n, real a, real ep) 
alpha = a; 
epsilon = ep; 

/* 
* adjust() -- adjust weights
* This goes forward through the network.
* {*} Use a forward loop contruct macro
*/

void KoNet :: adjustk(int& r) 
{ 

II cout << "\n" ; II {*} just for debugging 
for (integer i = 0; i < n_layers-1; i++) 

{ 
links[i]->adjustk(r); 
} 

Net(s, n) { 
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/* 
* simulate() -- run (and possibly) train the network
* Runs a single epoch
*/ 

void KoNet :: simulate(array& target, int r) 
{ 

/* 

if (phase ! = setup) 
{ 
//cout<<"In KoNet simulate\n"; 
++epoch; 
propagate(); 
computeError(target); 
if (phase == training) 

{ 
backpropagate(); 
adjustk (r); 
} 

* update wts() -- allows for the updating of individual weight arrays
* This function updates all the weights connected to a specific output

node 
* Inputs: weight array, output node indicated by a number
* Outputs: none, alters the pre-existing weight matrix only, nothing

returned 
* Function created 10/1/02, LLE
* 

*/ 

void KoNet :: update_wts(double wts[], int node) 
{ 

//send parameters to link function 
for (int i=0; i< n layers-1; i++) 

{ 
-

links[i]->update wts(wts, node); 
} 

-

// end KoNet::update_wts() 
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KOHONEN NEURAL NETWORK DRIVER 

Neural Network Driver Program-
File Name: 'enose_k.cpp' 

#include <stdio.h> 
#include <stdlib.h> 
#include <iostream.h> 
#include <fstream.h> 
#include <math.h> 
#include <kohonen.h> 
#include "setup.h" 
#include "App.h" 
#include <time.h> 

II 2/25/02 begin alterations for 'neighborhoods' 
// 4/16/02 begin alterations for 3D clustering 
// 5/13/02 add function to display clustering efficiency 
II 9/24/02 start semi-supervised operation 
// import weights for 6 nodes based on averages from data files 
// 11/18/02 This version assigns winners to be closest to enose results 

const double PI = 3.14159; 
real A; 
// Size of neighborhood 
int rad = ceil(sqrt(N OUTPUTS)); 
const int cube = int(pow(N OUTPUTS,3));
//efficiency measurement 

-

int tally[N_OUTPUTS] [216); 

II Frequency of changing neighborhood 
// also related to number of outputs 
int rchange = ceil(sqrt(rad)); 
array Vectors(N INPUTS * N TESTS); 
//function prototype, this

-
for 3D 

double angle det(double, double, double, double, double, double, 
double); 

-

//function to selectively update weight martix for semi-supervision, 
9/26/02 
void update wts(fstream&); 
App *theApp; 
void dataConvert() { 

//internal variables 
double x[300], y[300], 

err[300],a rad[300],x2[300],y2[300],err2[300]; 
double z[300], z2[300], a rad2[300]; 
int chem[300]; 

-

int i=0; 
double max = -1000; 
double min = 1000; 
//Input data file name 
if stream raw data ( "data out. dat" , ios:: in);
if ( ! raw data ) { 

-
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} 

cerr<<"Input file could not be opened."<<endl; 
exit(l); 

//Output data file name 
char fileNameOut[30]; 
cout<<"Enter the final data file: "; 
cin>>fileNameOut; 
ofstream final data(fileNameOut, ios::out); 
//ofstream final data("final datal.dat" , ios::out); 
if(! final data) { 

-

cerr<<"Output file could not be opened."<<endl; 
exit (1); 

//Chemical data file name 
char fileNameChem[30]; 
cout<<"Enter the chemical data file: "; 
cin>>fileNameChem; 
//ifstream chemical("chemicall.dat" , ios::in); 
ifstream chemical(fileNameChem, ios::in); 
if(! chemical) { 

} 

cerr<<"Chemical file could not be opened."<<endl; 
exit (1); 

//set all tally to 0 
for(int i=0; i<N OUTPUTS; i++){ 

//cout<<"zeroing tally\n"; 
for(int j=0; j<cube; j++) { 

tally[i] [j]=0; 

srand(time(0)); 
while(raw data>>x[i]>>y[i]>>z[i]>>err[i]>>x2[i]>>y2[i]>>z2[i]>>err 

2[i]){ 
-

} 

chemical>>chem[i]; 
i++; 

//normalize error values 
for(int j=0;j<N TESTS;j++){ 

if(err[j]-< min) 
min = err[j]; 

if ( err[j] > max) 
max = err[j]; 

} 
for(int j=0;j<N TESTS;j++){ 

//calc normed err 

a_ rad2 [ j] ) ; 

err[j] = (err[j]-min)/(max-min); 
int loc = int(z[j]*36+y[j]*6+x[j]); 

//add tally 
tally[chem[j]-1] [loc]++; 

//determined directed angle 

a_rad[j] angle_det(x[j],y[j],z[j],x2[j],y2[j],z2[j], 
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x[j] x[j] + cos(a rad[j])*err[j]; 
y[j] y[j] + sin(a-rad[j]) * err[j]; 
z[j] z[j] + sin(a-rad2[j]) * err[j]; 
//Output to data file 
final_data<<x[j]<<" "<<y[j]<<" "<<z[j]<<" "<<chem[j]<<endl; 

raw data.close(); 
final data.close(); 
chemical.close(); 
} //end data convert() function 

//function prints NN results of clustering 
//determines how good a clustering job the network did

void efficiency(){ 
//variables 
int max; 
int index; 
double total 0; //clustered total 

//find biggest cluster for each chemical 
cout<<"Clustering results for network run\n"; 

for(int i=O; i<N_OUTPUTS; i++){ 
max = -1; 
for(int j=0; j<cube; j++) { 

if(tally[i] [j]>0) 
cout<<"tally["<<i<<"] ["<<j<<"] 

"<<tally[i] [j]<<endl; 
if (tally [i] [j] > max) { 

max = tally[i] [j]; 
index = j; 

cout<<"max = "<<max<<" index = "<<index<<" i = "<<i<<endl; 
cout<<"Network clustered "<<max<<" input vectors of"; 

switch(i){ 
case 0: 

cout<<" Allylcaproate "; 
break; 

case 1: 
cout<<" Methylsalicilate "; 
break; 

case 2: 
cout<<" Isoamylacetate "; 
break; 

case 3: 
cout<<" Myrcene "; 
break; 

case 4: 
cout<<" Decanal "; 
break; 

case 5: 
cout<<" Diacetyl "; 
break; 

cout<<"to cluster ("<<(index%36)%6<<","<<(index%36)/6 
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<<","<<(index/36)<<")\n"<<endl<<endl; 
total = total + max; 

double percent = total/60*100; 
cout<<"\nHighest clustering is "<<percent<<"% of inputs\n"; 

} //end efficiency 
II 4/15/02 change to add saving of second lowest cluster 
// 4/17/02 Adding 3rd dimension of clustering 
void printOutVector(matrix3 &out, int total[] [N OUTPUTS] [N OUTPUTS], 
£stream &data out, £stream &errs, int finish = 0) { -

// this-function will also save error values for non-winning
clusters 

int yold=0, xold 0, zold = 0; //variable to hold value of y and 
X 

int x=0, y=0, z=0; 
int x2=0,y2=0, z2=0; 
double err2=0, errl=0; 
// need to change getAt() 
double dif = out.getAt(x,y,z); //holds current min diff 

for(int i = 0; i<N OUTPUTS; i++) { 
for (int j=O; j<N OUTPUTS; j++) { 

for (int k�0; k<N OUTPUTS; k++) 
if (finish�= 1){ 
errs<<out.getAt(i,j,k)<<"\t"; 
if (j == N OUTPUTS-1) 

errs<<endl; 
} 
//original array eqn g= 

(out.getAt(i)<out.getAt(g))?i:g; 
yold y; 
xold = x; 
zold = z; 
y ( out.getAt(i,j,k) < out.getAt(y,x,z) ) ? i : y; 
x = ( out.getAt(i,j,k) < out.getAt(yold,xold, zold) ) 

? j : x; 

z = out.getAt(i,j,k) < out.getAt(yold,xold,zold) ) ? 
k z; 

dif; 

} 

errl = dif; //stores current value 
dif = (out.getAt(i,j,k) < dif)? out.getAt(i,j,k) 

if(dif < errl) { 
//old dif now 2nd lowest 
err2 = errl; 
x2 xold; 
y2 yold; 
z2 zold; 

//printf("[group: %i, %i], dif = %f\n", x+l, y+l, dif); 
total[y] [x] [z]++; 

II send coordinates of winner and second to output file 
if (finish == 1) { 

errs<<endl<<endl; 
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data out<<x<<" "<<y<<" "<<z<<" "<<dif<<" "<<x2<<" "<<y2<<" 
"<<z2<<" "<<err2<<endl; 

//print inVector prints data vector to standard output 
void printinVector(array &in) { 

for(int i = 0; i<N INPUTS; i++) { 
//printf statement prints only 1 sign digit- rounds input 

vector 
printf("%1.0f", in.getAt(i)); 

printf(" -> "); 

void Test(int final = 0) { 
array in(N INPUTS); 

// Output a 3D matrix 
matrix3 out(N OUTPUTS, N OUTPUTS, N_OUTPUTS); 

theApp->net->setPhase(testing); 
A =  theApp->net->alphaOf(); 
//fstream clusters("clusters.dat", ios::app); 
fstream data out ( "data out. dat", ios:: app); 

fstream errs("error_all.dat", ios::app); 

//need array to keep track of all the sets assigned to cluster nodes 
int totals[N OUTPUTS] [N OUTPUTS] [N OUTPUTS]; 
for(int i=0;i<N OUTPUTS;i++){ -

} 

for(int-j=0;j<N OUTPUTS;j++) {
for(int k�0;k<N OUTPUTS;k++){ 
totals[i] [j] [k]�0; 
} 

printf("\n-------------- Alpha = %f\n", A); 
for (integer n = 0; n< N TESTS; n++) { 

in.from(Vectors, n*DATA SIZE); 
//Simulate- check to see if it's ok with out-matrix 

theApp->Simulate(in, out, rad); 
if (final == 1) { 

else 

errs<<"Test array no.:"<<n<<endl; 
printOutVector(out,totals,data_out,errs,l); 

printOutVector(out,totals,data_out,errs); 

data_out.close(); 

//tests entire data sample through network 
void Train() { 

array in(N INPUTS); 
matrix3 out(N OUTPUTS, N OUTPUTS, N_OUTPUTS); 

theApp->net->setPhase(training); 
A =  theApp->net->alphaOf(); 
for (integer n = 0; n< N TESTS; n++) 

in.from(Vectors, n*DATA_SIZE); 
115 



theApp->Simulate(in, out, rad); 
} 
theApp->net->setAlpha( 0.25 * A); 

} 
//Main driver program 
int main(integer argc, char *argv[)) { 

//internal variables 
theApp = new App(argc, argv); 
A =  theApp->net->alphaOf(); 

//network weight files 
fstream initWt("initWt.dat", ios: :out); 
fstream midWt("midWt.dat" , ios::out); 
fstream fnWt("finalWt.dat", ios: :out); 

//Input data file name 
char fileNamein[30]; 
char wttargetfile[20]; 
cout<<"Enter the name of the file to convert: "; 
cin>>fileNameln; 
cout<<"fileName = "<<fileNamein<<endl; 

//ifstream from("readydatal.dat" , ios::in); 
ifstream from(fileNameln, ios::in); 
if ( ! from ) { 

cerr<<"Input file could not be opened."<<endl; 
exit (1); 

// This file will hold target weights for semi-supervision 
//fstream super("wt targetsl.txt", ios::in); 

cout<<"Enter the �ame of the weight target file: "; 
cin>>wttargetfile; 
cout<<"fileName = "<<wttargetfile<<endl; 
fstream super(wttargetfile, ios::in); 
//send entire weight matrix to file 

theApp->net->saveToFile(initWt); 
from >> Vectors; 
//Here assign weights to connections between inputs and 6 outputs 
// semi-supervision 
update wts(super); 
theApp=>net->saveToFile(midWt); 
// neighborhood change variable 
int k; 
while(A > 0.00001) { 

k= rchange; 
while ( k > 0 ) { 

Train(); 
Test (); 
k--; 

II reduce size of neighborhood radius 
// only until rad = 0 
while (rad > 0 ) 

rad--; 
} 
Test(l); 
theApp->net->saveToFile(fnWt); 
delete theApp; 
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initWt.close(); 
fnWt.close(); 
midWt.close(); 
from. close (); 
super.close(); 
//convert data to graphable data 
dataConvert(); 
//Determine efficiency of clustering 
efficiency () ; 
return 0; 

//function to determine directed angle for error visualization 
// includes 3D implementation 
// first angle depends only on x and y 
// second angle depends only on y and z- makes it easier 
double angle det(double x, double y, double z, double x2, double y2, 
double z2, double ang2 rad) 

{ 
-

int s; 
double ang, ang rad, ang2; 
//choose random-number once 
s = rand()%1000; 
// first angle 
// nested if statements 
if (x2 < x) { 

//not in regions 8,1,3,7,or,2 
if (y2 > y) { 

// region 4 angle picked from btw 100-170 
ang = (s/1000*(170-100))+100; 

else if (y2 == y){ 
// angle btw 170-190 
ang = (s/1000*(190-170))+170; 

else { 
//angle btw 190-260 
ang = (s/1000*(260-190))+190; 

else if (x2 == x){ 

else { 

// in region 3 or 7 
if (y2 > y) { 

else { 

//region 3, angle 80-100 
ang = (s/1000*(100-80))+80; 

//region 7, angle 260-280 
ang = (s/1000*(280-260))+260; 

//regions 8,1,and 2 
if (y2 < y) { 

//region 88, angle 280-350 
ang = (s/1000*(350-280))+280; 
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else if (y2 == y){ 

else { 

//region 1, angle -10-> 10 
ang = (s/1000*(10+10))-10; 

//region 2, angle 10-80 
ang = (s/1000*(80-10))+10; 
} 

ang rad ang * PI/180; 
II second angle 
if (z2 < z) { 

// direction of error goes down 
ang2 = (s/1000*(360-180))+180; 

else if (z2 == z){ 

else { 

// same plane 
ang2 = 0; 

} 

//z2>z, error goes up 
ang (s/1000*180); 

ang2_rad = ang2 * PI/180; 
return ang rad; 

//end angle_det() 

void update wts(fstream& infile) 
{ 
-

// update weights for N OUTPUTS 
II 9/26/02 for this case it's 6 outputs 
// at this point use preselected outputs 
// they will be [2,4,0], [4,1,0], (3,1,2], (0,5,5], (1,4,1], (5,0,3] 
// 11/18/02 winning nodes assos with enose winners 
// nodes numbered 0 .. 215 
int node[6]= {22, 9, 80, 205, 57, 113}; 
double inwt; 
double wts[50]; 
// read in weights into array for 1st node 
for (int i=0;i<32;i++) 

{ 
infile>>inwt; 
wts[i]=inwt; 
} 

//Start loop to change weights of specific nodes 
int j; 
for (j=0; j< 6; j++) 

{ 
// send parameters to links 
theApp->net->update_wts(wts, node[j]); 

// get next array of wts from file 
for (int i=0;i<32;i++) 
{ 
infile<<wts[i]; 
} 
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} // end update_wts() 
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