
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Master's Theses Graduate College

6-1997

Design and Development of a User Interface between MAPICS/DB Design and Development of a User Interface between MAPICS/DB

and Factor 5.2 and Factor 5.2

Raghu Pothuri

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Industrial Engineering Commons, and the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Pothuri, Raghu, "Design and Development of a User Interface between MAPICS/DB and Factor 5.2" (1997).
Master's Theses. 4927.
https://scholarworks.wmich.edu/masters_theses/4927

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4927&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4927&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/4927?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F4927&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

DESIGN AND DEVELOPMENT OF A USER INTERFACE

BETWEEN MAPICS/DB AND FACTOR 5.2

by

Raghu Pothuri

A Thesis

Submitted to the

Faculty of The Graduate College

in partial fulfillment of the
requirements for the

Degree of Master of Science

Department of Industrial and Manufacturing Engineering

Western Michigan University
Kalamazoo, Michigan

June 1997

Copyright by

Raghu Pothuri

1997

ACKNOWLEDGEMENTS

I extend my sincere appreciation to all of my committee members, for their

support. Special thanks go to my advisor Dr. Tarun .Gupta, for his continued guidance

and participation, and more importantly for "not giving up on me". I would like to

thank Dr. Frank Wolf, and Dr. Richard Munsterman for their review, and suggestions

in preparing the final report.

I am grateful to all my family members for their continued support throughout

this research. I dedicate this thesis to my wife Manjula for her motivation and support,

and my beloved daughter Ramya, who was born during this research period and grew

up along with it. I am very grateful to my parents who always kept me in the track

which led to this accomplishment.

Finally I thank the Department of Industrial and Manufacturing Engineering at

Western Michigan University for the opportunity given to me to pursue higher

education in the United States of America.

Raghu Pothuri

11

DESIGN AND DEVELOPMENT OF A USER INTERFACE
BETWEEN MAPICS/DB AND FACTOR 5 .2

Raghu Pothuri, M.S.

Western Michigan University, 1997

An interface program was designed to transfer production data from MAPICS/DB,

a MRP II software, to FACTOR 5.2, a Finite Capacity Scheduling software. Since

FACTOR 5.2 is designed to be used in a stand-alone mode with its own independent data

base, this interface program extracts data from the MRP II System and converts it to

formats specified by the Scheduling System. To create a computer model of the

manufacturing process, information about manufacturing orders, routings, and production

facilities was obtained from MAPICS/DB files. Certain information needed by FACTOR

5.2, which is not available in MAPICS/DB, was supplemented by the program as auxiliary

data. Three program modules were developed and were presented in the form of a menu

to facilitate flexibility of data transfer.

There are several advantages in using this interface, which include faster what-if

analysis, better management of production constraints by advance visibility of production

conditions, and early preventive actions.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. 11

LIST OF TABLES ·.·•........................... vu

LIST OF FIGURES''' ''' ''' ''' ''' ''' ... ''' ''' .. ' ''' ... ''' ... ''' . '. ''' .. ' ' ' ' .. ''' '' Vlll

CHAPTER

I. INTRODUCTION.. 1

Production Scheduling - Related Problems... 1

rvtRP II is Not Enough. 2

Finite Capacity Simulation - A Solution.......................... 3

Why Systems Integration. 4

How to Implement FCS... 5

Objectives....................................... 6

II. THE AS/400 ENVIRONMENT...... 8

Introduction to AS/400. 8

AS/400 Database Files...... 8

Display Files.. 9

Data Structures.. 9

Introduction to RPG/400............ 10

Designing a RPG/400 Program............................... 10

Data Files and the Data Hierarchy. 10

lll

CHAPTER

Table of Contents-Continued

Specification Forms in RPG

Interactive Applications :

Interprogram Communications

Arithmetic Operations in RPG

.
0

.
Assignment perat1ons

III. FACTOR 5 .2 MODELING

Introduction to FACTOR 5.2 Modeling

Modeling Components

The FACTOR 5.2 Database

Populating FACTOR Database

Alternative .. .

Orders .. .

Parts

Process Plans

Setup/Operation Job Step

Resource Groups .. .

11

11

12

14

15

18

18

18

19

19

20

21

25

27

34

36

IV. MAPICS/DB & FACTOR 5.2 INTERFACE DESIGN................... 42

The Scheduler's Daily Use of FACTOR.............................. 42

IV

CHAPTER

Table of Contents-Continued

Structure of the Integrated Package.................................... 42

Transfer Based on a Single Manufacturing Order..................... 43

NEWFINTORD Procedure 43

NEWINTORD Procedure ... 46

NEWFERORD Procedure .. 47

V. OTHER INTERFACE OPTIONS... .. 68

Transfer Based on Resources.. 68

NEWFINTRES Procedure 68

NEWINTRES Procedure. 70

NEWFERRES Procedure.................................... 72

Transfer the Entire Shop Floor Information From MAPICS/DB... 75

NEWFINTTTL Procedure. 77

NEWINTTTL Procedure. .. 78

NEWFERTTL Procedure..................... 79

VI. CONCLUSION... 82

Benefits of the Interface Application.................................... 82

Future Research Suggestions ... 83

V

CHAPTER

APPENDICES

Table of Contents-Continued

A User's Guide for the MAPICS/DB and FACTOR 5.2 Interface............ 84

B. File Names and Contents.. 88

C. Program Screens .. .-...... 90

D. Program Source Code ... 95

E. File Structures & Field Assignments �-.......................... 102

BIBLIOGRAPHY... 110

VI

LIST OF TABLES

1. Job Step Codes and Descriptions... 29

2. File Names and Contents _.............................. 89

3. File Structure and Field Assignments for ORDERXXX.................. 103

4. File Structure and Field Assignments for PARTXXX.................. 104

5. File Structure and Field Assignments for JOBSTEPXXX. 105

6. File Structure and Field Assignments for JS13VRXXX............................... 107

7. File Structure and Field Assignments for RESRCXXX. 108

8. File Structure and Field Assignments for RESGRPXXX. 109

vu

LIST OF FIGURES

1. Flow Chart for Order Based Transfer. 44

2. Flow Chart for Work Center Based Transfer.. 69

3. Flow Chart for Entire Shop Floor Transfer.. 76

4. MAPICS/DB and FACTOR 5.2 Interface Main Menu.............................. 91

5. MAPICS/DB and FACTOR 5.2 Interface- Order Based Transfer Screen.......... 92

6. MAPICS/DB and FACTOR 5.2 Interface - Work Center Based Transfer Screen ... 93

7. MAPICS/DB and FACTOR 5.2 Interface - Job Shop Transfer Screen......... 94

Vlll

CHAPTER!

INTRODUCTION

Production Scheduling - Related Problems

The problem of scheduling a job shop is notoriously difficult, even for human intel

ligence. Scheduling a flexible manufacturing system is difficult because:

1. It is hard to compute from a cost function to a schedule.

2. The floor always deviates from whatever model one used to predict its behav-

lOr.

3. A manufacturing enterprise is so complex that algorithms take too much time to

run

4. In some cases the floor is so complex that its behavior cannot be predicted.

The quality of a production schedule may involve many conflicting objectives.

While maximizing throughput is certainly an important consideration, an ideal schedule will

also have the following characteristics: (a) delivery dates are met; (b) inventory costs are

maintained at acceptable levels; (c) equipment, personnel and other limited resources are

well utilized and have balanced work loads; and (d) adaptations can be made quickly in the

event of an unexpected change, equipment failure, raw material shortage, etc.

1

MRP II is Not Enough

In order to deal with these problems, many companies send inventory plans directly

to their MRP II systems. Although MRP II systems have planning as well as manufactur

ing transaction capabilities, the planning component often does not meet the complex re

quirements of today's production planner. MRP II systems generate material replenishment

plans and provide a view of aggregate capacities, but the process of mapping demand re

quirements into realistic capacity constraints then becomes a time consuming, trial-and

error process. The outcome is usually a reactive manufacturing environment.

Production managers are under constant pressure to balance the trade-offs between

high utilization of the facilities, work-in-process inventory levels, and shipping dates to their

customers. Production planners require robust scheduling algorithms that focus on realistic

capacity constraints, interactive what-if simulation, and the ability to quickly adapt to

changes in demand and capacity. MRP II systems, while valuable for generating material

plans and tracking product flows through manufacturing operations, fall short in this inter

active, capacity-driven planning environment. MRP II is actually an oversimplification of

the way the manufacturing plants actually operate. This oversimplification occurs in three

ways.

First, the MRP II data base that defines the processing time of an operation is actu

ally composed of three components: the actual processing time of the operation, the wait

time or queue time to get into the operation, and the material transport time between op-

2

erations. This failure to separate processing times from the other delay times can lead to

erroneous machine loading and poor resource utilization.

In the second oversimplification, the MRP II system does not keep track of all

manufacturing resources required to produce the product. Frequently, the fixtures, opera

tors, setup operators and material handling equipment are not included as manufacturing

constraints that need to be controlled and scheduled. This failure leads to poor scheduling.

In the third, the MRP II system considers each operation in isolation and does not

provide for the actual sequencing of products through the facility. So at any given opera

tion, the floor-level personnel decide in what order to process the work through their op

erational area.

Finite Capacity Simulation - A Solution

We can arrive at workable solutions to these problems by simulation and analysis.

Simulation replicates the functional structure of the factory in a mathematical model, mim

ics the behavior of the factory through time by exercising the model, observes the behavior

of the model, and interprets those observations in the context of the original factory. The

simulation model provides a computer replica of the department in the factory. The model

plays through the schedule and provides performance information.

Finite Capacity Scheduling is one of the most powerful execution systems, which is

increasingly being used in the manufacturing industry. This type of scheduling involves

modeling production process and simulating the processing of each manufacturing order.

Such a simulation is independent of the planned lead times used by MRP, inasmuch as the

3

probable actual lead time of each order is determined by whether it will be delayed by other

orders at a capacity constraint or whether such delays will be avoided. In the course of

simulation, expected operation start and completion times are determined. Visibility of fu

ture potential delays enables action plans to be developed far enough in advance of the un

desirable situation that it can be prevented from developing.

The Finite Capacity scheduling software quickly generates schedules and presents

scheduling data in an easy-to-understand format. This software also performs a what-if

analysis and quickly regenerate a schedule. After performing and comparing multiple

what-ifs, the scheduler should be able to compare alternative schedules and pick the one

which best meets the organization's needs.

Why Systems Integration

Without integrated technology devoted to scheduling, the process of translating

enterprise requirements into an executable production schedule is little more than a paper

and-pencil exercise. Manual methods, such as magnetic scheduling boards and standalone

PC systems, only serve to introduce delay and confusion into the overall logistics process.

Furthermore, deployment systems, which rely on timely and accurate production informa

tion to drive shipping plans, are not synchronized with manufacturing and often receive

outdated schedules. All these factors wreak havoc on the distribution process, leading to

significantly higher inventory costs and lower levels of customer service.

4

How to Implement FCS

Most of the Finite Capacity Scheduling packages available in the market have their

own data input requirements in order to produce schedules and compare options, and are

designed to be used in a standalone mode. The data about materials, machines and pro

duction orders already exist in the company's MRP II system. The American manufactur

ing industry has invested significant time, effort, and money in implementing MRP II sys

tems, training users, and maintaining system data. All we need is some way of integrating

the MRP II system with the scheduling system, by developing an application program in

terface, which extracts data from the MRP II system and converts it to formats specified by

the scheduling system.

This study involves integrating a finite capacity scheduling system and a MRP II

system, utilizing FACTOR 5.2 (Scheduling Software) and MAPICS/DB (MRP II applica

tion). Both of the software run independently on an IBM AS/400 platform. To create a

computer model of the manufacturing process, information about production facilities is

obtained by the interface program - the number of machines and people, their productivity,

work plans and the like. From the manufacturing order file, products to be produced are

obtained - order quantities, due dates, process routings, production times, and of course,

the current state of progress of each order. The integration is performed in three steps:

1. Transferring manufacturing orders from MAPICS/DB to FACTOR 5 .2.

2. Transferring work center information from MAPICS/DB to FACTOR 5.2.

3. Creating shift information in FACTOR 5 .2.

5

The input-output relationship between FACTOR 5.2 and MAPICS/DB is designed

to satisfy the data definitions and formats of the two applications. This interface applica

tion runs independently without affecting either of these applications. The integration

process also includes customizing the screens so that the scheduler has the opportunity to

transfer the specific information in which he is interested. For example, the scheduler can

transfer a manufacturing order and the application automatically transfers only those re

sources pertaining to that order.

Objectives

The main objective in this study was to design a data interface application between

MAPICS/DB and FACTOR 5 .2 in order to achieve better capacity management of manu

facturing resources. Other supportive objectives were as follows:

1. Understand the general operation ofFACTOR 5.2 and MAPICS/DB.

2. Understand the data base relationships and file structures of FACTOR 5 .2 and

MAPICS/DB.

3. Find the input requirements ofF ACTOR 5 .2 for the simulation process.

4. Investigate for the information in MAPICS/DB files which matches the input

requirements for FACTOR, for example, the product information and the work center

information etc.

5. Learn RPG/400, CL/400, and SQL/400.

6. Learn AS/400 utilities such as SEU and SDA for writing programs and

designing screens.

6

7. Design user fiiendly screens for information input and output.

7

CHAPTER II

THE AS/400 ENVIRONMENT

Introduction to AS/400

Unlike other systems which require additional, costly software to provide them

with database capabilities, the AS/400 was designed with database applications in mind. Its

operating system automatically treats all data files as part of a large relational database

system.

AS/400 Database Files

AS/400 allows us to define two types of database files: physical files and logical

files. Physical files actually store data records. Logical files describe how data appears to

be stored in the database. Logical files do not actually contain data records; instead, they

store access paths, or pointers, to records in physical files. A logical file is always based

upon one or more physical files.

A physical file contains vital information about customers, products, accounts, and

so on. These files are organized into a data hierarchy of file-record-field. A file is a

collection of data about a given kind of entry or object. A file, in tum, is broken down into

records that contain data about one specific instance of the entity. Each record contains

several discrete pieces of data about each entity instance.

8

Display Files

The dialogue between the user and the computer is mediated through display files.

Display files define the screens that the program presents as it runs. Display files allow

values keyed by the user in response to the screen to be input as data to the program.

Thus, display files serve as the mechanism that allows the user and program to interact.

Display files are defined externally to the program that uses them. The procedure

for creating a display file is similar to the procedure followed for creating a physical or

logical file. Display files are coded on DDS specification sheets. Display files include

entries at a file, record and field level, just like physical and logical file definitions.

Data Structures

Data structures can give flexibility in the handling of data in the following ways:

(a) to allow the user to subdivide fields into subfields, (b) to restructure records with

different field layouts, (c) to change field data types, (d) to define character fields longer

than 256 bytes, and (e) to add a second dimension to arrays.

Data structures are defined on Input Specifications, following any record

definitions. DS coded in positions 19-20 signals the beginning of a data structure. Data

structure names follow the same rules as field names. Subfields comprising the data

structure follow the data structure header line. Each subfield entry is defined by giving it a

name (positions 53-58) and specifying its location within the data structure with "from" and

9

"to" values (positions 44-51). The locations of subfields may overlap, and the same

position with a data structure may fall within the location of several subfields.

Introduction to RPG/400

IBM introduced the Report Program Generator-(RPG) programming language in

the early 1960's. In those days, RPG filled a niche by providing quick solutions to a

common business task: generating reports needed within the business. Over a period of

time, IBM made several major changes to RPG. During 1970s', several trends in data

processing became apparent. Interactive applications began to mushroom which required a

structured design in RPG programming. With the introduction of S/38 by IBM in 1988

came a new version of RPG, RPG/400. RPG/400 is a minor upgrade of RPG ill, with new

operations and enhancements.

Designing a RPG/400 Program

Designing a program includes:

1. Deciding what output you need from your program.

2. Deciding what processing will produce the output you need.

3. Deciding what input is required by and available to your program.

Data Files and the Data Hierarchy

A file is a collection of data about a given kind of entity or object. A file is broken

down into records that contain data about one specific instance of the entity. Each record

10

contains several discrete pieces of data about each entity, called fields. A field generally

represents the smallest unit of data that we want to manipulate within a program. All

records within a file usually contain the same fields of data. A file occasionally may contain

different record types, each with its own distinct format. In this case, each record usually

contains a code field whose value signals which format that record represents.

Specification Forms in RPG

RPG programs consist of different kinds of lines, called specifications. Each type

of specification has a particular purpose. File description specifications are used to identify

the files the program is supposed to use. Calculation specifications are used to detail the

arithmetic operations to be performed by the program. Output specifications provide

details about the output required.

Since this study is focused mainly on the use of RPG in database link applications,

we will discuss more about the functions in RPG that are commonly used for database file

access and record manipulation.

Interactive Applications

Interactive applications are user-driven applications. As the program runs, a user

at a workstation interacts with the computer selecting options from menus, entering data,

responding to prompts, and so on. The sequence of instructions the program executes is

determined in part by the user. The program continues until the user signals he is ready to

quit.

11

Interprogram Communications

Interprogram communication is the crux of this study. As concern about program

development efficiency has grown, programmers have become increasingly interested in

developing small, stand-alone units of code (rather than writing monolithic programs of

thousands of lines). This is called the modular programming approach. These small, self

contained modules of code can be connected by several functions as described below.

CALL Operation

The CALL operation passes control to the program named in Factor 2. Factor 2

may contain a literal specifying the program to be executed (the "called program").

Alternately, Factor 2 may contain a field, array element, or named constant that specifies

the name of the program to be executed. When the program name is determined through a

variable value, the program to be called is not fixed or constant, but may change from one

call to the next.

When program execution reaches a CALL statement, control passes to the called

program, which in tum begins to execute. The called program continues to execute until it

reaches a RETRN statement. At this point, control returns to the calling program at the

statement immediately following the CALL.

12

Passing Data Between Programs

A CALL operation would be of limited value if it did not permit the called and

calling programs to share data. Within a single RPG program, all variables are globally

defined; that is, the value of any variable can be accessed from anywhere within the

program. However this global feature of variables does not extend across program

boundaries.

RPG uses PARM (Identify Parameters) operation to indicate which field's values

are to be shared between programs. A list of P ARMs in the calling program must have a

list of corresponding P ARMs in the called program. Although the data names of the

calling and called programs' P ARMs do not need to be the same, corresponding P ARMs in

the two programs should have the same type and length since, in fact, these corresponding

parameters are referencing the same storage location within the computer.

P ARMs can appear only immediately after a CALL operation or following a

PLIST operation. PLIST (Identify a Parameter List) is a declarative operation that

identifies a list of parameters to be shared between programs. PUST requires an

identifying entry in Factor 1. That entry may be a PUST name if the PUST is within a

calling program, or the reserved word *ENTRY if the PUST is within a called program

and signals the arguments the called program is to receive from the calling program upon

its invocation.

13

Arithmetic Operations in RPG

RPG does not include a wealth of mathematical operations. The four basic

arithmetic operations--add, subtract, multiply, and divide--with a few additional extras,

represent the range ofRPG's mathematical offerings.

ADD Operation

The ADD operation is used to add the value of two numbers and store the result in

a numeric field. Factor I (positions 18-27) and factor2 (positions 33-42) contain the values

to be added. These values may be represented as either numeric fields or numeric literals.

Example:

REGPAY ADD OTPAY TOTPAY 62

SUB Operation

The SUB operation is used to subtract factor2 from factor 1. The result of the

subtraction is stored in the result field. As with addition, factor I and factor2 can be fields

or numeric literals, while the result must be a numeric field.

Example:

GROSS SUB WITfilD NETPAY 62

14

MUL T Operation

The MUL T operation is used to multiply the contents of factor I and factor2 and

store the answer in the result field. Numeric fields and/or literals can serve as multipliers,

while the result must be stored in a numeric field.

Example:

SALES MULT TAXRAT SLSTAX 52

DIV Operation

The DIV(Divide) operation is used to divide factorl by factor2 and the answer is

stored in the result field.

Example:

TOTAMT DIV CNT AVGAMT 62

Assignment Operations

Assignment operations allow the user to assign a value to a variable. RPG has four

assignment operations, two used for numeric fields and two that are used most often with

character fields.

Z-ADD (Zero and Add) Operation

The Z-ADD operation can be interpreted as "zero out the result field and add

factor2 to it." The effect of this operation is to assign the value of factor 2 to the result

15

field. The most common use of this operation is to initialize or reinitialize a counter or

accumulator to zero. Z-ADD operation always involves a factor 2 value and a result field.

Example:

Z-ADD 20 MAX 2 0

Z-SUB (Zero and Subtract) Operation

The Z-SUB works similar to Z-ADD, except that after zeroing out the result field,

it subtracts the value of factor2 from the result field. Because this operation assigns the

negative value of factor2 to the result field, its effect is to reverse the sign of a field.

Example:

Z-SUB 20 MIN 2 0

MOYE(Move) Operation

The primary use of the MOVE operation is to assign a value specified in factor 2 to

a character result field. Factor 1 is not used with MOVE. The MOVE operation transfers

characters from the sending field in factor 2 to the receiving field in the result, character by

character, moving it through the fields from right to left.

Example:

MOVE 'ABCD' EXAMPLE 4

16

MOVEL (Move Left) Operation

The MOVEL operation, which requires a factor2 and a result entry, works like a

MOVE except that data transfer starts with the left-most characters of the sending and

receiving fields and moves data, character by character, from left to right

Example:

MOVEL 'ABCD'EXAMPLE 4

Figurative Constants

RPG includes a special set of reserved words called figurative constants.

Figurative constants are implied literals that can be used without a specified length.

Figurative constants assume the length and decimal positions of the fields they are

associated with. RPG's figurative constants are *BLANK(or *BLANKS), *ZERO(or

*ZEROS), *HIV AL, *LOV AL, *OFF, *ON, and * ALL'X..'.

Moving *BLANK or *BLANKS causes a character field to be filled with blanks.

Moving *HIV AL fills a character field with X'FFF .. '(all bits on) and numeric field with all

9's and a negative sign. Moving *ZERO to a numeric or character field fills the field with

O's. Figurative constants *OFF, *ON represent character '0' and character 'I', respectively.

17

CHAPTERill

FACTOR 5.2 MODELING

Introduction to FACTOR 5.2 Modeling

A computer simulation model is a mathematical and logical representation of the

dynamic characteristics of a physical system. The purpose of FACTOR is to provide a

format for creating and simulating a model of the manufacturing production system.

Ultimately, FACTOR 5.2 will provide detailed schedules of the production system. Before

a final production schedule is accepted, however, FACTOR 5.2 allows for experimentation

with the model. This experimentation might be directed to reach such goals as increased

system productivity, on time completion of orders, and higher resource utilization.

Experimentation with the model can be used to understand the effects of unexpected

events such as resource failures, hot orders, and material shortages. Therefore, FACTOR

5.2 predicts the behavior of the production system.

Modeling Components

A modeling component is a representation of a physical component of the

production system. For example, the order modeling component is a representation of

actual production orders. Technically, a FACTOR component is a type ofrecord in

18

the FACTOR database. To represent a specific production order, a database record is

created which contains information about the order.

The FACTOR 5 .2 Database

AF ACTOR 5 .2 database contains the following elements:

1. Model component data describing one or more FACTOR models.

2. Results of simulating a FACTOR model.

3. Data generated by and used by FACTOR.

4. Input constructs used by F ACTOR's capacity planning programs.

5. Input/output constructs used by FACTOR Output Analysis.

Populating FACTOR Database

FACTOR needs data to run the simulation and produce production schedules.

Supplying data to FACTOR database is commonly referred to as "Populating FACTOR

database." A complete understanding of the FACTOR database definition is required to

successfully populate the FACTOR database. Auxiliary data must also be taken into

account. Auxiliary data is data not provided in the standard FACTOR product but is

added by the user to accurately model the production facility. The standard FACTOR

database definition, coupled with the definition of the auxiliary data, completely defines the

FACTOR database.

19

In our study, most of this data is transferred from MAPICS/DB files. To begin

with, the data required by FACTOR should be identified in MAPICS/DB. Then an

appropriate program should be developed to transfer the data into FACTOR database.

Also, the input data should be mapped to the FACTOR database correctly and any data

that is not available in the MRP system should be provided by the program as required by

FACTOR. For example, the resource action code field on the job step record is to be

entered by the program, because FACTOR does not provide an initial setting for this field,

nor is it available in MAPICS/DB.

Alternative

The term "alternative" highlights the feature of F ACT_OR which allows alternate

views of manufacturing, strategies for order release, and philosophies of scheduling, to be

tested prior to the distribution of actual worklists to the shop floor. In technical terms, an

alternative in FACTOR is a set of input data to a simulation application. The input data

describes the manufacturing operations to be scheduled and, therefore, includes various

modeling components such as orders, parts, process plans, and resources.

FACTOR supports the generation of multiple alternatives. As many as upto 1,000

alternatives are possible in a single database. Throughout this study, "XXX" will be used

to indicate a generic three-digit alternative identifier. Every alternative specifies three sets

of information--controls, input dataset references, and alternative date-time stamps.

Controls direct the FACTOR simulator during the execution of the simulation and include

information such as the simulation window (i.e., the simulation's start and end date), debug

20

trace information, scheduling window, simulation rules, efficiency factor, and output data

collection flags. Input dataset names refer to the datasets which will be used as input

during the simulation run. This input data describes the manufacturing plans, and

resources, to name a few.

Orders

Orders in FACTOR represent the authorization to petform tasks using the

resources of the manufacturing system. Typically, a FACTOR order represents a customer

order or internal shop order for a specific quantity of a particular part. In FACTOR, the

order information is stored in ORDERXXX file. In MAPICS/DB, the order particulars are

stored in MOMAST file. Please refer to XXX represents all the fields in ORDERXXX

file, with their parent fields in MOMAST file. ORDERXXX contains the following fields:

ORDID (Order ID)

Specifies an identifier used for the order. This is an alphanumeric value. The order

ID uniquely identifies each order.

DESCR (Order Description)

Specifies a description of the order. This is an alphanumeric value.

21

PARTID (Part ID)

Specifies the part to be produced. This is an alphanumeric value

PPID (Process Plan ID)

Specifies the processmg plan to use for routing this order through the

manufacturing process

ORDSIZ (Order Size)

Specifies the quantity of the item to be produced. This is an integer number

between zero and 32767. The number of loads that you enter into the simulation for an

order is the order size divided by the initial load size. Remainder parts are placed in a load

based on the excess code.

STATCD (Order Status)

Specifies the initial status of orders. Possible values for this field are:

N(New order). If you enter 'N', the order is new, and production will start on the

release date.

!(In-process order). If you enter 'I', the order is in-process, which means that it is

already on the floor in a partial state of completion. In-process loads will have a

corresponding load status record.

22

U(Unconfirmed order). If you enter 'U for the order status, the order is

unconfirmed. Unconfirmed orders are orders that have been verified and may be ignored if

necessary. There is a field on the alternative record which can be used to ignore

unconfirmed orders.

X(Explicit-release order). If you enter 'X', for the order status, the order will be an

explicit-release order which is used in conjunction with job step (the release job step). A

single explicit-release order can be released several times using this job step.

LDSIZ (Initial Load Size)

Specifies the size of the transfer load or batch. This is an integer number between

zero and 32747. The load size is the quantity of parts that travel together as a single entity

through the production process. If more than one part is in a load, the first part of the load

must wait until the last part of the load has finished the operation before the load can

advance to the subsequent operation. The number of loads that you can enter into the

simulation for an order is the order size divided by the initial load size. Remainder parts are

placed in a load based on the excess code.

PRIO (Order Priority)

Specifies the relative priority of this order. This is an integer number between 0

and 32767. The order priority is used to give higher priority to some orders relative to

others. The order priority can be used to sequence loads in a queue.

23

EXCSCD (Excess Code)

Specifies how to place excess parts in a load. Possible values are:

A(Add parts to the last load). If you specify 'A' for the excess code, then any

remaining parts are placed in the last load of the order.

N(Form a new load with just the excess). If you specify 'N, the remaining parts are

placed in a new load that is the size of the excess

W (Form a new load of the load size). If you specify W, a new load that is the

size of the initial load size is created

SCHDFG (Schedule)

Specifies whether to collect schedule data during simulation for this order.

Possible values are a)Y(Yes), b) N(No)

RELDAT (Release Date)

Specifies the simulation date that the order can be started into production.

REL TIM (Release Time)

Specifies the simulation time that the order can be started into production.

24

DUEDAT (Due Date)

Specifies the simulation date the order is due to be completed.

DUETIM (Due Time)

Specifies the simulation time the order is due to be completed.

The part component specifies the characteristics of the part being manufactured. In

FACTOR, part information is stored in PARTXXX file. The part information is retrieved

from MOMAST file, in MAPICS/DB. The part fields are described in detail below.

value

PARTID

Specifies the part ID for a particular production item. This is an alphanumeric

DESCR

Specifies a description of the part. This is an alphanumeric value

25

FAMILY

Specifies the description of the family of which this part is a member. This is an

alphanumeric value. The part family can be used for the setup time lookup table or to

describe relationships to other parts for setup time

SUBFAMILY

Specifies the description of the subfamily of which this part is a member. This is an

alphanumeric value. The part subfamily can be used for the setup time lookup table or to

describe relationships to other parts for setup time

PROCPLANID

Specifies the process plan to be used to route orders for this particular part. This is

also an alphanumeric value. If defaulted, the process plan ID on the part's order will be

used.

STAR1MATLID

Specifies the ID of the material inventory required for this particular part. This is

an alphanumeric value. This value must be a valid material ID. The starting material ID

can be used to specify the material to remove when a remove-from-material job step

defaults the material ID. No material is removed without an appropriate job step.

26

ENDMATLID

Specifies the ID of the material inventory storage area for this part when

completed. This is an alphanumeric value. This value must be a valid material ID. The

ending material ID can be used to specify the material to add when an add-to-material job

step defaults the material ID. No material is added without an appropriate job step.

PTTABLE

Specifies the ID of a part-based lookup table. This is an alphanumeric value. This

value must be a valid lookup table ID. This lookup table is used when a job step uses step

time rules 2 or 3. The lookup table is organized with the process plan ID as the first index

and the job step ID as the second index.

Process Plans

A process plan specifies the sequence of operations which must be performed on a

part(or a load of parts) in order to produce an end item. In FACTOR, each operation is

defined in terms of one or more job steps. A job step describes an activity or action in the

manufacturing process. A job step might require particular resources, such as machine or

an operator, before the operation can be performed on the part. The process plan

information is stored in file JOB STEPXXX. The values for JOB STEPXXX are retrieved

from file MOROUT in MAPICS/DB. JOB STEP:XXX contains the following fields:

27

PROCPLANID

Specifies the identifier of the process plan to which the job step belongs. This is an

alphanumeric value.

Table 1.

Specifies the type of this job step. Possible codes and descriptions are presented in

Specifies the ID used to identify the job step. This is an alphanumeric value.

Typically this will be based on an operation number. A job step defines a step in the

processing sequence associated with a load of parts.

DESCR

Specifies a description of the job step. This is an alphanumeric value.

NEXTJSID

Specified the ID of the next job step to process after completion of this job step. If

blank, then this job step is the last job step of the process plan. The modeler may define a

job step or a series of job steps which are not referenced as the "next" job step by any other

28

job step. This allows the modeler to predefine alternate job step routings which may then

be used at later executions.

Table 1

Job Step Codes and Descriptions

Type Description

1 Operation

2 Assemble

3 Produce

4. Setup

5 Move

6 Batch

7 Move between

8 Add-to-material

9 Remove-from-material

10 Select

11 Accumulate/Split

12 Change-Load-size

13 Setup/Operation

14 Release

15 Inspect

16-39 User Installable

29

SELECTRL

Specifies the conditions which must be true to execute this job step. This is an

integer number from Oto 39. Possible values are: (a) 0 - Always execute this job step;

(b) 1 - If the first resource listed is available, then execute this job step-the resource

must have a hold or step action code; and (c) 2-39 (User installable).

ALTJSID

Specifies the ID of an alternate job step to consider if the job step selection rule

fails. This is an alphanumeric value. This value must be a valid job step ID. When there is

more than one alternate job step from which to select, the select job step should be used. It

provides additional capability in this regard. If no alternative job step is specified, the load

will always perform the next job step

ALOCRL

Specifies the procedure to use for allocating (as applicable) resources, resource

groups, and pools on this job step. This is an integer number between 0 and 39. Possible

, values are:

1. 0 - Allocate all resources, resource groups, and pools in any order as they

become available.

2. 1 - Allocate all resources, resource groups, and pools in the order specified as

they become available.

30

3. 2 - Allocate all resources, resource groups, and pools all at once when all are

available.

4. 3 - Allocate all resources, resource groups, and pools and materials at once

when all are available. This rule is only applicable to job step types involving materials

namely types 2, 3, 8, and 9.

5. 4 to 39 - User installable.

STEPTMRL

Specifies how the step time is to be used for calculating the total duratiqn of the job

step. This is an integer from Oto 39. Possible values are:

1. 0 - Duration is the step time on the job step.

2. 1 - Duration is the step time on the job step multiplied by the number of parts in

the load.

3. 2 - Duration is from the entry in the part-based lookup table. the table entry is

found by using the process plan ID and job step ID as indices.

4. 3 - Duration is from the entry in the part-based lookup table multiplied by the

number of parts in the load. The table entry is found by using process plan ID and job step

ID as indices.

5. 4 - Duration is from the entry in the setup lookup table. The table entry is found

by using the information in the job step variant to determine the indices. The when-to-

31

setup rule is also used to determine if setup is necessary. This rule may only be used with

job step types 4 and 1-3.

6. 6 - Duration is from the entry in the move-between lookup table. The table

entry is found by using the origin and the destination as indices. This rule may only be used

with job step type 7.

7. 7-39 - User installable.

STEPTTh1E

Specifies the time base to be used in calculating the duration of the job step (in

hours). This is a floating point number greater than or equal to zero.

FREECHCKFG

Specifies whether to check and provide an error if an attempt is made to free a

resource that is not held by the load. Possible values are:

'Y' Yes

'N' No

HOLDTEMPFG

Specifies whether temporary resources are to be held during the off shift overriding

the temporary resource designation in the resource record. Possible values are: (a) 'Y', and

(b) 'N.

32

RESSCHDFG

Specifies whether to collect resource schedule data for this job step during the

simulation run. Possible values are: (a) 'Y', and (b) 'N'.

RESAClN l

Specifies the type of action to take for the resource, resource group, or pool

specified in the ID field (for this action). Possible values are:

I. 'A' Frees held resource after allocation.

2. 'B' Frees held resource before allocation.

3. 'C' Frees held resource at the end of job step.

4. 'H' Allocates and holds resource until freed.

5. 'S' Allocates and frees resource in same job step.

6. Blank No allocation or free occurs.

Actions determine whether a resource, resource group, or pool should be allocated

or freed and when they should be freed. There are two types of allocation actions: step (S)

and hold (H). For the step action, the resource begins and is freed automatically at the end

of the same job step. For the hold action, the resource is allocated before the job step

begins and is held until freed explicitly by a subsequent resource free action in the same or a

subsequent job step. There are three types of free actions: before (B), after (A), and end

(E). Free actions are used to free resources that have been allocated with a hold allocation

action. For the before action, the resource is freed before the allocation of resources. For

33

the after action, the resource is freed at the time at which allocation is complete and the job

step begins processing. For the end action, the resource is freed at the end of the current

step.

RESm.IBR

Specifies the number of units of the resource, resource group, or pool to allocate or

free. For resources this field is always one. This is an integer number greater than or equal

to zero.

RESID

Specifies the identifier of a resource, resource group, or pool to allocate or free.

This is an alphanumeric value. This value must be a valid resource, resource group, or

pool ID.

Setup/Operation Job Step

The setup/operation job step is stored in file JS 13VRXXX. This record represents

the operation process time on the load in addition to the setup time. The setup/operation

job step is included because data from external production systems often represents setup

and processing as a single database record. It will also allow the job step information to be

presented to the shop-floor scheduler in a manner more similar to the MRP operations.

The JS 13 VRXXX file contains the following fields.

34

Specifies the alphanumeric name of the resource or resource group to be set up.

WHENRL

Specifies the when-to-setup rule. Possible values are: (a) 0 - Always setup; (b) 1 -

Setup based on the part/family/subfamily, start, & length fields; (c) 2 - Setup if part or job

step is different; and (d) 3 to 39 - User installable.

BASEDCD

Specifies how to setup. Possible values are: (a) 'F' - Setup is based on a change in

part family, (b) 'P' - Setup is based on a change in part ID, and (c) 'S' - Setup is based on a

change in subfamily.

START

Specifies the starting character of the part ID for the part-based comparison. This

is an integer number from 1 to 40.

LENGTH

Specifies the number of characters to compare. This is an integer number from 1

to 40.

35

TABLEID

Specifies the ID of the lookup table to use. This is an alphanumeric value. This

value must be a valid lookup table ID. The lookup table may be defined to describe the

setup time relationship between part types, part families, or part subfamilies.

RSETUPID

Specifies the alphanumeric name of the resource group, or pool required for setup.

Allocation is performed only if setup is required. For example, if an operator is needed to

perform the setup, the resource, resource group, or pool for the operator is specified.

STEPTMRL

Specifies a numeric code for interpreting the step time.

STEPTIME

Specifies a numeric value indicating the time base value required to set up the

resource for the job step.

Resource Groups

The resource group feature allows resources which can perform the same function

to be classified as a group without having the member resources lose their individual

identity. A resource group is used in cases where a load on a job step needs a resource

36

from a group of resources, but it does not need a specific resource in the group. The

resource group information is stored in file RESGRPOOO. RESGRPOOO contains the

following fields:

RESID

Specifies the ID used to identify the resource. This is an alphanumeric value.

RESTYPE

Specifies the type of the resource. This is used to categorize resources for output

reporting purposes. This is an alphanumeric value.

DESCR

Specifies a description of the resource. This is an alphanumeric value.

SELRL

Specifies the procedure for selecting from the waiting queue. This is an integer

number from O to 39. Possible values are:

1. 0 - No selection rule, use sequencing rule.

2.1 - Use the sequencing rule dynamically; re-sequence the queue using sequencing

rule before each selection.

3. 2 - Select the request with minimum setup on remaining job steps.

37

4. 3 - Select the request from the same order. If no more requests from the order

are in the queue, re-sequence using sequencing rule.

5. 4 to 10 - User installable; used by AIM.

6 11 - Select request with highest load priority. If tied, select request with

minimum critical dynamic slack--dynarnic slack is critical if it is less than the threshold on

the alternative. If tied, select based on minimum downstream setup.

7. 12 - User installable.

MUSTCOMPFG

Specifies whether the job step must complete prior to the end of the current shift

interval. Possible values are Y(yes) and N(no). If yes is chosen and job step will not end

prior to the end of the current shift interval, then it will not be started.

SEORL

Specifies the sequencing rule by which this resource's request queue is ranked.

This is an integer number from Oto 39. Possible values are: (a) 1 - FIFO (First to arrive at

the job step), (b) 2 - LIFO (Last to arrive at the job step), (c) 3 - High to low load priority,

(d) 4 - Low to high load priority, (e) 5 - Earliest order due date, (t) 6 - Earliest order

release date, (g) 7 - Shortest time for the current job step, (h) 8 - Longest time for the

current job step, (i) 9 - Longest time for any subsequent job step, G) 10 - Least number of

remaining job steps, (k) 11 - Lease estimated remaining processing time, (1) 12 - Least

static slack (remaining time to due date), (m) 13 - Least average static slack over remaining

38

job steps, (n) 14 - Least average static slack over remaining processing time, (o) 15 - Least

dynamic slack (remaining time to due date less the remaining processing time), (p) 16 -

Least average dynamic slack over remaining job steps, (q) 17 - Least average dynamic

slack over remaining processing time, (r) 18 to 22 - User installable; used by AIM, (s) 23 -

Due date - remaining processing time, and (t) 24 to 39 - User installable description.

A sequencing rule of 'O' means the global sequencing rule specified on the

alternative record will be used.

MAXORUN

Specifies the maximum overrun (in hours) allowed for the resource, past the end of

the current shift interval. This is a floating point number greater than zero.

ALLOCCD

Specified the allocation type of the resource. Possible values are: a)

'P'(Permanent) and b) 'T' (Temporary). If a load is holding a permanent resource that

goes off shift, the load will be the first one to reallocate it when the resource is on shift

agam.

SFTID

Specifies one or more shift schedules to use for the resource. This is an

alphanumeric value. Each value must be a valid shift ID. If no shift schedules are

specified, the resource is assumed to be available for production at all times.

39

SUMFG

Specifies whether to collect resource summary data during the simulation for this

resource. Possible values are: (a) Y(yes), and (b) N(no). Resource summary data includes

information such as capacity statistics, load statistics, time in states, queue length statistics,

time in queue statistics, etc.

SCHEDFG

Specifies whether to collect resource schedule data during the simulation for this

resource. The possible values are Y(yes) and N(no). Resource schedule data includes

information on each load that allocates and frees a resource, the date and time of the

allocate and free, the job step in which the allocate or free occurred, etc.

FINALOFG

Specifies whether to collect data on the contents of this resource's queue at the end

of simulation. Possible values are Y(yes) and N(no). Resource queue data includes

information on each load that is in the queue.

LOADFG

Specifies whether to collect data on the loading of this resource during the

simulation. Possible values are Y(yes) and N(no). Resource load data includes

40

information such as the standard hours, planned hours, load hours, backlog, time in

different states, etc.

41

CHAPTER IV

MAPICS/DB & FACTOR 5.2 INTERFACE DESIGN

The Scheduler's Daily Use of FACTOR

The scheduler in a manufacturing industry is charged with the regular use of Factor

5 .2 for the generation of production schedules. The integration of MAPICS/DB and

Factor 5.2 would enable the scheduler to use simulation on an event-driven basis to analyze

the impact of unforeseen circumstances on the shop floor, and to assess the effectiveness of

strategies formulated in reaction to these circumstances.

The event-driven nature of this integrated package required developing options in

the form of a menu. Thre� menu choices were generated based on the factor which limits

the transfer of records from MAPICS/DB to FACTOR The limiting factor may be an

order number or a resource.

Structure of the Integrated Package

The main menu of the package consists of the following six items: (a) 1 -

Transfer a single manufacturing order, (b) 2 - Transfer a work center, (c) 3 - Transfer

the jobshop, (d) 4 - Use MAPICS/DB, (e) 5 - Use FACTOR 5.2, and (f) 90 - Sign

Off.

42

This menu is compiled in AS/400 using "Screen Design Aid" (SDA). The source

code for this menu is stored in a physical file named LRNMNUSRC. The actual menu is

named TRANSFER and is placed in TRANSFER library. The menu is called using

com.q1and "GO TRANSFER".

Transfer Based on a Single Manufacturing Order

Menu item (1) is used if the user is interested in the performance of a particular

manufacturing order. A flow chart for this procedure is illustrated in Figure 1. Selecting

this option activates a command named NEWFINTORD. NEWFINTORD is a CL

command. The source code for this command is saved in member NEWFINTORD in the

physical file named RCMDSRC.

NEWFINTORD Procedure

CMD
PARM

PARM

PROMPT('TRANSFER BASED ON MFG.ORDERS')
KWD(ALTNO) TYPE(*CHAR) LEN(3) RANGE(000 999) MIN(l)

FULL(*YES) PROMPT(Alternative number)

KWD(ORDNO) TYPE(*CHAR) LEN(7) MON(7) FULL(*YES)

PROMPT('MFG. ORDER NO')

The NEWFINTORD command is connected to a CL program named

NEWINTORD. The purpose of the command is to collect the altem number and the

manufacturing order number and pass them to the program.

43

User selects option 1 from
the main menu

User enters Altem
number & Order number

The Altem and Order
numbers are passed to CL

program NEWINTORD

NEWINTORD creates
shift information in

SHIFTXXX

NEWINTORD passes
Altem & order numbers

to NEWFERORD

The order info is
transferred to
ORDERXXX

The routing information
is transferred to
JOBSTEPXXX

Figure 1. Flow Chart for Order Based Transfer.

44

Figure 1.- Continued

The work center
information is transferred

to RESRCXXX and
RESGRPXXX

The routing information
for all the other orders is

transferred to
JOBSTEPXXX

The order information is
tmasferred to
ORDERXXX

The start and end dates
for these orders are

initialized

The item information for
all the orders is

transferred to PARTXXX

45

No

NEWINTORD Procedure

First, the altern number and the manufacturing order number are placed into

variables &CHAL T, and &ORDER

Then the variables are declared.

DCL VAR(&CHALT) TYPE(*CHAR) LEN(3)
DCL V AR(&ORDER) TYPE(*CHAR) LEN(7)
DCL V AR(&OFILE) TYPE(*CHAR) LEN(lO)
DCL V AR(&MSG) TYPE(*CHAR) LEN(72)

The following CL statements monitor for message IDs and routes the program to

the appropriate location.

DCL V AR(&CHALT) TYPE(*CHAR) LEN(3)
DCL V AR(&ORDER) TYPE(*CHAR) LEN(7)
DCL V AR(&OFILE) TYPE(*CHAR) LEN(lO)

DCL V AR(&MSG) TYPE(*CHAR) LEN(72)

The shifts for a particular alternative in FACTOR are created, by copying the shift

information from DFTSHIFT file to SHIFTXXX file where 'XXX' denotes altern number.

The following CL statement sends the word "SHIFT" and the altern number, "XXX" to a

program which pastes "SHIFT" and "XXX", and sends it back to our program as variable

&OFILE.

CALL PGM(GTFLNM) P ARM(SHIFT &CHAL T &OFILE)
CPYF FROMFILE(F52MFINT/DFTSHIFT) TOFILE(*LIBL/&OFILE)
MBROPT(*REPLACE)

This procedure is repeated for all FACTOR files as shown below.

CALL

OVRDBF

CALL

PGM(GTFLNM) P ARM(JOBSTEP &CHAL T &OFILE)

FILE(JOBSTEP000) TO FILE(&OFILE)

PGM(GTFLNM) PARM(JS13VR &CHALT &OFILE)

46

OVRDBF

CALL
OVRDBF

CALL

OVRDBF

FILE(JS13VR000) TOFILE(&OFILE)

PGM(GTFLNM) P ARM(ORDER &CHAL T &OFILE)
FILE(ORDER000) TOFILE(&OFILE)

PGM(GTFLNM) PARM(PART &CHALT &OFILE)
FILE(PART000) TOFILE(&OFILE)

The "Ovenide with Data Base File (OVRDBF)'' command is used to ovenide a

generic file with the appropriate &OFILE whenever the generic file is used. For example

JOBSTEP000 is a generic name given to the job step file in the program, and it will be

ovenidden by JOBSTEPXXX file whenever JOBSTEP000 is used in the program.

The next step is to transfer the variables to the main RPG/SQL program named

NEWFERORD.

CALL
PARM

PGM(TRANSFER/NEWFERORD)
(&CHALT &ORDER)

The program NEWFERORD is the main program that transfers the data from

MAPCIS/DB files to FACTOR 5.2 files. The source code for this program is saved in

member TEMFERORD in file RINTSRC.

NEWFERORD Procedure

NEWFERORD is a file member which contains RPG code with embedded SQL

statements. The SQL statements perform the actual data retrieval and insertion, whereas

the RPG statements are used to tailor MAPICS/DB data to suit FACTOR 5 .2 file

structure.

47

The program begins with declaring three data structures for program variables.

These data structures are named DBFLDS, RESORS, and RESRC. Then the parameters

passed to this program (&CHALT, and &ORDER) are saved in program variables ALT,

and ORDR.

*ENTRY PLIST

PARM ALT 3
PARMORDR 7

All of the FACTOR 5.2 database files are emptied of any previous data before the

actual transfer. This is accomplished using the following SQL statements.

DELETE
DELETE
DELETE
DELETE
DELETE
DELETE

FROM
FROM

FROM

FROM

FROM

FROM

ORDER000

PART000
JS13VR000
JOBSTEP000
RESRC000
RESGRP000

A cursor is then declared for retrieving Order information.

DECLARE ORDCUR CURSOR FOR

The following fields are selected from file MOMAST (Manufacturing Order

Master File).

SELECT ORDNO, JOBNO, FITEM, ORQTY, SSTDT, ODUDT

A conditional statement is used to retrieve only the information pertaining to the

Manufacturing Order of our interest.

WHERE MOMAST.ORDNO = :ORDR

The following fields in file ORDER 000 are then initialized to appropriate values.

MOVE
MOVE

'A'

'0000'
EXCSCD
RELTIM

1

4

48

MOVE '2359' DUETIM

MOVE 'N' STATCD 1

MOVE 'Y' SCHDFG 1

Z-ADD *ZERO PRIO 50

The order cursor is then opened.

OPENORDCUR

The values in the ORDCUR are fetched into program variables.

FETCH ORDCURINTO :ORDID, :PARTID, :ORDSIZ, :RELDAT, :DUEDAT

The order size is rounded.

ADD 0.5 ORDSIZ
Z-ADD ORDSIZ RORDSIZ 60

The dates are moved to character strings.

MOVE RELDAT CRLDAT 6
MOVE DUEDAT CDUDAT 6

The values are then inserted into ORDER000 file.

INSERT INTO ORDER000
(ORDERID, DESCR, P ARTID, PROCPLANID, ORDSIZE, LOADSIZE, EXCESSCD,
RELDATE, RELTIME, DUEDATE, DUETIME, STATUSCD, PRIORITY,

SCHEDFG)
VALUES
(:ORDID, :ODESCR, :PARTID, :ORDID, :RORDSZ, :RORDSZ, :EXCSCD,
:CRLDAT, :RELTIM, :CDUEDT, :DUETIM, :STATCD, :PRIO, :SCHDFG)

Updating AL TERN table

The AL TERN table contains information about different alternatives that exist in

the database. The simulating start date, start time, end date and end time are initiated to

CRLDAT, RELTIM ('0000'), CDUEDT and DUETIM ('2359'). This will limit the

simulation period to the processing period of the order of our interest.

49

UPDATE ALTERN
SET STARIDATE = :CRLDAT, STARTTIME = '0000', ENDDATE = :CDUEDT,
ENDTIME = '2359'
WHERE ALTNO = :ALTNUM

_ Retrieving Process Plan Information

A cursor is declared to retrieve process plan information.

DECLARE PPCUR CURSORFOR

The following fields are selected from files MOROUT, MOMAST, ORDER000,

and ITEMASA.

SELECT

FROM

MOROUT.ORDNO, OPSEQ, WK.CTR, SRMHU, SSLHU, SETCS,
CYCOP, SRLHU, TQCID, TBCDE, PLCDE, ITEMASA.CUMSY,
ORDER000. ORDSIZE
MOROUT, MOMAST, ORDER000, ITEMASA

A conditional statement is used to retrieve only the job step information pertaining

to the manufacturing order of our interest.

WHERE MOROUT.ORDNO = ORDER000.ORDERID and
ORDER00O.ORDERID = MOMAST.ORDERNO and
MOMAST.FITEM = ITEMASA.ITNBR and
MOROUT.OPSEQ >= MOMAST.OPCUR

The information is retrieved in the order ofORDNO, and OPSEQ.

ORDER BY ORDNO, OPSEQ

The following fields in files JOBSTEP000 and JS13VR000are then initialized to

appropriate values

Z-ADD 13 TYPE 20
Z-ADD *ZERO SELRL 20
MOVE *BLANKS ALTJS
Z-ADD 2 ALOCRL 20

50

Z-ADD 1 STEPRL 20

MOVE 'Y' FREECK 1

MOVE 'N' HOLD1M 1

MOVE 'Y' RESCHD 1

MOVE 'S' RACTl 1

Z-ADD 1 RNBRl 40

MOVE *BLANK ACTN 1

Z-ADD *ZERO NMBR 40

MOVE *BLANKS RESID 8

Z-ADD 1 WHENRL 20

MOVE 'P' BASECD 1

Z-ADD 1 START 20

Z-ADD 40 LENGTH 20

MOVE *BLANKS TABID 8

MOVE *BLANKS RSETUP 8

Z-ADD 5 STRL13 20

The process plan cursor is then opened.

OPEN PPCUR

The values in the PPCUR are fetched into program variables.

FETCH PPCURINTO :PROCPN, :JSID, :PPDESC, :SRMHU, :SSLHU,

SETCS, :CYCOP, :SRLHU, :TQCTD, :TBCDE, :PLCDE, :CUMSY, :ORDSIZ

A DO loop is defined for processing all records until the end-of-file (EOF)

condition reaches.

SQLCOD DOWEQ*ZERO

The following SQL statements are used to determine the next job step.

SELECT MIN(OPSEQ)
INTO :NEXTJS
FROMMOROUT

WHERE ORDNO = :PROCPN AND OPSEQ > :JSID

SQLCOD IFEQ * ZERO
MOVE *BLANKS NEXTJS

ENDIF

51

The expected operation quantity is calculated based on the Cumulative Yield of the

part (CUMSY).

CUMSY IFEQ *ZERO
Z-ADD *ZERO EOP

ELSE

CYCOP DIV CUMSY XI

MULT ORDSIZ EOP
ENDIF

The setup labor time is calculated based on setup crew size(SETCS) and setup

labor hours(SSLHU).

SETCS

Z-ADD

ELSE
SSLHU
ADD
Z-ADD

ENDIF

IFEQ

*ZERO

DIV
.0005
XI

*ZERO

SETUTM

SETCSXI
XI
SETUTM

The run labor hours(RUNL TU) and run machine hours(MACIITU) are calculated

based on time basis code (TBCDE).

SELEC

When time basis code is 'blank' (hours/unit), run labor time (RUNTLU) and

machine(MACHfU) time are calculated as follows:

TBCDE WHEQ *BLANK
EOP MULT SRLHU XI
ADD 0005
Z-ADD XI

Xl
RUNTLU

EOP MULT SRMHU XI
ADD .0005
Z-ADD XI

XI
MACHTU

52

When time basis code is 'l'(hours/10 units), run labor time (RUNTLU) and

machine time(MACHTU) are calculated as follows:

TBCDE

EOP

Xl

ADD

Z-ADD

Xl

ADD

Z-ADD

MULT

WHEQ

DIV

MULT

.0005

X2

.0005

X2

'l'

10

SRLHU

X2

RUNTLU

SRMHU X2

X2

MACHTU

Xl

X2

When time basis code is '2'(hours/100 units), run labor time (RUNTLU) and

machine time(MACHTU) are calculated as follows:

TBCDE WHEQ '2'

EOP DIV 100 Xl

Xl MULT SRLHU X2

ADD .0005 X2

Z-ADD X2 RUNTLU

Xl MULT SRMHU X2

ADD .0005 X2

Z-ADD X2 MACHTU

When time basis code is '3'(hours/1000 units), run labor time (RUNTLU) and

machine time(MACHTU) are calculated as follows:

TBCDE WHEQ

EOP DIV

Xl MULT

ADD .0005

Z-ADD X2

Xl MULT

ADD .0005

Z-ADD X2

'3'

1000

SRLHU

X2

RUNTLU

SRMHU

X2

MACHTU

Xl

X2

X2

53

When time basis code is '4'(hours/10000 units), run labor time (RUNTLU) and

machine time(MACHTU) are calculated as follows:

TBCDE WHEQ

EOP DIV
XI MULT

ADD .0005

Z-ADD X2

XI MULT

ADD .0005
Z-ADD X2

'4'
10000

SRLHU

X2

RUNTLU

SRMHU
X2

MACHTU

XI

X2

X2

When time basis code is 'P'(pcs/hr), run labor time (RUNTLU) and machine

time(MACHTU) are calculated as follows:

TBCDE WHEQ 'P'

SRLHU IFEQ *ZERO

Z-ADD *ZERO RUNLTU

ELSE

EOP DIV SRLHU XI

ADD .0005 XI

Z-ADD XI RUNLTU
ENDIF

SRMHU IFEQ *ZERO
Z-ADD *ZERO MACHTU

ELSE

EOP DIV SRMHU XI

ADD .0005 XI

Z-ADD XI MACHTU
ENDIF

When time basis code is 'H(hrs/lot), run labor time (RUNTLU) and machine

time(MACHTU) are calculated as follows:

EOP IFEQ *ZERO

Z-ADD *ZERO RUNTLU

Z-ADD *ZERO MACHTU

54

ELSE

EOP SUB

DIV EOP

XI MULT
ADD .0005

Z-ADD X2

XI MULT
ADD .0005
Z-ADD X2
ENDIF

TQCTD
XI

SRLHU

X2

RUNLTU

SRMHU

X2
MACITTU

XI

X2

X2

When time basis code is 'C'(cost/pc), run labor time (RUNTLU) and machine

time(MACITTU) are calculated as follows:

EOP

ADD
Z-ADD
Z-ADD

MULT
.0005
XI

SRMHU

SRLHU XI

XI

RUNLTU

MACITTU

When time basis code is 'M(min/pc), run labor time (RUNTLU) and machine

time(MACHfU) are calculated as follows:

SETUTM DIV 60
ADD .0005 XI

Z-ADD XI SETUTM

EOP DIV 60

XI MULT SRLHU

ADD .0005 X2
Z-ADD X2 RUNLTU

XI MULT SRMHU

ADD .0005 X2
Z-ADD X2 MACITTU

ENDSL

XI

Xl

X2

X2

55

The step time(STEPTM) is calculated based on prime load code(PLCDE). When

prime load code(PLCDE) is '0'(no load hours are accumulated), the step time is calculated

as follows:

PLCDE

Z-ADD

Z-ADD

WHEQ
*ZERO

*ZERO

'O'

STEP1M

ST1M13

When prime load code(PLCDE) is 'l'(use run machine hours), the step time is

calculated as follows:

PLCDE

Z-ADD

WHEQ'l'
MACHTU STEP1M

When prime load code(PLCDE) is '2'(use setup time), the step time is calculated as

follows:

PLCDE

Z-ADD

Z-ADD

WHEQ'2'
SETUTM

SETUTM

STEP1M

ST1M13

When prime load code(PLCDE) is '3'(use setup time+ run machine hours), the

step time is calculated as follows:

PLCDE

SETUTM
ADD

Z-ADD

Z-ADD

WHEQ
ADD

.0005
X2

SETUTM

'3'
MACHTU X2

X2

STEP1M
ST1M13

When prime load code(PLCDE) is '4'(use setup time+ run machine hours), the

step time is calculated as follows:

PLCDE

Z-ADD

Z-ADD

WHEQ
RUNTLU

*ZERO

'4'

STEP1M

ST1Ml3

56

When prime load code(PLCDE) is '5'(use setup time+ run labor hours), the step

time is calculated as follows:

PLCDE

SETUTM

ADD

Z-ADD

Z-ADD
ENDSL

WHEQ

ADD
.0005

X2

SETUTM

'5'

RUNTLU
X2

STEPTM
STTM13

X2

The values are then inserted into JOBSTEP000 and JS 13VR000 tables.

INSERT INTO JOBSTEP000

(PROCPLANID, TYPE, JSID, DESCR, NEXTJSID, SELECTRL, ALTJSID, ALOCRL,

STEPTMRL, STEPTIME, FREECHCKFG, HOLDTEMPFG, RESSCHDFG,

RESACTNI, RESNMBRl, RESIDl, RESACTN2, RESNMBR2, RESID2,

RESACTN3, RESNMBR3, RESID3, RESACTN4, RESNMBR4, RESID4,
RESACTN5, RESNMBRS, RESID5, RESACTN6, RESNMBR6, RESID6)

VALUES

(:PROCPN, :TYPE, :JSID, :PPDESC, :NEXTJS, :SELRL, :ALTJS, :ALOCRL,

:STEPRL, :STEPTM, :FREECK, :HOLDTM, :RESCHD, :RACTI, :RNBRl, :RESIDI,

:ACTN, :NMBR, :RESID, :ACTN, :NMBR, :RESID, ACTN, :NMBR, :RESID, :ACTN,

:NMBR, :RESID, :ACTN, :NMBR, :RESID)

The next process plan record is then fetched into program variables before the

program loops.

FETCH PPCURINTO:PROCPN, :JSID, :PPDESC, :SRMHU, :SSLHU, :SETCS,

:CYCOP, :SRLHU, :TQCTD, :TBCDE, :PLCDE, :CUMSY, :ORDSIZ

The END DO statement transfers control to the beginning of the loop again. The

program runs until all there are no further records in MOROUT file that satisfy the

conditions.

57

Retrieving Resource Information

The work center information from MAPICS is transferred into the FACTOR

resource tables (RESRCXXX and RESGRPXXX) for a particular alternative. A set of

FACTOR Resources are created for each production facility in the WRKCTR file. These

Resources are members of the Resource Group.

The number of Resources created corresponds to the maximum shift capacity of

the MAPICS/DB production facility. Resources are assigned to one or more Shift patterns

which designate the days of the week and the hours during the day which they are

scheduled to be available for production. Enough FACTOR resources to represent the

maximum capacity on any shift are generated and placed in the group.

A cursor is declared to retrieve resources information.

DECLARE RGCUR CURSOR FOR

The following fields are selected from WRKCTR file.

SELECT DISTINCT
FROM
WHERE

WKCTR, WCDSC, DCAPI, DCAP2, DCAP3
WRKCTR, JOBSTEP000
WRKCTR.WKCTR = JOBSTEP000.RESIDI

The WHERE statement limits the information to the Manufacturing Order of our

interest.

The following fields are then initialized to appropriate values.

Variable REALOC is initiated to 'N.

The cursor RGCUR, is opened.

OPENRGCUR

58

The values in the RGCUR are fetched into program variables.

FETCHRGCUR INTO :RGID, :DESCR, :DCAPI, :DCAP2, :DCAP3

A DO loop is defined for processing all records until the end-of-file (EOF)

condition reaches.

SQLCOD DOWEQ *ZERO

The three shifts are named.

MOVEL
MOVEL
MOVEL

'FIRST'
'SECOND'
'THIRD'

SHIFTl
SHIFT2
SHIFT3

8
8
8

The other variables are initiated to appropriate values.

MOVEL
MOVE
Z-ADD
Z-ADD
Z-ADD

DESCR
*BLANKS
*ZERO
1
1

RDESCR
RESRC
SEQNUM
IDNUM
CURCAP

Maximum capacity is determined by comparing all shift capacities and selecting the

maximum of all.

ADD
Z-ADD
ADD
DCAP2
Z-ADD
ENDIF

ADD
DCAP3
Z-ADD
ENDIF

0.5
CAPl
.5

IFGR
DCAP2

0.5
IFGT
CAP3

DCAPl
MAXCAP
DCAP2

MAXCAP
MAXCAP

DCAP3
MAXCAP
MAXCAP

A DO loop is defined to limit transactions to maximum capacity "MAX CAP".

CURCAP DOWEQ MAXCAP

59

Another DO loop is defined to limit resources to 20.

IDNUM
CURCAP

DOWEQ
ANDLE

20
MAXCAP

The resource is generated by concatinating variables RGID and ID.

MOVE
RGID

CURCAP
CAT

ID
ID:0 RESID p

The shift ids are entered for each resource generated. The logic behind assigning

shift ids is based on the shift capacity of the resources, DCAP 1, DCAP2, and DCAP3.

Every time the program loops, the value of the CURCAP counter is compared to the shift

capacities. The program inserts blanks if the shift capacity is less than CUR CAP value.

DCAPI
MOVE
ENDIF

DCAP2

MOVE

ENDIF

DCAP3
MOVE
ENDIF

IFLT CURCAP
*BLANKS SHIFT!

IFLT CURCAP
*BLANKS SHIFT2

IFLT CURCAP
*BLANKS SHIFT3

The values are then inserted into file RESRCO00.

INSERT INTO RESRC000

(RESID, RESTYPE, DESCR, SHIFTIDI, SHIFTID2, SHIFTID3,
SHIFTID4, SELRL, SEQRL, ALLOCCD, MUSTCOMPFG, MAXORUN, SUMFG,
SCHEDFG, FINALFG, LOADFG)
VALUES

(:RESID, :RESTYP, :RDESCR, :SHIFT!, :SHIFT2, :SHIFT3, :SHIFT4, :SELRL,

:SEQRL, :ALLOCCD, :MSTCMP, :MAXOVR, :RSUMFG, :RSCDFG, :FINQFG,
:RLODFG)

60

61

The generated resource id is then put into the appropriate RESID variable for the

group.

SELEC
IDNUM WHEQ 1
MOVE RESID RESl
IDNUM WHEQ 2
MOVE RESID RES2
IDNUM WHEQ 3
MOVE RESID RES3
IDNUM WHEQ 4
MOVE RESID RES4
IDNUM WHEQ 5
MOVE RESID RESS
IDNUM WHEQ 6
MOVE RESID RES6
IDNUM WHEQ 7
MOVE RESID RES7
IDNUM WHEQ 8
MOVE RESID RES8
IDNUM WHEQ 9
MOVE RESID RES9
IDNUM WHEQ 10
MOVE RESID RESl0
IDNUM WHEQ 11
MOVE RESID RESll
IDNUM WHEQ 12
MOVE RESID RES12
IDNUM WHEQ 13
MOVE RESID RES13
IDNUM WHEQ 14
MOVE RESID RES14
IDNUM WHEQ 15
MOVE RESID RES15
IDNUM WHEQ 16
MOVE RESID RES16
IDNUM WHEQ 17
MOVE RESID RES17
IDNUM WHEQ 18
MOVE RESID RES18
IDNUM WHEQ 19
MOVE RESID RES19

IDNUM
MOVE

WHEQ

RESID
20
RES20

The values ofIDNUM, and CURCAP are incremented by 1 before the loop ends.

ADD I
ADD 1

ENDDO

IDNUM
CURCAP

The loop continues until either 20 resources are generated or the current capacity

(CURCAP) becomes more than maximum capacity (MAXCAP). Another IF statement is

added before the values are entered into resource group table (RESGRP000).

CURCAP IFLE MAXCAP

INSERT INTO RESGRPOOO
(RGID, DESCR, REALLOCFG, ALLOCRL, SUMFG, LOADFG,

SCHEDFG, SEQNUM, RESIDl, RESID2, RESID3, RESID4, RESIDS, RESID6,
RESID7, RESID8, RESID9, RESIDl0, RESIDll, RESID12, RESID13, RESID14,
RESID15,RESID16,RESID17,RESID18,RESID19,RESID20)

VALUES

(:RGID, :RDESCR, :REALOC, :ALLOCRL, :SUMFG, :LOADFG,

:SCHDFG, :SEQNUM, :RESI, :RES2, :RES3, :RES4, :RESS, :RES6, :RES?, :RES8,

:RES9, :RESlO, :RESll, :RES12, :RES13, :RES14, :RESIS, :RES16, :RES17, :RES18,
:RES19, :RES20)

The values of SEQNUM, and IDNUM are incremented before the the program

loops for second time.

ADD
Z-ADD
MOVE
ENDIF
ENDDO

I SEQNUM

I IDNUM

*BLANKS RESRC

Another record is fetched from RGCUR into variables before the program loops.

FETCH

ENDDO

RGCUR INTO :RGID, :DESCR, :DCAPI, :DCAP2,
:DCAP3

62

The cursor is then closed.

CLOSE RGCUR

Job Step Retrieval for Other Orders That Use the Transferred Resources

So far, we have transferred order infonnation, job step information and resource

infonnation that pertain to one single· order of our interest. FACTOR database is not

complete with this data. For the simulation to be effective and efficient, we have to transfer

other jobs that go into the resources transferred during the simulation period.

Transferring the information about other jobs demands us to transfer order

information, job step information and part information about the other jobs also. If we go

this way, the loop will never end, and we will end up transferring all jobs from

MAPICS/DB. To avoid this, only those job steps, which go through the transferred

resources are transferred to FACTOR This is accomplished by the following SQL

statements.

First, a cursor for job step retrieval is declared.

DECLARE RPCUR CURSOR FOR

Then the job steps that belong to any other jobs that go through the transferred

resources are selected.

SELECT MOROUT.ORDNO, OPSEQ, WK.CTR, SRMHU, SSLHU, SETCS,
CYCOP, SRLHU, TQCTD, TBCDE, PLCDE, ITEMASA.CUMSY,
MOMAST.ORQTY

FROM

WHERE

MOROUT, MOMAST, ORDER000, ITEMASA, RESGRP000

MOROUT.WKCTR = RESGRPOOO.RGID AND

63

MOROUT.ORDNO <>

MOROUT.ORDNO =

MOMAST.FITEM =

MOROUT.SCODT >
MOROUT.SSTDT <

ORDER BY ORDNO

ORDER000.ORDERID AND
MOMAST.ORDNO AND
ITEMASA.ITNBR AND
:RELDAT AND

:DUEDAT

After the job steps are transferred, the next step is to complete the FACTOR

database by providing information about orders and parts. A cursor is declared to retrieve

order information.

DECLARE OR2CUR CURSOR FOR

The following fields are selected from files MOMAST, MOROUT, ORDER000,

and JOBSTEP000:

SELECT MOMAST.ORDNO, MOMAST.JOBNO,

MOMAST.ORQTY,
MOROUT.SSTDT, MOROUT.SCODT
FROM MOMAST, MOROUT, JOBSTEP000, ORDER000

WHERE MOMAST.ACREC = 'A' AND

MOMAST.FITEM,

JOBSTEP000.PROCPLANID =

MOROUT.ORDNO =

JOBSTEP000.PROCPLANID <>

MOROUT.ORDNO AND
MOMAST.ORDNO AND
ORDER000. ORD ID

The WHERE statement limits the selected orders to those whose job steps were

transferred. It also limits the transfer to only active orders and only those that were not

transferred in the first place.

The order cursor, OR2CUR is then opened.

OPEN OR2CUR

The values in OR2CUR are fetched into program variables.

FETCH OR2CUR
:RELDAT, :DUEDAT

INTO :ORDID, :ODESCR, :PARTID, :ORDSIZ,

64

A DO loop is defined for processing all records until the end-of-file (EOF)

condition reaches.

SQLCOD DOWEQ *ZERO

The order size is rounded.

MOVE
Z-ADD

0.5

ORDSIZ

ORDSIZ
RORDSIZ 60

The dates are moved to character strings.

MOVE

MOVE

RELDAT
DUEDAT

CRLDAT
CDUDAT

6

6

The values are then inserted into file ORDER000.

INSERT INTO ORDER000
(ORDERID, DESCR, P ARTID, PROCPLANID, ORDSIZE, LOADSIZE, EXCESSCD,
RELDATE, RELTIME, DUEDATE, DUETIME, STATUSCD, PRIORITY,

SCHEDFG)

VALUES

(:ORDID, :ODESCR, :PARTID, :ORDID, :RORDSZ, RORDSZ, :EXCSCD, :CRLDAT,

:RELTIM, :CDUDAT, :DUETIM, :STATCD, :PRIO, :SCHDFG)

The release date(RELDATE) and the due date(DUEDATE) are equated to the

release and due date of the particular job step. This measure is taken to avoid unnecessary

looping in the program.

The the next order record is fetched, before the program loops.

FETCH OR2CUR INTO
:RELDAT,:DUEDAT

:ORDID, :ODESCR, :PARTID, :ORDSIZ,

65

Part Transfer

The final step is transferring part information from MAPICS/DB to FACTOR A

cursor is declared to retrieve the part information.

DECLARE PARTCUR CURSOR FOR

The following fields are selected from files MOMA.ST, and ORDER000.

SELECT
FROM
WHERE

DISTINCT FITEM, FDESC
MOMA.ST, ORDER000
MOMAST.FITEM = ORDER000.PARTID

The WHERE statement limits the part records to only those records which belong

to the transferred orders.

The following auxiliary data is defaulted to appropriate values:

MOVE *BLANKS FAMILY 20

MOVE *BLANKS SUBFAM 20

MOVE *BLANKS PPID 20

MOVE *BLANKS STMATL 20

MOVE *BLANKS ENMATL 20

MOVE *BLANKS PTTAB 8

The P ARTCUR is then opened.

OPEN P ARTCUR

The values in the PAR TCUR are fetched into program variables.

FETCH P ARTCUR INTO :P ARTID, :PESCR

A DO loop is defined for processing all records until the end-of-file(EOF)

condition reaches.

SQLCOD DOWEQ *ZERO

66

The values are inserted into PART000 file.

INSERT INTO PART000
(PARTID, DESCR, FAMILY, SUBFAMILY, PROCPLANID, STRTMATLID,
ENDMATLID, PTT ABLE)
VALUES
(:PARTID, :PDESCR, :FAMILY, :SUBFAM, :PPID, :STMATL, :ENMATL, :PTTAB)

The next part record is fetched before the program loops.

FETCH

ENDDO

P ARTCUR INTO :P ARTID, :PDESCR

The part cursor is closed.

CLOSE P ARTCUR
DONE TAG
SETON LR

At this point, the control is transferred back to the program NEWINTORD. If the

program runs without any problems, the message "Transfer completed normally" is sent to

the screen.

SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG)MSGDTA('Transfer
completed normally') MSGTYPE(*ESCAPE)
GOTO CMBLBL (DONE)
FUNCCK: SNDPGMMSG MSGID(CPF9898) MSGF(QCPMSG)

MSGDTA('Function check trapped in program NEWFERORD)
MSGTYPE(*ESCAPE)
GOTO CMDLBL(DONE)

NOTEX: SNDPGMMSG MSGID(CPF9898)
MSGF(QCPFMSG)

RELAY:

DONE:

MSGDTA('The order file, part file, or job step file does not exist')
MSGTYPE(*ESCAPE)
GOTO CMDLBL(*DONE)

RCVMSG MSGQ(*PGMQ) MSGTYPE(*LAST)
MSGDTA(&MSG)

MSGTYPE(*ESCAPE)
ENDPGM

67

CHAPTERV

OTHER INTERFACE OPTIONS

Transfer Based on Resources

The second item in the main menu is designed to transfer information from

MAPICS/DB to FACTOR 5 .2 about a particular work center or resource in which the user

is interested. A flow chart for this procedure is illustrated in Figure 2. Selecting this option

activates a command named NEWFINTRES. NEWFINTRES is a CL command. The

source code for this command is saved in member NEWFINTRES in the physical file

named RCMDSRC.

NEWFINTRES Procedure

CMD
PARM

PARM

PARM

PARM

PROMPT('TRANSFER BASED ON RESOURCES')
KWD(ALTNO) TYPE(*CHAR) LEN(3) RANGE(000 999)
MIN(l) FULL(*YES) PRO:MPT('Altemative number')

KWD(MACHINE) TYPE(*CHAR) LEN(6) MIN(l) FULL(*YES)

PROMPT('ENTER RESOURCE NUMBER')

KWD(STRDAT) TYPE(*CHAR) LEN(6) MIN(l) FULL(*YES)
PROMPT('ENTER START DATE')
KWD(ENDDAT) TYPE(*CHAR) LEN(6) MIN(l) FULL(*YES)
PROMPT('ENTER END DATE')

The NEWFINTRES command is connected to a CL program named

NEWINTRES. The purpose of the command is to collect the altem number, machine

number, start date, and end date, and pass them to the program.

68

User selects option 2 from
the main menu

User enters Altern
number, Work center
number, start date and

end date

The Altern, work center
numbers, and the dates

are passed to CL program
NEWINTRES

NEWINTRES creates
shift information in

SHIFTXXX

NEWINTRES passes
Altern & order numbers

and dates to RPG
program NEWFERRES

The work center info is
transferred to

RESRCXXX and
RESGRPXXX

The job steps mtormauon
for all the orders using

this work center is
transferred to

JOBSTEPXXX

Continue

Figure 2. Flow Chart for Work Center Based Transfer.

69

Figure 2 - Continued

NEWINTRES Procedure

Continue

The order information for
the above jobsteps is

transferred to
ORDERXXX

The item information for
all the orders is

transferred to PAR TXXX

First, the altem number, machine number, start date, and end date are placed into

variables &CHALT, &MACHINE, &STRDAT, &ENDDAT.

PGM PARM(&CHALT &MACHINE &STRDAT &ENDDAT)

Then the variables are declared.

DCL V AR(&CHALT) TYPE(*CHAR) LEN(3)

DCL V AR(&MACHINE) TYPE(*CHAR) LEN(S)

DCL V AR(&STRDAT) TYPE(*CHAR) LEN(6)

DCL V AR(&ENDDAT) TYPE(*CHAR) LEN(6)

DCL V AR(&OFILE) TYPE(*CHAR) LEN(I0)

DCL V AR(&MSG) TYPE(*CHAR) LEN(72)

70

The following CL statements monitor for message IDs and route the program to

the appropriate location.

MONMSG MSGID(CPF9999) EXEC(GOTO CMDLBL(FUNCCHK)
MONMSG MSGID(CPF9898) EXEC(GOTO CMDLBL(RELA Y)

MONMSG MSGID(CPF1085) EXEC(GOTO CMDLBL(NOTEX)

The shift information is copied from file DFTSHIFT to SHIFTXXX file, where

'XXX' denotes the altern number

CALL PGM(GTFLNM) P ARM(SHIFT &CHAL T &OFILE)
CPYF FROMFILE(F52MFINT/DFTSHIFT) TOFILE(*LIBL/&OFILE)

MBROPT(*REPLACE)

Then the file overrides are done on all Factor 5.2 files as explained in Chapter IV.

CALL
OVRDBF

CALL
OVRDBF

CALL
OVRDBF

CALL
OVRDBF

PGM(GTFLNM) P ARM(JOBSTEP &CHAL T &OFILE)
FILE(JOBSTEP000) TO FILE(&OFILE)

PGM(GTFLNM) PARM(JS13VR &CHALT &OFILE)
FILE(JS13VR000) TOFILE(&OFILE)

PGM(GTFLNM) P ARM(ORDER &CHALT &OFILE)
FILE(ORDER000) TO FILE(&OFILE)

PGM(GTFLNM) PARM(PART &CHALT &OFILE)
FILE(PART000) TOFILE(&OFILE)

The actual transfer of data from MAPICS/DB to FACTOR 5.2 is done by calling

the program NEWFERRES. The source code for this program is saved in member

TEMFERRES in file RINTSRC.

CALL PGM(TRANSFER/NEWFERRES)
PARM (&CHALT &MACHlNE&STRDAT &ENDDAT)

71

NEWFERRES Procedure

NEWFERRES is a member in file RINTSRC, which contains RPG code with

embedded SQL statements. The code begins with declaring three RPG data structures

named DBFLDS, DBASES, and RESRC. Then the parameters that are passed to this

program are saved in program variables ALTNO, MACH, CSTDAT, and CENDAT.

*ENTRY PLIST

PARM

PARM

PARM

PARM

ALTNO
MACH
CSTDAT
CENDAT

Updating AL TERN Table

3
5
6
6

The AL TERN table is updated to have the simulation start date initiated to

CSTDAT, start time to '0000', end date to CENDAT, and end time to '2359'.

UPDATE ALTERN
SET STARTDATE = :CSTDAT, STARTTIME = '0000'

ENDDATE = :CENDAT, ENDTIME = '2359'
WHERE ALTNO = :ALTNUM

All of the FACTOR 5 .2 database files are emptied of any previous data.

DELETE FROM ORDER000
DELETE FROM P ART000
DELETE FROM JOBSTEP000
DELETE FROM JS 13VR00O
DELETE FROM RESRC000
DELETE FROM RESGRP000

72

Retrieving Resource Infonnation

Since this menu item is designed to transfer MAPICS/DB data based on a machine

number, the resource infonnation is transferred first. A cursor is declared for this purpose.

DECLARE RGCUR CURSOR FOR

The following fields are selected from WRKCTR file.

SELECT
FROM

WK.CTR, WCDSC, DCAPI, DCAP2, DCAP3
WRKCTR

The conditional statement WHERE is used to retrieve only the infonnation

pertaining to the machine number of user's interest.

WHERE WK.CTR= :MACH

ORDERBYWKCTR

Retrieving Process Plan Infonnation

After the machine infonnation is transferred to RESRC000 and RESGRP000 files,

the next step is to transfer the job steps that use this machine. A cursor is declared to

retrieve these job steps.

DECLARE PPCUR CURSOR FOR

The following fields are selected from files MOROUT, MOMAST, ITEMASA,

and RESGRP000.

SELECT

FROM

MOROUT.ORDNO, OPSEQ, WK.CTR, SRMHU, SSLHU,
SETCS, CYCOP, SRLHU, TQCTD, TBCDE, PLCDE,
ITEMASA.CUMSY,
MOMAST.ORQTY
MOROUT, MOMAST, ITEMASA, RESGRP000

73

The conditional statement is used to retrieve only those job steps from MOROUT,

that fall between the start date and end date of simulation.

WHERE MOROUT.WKCTR = RESGRP000.RGID AND
MOROUT.SSTDT < :ENDDAT AND
MOROUT.SCODT > :STRDAT AND
MOROUT.ORDNO = MOMAST.ORDNO AND
MOMAST.FITEM = ITEMASA.ITNBR

ORDER BY ORONO, OPSEQ

The retrieved data is then processed the same way, as explained in NEWFERORD

procedure, and hence not repeated in this section.

Retrieving Order Information

A cursor is declared to retrieve order information

DECLARE ORDCUR CURSOR FOR

The following fields are selected from MOMAST, MOROUT, and JOBSTEP000.

SELECT

WHERE

DISTINCT MOMAST. ORONO, JOBNO, FITEM, ORQTY,
MOMAST.SSTDT, MOMAST.ODUDT
FROM MOMAST, MOROUT, JOBSTEP000
MOMAST.ACREC = 'A' AND
JOBSTEP000.PROCPLANID = MOMAST.ORDNO AND
MOMAST.ORDNO = MOROUT.ORDNO

The SELECT DISTINCT statement is used to avoid duplicate order records. The

conditional statement ensures that only active orders are selected which match the job step

records in file JOBSTEP000.

74

Retrieving Part Information

A cursor is declared for part retrieval.

DECLARE P ARTCUR CURSOR FOR

The following fields are selected from files MOMAST, and ORDER000.

SELECT
FROM
WHERE

DISTINCT FITEM, FDESC
MOMAST, ORDER000
MOMAST.FITEM = ORDER000.P ARTID

The WHERE statement limits the retrieval to only those records that belong to the

transferred orders. The part cursor is closed after all the records are transferred.

CLOSE PARTCUR

The program is terminated by using the following statements.

DONE TAG

SETON LR

The retrieved data by the SQL statements is processed the same way, as explained

in NEWFERORD procedure in Chapter IV, and hence not repeated in this chapter.

Transfer the Entire Shop Floor Information From MAPICS/DB

Menu item (4) is used if the user is interested in observing the performance of the

entire shop floor over a period of time. A flow chart for this procedure is illustrated in

Figure 3. Selecting this option activates a command named NEWFINTTTL.

NEWFINTTTL is a CL command. The source code for this command is saved in member

NEWFINTTTL in the physical file named RCMDSRC.

75

User selects option 3 from
the main menu

User enters Altern
number, start date and

end date

The Altem number and
the dates are passed to CL

program NEWINTTTL

NEWINTTTL creates
shift information in

SHIFTXXX

NEWINTTTL passes
Altem & order numbers

to NEWFERTfL

The order information tor
all the orders that fall

between the above dates
is transferred to
ORDERXXX

The job steps information
for all the orders is

transferred to
JOBSTEPXXX

Figure 3. Flow Chart for Entire Shop Floor Transfer.

76

The workcenter
information for the above
jobsteps is transferred to

RESRCXXX and
RESGRPXXX

The item information for
all the orders is

transferred to PAR TXXX

Figure 3 - Continued

NEWFINTTTL Procedure

CMD
PARM

PARM

PARM

PROMPT('TRANSFER ENTIRE JOB SHOP')
KWD(AL TNO) TYPE(*CHAR) LEN(3) RANGE(000 999)
MIN(l) FULL(*YES) PROMPT('Alternative number')
KWD(STRDAT) TYPE(*CHAR) LEN(6) MIN(l) FULL(*YES)
PROMPT('ENTER START DATE')
KWD(ENDDAT) TYPE(*CHAR) LEN(6) MJN(l) FULL(*YES)
PROMPT('ENTER END DATE')

The NEWFINTTTL command is connected to a CL program named

NEWINTTTL. The purpose of the command is to collect the altern number, start date,

and end date, and pass them to the program.

77

NEWINTTTL Procedure

First, the altem number, start date, and end date are placed into variables

&CHALT, &S1RDAT, &ENDDAT.

PGM PARM(&CHALT &S1RDAT &ENDDAT)

Then the variables are declared.

DCL VAR(&CHALT) TYPE(*CHAR) LEN(3)
DCL V AR(&S1RDAT) TYPE(*CHAR) LEN(6)
DCL V AR(&ENDDAT) TYPE(*CHAR) LEN(6)
DCL V AR(&OFILE) TYPE(*CHAR) LEN(lO)

DCL V AR(&MSG) TYPE(*CHAR) LEN(72)

The following CL statements monitor for message IDs and route the program to

the appropriate location.

MONMSG MSGID(CPF9999) EXEC(GOTO CMDLBL(FUNCCHK)
MONMSG MSGID(CPF9898) EXEC(GOTO CMDLBL(RELA Y)

MONMSG MSGID(CPFl 085) EXEC(GOTO CMDLBL(NOTEX)

The shift information is copied from file DFTSIDFT to SIDFTXXX file, where

'XXX' denotes the altern number.

CALL PGM(GTFLNM) P ARM(SIDFT &CHAL T &OFILE)

CPYF FROMFILE(F52MFINT/DFTSIDFT) TOFILE(*LIBU&OFILE)

MBROPT(*REPLACE)

Then the file overrides are done on all FACTOR 5.2 files as explained in Chapter

IV.

CALL

OVRDBF

CALL

OVRDBF

PGM(GTFLNM) P ARM(JOBSTEP &CHAL T &OFILE)

FILE(JOBSTEP000) TO FILE(&OFILE)

PGM(GTFLNM) PARM(JS13VR &CHALT &OFILE)
FILE(JS 13 VR000) TO FILE(&OFILE)

78

CALL
OVRDBF

PGM(GTFLNM) P ARM(ORDER &CHAL T &OFILE)
FILE(ORDER000) TO FILE(&OFILE)

CALL
OVRDBF

PGM(GTFLNM) PARM(PART &CHALT &OFILE)
FILE(PART000) TOFILE(&OFILE)

The actual transfer of data from MAPICS/DB to FACTOR 5 .2 is done by calling

the program NEWFERTTL. The source code for this program is saved in member

TEMFERTTL in file RINTSRC.

CALL PGM(TRANSFER/NEWFERTTL)
PARM (&CHALT &STRDAT &ENDDAT)

NEWFERTTL Procedure

NEWFERTTL is a member in file RINTSRC, which contains RPG code with

embedded SQL statements. The code begins with declaring three RPG data structures

named DBFLDS, DBASES, and RESRC. Then the parameters that are passed to this

program are saved in program variables ALTNO, CSTDAT, and CENDAT.

Only the key SQL statements which were used to retrieve the information, are

mentioned in this section. The default field initialization, and the process plan calculations

were discussed in Chapter IV.

*ENTRY PLIST
PARM
PARM
PARM

ALTNO
CSTDAT
CENDAT

3

6

6

79

Updating ALTERN Table

The AL TERN table is updated to have the simulation start date initiated to

CSTDAT, start time to '0000', end date to CENDAT, and end time to '2359'.

UPDATE ALTERN
SET STARTDATE = :CSTDAT, STARTTIME = 'OOOO'

ENDDATE = :CENDAT, ENDTIME = '2359'
WHERE ALTNO = :ALTNUM

All the FACTOR 5.2 database files are emptied of any previous data.

DELETE FROM ORDEROOO

DELETE FROM P ARTOOO

DELETE FROM JOBSTEPOOO
DELETE FROM JS 13VROOO
DELETE FROM RESRCOOO
DELETE FROM RESGRPOOO

Retrieving Order Information

Since this menu item is designed to transfer MAPICS/DB data based on start and

end dates, the information about all the orders that fall in between these dates is transferred

first. A cursor is declared for this purpose.

DECLARE OR3CUR CURSOR FOR

SELECT ORONO, JOBNO, FITEM, ORQTY, SSTDT, ODUDT
FROM MOMAST
WHERE ACREC = 'A' AND SSTDT <= :ENDDAT

Retrieving Part Information

The part information is retrieved for all the orders transferred, as mentioned below:

DECLARE PARTCURFOR

80

SELECT DISTINCT FITEM, FDESC
FROM MOMAST, ORDER000
WHERE MOMAST.FITEM = ORDER000.P ARTID

Retrieving Process Plan Information

The process plan information for the transferred orders is retrieved using the

following SQL statements:

DECLARE PPCUR CURSORFOR
SELECT MOROUT.ORDNO, OPSEQ, WKCTR, SRMHU, SSLHU, SETCS,

CYCOP, SRLHU, TQCTD, TBCDE, PLCDE, ITEMASA.CUMSY,
ORDER000. ORDSIZE

FROM MOROUT, MOMAST, ORDER000, ITEMASA
WHERE MOROUT.ORDNO = ORDER000.ORDERID AND

ORDER000.ORDERID = MOMAST.ORDNO AND
MOMAST.FITEM = ITEMASA.ITNBR AND
MOROUT.OPSEQ >= MOMAST. OPCUR

Retrieving Resource Information

The work center or resource information is retrieved for all the job steps

transferred, as follows:

SELECT DISTINCT
FROM
WHERE

WKCTR, WCDESC, DCAPl, DCAP2, DCAP3
WRKCTR, JOBSTEP000
WRKCTR.WKCTR = JOBSTEP000.RESIDl

81

CHAPTER VI

CONCLUSION

Benefits of the Interface Application

In this study, an Interface Application has been developed to transfer data from

MAPICS/DB, a MRP II application and FACTOR 5.2, a Finite Capacity Scheduling

application. The manufacturing industry can benefit from this Interface in many ways.

Some are mentioned below:

1. With the Interface Application, the completion time of each production order

can be projected considering material availability and finite capacity resources. Advance

visibility of future production conditions greatly facilitates management of constraints.

Early preventive action to avoid delays at capacity constraints results in shorter lead times,

even in complex production environments.

2. The flexible nature of the Interface Application will provide manufacturing

managers with a powerful new way of asking and answering "what if' questions. When

the model is executed in the computer, simulated time advances in the model just as the

plant would actually operate. Statistics are automatically collected by the model to report

on bottleneck operations, equipment usage, levels of work-in-process inventory and factory

throughput for various products.

82

3. Alternative schedules can be developed and compared instantly, based on the

efficiency information gathered.

4. Data entry is minimized to just auxiliary information. Without the Interface

Application, FACTOR 5 .2 would have required manual entry of the entire manufacturing

data about orders and resources.

5. By understanding the implications of integrating the scheduling system and the

MRP II system, one can understand the concept of Just-In-Time(JIT) operations. This will

lead towards reducing and/or eliminating unnecessary operations or data flows in a closed

loop manufacturing environment where the customer is very important.

Future Research Suggestions

This Interface Application can be considered as the first step towards a completely

integrated manufacturing environment The aim of this integration is to make Computer

Integrated Manufacturing more dynamic by providing additional channels of information

flow.

The current Interface Application can transfer information from the MRP II system

to the scheduling system. The scheduling system is used as a mirror which reflects an

image of the manufacturing environment based on the information transferred from the

MRP II system. Further research is recommended to be able to automatically send

important information back to the MRP II system. For example, the availability of the

projected start date of orders based on the actual availability of capacity, will enable the

MRP II systems to implement Just-In-Time(JIT) purchase ofraw materials.

83

Appendix A

User's Guide for the MAPICS/DB and FACTOR 5.2 Interface

84

Instructions for MAPICS/DB - FACTOR 5.2 Interface Application

Computer requirements:

The MAPICS/DB and FACTOR 5.2 Interface package runs on the AS/400

computer system, with OS/400 operating system.· MAPICS/DB and FACTOR

5 .2 software must be installed on the system prior to running the application.

Required software include RPG/400, CL/400, and SQL/400.

Library list:

To execute the program, certain libraries are to be added to the library list.

These libraries are (1) TRANSFER (contains all the necessary programs

needed to run the program), (2) F ACTOR52 (contains FACTOR 5 .2

software), (3) NEW (contains FACTOR Database library), (4) AMFLIBR

(MAPICS/DB library that contains all data files for RA environment), (5)

AMALIBA (MAPICS/DB library that contains all application files for RA

environment).

All the above libraries can be added to the current library list by using

ADDLIBLE command.

Operating Instructions

(1) Log on to AS/400 using your login name and password.

(2) Call the transfer menu by typing Go transfer and press enter.

85

(3) Type GO TRANSFER and press enter key.

(4) The TRANSFER menu consists of the following items

1)Transfer a single manufacturing order
2) Transfer a work center

3) Transfer the jobshop
4) Use MAPICS/DB

5) Use FACTOR 5.2

90) Sign Off

Transferring a single manufacturing order: Select choice 'l' by typing 'l'

and pressing enter. A second display screen appears titled 'Schedule based on

Manufacturing Orders'. This display screen has two input fields: (a) Alternative

number, and (b) Mfg. order number. Type '000' for the alternative number.

The cursor goes to the next field. Then enter a valid manufacturing order

number. A valid manufacture order number is an existing manufacturing order

number in MAPICS/DB. If a valid manufacturing order number is not entered,

the program will send an error message to the screen and will cease to run.

Press enter when the required data is entered. This program will take about

three to four minutes to transfer the manufacturing order from MAPICS/DB to

FACTOR 5.2. After it is done, the program displays a message "Transfer

completed normally" and the main menu appears again.

Transfer a work center: Select choice '2' by typing '2' and pressing

enter. A second display screen appears titled 'Schedule based on

Manufacturing Orders'. This display screen has four input fields: Alternative

number, resource number, start date, and end date. Type '000' for the

86

alternative number. The cursor goes to the next field. Then enter a valid

resource number. A valid manufacture order number is an existing machine

number in MAPICS/DB. If a valid machine number is not entered, the

program will send an error message to the screen and will cease to run.

The start date and end date have to be entered in the format 'yymmdd'

(year-month-date). For example, December 15th 1995 has to be entered as

'951215'. Press enter when the required data is typed. This program will take

about three to four minutes to transfer the information from MAPICS/DB to

FACTOR 5.2. After the transfer is done, the program brings the main menu

back with a message "Transfer completed normally".

Transfer the job shop: Select choice '3' by typing '3' and pressing enter. A

second display screen appears titled 'Transfer job shop information'. This

display screen has four input fields: Alternative number, start date, and end

date. Type '000' for the alternative number. The cursor goes to the next field.

The start date and end date have to be entered in the format 'yymmdd' (year

month-date). For example, December 15th 1995 has to be entered as '951215'.

Press enter when the required data is typed. This program will take about three

to four minutes to transfer the information from MAPICS/DB to FACTOR

5.2. After the transfer is done, the program brings the main menu back with a

message "Transfer completed normally".

87

AppendixB

File Names and Contents

88

89

Table 2

File Names and Contents

Name Type Description

TRANSFER *LIB Contains all the objects

NEWINTORD *PGM Support for order transfer

NEWFERORD *PGM Order transfer program

NEWINTRES *PGM Support for work center transfer

NEWFERRES *PGM Work center transfer program

NEWINTTTL *PGM Support for total transfer

NEWFERTTL *PGM Total transfer program

NEWFINTORD *CMD Order transfer command

NEWFINTRES *CMD Work center transfer command

NEWFINTTTL *CMD Total transfer command

QCMDSRC *FILE File of command definitions

QRPGSRC *FILE Source code for RPG programs

QCLSRC *FILE Source code for CL programs

Appendix C

Program Screens

90

91

MAPICS/DB-F ACTOR 5.2 TRANSFER MENU

Select one of the following:

1. Transfer a single manufacturing order
2. Transfer a work center
3. Transfer the job shop
4. Use MAPICS/DB
5. Use FACTOR 5.2

90. Sign off

Selection or command

F3=Exit F12= Cancel
F13 = User Support F16 = System main menu

Figure 4. MAPICS/DB and FACTOR 5 .2 Interface Main Menu

SCHEDULE BASED ON MFG. ORDERS (NEWFINTORD)

Type choices, press enter:

Alternative number
Mfg. Order number

F3= Exit F4 = Prompt FS = Refresh F12 = Cancel

F 13 = How to use this display F24 = More Keys

000- 999

Character value

Figure 5. MAPICS/DB and FACTOR 5 .2 Intetface - Order based transfer screen

92

SCHEDULE BASED ON WORK CENTER (NEWFINTRES)

Type _choices, press enter:

Alternative number
Work Center number.
Start Date
End Date

F3= Exit F4 = Prompt FS = Refresh Fl2 = Cancel
F 13 = How to use this display F24 = More Keys

000- 999
Character value
Character value
Character value

93

Figure 6. MAPICS/DB and FACTOR 5.2 Interface - Work Center based transfer screen

SCHEDULE JOB SHOP (NEWFINTTTL)

Type choices, press enter:

Alternative number.
Start Date
End Date

F3= Exit F4 = Prompt F5 = Refresh F12 = Cancel
F13 = How to use this display F24 = More Keys

000- 999
Character value
Character value

Figure 7. MAPICS/DB and FACTOR 5.2 Intetface - Job Shop transfer screen

94

AppendixD

Program Source Code

95

CMD

PARM

PARM

CMD

PARM

PARM

PARM

PARM

CMD

PARM

PARM

PARM

Source Code for NEWFINTORD Command

PROMPT('TRANSFER BASED ON MFG. ORDERS')

KWD(ALTNO) TYPE(*CHAR) LEN(3) RANGE(000 999) +
MIN(l) FULL(*YES) PROMPT('Alternative number)

KWD(ORDNO) TYPE(*CHAR) LEN(7) MIN(l) +
FULL(*YES) PROMPT('MFG. ORDER NO')

Source Code for NEWFINTRES Command

PROMPT('SCHEDULE BASED ON WORK CENTER')

KWD(ALTNO) TYPE(*CHAR) LEN(3) RANGE(000 999) +
MIN(l) FULL(*YES) PROMPT('Alternative number)

KWD(MACHINE) TYPE(*CHAR) LEN(5) MIN(l) +
FULL(*NO) PROMPT('Resource Number')

KWD(STRDDAT) TYPE(*CHAR) LEN(5) +
MIN(l) FULL(*YES) PROMPT('Start Date')

KWD(ENDDAT) TYPE(*CHAR) LEN(5) +
MIN(l) FULL(*YES) PROMPT('End Date')

Source Code for NEWFINTRES Command

PROMPT('SCHEDULE JOB SHOP')

KWD(AL TNO) TYPE(*CHAR) LEN(3) RANGE(000 999) +
MIN(l) FULL(*YES) PROMPT('Alternative number')

KWD(STRDDAT) TYPE(*CHAR) LEN(5) +
MIN(l) FULL(*YES) PROMPT('Start Date')

KWD(ENDDAT) TYPE(*CHAR) LEN(5) +
MIN(l) FULL(*YES) PROMPT('End Date')

96

Source Code for NEWINTORD Program

PGM PARM(&CHALT &ORDER)
/* Declare the input parameters * I
DCL VAR(&CHALT) TYPE(*CHAR) LEN(3)
DCL V AR(&ORDER) TYPE(*CHAR) LEN(7)
DCL · V AR(&OFILE) TYPE(*CHAR) LEN(7)
DCL V AR(&MSG) TYPE(*CHAR) LEN(72)

/* Monitor for messages * /
MONMSG MSGID(CPF9999) EXEC(GOTO C:MDLBL(FUNCCHK))
MONMSG MSGID(CPF9898) EXEC(GOTO CMDLBL(RELAY))
MONMSG MSGID(CPF1085) EXEC(GOTO CMDLBL(NOTEX))

/* Shift Creation * /
CALL PGM(GTFLNM) P ARM(SHIFT &CHAL T &OFILE)
CPYF FROMFILE(F52MFINT/DFTSHIFT) TOFILE(*LIBL/&OFILE) +

MBROPT(*REPLACE)

/* File Overrides * /
CALL PGM(GTFLNM) P ARM(JOBSTEP &CHAL T &OFILE)
OVRDBF FILE(JOBSTEP000) TOFILE(&OFILE)

CALL PGM(GTFLNM) P ARM(JS 13VR &CHAL T &OFILE)
OVRDBF FILE(JS13VR000) TOFILE(&OFILE)

CALL PGM(GTFLNM) P ARM(ORDER &CHAL T &OFILE)
OVRDBF FILE(ORDER000) TOFILE(&OFILE)

CALL PGM(GTFLNM) P ARM(P ART &CHAL T &OFILE)
OVRDBF FILE(PARTO00) TOFILE(&OFILE)

/* Call the RPG program to do the actual transfer * /
CALL PGM(TRANSFER/NEWFERORD) +
P ARM(&CHALT &ORDER)
SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) +

MSGDT A('Transfer completed normally') MSGTYPE(*COMP)
GOTO CMDLBL(DONE)

FUNCCHK: SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) +

MSGDTA('Function check trapped in program NEWFERORD') +
MSGTYPE(*ESCAPE)
GOTO CMDLBL(DONE)

97

NOTEX: SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) +
MSGDT A('The order file, jobstep file, or part file does not exist') +
MSGTYPE(*ESCAPE)
GOTO CMDLBL(DONE)

RELAY: RCVMSG MSGQ(*PGMQ) MSGTYPE(*LAST)
MSGDTA(&MSG)

SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) +
MSGDTA(&MSG) MSGTYPE(*ESCAPE)

DONE: ENDPGM

Source Code for NEWINTRES

PGM P ARM(&CHALT &MACHINE &STRDAT &ENDDAT)
/* Declare the input parameters * /
DCL VAR(&CHALT) TYPE(*CHAR) LEN(3)
DCL V AR(&MACHINE) TYPE(*CHAR) LEN(S)
DCL V AR(&STRDAT) TYPE(*CHAR) LEN(6)
DCL V AR(&ENDDAT) TYPE(*CHAR) LEN(6)
DCL V AR(&OFILE) TYPE(*CHAR) LEN(7)
DCL V AR(&MSG) TYPE(*CHAR) LEN(72)

/* Monitor for messages * /
MONMSG MSGID(CPF9999) EXEC(GOTO CMDLBL(FUNCCHK))
MONMSG MSGID(CPF9898) EXEC(GOTO CMDLBL(RELA Y))
MONMSG MSGID(CPF1085) EXEC(GOTO CMDLBL(NOTEX))

/* Shift Creation * /
CALL PGM(GTFLNM) PARM(SHIFT &CHALT &OFILE)
CPYF FROMFILE(F52MFINT/DFTSHIFT) TOFILE(*LIBL/&OFILE) +

MBROPT(*REPLACE)

/* File Overrides * /
CALL PGM(GTFLNM) P ARM(JOBSTEP &CHAL T &OFILE)
OVRDBF FILE(JOBSTEP000) TOFILE(&OFILE)

CALL PGM(GTFLNM) PARM(JS13VR &CHALT &OFILE)
OVRDBF FILE(JS13VR000) TOFILE(&OFILE)

CALL PGM(GTFLNM) PARM(ORDER &CHALT &OFILE)

98

OVRDBF FILE(ORDER000) TOFILE(&OFILE)

CALL PGM(GTFLNM) PARM(PART &CHALT &OFILE)
OVRDBF FILE(P ART000) TO FILE(&OFILE)

/* Call the RPG program to do the actual transfer * /
CALL PGM(TRANSFER/NEWFERRES) +
PARM(&CHALT &MACHJNE &STRDAT &ENDDAT)
SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) +

MSGDTA('Transfer completed normally') MSGTYPE(*COMP)
GOTO CMDLBL(DONE)

FUNCCHK: SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) +
MSGDTA('Function check trapped in program NEWFERORD') +
MSGTYPE(*ESCAPE)
GOTO CMDLBL(DONE)

NOTEX: SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) +
MSGDTA('The order file, jobstep file, or part file does not exist') +
MSGTYPE(*ESCAPE)
GOTO CMDLBL(DONE)

RELAY: RCVMSGMSGQ(*PGMQ) MSGTYPE(*LAST) MSGDTA(&MSG)
SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) +
MSGDTA(&MSG) MSGTYPE(*ESCAPE)

DONE: ENDPGM

Source Code for NEWINTTTL

PGM PARM(&CHALT &STRDAT &ENDDAT)
/* Declare the input parameters * I
DCL V AR(&CHAL T) TYPE(*CHAR) LEN(3)
DCL V AR(&STRDAT) TYPE(*CHAR) LEN(6)
DCL V AR(&ENDDAT) TYPE(*CHAR) LEN(6)
DCL V AR(&OFILE) TYPE(*CHAR) LEN(7)
DCL V AR(&MSG) TYPE(*CHAR) LEN(72)

/* Monitor for messages * I
MONMSG MSGID(CPF9999) EXEC(GOTO CMDLBL(FUNCCHK))
MONMSG MSGID(CPF9898) EXEC(GOTO CMDLBL(RELA Y))
MONMSG MSGID(CPF1085) EXEC(GOTO CMDLBL(NOTEX))

99

/* Shift Creation * /
CALL PGM(GTFLNM) PARM(SIIlFT &CHALT &OFILE)
CPYF FRO:MFILE(F521\1FINT/DFTSIIlFT) TOFILE(*LIBL/&OFILE) +

MBROPT(*REPLACE)

/* File Overrides * /
CALL PGM(GTFLNM) P ARM(JOBSTEP &CHAL T &OFILE)
OVRDBF FILE(JOBSTEP000) TOFILE(&OFILE)

CALL PGM(GTFLNM) P ARM(JS 13VR &CHAL T &OFILE)
OVRDBF FILE(JS13VR000) TOFILE(&OFILE)

CALL PGM(GTFLNM) P ARM(ORDER &CHAL T &OFILE)
OVRDBF FILE(ORDER000) TOFILE(&OFILE)

CALL PGM(GTFLNM) P ARM(P ART &CHAL T &OFILE)
OVRDBF FILE(P ART000) TOFILE(&OFILE)

/* Call the RPG program to do the actual transfer * /
CALL PGM(TRANSFER/NEWFERTTL) +
P ARM(&CHALT &STRDAT &ENDDAT)
SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) +

MSGDTA('Transfer completed normally') MSGTYPE(*COMP)
GOTO CMDLBL(DONE)

FUNCCHK: SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) +
MSGDTA('Function check trapped in program NEWFERORD') +

MSGTYPE(*ESCAPE)
GOTO CMDLBL(DONE)

NOTEX: SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) +
MSGDTA('The order file, jobstep file, or part file does not exist') +
MSGTYPE(*ESCAPE)
GOTO CMDLBL(DONE)

RELAY: RCVMSG MSGQ(*PGMQ) MSGTYPE(*LAST)
MSGDTA(&MSG)

DONE:

SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) +
MSGDTA(&MSG) MSGTYPE(*ESCAPE)

ENDPGM

100

Source Code for G1FLNM

PGM P ARM(&DTATYP &AL TNO &FIT.NAM)

/* Declare Variables * /
DCL V AR(&DATTYP) TYPE(*CHAR) LEN(9)
DCL V AR(&ALTNO) TYPE(*CHAR) LEN(3)
DCL V AR(&FILNAM) TYPE(*CHAR) LEN(l 0)

MONMSG NSGID(CPF9999) EXEC(GOTO CMDLBL (FUNCCHK))
CRTDT AARA DT AARA(QTEMP/GTFNM) TYPE(*CHAR) LEN(l 0)
MONMSG MSGID(CPF1023)
CALL PGM(GTFNM) PARM(&DTATYP &ALTNO)
RTVDTAARA DTAARA(GTFNM) RTNV AR(&FILNAM)

DLTDTAARA DTAARA(GTFNM)
IF COND(&FILENAM *EQ '*NOALT') THEN (DO)

SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGDTA +
('Alternative ' *BACT *ALTNO *BCAT 'does not exist') MSGTYPE(*ESCAPE)
CHGVAR VAR(&FILENAM) VALUE(' ')
ENDDO
ELSE CMD(IF COND(&FILENAM *EQ '*NOREC') THEN (DO))
SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGDTA +
('Record type' *BACT *DTATYP *BCAT 'does not exist') MSGTYPE(*ESCAPE)

CHGVAR VAR(&FILENAM) VALUE(' ')

ENDDO
GOTO CMDLBL(DONE)
FUNCCHK: +

SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGDTA +
('Function check trapped in program EDTFDB') MSGTYPE(*ESCAPE)

DONE:+
ENDPGM

101

AppendixE

File Structures & Field Assignments

102

TO
FIELD

ORDERID

DESCR

PARTID
PROCPLANID
ORDSIZE
LOADSIZE
EXCESSCD
RELDATE
RELTIME

DUEDATE

DUETIME

STATUSCD

PRIORITY
SCHEDFG

TYPE

CHAR(20)

CHAR(30)

CHAR(20}
CHAR(20}
INT(9)

INT(9)

CHAR(l}
CHAR(6)
CHAR(4)

CHAR(6)

CHAR(4)

CHAR(I)

SMALLINT(4)
CHAR(})

Table 3

File Structure and Field Assignments for ORDERXXX

VARIABLE

:ORDID

:ODESCR

:PARTID
:ORDID
:RORDSZ>:ORDSIZ
:RORDSZ>:ORDSIZ
:EXCSCD
:CRLDA T>:RELDAT

:RELTIM
:CDUEDT>:DUEDAT

:DUETIM

:STATCD

:PRIO
:SCHDFG

FROM

FIELD

ORONO

JOBNO
FITEM
ORONO
ORQTY
ORQTY
'A'

SSTDT
'0000'

ODUDT
'2359'
'N'

*ZERO
'Y'

TYPE

CHAR(?)

CHAR(6)

CHAR(lS)
CHAR(?)
DEC(I0,3)
DEC(I0,3)

DEC(6,0)

DEC(6,0)
------·-

DATABASE

MOMAST

MOMAST

MOMAST
MOMAST
MOMAST
MOMAST
USER
MOMAST
USER
MOMAST

USER

USER

USER
USER

0
I.,.)

TO TYPE

FIELD

PARTID CHAR(20)

FAMILY CHAR(20)

SUBFAMILY CHAR(20)

DESCR. CHAR(30)

PROCPLANID CHAR(20)

STRTMATLID CHAR(20)

ENDMATLJD CHAR(20)

PTTABLE CHAR(8)

Table 4

File Structure and Field Assignments for PAR TXXX

VARIABLE FROM
FIELD

:PARTID FITEM

:FAMILY *BL

:SUBFAM *BL

:PDESCR FDESC
:PPJD *BL

:STMATL *BL
:ENMATL *BL
:PTTAB *BL

TYPE

CHAR(l5)

CHAR(30)

-·------

DATABASE

MOMAST
USER

USER
MOMAST
USER
USER
USER
USER

0
�

Table 5

File Structure and Field Assignments for JOBSTEPXXX

TO TYPE VARIABLE FROM TYPE DATABASE

FIELD FIELD

PROCPLANID CHAR(20) :PROCPN ORDNO CHAR(7) MOROUT

TYPE SMALL INT(4) :TYPE '13' ------- USER

JSID CHAR(8) :JSID OPSEQ CHAR(4) MOROUT

DESCR CHAR(30) :PPDESC WKCTR CHAR(5) MOROUT

NEXTJSID CHAR(8) :NEXTJS OPSEQ CHAR(4) MOROUT

SELECTRL SMALLINT(4) :SELRL *ZERO ------- USER

ALTJSID CHAR(8) :ALTJS *BLANKS ------- USER

ALOCRL SMALLINT(4) :ALOCRL '2' ------- USER

STEPTMRL SMALLINT(4) :STEPRL 'I' ------- .USER

STEPTIME FLOAT(l7) :STEPTM SELEC

FREECHCKFG CHAR(!) :FREECK 'Y'
-------- USER

HOLDTEMPFG CHAR(I) :HOLDTM 'N'
--·----- USER

RESSCHDFG CHAR((!) :RESCHD 'Y'
------- USER

RESACTNI CHAR(l) :RACTI 'S' ------- USER

RESNMBRl SMALL INT(4) :RNBRl 'I' ------- USER

RESIDl CHAR(8) :RESID l>:PPDESC WKCTR CHAR(5) MOROUT

RESACTN2 CHAR(I) :ACTN *BLANKS ------- USER

RESNMBR2 SMALLINT(4) :NMBR *ZERO ------- USER

RESID2 CHAR(8) :RESID *BLANKS ------- USER

Table 5 - Continued

RESACTN3 CHAR(l)

RESNMBR3 SMALLINT(4)

REST03 CHAR(8)

RESACTN4 CHAR(!)

RESNMBR4 SMALLINT(4)

RESID4 CHAR(8)

RESACTN5 CHAR(l)

RESNMBR5 SMALLINT(4)

RESID5 CHAR(8)

RESACTN6 CHAR(])

RESNMBR6 SMALLINT(4)

REST06 CHAR(8)

:ACTN *BLANKS -------

:NMBR *ZERO -------

:RESTO *BLANKS -------

:ACTN *BLANKS -------

:NMBR *ZERO -------

:RESTO *BLANKS -------

:ACTN *BLANKS -------

:NMBR *ZERO -------

:RESID *BLANKS -------

:ACTN *BLANKS -------

:NMBR *ZERO -------

:RESTO *BLANKS -------

USER

USER

USER
USER
USER
USER

USER

USER

USER

USER
USER
USER

0
0\

TO TYPE

FIELD

PROCPLANlD CHAR(20)

JSID CHAR(8)

RGID CHAR(8)

WHENRL SMALLINT(4)

BASEDCD CHAR(l)

START SMALLINT(4)

LENGTH SMALLINT(4)

TABLEID CHAR(8)

RSETUPID CHAR(8)

STEPTMRL SMALLINT(4)

STEPTIME FLOAT(l7)

Table 6

File Str ucture and Field Assignments for JS13VRXXX

VARIABLE FROM
FIELD

:PROCPN ORONO
:JSID OPSEQ
: RE SID 1 >: PPDESC WKCTR
:WHENRL 'l'

:BASECD 'P'

:START I I'

:LENGTH '40
:TABID *BLANKS

:RSETUP *BLANKS

:STRL13 '5'

:STTMl3 SELECT*

TYPE DATABASE

CHAR(7) MOROUT
CHAR(4) MOROUT
CHAR(5) MOROUT
--·----- USER
-·------ USER
------- USER
------- USER
------- USER
--·----- USER
------- USER
------- PROG

0
--.J

TO TYPE

FIELD

RESID CHAR(8)

DESCR CHAR(30)

RESTYPE CHAR(8)

SHIFTIDI CHAR(8)
SHIFTID2 CHAR(8)
SHIFTID3 CHAR(8)
SHIFTID4 CHAR(8)

SELRL SMALLINT(4)

SEQRL SMALLINT(4)

ALLOCCO CHAR(l)

MUSTCOMPFG CHAR(l)

MAXORUN FLOAT(l7)

SUMFG CHAR(I)

SCHEDFG CHAR(l)
FINALQFG CHAR(!)
LOADFG CHAR(l)

Table 7

File Structure and Field Assignments for RESRCXXX

VARIABLE FROM

FIELD

: RES ID>: RGID WKCTR
:RDESCR>:DESCR WCDSC
:RESTYP *BL
:SHIFTl FIRST OR *BL
:SHIFT2 SECOND OR *BL
:SHIFT3 THIRD OR *BL
:SHIFT4 *BL
:SELRL(2,0) 11
:SEQRL(2,0) *ZERO
:ALOCCD 'P'

:MSTCMP 'N'

:MAXOVR(9,3) *ZERO
:RSUMFG 'Y'

:RSCDFG 'Y'

:FINQFG 'N'

:RLODFG 'Y'

TYPE

CHAR(5)

CHAR(40)

----·---

DATABASE

WRKCTR

WRKCTR

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER
USER

0
00

TO
FIELD

RGID
DESCR
REALLOCFG
ALLOCRL
SUMFG
LOADFG
SCHEDFG
SEQNUM
RESIDI-20

Table 8

File Structure and Field Assignments for RESGRPXXX

TYPE VARIABLE FROM TYPE
FIELD

CHAR(8) :RGID WKCTR CHAR(5)
CHAR(30) :RDESCR>:DESCR WCDSC CHAR(40)
CHAR(l) :REALOC 'l'

SMALLINT(4) :ALOCRL *ZERO -------

CHAR(l} :SUMFG 'Y'

CHAR(l) :LOADFG 'Y'

CHAR(l) :SCHDFG 'Y'

SMALLINT(4) :SEQNUM CNTR -------

:RESI-20

DATABASE

WRKCTR
WRKCTR
USER
USER
USER
USER
USER
USER

0
'-0

BIBLIOGRAPHY

Cassis, Sarni. (March, 1994). The Agile Factory. APICS

Huber, F. Robert (1987). Simulate Integrate Innovate. Production.

Lankford, Ray (1994). Here's How To Integrate MRP II With Execution Systems.
APICS

Norman B. Van (January, 1991). Asking 'What If?' - Real Answers from Simulation
Software. Manufacturing Systems.

Yaeger, Judy (1993). Programming In RPG/400, Duke Communications International

110

	Design and Development of a User Interface between MAPICS/DB and Factor 5.2
	Recommended Citation

	tmp.1573589636.pdf.nu0Yq

