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DECONVOLUTION AND SEGMENTATION OF GROUND PENETRATING 
RADAR IMAGES 

Vincent Krause, M.S. 

Western Michigan University, 2007 

Ground Penetrating Radar is a valuable tool for infrastructure condition 

evaluation as well as in archaeology and geology. The image produced by a GPR scan 

can be difficult to interpret due to the weak reflection amplitude, the overlap of 

reflections, and due to outside interference. This thesis proposes an algorithm to 

automate GPR scan interpretation. This will enable maintenance engineers to read 

GPR scans quickly and accurately. 

The proposed algorithm framework uses an optimization-based deconvolution 

technique followed by a segmentation process. Each column of the image is 

deconvoluted and thus reducing them to a list of ordered pairs of reflection amplitude 

and delay time. The ordered pairs appearing in multiple columns are grouped to form 

an arc and line objects using a via similarity measures. The algorithm was 

successfully tested using synthetic and real GPR data. 
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CHAPTER! 

INTRODUCTION 

Ground Penetrating Radar is a useful method of performing non-destructive 

evaluation of roads, bridge decks and other underground structures. The data received 

from GPR scans is often complex and difficult to interpret. Part of the complexity is 

because the data is a convolutive mixture of the target's reflective properties and the 

characteristics of the transceiver. 

Roads and bridge decks are subject to wear over time. Periodic assessment of 

these structures is crucial to their maintenance. Non-destructive testing methods allow 

road crews to detect defects while they are still small, before the integrity of roads and 

bridge decks are compromised. It is far cheaper to fix defects detected at an early stage 

than it is to wait for crises and failures in these structures. 

One valuable method of non-destructive evaluation is ground penetrating radar. 

GPR reveals the structural composition of roads and bridge decks. GPR can locate 

damaged and deteriorated areas in roads and bridge decks, and determine the depth and 

properties of defects. In some cases, GPR scans can be performed without closing roads 

to traffic. 

A disadvantage of GPR is that the data can be hard to interpret. The received data 

is a convolution of the physical properties of the underground structure with the 

properties of the antenna. The reflections of the radar pulse from underground features 
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often overlaps, and the interference due to this overlap may obscure details that 

construction engineers seek. 

The algorithm proposed in this thesis reduces the complexity of GPR scans by 

removing the transceiver's characteristic pulse from the GPR data. The first stage of the 

algorithm deconvolutes each column of the GPR data through an iterative decomposition 

method using correlation to locate the position of each target reflection. The second stage 

segments the deconvoluted image, converting it to a database of points and arcs. Objects 

matching chosen criteria can be highlighted, removed, or added to the final image. The 

final image is ready for human experts and for automated systems to evaluate. 

Chapter One presents the motivation and goals of this research. Chapter Two 

presents an overview of the theory and practice of GPR. Chapter Three presents methods 

commonly used in the interpretation of GPR data. Chapter Four presents the proposed 

deconvolution and segmentation algorithm. Chapter Five presents the results of applying 

the proposed algorithm to simulated and real GPR data. Chapter Six presents conclusions 

and future directions for research. 
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Introduction to GPR 

CHAPTER II 

GPR OVERVIEW 

Ground penetrating radar is a method for evaluating underground structure. 

Simply put, it is radar aimed at the ground. A radar system is comprised of a transmitter 

which radiates an electromagnetic pulse into the target and a receiver which detects and 

records electromagnetic signals coming from the target. The transmitter and receiver 

may be placed at any position relative to each other and to the target[6,14], but the most 

common configuration is to mount the transmitting and receiving antennas onto a single 

transceiver unit. [7, 11] 

To perform a GPR scan at one location, the transceiver is positioned directly over 

the surface of the target. The distance between the transceiver and target varies 

depending on the type of antenna used. The transceiver is usually oriented so it is 

perpendicular to the surface of the target. This will direct aim the majority of the 

transmitted pulse into the target, and will minimize the reflections from other nearby 

objects. An electromagnetic pulse is transmitted, and electromagnetic signals are 

received and recorded for a short time.[11] 

GPR scans are typically repeated multiple times on a target. A series of parallel 

lines are defined across the target's surface. The GPR transceiver is moved along these 

lines, taking scans at regular intervals of distance. The transceiver may be moved by 
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hand, mounted on a cart and pushed, or mounted on the back of a truck and driven over 

the target. 

The data recorded in a GPR scan provides insight into the structures under the 

target's surface. This method allows the evaluation of the structure of a target without the 

destruction of the target. 

GPR is currently used in geology[?], archeology[6], mining[37], for landmine 

detection and other military applications[5,10,26], and in civil engineering and 

construction. In civil engineering, it is used to evaluate roads[13], bridge decks[15], 

retaining walls[23], and other structures. Because GPR is non-destructive, these 

structures may be evaluated without drilling core samples and damaging good 

structures.[28] 

A-Scan

An A-scan is a GPR scan taken at a single location.[14] An electromagnetic pulse 

is transmitted into the target surface. The pulse penetrates the surface, interacts with 

buried objects and layers, and is reflected back to the receiver. The data from an A-scan 

is represented by a column vector, and is plotted in a two-dimensional graph. 

Light Traveling Through Media 

An electromagnetic pulse is emitted by the GPR transceiver and the pulse radiates 

into the surrounding medium. The velocity of the pulse is the speed of light in the 

medium. The speed of light is determined by the refractive index of the medium, 11-
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wheres is the dielectric constant andµ is the magnetic permeability. E andµ are 

properties of how a material interacts with electric and magnetic fields. For the 

frequencies used by the GPR equipment and the materials being evaluated, we may treat 

µ:::::1.(28] The refractive index may be estimated as 

2 

The speed of light in a medium with refractive index Tl is 

3 

Given the time it takes a pulse to travel one way through a layer of material with 

refractive index Tl, the thickness of the layer can be calculated. 

d= tc 
1J 4 

When the pulse reaches the boundary between two media, part of the pulse is 

reflected and part is transmitted. The amplitudes of the two new beams are functions of 

the refractive indecies of the two media. Given a boundary between a medium whose 

refractive index is Tl• and one whose refractive index is 1'12, the coefficient of reflection f12 

between two layers is 

5 

and the coefficient of transmission T12 is 

6 
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Note that T12+r12=l. 

The angles of reflection and transmission beams at a boundary are also functions 

of the refractive indecies of the two media. They are governed by Snell's Laws. If the 

beam enters with an angle of incidence 01, the angle of reflection SR is 

B
R 
=-0,

7 

and the angle of refraction 0-r is 

171 sin( 01 ) = 172 sin( Br ) 8

Note that the coefficients T 12 and r 12 affect the amplitudes of the two beams, and angles 

SR and 0-r affect the path. These terms do not directly affect the time delay. Reflection 

and refraction are illustrated in Figure 2-1. 

1� 

Figure 2-1: Reflection and Refraction of Light at Boundary 
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The amplitude of a pulse is also reduced based on its total travel time. 

Inhomogeneities in media like concrete and soil scatter portions of the pulse and 

attenuate the signal. For short time intervals, this effect is far smaller than that of 

reflection and transmission, and is often omitted from the model. This effect is usually 

represented by an exponential decay function based on travel time. 

Radar Paths 

The transmitted pulse penetrates the target, interacting with every layer and 

object, traveling along multiple paths. Only pulses whose paths return to the receiver are 

detected. The amplitude and time delay of a received pulse provides information on 

every layer the pulse passed through and every boundary it interacted with. 

The most useful travel paths are two-way paths. In two-way paths, the pulse 

enters the media, strikes a surface normal to its direction, and is reflected backwards 

along its original path. Note that a two-way path may be at any angle relative to the 

target's surface. Two-way paths tend to produce strong signals because they have the 

exactly one reflection, which minimizes the number of terms reducing the amplitude. 

Two-way paths are a primary focus in civil engineering applications. 

Another set of paths is called ringing. Ringing occurs when a pulse enters a layer, 

reflects multiple times from the top and bottom of the layer, and then returns to the 

receiver. Ringing tends to produce weak signals due to multiple reflections. Ringing 

usually appears as repeated pulses beneath two-way reflections. 

A near infinite number of other travel paths are possible. These paths tend to be 
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much weaker due to multiple reflections and exponential decay due to long travel times. 

Roads and bridge decks are typically built with parallel layers of asphalt, concrete 

and soil with intermittent supporting rebar. Because of this straightforward structure, 

civil engineers can model GPR scan data in terms of two-way and ringing travel paths. 

Targets of archeology and geology GPR scans often have much more irregular and 

curving structures, and produce more irregular travel paths. 

Convolutive Model of Radar Signal 

Given a transmitted pulse p(t), we expect to detect the received signal s(t) 

s(t)= i:ea'(Ilrj)(Il¾)P(t-I'l,d,) 
i=I J k I C 9 

where I is the total number of pulses detected in a GPR A-scan.[25] Each received pulse 

corresponds to a reflection path that travels from transmitter to receiver. For each ith 

detected pulse, 

e
a

' is a factor representing the gradual dissipation of the pulse in the media 

Ilr 
J 1 is the product of all j reflections along the ith path 

Ilr. 
k 

k is the product of all k transmissions along the ith path 

p(t -I 
rt,d,)

1 c is the pulse, delayed by the sum of the travel time through all / 

layers along the ith path. Given no prior knowledge of the target's structure, the received 

signal is reduced to 
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where a; is the amplitude and bi the time delay of the ith received pulse. 

Ambiguity in GPR A-Scans 

A single A-scan gives no information regarding the direction of the path that a 

pulse has traveled. The time delay does indicate the distance of a reflective object from 

the GPR transceiver, but not the angle of the path. The object may be deeply buried 

directly below the transceiver, or shallowly buried to the side of the transceiver. 

A second A-scan taken a short distance from the first will typically reflect off the 

same layers and objects as the first. The amplitudes of corresponding reflected pulses 

will be the same in both A-scans because they will have the same coefficients of 

reflection and transmission. Because of the different starting points, the angles of 

reflection, the path lengths, and the travel times in each A-scan will be different. A series 

of A-scans can show whether the transceiver is approaching, directly above, or moving 

away from an object. The angles of the reflective paths and shape of the reflective object 

can then be determined. 

B-Scan

AB-scan is a series of GPR scans taken at multiple locations.[14] The locations 

are typically regular intervals along a straight line. The received data is represented by an 

M x N matrix where n represents the nth scan location and m represents the mth sampling 

time interval. Each column of a B-scan is an A-scan taken at the nth location. The data 

9 

s(t) = "'Ia;p(t-b;) 
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in a B-scan is typically presented as a grayscale image where negative values are black, 

positive values are white, and zero values are gray. 

A series of reflections from a single underground object will appear as a band or 

arc on a B-scan. These arcs will appear as sets of white-black-white or black-white-black 

lines in the grayscale image of B-scan data. The shape of the arc provides information on 

the depth, position and shape of the reflective object. 

Simulated GPR Scan of Layers 

Many targets of GPR scans, such as roads and bridge decks, are made of parallel 

layers.[15] Figure 2-2 shows a simple model ofa GPR scan of a target made of three 

layers. 

/ 
,p 

n1 

� ' 

n2 

n3 

Figure 2-2: Model of GPR Scan of Parallel Layers 
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The reflections occur in the same space in reality; they are separated in this image 

for clarity. If the beam enters the target at an angle, its reflection at each layer will be 

away from the receiver, and the pulse will not be detected. The only pulses detected by 

the receiver are those that have an angle of incidence of 0° . The simulation shows three 

reflection paths: a reflection from the 1-2 boundary, a reflection from the 2-3 boundary, 

and ringing within the second layer. These reflections appear in the simulated A-scan of 

the target shown in Figure 2-3.[22,25] In this case, the A-scan can be deconvoluted 

graphically as shown in Figure 2-4. 

Simualated A-scan of 3 layered sample 

Figure 2-3: Simulated A-Scan of Parallel Layers 
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2 
' 

-Al 

t3 

0 

-1 

-2 

-3□ 50 1()0 150 200 250 

S,mualated A-scan of 3 layered sample 

Figure 2-4: Visual Deconvolution of A-Scan 

The first pulse is self-coupling, the receiver detecting the raw pulse directly from 

the transmitter.[11,21] The specifics of self-coupling depend on the transceiver being 

used. In some cases, this pulse may be superimposed with the first reflection from the 

air-surface boundary. In this simulation, the pulse is interpreted as occurring at t1 with 

relative amplitude A1=l. 

The second pulse is the reflection from the 1-2 junction. The time delay is travel 

time from transmitter to the boundary plus travel time from the boundary to the receiver. 

Because both paths are the same, this is known as the two-way travel time through layer 

one. 

2dT/ 
f2 =--• _I +fl 

11 

The amplitude of the pulse is reduced by the reflection coefficient r 12 

12 

n 

12 

.. 

C 
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If the refractive index 111 of the top layer is known, the thickness of the top layer d1 

and the dialectric constant of the second layer 112 can be calculated. An approximate 

value of ri1 is often chosen from a chart given the material of the top layer. For instance, 

if the top layer is concrete, we may look up that e1 is approximately 6 and that 111 is 

approximately 2.45. 

The third pulse is a reflection from the 2-3 junction. The time delay is the two 

way travel time through layer one and layer two. 

13 

The amplitude A3 is reduced by the interactions with each boundary it encounters: 

the transmission coefficient T 12, the reflection coefficient r 23, and the transmission 

coefficient Ti1. 

14 

Given our estimated 111 and calculated d1 and 112, we can find d2 and 113· 

The fourth pulse is the result of ringing. Ringing occurs when a beam reflects 

multiple times, staying within a single layer. The amplitude Ai is 

15 

and the time delay t4 

16 

13 

n -n 
A _r _ .. I 2 

2 - 1 12 -
rli + n2 

2d T/ 2d T/ f3 =-'-! +-2_2 +t 
C C 
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In this simulation, layer three represents the substrate. There are no layers 

beneath to reflect the pulse back, and the third layer extends deeper than the pulse can 

penetrate. Any portion of the pulse that enters the third layer does not return to the 

receiver. 

AB-scan is a series of A-scans taken at different locations. Because the layers in 

this model are parallel, the same signal should be received at every scan location. 

Therefore the B-scan should made of parallel lines. A simulated B-scan is shown in 

Figure 2-5. 

This is a theoretical example. In practice, the amplitudes decay exponentially 

with time, which makes calculating the refractive indices and thickness of layers difficult 

and inaccurate. 

◄ Self Coupling
-----------�---

◄ Reflection from 1-2 boundary

◄ Reflection from 2-3 boundary

◄ Ringing within 21 ayer

Figure 2-5: Simulated B-Scan of Parallel Layers 
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Simulated GPR Scan of Objects 

Buried objects also reflect and refract electromagnetic pulses. The surface of an 

object is typically not parallel to the layers surrounding it. In order to have a transmitted 

pulse reflect off an object and return to the receiver, it must reflect off a region of the 

object that is normal to the direction of the pulse. The reflected pulse's two-way travel 

path may be at an angle relative to the surface. The shape of the reflection arc in a B

scan is dependent on the shape of the object. When the underground object has a simple 

geometry, it may be possible to predict the shape its reflection.[6,12] For example, a 

buried sphere or cylinder perpendicular to the scan direction will produce a hyperbolic 

arc in a B-scan.[3,8,18,33] 

Figure 2-6 shows a simple model of rebar embedded in concrete.[15] In this 

model, the rebar are perpendicular to the path of the GPR scan. 

0 

Figure 2-6: Reflection Paths in a Simulated GPR Scan of Rebar Embedded in Concrete 
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At each scan location, reflections from more than one rebar may be detected. As 

the transceiver approaches a rebar, the path distance and the travel time of the reflected 

pulse decrease. The travel time is minimized when the transceiver is directly above the 

rebar, and increases as the transceiver moves away. A simulated B-scan is shown in 

Figure 2-7. 

The reflection from an object can appear in multiple A-scans, including when the 

transceiver is not directly above the object. Multiple embedded objects with similar 

reflective properties can create ambiguous reflections on an A-scan. The B-scan is 

needed to properly interpret specific pulses on a given A-scan. An example of this is 

shown in Figures 2-8 and 2-9. 

...._ Self Coupling 

...._ Reflection from rebars 

Figure 2-7: Simulated B-Scan of Rebar Embedded in Concrete 

The A-scan in Figure 2-8 represents the 67th position of the simulated scan, taken 

from column 67 of the B-scan as shown in Figure 2-9. The first pulse is self-coupling, 

and the second and third pulses are reflections from embedded rebar. The time delay of 
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re bar reflection can be measured, but the A-scan gives no insight into the position of each 

rebar. Referring back to Figure 2-9, the B-scan shows that the first pulse is a member the 

left-most arc and the second is a member of the second arc. 

-1 

-2 

-3 '-----'-----'--__,_ _ __. __ _,____, 
50 11ll 150 200 250 

Simualated A•scan of sample with rebar 

Figure 2-8: Simulated A-Scan at Position 67 of Rebar Embedded in Concrete 

Scan 67 

Figure 2-9: Position 67 Within the Simulated B-Scan 
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The relative amplitude of an object's reflection may be used to calculate the 

refractive index of the object. The process is the same as calculating for a layer. 

The strongest reflection from an object is typically the two-way reflection path. 

Other paths are possible, including ringing, but these tend to be weaker. 

GPR and Road Evaluation 

Highway engineers use GPR to evaluate roads, bridge decks and other man made 

structures.[13] These structures become degraded over time due to heavy use, cycles of 

freezing and thawing, water penetration, erosion, etc. This degradation leads to the 

formation of defects, regions where the structure changes shape or changes properties. 

The most important defects for road evaluation are delaminations and voids. 

Delaminations occur when the layers of the structure separate and the gap is penetrated 

by foreign materials. Voids occur when a layer is penetrated by foreign materials. The 

foreign material may be air, water, soil, or a corruption of the original building material. 

A defect will typically have a different refractive index than its surrounding material, and 

may be visible in a GPR scan.[11] Defects may appear as new layers, new objects, or as 

a distortion of the objects and layers below the defect.[23] 

Figure 2-10 is a simulated B-scan of a delamination. The delamination may 

appear to be an additional layer that should not be present. In this case, the method for 

evaluating good layers can be applied to find the depth to and thickness of the defect. 

The refractive index may also be calculated, which will give insight to the type of defect. 

18 



Note that the presence of the defect alters the reflection from the layer below it. 

Figure 2-11 is a simulated B-scan of a void with a rounded surface and an index 

of refraction very different than its surrounding material. The defect appears to be an 

object that should not be present. The reflection from an object-like defect will appear as 

a curve on the B-scan. As with other objects, this defect reflects along diagonal paths. It 

may be assumed that the center of the defect is located near the peak of its reflected arc 

on the B-scan. It is uncertain whether the lower arc is the lower edge of the defect or a 

refracted view of the lower layer's reflection. 

Figure 2-12 is a simulated B-scan of a defect with an irregular surface or with an 

index of refraction similar to its surrounding material. Because of its properties, the 

defect does not return a strong reflection and is effectively "invisible". This defect can be 

discovered by the distortion of expected reflections from layers below the defect. Note in 

the example that the reflections from the layers below the defect are distorted or missing. 

Depth and material type may not be determined in this case, but general position can be 

found. 
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Figure 2-10: Simulated B-Scan of Layer Defect 

Figure 2-11: Simulated B-Scan of Object Defect 
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Figure 2-12: Simulated B-Scan of 'Invisible' Defect 
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Human Analysis 

CHAPTER III 

INTERPRETATION OF GPR DATA 

GPR data can be visually evaluated by human experts. The GPR data is 

converted to an image where a pixel's particular shade of gray or color corresponds to the 

numerical value of its data point. The data is interpreted based on prior knowledge of the 

target, experience from evaluating other GPR scans and experience from creating 

simulations of GPR scans. Based on this experience, the expert detects objects and 

layers, the shape of and depth to objects, the type and quality of the surrounding media. 

When performing visual inspection of GPR data, image processing techniques can 

be applied to the data. 

Gain Boosting 

The model of GPR convolution predicts that received GPR signals decay 

exponentially over time. It also predicts that received signals are diminished for every 

reflection and transmission in a pulse's reflection path. What tends to happen is that the 

strongest signal in a GPR scan is self-coupling, which has zero or one reflections and has 

the shortest time delay. Unfortunately, self-coupling is also the least interesting signal. 

Reflections from deep objects and layers tend to be much weaker. 

In addition, low amplitude pulses in raw GPR data become subtle shades of gray 

when converted to an image. Many viewers find it hard to distinguish subtle changes in 
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shades of gray, as compared to shades of near-white. 

Gain boosting is a method that remedies these problems.[!] The data in each 

column of the GPR data is multiplied by and added to by another equation. The new 

signal is of the form 

s '(t) = e
0c 

s(t) + g(t) 17

where a is a constant and g(t) is usually an exponential or hyperbolic sine function chosen 

by the user. The exponential term counters the exponential decay of the GPR signal over 

time. The g(t) forces the average value of s'(t) to near maximum for high values oft. 

This makes the lower region of the B-scan brighter than the upper region, and makes 

pulses easier to see. 

. . 

= �- - -- - - -- -- � - - - - - - - - - !,_ -• 

Figure 3-1: B-Scan of 6-Inch Slab Without Gain Boosting 

Figure 3-2: B-Scan of 6-Inch Slab With Gain Boosting 
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Figure 3-1 is the raw data of a GPR scan of an 8-inch test slab. Note that the self

coupling is the brightest feature in the image, and the reflections off of rebar are much 

fainter and harder to see. Figure 3-2 is the data after gain boosting, using the default 

settings on RADAN software. The self-coupling is greatly diminished, and the later 

reflections are much more prominent. 

GPR scanners and analysis software allows the application of gain boosting with 

customized parameters to suit the application. While gain boosted data is visually 

appealing, it may not be suitable for mathematical analysis. For example, gain boosting 

will keep the time delay of a particular reflection constant but will change its amplitude 

and pulse shape. 

Fourier Transform - F-k Filtering 

The Fourier transform can be applied to GPR data in one or two dimensions.[!] 

When applied by column, the Fourier transform may be used to remove noise from 

outside sources. A band-pass filter may be constructed to pass frequencies found in the 

transmitter's pulse and block outside frequencies.[21] When applied by row, the Fourier 

transform may be used to remove low frequency and constants. This may be used to 

remove horizontal layers from the data. In practice, these functions are usually 

performed using image filters in the time-space domain and not in the Fourier domain. 

When the Fourier transform is applied to the two-dimensional matrix of GPR 

data, it is called F-k filtering or migration[l 1, 12]. The axes of a matrix of GPR data 

correspond to position in the X dimension and time in the Y dimension. When the matrix 
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is converted using the two-dimensional Fourier transform, the X dimension becomes the 

wavenumber k (the number of wavelengths per unit length), and the Y becomes 

frequency f Filters that operate on this transformed data are known as F-k filters. F-k 

filters are used to remove repeated and angled components from the image. It is used 

primarily to remove diagonal arcs from GPR data, but has been applied to object 

detection. [30,34] 

Reflections from objects tend to have a horizontal region when the transceiver is 

directly above the object and diagonal arcs as the transceiver moves away. The long 

diagonals of these arcs may obscure deeper reflections. In many cases, it is desirable to 

remove the diagonals and keep the horizontal regions. 

In F-k filtering, the Fourier transform is applied to the two dimensional matrix of 

GPR data. Figure 3-3 shows a GPR scan, and Figure 3-4 shows the absolute values of 

the Fourier transform of that scan in a grayscale image. In the converted data there will 

be prominent diagonal components. An opaque filter to these regions, setting their values 

of the diagonal components to zero. The inverse Fourier transform is applied to the 

filtered image, and the resultant image should be a series of horizontal bands with the 

diagonal arcs removed. 
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Figure 3-3: B-Scan of 4-Inch Slab 

Figure 3-4: Fourier Transform of B-Scan of 4-Inch Slab 

It is important to note that the diagonal arcs do provide information regarding the 

shape of the object and the dielectric constant of the surrounding medium. These arcs 

should be evaluated before being discarded. This method may fail when the dielectric 

constant of the medium changes or when delaminations add layers. Changes in the 

medium will alter the angle of the diagonal arcs both in the raw and Fourier transformed 

data. This may result in two or more sets of diagonals in the Fourier transformed data. 

Applying a broad filter may discard that information. 
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Automated Methods for Object Detection 

Object detection methods from image processing have been applied to interpreting 

GPR scans, such as independent component analysis[l 7,24,27], neural networks and 

fuzzy logic[4,8,9,33], and ANOVA and other statistical methods[3,30,38]. These 

methods typically segment the data into regions, and measure the degree to which a 

region matches a template of an object. Regions with a high rating are declared to 

contain an object. 

The template of simple objects has a clean mathematical definition. For instance, 

parallel horizontal layers produce horizontal lines and rebar produces hyperbolic 

arcs.[18,33] Other objects do not have such a clean definition, such as landmines.[10,26] 

Methods which detect irregularly shaped objects are usually statistical or neural 

algorithms which are trained with sample data. 

Another field of research attempts to reconstruct the underground structure using 

back projection. These methods have have been used in seismology and are now being 

applied to GPR.[36] 

Deconvolution 

Both human and automated analysis of GPR scans begin with raw data. The 

model of GPR convolution shows that the data is a column-by-column convolution of the 

ground response with the transmitted pulse. 

Humans intuitively deconvolve GPR data in the images. The expert looks for 

bands oflight-dark-light or dark-light-dark in a B-scan, and declares the leading edge or 
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the center of the band to be "the line" of the reflection. The horizontal distance between 

these lines represents the time delay between pulses, and the amplitude of the center of 

the pulse represents the amplitude of the reflection.[28] This process is simple only for 

trivial cases. In real data, reflections overlap, obscuring the bands. 

Automated methods can be constructed to detect objects within convolved data. 

The resulting system is tuned to data received from one specific transceiver and its 

specific pulse. An automated system must be completely retrained to process data from a 

different transceiver. 

Deconvolution as a preprocessing step can solve these problems. Deconvolution 

describes methods for recovering the original ground response from the received data. 

The resulting image should be a series of clear lines and arcs. Deconvolution should 

increase the sharpness of the image for human evaluation and simplify the data for 

automated evaluation.[14] 

Fourier Methods 

A simple approach to deconvoluting GPR data is using the Fourier transform of 

the transmitted pulse and received signal to find the ground response. 

R(f)= 
X(f) 

P(f) 18 

In practice, there will typically be frequencies where P(f) is near zero and X(f) is 

not. At those frequencies, R(f) will be large. This can be remedied by using Weiner's 

Optimal filter, which adds a noise threshold c to the denominator. 
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R _ X(f)P*(f) 
(f) 

- P(f)P * (f) + c2 19 

This method is very fast and may create an image sharper than the original data. 

However, the peaks will tend to be broad and ringing will surround each peak. The 

results may be as indistinct as the original data.[25] 

FIR Filter Methods 

In theory, a finite impulse response filter f(t) can be created such that 

p(t) * f (t) = t5(t) 

If this filter is applied to the received data, the result should be 

s(t) * f (t) = r(t) 

20 

21

This is a traditional approach in seismology and medical ultrasound[16,29,35]. 

There are many methods to constructing f(t), including polynomial division with the Z

transform, construction of zero-phase filters by trial and error, and convolution as matrix 

multiplication.[21,37] These methods share the same strengths and weaknesses as the 

Fourier methods. The inversion of p(t) tends to be badly formed and approaches infinity 

for some values, and remedies for this problem make the resulting peaks less sharp. 

Blind Source Separation 

Deconvolution can be approached as a blind source separation problem. Blind 

source separation begins with only the convolution of two signals, and uses the general 

statistical properties of the two original signals to recover the original signals. 
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Independent component analysis, Bussgang filters and other methods have been 

successful in deconvoluting GPR data.[2,20,29,32] These methods tend to be 

computationally expensive and are best used in situations where the initial pulse is 

unknown and unrepeatable, such as seismic data. 

Optimization Methods 

In general, optimization methods attempt to find a set of parameters {x1,x2 .... xn} 

that will minimize a rating function F[{x,,x2 .... xu}]. In this application, r(t) can be 

expressed as 

22 

and the received signal s( t) 

23 

The set of <ii'S and bi's becomes the parameter set. The rating function is the 

difference between the received signal and the current estimate 

F[{C1i,b1,a2,b2, •••• an,bn }] = L s(t)- La;p(t-bJ 
24 

There are a variety of 'off-the-shelf algorithms for optimization such as Powell's 

Direction set method, downhill simples, anealing, and others.[31] 

Optimization can be computationally expensive. Many optimization algorithms 

are sensitive to initial seed parameters. Some optimization algorithms depend on the 

derivatives of the rating function with respect to the parameters, which is not available in 

this case. Optimization algorithms may also be fooled by sub-optimal local minima.[21] 
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CHAPTER VI 

OPTIMIZATION-BASED DECONVOLUTION AND SEGMENTATION 
ALGORITHM 

The algorithm proposed in this thesis reduces the complexity of GPR scans by 

removing the transceiver's characteristic pulse from the GPR data. The first stage of the 

algorithm deconvolutes each column of the GPR data through an iterative decomposition 

method using correlation to locate the position of each target reflection. The second stage 

segments the deconvoluted image, converting it to a database of points and arcs. Objects 

matching chosen criteria can be highlighted, removed, or added to the final image. The 

final image is ready for human experts and for a�tomated systems to evaluate. 

Deconvolution 

Iterative decomposition as a method for deconvolution has been proposed by 

other researchers. Kurtz et al (1997) proposed an iterative decomposition algorithm 

using derivative peak search and matched filter techniques to find pulses within GPR 

data[ 19]. Liu (1998) used iterative decomposition to find pulses in a subroutine[25]. 

Liu's subroutine performed its decomposition using a search grid of time and amplitude 

pairs. The grid had very large step size for the parameters resulting in very coarse results. 

These deliberately coarse results were then used as seed parameters for subsequent 

optimization algorithms. 

The first stage of the proposed algorithm deconvolutes the GPR data column by 
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column. This deconvolution is through an optimization-based algorithm using iterative 

decomposition. Instead of optimizing the values of all parameters simultaneously, this 

method solves for a single parameter pair in each iteration. The time delays of each pulse 

are found using correlation. 

Suppose that the goal was to find only the largest reflected pulse p(t) contained 

within a GPR A-scan s(t). This could be found by optimizing one parameter pair { a1,bi}. 

The algorithm would begin by finding the correlation between p(t) and s(t). 

c(t) = corr [p(t), s(t)] 
25 

The correlation time with the greatest absolute value would be assigned to b1• The 

algorithm would then vary a1 over a range of values, and the value that minimizes 

F[{a1, b1}] should be kept. 

F[{Cli,b1 }]= �]s(t)-a1p(t-b1 )I 
26 

The result should be the time delay and the amplitude of the largest echo of p(t) 

found within s(t). The ground response r(t) of this single pulse is 

r(t) = lli<5(t-b1 ) 27 

This pulse can be erased from the received signal, creating s'(t) 

s '(t) = s(t)- p(t) * <5(t) = s(t)-Clip(t -b1 ) 
28 

The updated signal s'(t) may or may not have more pulses within it. It is apparent 

that this process may be repeated. That is the basic process of the proposed 

deconvolution algorithm: the most prominent pulse in the data is found and removed 

from the data, then the second-most, and so on until no more pulses can be detected. 
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The deconvolution algorithm is shown in flowchart form in Figure 4-1. The 

algorithm begins with all parameters set to zero. The transmitted pulse p(t) and received 

GPR data s(t) are inputs. The number of iterations is chosen to correspond to the number 

of spikes expected within r(t). The algorithm begins by finding the correlation between 

the transmitted pulse and the received data with the previously detected pulses removed 

c;(t) = corr[p(t),s(t)-is(t)-a1p(t-b)l 
,,,,, 29

Note that all { aj,bj} where j<i have been discovered in prior iterations, and are 

treated as constants in the ith iteration. All parameter pairs where j>i are still initialized to 

zero. The time where the absolute value of ci(t) is a maximum is assigned to bj. The 

algorithm varies aa over a range of values to minimize the rating function 

F[{a;,b;}] = L s(t)-a;p(t-b;)-Ia1p(t-b) 
I j� 30 

IfF[{ai,bi}] is less than F[{8.i-1,bi_i}], the values of {8.i,bi} are kept. IfF[{ai,bi}] 1s 

not less than F[ { ai-1,bi-t} ], or if its improvement is less than the threshold percentage, the 

values are rejected. The algorithm continues to the next iteration until the maximum 

number of iterations is reached or until the current parameter pair is rejected. At the end 

of the iterations, the ground response is 

r(t) = La;8(t-b;) 
i=l 31 
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fori:-1 toI 

I 

.------.� r '(t) = I: a io(t-bi) 
j.,; 

s'(t) = s(t)- p(t) *r '(t) 

c(t) •corr elati co[ s'(t), f(t)] 

Set bi the -nlue oft where 
lt(t)I is a maximum 

Tesl arange of values for a, 
in the rating functi en 

F[a1 ,b;] = I: f '(t)-a;p(t-b;)I 

yes 

Set ai the value where 
F[a1bJ is amirimum 

no 

Figure 4-1: Flowchart of Deconvolution Algorithm 
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This method may produce errors due to false correlation and the overlapping of 

pulses. An example of this is shown in Figure 4-2. The upper plot shows a simulated 

ground response and the middle plot the simulated GPR scan. The lower plot shows the 

result of the deconvolution algorithm on the simulated GPR data. In the deconvoluted 

data, the large positive peaks are lower in amplitude and displaced slightly in time 

compared to the original. There are also smaller peaks that are not present in the original 

simulation. 

This error appears consistently when pulses overlap at critical distances. The self 

interference creates noise in the correlation function, which leads to noise to the value of 

the chosen bj. The algorithm then choses a sub-optimal { ai,bi} pair with small 

inaccuracies in time and amplitude. This sub-optimal choice in parameters will add error 

to the remainder s'(t). This error will affect subsequent parameter pairs, typically leading 

to a series of low amplitude spikes in close proximity to the large, displaced spike. 
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Figure 4-2: Deconvolution Error in a Simulated A-Scan 

This error can be reduced with a sharpening algorithm similar to Powell's 

Direction set algorithm. In this algorithm, every parameter pair whose bi is within a 

critical range of another pair's bj and la;J << lajl is reset to zero. The remaining nonzero 

parameters are varied one at a time over small intervals near their original values to 

minimize the rating function F[ a;,bi). The new parameter values should have greater 

amplitude than the original values, and the corresponding prominent spikes should be 

closer to their 'true' positions in time. 

Figure 4-3 shows the results of the sharpening algorithm on the simulation. The 

upper image is a plot of the noisy deconvolution. The middle image shows the data with 

small noise surrounding the large spikes removed. The large spikes are still displaced in 

time and have incorrect amplitudes. The lower image shows the data after the remaining 
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spikes are varied and optimized. This result perfectly matches the original r(t) shown in 

Figure 4-2. In practice, the improvement varies with the closeness of overlap and with 

the self-similarity of the pulse. 

The flowchart of the sharpening algorithm is shown in Figure 4-4. This 

sharpening stage improves the accuracy of large, prominent spikes, but may discard valid 

low amplitude spikes. The first stage can repeated to populate the zero value parameter 

pairs and recover weaker pulses. 

:jE:=;;1 
10 20 3J 40 50 60 70 00 

First Stage Oeconvolut1on 

l��; ;L ; ; 1
10 20 3J 40 50 60 70 00 

Weak Noise Removed 

10 20 3J 40 50 60 70 00 

Remaining Peaks Adjusted 

Figure 4-3: Correction of Deconvolution Error in a Simulated A-Scan 
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for i-1 to I 

for j-1 to I, j,'i 

next j, next i 

for i-1 to I 

r'(t) = I:,a
1
o(t-b) 

j.,; 

s '(t) = s(t)- p(t) •r '(t) 

Test values for bi from 
b15 tobi+5

in the rating fuccti an F [alb J

Set bi the value where 
F[a1bJ is a mini.mum

Test a range of values for 8i. 
in the ratingfunctionF[a1bJ

Set a.
1 
the value where 

F[ a1bJ is a mini.mum

nexti 

\-0 
b.-0 

Figure 4-4: Flowchart of Sharpening Algorithm 
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Segmentation 

The deconvolution algorithm is repeated for each column in the GPR data. The 

result should be a sparsely populated matrix with arcs of similarly valued cells. The 

second part of the proposed algorithm segments this new matrix. 

The model of GPR predicts the amplitude of a reflected pulse depends primarily 

on the transmissions and reflections in its travel path. Suppose two GPR scans are taken 

at two distinct locations on a target and both pulses reflects off a single buried object. 

Assuming a simple structure, both reflected pulses will have the same reflections and 

transmission but different travel paths. The expected result is a pulse on each GPR scan 

with similar amplitudes and possibly different offset times. If several scans are taken 

with small changes in location, the reflections from the object will form a 'continuous' arc 

in the image of GPR data. Arcs will form for each reflection path. 

These arcs appear also in the matrix of deconvoluted GPR data. Evaluation of 

this data may be aided by selectively removing some of these arcs. For instance, arcs 

with a extremely short width may be noise. Long arcs and lines may represent reflections 

from known objects, and can be removed to reveal more subtle reflections. 

The algorithm scans downward from the top of the image, searching for a non

zero pixel not assigned to a group. When one is found, a new group is formed and it is 

assigned to the group. It then searches down and left for another non-zero pixel that is in 

close proximity, has a similar amplitude to the first, and is not assigned to a group. If 

such a pixel is found, it is assigned to the group and the search is repeated for the next 

nearby matching pixel down and left. This is continued until no more pixels matching 
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the criteria are found. The algorithm then returns to the starting pixel. A new group is 

formed, and the search is repeated the search down and right. When both paths are 

explored, the algorithm begins scanning for the next top pixel not assigned to a group, 

repeating the group creation and search process. 

The segmenting process reformats the data from a matrix to a tabular format, like 

a database table or spreadsheet. This table would have columns for Group-ID, X, Y, and 

Pixel Amplitude. With the GPR data in tabular form, searches and queries can be 

performed on the groups. It is straightforward to find the length, the maximum and 

average amplitudes, and the highest point within each group. Group data can be used by 

automated systems to detect characteristic shapes formed by the X and Y coordinates of 

the group's pixels. 

The GPR scan image can be easily rebuilt from the group table data. For each 

group to be i,ncluded, each member pixel's amplitude is assigned to the (X, Y) coordinate 

in the new matrix. Groups can be included or excluded from the new image to remove 

noise and obvious features and to highlight details. 
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Simulation GPR Data 

CHAPTER V 

EXPERIMENT AL RESULTS 

The deconvolution algorithm was tested on simulated GPR A-scans. The 

segmentation algorithm is only applicable to B-scans, so it was disabled for these tests. 

Figure 5-1 is a graph of the ground response of a simulated target, and Figure 5-2 the 

simulated GPR A-scan of that target. Figure 5-3 shows the results of the deconvolution 

algorithm on the A-scan data. Figure 5-4 is a reconstruction of the A-scan created by 

convoluting the transmitted pulse with the deco.p.voluted ground response. For ground 

responses whose spikes are separated by at least one quarter of the wavelength of the 

transmitted pulse, the deconvoluted ground response is extremely accurate. 

The algorithm is also able to extract pulses from simulated scans with added noise 

with high accuracy. Figure 5-5 is the same simulated A-scan as in Figure 5-2 with white 

noise added with a SNR ratio of 2-1. Figure 5-6 shows the results of the algorithm 

deconvolving the noisy signal. Comparing Figure 5-6 with Figure 5-3, the added noise 

creates low amplitude spikes in the deconvoluted ground response. The contribution of 

these noise spikes is minimal in the reconstructed A-scan as seen in Figure 5-7. The 

noise filtering properties of the algorithm depend on the properties of the added noise. 

The lower the correlation between the noise and the transmitted pulse, the better the 

algorithm is at rejecting noise. 
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Figure 5-3: Deconvoluted Ground Response of A-Scan 

42 

1r------r-~--------r--~--,-------. 



-1 

-2 

-3 

I\ 

) \ 
I\ 

\ 
I\ 
I ' 

I 
,, 

\ I \ \ 
'\I\/\/\,/\ 

\ I 
\/ \ / \} \ f 1, J 

I ,J 

I 

20 40 60 00 100 120 140 160 

Reconstructed s1 (1) 

Figure 5-4: Reconstruction of A-Scan Using Deconvoluted Ground Response 
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Figure 5-5: Simulated A-Scan with Added Noise 
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Figure 5-6: Deconvoluted Ground Response of A-Scan with Added Noise 
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Figure 5-7: Reconstruction of Noise Free A-Scan Using Deconvoluted Ground Response 

The deconvolution algorithm loses accuracy when prominent spikes in r(t) are 

closer than one quarter the wavelength of the transmitted pulse. Figure 5-8 shows a 

simulated B-scan response made of two diagonal crossing lines, each with an amplitude 

of positive one. This simulation was convoluted against pulse p(t), and deconvoluted by 

the algorithm. Figure 5-9 shows the deconvoluted response. The algorithm generates 

some noise when the pulses overlap about one half wavelength due to autocorrelation 

error. When the pulses are closer than one quarter wavelength, the algorithm merges the 

two pulses into a single pulse. 

Figure 5-10 shows a simulated B-scan response made of two crossing lines with 

opposite polarities. This response was convoluted against pulse p(t), and deconvoluted 

by the algorithm. Figure 5-11 shows the deconvoluted response. Again, the algorithm 

generates slight noise when the pulses overlap about one half wavelength. When the 

pulses are closer than than one quarter wavelength, they cancel out leaving a blank region 

at the crossing. 
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Figure 5-8: Simulated Ground Response of Crossing Lines with Same Polarity 
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Figure 5-9: Deconvoluted Ground Response of Crossing Lines with Same Polarity 
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Figure 5-10: Simulated Ground Response of Crossing Lines with Opposite Polarity 
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Figure 5-11: Deconvoluted Ground Response of Crossing Lines with Opposite Polarity 

This error occurs because the deconvolution algorithm attempts to create a 

deconvolution using the fewest and highest amplitude spikes possible. If the algorithm 

did not seek to minimize the number of spikes, it would be prone to creating a large 

number of high amplitude spikes which cancel each other out. Minimizing the number of 

spikes is the good strategy for the algorithm to take, in the absence of additional 

information. Unfortunately the algorithm is vulnerable to local minima within the rating 

function F { ai,bi}, and may attempt to describe multiple spikes located closely together 

using one or zero spikes. 

The deconvolution and segmentation algorithms were tested on simulated B

scans. Figure 5-12 shows a simulated ground response of a slab with rebar. Figure 5-13 

shows the simulated B-scan of that slab. Figure 5-14 shows the result of applying the 

deconvolution algorithm to the simulated B-scan. Figure 5-15 shows the result of 

applying the segmentor algorithm to the deconvoluted results, and keeping arc segments 

with a length of five pixels or greater. 
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Figure 5-12: Simulated Ground Response of Concrete with Embedded Rebar 
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Figure 5-13: Simulated B-Scan of Concrete with Embedded Rebar 
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Figure 5-14: Deconvoluted Ground Response of Simulated B-Scan 
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Figure 5-15: Deconvoluted and Segmented Ground Response of Simulated B-Scan 

The deconvoluted result in Figure 5-14 matches the original response in Figure 

5-12, with errors clustered near regions where arcs overlap. These error pixels tend to be

lone pixels with low amplitude and no neighboring pixels. By rejecting all arcs below an 

average absolute amplitude or a specified length, as shown in Figure 5-15, the segmentor 

can remove most of the error pixels and leaves the main arcs intact. The data in Figures 

5-14 and 5-15 is ready for use by a human evaluator or an automated object detection

system. 

Real GPR Data 

Concrete test slabs have been created by WMU's Civil and Construction 

Engineering department. [28] These slabs were scanned using a Model 5100 antenna 

attached to an SIR System-2000 terminal, both from GSSl.[11] The data recorded from 

the scans was converted from GSSI's proprietary format to plain text, tab-delimited 

spreadsheets. The data was then processed using the deconvolution and segmentation 

algorithms. The deconvolution algorithm was applied to the data with an iteration 
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number of twenty. The deconvoluted data was segmented and reconstructed into a new 

image which excludes all arcs whose absolute average value is below a threshold. 

Figure 5-16 is the GPR scan of a 4-inch test slab with embedded rebar. The slab 

has no defects. Figure 5-17 is the output of the deconvolution algorithm, and Figure 5-18 

is the reconstructed data created by the segmentor algorithm. 

The most prominent features in the GPR scan in Figure 5-16 are the horizontal 

line across the top and the seven arcs beneath it. The horizontal line represents the self

coupling, the signal transmitted directly from transmitter to receiver and the reflection 

from the air-concrete boundary. The seven arcs are hyperbolas, the signature shape of 

reflections off of the rebar within the concrete slab. One feature that is expected but not 

visible in this GPR scan are lower horizontal lines representing the concrete-wooden 

platform boundary and the re bar which are parallel to the direction of the scan. It is 

probable that these lines are obscured by the overlapping hyperbolas from the rebar. 

The deconvoluted data in Figure 5-17 matches the original GPR scan. The faint 

horizontal line across the top of the image represents the self-coupling, and the bold line 

represents the first reflection off the air-concrete boundary. The seven arcs represent the 

upper portion of the hyperbolas. There is noise where the peak of each arc approaches 

the air-concrete reflection and where each arc crosses. Beneath four of the arc crossings 

are short line segments that may correspond to reflections from the concrete-wooden 

platform boundary. These segments are short and low amplitude; it is uncertain whether 

they are reflected signals or noise. 

The segmented and filtered data in Figure 5-18 keeps the self-coupling and 
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· ground lines and the seven arcs found in Figure 5-17 and removes some of the noise. It

also removes many of the line segments which may be from the lower boundary. This

demonstrates the risk in filtering the data; any criteria that rejects noise will also tend to

reject faint signals as well.

Figure 5-19 is the GPR scan of a 6-inch test slab with embedded rebar. The slab 

has no defects. Figure 5-20 is the output of the deconvolution algorithm, and Figure 5-21 

is the reconstructed data created by the segmentor algorithm. As with the 4-inch slab, the 

original data has a prominent self-coupling line and seven rebar hyperbolas. In the 6-inch 

slab, however, it is possible to see the reflection from the lower concrete-wooden 

platform boundary. This reflection is the horizontal line beneath the rebar peaks, and it is 

broken where the rebar arcs cross it. 

The deconvoluted data in Figure 5-20 matches the original GPR scan. The two 

faint horizontal lines at the top of the image correspond to self-coupling, and the 

horizontal line to the first reflection from the air-concrete boundary. The arcs correspond 

to the upper portions of the hyperbolic arcs. The faint line segments below the arcs 

represents the reflection from the concrete-wooden-platform boundary. Because of the 

relative lack of noise in the deconvoluted data, the segmented and filtered data in Figure 

5-21 is nearly identical to Figure 5-20.

Figure 5-20 demonstrates a short-coming of the deconvolution algorithm. In the 

original data in Figure 5-19, visual inspection shows that the hyperbolic arcs continue 

beyond the first arc crossing. The amplitude of the arcs in these lower regions is much 

less than at the peak. This is due to the exponential attenuation of the radar signal as it 
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passes through concrete. Humans can see these arcs because we extrapolate their 

presence; an observer sees the top of the arc, unconsciously predicts the continuation of 

the arc to the right and left of the peak, and finds faint signals within the noise that match 

the prediction. The deconvolution algorithm deconvoluted each column using only the 

information within that column. Because of this, the deconvolution algorithm treats the 

low amplitude arc segments below the arc crossings as noise and ignores them. 

Figure 5-22 is the GPR scan of a 8-inch test slab with embedded rebar. The slab 

has no defects. Figure 5-23 is the output of the deconvolution algorithm, and Figure 5-24 

is the reconstructed data created by the segmentor algorithm. The original data has a 

prominent self-coupling line, seven rebar hyperbolas, and a faint line from the lower 

boundary. The deconvoluted data has the self-coupling and ground-coupling lines, rebar 

arcs, and lower boundary line. For the 8-inch slab, the reflection from the concrete

wooden platform boundary is weak. The segmentation algorithm treats the lower 

boundary reflection as noise and rejects, as is shown in Figure 5-24. This can be 

prevented by changing the filter criteria. 

A 4-inch test slab was constructed with embedded rebar and embedded defects. 

Small blocks of Styrofoam were embedded in the concrete to simulate delaminations and 

small plastic tubes were embedded to simulate voids. The layout of rebar and defects is 

shown in Figure 5-25. These defects should appear in a GPR scan as objects or as 

distortions of neighboring objects. 

Figure 5-26 is the GPR scan of a 4-inch test slab with embedded rebar and 

defects. The slab has six rebar in the scanning region. Figure 5-27 is the output of the 
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· deconvolution algorithm, and Figure 5-28 is the reconstructed data created by the

segmentor algorithm. The data is similar to the scan of the 4-inch slab with no defects,

shown in Figures 5-16, 5-17 and 5-18. The reflection from the lower concrete-wooden

platform boundary is more visible in figure 5-27 than in Figure 5-17.

No new objects are visible between the ground coupling and the rebar peaks in the 

deconvoluted scan of the slab with defects. This actually is not surprising. It takes light 

.085 nanoseconds to travel one inch through air. Assuming the Styrofoam behaves like 

air with respect to light and that the embedded defect is one inch thick, the two-way 

travel time of light through the defect is .17 nanoseconds. The GPR takes a sample of the 

received signal every .028 nanoseconds. The time delay between the reflection from the 

upper concrete-defect boundary and the lower defect-concrete boundary will be .17 

nanoseconds, a distance of six pixels in the GPR data. This interval is less than one 

quarter of the wavelength of the transmitted pulse, so it is too small an interval for the 

deconvolution algorithm to separate the two pulses. In addition, the concrete-defect 

boundary in this example is very close to the air-concrete boundary, and these pulses may 

be merged as well. 

This does not make such a defect undetectable. The defect will also refract light, 

changing the path and travel time of the reflected pulse as it travels through the defect to 

and from objects beneath the defect. This results in a change in the shape of the reflected 

arcs and lines from objects beneath the defect. In Figure 5-27, the first four hyperbola are 

very similar in shape to the arcs found in the scans of defect-free slabs. The fifth and 

sixth arcs are deformed compared to the other arcs. They have distorted shapes, and they 
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do not appear to cross. This distortion raises suspicion of this region of the slab. The 

arrow in Figure 5-29 shows the actual path of the B-Scan shown in Figure 5-27, which 

includes two Styrofoam defects placed above two consecutive rebar. Therefore, the 

interpretation of this scan matches the defects present in the scan path. 
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Figure 5-16: GPR Scan of 4-Inch Slab with No Defects 
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Figure 5-17: Deconvoluted Ground Response of 4-Inch Slab with No Defects 
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Figure 5-18: Deconvoluted and Segmented Ground Response of 4-Inch Slab with No 

Defects 
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Figure 5-19: GPR Scan of 6-Inch Slab 
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Figure 5-20: Deconvolution of GPR Scan of 6-Inch Slab 
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Figure 5-21: Deconvolution and Segmentation of GPR Scan of 6-Inch Slab 
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Figure 5-22: GPR Scan of 8-Inch Slab 
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Figure 5-23: Deconvolution ofGPR Scan of 8-Inch Slab 
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Figure 5-24: Deconvolution and Segmentation of GPR Scan of 8-Inch Slab 
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Figure 5-25: Construction of 4-Inch Slab with Embedded Defects 

Figure 5-26: B-Scan of 4-Inch Slab with Embedded Defects 
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Figure 5-27: Deconvolution of GPR Scan of 4-Inch Slab with Embedded Defects 
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Figure 5-28: Deconvolution and Segmentation of GPR Scan of 4-Inch Slab with 
Embedded Defects 

◄·-

Figure 5-29: Actual Antenna Path ofB-Scan 
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CHAPTER VI 

CONCLUSION 

This thesis proposed an algorithm for the deconvolution and segmentation of GPR 

scan data. The first stage algorithm treated deconvolution as an optimization problem, 

and using iterative decomposition to locate the position of each reflection spike. The 

second stage segmented the data, allowing the removal of features bas�d on search 

criteria. The results of the algorithm were demonstrated using simulated and real GPR 

data. 

The deconvolution algorithm was able to detect the prominent reflections in real 

GPR data, corresponding to the reflections from the top of the test slab and from re bar. 

The algorithm was able to detect the reflection from the bottom of the test slabs in some 

cases. It was able to clarify data from a scan of a slab with embedded defects well 

enough to allow the visual detection of the defects. The algorithm was unable to clarify 

arcs in regions with both low amplitude reflections and a high number of overlapping 

arcs. The segmentation algorithm was able to remove noise from the deconvoluted data 

by rejecting low amplitude arcs. 

The proposed algorithm is intended to assist visual inspection of GPR data as well 

as serve as a preprocessing stage for object detection algorithms. When visually 

interpreting raw GPR data, faint reflections are hard to see. In the deconvoluted and 

segmented data, every arc can be displayed with any intensity or color scheme desired. 

The resulting image may allow road crews to evaluate roads and bridge decks using GPR 
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in less time, with less experience, and with less training. 

Object detection methods are often trained using data gathered using a specific 

type of antenna. A drawback of this approach is that the method becomes dependent on 

that specific antenna type. For instance, an object detector designed to find rebar in 

bridge decks could not be used to detect pipes buried in soil. Even though the physics of 

these two situations are the same, the differences caused by the antennas designed for 

each situation would confuse the detector. The proposed algorithm removes these 

antenna characteristics from GPR data. The object detector can focus on the 

characteristic lines and arcs corresponding to underground objects. 

Deconvoluting GPR data column by column is vulnerable to local minima within 

the rating function, and therefore to erroneous interpretations of the data. Future 

approaches may use the context provided by neighboring columns to improve the 

interpretation of the current column. One possible approach is to use an object detection 

algorithm to locate lines and hyperbolas within the segmented data. Ideal arcs could be 

plotted based on these detected arcs, and these ideal arcs used as seed values for a second 

round of deconvolution. This could clarify ambiguous interpretations in regions where 

reflections overlap. 
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