
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Master's Theses Graduate College

4-2003

Development of Kohonen Neural Network Application as a Pattern Development of Kohonen Neural Network Application as a Pattern

Recognition System for an Electronic Nose Recognition System for an Electronic Nose

Lori Lynn Evesque

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Evesque, Lori Lynn, "Development of Kohonen Neural Network Application as a Pattern Recognition
System for an Electronic Nose" (2003). Master's Theses. 4884.
https://scholarworks.wmich.edu/masters_theses/4884

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4884&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/4884?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4884&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

DEVELOPMENT OF A KOHONEN NEURAL NETWORK APPLICATION
AS A PATTERN RECOGNITION SYSTEM

FOR AN ELECTROMC NOSE

by

Lori Lynn Evesque

A Thesis
Submitted to the

Faculty of The Graduate College
in partial fulfillment of the

requirements for the
Degree of Master of Science

Department of Computer Science

Western Michigan University
Kalamazoo, Michigan

April 2003

Copyright by
Lori Lynn Evesque

2003

ACKNOWLEDGMENTS

Many people have helped me complete this thesis. I would like to begin by

thanking my thesis advisor and committee chair Dr. Robert Trenary. His enthusiasm,

intriguing and unconventional teaching style, and interest in neural networks not only

convinced me to pursue further studies in the area of neural networks but kept me

going when I was feeling this adventure was never going to end.

I thank my husband, Jonathan Davis, for the use of the Cyranose 320

Electronic nose, for guidance in choosing the odorant chemicals used in this

investigation, making the flavor lab available to test and train the electronic nose, and

most of all, for putting up with my extensive and never-ending educational career. I

also greatly appreciate my children's patience with my educational pursuits. I hope

they have been enriched by what in their view are extraordinary interests and pursuits

compared to the mothers of their friends.

I would like to thank Dr. Jin Li and Olivia Deffenderfer at Cyranose for their

help with learning how to operate the Cyranose unit and to train the nose and

interpreting the data. I would like to thank the members of my thesis committee Drs.

Donna Kaminski and Elise De Donker for reviewing my work. Finally, I would like

to thank the many people at Western Michigan University who have helped me

complete this research over the last few years. They include Dr. John Kapenga for

suggesting various 3-D modelling software, Dr. Thomas Piatkowski for introducing

me to the Maple software package used to plot my 3-dimensional clustering results,

Dr. Karlis Kaugars for C++ programming assistance and many others.

Lori Lynn Evesque

11

DEVELOPMENT OF A KOHONEN NEURAL NETWORK APPLICATION
AS A PATTERN RECOGNITION SYSTEM

FOR AN ELECTRONIC NOSE

Lori Lynn Evesque, M.S.

Western Michigan University, 2003

Electronic noses are used to identify and characterize unknown odors in

industry. Chemometrics and neural network algorithms are used as pattern

recognition systems for these devices. Experimentation with Kohonen clustering as

the pattern recognition system for electronic noses was not noted prior to 1997.

[BEG] This thesis investigated the use of a Kohonen neural network algorithm as a

clustering algorithm for electronic nose data using the chemometrics algorithms built

into the electronic nose as a performance standard. A secondary aim was to improve

the clustering and identification capabilities of the Kohonen network.

The unsupervised Kohonen network was not able to cluster the electronic nose

data. Duplicating the data pre-processing performed by the electronic nose, fine

tuning the visualization of clustering data, and varying the learning and weight update

rates offered minor improvements but did not allow for accurate identification of

samples. Significant improvements were obtained when the network was changed to

a semi-supervised network by incorporating average sensor values of the known

odorant samples into the network weights. This improved the clustering effectiveness

of the network to 60-70% compared to a 100% effectiveness of the chemometrics

system built into the nose. Several avenues were identified for further study to

improve the effectiveness of the neural network for use with the electronic nose.

TABLE OF CONTENTS

ACKNOWLEDGMENTS.. 11

LIST OF TABLES -................................. � .. ,... Vl

LIST OF FIGURES... vu

CHAPTER

I. INTRODUCTION... 1

The Limitations of the Biological Nose .. 1

The Electronic Nose .. 3

Goals of this Thesis 6

II. BACKGROUND.. 8

Artificial Neural Networks.. 8

Chemometrics Analysis Methods.. 13

Cyranose 320 ™ Electronic Nose.. 15

ill. ELECTRONIS NOSE DATA COLLECTION AND TRAINING............. 19

Determination of Chemical Odorant Samples..................................... 19

Electronic Nose Data Collection... 19

Training the Electronic Nose... 23

IV. OVERVIEW OF KOHONEN ALGORITHM ADAPTATION................. 29

V. DETAILS OF NEURAL NETWORK TRAINING.................................... 33

Preparation of the NN Input Data Files... 33

Evolution of the Kohonen Network Application................................. 34

Test 1- Artificial Data.. 35

Test 2- Subset of Actual Nose Data... 37

lll

Table of Contents-continued

Test 3-Additions to Aid Visualization of Clustering Results 40

Test 4- More Visualization Improvements 44

Test 5- Higher Learning Rate... 47

Test 6- 3-Dimensional Output Clustering.................................... 48

Test 7- Semi-Supervision of Kohonen Algorithm....................... 50

Test 8- Incorporation of Auto-Scaling of Input Data................... 54

Test 9- Comers Designated as Winners....................................... 55

Test 10- Fix Designated Output Cluster Weights........................ 57

Test 11- Neighborhood Weight Adjustment Multiplier............... 58

Test 12- Removal of Outliers... 61

Test 13- Further Outlier Removal.. 63

Test 14- Complete Removal of One Chemical............................ 64

Test 15- Removal of Three Samples from Test 13 66

Test 16- New Designated Clusters... 67

Test 17- Sequential Presentation of Input Data 68

Test 18- Random Data ... 69

VI. CONCLUSIONS AND FUTURE WORK... 71

Kohonen Neural Network Clustering Ability...................................... 71

Avenues for Future Work.. 74

APPENDICES

A. Kohonen Neural Network Algorithm ... 76

Architecture 77

lV

Table of Contents-continued

Algorithm .. 80

Weight Assignment, Learning Rate, and Neighborhood Reducing
Alternatives 81

B. A Brief Introduction to Chemometrics 82

Data Pre-Processing... 83

Principal Components Analysis 87

Supervised Pattern Recognition Algorithms 87

C. Data Conversion and Preprocessing Programs ... 89

Program Name: 'dataConvert.cxx' .. 90

Program Name: 'enose_fullnorm_k2.cxx' .. 94

D. Kohonen Neural Network Source Code.. 99

File Name: 'setup.h' .. 100

File Name: 'App.h' .. 101

File Name: 'kohonen.h' ... 102

File Name: 'kohonen.cpp' ... 104

E. Kohonen Neural Network Driver.. 110

Neural Network Driver Program- File Name: 'enose_k.cpp' 111

BIBLIOGRAPHY... 120

V

LIST OF TABLES

1. Initial Flow Settings from Cyranose Operating Manual 22

2. Test 1 Data... 35

3. Test 2 Leaming Rate Multiplier Table... 40

4. Test 9 Results... 57

5. Test 11 Results... 60

Vl

LIST OF FIGURES

1. Single Layer Neural Network .. 11

2. Two Dimensional Output Cluster Array.. 12

3. Structure of the Cyranose Sensor... 16

4. E-nose Method Setting Screen... 20

5. Flow Chart for Training the Cyranose 320™ .. 23

6. Cross Validation Table .. 26

7. Canonical Projection Plot .. 27

8. Two-Dimensional Neighborhoods for E-nose Kohonen Network................. 30

9. Example Method File from the Cyranose Unit.. 33

10. Test 1 Results... 35

11. Neighborhoods End at Edge of Cluster Array ... 37

12. Test 2 Results... 38

13. Output Cluster Data Point Conversion 40

14. Test 3a Results by Cluster.. 41

15. Test 3a- Results by Chemical Odorant .. 42

16. Test 3c- Clustering of 300 Data Vectors.. 43

17. Calculation of Directional Plotable Data Points 44

18. Test 4a Results- Randomly Assigned Clustering... 45

19. Test 4b Results- Directed Clustering... 45

20. Test 5 Results- Higher Learning Rate.. 47

21. Test 6, Three-Dimensional Clustering... 48

22. Calculation of Semi-Supervised Cluster Weights for 1 Chemical................. 50

vu

List of Figures-continued

23. Test 7 Results... 53

24. Test 8 Results... 54

25. Designated Clusters for Test Run 9 ... 56

26. Test 10 Results... 58

27. Test 11 Results... 61

28. Test 12 Results- Removal of One Outlier.. 63

29. Test 13 Results- Removal of Two Remaining Allyl Caproate Outliers......... 64

30. Test 14 Results- Removal of All iso Amylacetate... 65

31. Test 15 Results- Removal of Three Additional Outliers 66

32. Test 16 Results... 67

33. Comparable Results from Cyranose Unit .. 68

34. Test 17 Results- Non-Random Data Presentation ... 69

35. Test 18 Results- Random Data .. 70

Al. Single Layer Kohonen Network... 78

A2. Neighborhoods for Rectangular Cluster Array .. 79

A3. Neighborhoods for Hexagonal Cluster Array.. 79

vm

CHAPTER I

INTRODUCTION

The Limitations of the Biological Nose

This thesis investigates the use of an artificial, electronically based nose to

supplement and improve upon the capabilities of the human nose. The effectiveness of

two different approaches to a pattern recognition problem using electronic nose sensor

data is compared. Specifically this project develops an artificial neural network clustering

system and compares its effectiveness to the "chemometric" methods built into the

commercially available nose. Chemometrics is defined as the use of mathematical methods

to extract important but often hidden information from data. [BEG]

Human beings have been using their senses in work environments for thousands of

years. All five senses are used to different degrees in varying occupational areas. For

most of the senses, human beings have developed enhancements to aid in the capabilities

of the senses. Eye glasses, microscopes, binoculars, etc. all increase the capabilities of the

eyes to see objects beyond the normal range of human sight and to correct deficiencies in

sight. Many other devices have been developed as aids to sight in places where conditions

are difficult or dangerous for humans to work. These include cameras and infrared

sensors, which can be used in high and low temperature, high pressure, or other extreme

environments. Hearing aids, both to improve deficient hearing and to "listen" beyond the

scope of the human ear are also widely used. Equipment is available in industries to "feel"

and "look" for faults in manufactured products removing the reliance on human hands and

eyes. Senses that have not been elevated much beyond the capabilities of humans are

I

those of taste and smell.

While there are a few cases where humans utilize the superior sense of smell of

certain animals, particularly dogs, it is noteworthy that applications in which taste and

smell are important usually rely on human beings. This is especially true in the food and

perfume industries, which utilize both highly trained individuals and average ability people

in the development and improvement of perfumes and food products.

Unfortunately, the human nose is limited for many of these tasks. Human beings

are predominantly visual mammals and do not use smell as a dominant sense. Therefore,

the sense of smell is not as highly developed as it is in other animals, such as dogs. With

many people, it can almost be said to be dormant or vestigial. It is possible for some

people to be trained to better discriminate between different odorant molecules but such

training is time consuming, expensive, and not all people can learn to develop this innate

ability. The salaries paid to qualified "smellers" in the perfume industry (who can easily

make six-figure salaries) amply support this claim.

There are other disadvantages to using humans where a sense of smell is

important. The human nose tires easily, limiting the duration a person can accurately

discriminate between smells. It is also possible for a person's sense of smell to be

temporarily blocked after smelling very strong or noxious odors (such as when a person

smells a skunk) or from exposure to odors for long periods, inducing anosmia or smell

blindness. [Si] Reliance on human sensory panels, widely used in the food, perfume, and

flavor industries, have other disadvantages such as a high degree of subjectivity. This

results in poor reproducibility due to varying degrees of the health of panel members,

2

differences in the time of day, the effect of previous odors analyzed by panel members,

time requirements for panel testing and high costs. There are also many instances where

human sensory panels cannot be used due to the presence of hazardous odors,

requirements for continuous operation and sensing needs in remote or difficult locations.

There are myriad motivations for developing an "electronic nose".

The Electronic Nose

"Electronic noses" are used in a wide variety of industries and settings to

characterize and identify individual odor molecules and complex mixtures of odors.

Bartlett et al. (1997) define an electric nose in Food Technology magazine as "an array of

chemical sensors, where each sensor has only partial specificity to a wide range of odorant

molecules, coupled with a suitable pattern recognition system." The operation of an

"electronic nose" is based on the way the biological mammalian nose works. In a

mammalian nose, there are many chemical receptors known as olfactory receptors which,

when combined with signal preprocessing in the olfactory bulb and pattern recognition in

the olfactory cortex of the brain, make it possible for the mammal to smell and recognize a

particular scent or odor. No single receptor identifies a specific odor. It is the collective

effect of the odorant on all or many of the receptors that allows specific identification. [K]

The design is similar in the electronic nose. Equivalent to the olfactory receptors

in an electronic nose are chemical sensors designed to react to odorant molecules. These

sensors can be made of a variety of materials including organic, conducting, or non

conducting polymers, metal-oxide semi-conductors, surface acoustic wave devices, liquid

crystal sensors, fiber optic sensors and others. [K] The sensors react to the odorant

3

molecules producing a measurable change in the sensor. Each sensor is designed to be

slightly different from every other sensor in the unit. This results in a unique and

characteristic "fingerprint" for each individual odor. [S-S] After the sensors measure the

"fingerprint" of the odor, the pattern recognition phase can be used to identify the odor.

There are several different approaches used for the pattern recognition systems in

electronic noses. These include statistical methods, often called "chemometric" methods,

artificial neural networks (ANNs or NNs), and neuromorphic models. These approaches

can be used singly or in combination to improve the robustness of the pattern recognition

over those from individual techniques. [K]

Several chemometrics methods are used in conjunction with electronic noses to

identify and classify odors. These methods include principle components analysis (PCA),

least partial squares, discriminant analysis, discriminant factorial analysis, and cluster

analysis. [K] Both supervised and unsupervised algorithms are used for pattern

recognition. PCA is an unsupervised technique that is often used to reduce the

dimensionality of a system and identify outliers. Supervised learning techniques such as

K-nearest neighbor, K-means, and Canonical Discriminant Analysis are used for building

an identification model and predicting unknowns. [L]

Electronic noses incorporating ANNs have been demonstrated in numerous

applications. [K], [HKKK], [SHG], [Sa] In many of these applications, the number of

detectable chemicals is generally greater than the number of unique sensors and less

selective sensors can be used. [K] Some of the ANN algorithms used in conjunction with

electronic noses include supervised algorithms such as back-propagation feed-forward

4

networks, learning vector quantizers, and fuzzy-ART maps. In some cases, fuzzy-neural

networks produced considerably better performance than back-propagation networks.

[BEG] Unsupervised ANNs include self-organizing maps (SOMs) and adaptive resonance

theory networks. [K] Some unsupervised learning algorithms mimic the way the human

brain works, as there is no separate learning stage. As of 1997, unsupervised learning

neural network algorithms had yet to be applied in conjunction with an artificial nose.

[BEG]

Neuromorphic approaches are based on building plausible models of olfaction

based on biology and implementing them in electronics. [K] These approaches are not as

well developed as other approaches and are not investigated in this paper.

The electronic nose used in this investigation was the Cyranose 32or1.1

manufactured by Cyranose Sciences of Pasadena, CA The Cyranose electronic nose was

originally released in early 2000 and was chosen because of its practicality for use in the

food and flavor industry. The unit was the first nose on the market to be portable enough

for field use and economically feasible for even smaller companies to purchase. The

system includes the sensing unit and associated pattern recognition software to be installed

on a PC. The hand-held unit is lightweight, battery operated, and suitable for a variety of

environments. There is an easily readable LED display in which instructions can be

entered, samples taken, etc.

5

Goals of this Thesis

The primary aim of this thesis is to develop an unsupervised ANN to cluster

odorant data for discrimination between different samples. The pattern recognition or

clustering effectiveness of the ANN will be compared to the best capabilities of the

Cyranose 32QTM electronic nose. Pattern recognition consists of two phases: (1) training

and clustering using the sensor data and (2) identification of unknowns. Only the first

phase will be compared in this investigation. The data used for both pattern recognition

methods was collected using the Cyranose unit and odorant chemicals provided by GLCC

Co., a Michigan flavor house. A secondary aim was to investigate strategies to improve

on the pattern recognition capabilities of the neural network. The neural network

achieved partial success in clustering of the chemicals compared to the built-in

chemometrics methods used by the Cyranose unit. This thesis is organized into the

following chapters:

Chapter II presents basic background information about the three main subjects

covered in the thesis. These include artificial neural networks, chemometrics pattern

recognition methods, and the Cyranose 320™ electronic nose. The purpose is to give the

reader enough knowledge about unfamiliar subjects and terminology to follow the

discussions.

Chapter III describes the collection of data samples using the Cyranose 320™

electronic nose unit and training of the electronic nose using the build-in chemometrics

6

.

pattern recognition algorithms. Training consists of the development of a working pattern

recognition method for successfully recognizing all of the chemical odorant samples used

in the experiments.

Chapter IV introduces the basic framework of the experimental methodology used

in the development of the project's neural network pattern recognition system using a

known neural network software library. Data pre-processing and training details for the

neural network are also included. This neural network evolved gradually as the

experiments progressed with each experiment determining the next steps to be taken.

Chapter V is a narrative of the experiments indicating how and why each step was

taken. The results of each step or experiment are discussed and these results helped to

determine other possibilities for improving the pattern recognition abilities of the neural

network system.

Chapter VI is a discussion and analysis of the results and discussion of the clustering

capability of the NN compared to the chemometric methods used by the nose. Possible

directions for future research in this area are also identified.

7

CHAPTER II

BACKGROUND

Artificial Neural Networks

The ability of computers to perform complex, sequential, logic-based information

processing is immense. Computers have the ability to perform computations once

considered beyond the scope of human endeavor. However, there has long been interest

in other information processing systems, including artificial neural networks have certain

performance characteristics m common with biological neural networks. Neural

networks are characterized by (a) the pattern of connections between the neurons

(architecture), (2) a method of determining weights on these connections (training or

learning algorithm), and (3) a function applied to the net input to determine its output

signal (the activation function), (often but not always present).

Warren McCulloch and Walter Pitts are generally recognized as the developers of

the first neural network in 1943. They combined simple neurons into a network that had

increased computational power. The weights on their simple network were set to perform

simple logic functions. Combinations of these neurons could be arranged to perform

more complex logic functions. One feature of McCulloch-Pitts networks that is used in

many artificial neurons today is the idea of a threshold. If the net input to the neuron is

greater than the threshold, the unit fire$, or turns on; otherwise, it remains in the 'off'

state. [F]

Over the next 30 years, investigations into neural networks continued with

8

researchers including Hebb (Hebb learning), Rosenblatt (Perceptrons), Widrow & Hoff

(Adeline), Kohonen (Kohonen self-organizing networks), and others developing more

complex and varied neural networks. In the late 1960's enthusiasm about NNs waned

after clear demonstration of the limitations of simple single layer NNs. [MP] As methods

for propagating errors from the output units back to the hidden layers and improved

methods for training networks gained wide-spread publicity, research on NNs gradually

picked up speed. Their complexity and performance improved with more powerful

learning algorithms, incorporation of bias components, more complex activation rules,

multiple layers, and other advances.

Methods for adjusting weights and training a network can be characterized as

either supervised or unsupervised. In supervised training algorithms, training begins with

the presentation of a sequence of training vectors to the network, each with an associated

target output vector. The propagation of the training vector through the network results in

a certain output. The difference between the output and the target determines how the

weights are changed in the network as the training proceeds. In other words, supervised

training assumes some amount of a priori knowledge about the system. For example, in

an alphabet recognition system a particular input vector would refer to a particular letter.

The amount the link weights need to be adjusted will be determined by the difference

between the calculated output and the target output. Most supervised learning algorithms

also incorporate an activation level for each neuron that is a function of the inputs it has

received. The activation is sent as a signal to other neurons in multi-layer networks.

Unsupervised learning algorithms do not require a priori knowledge of the system but

9

work to group similar input vectors together. No target vectors are specified. The

network modifies the weights so that the most similar input vectors are assigned to the

same output unit. Examples of supervised algorithms include back propagation, learning

vector quantization and counter propagation. Unsupervised learning algorithms include

Kohonen self-organizing maps and adaptive resonance theory.

Neural networks are currently being utilized in many areas. Automatic

recognition of handwritten characters or spoken speech recognition and production

applications is increasingly common. General-purpose multi-layer neural nets are being

used for recognition of zip codes. [F] Easily available software makes it possible to

speak into a computer and have the spoken words typed into a word-processing program.

Applications for neural nets abound in the medical industry. An application called

"Instant Physician" [F] is a neural net designed to organize large numbers of medical

records and be able to give a "best" diagnosis and treatment for a new set of symptoms.

In business, applications include insurance underwriting networks, mortgage application

processing networks, and others.

The basic architecture of a simple neural network can be seen in figure 1. A

common notation for describing neural networks is indicated below the figure. This

notation, where applicable, will be used here.

10

Figure 1: Single Layer Neural Network

Neural Network Notation

Xi Input unit, number of units equals n

Yi Output unit, number of output units equals m

wii Weight on connection from unit Xi to unit Yj

L\wii Change in weights before and after weight updating

a Leaming rate: the rate to control the amount of weight adjustment at each step in

training.

/{x) Activation function

The neural network algorithm used for clustering and pattern recognition in the

application investigated in this paper is the Kohonen "self-organizing" network, an

unsupervised neural network algorithm. Self-organizing maps construct a topological

map consisting of clusters of similar data points from the presented data. Interestingly,

this property has been observed in the brain but is not found in other artificial neural

networks. [F] The architecture of the Kohonen self-organizing map is essentially the

11

same as that shown in figure 1. The 'm' output cluster units are generally arranged in

one, two, or three-dimensional arrays depending on the purpose of network. For

example, a character recognition network could be arranged as a two-dimensional output

array (figure 2).

• # •

• • • • • # •

• • • • • # •

• • • • • # •

• • • • . # •

• • • • • # •

. # . # •

. # . # .

. . # # #

Figure 2: Two Dimensional Output Cluster Array

During the 'self-organization' or training process for a Kohonen network, the

training input vectors are sequentially presented to the network. The difference between

the input vector and the weights of the cluster units are calculated as in the following

equation.

[2.1] D(j) = L (wy-x;)2

The cluster unit with the minimum difference, whose weight vector most closely

matches the input pattern, is chosen as the ''winner". The weights to the winning unit and

neighboring units are then updated. The updating is calculated using the following

equation.

[2.2] wu(new) = wu(old) + a[xi-wu(old)]

12

This weight updating preserves and strengthens the topology that assigned the

input vector the specific winning cluster. Typically, the winning cluster weights are

changed by the greatest amount, with neighboring clusters being changed to a gradually

lesser degree as the distance from the winner increases. Input vectors continue to be

presented to the network until some pre-determined stopping condition is reached. In the

fully trained network, the weight vector to a particular output cluster serves as an

exemplar of the input patterns assigned to that cluster. Subsequent data vectors presented

to the network which have values close to the weight vector of that cluster will be

assigned to that cluster. Initial weight values for the network are generally randomly

assigned. However, if some information exists concerning the distribution of the clusters

that might be pertinent to a particular problem, the initial weights can be chosen in such a

way as to reflect this knowledge. [F] (Refer to Appendix A for a more detailed

description of the Kohonen neural network algorithm.)

Chemometric Analysis Methods

Chemometric analysis methods are common statistical computational techniques

used to extract relevant but often hidden information from data. [BEG] These techniques

are used in many other areas of science but the term "chemometrics" is commonly used in

the chemical and food industries. In general, chemometrics covers areas of data sample

and variable pre-processing, and pattern recognition algorithms.

Pre-processing of the data is an important initial step for data analysis in order to

reduce the concentration and environmental effects of the sampling methods. Two types

of pre-processing are available: sample and variable pre-processing. Sample pre-

13

processing is done to reduce systemic variation and works on the entire input sample

vector, or row, of data. Sample pre-processing methods include normalization, which

scales all samples uniformly; weighting, giving some samples more weight than others;

smoothing, which reduces the amount of random variation; and base-line corrections

which minimize systemic variation. Variable pre-processing works on each variable, or

column, of data and is done to remove any inadvertent weighting that arises due to

arbitrary units, as from vastly different samples. [Li] Methods used for variable pre

processing include mean centering, auto-centering, and variable weighting.

Following data pre-processing, a variety of statistical approaches to pattern

recognition analysis are included in a chemometrics approach. These include principal

component analysis (PCA), partial least squares, discriminant analysis, discriminant

factorial analysis (DF A), and cluster analysis. [K] PCA is an unsupervised method that

manipulates the feature matrix in order to represent the data using a smaller number of

factors, or dimensions, making it possible to view the data in a smaller number of

dimensions. This makes it possible for human pattern recognition to be used to identify

structures, making PCA an extremely useful first step in multi-dimensional data analysis.

PCA analysis is most useful when the dimensionality of the measurement space is large

but where the samples reside in a small dimensional space. (i.e., small inherent

dimensionality) PCA is also an excellent preliminary data exploration method for

examining data vectors for expected or unexpected clusters or for outlier diagnosis.

[BPS]

14

Several supervised statistical pattern recognition algorithms are then used when the

goal is to construct a model to be used to classify future samples. These include K-nearest

neighbor (KNN), Kmeans, and Canonical Discriminant Analysis (CDA). [Cyl] These

methods conduct a cross-validation of the data samples as an initial step in the clustering.

Cross-validation is the action of validating the training set by leaving out one data point

from each class to build a model and predict the left out data points. [Cyl] All data

points are left out once during the process. The overall correct prediction rate will

indicate the quality of the training set and the applicability of the model.

K-nearest neighbor classifies unknowns according to a majority vote of the 'K'

nearest neighbors in the training set in n-dimensional space. The value of K is determined

during cross validation. Kmeans classifies unknowns based on the Euclidean distance

between the class centroid and the sample in the sample space. Canonical Discriminant

Analysis assigns unknowns to a class based on the Mahalanobis distance between the

sample and the cluster centroid in canonical space. The clustering results are viewed on

plots in two or three dimensions based on the dimensionality reduction accomplished using

PCA. For more details concerning chemometrics methods, refer to Appendix B.

Cyranose 320™ Electronic Nose

Internally, the Cyranose 32QTM electronic nose consists of 32 composite polymer

odorant sensors. Different types of polymers are used in the nose but they are all

nonconductive, absorbing polymers. [S-S] In the middle of each sensor is the non

conducting absorbent polymer. Electrodes bring an electrical current to one side of the

15

conducting absorbent polymer. Electrodes bring an electrical current to one side of the

polymer and take current away from the other side. Embedded in the polymer are

conductive carbon chains that bridge the electrical current from the electrode on one side

of the polymer to the electrode on the other. (figure 3) When the nose is exposed to an

odorant, the polymers absorb differing amounts of the odorant molecules. As molecules

are absorbed onto the polymer, they break the circuit made by the carbon chains,

increasing the resistance. The resultant 32 resistance values produce a result that is

unique to that odorant chemical and is its "fingerprint" and can be compared to other

fingerprints to find a match. [S-S]

ln9J cti ng La,er

Potertialy A:Jti-..e SJbslrci:e

Figure 3: Structure of the Cyranose Sensor
Source: Cyrano Sciences, Inc, Cyrano Sensor Array. doc obtained from and used

with permission of Cyrano Sciences, Inc. via email, 3/25/03.

The pattern recognition system that comes with the nose is a chemometrics based

system. The system includes pre- and post-processing of the signal data and algorithm

16

utilization for pattern recognition. [Li] The raw data is filtered to eliminate high

frequency noise and reduced using a baseline correction method. Finally, the data is

normalized and scaled using a choice of several techniques. The pattern recognition

algorithms include PCA for outlier detection and supervised algorithms including K

nearest neighbor, K-means and CDA for building models and prediction of unknowns.

The data gathering capacity of the Cyranose 320™ electronic nose is substantial

but the terminology for the individual data packages and their interconnectedness can be

confusing. A description of the terms used in this thesis is shown below:

1. Sample Set: The Cyranose unit and software can hold 5 complete sets

of data. These are unfortunately called 'methods' in the built-in

software. For clarity, this investigation will refer to these methods as

sample sets.

2. Odorant: Each of the sample sets contains readings from 6 different

chemical odorants. These odorants are referred to as chemicals, odors,

and odorants interchangeably in this thesis.

3. Data Vector: For each chemical in each sample set, there are at most 10

exposures to the odorant. These exposures are called data vectors. The

term data vector is commonly used with respect to the ordered set of

numbers used as the input pattern presented to a neural network.

4. Resistance values: Each data vector consists of 32 resistance readings

from the 32 sensors in the electronic nose.

17

An unlimited number of sample sets can be stored on computer disk for future

reference. Sample sets are imported for use in the computer software and hand-held unit.

This allows for a greatly increased sensing "library" for future sample identification.

18

CHAPTER ill

ELECTRONIC NOSE DATA COLLECTION AND TRAINING

Determination of Chemical Odorant Samples

The odorant samples used for this series of experiments were supplied by GLCC

Co., a flavor house located in Paw Paw, MI. The company supplied six odorant samples

that were as different from each other as possible. The samples included allyl caproate, a

pineapple-like odor; methyl salicylate, a "liniment" odor; isoamyl acetate, candy banana

odor; myrcene, tropical fruity, mango-like odor; decanal, a powerful component of the

orange peel aroma; and diacetyl, a powerful butter odor. The odorant chemicals were

first diluted at 5% by weight in 95% grain alcohol. Those solutions were then diluted

with water resulting in odorant concentrations of approximately 150 ppm. These

chemicals are extremely strong in their original concentrations and are typically diluted

by these amounts in normal use. The samples were put into 2 oz glass bottles, 70 gm per

bottle. This left a headspace of about an inch in which the volatile odor chemicals could

accumulate prior to sampling with the nose.

Electronic Nose Data Collection

Prior to the collection of data, the sampling and data processing parameters were

pre-set through the software supplied with the nose. These parameters included flow

settings for the actual sampling pump, digital filtering, substrate temperature control,

choice of sensor activity, algorithm choice, preprocessing, normalization type, and

identification quality. Choice of algorithm, preprocessing, normalization, and

19

identification quality can be altered after all sampling has been completed during the fine

tuning of the identification and clustering process.

Flow settings for the sampling pump require fine-tuning in order to achieve the

best performance. The Cyranose operating manual includes examples of different

sampling experiments for different substrates. An initial starting point was chosen from

the example that most closely matched this situation, an experiment to identify a sample

that is one of three possible liquid fragrances. The flow settings were adjusted during

early sampling tests to optimize the method. Figure 4 shows the flow setting screen

where adjustments are made. Table 1 indicates the starting flow setting and data

processing settings.

20

T11118(1) Low

e-n

ElualinePUlga: j lf.::.
('\

;Sempla-
SamplaDrewl: C,

2nd NI IMlkli Purge:

O.Pl'ocnaing•(Oienges1DtlliaNClian'Willnoll9quireranining)
N:JMSenaors

i;r 1 i;r 2 P3 i;,4 r5 P& p 7

P'(f f.110 f.1'111 F 12 1!" 13 P 14 P· 1S

R 11 P' 18 P' 19 p 20 P:21 922 P' 23

P 2S P26 f127 P-21 P-29 P' 30 P' 31

Selac!M OeerAII

Figure 4: E-nose Method Setting Screen

p, 8

$116

?' 24

P32 ldelllilicaliola Quellly: 1 t.4ed_ium

21

111 Semple Gu Purge :

Algolihn :

I Plllpnxaaing :

Normelizlllian : J Normali;mion_ 2

d

Flow Settings

Time (sec) Pump Speed

Baseline Purge 10 Medium

Sample Draw 6 Medium

Sample Draw 2 0 Medium

Snout Removal 0

1st sample gas purge 0 High

1st air intake purge 5 High

2°0 sample gas purge 30 High

2°0 air intake purge 0 High

Digital Filtering On

Substrate heater On 42

Training repeat count 1

Identifying repeat count 1

Data Processing

Active Sensors All

Algorithm Kmeans

Preprocessing Mean-centering

Normalization Normalization 1

Table 1: Initial Flow Settings from Cyranose Operating Manual

Sampling procedures were also developed. These required knowledge of the

odorant chemicals and how they behave in closed containers. The sampling procedure

adjustments included varying the amount of time allowed for the sample to rest and re

equilibrate between sampling, sampling order, and sample concentration. The sampling

was done randomly among the sets to eliminate any sampling bias. Using the odorant

22

samples described above, the Cyranose 320TM electronic nose was used to collect

experimental samples. Five sample sets of sensor data for six chemicals, for a total of

300 data vectors, were collected. Once this was completed, training the nose using the

chemometrics software built into the electronic nose could begin. These results became

the basis to which the clustering effectiveness of the neural network was compared.

Training the Electronic Nose

Pattern recognition software is part of the Cyranose 320™ system. The software

operates through both the hand-held unit and a PC. Pattern recognition consists of two

phases: (1) training and clustering using the sensor data and (2) identification of

unknowns. Only the first phase was used for this investigation. To run the first step in

the pattern recognition operation, the cross-validation operation is selected from the

options on the hand-held unit. This operation consists of several steps. The unit

performs pre-processing and normalization routines, runs PCA to reduce the

dimensionality of the system and detect outliers, and runs the cross-validation check

using the modeling algorithm. The internal cross-validation results could be viewed on

the hand-held unit. These results indicate the number of correct identifications within the

sample set. More extensive results, including details of the cross-validation, Mahalanobis

distances (for CDA only), PCA plot, smell prints, distance vectors, and Canonical plots

can be viewed on the PC. A flowchart for training the nose can be seen in Figure 5.

23

S-et \lp clesselli and

L__ __ P_"'_P_•_"'.
,

'
_

•_
m_.v_ te_, _

'
-----•�-------.

Ptrtial tni.rtln3 sct:
CcIJect and save dtta

L,_,,_ _______ J

j Choose lypt" ofnomlalization and i
pn--processi.og i--------

-

.4.nalyie: PCA pJt,1
{t'.1-Utlit.r <le1e1:tion. wyittm.atic

errt'lrs. aid fot (:housing
p.attcri:, recognition algorithnt) "--

-
----------'

Sclec1 algorithm for
pnuem rtcog.nicion

j P�p.J� addiriomd nmplci
. SU)p, The C320 may uot bt I

Coinplctc tnining �:
collect a.nd uv,c. dat.t 1 �------r-- _____ _;

J

// "-\
,,/ ''",

,,.r/ Shot1td ·-. ..,._n_• __ _
'-,,,<,p,o<eed 1/'

\ /

',/
_____ i_Y_•_• ___ _
J '.Proce.cd ro
f rv1Lid.:uion & Qudif'icadonJ

L ... -
,

J

:ipprop-ri.Me for- tbi.� 1

s.ppll.�11.ion. __ Nj

Figure 5: Flow Chart for Training the Cyranose 320™, [Cy2: p56]

24

' ___ ,

Select ide1uirieation qHlity

'
Should

/ I continue to no < train the ·-C3l0?
/

/ ~·e~

Ponible corr«tl\·c action,

/

t'aa adduional
actioM be

taken?

<O

!~ lh"c c.lanes \
_been combi.ncd'J _,

~ - •

...
I

j no

/ Are
cbaages

uim.e1ftod /
nqu1nd~

(ye,

Return to Mclbod
OevtJopracn1

Training the nose required considerable re-sampling after the initial 60 data

vectors for each sample set were obtained. Each time the pattern recognition algorithm

was run, the cross-validation was viewed. If the internal identification of the samples was

not 100%, outliers were identified, removed, and re-sampling done. Outliers could be

identified several ways. There may have been one or more points that were significantly

different from the others. These could be seen as obvious outliers on the PCA plot or as

points that had Euclidian distances much larger than the other samples in the class. This

testing, resampling, and retesting continued until a 100% cross-validation was achieved

for all five sample sets.

During the pattern recognition phase, fine-tuning of the pre-processmg,

normalization, and algorithm was also performed. The final parameters are shown in

figure 3, previously mentioned. Possible options for normalization were no

normalization, 1-norm, and 2-norm. After much testing using the different normalization

options, the best results for this application were obtained using 2-norm. It is calculated

by dividing each value in the data vector by the 2-norm of the set, shown below.

[3.1] 2-norm = Jj1 x2; where x1 = input variable value

Variable pre-processing was the second data preparation step. Options included

no pre-processing, mean centering, and auto-centering. As with normalization, testing

using all pre-processing methods showed that auto-centering worked best in this situation.

Auto-centered values were calculated by dividing each value in the data column by the

standard deviation of that column shown below.

25

(3.2] Xj = X.,i

J I(x;-x)2/n where x1 = the initial variable value

x; = the auto-centered value

x = mean of the variables
n = total number of variables
X; = each variable value in the set

The three algorithms available to build the pattern recognition model included

KNN (K Nearest Neighbor), K-means, and Canonical (Canonical Discriminate Analysis

CDA). During the sampling, training, and analysis period, all algorithms were tested in

order to determine the most effective clustering algorithm for the data. This algorithm

turned out to be the Canonical algorithm. In CDA, "the total variation between the

objects can be partitioned into 1) the variation due to the differences between the groups

or 2) the variation within the groups, due to the differences between individuals." [BEG]

In the CDA, an unknown sample is assigned to the class with the shortest Mahalanobis

distance between its centroid (the point equidistant from the points already assigned to

that cluster) and the sample in canonical space. [Cyl] (Refer to Appendix B for detailed

chemometric information.)

Once the training was complete, the results could be viewed in several formats.

The cross-validation screen showed the results of the internal cross-validation and

measurement of Interclass Mahalanobis distances (M-distances). The cross-validation

table shows the number of samples that were correctly identified in the internal

comparison. The Mahalanobis distances look at the variance between the responses of

the data vectors for the same sensor but also the inter-sensor variations (co-variance).

[Th] The PCA plot indicates whether outliers exist. Once a 100% cross-validation was

26

achieved, further fine-tuning could still be done by improving the interclass M-distances

through additional re-sampling. The CDA plot showed the final clustering results for the

pattern recognition. The closer together the individual data vectors were for each

chemical, the better the clustering capability was. Refer to figures 6 and 7 for examples

of the Cross-validation screen and Canonical plot provided by the Cyranose software.

- .�l•I
_. Ck :,t :-..(11�1 '.!,.C'\\ �,.,, u,t, � 1b1 .. _ �� ;,_;.'-..�k m•�"~" ·-· w_a.�;_111_ .. �v-.u·�fl:1-•"-· -�--------------

G<i· � .. t.ct.· ff•) '

s�����.;t!". · ldcnti&d ,'\s

.-,(·"�� l,'>l

C:f�-1 -�?
, ·1,1::'.�

J::wt..--,i:L

r;n�;i.,,.t

41'1!..J • • 1/..'I
rnlf:""vd ,I

.,,.-
•'-'•"'!\' ((,

(:,T,,,·r:ti:il)l
(-1\t.J..., ':!!.�-�
-:.n:n,.11-u
F<\'k'l

I •I

,,,. . .,

•: ... ::.,� }{l

Tr.,inccl -,� . .,,-.+--+--+--+-+----1
As

"

�re "l!f"Pl.. ,.....-i-..- .'lt;l'CH� �hi.I "�'""·

f:'V» 1•r:.t ·,;"') '-Hm ,, 1r.

· ..

Figure 6: Cross Validation Table

...

27

...
...... 1

. .,

lnltr,lass ~l-D1stm~11J
I I I

Canonical Projection Plot

Fl

.,. L
--J,_ ',.

Z @\I io I .F2
1

J
'; Jo 2 J 7 �io � q J

1
:.

Figure 7: Canonical Projection Plot

q
. io

il_ iz.7 J
b b

""Y1""P
m�tllj/1<'91
1"o""""r
my'l"t:AM
d6C;lr,al
<llllCe\jlf

The initial step in pattern recognition by the Cyranose unit was now complete.

The resultant plots indicate the best clustering capabilities of the built-in pattern

recognition algorithms of the unit based on the data collected. The aim of the pattern

recognition step was to separate the data from the six chemicals into six distinct clusters

such that identification of unknowns would be possible. These results for the baseline

against which the subsequent neural network pattern recognition approach could be

compared.

28

·-~

h

CHAPTERN

OVERVIEW OF KOHONEN ALGORITHM ADAPTATION

A neural network library called "Monarch", (available in the Computer Science

Department at Western Michigan University as a result of a master's thesis [Fr]) was used

as the base neural network library for this project. After considerable experimentation

and adaptation, the final neural network program was run on the data collected using the

Cyranose unit.

Initially, the Kohonen algorithm was implemented at a very elementary level with

only two output clusters available and a neighborhood consisting only of the winning

cluster. For this application, it was decided that the network would have better

discriminating power if the neighborhood weights were updated as well as the winner.

During the first several tests, the output cluster array was set up as a 6x6 two-dimensional

array.

Numerous data preparation techniques were tested. The pre-processing technique

initially used was a simple sample normalization procedure. As experimentation

progressed variable pre-processing was added. The most effective pre-processing turned

out to be the same as those used for the chemometrics-based system connected with the

nose. These were 2-norm normalization sample pre-processing and auto-centering

variable pre-processing.

29

As previously noted, the data samples collected with the Cyranose unit were used

as input data to the neural network. Five sample sets each containing 60 data vectors

were available for training the network. For a majority of the tests, sample set 2 was used

as the input neural network data sample. The concept of neighborhoods was incorporated

into the network. With each presentation of data, the winning cluster unit was updated

with output cluster units in the neighborhood around the winner updated to a lesser

degree. The largest neighborhood in the network (3 in this case) had a radius of the

ceiling of the square root of the number of chemicals to be identified. As training

progressed, the maximum size of the neighborhood was gradually decreased until, as the

stopping condition was approached, only the weight matrix of the winning cluster was

updated. (Refer to figure 8). Because the initial radius of the neighborhood is half the

size of a side of the array, the outer neighborhood is incomplete. Neighborhoods do not

"wrap around" the array. Missing units are simply ignored. As experimentation

continued, it was decided to change the cluster array to a three-dimensional array to make

the comparison between the two pattern recognition techniques more accurate. As a

result, the neighborhood around the winning cluster changed from a two dimensional ring

of neighborhoods to a more complex three-dimensional neighborhood.

30

*

*

*

*

*

*

R=3

-·-·-·-·-·-·-·-

* * * * *

,

I

* I * * * I *
I I

I

0* * * *

* * * * *

* * * * *

-·-·-·-·-·-·-·-

* * * *

1 .. _ R=2 �� � R=l

*

Winning cluster

Other clusters in output array

R=oD

R Rings around the winning cluster, number indicates distance from winner

Figure 8: Two-dimensional Neighborhoods for E-nose Kohonen Network

The stopping condition for network training is chosen to be when the learning rate

has decreased to a predetermined level. Each time the network completes an epoch

(presentation of the entire data sample); the learning rate is decreased geometrically. In

this case, the decrease ranged between 25-50%. Initially, the network weights were set

randomly and were in the same numerical range as the normalized and pre-processed

data. Ultimately, in a final attempt to improve the clustering ability, some of the weights

were set equal to the averages of the known data from the electronic nose sensors,

creating a semi-supervised neural network environment. Different arrangements of

31

-- -
I I - - -

*

designated winning clusters were tested to see if greater discriminating ability could be

obtained. Different weight update rates were also tested.

All the data collected from the electronic nose was run through the senu

supervised neural network. The results were plotted using Maple™ and compared to the

clustering results from the electronic nose software.

In order to ensure that the network was accomplishing real clustering and not

merely accidentally making some data points appear to be clustered together, completely

random data was also run through the network.

32

CHAPTERV

DETAILS OF NEURAL NETWORK TRAINING

Preparation of NN Input Data Files

Prior to training the Kohonen network, the input data sample files from the

electronic nose were converted into a file format convenient for use as input to the neural

network. The input data files for the electronic nose are called "Method setting files"

(.met) and included all the information needed to re-import the data into the nose and run

sample identification testing using that sample set. An example of part of a .met data file

can be viewed in Figure 9. The data stored in the method files had already been filtered

and reduced by the Cyranose unit. The data was in the form of the response of the

electronic nose sensors, defined in the following equation and was used as input to the

pattern recognition algorithms:

[5.1] � RfRo = Olmax-Ro)/Ri

where �= change in sensor resistance

Ro= average of base resistance calculated by taking 5 data points before
sample exposure and 5 from the end of the purge step in the sampling
Rmax

= average maximum resistance

33

j.ethod nue• trainl

Class l•
Class 2a
Class 3•
Class 4•
Class Sm
Class 6•

allylcap
aethyl!Sal
isou.ylac
ayrcene
decanal
diacetyl

Baseline purge• lOs
suple draw l• 305
Suple draw 2• Os
Snout rea.oval• 55

aediua
aediua
aediua
low

l!St suple gas purge• 05 high
1st air intake purge• 55
2nd suple gas purge• 30s
2nd air intake purges Os

Digital filtering• On
Substrate heater• On 42.0
Training repeat count• 1
Identifying repeat count•

Active sensors• FFF!TFEF

lUgoritha• Canonical
Preprocessing• Auto-scaling

high
high
high

1

NocaalizationD Noraalization 2
Identification quality- Mediua

; 33x60
; Class!lue Sl 92 93 94 95* 96 97 98 99 SU 911 SU 913 SU se SU 917

Exposuremallylcap 0 .003548 0 .0034814 0 .0030381 0 .005742 0 .0413538
Exposure•allylcap 0.0036885 0 .0035311 0 .0032782 0 .0061794 0 .0430255
Exposure...,llylcap 0 .0029366 0.0026928 0 .0024806 0.0046683 0 .0335063
Exposure•allylcap 0 .0031367 0.0029554 0 .0027131 0.0052553 0.037347
Exposure•allylcap 0.0029374 0.0029061 0.0024645 0.0048585 0.0339404
Exposureaallylcap 0.003311 0.0030313 0 .0026327 0 .0054184 0.0328921
Exposure•allylcap 0 .0027332 0 .0026241 0 .0021719 0 .0044553 0.0307118
Exposure•allylcap 0 .0025085 0.0023145 0 .0019654 0 .0042303 0 .0304681
----··--.. ,, ... ,_..,_ n nnAnc.-,-, n nn?onc, n nn-,,..,.,? n nn,:::,:-,,c n nAnnAo.,

Figure 9: Example Method File from the Cyranose Unit

0 .0119697
0 .0111514
0 .008302
0 .0093797
0 .0070408
0.0068582
0 .0069942
0 .006934
n nnnnn,:::,:-

0.0025728
0 .002909
0.0022241
0 .0025239
0.0022781
0.0024116
0.0021882
0 .0020886
n """"",:::.,.

0.0031912
0.0036934
0.0025014
0.0029711
0.002576
0.002995
0 .0023862
0 .0021862
n nn?.,nn?

The conversion programs extracted the sensor response data from the '.met' files,

performed various nonnalimtion and pre-processing routines and output the data to the

neural network input data files. The final data conversion and pre-processing programs

can be viewed in Appendix C.

Evolution of the Kohonen Neural Network Application

A series of experiments drove the development of the Kohonen neural network to

cluster the electronic nose data. The aim of each succeeding experiment was determined

based on the results of the preceding one. Sometimes, more than one avenue was

investigated based on result of a particular experiment.

34

Test 1- Artificial Data

The first neural network experiments ran artificial data through a 2-dimensional

Kohonen network which did not include updating of the neighborhoods. The data sample

consisted of eight artificial data vectors each containing four "sensor" outputs. The initial

pre-processing was normalization of the samples of data by the equation below:

[5.2] normxi = (xi - Xmm)l(Xmax-Xmin)
where: Xi = each individual data value

Xmin = the minimum sample data value
Xmax = the maximum sample data value
normxi = normalized individual value

The normalized data represented four very different clusters with data points

between O ➔ 50. The data sample is shown in Table 2.

Sensor 1 Sensor 2 Sensor 3 Sensor 4

Data vector 1 17.7152 15.5059 17.2873 19.08797

Data vector 2 43.3402 49.954 46.6652 41.793

Data vector 3 0.38741 0.54312 0.36369 0.233522

Data vector 4 8.5227 10.3975 9.49619 7.72074

Data vector 5 50 50 50 50

Data vector 6 18.4488 19.1176 16.2311 17.50617

Data vector 7 10.3857 9.96675 9.26804 8.8177

Data vector 8 0 0 0 0

Table 2: Test 1 Data

Each time a data vector was presented to the network, a "winning" cluster was

chosen as the output unit whose weight vector most closely matched the input data vector.

35

The weights of that unit were then updated to improve the match using the following

equation:

(5.3] Wij(new) = Wij(old) + a[xi-Wij(old)]
where Wij = weight on the input to output link

Xi = input value

a = the learning rate.

The network successfully clustered this data into four distinct clusters. The

results can be seen in figure 10. The output below lists the integer values of the input

data and the group in which the input was placed. The numbers indicating the output

cluster indicate the row and column of the output cluster unit. The complete output from

the program showed the clustering results after each epoch as the network gradually

reduced the learning rate. With this artificial data, there were no changes in the clustering

from the first to the last epoch indicating the network easily clustered the data from the

first epoch.

-------------- Alpha = 0.000003
18 16 17 19 -> [group: 3, 5]
43 50 47 42 -> [group: 1, 6]
0 1 0 0 -> [group: 1, 4]
9 10 9 8 -> [group: 1, 5]
50 50 50 50 -> [group: 1, 6]
18 19 16 18 -> [group: 3, 5]
10 10 9 9 -> [group: 1, 5]
0 0 0 0 -> [group: 1, 4]

Figure 10: Test 1 Results

36

Test 2- Subset of Actual Nose Data

The second test consisted of a data sample containing 18 sets of data, 3 for each

chemical, 10 sensor readings for each data vector. The data was randomly mixed. This

data sample came from actual Cyranose data.

At this point, the code for updating the neighborhood around the winner was added

to the weight adjusting function. Updating the winner and the neighbors was

accomplished in several stages. First, the winning cluster was determined. Then, a loop

started which gradually updated clusters from the outer to the inner neighborhoods. The

code ensures weights were not changed unless they actually belong to nodes in the

neighborhood and are not a "wrap-around" node. The data structure of the output clusters

is in the form of an array with output cluster units on different levels of the 2-dimensional

arrangement being numbered consecutively. If a neighborhood is not complete, the code

has to ensure that the next array index is not assumed to be in the incomplete cluster

neighborhood. (Refer to figure 11). Finally, the winning cluster's weights were updated.

The distance from the winner determines how much the weights are updated. The winner

was updated using the equation [5.3]. The update equation for neighbors at distances of

'I' from the winner is:

[5.4] Wij(new) = Wij(old) + (all)[xi-Wij(old)]

where a = learning rate
I = distance from winner

37

* * �- * !i: *

* * �, * * *

* * * * # *

* * * * * *

This neighborhood, N=2, ends here,

* * :!· ,. � * *� it does not "wrap around" to the
next line.

* * * * * *

Figure 11: Neighborhoods End at Edge of Cluster Array

The second test included the above-mentioned code changes and corrections. The

same sample set, 18 data vectors, three from each of 6 chemicals, was used. After each

training epoch, the size of the neighborhood was reduced. As the network became more

trained, each presentation of a data vector should have resulted in a winning cluster

whose weight vector was closer and closer to the presented data vector. If this were the

case, there would be less and less need to alter the weights of the neighboring clusters as

well. Test 2 resulted in the classification of the data into 13 clusters. Refer to figure 12

for results. Despite correction of errors in the code, the network was still unable to

correctly cluster the data.

38

--------------Alpha = 0.000003
7114636461271937 -> [group: l, 4]
3323101653610 -> [group: 5, 6]
3423292873725 -> [group: 3, 3]
47241428641220 -> [group: 5, 2]
89681310981113 -> [group: 6, 1]
3322293072728 -> [group: 3, 5]
0100212620318 -> [group: 5, l]
50505050505050505050 -> [group: 6, 5]
2211191641416 -> [group: 4, 6]
3322454182837 -> [group: l, 4]
3513002380 -> [group: 6, 6]
2211233141521 -> [group: 2, 2]
00007140006 -> [group: 5, 6]
33333132142430303425 -> [group: 6, 5]
2211202741422 -> [group: 5, 5]
2311403851535 -> [group: 1, 4]
1211232851520 -> [group: 2, 2]
4323233263723 -> [group: 4, 3]

Cluster [1,4] [5,6] [3,3] [5,2] [6,1] [3,5] [5,1] [6,5] [4,6] [6,6] [2,2] [5,5] [4,3]
in group 3 2 1 1 1 1 1 2 1 1 2 1 1

Figure 12: Test 2 Results

When updating neighborhoods, it is possible to change not only the size of the

neighborhood but also the magnitude of the changes to the weights in the neighborhoods.

It was hoped this approach would improve the clustering. Several combinations were

tested. None improved on the clustering capability. Therefore, it was decided to return to

the original multipliers. Refer to table 3 for the multipliers tested.

39

Distance from Initial Multiplier Multiplier for Test Multiplier for Test
wmner 2a 2b
R=O Cl Cl a.*100

R=l Cl al2 al2

R=2 al2 al4 al4

R=3 al3 al6 al6

Clusters in Result 13 15 13

Table 3: Test 2 Learning Rate Multiplier Table

Test 3- Additions to Aid Visualization of Clustering Results

Even though at this stage the network was not clustering well, it was decided to

convert all five sample sets to the normalized format for running on the network. This

normalization was the simple single normalization referred to previously. This resulted

in six data files to run through the network. Several different normalization ranges were

investigated to see which range worked best. It was decided to use a normalization of

O➔l at this stage. The data files were named method.x.dat where x was a number 1 ➔5

for the different sample sets.

Prior to running test 3, several other additions were made to the code. The initial

clustering code indicated in which cluster a particular data vector was placed. If this were

plotted, it would result in numerous data points at each cluster, making it impossible to

see how many points were assigned to each cluster. In order to separate the data points,

the error values calculated by the network were incorporated into the x and y coordinates

of the winning cluster resulting in a new data point which was located a distance equal to

the error value away from the winning cluster. A random angle was chosen to locate the

40

point around the output cluster. The resultant x and y coordinates artificially separate the

data points around the winning cluster but greatly aid in visualizing the clustering results.

See figure 13 for code to convert data points.

for(int j=0;j<N_ TESTS;j++){
//calc normed err
err[j] = (err[j]-min)/(max-min);
//choose angle in radians
z = randQ%360;
a_rad[j] = z*Pl/180;
// Calculation of plottable winning cluster coordinates
x[j] = x[j] + cos(a_rad[j])*err[j];
y[j] = y[j] + sin(a_rad[j]) * err[j];
//Output to data file
final_data<<x[j]<<" "<<y[j]<<" "<<chem[j]<<endl;

Figure 13: Output Cluster Data Point Conversion

Prior to this stage, no cross-referencing was done to determine if the clusters

created by the network actually held data points from the same chemical samples. In

order to make this comparison possible the program imported a file containing a list of

the six chemical odorants used to create each data vector. This information was

incorporated into the final data files which contained the x and y coordinates of each

clustered data point and a number indicating to which chemical the point refers.

Test series 3 was the first run using the above-mentioned alterations. This series

consisted of three runs of the neural network. Tests 3a and 3b used sample sets 1 and 2.

Test 3c used all 300 data vectors from the five data samples.

The network clustered test3a (data sample 1) into 13 clusters. There did not appear

to be a logical way to group the clusters into a smaller number of mega-clusters. There

41

}

was a large concentration of data points around [4,0] and [4, 1], many more than would be

expected if this consisted of two chemicals that were similar according to the network.

Refer to figure 14 for a plot of the clustering results.

Method 1- NN Clusters

5 +-------------=.-------------------

4 -

3.,.__ ___________________________ _

2 +------- ----------------------�

♦

-1

Figure 14: Test 3a Results by Cluster

♦

....... ...
.-....

•

•

♦Cluster 1

■Cluster 2

.6. Cluster 3

Cluster4

:!::Cluster 5

ec1uster 6

+ Cluster 7

-Cluster 8

ec1uster 9
Cluster 10

Cluster 11

Cluster 12

XCluster 13

When the same plot was examined with respect to the chemical odorants, there

appeared to be little if any clustering of the individual chemicals. (See figure 15) Two

chemicals, myrcene and decanal, appear loosely clustered away from the mass of data

points in the lower right comer of the plot. It is unlikely that a statistical analysis of the

results would confirm definite clusters. Test 3b produced similar results.

42

I
I

Test 3a- Data Sample 1- by chemical

6 ..

5
'X

ll>

4
::.:'. ""

3

2 ;,;

0

-1

Figure 15: Test 3a- Results by Chemical Odorant

-"'

i, ...
•

...

••
o.,

••

5

♦AJly\cap

• Methy\Sal

lsoAmylAc

Myrcene

;l(Qecanal

eDiacetyl

Test 3c, using the entire 300 set data sample, showed little improvement. While

the imaginative eye might see approximately seven mega-clusters in the plot, the realistic

clustering capabilities of the network were still marginal at best. There is simply too

much overlapping of the clusters for any definite identification to occur. (Refer to figure

16)

43

l

'
I

awt.., I I

-
I

' I

I
I I
I I -

• • • •
1 ., - L-...._- -. -

1·
I

- -

.J I
•

I

- ,

I T

6 - --

-1

0.5 1.5

Test 3c- All Data- by Chemical

f.-� �,.,... '\(:,,'
.

2

Figure 16: Test 3c- Clustering of 300 Data Vectors

Test 4- More Visualization Improvements

5

♦Allylcap

■MelhylSal

lsoamy\Ac

Myrcene

)1(Oecanal

eoiacetyl

At this stage, an additional factor was added to make the visualization more

realistic in the hope of improving the apparent clustering of the network. When

calculating the 'x' and 'y' coordinate values for each data point, the cluster with the

second lowest error value was used to determine the directional angle of the point from

the center of the cluster. In other words, if the winning cluster for data point 1 was (4, 1)

and the cluster with the second lowest error was (5,3), then the new 'x' and 'y' values

would be located at a distance of the minimum error towards (5,3) from (4,1). These

code changes are shown in figure 17. Whilst it was not thought that this would improve

44

sL----- -::;:::==

•

the actual clustering capabilities of the network, it was hoped it might improve the

visualization of the results.

for(int j=O;j<N_ TESTS;j++){
//calc normed err
err[j] = (err[j]-min)/(max-min);
//determined directed angle
rad[j] = angle_det(x[j],y[j],x2[j],y2[j]);
x[j] = x[j] + cos(a_rad[j])*err[j];
y[j] = y[j] + sin(a_radu]) * err[j];
//Output to data file
final_ data<<x[j]<<" "<<y[j]<<" "<<chem[j]<<endl;

where (x[j],y[j]) = 'winning' cluster
(x2[j],y20]) = second place cluster.

Figure 17: Calculation of Directional Plotable Data Points

Test series 4 incorporated these directional adjustments to the resultant coordinate

points of the winning clusters for each of the data vectors. The directed clustering

resulted in tighter concentration of data points around the cluster centroid, but no real

improvement in the apparent clustering capabilities. Plots of test 4a and 4b using data

sample 1 can be seen in Figure 18: "Randomly Assigned Clustering" and Figure 19:

"Directed Clustering". While directed clustering appears to improve the appearance of

the graph, it doesn't improve the clustering done by the network. It will be retained, as it

does appear to reduce the randomness of the resultant graphs.

45

}

Test 4a - R,mclom Clustering Visualization

6

"

I
.. ,. .,,/

4 !

.,.

I
•

3 ♦ .• -�-,.•
2

i

)o.A �

,.,
I

4 .z·1 0 :?

t X

-1 ! I

Figure 18: Test 4a Results- Randomly Assigned Clustering

Tes1 �b - Directed Clustering Visualization

6

5

3

...

:.•

2 X

1,. *"

:,.
0

-1 0 3

·1

Figure 19: Test 4b Results- Directed Clustering

•

■

/ •Allylcap
Methyl Sal
rsoarnylAc
Myrcen

x Oecanal

• Oi.acetyl

• Allylrar
I • MPthy!sal

I tsoernylAc l
Myrce:ne 1

x Oecanal
I• Diacetyl

46

"
..

t

•

0 •
!,

r

Test 5- Higher Learning Rate

Thus far, none of the fine-tuning changes had improved the clustering to any great

extent. Another avenue to investigate for potential improvement was to increase the

value of alpha, the learning rate, and slow the speed at which the learning rate was

decreased. If the learning rate were higher, the network would go through more epochs

before it quit. Slowing the rate of the decline of alpha would also increase the amount of

time the network has to learn to classify the data. In test 5, alpha was increased from 0.9

to 1.9 and the rate of decrease was cut in half. Thus after each epoch, the learning rate

was decreased by one quarter. Both changes resulted in the network working longer on

the training stage before the stopping condition was reached. The results, which are

shown in Figure 20, indicated little improvement. The data points appeared more closely

grouped around the cluster centroids, indicating a tighter error range, but the clustering of

the different chemical odorants was no better than before.

47

Test 5- Data Sample 1, Alpha= 1.9

5
)K

4

"

3 ;-

A-
I

2
" ;-1(}I(. ""�

::i::
,.,

"

0

-1

• • .. ·--

~1
Figure 20: Test 5 Results- Higher Leaming Rate

Test 6- 3-Dimensional Output Clustering

5

♦Allylcap

■Melhylsal

lsoamylac

XMyrcene

�Decanal

•Diacetyl

At this stage, it was decided to try to more closely mimic the plotting used by the

Cyranose unit. Specifically, the Cyranose clustering algorithms displayed the clustering

results in a 3-D format. It was hoped that with a 3-D format, the capabilities of the neural

network would be improved. Major changes were made to the Kohonen code as well as

additions to the main neural network library to allow incorporation of the three

dimensional cubical output matrix where the length of the side equaled the number of

different odorant chemicals used in the data. The weight updating step was changed to

take into account the 3-dimensional neighborhood. (Refer to Appendix D: "Kohonen

48

•

•

Source Code" and Appendix E: ''Neural Network Driver Code" to see source code.) The

output from the network now included a 3-D coordinate (x,y,z) and the chemical

identifier for each data vector presented to the network.

Test 6 was a 3-D neural network run. Whereas the change to 3-D did appear to

spread out the data points, there was no improvement in the clustering results. For test 6,

the plotted results were spread over three 'z' layers. Two of the chemicals, myrcene and

decanal, were located on the z=O and z= 1 planes. The other four chemicals were widely

scattered on z=2. There appeared to be no pattern to the arrangement. (Refer to Figure

21)

Test 6 3-0 Plot

4 4

Figure 21: Test 6, Three-Dimensional Clustering

49

4

Test 7- Semi-supervision ofKohonen Algorithm

Unfortunately, up to this point the unsupervised Kohonen network simply was not

able to cluster the data to any useful degree. A review of the clustering algorithms used

by the chemometrics system on the Cyranose unit indicated that all were supervised

algorithms. The question now was to determine if there were any ways to make the

Kohonen algorithm semi-supervised, using the sensor data as a training reference. It was

mentioned in Fausett [pl 72] that, whereas link weights are often assigned randomly, if

knowledge of the distribution of the clusters in the specific problem is known, it may be

appropriate to use this knowledge in setting the weights. It may appear that the network

is being given ''the answers". On the contrary, the purpose is that same as with a

supervised neural network, supervised chemometrics pattern recognition algorithm, or

many forms of human learning. The a priori incorporated into the weights guides the

learning but does not control it. Ideally, the result will be a network with weights set such

that unknown samples can be properly identified.

In this case, the data from the nose contained information about the identity of all

data vectors. If the input data samples were separated for each chemical and averages of

each sensor reading for each chemical were calculated, those averages could be assigned

as the initial weights to specific clusters in the output matrix. Six specific output clusters

were designated as the "winners" and roughly corresponded to the locations in the three

dimensional clustering diagrams produced by the Cyranose clustering diagrams. The

Cyranose clustering diagrams produced clusters for all the chemicals that were in roughly

similar locations for all tests. It was thought that by choosing similar winning cluster

50

locations, the comparison between the methods could be more precise. This method was

termed "semi-supervised Kohonen clustering". In the figure below (Figure 22), the

calculations of average sensor values for one chemical are shown. These averages

correspond to the weight variable names listed below each average. Allyl Caproate was

designated as chemical one and 'j' corresponds to a particular output cluster in the

network.

Allylcaproate Data vector 1

Data vector 2

Data vector 3

Data vector 4

Data vector 5

Data vector 6

Data vector 7

Data vector 8

Data vector 9

Data vector 1 0

Average

S1

2.02114

2.20283

2.18628

2.0699

2.52311

2.45053

2.02982

2.02668

2.144TT

2.23785

2.189491

W1j

S2 S3

2.27287 1.22585

2.42379 1.23985

2.4789 1.29925

2.18876 1.1487

2.71523 1.5115

2.57163 1.3TT65

2.22701 1.2n0

2.1906 1.24287

2.25396 1.28326

2.47987 �

2.380262 1.293962

W2j W3j

S4 S5 S31 S32

1.56243 4.66837 4.57156 1.87565

1.71518 4.90609 4.35008 2.75209

1.7273 5.00605 4.35627 2.27012

1.66736 4.98214 4.38528 2.58351

1.98418 5.05256 3.93106 2.15884

1.9121 4.81552 3.88237 3.22489

1.62434 4.69212 4.35678 2.20155

1.62353 4.78665 4.54783 2.4672

1.62861 4.84952 4.67096 1.92899

1M2§2. MQfil � 2.71731

1.728765 4.876499 4.288162 2.418015

W4j Wsj W31j W32j

Figure 22: Calculation of Semi-Supervised Cluster Weights for 1 Chemical

By forcing the weights of six clusters to correspond to the averages of the six input

data subsets (one subset for each chemical), it was hoped that this a priori knowledge

would aid in the clustering ability of the network.

In addition to forcing the weights in the network to specific values, it was decided

to change the pre-processing of the data so that the same pre-processing methods were

used for the neural network data as were used by the Cyranose chemometrics system.

51

This required incorporating functions for a 2-normali7-a.tion procedure and an auto

centering procedure to be applied to all the data samples.

In the driver program, the Kohonen network was instantiated with random weights.

To incorporate the "semi-supervision", a file was imported into the program containing

the average weights for the data vectors from each chemical odorant. The average weight

files were calculated for each of the five data samples collected from the electronic nose.

These values were then incorporated into the weight matrix in positions corresponding to

six pre-determined output clusters. The network was then ready for training. This use of

a priori knowledge in the training of the network is similar to the internal cross-validation

used in the Cyranose pattern recognition in that knowledge of the identity of each data

vector allows a determination if the clustering is effective.

Test series 7 incorporated semi-supervision of the Kohonen algorithm and 2-

normali7-a.tion but not auto-scaling of incoming data, and a random assignment of target

clusters. The target clusters in the network were: allyl caproate- (0,0,0]; methyl

salicylate- (4,4,1]; isoamyl acetate- (2,3,2]; myrcene- (3,2,3]; decanal- (3,1,4] ; and

diacetyl- (5,5,5]. The results from the best of these runs are shown in figure 23.

52

Clustering results for network run
tally[0][64] = 10
Network clustered 10 input vectors of Allylcaproate to cluster (4,4, l)

tally[l][l53] = 7
Network clustered 7 input vectors ofMethylsalicilate to cluster (3,1,4)

tally[2][153] = 5

Network clustered 5 input vectors of Isoamylacetate to cluster (3, 1,4)

tally[3][73] = 8
Network clustered 8 input vectors ofMyrcene to cluster (1,3,2)

tally[4][126] = 10
Network clustered 10 input vectors ofDecanal to cluster (2,2,3)

tally[5][152] = 5

Network clustered 7 input vectors ofDiacetyl to cluster (2,1,4)

Figure 23: Test 7 Results

As can be seen from the above results, there was some improvement in the

clustering capabilities of the network. The network assigned at least half of the data

vectors of three of the chemical odorants to clusters that had been designated as target

clusters. The target clusters were not always the clusters to which the chemicals had been

pre-assigned. For example, all the allyl caproate samples were assigned to cluster [4,4,1]

which had initial weight values equal to the averages of the methyl salicylate samples.

This could indicate a greater similarity between the weights of all the data vectors than to

any of the randomly assigned weight sets. That the assignments no longer appeared

completely random appeared to be progress but the network was still not working in the

desired manner.

53

Test 8- Incorporation of Auto-scaling of Input Data

The next series of test runs incorporated auto-scaling of the data samples. At this

point, the preparation of the data was identical to that used by the Cyranose system. The

results of test run 8 are shown below in figure 24.

Clustering results for network run
tally[0][0] = 7
tally[0][l 5 3] = 1
tally[0][15 4] = 2
max = 7 index = 0 i = 0
Network clustered 7 input vectors of Allylcaproate to cluster (0,0,0)

tally[l][64] = 1
tally[l][65] = 4
tally[l][l 2 2] = 3
tally[l][l 5 3] = 1
max = 4 index = 65 i = 1
Network clustered 4 input vectors ofMetbylsalicilate to cluster (5,4, 1)

tally[2][64] = 3
tally[2][65] = 6
tally[2][12 2] = 1
max = 6 index = 65 i = 2
Network clustered 6 input vectors oflsoamylacetate to cluster (5,4,1)

tally[3][214] = 6
tally[3][215] = 4
max = 6 index = 214 i = 3
Network clustered 6 input vectors ofMyrcene to cluster (4,5,5)

tally[4][92] = 3
tally[4][93] = 6
max = 6 index = 93 i = 4
Network clustered 6 input vectors of Decanal to cluster (3,3,2)

tally[5][64] = 5

tally[5][65] = 5

max = 5 index = 64 i = 5
Network clustered 5 input vectors ofDiacetyl to cluster (4,4,1)

Figure 24: Test 8 Results

The above results showed slight improvement. Clearly, the data pre-processing

steps were helpful. In this test, the network assigned seven data vectors of allyl caproate

to cluster [0,0,0], which was the cluster assigned to that chemical. The remaining 3 data

54

points were assigned to points far from the [0,0,0] cluster and were clearly incorrectly

assigned. Half of the diacetyl data vectors were assigned to cluster [4,4,1] which,

although not the designated diacetyl cluster was one of the designated clusters. The

remaining 5 data points were assigned to cluster [5,4,1], right next to [4,4,1]. This

essentially creates one large cluster. Six of each myrcene and decanal data vectors were

assigned to clusters within one space of a designated cluster with their remaining data

points assigned right next to the major cluster, thus creating two more multiple point

clusters. Two chemicals, methyl calculate and isoamyl acetate, had a majority of their

data vectors assigned to the same cluster, which was also only one value away from a

designated cluster, cluster [4,4,1], to which the diacetyl was assigned. In effect, the

network created 4 clusters, three of which contained individual chemicals. The fourth

cluster, that consisting of points [4,4,1] and [5,4,1] grouped three chemicals together,

essentially not being able to differentiate between the chemicals. Using these results, the

network successfully clustered 36 out of 60 data points, a validation percentage of 60%,

with some difficulty differentiating two of the chemicals from a third one. These were

the best results thus far.

Test 9- Corners Designated as Winners

Clearly, whilst improvements were being made at increasing the clustering

capabilities of the network, it was significantly less able to differentiate between the

samples than was the Cyranose chemometrics system. Several others avenues were

pursued in an attempt to improve the neural network capabilities. The first avenue was to

55

try to separate the designated clusters as much as possible in the 3-dimensional output

arrangement. Six corners of the cluster cube were designated as "winners", each assigned

to a different chemical odorant. The assignments can be seen in the following figure.

z

[0,5,5], Cluster 210

[5,0,5], Cluster 185 er 215

[0,5,0], Clust 0

X

Figure 25: Designated Clusters for Test Run 9

Test 9 was run 10 times. The results are listed in table 4. Results indicate the

winning cluster index and in parenthesis, the number of data points assigned to that

cluster. A winning cluster is designated as the first cluster to which the greatest number

of data points for a chemical has been assigned. The efficiency value in the table is a

measure of the total number of data points assigned to a distinct cluster. Assigning the

corners to be the designated winning clusters seemed to have the effect of pulling the

56

[5,5,0], Cluster 35

actual winning clusters toward the comers. However this still did not seem to either

cause a majority of the winning clusters to end up at the comers, nor spread out the

different chemical clusters to allow better differentiation.

Chemical Run 9a 9b 9c 9d 9e 9f 9g 9h 9i 9j

AllylCaproate 33(4) 209(6) 184(9) 184(5) 209(9) 29(9) 184(7) 31(4) 184(10) 184(9)

MethylSal 212(4) 26(5) 28(6) 208(5) 28(6) 208(7) 25(4) 29(5) 184(9) 34(6)

IsoAmyl 208(4) 26(7) 28(9) 208(9) 28(6) 209(8) 27(6) 29(9) 184(7) 34(9)

Myrcene 28(6) 182(6) 213(10 200(6) 214(10) 181(4) 206(6) 33(10) 207(6) 28(10)

Decanal 184(5) 34(8) 208(8) 202(5) 213(6) 206(6) 208(9) 33(8) 34(7) 28(9)

Diacetyl 207(5) 27(9) 28(10) 208(10) 183(8) 209(10) 27(9) 29(10) 209(9) 34(10)

Efficiency 46% 6()0/o 62% 43% 65% 60% 58% 40% 53% 48%

Table 4: Test 9 Results

Test 10- Fix Designated Output Cluster Weights

The next possible area for improvement was that of fixing the link weights of the

six designated winning units at the start of the neural network run, in other words, not

updating them at all throughout the run. The theory with this test was that the ideal

weights of the winning units should be very close to the averages of the input sets that

belong in that cluster. It was thought that holding the weights to the average input values

would force the correct inputs to the appropriate clusters. These tests were run with the

designated winning clusters being assigned to the original units from test runs seven and

eight. (Refer to figures 23 and 24) Whilst the winning weights were not altered, the

57

weights in the neighborhood were updated using the equation [5.5]. (Refer to Figure 26

for Test Run 10 results.)

Run 10a Run 10b Run 10c

Cluster # in cluster Cluster # in cluster Cluster # in cluster

Allyl Caproate 0 6 0 6 0 6

153 4 153 4 92 4

Methyl Salicylate 0 3 0 3 0 3

153 6 153 5 92 6

152 1

lsoamyl Acetate 0 1 0 1 0 1

153 9 153 6 92 9

152 3

Myrcene 0 5 0 2 0 5

153 5 153 4 92 5

152 4

Decanal 0 3 0 3 0 3

153 6 153 6 92 6

Diacetyl 0 0 0 0 0 0

153 10 153 2 92 10

152 8

Figure 26: Test 10 Results

As can be seen from the results above, when the neighborhood was updated but not

the winner, the network was unable to discriminate between any of the chemical odorants.

At most, data vectors were assigned to three clusters with significant overlap between the

clusters. This avenue of investigation appeared to be a dead end.

Test 11- Neighborhood Weight Adjustment Multiplier

The results from test 10 did suggest that the degree to which the winner and its

neighborhood were updated might not have been sufficiently investigated previously. In

test 11, it was decided to try a different multiplier from those previously investigated in

58

test 2. For this test, the amount the weights were adjusted was proportional to the

distance from the winner with the winner being assigned the distance of 1 instead of 0,

which was the previous practice. This avoided division by zero and the possibility of

using the same multiplier for the winner as for the closest neighborhood. Therefore,

weight update equation for all units, including the winner, became:

[5.6] Wij(new) = Wij(old) + (all)[xi-Wij(old)]

where a = learning rate

I = distance from winner starting at lwinner = 1 to lfurthest = 4 (third ring out
from the center)

Test 11 uses the same target nodes for the output clusters as have been used

previously. This test was run several times. As the aim of this pattern recognition

algorithm is to separate the six chemicals into 6 distinct clusters such that identification

of unknown samples is possible, there was some improvement due to the changes made

to the weight updating noted above, over the results from test 9. The results from the best

of the test 11 runs are shown below in Table 5. It can be seen that the network was able

to separate three of the chemicals widely enough to discriminate between them. If the

network were run using only data for isoamyl acetate, methyl salicylate, myrcene, and

diacetyl, there might be very little overlapping of clusters. The results were plotted in

Figure 27.

59

Test 11
Results

Chemical Cluster #
AICap [0,0,0] 2

[4,4,1] 1
(3 3. '] 1

MethSal [4,4, 1 l 6

[5,4, 1] 3

lsoAmyl [5,4, 1 l 9

(44 1]

Myrcene (3,2,3] 4
(4,2,3] 6

Decanal (3, 1,4] 8

[4,1,4] 1

Diacetyl [5 4.1] 10

Clustering 78%
Efficiency

Table 5: Test 11 Results

60

Test 11 3-0 Plot

4

-1
. -1 -1 y
X

4

Legend: Allyl Caproate Green Diamond
Methyl Salicylate: Red Circle
iso Amyl Acetate: Blue Box
Myrcene: Magenta Cross
Diacetyl: Gold Diamond
Decanal: Aquamarine Box

Figure 27: Test 11 Results

Test 12- Removal of Outliers

During the initial training of the Cyranose unit using the built-in software, after the

initial 60 data vectors were collected, the pattern recognition algorithm was run to

determine the effectiveness of the clustering. If the clustering, as indicated by the internal

cross-validation, was not 100% effective, outliers were removed and new sets obtained to

complete the sample. The choice of which specific samples needed to be removed was

different depending on which pattern recognition algorithm was run. The data used in the

NN experiments had been selected to obtain a 100% cross-validation result using the

61

4

CDA algorithm. Therefore, the data vectors removed may not all have been outliers

when the initial data was run through the Kohonen semi-supervised NN algorithm. In the

next test, several of the data points which appear to be outliers in test 11 were removed

from the data sample and the sample was rerun through the network.

Test 12 started with the results from test 11. As can be seen in Table 5, 7 out of 10

allyl caproate samples were grouped together at point [3,3,2] with a single outlier at

[4,4,1] and a pair at [0,0,0]. In test 12, the single outlier was removed and the data was

run through the network again. The results can be seen in figure 28. It was noted that the

locations of the clusters in this plot were different from those in figure 27. This was due

to the random presentation of data to the network during the training phase, leading to a

different arrangement of final clustering. However, it was also noted that the overall

clustering seen in the previous test remains. The main difference is that allyl caproate

(green diamonds) appear in only two positions instead of three, and the single green

diamond that had been in the middle of the magenta and blue figures is now gone.

62

Test 12 3-D Plot

4

3

Figure 28: Test 12 Results- Removal of One Outlier

Test 13- Further Outlier Removals

The following three tests investigated the removal of different data vectors. In test

13, the two additional outliers of allyl caproate were removed which resulted in a more

distinct allyl caproate cluster than had been seen previously. Evidence of the interaction

between the data vectors can be seen in these results. (Refer to figure 29). Previously,

the diacetyl data points were reasonably well clustered or more loosely clustered but

significantly away from the other data points. With the removal of the two additional

allyl caproate points, the diacetyl cluster split into two much more separated clusters.

This occurrence was also noticed with the CDA algorithm on the Cyranose system and is

therefore not unique to the NN application. It was found previously that in this greatly

reduced dimensional representation, the apparent location of a particular data point could

63

be misleading and not adequately indicate its importance to the system. With test 14, it

may have been that one of the outliers could have been removed without causing a

reduction in the clustering effectiveness but removing both caused a different set of

interactions to come into play.

Test 13 3-D Plot

4

Legend: Allyl Caproate Green Diamond
Methyl Salicylate: Red Circle
iso Amyl Acetate: Blue Box
Myrcene: Magenta Cross
Diacetyl: Gold Diamond
Decanal: Black Cross

4

Figure 29: Test 13 Results: Removal of Remaining Allyl Caproate Outliers

Test 14- Complete Removal of One Chemical

The NN appeared to have difficulty discriminating between methyl salicylate,

isoamyl acetate, and decanal, with all being clustered together as the red, blue, and black

symbols above. Test 14 involved removal of one chemical sets completely in an effort to

64

4
3

allow better discrimination between the remaining data vectors. In this test, all of the iso

amyl acetate data vectors were removed and the NN was rerun. (Refer to figure 30).

These changes made the results worse than before. The diacetyl and ally! caproate have

ceased to be distinct clusters. Diacetyl has merged with the decanal and methyl salicylate

grouping. This may be because this test was run using the results of test 13 where

removal of the two apparent outliers of ally! caproate changed the data interactions.

Different results may have been seen if this test had been run with those two points

included.

Test 14 3-0 Plot

4

Legend: Ally! Caproate Green Diamond
Methyl Salicylate: Red Circle
Myrcene: Magenta Cross
Diacetyl: Gold Diamond
Decanal: Black Cross

4

Figure 30: Test 14 Results: Removal of All iso Amylacetate

65

Test 15- Removal of Three Samples from Test 13

The final test where data vectors were removed was test 15. Preparation for this

test began with the results from test 13, after the removal of the single allyl caproate

point. Two points from methyl salicylate and one of myrcene were removed. (Refer to

figure 31) This test was an improvement on all the tests 12-14. Distinct clusters are

apparent for allyl caproate, myrcene, and diacetyl. Decanal consists of a tight cluster of

black crosses within the concentration of methyl salicylate and iso amylacetate data

points showing no discrimination.

Test 15 3-D Plot

4

Legend: Allyl Caproate Green Diamond
Methyl Salicylate: Red Circle
iso Amyl Acetate: Blue Box
Myrcene: Magenta Cross
Diacetyl: Gold Diamond
Decanal: Black Cross

Figure 31: Test 15 Results- Removal of Three Additional Outliers

66

Test 16- New Designated Clusters

There were three more series of investigations to close out this series of

experiments. The first was an idea that if the designated clusters were chosen to roughly

coincide with the approximate locations of the clusters created using the CDA algorithm

on the Cyranose, which were similar for all data samples, the NN might have an easier

time assigning the data vectors to clusters. This was test 16. (Refer to figure 32). For

comparison, the plot from the CDA Cyranose run using the same data sample as was used

for the previous tests can be seen in figure 33. The clusters from this test were used to

assign the designated clusters for test 16.

Test 16 3-D Plot

Figure 32: Test 16 Results

67

4
3

Canonical Projection Plot

F3

. \.ib
ii 1 \ 9

Figure 33: Comparable Results from Cyranose Unit

Test 17- Sequential Presentation of Input Data

allylcap
rnethylsal

Jsoa1Uj1lac

myn:ene
lee n II
dlacetyt

The neural network program is designed to present the data to the network in a

random order. This results in the data vectors having a varying degree of effect on each

other and the clustering produced. In test 17, the data was presented in a sorted order,

with the data vectors for each chemical presented sequentially. There was no

improvement in the clustering. In fact, the order of the presentation of data to the

network does not appear to significantly affect the clustering capabilities of the network.

(See figure 34.)

68

. 'J/
& ~10

fi
. <fl,1

i:.},.5
io B

2

Test 17 3-D Plot

Figure 34: Test 17 Results: Non-Random Data Presentation

Test 18- Random Data

Finally, in order to ensure that the apparent clustering seen in these tests was not

due to random chance, a new set of data was created made entirely from randomly chosen

numbers in the same range as the actual data. Test 18 shows absolutely no clustering.

(Refer to figure 35) This indicates that the clustering seen in the NN plots does indicate

ability to group similar data into clusters.

69

6

5

>-

3

2

► . .

♦

2

Test 18- Random data values

..y -

3

X

.....� _

Figure 35: Test 18 Results: Random Data

I

I

I

5

♦ Ally! Caproate

■ Methyl Salicylate

lso �acetate

Myrcene

• Decanal

• Diacetyl

70

• •

---+-"· --+-1 •

CHAPTER VI

CONCLUSIONS

Kohonen Neural Network Clustering Ability

The unsupervised Kohonen neural network was unable to cluster the electronic

nose data obtained from the Cyranose 320™ Electronic nose. As previously mentioned,

as of 1997, unsupervised neural network algorithms had not been applied to electronic

nose data. [BEG] It has also been noted by Singh et al. [SHG] that real-world electronic

nose data tends not to be well behaved and is often noisy and distorted. This may

partially explain why unsupervised neural network algorithms had not been applied to

electronic nose data. There did not appear to be any ability to group the input vectors

together based on chemical type. It is also interesting to note that according to Sun et al.

[SCK], self-organizing neural networks tend to perform worse than K-means clustering

even though unsupervised neural networks appear to better suit clustering strategies.

Numerous changes were made to the program in an attempt to improve the

clustering ability of the network. The data pre-processing was improved such that it

mimicked the pre-processing performed in the chemometrics based pattern recognition .

system in the Cyranose unit. While this was an important change, making an accurate

comparison between the results of the two systems possible, it brought only incremental

improvements to the system. Numerous learning rates and neighborhood multiplier

update schemes were tested yielding some positive results. The network configuration

was changed from a two dimensional cluster array to a three dimensional cluster array

71

making the neural network results match the configuration of the Cyranose unit, although

this did not improve the clustering ability.

Reasonable results in clustering were seen only after the clustering algorithm was

changed from an unsupervised to a semi-supervised Kohonen algorithm. Network

weights in an unsupervised Kohonen network are usually assigned randomly. If

knowledge exists about the ultimate distribution of clusters for a particular problem, this

knowledge can be incorporated into the architecture of the network. [F] The input data

from the electronic nose contained information about the identity of each input data

vector. This knowledge was used in training the neural network to give specific clusters

in the network weight values equal to the average values of the input data vectors. This a

priori knowledge resulted in a network described in this thesis as 'semi-supervised'.

With this change, the network was able to cluster the inputs at an efficiency rate of about

50-70%. This compares to a clustering capability, based on internal cross-validation

results, of 100% for the Cyranose unit's build-in chemometrics pattern recognition

system. Whilst this level of efficiency from the Kohonen semi-supervised network is not

considered sufficient to identify unknown samples with any degree of accuracy, it is a

major improvement over the unsupervised network results. The semi-supervised neural

network algorithm could be combined with the Cyranose electronic nose by adding the

data manipulation and neural network code into the built-in software available with the

Cyranose 320™ Electronic nose.

The 3-D clustering graphs indicate that the semi-supervised Kohonen network

was able to successfully separate three of the six distinct chemical odorant samples: allyl

72

caproate, myrcene, and diacetyl. The remaining three samples were assigned to the same

or very closely positioned clusters. Although the electronic nose's built-in chemometrics

system successfully separated all six chemicals, three of those chemicals were not as well

separated as would be ideal. The chemometrics system consistently separated myrcene,

decanal, and allyl caproate. The other three chemicals: methyl salicylate, isoamyl acetate,

and diacetyl, were more closely concentrated. When choosing the chemicals to use for

the initial testing, several were tried and discarded because there were difficulties getting

sufficient discrimination from Cyranose built-in identification system. It is highly likely

that different combinations of chemicals, concentrations, solvents, or sampling methods

would significantly affect the clustering capabilities of the neural network, although

possibly in a different way from the effects on the Cyranose pattern recognition system.

It is also a possibility that, as was found with the three built-in chemometrics algorithms,

a neural network system might work well in cases where the chemometric algorithms did

not. This possibility was not tested here.

During the training phase of the Cyranose unit, the pattern recognition algorithm

was run many times as data vectors were collected, discarded as outliers, and new sets

collected. The data samples ultimately used to achieve the 100% cross-validation on the

Cyranose pattern recognition system were then applied directly to the neural network.

There was no ability to do any re-sampling once the neural network evaluation

commenced. The comparison between the two systems was thus not a fair evaluation in

the sense of a scientific comparison and thus gave only an indication of the neural

network's capabilities. Experience from training the Cyranose unit on the pattern

73

recognition algorithms available indicated that the data sample that resulted in a

successful clustering for one algorithm did not always result in successful 100%

clustering with the other algorithms. It is highly likely that the same situation exists with

respect to the neural network algorithm. If the same degree of human supervision of the

data sampling had been available for the neural network system, it is highly likely that its

performance would have greatly improved.

A venues for Future Work

There are several avenues for future research into improving the clustering

abilities of this semi-supervised Kohonen neural network. The assignment of average

input data to weights of the network gave the network some direction in clustering. In the

literature, there are references to the use of a combination of PCA analysis to reduce the

dimensionality of the incoming data with a neural network as a promising way of

clustering data. [K] The Cyranose chemometrics system utilized both PCA for reducing

the dimensionality and for identifying outliers and one of three pattern recognition

algorithms to successfully cluster the data and make identification of unknowns possible.

Linking the data sampling with the neural network program in order to improve

the selection of a workable data sample and avoid the necessity of using a data sample

selected for a different pattern recognition system could greatly improve the ultimate

performance. This would require close cooperation between a researcher and Cyrano

Sciences, Inc. A true comparison of the two systems would start with a random set of data

74

for six chemicals, with no additional sampling, and control of all other variables. The

efficiency rates of the two systems could then be compared.

Finally, other neural network algorithms could be applied to electronic nose data.

Algorithms such as fuzzy ART maps and learning vector quantization are both algorithms

for clustering input data.

75

APPENDIX A

KOHONEN NEURAL NETWORK

ALGORITHM

76

KOHONEN NEURAL NETWORK
ALGORITHM

The Kohonen self-organizing neural network was developed by Teuvo Kohonen.

His original work on self-organizing maps was conducted in the early 1980's and was

further developed into a more formal neural network algorithm in 1989. [F] The

development of the algorithm followed discoveries that detailed maps of interrelated

signals can be formed in a one or two-dimensional array of processing units which had

no structure initially. [Ko2] Self-organizing neural networks are also called topology

preserving maps.

During the self-organization process, each input pattern is presented to the

network. The cluster unit whose weight vector most closely matches the input pattern is

chosen as the winning cluster. In this way, it can be seen that the weight vector serves as

a typical input pattern for any particular cluster. As the distance from the winning cluster

increases, the similarity between its weight vector and those of the neighbors increases.

Each time a winning cluster is chosen for a particular input pattern, the weight vector is

updated to more closely match the input vector, improving the chances that the next time

a similar input pattern is presented to the network, it will also be assigned to the same

winning cluster.

Architecture

The processing units that execute these topological maps are similar to

perceptrons. [K] There is a set of input units linked to the output or cluster units. Each

link is given a distinct weight value. The methods for choosing weight values is

explained later in this appendix. There are m cluster units and they are typically arranged

77

in a one- or two-dimensional array. A one-dimensional topology is shown in figure Al

below.

WJJ

Figure Al: Single Layer Kohonen Network

Each cluster unit has a designated 'neighborhood' around it. The neighborhoods

are designated by a radius (R) indicating the distance from the specific cluster unit. The

size and shape of the neighborhoods can be varied and is dependent upon the

characteristics of the particular problem and on the shape of the cluster array. Figures A2

and A3 show two possible neighborhood arrangements for two-dimensional cluster

arrays. Each time the winning cluster's weights are updated, the neighboring cluster unit

weights are also updated. The degree to which the neighboring units are updated is

dependent upon the distance of the unit from the winning unit.

Note that if the winning unit is near the edge of the grid, some neighborhoods will

have fewer units than if the winning cluster were in the center of the array. The

neighborhoods do not wrap around from one side of the grid. Missing units are ignored.

78

*

*

*

*

*

*

*

* * * * *

·-·-·-·-·-·-·-·7
*

*

*

*

*

* * *
-----------,
I

I
I * * * I

I *
0

* I

I * * *
._ __________

* * *

*

*

*

*

*
L --·-·-·-·-·-·-· ..J

* * * * *

*

*

*

*

*

*

*

r·-. - - ...,
R=ODR=2

. __ J
R=l I I

.. - -

Figure A2: Neighborhoods for Rectangular Cluster Array

* * * * * * *

;·-·-
·-·-.

* . \ * *
I

* * * . *
,,- --- - \ \

*/
,I \

'* *' * * '* *
I I \

I

0
\ \

* I * I * * \ * *
\ I

\
\ I

\ I

/* *" * \ * * I * *
\ \ I

I - - - - - ...

* *'- * * * I* *

-·-·-·-·
I

* * * * * * *

R=2 /" '\. R=l /' R
=Oo. '- /

Figure A3: Neighbrhoods for Hexagonal Cluster Array

79

I I .
I I I
I I

I
I I
I

.
I I
I

.
1

\

Kohonen described more complex systems for incorporating neighborhoods in a

self-organizing network in a paper in 1982. [Ko2] In this example, the units in the

neighborhoods immediately around the winning cluster were updated to make their

weight vectors more similar to the winner as before. Additional neighborhoods further

from the winner were given an inhibitory update, decreasing any likelihood of similar

input vectors being assigned in this region. There is both anatomical and physiological

evidence that this type of activity takes place between biological neurons. [K]

Step 0: Initialize weights wy.

Set neighborhood parameters.

Set learning rate parameters.

Algorithm

Step 1: While stopping condition is false, do steps 2-8.

Step 2: For each input vector x, do steps 3-5.

Step 3: For eachj, compute:

D(i) = L (wy-x;)2

Step 4: Find the index J such that D(J) is a minimum.

Step 5: For all unitsj within a specific neighborhood of J, and for all i:

wy(new) = wy(old) + a[x;-wy{old)].

Step 6: Update learning rate.

Step 7: Reduce radius of topological neighborhood at specified times.

Step 8: Test stopping condition.

80

Weight Assignment, Learning Rate and Neighborhood Reducing Alternatives

Weights in the network are generally assigned random values. If there is some

information known about the system or the distribution of the cluster for a particular

problem, it may be appropriate that the choice of weights in some way reflect that a priori

knowledge.

The learning rate is a slowly decreasing function of time or training epochs. It has

been shown that a linearly decreasing function works well for most practical

computations [Ko]. It is also possibile to use a geometrically decreasing function to

reduce the learning rate.

The maximum size of the neighborhood also decreases as learning progresses. As

the network approached the stopping condition, the maximum size of the neighborhood

decreases in size. The neighborhood can be reduced one unit each time the learning rate

is reduced, one unit for every epoch or several epochs, or any method that fits the

situation.

81

APPENDIXB

A BRIEF INTRODUCTION TO

CHEMOMETRICS

82

.

CHEMOMETRICS

Chemometrics is defined as the use of multivariate mathematical and statistical

techniques to extract valuable but often hidden information from data. [BEG] [Li] These

methods have proven essential in areas such as the chemical and flavor industries due to

their ability to analyze many variables simultaneously.

Chemometrics includes many methods of data analysis techniques which are

applicable to sensor array data analysis. These include data pre-processing techniques,

principal components analysis, and pattern recognition algorithms.

Data Pre-processing

Data pre-processing is an important first step in data analysis. Pre-processing of

the data is performed on data for a number of reasons. Pre-processing can remove or

reduce the effects of systemic and random variations in the data, reduce random and low

frequency noise, reduce baseline effects, account for data intercepts, and give more

weight to some samples rather than others. The choice of which pre-processing

techniques to apply to different data depends on the specific details of the data and the

problem being investigated. Often, the exact choice of techniques to apply cannot be

determined without testing various techniques on the data.

In general, there are two types of data pre-processing: variable and sample pre

processing. [BPS] Variable pre-processing contains tools that operate on each variable of

the data, in other words, on the data columns. Sample pre-processing operates on the

individual samples of data, operating on the rows of data.

83

Variable pre-processing methods include mean-centering, auto-centering, and

variable weighting. Mean centering is a common tool that is applied to account for an

intercept in the data. Performing the mean centering calculation on the variable data

results in the removal of the mean sample vector from all vectors in the data set. This

operation generally does not hurt the data analysis and often is beneficial. [BPS] Mean

centering is calculated by subtracting the mean of a particular variable vector from each

of its elements. The calculation is shown below in equation B 1.

[Bl] Ximc = X; - (�:; Xj)/ n
j=l

where X;mc = mean-centered variable element
n = total number of elements in data column
xi = variable element prior to mean-centering

Auto-centering to unit variance removes any inadvertent weighting from the data

arising from arbitrary units such as from vastly differing samples. [Li] Auto-centering

captures information from sensor responses that are very repeatable. Auto-centering is

usually not the best variable pre-processing method if the data contains sensors with

relatively small responses containing little meaningful information. [Cy2] Auto-centering

is calculated by dividing each element of the variable vector by the standard deviation of

the vector. This calculation is shown in equation below.

where Xiac = auto-centered variable element
x = mean of variable elements

A variation on the previous two centering methods is a combination of the

methods. It is possible to standardize each variable by subtracting the mean of the

variables from each individual value then dividing by the standard deviation. [B]

84

n

[B2] X;ac = X;I sqrt(I: (x1-x)2ln)

Variable weighting is the last variable pre-processing method. Variable weighting

is used to emphasize some variables over others to increase the influence of those

variables on the model. Variable weighting would consist of multiplying all entries for a

particular variable by some constant to increase its effect on the data analysis.

There are four types of sample pre-processing used to prepare data for analysis.

These are normalization, of which there are several methods, weighting, data smoothing,

and baseline corrections. [BPS]

Normalization of a sample vector is accomplished by dividing each variable in the

sample set by a constant. There are three types of normalization: '1-norm', '2-norm', and

max intensity, or 'infinity-norm'. The '1-norm' normalization involves dividing the sum

of the absolute values of all entries for a particular sample vector from each entry. (See

equation B3.)

nvars

[B3] x-' = x-1 CE I x-1)
'l 'l J=l 'l

The 2-norm is the normalization of each value to unit length and is calculated by

dividing each value by the square root of the sum of the squared values of the sample

vector as indicated in equation [B4].

nvars

[B4] x-' = x-1 sqrt(L x-
2

) '} '} j=O '}

There are potential difficulties with 2-norm as it is possible to lose the variability

in some of the variables. A compromise approach would be to selectively normalize

certain variables. With this method, the summation would include only those variables

85

that are being normalized instead of all variables. The third normalization method, oo

norm, is normalization to a maximum intensity. If the maximum intensity equals one,

this is calculated by dividing each element by the oo-norm, which is the maximum, in

absolute value, of the sample vector. Normalization is applied specifically to remove

systemic variations.

nvars

[B5] x; = x1 I (max I x1 I)
j=I

Sample weighting, like variable weighting, involves multiplying each element in

the sample vector by some constant. Weighting should only be applied when very

reliable information is available about the relative importance of some samples over

others.

Sample smoothing is used to mathematically reduce the random noise in a sample

with the goal of increasing the signal to noise ratio.

Baseline corrections remove low-frequency sources of variation, which are not

related to the chemistry of the system being investigated. [BPS] These variations can be

large relative to the changes in the signal of interest. An explicit modeling approach is

used to remove the baseline effect.

If a sample vector is r = f(x), and

[B6] r = r' + a + Px + yx2 + 8x3 + ...

where r' is the signal of interest and the remainder is the baseline effect. By postulating a

model for the baseline (offset, linear, polynomial, etc.), the offset can be a�counted for

through subtraction.

86

t fllrr,'

Principal Components Analysis

Principal Components Analysis (PCA) is an unsupervised mathematical

manipulation of a data matrix where the goal is to represent the variation present in many

variables using a smaller number of 'factors' or dimensions. [BPS] This allows the

investigator to view the true multivariate nature of the data in a relatively small number of

dimensions, allowing human pattern recognition to be used to identify structures within

the data. PCA is an excellent tool for preliminary data exploration. It is useful for

examining data sets for expected or unexpected clusters and for the presence of outliers.

PCA can be used to filter out noise in a system and can provide the amount of variation

contained by each measurement variable.

Supervised Pattern Recognition Algorithms

There are several supervised pattern recognition algorithms available for in-depth

data analysis. These methods are used when the goal is to construct a model to be used to

classify future samples. Supervised learning is accomplished using a set of data with

known classifications to "train" the system to distinguish between classes. The

algorithms include K-nearest neighbor, K-means, and Canonical Discriminate Analysis.

K-nearest neighbor is a general approach for classifying unknown samples. The

assignment of an unknown is accomplished according to the majority vote of its K

nearest neighbors in the training set in the multi-dimensional space. To classify an

unknown, the distance is calculated between it and a set of samples of known class. The

closest k samples are then used to make the classification. The choice of the value of k is

87

determined by a cross-validation procedure and is often equal to the maximum number of

samples in the class with the fewest members. [Cyl]

K-means is similar to K-nearest neighbor. This prediction algorithm assigns

unknowns to a class based on the Euclidian distance between the class centroid and the

sample in the multi-dimensional space. [Cyl] The predicted class of an unknown is

assigned to the class of the sample(s) lying nearest to it in multi-dimensional space. The

Euclidian distance is commonly used to measure the nearness between samples. The

Euclidian distance is calculated by the equation below [B7].

[B7] Euclidian Distance = sqrt((x1-yi)2 + (x2-y2)2 + ... + (Xnvars -Ynvarsi)

Canonical Discriminant Analysis is a supervised learning algorithm, which

assigns unknown samples to classes based on the criterion of the shortest Mahalanobis

distance between its centroid and the sample in canonical space. [Cyl] The Mahalanobis

distance is measured in terms of the standard deviation from the mean of the training

samples. It differs from the Euclidian distance in that it takes into account sample

variability. It weights the differences by the range of variability in the direction of the

sample point. [Th]

In chemometrics data analysis, the aforementioned methods are often used in

combination to improve the data analysis. [K] Extensive testing is done to determine

which combinations work best with a particular data set.

88

APPENDIXC

DATA CONVERSION AND PREPROCESSING

PROGRAMS

89

DATA CONVERSION AND PREPROCESSING
PROGRAMS

Program Name: 'dataConvert.cxx'

/* This program is designed to convert enose data
* from the file format from the cyranose unit into
* a data file usable with the NN for the enose.
* The program will take several data files and
* convert and combine them so that adequate data
* samples are available to train the NN
*/

/* Created 1/18/01
* Program works for old and new data files
*Will use ANSI std include files and notation
* 2/12/01 including randomizing of file
* works for randomizing 2 data files of 60 datasets each 2/14/01
* 2/12/01 including normalization of data

*/
/* Edited for final data file format 11/01

* Will take data file directly from nose
* Files will be named 'trainl' ... 'trainS'
* Works 11/13/01
* Determined that randomization of training data is required, 11/14/01
* Code included 11/14/01
* Testing started

*/

#include <iostream>
#include <stdio.h>
#include <fstream>
#include <stdlib.h>
#include <string>
#include <ctime>

using namespace std;
using std::fstream;
using std::ostream;
using std::ofstream;

const int SIZE = 480;

void random_array(string[], int);

90

int main()
{

//read in name of file
char firstLine[80];
string classNumber;
char fileNamein[30];
char fileNameOut[30];
int i=0, j =0;
char convert = 'n';
double data;
//temp var to hold data read from file
char ans = ' y' ;
int dataset = 0, row = 0;

do{
//This allows conversion of multiple files
cout<<"Enter the name of the file to convert: ";
cin>>fileNamein;
cout<<"fileName = "<<fileNamein<<endl; //this works
ifstream infile(fileNamein , ios::in);

if (! infile) {
cerr<<"Input file could not be opened."<<endl;
exit (1);

//open output file
//Make this general- ie add line to enter outfile name, 11/12/01
cout<<"Enter the name of the output file: ";
cin>>fileNameOut;
ofstream outfile(fileNameOut, ios::app);
if (! out file) {

cerr<<"Output file could not be opened."<<endl;
exit(l);

infile>>firstLine;
//get to first line of valuable information
while(firstLine[0] ! ='E') {

//Get next line
infile>>firstLine;

cout<<"\n"<<firstLine<<"\n";
infile>>data;
cout<<data<<endl;
//Put first data point into outfile
outfile<<data<<" ";
row=0;
while (!infile.eof()){

j =0;
infile>>data;
outfile<<data<<" ";
if(data >=1){

outfile<<endl;
dataset++;
row++;
infile>>firstLine;

} //end if
if(row == 60)

break;

91

data

} // end while
//ask if user wants to convert another file
do {

cout<<"Do you have another file to convert? ";
cin>>ans;
} while(ans != 'y' && ans != 'n');

outfile.close();
infile.close();
} while(ans == 'y');

//start of randomization portion of program
//Use same file for input as used for output above
ifstream infile(fileNameOut , ios::in);
if (! infile) {

cerr<<"Input file could not be opened."<<endl;
exit(l);

cout<<"Enter the name of the final output file:
cin>>fileNameOut;
ofstream outfile(fileNameOut, ios::app);
if (! out file) {

" .
,

cerr<<"Output file could not be opened."<<endl;
exit(l);

//grabs each line of data file char firstline[SIZEJ;
string dataLine[300]; //pointers to strings holding each line of

int fill[300] = {0};
int k = 0;
int sets=0;
cout<<"How many data sets in infile?\n";
cin>>sets;

//read in data from file
while (!infile.eof()) {

cout<<"In while\n";
j = rand() %sets;
cout<<"j = "<<j<<endl;
while(fill[j] == -1) {

//find another j
j = rand()%sets;

}
infile.getline(firstline,SIZE, '\n');
cout<<"firstline: "<<firstline<<endl;
dataLine[j] = firstline;
f i 11 [j] =-1 ;
cout<<"Data line "<<j<<": "<<dataLine[j]<<endl;
k++;
cout<<"k = "<<k<<endl;
if(k == sets)

break;

cout<<"k "<<k<<endl;

//randomize data lines
random_array(dataLine,sets);

//Now put lines into output file
for(i=0;i<sets;i++){

92

}

outfile<<dataLine(i]<<endl;
cout<<"Line "<<i<<" : "<<dataLine(i]<<endl;

return 0;

/* each line in the incoming data file should be put into
* strings before being sent to this function
* Function: random array()
* Input: string(],-an ordered array of strings
* Output: string(], a randomized array of strings
*/

void random array(string B(], int size)
{
-

//Initialize variables
int i,j;
string R[size]; //string to hold randomized array

//random seed
srand(time(0));
cout<<"In random array()\n";
for(i=0;i<size;i++) {

}

j=rand()%size;
//correct the comparison below

while(B(j] == ""){
//find another value
j = rand()%size;

cout<<"in for, j = "<<j<<endl;
R[i] = B[j];
//set B[j] to 0 so not used again
B[j] = "";

//put mixed up values back into B[]
for(i=0;i<size;i++){

B[i]=R[i];

for(i=0;i<S;i++)
cout<<"B("<<i<<"]: "<<B(i]<<endl;

} // end random_array()

93

}

Program Name: 'enose_fullnorm_k2.cxx'

/*This program takes raw enose data and normalizes it for inclusion into
a neural net testing program using the Monarch library.
*/
//This program creates enosetrain.dat as of 2/14/01
/* This program was altered 11/16/01 to create data to use for Kohonen
networks

* Data normalized to between 0 and 1

* 3/7/02 Normalize up to 300 data sets of entire data from enose
* 3/25/02 Change normalization to 0-1.0
* 9/3/02 Change normalization to match that done by Cyranose unit
* 3:10 pm test on 2-norm only
* twonorm works @3:30 pm
* 10/21/02 alt preprocessing added- auto-scaling

*/

#include <iostream.h>
#include <fstream.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <ctime>

void twonormal (double [300) [35), int, int, double [300] [35));
//double[rows] [columns] rows == 300, cols == 35

// two norm operates on rows
void meancenter (double [300) [35), int, int, double [300) [35));
//preprocessing on columns

void autocenter(double [300) [35), int, int, double[300] [35)); //another
preprocessing on columns

int main() {
//int seed;
srand(time(0));
//Internal variables

ifstream in file;

char fileNamein[30];

char fileNameOut[30];

ofstream out file;
double value;
ofstream middata;

//double subscript array: row, column
//enose kohonen up to 300 data sets, 35 inputs
double raw[300] [35), train1[300] [35), train2[300] [35);
int i=0;
int j=0,k = 0, m=0;
int cols;
int rows;

94

//Open files
//open raw data file and neural net data file

cout<<"Enter the name of the file to normalize: ";
cin>>fileNamein;
//cout<<"fileName = "<<fileNamein<<endl;
in_file.open(fileNamein , ios::in);

cout<<"Enter the name of the output file:
cin>>fileNameOut;
out_file.open(fileNameOut, ios::out);

if (!in file){
cout<<"Error opening a data file.\n";
exit(-1);
}

if (!out file) {

" .
,

cout<<"Error opening secondary output file.\n";
exit (-1);
}

//middata.open("intermed.dat", ios::out);
//input number of rows of datasets in input file

cout<<"Enter the number of datasets in input file.\n";
cin>>rows;

//Bring in all data from raw data file for testing data
while(k<rows) {

if(k == 0)
in file>>value;

j=0;
while(j<=32){//End of characteristic array not reached

//read in each array

raw[k] [j] = value; //change raw- need different array
j++;
in_file>>value;

}// end inner while

cols = j;
k++;

//end of read in while loops

//Normalize train data, i =#of train sets
// For Kohonen, normalization between 0 and 1
II 9/3/02; to match Cyranose, use 2-norm
II 2norm = sqrt(SUM(xjA2)), j=l to nvars
// Send whole array to function
// Only normalize cols 0-31, not 32- chem col
int n;
for(k=0; k<rows;k++) {

twonormal(raw, k, cols,trainl);
95

//end for loop

/*
//mean centering of columns, except for chem column
for(j=0;j<cols-1; j++)

{

//send column to function
meancenter(trainl, j, rows, train2);

}

*/

// 10/21/02 auto-scaling for preprocessing
for(j=0;j<cols-1; j++)

{

//send column to function
autocenter(trainl, j, rows, train2);

// Add chem number to train2 martix
for(i=0;i<rows;i++)
{

train2[i] [32]=raw[i] [32);

//Then output characteristic sets to NN data file
k=n=0;
//Fill train data file, 300 data sets
II No randomizing of order
for(k=0;k<rows;k++)

{

n=0;
for(n=0;n<cols;n++)

{
//middata<<trainl[k] [n]<<" ";
out file<<train2[k] [n]<<" ";

out file<<endl<<endl;
//middata<<endl;
}

in file.close();
-//in fileTrain.close();

out file.close();
//middata.close();

} //end main

void twonormal(double b[300] (35), int row, int cols, double
twonorm[300] (35))

{

//operates on rows
int i=0;

96

}

double sum = 0;
double sqvalue; // square of value in row
double srvalue; //square root of sqvalue
//sum the squares of all values in row
for {i=0;i<cols-1; i++)

{
sqvalue = pow{b[row] [i],2);
sum = sum + sqvalue;

}
//cout<<"sum = "<<sum<<"\n";
srvalue = sqrt{sum);
for (i=0;i<cols-1; i++)

{
twonorm[row] [i] b[row] [i] /srvalue;

}

// Enter chem value in last column into new matrix
twonorm[row] [cols]= b[row] [cols];
} //end twonormal()

void meancenter(double c[300] [35], int col, int rows, double
meancntr[300] [35])

{

//mean centering operates on columns
// subtract the mean of that variable vector from each element
int i=0;
double mean =0;
double sum = 0;
//calculate mean of variable vector
for (i=0; i< rows; i++)

{

sum = sum + c[i] [col];

}
mean = sum/rows;

//calculate new element value
for (i=0; i<rows; i++)

{

meancntr[i] [col]= c[i] [col] - mean;
}

void autocenter(double c[300] [35], int col, int rows, double
autocntr[300] [35])

{

//auto centering operates on columns
// mult each value in column by inv of std dev
int i=0;
double mean =0;
double sum = 0;
double difsum = 0;
double stddev;

//calculate mean of variable vector
for (i=0; i< rows; i++)

{

cout<<c[i] [col]<<" ";

97

}

sum = sum + c[i] [col];
}

cout<<"\nsum "<<sum<<endl;
mean = sum/rows;
cout<<"Mean = "<<mean<<endl;
for (i=O; i<rows; i++)
{

difsum = difsum + pow((c[i] [col]-mean),2);

cout<<"difsum = "<<difsum<<endl;
// calculate standard deviation
stddev = sqrt(difsum/rows);
cout<<"stddev = "<<stddev<<endl;
//calculate new element value
for (i=O; i<rows; i++)

{
autocntr[i] [col]= c[i] [col]/stddev;
}

98

APPENDIXD

KOHONEN NEURAL NETWORK

SOURCE CODE

99

KOHONEN NEURAL NETWORK
SOURCE CODE

File Name: "setup.h"

#define N INPUTS 32
#define N-OUTPUTS 6
// enose has 32 sensors and 6 "outputs" or clusters
// 11/21/01 smaller test set of data to work out bugs

#define DATA SIZE n inputs
#define N TESTS 60 -

real Layer
real Layer

f(real x)
f_dot(real x)

return purelin(x);
return purelin_dot(x);

static real Gain=DEFAULT GAIN, Eta=DEFAULT ETA, Alpha=DEFAULT ALPHA;
static real Epsilon=DEFAULT EPSILON;

- -

static integer n_inputs=N_INPUTS, n_outputs=N_OUTPUTS;

void alpha(char *s) { Alpha
void -eta(char *s) { Eta
void =gain(char *s) { Gain

atof(s);
atof(s);
atof(s);

#define N PARMS 5

parameters test ini[N PARMS] = {
{ "echo", (function) echo } ,
{ "*", (function) comment },
{ "alpha", (function) =alpha },

} ;

{ "gain", (function) _gain },
{ "eta", (function) eta } ,

100

..

File Name: "App.h"

// Altered 3/6/02 for neighborhoods

#include <kohonen.h>

// adjust for neighborhoods, 2/25/02

class App : public MonarchApp

} ;

private:
array *dummy target;

public:
-

InputLayer *il;
OutputLayer *ol;
KoNet *net;

void Simulate(array&, matrix3&, int);

App(int argc, char *argv[]);
~App (void);

// out changed to matrix, 2/25/02
void App::Simulate(array& in, matrix3& out, int r) {

il->from (in);
net->simulate(*durnmy target, r); // Kohonen nets are self

orgainizing ... no target�
ol->to(out);

App::App(int argc, char *argv[]) :
MonarchApp(argc, argv, "enose k.ini", N PARMS, test ini) {

il = new InputLayer("Inputs", n inputs);
//output layer a matrix of n outputsA2, changed 2/25/02
//output layer for a 3D matrix n outputsA3, changed 4/26/02

ol = new OutputLayer("Outputs", n_outputs*n_outputs*n_outputs);

net = new KoNet("Ko", 2, Alpha, Epsilon);
net->add(new KoLink(il, ol));

durnmy_target = new array(0);

App: :~App(void)
delete net;

101

File Name: "kohonen.h"

/*
** This was originally written by John and Jet (jettero@voltar
confed.org)
** This is known to not work quite right. We think it's pretty
** close though.
** 11/01 Additions and corections added by Lori Evesque
** 11/27/01 Add function to reduce size of weight matrix to get
rid of biases
** 2/25/02
neighborhoods
**
** 3/5/02

Adding changes for incorporation of

May need to add class KoLayer
Don't need KoLayer due to inheritance but do

need KoNet simulate fn
** to get size of neighborhood data to simulate fn
*/

#ifndef KoHoH
#define KoHoH

#include "monarch.h"

#define DEFAULT EPSILON 0.0001
#define DEFAULT-K ALPHA 2

class KoNet;

class KoLink : public Link {
protected:

} ;

KoNet *net;
array *activation;

public:
KoLink(Layer *from, Layer *to);
virtual ~KoLink(void);
KoNet *netOf(void) { return net; };
void netis(KoNet *n) {net = n; };
virtual void propagate(void);
void adjustk(int&);
void update(int,int);
void update_wts(double[], int) ;

class KoNet : public Net {
protected:

real alpha, epsilon;
public:

KoNet(char *n, integer 1,
real e=DEFAULT_K_ALPHA, real ep=DEFAULT_EPSILON

) ;
~KoNet(void) { };
void add(KoLink *l)

1->netis(this);
links[next++] = l;

} ;
void addAt(integer i, KoLink* 1) {

102

} ;

#endif

} ;

1->netis(this);
links[i] = l;

real alphaOf(void) { return alpha; };
void setAlpha(real alin) {alpha = alin;

real epsilonOf(void) { return epsilon; };
virtual void sirnulate(array&, int);
virtual void adjustk(int&);
void update_wts(double[], int);

103

File Name: "kohonen.cpp"

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <iostream.h>

#include "kohonen.h"
//#define DEFAULT ALPHA 2
#define ALPHA (net->alphaOf())
//#define ALPHA 2
#define EPSILON (net->epsilonOf())

KoLink ~KoLink(void) { delete activation;

KoLink .. KoLink(Layer *from, Layer *to) : Link(from, to) { }

void KoLink :: propagate(void) {
real sum;
//cout<<"In KoLink propogate\n";
for (integer i = 1; i <= upper->numberUnits(); i++) {

sum = 0.0;
for (integer j = 1; j <= lower->numberUnits(); j++) {

sum += sqr(((*weights)[i][j]) - (*(lower->output))[j])
}
upper->output->addAt(i, lower->f(sum));

//Streamlines adjustk function
//Performs weight updating
II 5/2/02
II

void KoLink :: update(int 1, int m){
real wOld;

if(m>= 0 && m < upper->numberUnits()){
//index m is within array
for(int i=l; i<= lower->numberUnits(); i++) {

wOld = weights->getAt(m,i);
weights->addAt(m,i,wOld + ALPHA/(1+1) * ((*(lower

>output)) [i]- wOld));
}

} // end update

// Change for neighborhoods
II 2/26/02 adjust nearest neighbors by half amount as winner
// will try runnng 3/6/02
// Change to incorporate 3D., 5/2/02
// 11/5/02 a)Adjust neighbors only-- not winner

104

.. . .

// 11/05/02 b) adjust neighbors by ALPHA/(1+1) and winner by ALPHA/1
// therefore, update() above also edited 11/5/02

void KoLink :: adjustk(int& r){
real sum;
real wold;
real least MAX REAL;
integer J;
integer i,j;
int l=r; //1 and k determine neighbor
int k,m; // m is neighbor index
int n;
int nout = pow(upper->numberUnits(), 1/3); //N OUTPUTS
int nout2 = pow(nout,2);

// find 'winner'
for (j=0; j<= upper->numberUnits(); j++)

sum = 0.0;
for(i=0; i<= lower->numberUnits(); i++) {

sum += sqr(((*weights) [j] [i]) - (*(lower->output)) [i]
) ;

if(sum < least) {
least = sum;
J

=
j;

int z = floor(J/pow(nout,2)); //level winner is on
//cout<<"in adjustk winner = "<<J<<endl;
// what is J? take out after debugging
//cout<<"J = "<<J<<" l="<<l<<endl;

//change entire neighborhood
//start changing weights furthest from winner to winner

while (1>0) {
for (k = -1; k<=l; k++){

//check for neighbors on left side of array
if(J%nout-l >= 0){

//there are neighbors on left side
m = J-1-(k*nout);
if(m>= (z*pow(nout,2))){

// m on same level as J
update (l,m);

//cout<<"wOld = "<<wOld<<" Alpha/1/2 =
"<<100*ALPHA/(1*2)<<endl;

//check for neighbors on right side of array

if (J%nout+l < nout){
//neighbors on right side exist
n=J+l+(k*nout);
//make sure n is on same z level

105

{

if(n> (z+l)*pow(nout,2)){
//n on same level
update(l,n);

} // end outer for loop for left and right sides

// top and bottom neighbors
k = 1 - l;
// determine 1 node right of leftmost top node
m= J + l*nout + k;

//assign one right of bottom left node
n = J - l*nout + k;

//move across top and bottom rows left to right
while(k<l) {

}

if((J+l*nout)< ((z+l)*(pow(nout,2)))){
//top row exists
update(l,m);

if((J-l*nout)>= z*pow(nout,2)){
//bottom row exists
update(l,n);

k++;

m J + l*nout + k;
n = J - l*nout + k;

//Adjust for third dimension
//Does upper boundary exist?
if(z+l < nout) {

//top plane exists
//adjust nodes on plane within neighborhood
for(int i = -1; i<=l; i++){

for(int j = -1; j<=l; j++) {
//calculate index
m = J + i*nout + j + l*int(pow(nout,2));
//determine if index on correct level
if(m>=(z+l)*pow(nout,2)&&

m<(z+l+l)*pow(nout,2)){

(J+l+i*nout+l*pow(nout,2))){
if(m>= (J-l+i*nout+l*pow(nout,2)) && m <

update(l,m);

if(z-1 >= O){
//bottom plane exists
//adjust nodes on plane within neighborhood
for(int i = -1; i<=l; i++){

for(int j = -1; j<=l; j++) {
//calculate index
n = J + i * nout + j - l*int(pow(nout,2));

106

}

//determine if index on correct level
if(n>=(z-l)*pow(nout,2) && n < (z

l+l)*pow(nout,2)) {
if(n>= (J-l+i*nout+l*pow(nout,2)) && n<

(J+l+i*nout+l*pow(nout,2))){

z+s

update(l,n);

//Adjust square of nodes on levels between top and bottom
for(int s=l-1; s<l; s++){

//adjust lower levels to upper
for(k = -1; k<=l; k++) {

//check for neighbors on left side of array
if(J%nout-l >= 0 && ((z+s)<nout && (z+s) >= 0)) {

//there are neighbors on left side and on level z+s
m = J-1-(k*nout)+ s*int(pow(nout,2));

}

cout<<"m = "<<m<<endl;
if(m>= ((z+s)*pow(nout,2))){

//m is s levels from j
update(l,m);

//check for neighbors on right side of array
if(J%nout + l < nout && ((z+s)< nout && (z+s) >=0)){

//neighbors on right side and on level (z+s) exist
n = J+l+(k*nout) + s*int(pow(nout,2));

}

//make sure n on same z level
if(n< (z+s+l)*pow(nout,2)){

//n is levels from J
update(l,n);

} // end outer 'for' loop for left and right sides
//top and bottom neighbors
k = 1-1;
//determine 1 node right of leftmost top node on level

m = J + l*nout + k + (s*int(pow(nout,2)));

//assign one right of bottom left node on level z+s
n = J - l*nout + k + (s*int(pow(nout,2)));

//move across top and bottom rows ieft to right

while(k<l){
if(J+l*nout+(s*pow(nout,2))< (z+s+l)*pow(nout,2)) {

//top row exists
update(l,m);

}
if((J-l*nout + (s*pow(nout,2)))>= (z+s)*pow(nout,2)){

//bottom row exists
update(l,n);

107

k++;
m= J + l*nout + k+ (s*int(pow(nout,2)));
n = J - l*nout + k + (s*int(pow(nout,2)));

}
} // end for loop to adj btw levels
1--;

} // end l>0 while

// A) Don't change winner at all, 11/06/02
// B) Change winner by ALPHA, 11/06/02
//change winner separately
for(i=l; i<= lower->numberUnits(); i++)

wOld = weights->getAt(J,i);
weights->addAt(J, i,

wOld + ALPHA * ((*(lower->output)) [i] - wOld));

} //end KoLink::adjustk()

/*
* update weights() -- updates weight matrix for specific weights
* Input= weight values (array) and 3-D matrix location of output,

single variable
*/

void KoLink .. update_wts(double a[], int out)
{

// go through all inputs and change weights for specified output
for(int i=l; i<= lower->numberUnits(); i++) {

weights->addAt(out,i,a[i-1]);
}

KoNet :: KoNet(char *s, integer n, real a, real ep)
alpha = a;
epsilon = ep;

/*
* adjust() -- adjust weights
* This goes forward through the network.
* {*} Use a forward loop contruct macro
*/

void KoNet :: adjustk(int& r)
{

II cout << "\n" ; II {*} just for debugging
for (integer i = 0; i < n_layers-1; i++)

{
links[i]->adjustk(r);
}

Net(s, n) {

108

/*
* simulate() -- run (and possibly) train the network
* Runs a single epoch
*/

void KoNet :: simulate(array& target, int r)
{

/*

if (phase ! = setup)
{
//cout<<"In KoNet simulate\n";
++epoch;
propagate();
computeError(target);
if (phase == training)

{
backpropagate();
adjustk (r);
}

* update wts() -- allows for the updating of individual weight arrays
* This function updates all the weights connected to a specific output

node
* Inputs: weight array, output node indicated by a number
* Outputs: none, alters the pre-existing weight matrix only, nothing

returned
* Function created 10/1/02, LLE
*

*/

void KoNet :: update_wts(double wts[], int node)
{

//send parameters to link function
for (int i=0; i< n layers-1; i++)

{
-

links[i]->update wts(wts, node);
}

-

// end KoNet::update_wts()

109

APPENDIXE

KOHONEN NEURAL NETWORK DRIVER

110

.

KOHONEN NEURAL NETWORK DRIVER

Neural Network Driver Program-
File Name: 'enose_k.cpp'

#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include <kohonen.h>
#include "setup.h"
#include "App.h"
#include <time.h>

II 2/25/02 begin alterations for 'neighborhoods'
// 4/16/02 begin alterations for 3D clustering
// 5/13/02 add function to display clustering efficiency
II 9/24/02 start semi-supervised operation
// import weights for 6 nodes based on averages from data files
// 11/18/02 This version assigns winners to be closest to enose results

const double PI = 3.14159;
real A;
// Size of neighborhood
int rad = ceil(sqrt(N OUTPUTS));
const int cube = int(pow(N OUTPUTS,3));
//efficiency measurement

-

int tally[N_OUTPUTS] [216);

II Frequency of changing neighborhood
// also related to number of outputs
int rchange = ceil(sqrt(rad));
array Vectors(N INPUTS * N TESTS);
//function prototype, this

-
for 3D

double angle det(double, double, double, double, double, double,
double);

-

//function to selectively update weight martix for semi-supervision,
9/26/02
void update wts(fstream&);
App *theApp;
void dataConvert() {

//internal variables
double x[300], y[300],

err[300],a rad[300],x2[300],y2[300],err2[300];
double z[300], z2[300], a rad2[300];
int chem[300];

-

int i=0;
double max = -1000;
double min = 1000;
//Input data file name
if stream raw data ("data out. dat" , ios:: in);
if (! raw data) {

-

111

}

cerr<<"Input file could not be opened."<<endl;
exit(l);

//Output data file name
char fileNameOut[30];
cout<<"Enter the final data file: ";
cin>>fileNameOut;
ofstream final data(fileNameOut, ios::out);
//ofstream final data("final datal.dat" , ios::out);
if(! final data) {

-

cerr<<"Output file could not be opened."<<endl;
exit (1);

//Chemical data file name
char fileNameChem[30];
cout<<"Enter the chemical data file: ";
cin>>fileNameChem;
//ifstream chemical("chemicall.dat" , ios::in);
ifstream chemical(fileNameChem, ios::in);
if(! chemical) {

}

cerr<<"Chemical file could not be opened."<<endl;
exit (1);

//set all tally to 0
for(int i=0; i<N OUTPUTS; i++){

//cout<<"zeroing tally\n";
for(int j=0; j<cube; j++) {

tally[i] [j]=0;

srand(time(0));
while(raw data>>x[i]>>y[i]>>z[i]>>err[i]>>x2[i]>>y2[i]>>z2[i]>>err

2[i]){
-

}

chemical>>chem[i];
i++;

//normalize error values
for(int j=0;j<N TESTS;j++){

if(err[j]-< min)
min = err[j];

if (err[j] > max)
max = err[j];

}
for(int j=0;j<N TESTS;j++){

//calc normed err

a_ rad2 [j]) ;

err[j] = (err[j]-min)/(max-min);
int loc = int(z[j]*36+y[j]*6+x[j]);

//add tally
tally[chem[j]-1] [loc]++;

//determined directed angle

a_rad[j] angle_det(x[j],y[j],z[j],x2[j],y2[j],z2[j],

112

x[j] x[j] + cos(a rad[j])*err[j];
y[j] y[j] + sin(a-rad[j]) * err[j];
z[j] z[j] + sin(a-rad2[j]) * err[j];
//Output to data file
final_data<<x[j]<<" "<<y[j]<<" "<<z[j]<<" "<<chem[j]<<endl;

raw data.close();
final data.close();
chemical.close();
} //end data convert() function

//function prints NN results of clustering
//determines how good a clustering job the network did

void efficiency(){
//variables
int max;
int index;
double total 0; //clustered total

//find biggest cluster for each chemical
cout<<"Clustering results for network run\n";

for(int i=O; i<N_OUTPUTS; i++){
max = -1;
for(int j=0; j<cube; j++) {

if(tally[i] [j]>0)
cout<<"tally["<<i<<"] ["<<j<<"]

"<<tally[i] [j]<<endl;
if (tally [i] [j] > max) {

max = tally[i] [j];
index = j;

cout<<"max = "<<max<<" index = "<<index<<" i = "<<i<<endl;
cout<<"Network clustered "<<max<<" input vectors of";

switch(i){
case 0:

cout<<" Allylcaproate ";
break;

case 1:
cout<<" Methylsalicilate ";
break;

case 2:
cout<<" Isoamylacetate ";
break;

case 3:
cout<<" Myrcene ";
break;

case 4:
cout<<" Decanal ";
break;

case 5:
cout<<" Diacetyl ";
break;

cout<<"to cluster ("<<(index%36)%6<<","<<(index%36)/6
113

<<","<<(index/36)<<")\n"<<endl<<endl;
total = total + max;

double percent = total/60*100;
cout<<"\nHighest clustering is "<<percent<<"% of inputs\n";

} //end efficiency
II 4/15/02 change to add saving of second lowest cluster
// 4/17/02 Adding 3rd dimension of clustering
void printOutVector(matrix3 &out, int total[] [N OUTPUTS] [N OUTPUTS],
£stream &data out, £stream &errs, int finish = 0) { -

// this-function will also save error values for non-winning
clusters

int yold=0, xold 0, zold = 0; //variable to hold value of y and
X

int x=0, y=0, z=0;
int x2=0,y2=0, z2=0;
double err2=0, errl=0;
// need to change getAt()
double dif = out.getAt(x,y,z); //holds current min diff

for(int i = 0; i<N OUTPUTS; i++) {
for (int j=O; j<N OUTPUTS; j++) {

for (int k�0; k<N OUTPUTS; k++)
if (finish�= 1){
errs<<out.getAt(i,j,k)<<"\t";
if (j == N OUTPUTS-1)

errs<<endl;
}
//original array eqn g=

(out.getAt(i)<out.getAt(g))?i:g;
yold y;
xold = x;
zold = z;
y (out.getAt(i,j,k) < out.getAt(y,x,z)) ? i : y;
x = (out.getAt(i,j,k) < out.getAt(yold,xold, zold))

? j : x;

z = out.getAt(i,j,k) < out.getAt(yold,xold,zold)) ?
k z;

dif;

}

errl = dif; //stores current value
dif = (out.getAt(i,j,k) < dif)? out.getAt(i,j,k)

if(dif < errl) {
//old dif now 2nd lowest
err2 = errl;
x2 xold;
y2 yold;
z2 zold;

//printf("[group: %i, %i], dif = %f\n", x+l, y+l, dif);
total[y] [x] [z]++;

II send coordinates of winner and second to output file
if (finish == 1) {

errs<<endl<<endl;

114

}
}

data out<<x<<" "<<y<<" "<<z<<" "<<dif<<" "<<x2<<" "<<y2<<"
"<<z2<<" "<<err2<<endl;

//print inVector prints data vector to standard output
void printinVector(array &in) {

for(int i = 0; i<N INPUTS; i++) {
//printf statement prints only 1 sign digit- rounds input

vector
printf("%1.0f", in.getAt(i));

printf(" -> ");

void Test(int final = 0) {
array in(N INPUTS);

// Output a 3D matrix
matrix3 out(N OUTPUTS, N OUTPUTS, N_OUTPUTS);

theApp->net->setPhase(testing);
A = theApp->net->alphaOf();
//fstream clusters("clusters.dat", ios::app);
fstream data out ("data out. dat", ios:: app);

fstream errs("error_all.dat", ios::app);

//need array to keep track of all the sets assigned to cluster nodes
int totals[N OUTPUTS] [N OUTPUTS] [N OUTPUTS];
for(int i=0;i<N OUTPUTS;i++){ -

}

for(int-j=0;j<N OUTPUTS;j++) {
for(int k�0;k<N OUTPUTS;k++){
totals[i] [j] [k]�0;
}

printf("\n-------------- Alpha = %f\n", A);
for (integer n = 0; n< N TESTS; n++) {

in.from(Vectors, n*DATA SIZE);
//Simulate- check to see if it's ok with out-matrix

theApp->Simulate(in, out, rad);
if (final == 1) {

else

errs<<"Test array no.:"<<n<<endl;
printOutVector(out,totals,data_out,errs,l);

printOutVector(out,totals,data_out,errs);

data_out.close();

//tests entire data sample through network
void Train() {

array in(N INPUTS);
matrix3 out(N OUTPUTS, N OUTPUTS, N_OUTPUTS);

theApp->net->setPhase(training);
A = theApp->net->alphaOf();
for (integer n = 0; n< N TESTS; n++)

in.from(Vectors, n*DATA_SIZE);
115

theApp->Simulate(in, out, rad);
}
theApp->net->setAlpha(0.25 * A);

}
//Main driver program
int main(integer argc, char *argv[)) {

//internal variables
theApp = new App(argc, argv);
A = theApp->net->alphaOf();

//network weight files
fstream initWt("initWt.dat", ios: :out);
fstream midWt("midWt.dat" , ios::out);
fstream fnWt("finalWt.dat", ios: :out);

//Input data file name
char fileNamein[30];
char wttargetfile[20];
cout<<"Enter the name of the file to convert: ";
cin>>fileNameln;
cout<<"fileName = "<<fileNamein<<endl;

//ifstream from("readydatal.dat" , ios::in);
ifstream from(fileNameln, ios::in);
if (! from) {

cerr<<"Input file could not be opened."<<endl;
exit (1);

// This file will hold target weights for semi-supervision
//fstream super("wt targetsl.txt", ios::in);

cout<<"Enter the �ame of the weight target file: ";
cin>>wttargetfile;
cout<<"fileName = "<<wttargetfile<<endl;
fstream super(wttargetfile, ios::in);
//send entire weight matrix to file

theApp->net->saveToFile(initWt);
from >> Vectors;
//Here assign weights to connections between inputs and 6 outputs
// semi-supervision
update wts(super);
theApp=>net->saveToFile(midWt);
// neighborhood change variable
int k;
while(A > 0.00001) {

k= rchange;
while (k > 0) {

Train();
Test ();
k--;

II reduce size of neighborhood radius
// only until rad = 0
while (rad > 0)

rad--;
}
Test(l);
theApp->net->saveToFile(fnWt);
delete theApp;

116

initWt.close();
fnWt.close();
midWt.close();
from. close ();
super.close();
//convert data to graphable data
dataConvert();
//Determine efficiency of clustering
efficiency () ;
return 0;

//function to determine directed angle for error visualization
// includes 3D implementation
// first angle depends only on x and y
// second angle depends only on y and z- makes it easier
double angle det(double x, double y, double z, double x2, double y2,
double z2, double ang2 rad)

{
-

int s;
double ang, ang rad, ang2;
//choose random-number once
s = rand()%1000;
// first angle
// nested if statements
if (x2 < x) {

//not in regions 8,1,3,7,or,2
if (y2 > y) {

// region 4 angle picked from btw 100-170
ang = (s/1000*(170-100))+100;

else if (y2 == y){
// angle btw 170-190
ang = (s/1000*(190-170))+170;

else {
//angle btw 190-260
ang = (s/1000*(260-190))+190;

else if (x2 == x){

else {

// in region 3 or 7
if (y2 > y) {

else {

//region 3, angle 80-100
ang = (s/1000*(100-80))+80;

//region 7, angle 260-280
ang = (s/1000*(280-260))+260;

//regions 8,1,and 2
if (y2 < y) {

//region 88, angle 280-350
ang = (s/1000*(350-280))+280;

117

else if (y2 == y){

else {

//region 1, angle -10-> 10
ang = (s/1000*(10+10))-10;

//region 2, angle 10-80
ang = (s/1000*(80-10))+10;
}

ang rad ang * PI/180;
II second angle
if (z2 < z) {

// direction of error goes down
ang2 = (s/1000*(360-180))+180;

else if (z2 == z){

else {

// same plane
ang2 = 0;

}

//z2>z, error goes up
ang (s/1000*180);

ang2_rad = ang2 * PI/180;
return ang rad;

//end angle_det()

void update wts(fstream& infile)
{
-

// update weights for N OUTPUTS
II 9/26/02 for this case it's 6 outputs
// at this point use preselected outputs
// they will be [2,4,0], [4,1,0], (3,1,2], (0,5,5], (1,4,1], (5,0,3]
// 11/18/02 winning nodes assos with enose winners
// nodes numbered 0 .. 215
int node[6]= {22, 9, 80, 205, 57, 113};
double inwt;
double wts[50];
// read in weights into array for 1st node
for (int i=0;i<32;i++)

{
infile>>inwt;
wts[i]=inwt;
}

//Start loop to change weights of specific nodes
int j;
for (j=0; j< 6; j++)

{
// send parameters to links
theApp->net->update_wts(wts, node[j]);

// get next array of wts from file
for (int i=0;i<32;i++)
{
infile<<wts[i];
}

118

} // end update_wts()

119

BIBLIOGRAPHY

[B] Brereton, R.G., Chemometrics-Applications of Mathematics & Statistics to
Laboratory Systems, Ellis Horwood, 1990.

[BEG] Bartlett, Philip N., Elliot, Joe M., Gardner, Julian W., "Electronic Noses and
Their Application in the Food Industry", Food Technology, Vol. 51, No. 12, pp.
44-48, Dec. 1997.

[BPS] Beebe, K.R., Pell, R.J., Seasholz, M.B., Chemometrics-A Practical Guide,
John Wiley & Sons, Inc. 1998

[CCM] Cohn, D., Caruana, R., McCallum, A., Semi-Supervised Clustering with User
Feedback, AAAI 2000, DRAFT submission.

[Cyl] Cyrano Sciences, Inc, The Cyranose 320 Electronic Nose User's
Manual,Cyrano Sciences, Inc., Edition 3, Revision C, November 2000.

[Cy2] Cyrano Sciences, Inc., The Practical Guide to the Cyranose 320 r� Cyrano
Sciences, Inc., Revision B, November 2000.

[DWH] Dimitriadou, E., Weingessel, Hornik, A., K., "A Mixed Ensemble Approach
for the Semi-Supervised Problem", /CANN 2002, Madrid Spain, August 2002.

[F] Fausett, Laurene. Fundamentals of Neural Networks-Architectures, Algorithms,
and Applications, Prentice Hall, 1999

[Fag] www.fags.org. "What are Cross-Validation and Bootstrapping?",
http://www.fags.org/fags/ai-faq/neural-nets/part3/section-l2.html, visited 2/17/03.

[Fr] Franz, M.P., "A Portable, Object-Oriented Library for Neural Network
Simulation", Masters Thesis, Computer Science Department, Western Michigan
University, 1998.

[HKKK] Hashem, S., Keller, P.E., Kouzes, R.T., Kangas, L.J., ''Neural Netork Based
Data Analysis for Chemical Sensor Arrays", Proceedings of the SPIE, (Ed.s)
Rogers, S.K., Ruck, D.W., Vol. 2492, No. 5, pp. 33-40., 1995,
www.emsl.pnl.gov:2080/proj/neuron//papers/hashem.spie95.abs.html

[K] Paul E. Keller, "Mimicking Biology: Applications of Cognitive Systems to
Electronic Noses", IEEE International Symposium in Intelligent Control
/Intelligent Systems and Sembiotics (ISICIJSAS'99), Cambridge, MA, USA,

120

http://www.emsl.pnl.gov:2080/proj/neuron//papers/keller.isic99 .html (visited Oct.
1999)

[KKK] Keller, P. E., Kouzes, R.T., Kangas, L.J., "Three Neural Network Bases
Sensor Systems for Environmental Monitoring", Electro/94 International
Combined Conference Proceedings, Miller Freeman, Inc., Dallas, TX, USA, 1994,
pp. 378-382, www.emsp.pnl.gov:2080/proj/neuron/papers/keller.electro94.htm

[Ko] Kohonen, T., Self-Organization and Associative Memory, Second Edition,
Springer-Verlag, 1988.

[Ko2] T. Kohonen, "Self-Organized Formation of Topologically Correct Feature
Maps", Biological Cybernetics 43:59-69, 1982.

[Li] Li, Jing, "On Signal Processing- The Brains of the Cyranose 320", Cyrano
Sciences, Inc., June 2001, http://cyranosciences.com/technology/onboard.html
(visited Jan 2003)

[MP] Minsky, M.L., Pappert, S.A., Perceptrons, Expanded Edition. Cambridge, MA,
M.I.T. Press, 1988, Original Edition 1969.

[P] Piatkowski, Thomas F ., "Citation and Acknowledgement Guide", 2000,
http://www.cs.wmich.edu/ ~piat/ citationAckGuideAbstract.html .

[S] Severin, Erik, "Cyrano Sciences' Sensor Technology- The Heart of the Cyranose
320 Electronic Nose", Cyrano Sciences, Inc., June 2001,
http://cyranosciences.com/technology/sensor.html (visited Jan 2003)

[S-S] Sun-Sentinal, "The Electronic Nose Knows", Sunday, August 2, 1998.

[Sa] Sawyer, A., "Electronic Nose Sniffing Out Wine Niche- Perfecting Sensory
Evaluation of Smells by Imitating Canine 'Noses with Legs'", Wine Business
Online, July 1997.
http:/ /winebusiness.com/html/Si teFrameSet.cfm ?fn= .. Archi ves/Monthly/1997 /970
7 /bmg9746.htm

[SHG] Singh, S., Hines, E.L., Gardener, J.W., "Fuzzy Neural Computing of Coffee
and Tainted Water Data From an Electronic Nose", Sensors and Actuators B, Vol.
30 (1996) pgs 185-190.

[SCK] X. Sun, R. Collins, J. Kim, "A Comparison of SOM Neural Networks and K
means clustering using real world data: Chinese Consumer Attitudes Towards
Imported Fruit",Acta Hort., 566, ISHS 2001, pgs 185-191.

[Si] Peter Sinton, "The Nose Knows", San Francisco Chronicle, Dec. 2, 1997.

121

[Th] Thermogalactic.com, "Discriminant Analysis, The Mabalanobis Distance",
www.galactic.com/Algorithms/discrim mahaldist.htrn, visited 1/11/03

122

	Development of Kohonen Neural Network Application as a Pattern Recognition System for an Electronic Nose
	Recommended Citation

	tmp.1571073710.pdf.x7S48

