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APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS 

IN INTERACTIVE SIMULATION 

Payman Jula, M. S. 

Western Michigan University, 1996 

Although there have been many improvements in simulation technology over 

the past few years, it still suffers from many limitations. Simulation methods are 

usually time consuming and hence not suitable for the interactive decision making 

processes. 

In this project, applications of Artificial Neural Networks (ANNs) to simulate 

manufacturing systems have been studied. The backpropagation Multiple Layer 

Perceptrons (MLPs) have been applied to simulate manufacturing systems. Some 

guidelines for developing appropriate ANNs have been presented. The results of ANN 

approach have been compared to those of conventional simulation methods. 
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CHAPTER I 

INTRODUCTION 

Although the progress made in computer technology m recent years has 

provided more abilities and power, computers still are not able to solve most industrial 

problems. On the other hand, humans are able to realize systems, classify and 

recognize texts, pictures and voices in a short period of time. Currently computers do 

not have these features. These abilities have motivated scientists to research the way 

humans think and the methods that the human brain uses to analyze problems. The 

success of researchers in introducing Artificial Intelligence motivated them to develop 

similar fields such as Artificial Neural Network, Fuzzy Logic and Genetic Algorithm. 

Each of these fields has shed light on one part of the human's capabilities. Throughout 

history, human beings have been interested in the sciences which help them solve their 

problems. One of these problems is faced by industrial engineers when they use 

simulation. 

Simulation methods have the ability to manipulate large amounts of data, 

perform mathematical calculations and predict the performance of complex systems 

with some accuracy. But simulation methods are usually time consuming and hence 

not suitable for interactive decision making processes. In particular, if the decision 

makers are using the simulation on-line, they need to obtain the recommendation as 
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soon as possible. Furthermore, in many situations where the details of the system are 

not well known and only the input data and the output data are available, there is a 

need for a quick and rough estimation of the system's response to a new set of inputs. 

Unfortunately, traditional simulation methodology fails to respond to these particular 

situations. 

On the other hand, experienced individuals can occasionally predict the output 

of systems much better and faster than computers. Knowledge, experience and 

intelligence are factors that help these experts to out-perform computers. By 

mimicking the human capabilities in the computer, researchers have strived to modify 

the simulation methodology to make it more intelligent. One approach to intelligent 

simulation is through Artificial Neural Networks (ANNs). The capabilities of ANNs in 

parallel processing, learning, generalization, classification, pattern recognition and 

memorizing make them good candidates to enhance the simulation methodology. 

Furthermore, ANNs' adaptability makes them suitable tools for dynamic systems. The 

potential applications of ANNs in simulation can range from having a small role in a 

simulator to being a stand-alone substitute to the existing simulators. For the 

simulation of manufacturing systems, two approaches might be considered: ( 1) to 

create a library of modules of the manufacturing models and assemble these modules 

to build more complex models, and (2) to consider the whole system as a black box 

and try to find an ANN estimator for the system. 

Because the internal workings of ANNs are not clearly known, researchers 

have looked at the ANNs as black boxes that can be identified by their input/output 
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relationships. But several questions remam unanswered. For instance, what is the 

relation between the ANNs' inputs and outputs and the real world system? Are they 

the input and output of the real system, a part of the real system, or a combination of 

these? How can the ANNs be used instead of traditional simulation software 

applications and/or as a part of them? If the ANN concept can be applied to 

conventional simulation, what is the best architecture of the network? What is the best 

learning method? How many layers and nodes are needed?, etc. 

In this thesis, the applications of ANNs to the simulation of manufacturing 

processes are studied and their advantages and disadvantages are discussed. In an 

attempt to present a systematic approach to the application of ANN, this thesis 

surveys the existing literature and examines the learning methods and structures of 

ANNs. Additionally, to answer some of the above questions and contemplate some 

concerns on the applicability of ANNs to interactive simulation models, some 

recommendations are presented. Based on the suggested guidelines, first an MIMIS

queuing system is modeled by an ANN. This system shows the ability of ANNs in 

simulating static systems. The obstacles for the smooth operation are discussed to give 

the industrial engineers the feeling of a typical procedure of developing an appropriate 

ANN. Later, a simple manufacturing system is modeled using ANNs. This 

manufacturing system has stochastic behavior. Three approaches are suggested to 

capture its stochastic behavior. Finally, a modular approach is applied to this case and 

the results are critiqued. In brief, the manuscript is in this order: 

In Chapter II, existing simulation methodologies are briefly discussed, along 
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with the classification of systems and the procedure used to make a suitable model for 

the systems. 

In Chapter III, the basic concepts of ANNs, their learning rules and structures 

are reviewed. A useful structure and a learning method, which is used in later chapters, 

are explained. 

In Chapter IV, the existing literature on the application of ANNs in industrial 

engineering, especially in simulation methodology and related fields are reviewed. 

In Chapter V, some guidelines for implementing the appropriate ANN to 

simulating systems are presented. 

In Chapter VI, simple queuing systems are modeled by using ANN, as a first 

attempt in creating a library of ANN modules which can be used to model complex 

systems. The results and methodologies are explained. A simple manufacturing system 

is also modeled by three different ANN s. 

In Chapter VII, some suggestions for future studies in the field are offered. 

Computer source codes and bibliography are also attached. 
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CHAPTER II 

SIMULATION METHODOLOGY 

Introduction 

Human societies are challenged by more complicated problems than ever 

before. The real world problems are growing in size and complexity. The need to 

develop tools and techniques for solving these problems has led to the use of 

computers; simulation has become one of the most powerful and widely used tools. 

Simulation is a popular tool in the analysis and design of complex systems, and is a 

decision support tool in monitoring and controlling these systems. Simulation 

modeling is a valuable tool for engineers, system analysts and res�archers. It is a tool 

which aids managers in making decisions among different options. 

Simulation can be used to evaluate the performance of existing or proposed 

systems. It can be used to evaluate the design of a new system, or evaluate changes to 

an existing system. It can be used to test operating policies and control algorithms, 

when testing and experimentation with the real system would be too expensive, too 

disruptive or too risky. It also helps engineers to do sensitivity analysis to answer 

what-if questions. In this chapter, computer simulation and its basic concepts are 

defined. The application and procedure for development of models are surveyed and 

the limitations and pitfalls of existing simulation methodologies are reviewed. 
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Definitions 

A simulation model is a simplified representation of a system intended to 

enhance our ability to understand, predict, and possibly control the behavior of the 

system. In simulation terminology, "system" is "the collection of entities, e.g. people or 

machines, that act and interact together toward the accomplishment of some logical 

end" (Law, 1991). Pritsker (1986) defines computer simulation as "the process of 

designing a mathematical-logical model of a real system and experimenting with this 

model on a computer". 

For simulation modeling, the system should be presented in the forms which 

are acceptable to a computer. If a system can be presented by a set of variables, then 

manipulation of the variable values simulates movement of the system from state to 

state. Thus, simulation involves observing the dynamic behavior of a model over time. 

The state of a system can change continuously over time or at discrete instants in time. 

The observed output of a process will be either deterministic or stochastic. The basic 

concept of simulating a system portraying the changes in the state of the system over 

time for both discrete and continuous systems are the same (Pritsker, 1986). Law 

(1991) categorizes the simulation models as follows: 

1. Static vs. Dynamic Simulation Models: A static simulation model represents

a system at a specific time, or a system in which time is not important. A dynamic 

simulation model is a representation of a system which changes over time. 

2. Continuous vs. Discrete Simulation: A discrete system is one for which the
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state variables change instantaneously at distinct points in time. In continuous systems, 

the state variables change continuously over time. 

3. Deterministic vs. Stochastic Simulation Models: Deterministic model is the

one which does not contain any probabilistic (i.e. random) components. In these 

models, when the input values and relationships in the model are identified, the output 

is determined. On the other hand, a stochastic simulation model has at least some 

random input components. 

Applications of Simulation 

The applications of computer simulation have grown rapidly in the past four 

decades. Advances in computer technology along with the continuing development of 

simulation languages have been important factors in this growth. Simulation is an 

iterative experimental problem-solving technique that can be used at different stages of 

the process design and process control. Simulation models can be used at four levels 

(Pritsker, 1986): (1) as explanatory devices to define a system, (2) as analysis vehicles 

to determine critical issues, (3) as design assessors to synthesize and evaluate 

proposed solutions, and ( 4) as predictors to forecast and aid in planning future 

developments. 

Presently, simulation is widely used. A few examples are its application in 

manufacturing operations, project planning and control, health care systems, financial 

planning, environmental studies and transportation systems. Simulation makes it 

possible (Nuila, 1993): 
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1. To evaluate the performance before a newly designed system is operable.

Before construction, new manufacturing facilities must be laid out, supplied with 

material handling equipment, documented with operating procedures and cost justified. 

In this case, the real system does not exist and it is expensive, hazardous, or time 

consuming to build and experiment with a prototype. Simulation methodology is 

recommended as a powerful tool for evaluating the performance of the potential 

systems in an operations planning and design phase. 

2. To compare different operating strategies of a present system without

changing the system's settings. Within an operating facility, management must react to 

a rapidly changing environment to meet production objectives. Decisions on work 

order release, scheduling and staffing must be made in light of new orders, equipment 

availability, absenteeism and other factors. In most cases, experimentation with the real 

system is usually expensive, dangerous, or likely to cause serious disruptions. 

Simulation methodology is recommended as a powerful tool for evaluating the various 

strategies in an operations control phase. 

3. To expand or compress the system's operating time. Simulation is a useful

tool to study the past, present, or future behavior of the system in real time, expanded 

time or compressed time. 

4. To improve understanding of systems and enhanced communication between

different parties. 
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Simulation Languages and Simulators 

There are number of software packages specifically designed for simulation. 

The following are advantages of using such special-purpose packages when 

performing a simulation study (Shannon, 1970): (a) reduction of the programming 

task, (b) guidance in concept articulation and model formulation, ( c) aid in 

communication and documentation of the study, ( d) flexibility in embellishment or 

revision of the model, and (e) provision of the common support functions required in 

any simulation. 

Simulation packages can be categorized into two major categories: simulation 

languages and simulators. Simulation languages help analysts develop models by 

writing programs using the language's modeling constructs. On the other hand, 

simulators can be used to develop a model with little or no programming. Examples of 

existing simulation languages are Automod II, GPSS/PC, PCModel, SIMAN/Cinema, 

SIMSCRIPT 11.5 and SLAMSYSTEM. Examples of simulators are FACTOR, 

SIMFACTORY and PROMODEL. 

An appropriate package should be selected based on the requirements of the 

modeler and the features of the package. For a detailed analysis of an existing system, 

simulation languages are usually used. For an aggregate analysis of a proposed system, 

simulators are usually recommended (N uila, 1993). The desirable features of the 

packages depend on the specifics of the problem, but can be categorized into (Law, 

1992): (a) general features, (b) animation capability, (c) material handling capability, 
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(d) statistical capability, (e) report capability, and (f) customer services. Emshoff and

Sisson ( 1970) listed the following support functions as required for any simulation 

language: (a) generation of random variates, (b) management of the simulated clock, 

(c) collection and recording of output data, (d) summarizing and statistical analysis of

output data, (e) detection and reporting of error conditions, and (f) generation of 

standard output reports. These supporting functions are required for simulators as 

well. 

Procedure for Developing a Model 

The main purpose of modeling is to establish interrelationships between entities 

of a system. The process for the successful development of a simulation model consists 

of (Nuila, 1993): 

1. Problem formulation: Stating the problem clearly, logically, and

unambiguously is the first step in building a model. Simplicity is an essential criterion 

of a good model. Manpower, time and cost should be studied in this phase. Models are 

expressed in terms of (a) goals, (b) performance criteria and (c) constraints. 

(a) Goals: The goals are the objectives the modeler is trying to achieve. For

example: maximize throughput; reduce work-in-process; and reduce the work-force or 

maintain it at a fixed level. 

(b) Performance criteria: The criteria are the specifications by which different

alternatives are judged. For example: throughput which should be maximum; and 

work-in-process which should be minimum. The goals usually can be considered as 
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performance criteria. The more goals achieved, the better the system performs. 

(c) Constraints: The constraints are the limitations that control the availability

of different resources. Possible candidates are restrictions on availability and/or the use 

of men, machines, money, time, space and data. 

2. Model building: In accordance with the problem formulation, the system

should be expressed into mathematical-logical relationships. 

3. Data acquisition: This step includes the identification, specification, and

collection of data. The required data for specifying input parameters and probability 

distributions should be collected. It is necessary to characterize the random elements 

of a system by particular probability distributions. To select an appropriate distribution 

for an input process, the analyst must understand some of the basic properties of the 

common distributions and the circumstances in which those distributions arise. 

Another set of data should be gathered for validation. The performance criteria 

measures are usually selected for this purpose. 

4. Model translation: The model should be presented in a way that is 

acceptable to the computer. The modeler should decide which computer software is 

suitable for the model. e.g., a general purpose language program; a simulation 

language; or a simulator. 

5. Verification: In this step, the modeler verifies that the implemented

computer program executes as intended. Most common techniques for verification 

include: (a) developing the program in a modular manner, (b) checking the output for 

any questionable results, (c) using interactive debuggers and traces to locate mistakes, 
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( d) systematically going through the program and check the codes in each step, and ( e)

using animation to observe the system's behavior. 

6. Validation: In this step, the modeler checks if the desired accuracy between

the simulation model and the real system exists. Most common techniques for 

validation include: 

(a) The animation should be used to observe the system's behavior,

(b) For an existing system, steps should be taken to ensure that the model's

performance measures closely follow those of the existing system. The model should 

then be modified to include the proposed changes, 

( c) For a new system, the model performance measures should almost be the

same as the proposed method, 

(d) The techniques such as goodness-of-fit test should be applied to ensure

that the computer program's output resembles output data taken from the actual 

system. 

7. Strategic and tactical planning: The experimental conditions for using the

model should be established in this step. The analyst must specify the appropriate 

choice of: (a) the length of each simulation run; (b) the number of independent 

simulation runs; (c) the initial conditions for each simulation run; and (d) the length of 

warm up period, if required. 

8. Experimentation: The simulation model should be executed. The obtained

output should be saved and shown in an appropriate way. 

9. Analysis of results: The simulation outputs should be analyzed and
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recommendation should be made for solving the problem. 

10. Implementation and documentation: Finally, the decisions should be

implemented and the model and the results should be documented for further study. 

No simulation process should be considered complete without its documentation for 

future implementation. 

Simulation's Limits and Pitfalls 

Along with widespread use of simulation has come a great deal of misuse. A 

few of the reasons for this widespread abuse are (Nuila, 1993): 

1. The simulation always simulates something, but there is no reason it should

simulate what the simulator had in mind. 

2. Sometimes, computer outputs are taken as gospel truth.

3. Simulation languages have succeeded in making it easier to achieve

impressive simulations, without making it easier to achieve valid simulations. 

4. The promise of simulation is so great that it is easy to confuse hope with

achievement. 

Furthermore, even the suitable models suffer from some limitations. A well 

developed simulation model is expected to help researchers do tasks such as sensitivity 

analysis, optimization study and answer inverse questions. Unfortunately, the dynamic 

nature of simulation models makes them time consuming, especially when long runs 

and/or several replications are needed. Each run of a stochastic simulation model 

produces only estimates of the model's true characteristics for a particular set of input 
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parameters. Thus, several independent runs of the model will be required for each set 

of parameters to be studied. This makes simulation a slow iterative experimental 

problem-solving technique. So, simulation is not a fast technique for such tasks as 

optimization and sensitivity analysis. 

Specifically, simulation techniques fail when the factor of time becomes 

important. In many cases, there is a need for the recommendations to be offered as 

soon as possible. For example consider a system which is supposed to reach a goal at a 

certain time. Unfortunately, because of unforeseen circumstances, the system is short 

of the goal. Thus, there is a need for recommendations to correct the system to catch 

up with desired schedule as soon as possible. The possible approaches to solving the 

problems caused by computational burdens of simulation are to obtain more powerful 

hardware, rewrite simulation to more computationally efficient way or develop fast 

approximations to simulation. In many cases, the first and second approaches have 

already been taken or were impractical due to lack of capital funds or the availability 

of simulation programmers. Thus, the third approach, approximating computer 

simulation, needs to be examined (Kilmer, 1996). 

Simulation models are often expensive and time-consuming to develop. The 

relation between independent and dependent variables and the internal workings of the 

system should be very well known. The modeler should analyze the statistical behavior 

of the inputs and the system. Analyzing the internal part of a system is not always easy. 

There are some situations where the input and the output of the system are available in 

the form of databases. For example, the number of workers and the number of 
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machines in a shift can be considered as the input, and the throughput of the system 

can be considered as the output of the system. There is a need to find the output of the 

system from the set of new inputs which are not in the database. 

Artificial Neural Networks are good candidates for solving the above 

mentioned problems of simulation. Within the next chapters, the capabilities of 

Artificial Neural Networks to solve the simulation's limitations will be discussed. 
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CHAPTER Ill 

ARTIFICIAL NEURAL NETWORKS 

Introduction 

Artificial Neural Networks are one of the most important research subjects in 

recent years. Although there were a few practical applications of neural networks up 

to the late 1980's, the number of applications of ANN is amazing now. Currently, 

many engineering fields are trying to find innovative ways in which to use the Artificial 

Neural Networks in their real world applications. The capabilities of Artificial Neural 

Networks in parallel processing, learning, generalization, classification, pattern 

recognition and memorizing make them play important roles in industry, business and 

science. 

The capabilities of ANNs are due to their simple-nonlinear computational 

elements which are parallel and densely interconnected. These computational elements 

are connected as networks through the use of weights. ANNs usually do their tasks by 

changing some of these weights. Instead of serial and sequential or systematic and 

algorithmic methods, which are common in the new computers, an ANN chooses 

parallel and non-systematic methods, as the human brain does. These characteristics 

make ANNs good candidates for solving experimental, multiple input-multiple output 

and non linear problems. Therefore, the "ANN" term is used to describe different 
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structures of processing elements, which introduce a new method of calculation. The 

main goal of ANN research is not to introduce machines which are able to do 

arithmetic calculations faster than the existing computers. Rather, the goal is to 

introduce machines which can be used in those fields that human beings perform better 

than computers do. So, the ANNs are complements of existing computers rather than 

their competitors. 

In this chapter, natural neurons and their corresponding artificial neurons are 

discussed. Different network structures and learning rules are explained. Finally, 

Multilayer Perceptron (MLP) networks, which will be used in other parts of this work, 

are discussed. 

Natural Neurons 

In this section a simplified sketch of a natural neuron is described. There are 

four important parts in a biological neuron: (1) a neuron cell body called Soma, (2) 

branching extensions called dendrites, (3) an axon that carries the neuron's output to 

the dendrites of other neurons, and ( 4) synapses which connect different neurons 

together. 

The soma contains the cell nucleus, various bio-chernical factories and some 

other components. A neuron operates by receiving signals from other neurons via 

dendrites. The combined stimuli from these input signals, in excess of a certain 

threshold level, activate a region called an axon hillock, where an outgoing tendril 

called an axon connects to the cell body. The axon then transmits the neuron's output 
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to other neurons through their dendrites. To transfer from destination neuron to target 

neuron, the signals pass a region called the "synapse region". In this region, these 

signals are controlled by biochemical agents. This process is usually modeled in 

electronic neurons by the changing of weights. The synapse represents the junction 

between an axon and a dendrite. The process of thinking is actually the collective 

effect of the presence or absence of firings in the pattern of synaptic connections 

between neurons. Figure 1 shows the simplified sketch of a natural neuron. 

Dendrites
\ 

Axon hillock 

Figure 1. A Biological Neuron. 

Dendrites from 
another neuron 
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At rest, the neuron's electrical potential is around 40-60 millivolts. In the firing 

process, the potential will raise to 90-100 millivolts. This prompts a change in the 

potential, creates an electrical impulse which travels between 0.5 to 100 meters per 

second and lasts for about 1 millisecond. The neurons can not fire continuously. They 

need to take a rest - at least 10 milliseconds - before they can fire again. 

If the signal speed or rate were the criteria for comparing the performance, the 

electronic computers would beat the human brain. With a speed of 200,000,000 

meters per second and a switching rate of 100,000,000 per second, today's computers 

have a 2,000,000 fold advantage in signal transmission speed and a 1,000,000 fold 

advantage in signal repetition rate. But the factors that make the human brain think, 

are not solely the signal's speed or the rate of firing of neurons. 

Although the neuron's switching time is about a million times slower than 

current computer elements, they have a thousand fold greater connectivity than today's 

super computers. It is estimated that the human nervous system contains over 100 

billion (10
11

) neurons and 1014 
synapses. Studies of brain neuroanatomy indicate more 

than 1,000 synapses on the input and output of each neuron. Therefore, the human 

brain is not as quick as an electronic computer at arithmetic, but it is many times better 

and more capable at pattern recognition, learning and intelligence. 

Artificial Neurons and Networks 

An ANN is characterized by three characteristics: (1) basic processmg 

elements, (2) topology or structure, and (3) learning rules. These are described next. 
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Basic Processing Elements 

The Processing Elements, which are used in the network, usually are called 

"neurons", "nodes" or "units". In Figure 2, a simplified artificial neural model is shown. 

This model consists of multiple inputs and multiple outputs. Each input is multiplied by 

a weight. The neuron will combine these weighted inputs and, with reference to a 

threshold value and activation function and output function, use these to determine its 

output. 

A new activation of the unit is computed from the output of preceding units 

with the current unit, the old activation of the unit and its bias. In many of the existing 

ANNs, the net function computes the net value simply by adding weighted activation. 

Then, the activation function converts the results with a function. A general neural 

model is shown in Figure 3. 

0 

W2 

Input 
-------1 _f Output 

net a 

Figure 2. A Simplified Artificial Neural Model. 
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Legend. 

Figure 3. 

e 

Input 
net 

f(.) 1-----t g(.)

a 

The net value is represented by a net function u(.) and activation 
function is shown by f(.) and output function by g(.). 

A General Artificial Neural Model. 

The general formula for activation function is: 

Where: 

fact 

aj(t) 

net1 (t)

activation function of unitj 

activation of unit j in step t

net input in unit j in step t

With the additive net function, the net input net1 (t) is computed with 

Output 

(1) 

(2) 

For example, fact (x)=ll(l + e-x) yields the well-known logistic (sigmoidial) 
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activation function. The activation function is shown as: 

a/t) 

net1 (t) 

O;(t) 

J 

1 
a(t+ 1) = --=-----< I, W

ij
O;(f )-0 j) 

l+e 

activation of unit j in step t 

net input in unit j in step t 

threshold (bias) of unit} 

output of unit i in step t 

index for some units in the net 

index of a predecessor of the unit j 

weight of the link from unit i to unit j 

(3) 

The output function computes the output of every unit from the current activation of 

the unit. The output function makes it possible to process the activation before an 

output occurs. 

a/t) 

o/t) 

j 

o/t) = g ( a/t)) 

activation of unit} in step t 

output of unit j in step t 

index for all unit in the net 

(4) 

Since the output function is usually set to identity function, many researchers combine 

the f and g function together. The output function has been addressed in this work due 

to consistency with the software used for modeling the neural networks. 
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Structures of ANNs 

The neurons themselves do not have as much ability to perform as we expect 

them to. The connections among neurons, which are called weights, make them 

powerful to do their jobs. All ANNs perform essentially the same function: they map 

vectors. In this process, they accept a set of inputs (an input vector) and produce a 

corresponding set of outputs (an output vector). As shown in Figure 4, a vector 

mapper produces a set of outputs according to the input set and the mappmg 

relationship encoded in its structure (Wasserman, 1993). Examples of input vector in 

manufacturing system are number of machines, number of workers and processing 

time. Throughput and Work In Process are examples of the output vector. 

Figure 4. 

Input 

Vector 
ANN 

Output 

Vector 

An Artificial Neural Network as a Vector Mapper. 

The structure of the connections between the nodes are very important. Two 

main categories of network topologies are: (1) Feed-Forward Nets, and (2) Recurrent 

Nets. 
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Feed-Forward Nets 

In these networks the signals flow only from input to output. Feed-forward 

networks have no memory, they are capable of implementing only static mappings. 

The mapping relationship between input and output vectors are static when each 

application of a given input vector always produces the same output vector 

(Wasserman, 1993). From a mathematical point of view, feed forward static networks 

are nonlinear functions in the form of y = G(x), where x E R", y E [0,1] m or y E R m ,

where m and n are integers that represent the dimensions of x and y (Hush, 1993). 

One of the most important feed forward static networks is the Multiple Layer 

Perceptron (MLP) network. This network will be explained later in this chapter. 

Recurrent Nets 

In these networks the signals can flow forward and backward. Adding 

feedback to feed-forward networks makes them recurrent. Recurrent networks have 

memory and they are suitable for estimating dynamic systems. Dynamic systems are 

the systems where the output produced depends upon previous, as well as current, 

inputs and/or outputs. Dynamic networks' node equations are typically described by 

differential or difference equation. The Hopfield network is an example of recurrent 

nets. 

Although the MLPs are used for processing static systems, they are also able to 

process time series data. This application will be elaborated later in this thesis. 
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Learning Rules of ANN s 

Using an ANN has two phases: the learning phase and the recall phase. In the 

learning phase, the network learn the behavior of the system based on the training 

data. In the recall phase, the trained network tries to estimate the response of the 

system to a new set of data. These two phases can also occur simultaneously. In these 

cases, the network will learn the pattern on-line and meanwhile it will recall the 

patterns based on its previous experiences. By automatic adjustment of coefficients 

and parameters of the network, an ANN can be trained. This process is usually called 

Learning Algorithm which usually consists of the changes in the network's weights. By 

this definition, the Learning Algorithm does not change the structure of the network. 

Extensive research has been done for developing the new learning procedures 

which train the ANNs through changing the number of layers or neurons. These 

techniques can be divided into three main categories (Bebis, 1995): pruning, 

constructive and weight sharing. Unfortunately, there is no mathematical or heuristic 

solution for optimization of the number of neurons, links and layers. Currently, 

Genetic Algorithm is a promising approach in this field. Throughout this thesis, only 

changing of weights will be considered as the learning method. In the next chapters, 

some recommendations for optimizing the performance of ANN through changing the 

number of layers and neurons will be offered. 

There are two main approaches for learning m an ANN: (1) Supervised 

Learning, and (2) Unsupervised Learning. 
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Supervised Learning 

In this method, the network is trained on training sets consisting of input­

output vector pairs. One vector is applied to the input of the network and the desired 

results are considered as output of the ANN. These output signals are usually called 

"teacher" or "supervisor". The teacher is responsible for teaching the network until the 

desired output is obtained. The training is an iterative process. In each iteration, the 

network is trained by adjusting tJie weights so as to minimize the difference between 

the desired and actual output. Each iteration is called an epoch. After training, the 

performance of the network is criticized based on its power of generalization. The 

backpropagation is an example of supervised learning method. The concepts and 

terminology of supervised learning are explained later in this manuscript. 

Unsupervised Learning 

In this method, sometimes called self-organizing, there is no output reference 

for ANN and only input vectors are needed to train the network. The learning process 

is usually done based on local information and internal signals. During the training 

processes the network weights are adjusted so that similar inputs produce similar 

outputs. Kohenen and ART are among those networks which use this method. 

Recently, other methods, which are usually implemented when there is not much 

information available, have become popular. For example the "Reinforcement method" 

(Berenji, 1992) uses reward and punishment signals for getting the best results. 
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Since in the most simulation projects some inputs and outputs of systems are 

available, supervised ANNs, either feed-forward or recurrent, are usually 

recommended. For more information about the learning methods in linear networks 

please refer to (Baldi, 1995). Among the varieties of ANNs, only fully connected 

Multilayer Perceptron networks are used and explained in this thesis. 

Multiple Layer Perceptrons 

Multiple Layer Perceptrons (MLP), sometimes called multilayer perceptron, 

networks are feed-forward static ANNs. An example of MLP is shown in Figure 5. 

Figure 5. 

Inputs 

Hidden Layers 

First 
Layer 

Second! 
Layer 

Output 
Layer 

Three Layer Perceptron Neural Network. 

In this kind of network, the input vector is applied to the first layer and the 

output of the first layer is connected to the second layer and so on and so forth. In the 

fully connected MLP, each neuron in layer l is connected to each neuron in the layer 

l+ 1. Figure 5 shows a three layer perceptron which has one input, one output and two
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hidden layers. In some literature, the first two layers are called hidden because they are 

hidden from input and output. For consistency, it is suggested to name the ANNs 

based on their hidden layers rather than considering their inputs and output layers. For 

example, Figure 5 shows a two-hidden-layer network. 

The Capabilities of Multiple Layer Perceptrons 

Fully connected MLPs are able to perform these tasks: 

1. Provide all Boolean logic functions. The two layer MLP is able to perform

all logical functions (Hush, 1993). 

2. Partition the sample space in classification problems. The MLP with one

hidden layer is able to divide every convex region. For classification of both convex 

and concave regions, an MLP with two hidden layers is enough (Lippmann, 1987). 

3. Perform all kinds of nonlinear mapping in functional approximation

problems. The MLP is able to estimate and model every nonlinear mapping with the 

desired degree of precision in a Rn space (Hornik, 1989). 

The Learning Algorithm for Multiple Layer Perceptron 

For many years the most important problem of MLPs' learning was the 

adjustment of the weights of hidden layers in the network. Rumelhart ( 1986) 

introduced a method for solving this problem. This method, called backpropagation, is 

based on the steepest descent method. In the backpropagation, a sample of output 

error will be propagated in the entire network and it will be used as a reference for 
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adjusting the internal weights of network. Figure 6 shows an MLP network. 

Yo,o 

Yo., 

Yo,2 

Yo,J 

Figure 6. 

Where: 

Ut,J 

YtJ 

Wt,J,i. 

L 

p 

Y2,1 

+ 

CJ +-T-ct, 

y2,2 

+ 

£2 +-r 
A Two-Layer MLP.

The weighted summation of jth neuron in the layer l.

The output of }th neuron in the layer L.

d2 

The weight which connects the ith neuron of layer /-1 to }th neuron of 

layer l.

The pth input pattern of the training set. 

The desired output of }th neuron for the pth input pattern. 

The output error of jth neuron for the pth input pattern. 

The number of neurons in the layer l.

The number of layers. 

The number of learning patterns. 

For simplicity, this network is composed of only one hidden layer. The input layer is 
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called layer zero. For example, y0,1 is a notation for the first input of the pth pattern. 

Thresholds are considered as neurons number zero with input value of one. So, 

w1,J,o is the weight of lth layer, connected to jth unit of that layer, with the input of y1,0 

=1. In Figure 6,f(x) is a continuous function andf '(x) is its derivative with respect to 

X. 

Yt.J =f(u1) 

N1-1 

Ut,J = L w,.1,;Y1-1,; 
i=O 

(5) 

(6) 

Equation (6) represents the error of qth output to the input pattern U
p
. The total 

squared error to the input pattern U
p 

will be: 

NL 

E
p 

= 112 L£2q (U
p
) (7) 

q=1 

This error can be generalized over all input vectors in the sample space. This generates 

a global error function. This function, which is the total error of the network for all of 

the patterns, is called Sum-of-Squared-Error Criteria Function and is shown as: 

J = "E L.. p 

p=l 
(8) 

J is the goal function which is desired to be minimum. With the help of the gradient 
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method, weights of the network will be adjusted in such a way that fulfill this desire. 

To reach this goal, it is necessary to minimize the total error of the network to the 

input U
p 

in each iteration. This means that for a given input pattern to the network 

( U
p
) the weights should be adjusted in a way that minimizes the error of the 

corresponding output. 

From steepest descent method (Hush, 1993): 

a1 
�w1 (k)= w1 .(k+l)-w1 (k)=-11- I 

,],I ,],I ,].I a W 
w=w(k) 

f aE/J I�wl ,j.Jk) = -11.L.., a W=w(k) 
p=I Wl,j,i 

(9) 

(10) 

In the above formulas, 11 is a positive constant which is called learning rate. Using the 

Chain Rule: 

a E JJ a E
/J 

a Yt ,j 
--=--*--

aw
, 
.. aY1 · aw1 ·· ,],I ,] ,],I 

a Yt . a Yt . a ul .
__ ,]_= __ ,] *--'-] 

aw1
·· au{ . aw

, 
.. 

,],I ,] ,],I 

aul ,j _ a �, 
-- --- .L., wI,j,i Y1-1,; = Y1-1,; a Wl ,j,i a Wl ,j,i i=I 

From (5) and (11) it can be concluded that: 

a Yt ,j -a--= f ( ul,j) Yt-1,i
Wl ,j,i 

(11) 

(12) 

(13) 
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(14) 

aE 
The term __ P_ expresses the sensitivity of E

P 
to the output of the node Yi,j .This

d Y1 ,j 

node affects the E
P 

through the nodes which belongs to higher layers. Therefore, it

can be expressed as a function of the sensitivities of the higher layers' neurons. 

a E N,+, a E a y 
__ P = I P • l+l,m 

d Y1,j m=I d Y1+1,m d Y1,j 

d Y1+1,m _ d Y1+1, m d ul+l,m 

d Y1,j d ul+I m 
. d Y1,j 

d Ul+l, m 

= _d_ � L-J wl+l,m,q Y1 ,q = wl+l,m,j 
d Y1,j d Yu q=O 

d Y1+1,m 

f '( ) 
d 

= Ul+l,m · Wl+l.m,j 
Y1,j 

-:-.. E N,+, a E 0 JJ � p ' -
d
-

= L-J 
d 

· f ( Ul+l,m ). Wl+l, m ,j 
Yu m=I Y1+1,m 

(15) 

(16) 

(17) 

(18) 

(19) 

a E
l' So, the sensitivity can be expressed based on the next layer's sensitivity, 

d Y,.m 

aE 
__ P_ . This process can be continued up to the last layer which is the output layer.

d Y1+1,m 

In this layer the boundary conditions exist. From Equations (6) and (7): 

32 



(20) 

The expression m Equation (20) is called the output error, and the 

corresponding expression for hidden layer nodes in Equation (19) is referred to as the 

hidden layer error. Since the hidden layer error is calculated from the output error 

backwards, it is called "backpropagation error" and the algorithm is known as 

"Backpropagation Algorithm". By the help of this algorithm, all of the network's 

weights will be adjusted. 

The learning parameter, 17, is usually a constant for the whole network and 

defined in the open interval (0, 1). There are several other methods for setting 17. Some 

of them suggest different values of 17 for each layer. The other methods prefer big 

values of 17 at the beginning of the learning process, continuing with small values as 

the learning process goes on. Choosing different values of 17 for each neuron is another 

option. Basically, selecting the right value for 17 is not easy and usually is done based 

on trial and error. Speed and performance of MLP radically depends on the values of 

17. In some circumstances, wrong values of 17 make the network's output unstable and

divergent. One of the approaches for solving this problem is to make the 17 adaptive. It 

has even been suggested to make 17 adaptive with fuzzy logic sets. The simplest and 

most popular approach is to add a "Momentum" term to each weight update. 
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a.!).w(k) = a.(w( k )- w( k -1)) 0-<a -<l (21) 

In this formula, a is the coefficient of momentum. Adding (21) to (9) makes the 

variation of weights smoother. 

Generalization 

After the learning phase, the performance of the network is usually criticized 

based on its generalization power. Generalization is the network's ability to produce 

accurate results on new samples which do not belong to the training set. The 

Generalization depends on these factors: (a) the number of training points in the 

training phase, (b) the sequence and the nature of training data set, (c) the complexity 

of the system which is under consideration, and (d) the structure and size of ANN. 

Limitations of MLPs 

1. Currently, there exist no deterministic or heuristic method for choosing the

best structure and optimum number of neurons and layers. If the network's size is 

small, the network will lose its ability to approximate a good model of the system. If 

the network's size is big, the number of local minima will increase and the speed of the 

network will rapidly decrease. 

2. There is no evidence that the network will be able to learn the mapping

function. Although the number of input sets might be very high, there is no guarantee 

that the weights will reach unique numbers in a reasonable amount of time. 
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3. The local minima problem in the perceptron networks has not been solved

yet. This problem is due to the gradient method which intrinsically will stop and stay in 

the local minima. The method of choosing the nonlinear forms of elements, in the local 

minima problem, is very important. The more linear the activation function, the less the 

number of local minima. However, smooth nonlinearity is required by backpropagation 

technique. Figures 7, 8 and 9 show the Mean Square Error (MSE) surfaces of E[(£)
2
] 

as function of two weight values in a one layer perceptron based on different 

activation functions (Widrow, 1990). 

Figure 7. MSE Surface of Linear Error. 

In Figure 7, the activation fu,nction is a linear function. In this case, the global 

minimum is accessible through the gradient method. Figure 8 shows the hyperbolic 

tangent activation function. This function is a nonlinear function but differentiable. In 

this function, selecting the right values for the gradient steps is very important and 

gaining the global minimum is possible, but of course not as easy as in the previous 
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one. In Figure 9, a threshold function has been considered. 

Figure 8. MSE Surface of Sigmoid Error. 

Figure 9. MSE Surface of Signum Error. 

This function is not differentiable and nonlinear. As shown, there are many 

local minima and gaining the global minimum is almost impossible. Many methods, 
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such as Boltzman Machine and Simulating Annealing, have been suggested for solving 

this issue. 

4. The backpropagation method is slow. this method usually takes time in the

perceptron networks because of local minima, network size and the small initialization 

values. Increasing the values of Tl, is among the suggested methods for overcoming 

this limit. Although, it may make the network unstable. 

Some guidelines on building good structures of MLPs will be suggested in 

Chapter V. Setting the parameters and variables will also be discussed. 
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CHAPTER IV 

LITERATURE SURVEY 

Introduction 

The first simulation systems were mechanical and performed mathematical 

operations using combinations of gears and machines. In the late 1970's the 

microprocessor became a reality and greatly enhanced the role of simulation, 

permitting it to evolve from being a physical tool to acting as a mean for performing 

numerical analysis. Now, simulation methods have the ability to manipulate large 

amounts of data, perform mathematical calculations and predict the expected 

performance of a real system. Concurrent with the increased capability and flexibility 

of the simulation was the expansion to many continuous and stochastic processes 

including material handling systems, food-processing operations, health care systems, 

etc. 

But simulation methods are time consummg and expensive m terms of 

computer time. Experiments must be repeated in full if new conditions require re­

evaluation. When this is combined with the number of scenarios that the decision 

maker has in mind, make the total number of runs prohibitively high, rendering the 

simulation unattractive. Researchers have addressed this traditional problem as 

"computationally expensive" (Flood, 1995), "expensive in terms of processing time 
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and/or money requirements" (Kilmer, 1993), "resulting in computing costs" (Pierreval, 

1992), etc. 

In an attempt to solve this problem, a few researchers tried to change the 

simulation methodology to the method that human beings use for interpreting the 

systems in order to make the simulation "intelligent". Artificial Neural Networks 

(ANNs) is among the techniques that have been used to improve the performance of 

the simulation of manufacturing systems. 

In this chapter, first the general applications of ANNs are briefly reviewed. 

Two areas of applications of ANNs in industrial engineering are explained. Then, some 

of the literature on application of ANNs in simulation are classified and discussed. 

Similar attempts in other fields and the articles which may be useful in some aspects of 

simulation are also reviewed. 

Applications of ANN s 

Although there is no reported practical application of ANNs in industries up to 

the late 1980's, the number of applications in industry, business and science in the mid 

1990's is amazingly high (Widrow, 1994). ANNs are not able to compete with 

conventional techniques at performing numerical operations. However, they are useful 

for tasks involving ambiguity such as handwritten character recognition and speech 

recognition. The capabilities of ANN in pattern classification, prediction, control and 

optimization have been demonstrated by scientists. Most of these studies are based on 

articles published by Hopfield (1984), Rumelhart (1986) and Lippmann (1987). 
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Application of ANNs in Industrial Engineering 

In the domain of industrial engineering, the application of ANNs in quality 

control, optimization and resource allocation have been reported by Widrow (1994). 

One area of using ANN in industrial engineering is in Grouping Parts. 

Grouping Parts allows design and manufacturing to take advantage of geometric shape 

similarities between the parts. Chung and Kusiak (1994) use the recognition of objects 

for identification, classification, verification and inspection tasks in manufacturing. 

They have developed a feed forward - back propagation ANN to classify the parts 

based on their geometry. 

Another area is job shop scheduling. Job shop scheduling is a resource 

allocation problem. The resources are called machines and basic tasks are called jobs. 

Foo, Takefuji and Szu ( 1995) investigate the applicability of ANN for solving job shop 

scheduling problems. They have used a hardware consisting of linear and nonlinear 

processors in their survey. Sim, Yeo and Lee (1994) try to apply an expert neural 

network to the dynamic job shop scheduling problem. The authors believe that the 

major disadvantage of the ANN, as compared to the knowledge based system, is its 

inability to explain the factors and decisions made in arriving at the solution. The 

expert neural networks system integrate the expert system and neural network to take 

advantages of both methods. They propose a network consisting of several sub parallel 

nets. The expert system activates sub networks according to the prevailing job shop 

environment. They have found that ANN can be used to meet the changeable demands 
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on production scheduling. 

The job shop scheduling problem can be modeled by mixed integer-linear 

programming. Thus, the proposed approaches for solving this problem open up the 

application of ANNs in Operations Research and Linear programming problems. 

Application of ANNs in Simulation 

In the field of simulation, most researchers have applied ANN to simulate a 

process, a machine or a function without writing much about the procedure of building 

their network. In these cases, the readers find the ANN a useful tool in simulating a 

particular process but not applicable to the other problems, even to similar ones. On 

the other hand, there are a few articles which systematically approach how to build 

ANNs' models. 

In this section, first the literature on the application of ANNs in simulation is 

surveyed. Some of this literature is about a particular application. The others talk 

about the general idea of application of ANNs in simulation. Then, the articles which 

have different approaches to the problem are reviewed. The similar attempts in using 

ANN in fields other than manufacturing engineering are the subject of the rest of this 

chapter. 

Wildberger (1989) has made one of the first attempts in this field. He has 

studied the use of neural networks in enhancing the performance of a power plant. He 

has discussed the possibility of replacing an artificial intelligent system with neural 

network. The system assists operators and performance engineers in improving plant 
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efficiency in real-time (1992). 

In a systematic attempt to apply ANN to simulation methodology, Fishwick 

(1989) compares the ANNs' performances with traditional methods such as linear 

regression and surface response. He has developed a neural network for simulating a 

ballistics model and, based on the results of his experiment, the neural net model 

appears to be inadequate in most respects. The result of ANN in comparison to the 

other two methods is so poor that he comes to the answer "NO" in reply to the 

question "Are neural network models useful as simulation models?". But, later 

literature shows more promising prospects for applications of ANNs in simulation. 

Lampinen and Tai pale ( 1994) present a neural network based system for 

estimating the final quality of paper from process measurements. They have realized 

that the final quality of paper depends on many process variables. Furthermore, it is 

very difficult to find theoretical rules of the behavior of paper properties when 

variables depend on each other. To solve these problems, they have suggested an MLP 

network to simulate and optimize the paper manufacturing process. 

Sarne and Postorino (1994) use a supervised backpropagation ANN for 

simulating at each instant the values of traffic flows in a real transportation network. 

They have realized that the ANN can resolve both random aspects and the presence of 

a cyclic dependence among the variables of the problem. 

Padgett and Roppel (1992) offer a systematic approach m prospective 

application of ANN to simulation. Based on their article, rapid computation, 

robustness and adaptability of ANNs are the main factors that make ANNs a good 
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candidate for simulation. They have pointed out that ANNs require fewer assumptions 

and less precise information about the system modeled than do some of the more 

traditional techniques. The authors suggest a design technique for a neural network 

simulation model and briefly explain how each step of this design may be implemented. 

Their suggested procedure has four steps: (1) definition of global system goals, (2) 

algorithm selection and design, (3) implementation and constraints, and (4) evaluation 

and performance measures. The necessity of examining the ways to integrate neural 

network with fuzzy logic, genetic algorithms, expert systems and other tools for 

knowledge based systems designers, has been addressed in their article. 

Researchers have different approaches to the application of ANNs in 

simulation. Sometimes, they look at the same problem from different perspectives. 

Furthermore, ANNs have been used in a variety of fields in different applications. 

Some of these approaches can be applied to simulation of manufacturing systems as 

well. Thus, a classification of these approaches is presented here. Specifically, these 

categories are reviewed: (a) ANNs as map operators, (b) ANNs and metamodeling, (c) 

ANNs as a part of simulation software, (d) ANNs in statistics, and (e) ANNs in 

consultant projects. 

ANN s as Map Operators 

One approach to simulation methodology is to consider computer simulation as 

a map operator which maps a set of inputs to a set of outputs. In this approach, the 

input vector will be mapped to the output vector through a function which will be 
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provided by an ANN. ANNs have been known as a promising method of mapping 

vectors (Wasserman, 1993). 

In an attempt to compare ANNs and multiple linear regression as two methods 

of mapping functions, Kilmer and Smith (1993) conduct an experiment of 

approximating a lot size-reorder point inventory system simulation for estimating mean 

total cost. The authors compare the ANN with the type of multiple linear regression 

typically used in the response surface method. In their experiment, the authors first 

produce the output with a traditional simulation language and assume that these 

outputs are perfect. Then, they try to compare the result of the ANN with the 

regression method. They conclude that regardless of training on mean data or on 

individual replication, the ANN outperform the corresponding regression models. 

The authors conduct another experiment for calculating mean and variance of 

the total cost of a similar case (1994). They have labeled their approach as a 

metamodeling technique for discrete event stochastic simulation. This article will be 

reviewed next. 

ANN s and Metamodeling 

One of the approaches for applying ANNs to simulation is to simplify the real 

system and reduce the number of inputs and outputs of the model, without loss of 

generality. In this method, researchers try to simplify the real systems into smaller 

models in which only a selected subset of input variables will be considered. This 

method, called metamodeling, was first proposed by Blanning (1975) and later was 
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extensively used by many other researchers (Kleijnen, 1992), (Friedman, 1989). The 

application of this method as a post-simulation analysis tool has been discovered by 

researchers (Friedman, 1988). A review of published papers on the application of 

metamodels in manufacturing from 1975-1993 can be found in Yu (1994). Most of the 

researchers, especially those who want to predict the .output of the. real system based 

on the output of ANN, have used the metamodeling technique. These researchers have 

tried to replace the metamodels with an ANN. 

One of the best attempts in this regard has been done by Pierreval and 

Huntsinger (1992). According to them, the advantages of using metamodels include: 

(a) reduction of computing costs (memory/time) in comparison to traditional software

applications like SLAM II, SIMAN, GPSS; (b) performing sensitivity analysis; (c) 

model simplification; (d) enhanced exploration and interpretation of the model; (e) 

facilitating the transfer of models; (f) optimization; (g) answering inverse questions; 

and (h) reducing the number of inputs. 

The authors have successfully implemented this method to a job shop 

metamodel as an example of discrete simulation. They compare a traditional simulation 

model with an ANN metamodel based on elapsed time and occupied memory of a 

computer. In another experiment the authors have used "The percolator coffeepot 

metamodel" as an example of the continuous system simulation. This system was 

previously modeled with partial differential equations and other mathematical 

techniques. Again, an ANN is used for simulating this system. The results in both cases 

show a significant reduction of use of computer time and memory. 
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Another attempt in this area has been made by Kilmer and Smith (1993). They 

apply neural networks as metamodels for discrete-event stochastic simulation. A 

classical (s,S) inventory simulation, taken from the experimental design and 

optimization chapter of Law and Kelton (1991), is translated to a metamodel through 

the development of parallel neural networks, one. estimating total cost and one 

estimating variance of total cost. Kilmer and Smith show that the neural network 

metamodel is quite competitive in accuracy to the simulation itself, and is 

computationally more efficient. 

ANN as a Part of Simulation Software Applications 

Hurrion (1992) describes the use of neural networks to represent the results of 

simulation of a coal depot operations. The author has applied all results obtained from 

the simulation to a neural network. After a suitable period of training the quality of 

results obtained from the network is matched to the corresponding results of those 

obtained by running the original simulation model. The author concludes that the 

ANN, after a suitable period of training, would be able to predict the response of 

different model configurations without the need to re-run the simulation. Hurrion 

(1992) believes that "it is possible, with the help of ANN, to suggest the next best 

configuration to investigate. If this next suggestion is then simulated, then its results 

can be added back to the training set, improving the reliability of ANN model". 

Because the results obtained from ANN model are fast, it is possible to draw contour 

maps in real time. The author also brings up the idea of developing hybrid models 
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which are part simulation and part neural. 

ANNs in Statistics 

Today, simulation and statistics are convoluted. So any enhancement in 

statistics may be applied to simulation methodology. Most accredited simulator 

software applications have some parts which are directly concerned with statistics 

methods. Examples are random number generators on a given distribution function, 

fitting the best curve to a set of data, etc. There are many prospective applications of 

ANN in statistics. Realizing that the neural networks are not an amateurish tool in 

statistics, Hornik ( 1994) expresses the advantages of using ANN in this field. He 

points out that, in the long run, neural network modeling and special-purpose 

hardware realizations should become a standard tool in applied statistics. This section 

has been devoted to the application of ANN in statistics, especially the areas that are 

common with simulation. 

It can be shown that MLPs can approximate any reasonable function arbitrarily 

well, provided that enough hidden units are available for internal computations and 

that their activation function be non polynomial (Hornik, 1989). Kopsco and Pipino 

(1993) investigate the applications of neural networks to the tasks of learning 

functional mapping and interpolation. They compare the performance of the neural 

networks in the interpolation to that of interpolating polynomials. The results show 

that neural network can be useful in learning functional mapping and interpolation. The 

authors suggest that neural network models can be added to conventional statistical 
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tools to aid in the recognition of underlying functional forms. The easiest way to 

interpolate the data is "by eye". But besides the lack of rigor, a main drawback of the 

"by eye" procedure is its inability to generalize beyond three dimensions. So, the 

authors recommend the ANN method when the data sets are higher dimensions than 

two. The authors have applied the ANN to Ancombe'-s (1973) data sets and compare 

the results with that of traditional regression method. They have found ANNs as tools 

which are able to model a phenomenon without explicit knowledge of its underlying 

function form. Finally, they recommend the ANN as the best method for finding the 

best fitted function to a set of data. Hashem and Schmeiser (1993) show that using 

MSE-optimal linear combinations of a set of trained feed-forward networks may 

significantly improve the accuracy of approximating a function and its first and second 

order derivatives. 

The application of ANN in statistics is not only in the approximation of 

functions and their derivatives. Every user of simulation software applications, to some 

extent, is involved in statistical distribution of variables. One of the basic problems for 

model makers is to find the best fit of distribution for a set of data and to generate 

some random numbers which belong to that distribution. In most practical applications 

the distribution functions which exist in a software database are not suitable for 

representing the set of data. Inevitably, the model maker should choose the best 

functions which exist in the software database for representing the distribution of that 

data. Undoubtedly, this approach will increase the error. 

Hurrion (1993) describes a method by which a neural network learns to fit a 
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distribution to a sample data. The author has found that the ANN can be an alternative 

approach to the problem of selecting suitable distributions and random variate 

generation techniques for use in simulation and mathematical models. The author has 

been able to fit a neural network to many continuous input distributions such as 

normal, uniform, negative exponential, gamma and beta. Several kinds of data such as 

one tail, two tails and range over fixed intervals are studied in the experiment. The 

statistical goodness-of-fitness shows no significant difference between the distributions 

learned by neural network and original theoretical distributions which were used to 

train them. They show that if it is not possible to fit a theoretical distribution to the 

sample data then this method is an alternative to sampling directly from the empirical 

histogram obtained from the sample data. 

ANNs in Construction Projects 

One of the applications of ANN is in simulation of construction engineering 

projects. Since there are many similarities between construction projects and 

manufacturing projects, the review of the literature in this field seems useful. Flood has 

been trying to find suitable ANNs to model construction processes. His works are 

mostly based on Radial-Gaussian neural networks (Flood, 1991). He has addressed the 

advantages of using Radial-Gaussian as: (a) they are fast, (b) guaranteed convergence 

on a solution during training, ( c) an ability to model functions to a high precision, and 

( d) automatic determination of the number of neurons to include in a network.

Flood and Worley (1994 and 1995) use the rapid execution of simulation 
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through parallel processing in two experiments. The first experiment concerns a model 

of a simple chaotic function. The results prove that complicated behavior in recursive 

functions can be captured by using ANN. The second study involves modeling a non 

continuous scraper-based earth-moving system that, traditionally, had been modeled 

using discrete-event simulation algorithms. Both studies indicate the viability of the 

neural network approach in simulation. 

Flood and Christophilos ( 1996) reevaluate a neural network approach to 

modeling the dynamics of construction processes that exhibit both discrete and 

stochastic behavior. The application of the technique to two classes of earth-moving 

systems is reassessed in the article. The results confirm the ability of the neural 

network to model the discrete and stochastic behavior of some classes of construction 

processes. They have realized the potential application of the method in two situations, 

one where there is limited theory describing the dependence between the variables and 

the second where there is a need for rapid execution. 
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CHAPTER V 

DEVELOPING ANN MODELS 

Introduction 

Most of the available publications on ANNs emphasize the advantages of one 

method and ignore its limitations. Some of them are about the application of ANN to a 

particular domain. A few discuss applications of ANNs to manufacturing systems. 

Having read these publications, the modeler may have the impression that ANNs are 

useful tools for solving many real-world problems. However most modelers, especially 

those who are not familiar with ANNs' techniques, are not able to adapt this new 

technique to their own case. There are few guidelines to help them simulate their 

systems with ANNs. 

Modelers face many questions. Some of them are as follows: "What kind of 

systems can be modeled by ANNs?", "How should the data be gathered and 

prepared?", "When should the learning process be stopped?", "What are the best 

values for network parameters?", and in brief , " How can a system be modeled by 

ANNs ?". 

Most of the above questions are still open questions and there is no absolute 

answer for them. However, this chapter tries to give direction to answer the above 

questions. This information has been drawn from many sources and from the some 

51 



experimentation. Some of the proposed answers are based on proven theorems, the 

others are based on the rule of thumb. In the latter case, the modeler's judgment and 

ingenuity along with trial and error are very important. The goal of this chapter is to 

help modelers develop successful models with ANNs. Toward this goal, the simulation 

life cycle through ANN is reviewed. Each step is discussed and some suggestions are 

offered in each step. 

Simulation Life Cycle Through ANNs 

Developing a successful model through ANN contains these steps: (a) problem 

selection and formulation, (b) selection of appropriate ANN and simulation software, 

(c) data acquisition and preparation, (d) model translation (network building, network

training), (e) testing the model, (f) experimentation, (g) analysis of results and 

denormalization, (h) implementation, and (I) documentation. 

A schematic of the simulation life cycle through ANN is proposed in Figure 10. 

It is seen that the development of a successful model is more than just coding and 

training a network. Special attention should be paid to activities such as data gathering, 

normalization, building and training the network, testing, analyzing the results, etc. 

Problem Selection and Formulation 

The first step of the simulation life cycle through ANN involves selecting an 

appropriate problem and stating the problem clearly. 
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Problem Selection 

One of the first questions the modeler may ask is if the ANN is a good solution 

to a given simulation problem. ANNs' applications and capabilities are discussed in 

Chapters III and IV. However, there are still some points that the modeler should 

consider. For a given problem, if there is a mathematical solution, ANN is not 

recommended in most cases. ANNs usually require more computations and produce 

less accurate results than closed-form mathematical methods. 

The power of ANNs are best shown when there is some ambiguity in the 

system. Ambiguity appears when the complexity or inaccessibility of the system makes 

the mapping -- relation between input vector and output vector -- unknown. ANNs 

have the best performance in the situations where a human's intelligence performs 

better than a computer. Examples in manufacturing systems include, but are not 

limited to the systems where the characteristics of machines are not well known or in 

the cases that the machines are not accessible. 

Problem Formulation 

Having selected the appropriate problem, the modeler should define the 

problem and objectives clearly. The modeler should then go through these steps: (a) 

define the data, and input and output vectors; (b) define the relation between the real 

systems input/outputs and ANN input/outputs; (c) specify the criteria for comparing 

alternative designs; and ( d) study the project in terms of manpower, time and cost. 
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Selection of Appropriate ANN and Software 

Having decided that ANN is a good approach for modeling a well-defined 

problem, the modeler should choose an appropriate ANN method and a good software 

for performing the experimentation. In this section, the criteria of choosing ANNs' 

methods and software environments are discussed. 

ANN Methods 

A question which usually arises is "What is the best ANN method for modeling 

the system?". The answer to this question depends on the data and the system to be 

modeled. According to Wasserman (1993), ANNs can be selected: 

1. Based on static or dynamic behavior of the system. Static systems map a

given input vector consistently to the same output vector. Non-recursive (feed­

forward) networks are recommended for modeling static systems. On the other hand, 

dynamic systems' outputs depend on the current and previous input/output and on the 

state of the system. For dynamic systems, recursive ANNs are usually recommended. 

Most real-world problems have some dynamic characteristics. Thus, the recursive 

ANNs are good candidates for most practical problems. However, because of the 

complicated and lengthy training phase, recursive ANNs have found limited practical 

applications. 

2. Based on the continuous or classified output of the system. ANNs can be

categorized by those which map their input vectors to continuous valued outputs and 
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those which perform classification. The classifier ANNs can not perform continuous 

mapping, but the continuous ANNs can classify. 

3. Based on the availability of input-output vector pa1rs. There are many

ANNs that require supervised training and there are some that require unsupervised 

(self-organizing) training. For supervised learning the input-output vectors should be 

available. Unsupervised learning works based on the local information and internal 

signals. The input and output of the manufacturing systems are usually available. So, 

the supervised training ANNs are recommended in most of the cases. Furthermore, the 

theories of unsupervised training are still under development. Unsupervised ANNs 

have not proved their capabilities for solving practical problems yet. In this 

manuscript, first static systems are discussed and then suggestions for modifying the 

static model to simulate stochastic and dynamic systems are offered. 

Not only in the field of simulation but also in many other fields, most of the 

researchers have used backpropagation for solving their practical problems. 

Backpropagation is usually used to perform supervised training on multilayer, non­

recursive networks. With suitable training, backpropagation can be used for either 

continuous mapping or classification. Backpropagation's training algorithms for 

recursive networks have also been developed (Narendra, 1991). Furthermore, the 

backpropagation-through-time has been successfully applied to dynamic systems, e.g., 

chemical process industries (Werbos, 1992). 

As discussed in Chapter III, backpropagation suffers from some limitations. To 

overcome the limitations of backpropagation, Flood and Christophilos (1996) use the 
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Radial-Gaussian method for simulation. Although there are many advantages of using 

Radial-Gaussian, after training it is generally slower to use, requiring more 

computation to perform a classification or functional approximation (Wasserman, 

1993). In this method, the required number of hidden units increases geometrically 

with the number of inputs, so it becomes impractical for problems with many 

independent variables. Hence, more investigations are required to make the Radial­

Guassian an appropriate method for interactive simulation. 

From now on, only Multilayer Perceptron (MLP) networks with the 

backpropagation learning method, are considered. While MLP is not the only neural 

network that can be used in simulation, they are the most popular and clearly illustrate 

the major features of neural network approaches to simulation. This decision has been 

made based on the capabilities of MLPs (see Chapter III). 

Selection of an ANN Software 

The modeler can use either a general purpose computer language or a neural 

network simulation environment. The modeler can use high level languages such as C, 

PASCAL and BASIC. By using these languages, the modeler has control to get any 

information which may be needed. However, developing a well structured general 

purpose ANN simulation environment is time-consuming and requires thorough 

knowledge of computer systems. 

On the other hand, the modeler can choose one of the prepared packages for 

ANNs simulation. As the field of neuroscience matures, new simulators are being 
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introduced. The available simulators can be classified as either supporting biological 

models of neurons or as being tailored toward the artificial neural network. According 

to Skrzypek (1994) all neural simulation tools can be classified into four categories: 

1. The programs which are not documented and are dedicated to solve

particular problems. These tools can not support a variety of applications. 

2. Custom made software programs which are usually borrowed from other

application domains and organized into libraries. 

3. Sophisticated programs that integrate advanced graphical user interfaces

(GUI) and analysis tools. These programs are usually dedicated to a particular class of 

architecture / algorithm. 

4. Advanced simulation tools which are complete, system-level environments.

These tools can support a wide range of neural networks and a variety of learning 

methods. These environments have graphical user interfaces and many tools for 

analysis, manipulation and visualization. Examples of this group are: SNNS (Stuttgart 

Neural Network Simulator) and SFINX (Structure and Function In Neural 

ConneXtions). 

A good ANN modeling environment should help the modeler to build a model 

and to test the synthesized model computationally. The environment should also ease 

the problem of tracking all experimental data that has not yet been tested by the 

current model. A good GUI should be provided to make the simulator user friendly. 

GUI allows the modeler to interact with the simulator and to visualize data generated 

by the model. 
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In the domain of simulation of manufacturing systems, modelers are mainly 

interested in the neural network simulation environments rather than biological model 

environments. The former concerns network aspects, but the latter involves single 

neuron behavior. Interested readers can refer to Skrzypek ( 1994) for further 

information about the neural network simulation environments. 

The Stuttgart Neural Network Simulator (SNNS) environment has been 

selected for implementing the experiments in this research. SNNS has been developed 

at the Institute for Parallel and Distributed High Performance Systems at the 

University of Stuttgart since 1989. SNNS is a tool for synthesizing, training, testing 

and visualizing artificial neural networks. Many different ANNs' methods and varieties 

of training algorithms are supported by this software. Its X graphical user interface 

(XGUI) gives a graphical representation of the neural networks and controls the kernel 

during the simulation run. XGUI is tailored for inexperienced users and helps them to 

create, manipulate and visualize neural nets. SNNS has been implemented in ANSI-C 

and the source codes of the programs are available to be modified. The availability of 

source codes makes it a unique tool for research purposes. It is a portable program 

which has been tested on numerous machines and operating systems. Complex 

networks can be created quickly and easily by this software. As is shown in Figure 11, 

the SNNS helps the users visualize, understand and possibly control the networks. 

The reader should keep in mind that the ANN's hardw�e implementation 

radically increases the speed of the processes. Therefore, the ANN's hardware will 

become popular in the long run. These types of hardware are good candidates for 
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special purpose applications. 
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Info Panel 

Data Acquisition and Preparation 

Network Topology 

The data should be collected on input vectors and corresponding output 

vectors. The modeler should split the data into at least two parts: one set on which 

training is performed, called the training data, and another part on which the 

performance of the network is measured, called the test set. The idea is that the 
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performance of a network on the test set estimates its performance in real use. In other 

words, absolutely no information about the test set should be available during the 

training process. In most cases the training data is also subdivided into a training set 

and a validation set. The validation set is used as a pseudo-test in order to evaluate the 

quality of a network during training. This method, - called cross-validation, will be 

explained in this chapter. 

The training set is used to train the network and the validation set helps the 

modeler to choose the best size of the network or to stop the training. The test set is 

used to determine the accuracy of the performance of the network. There is no 

formula for the ratio of training, verification and test set. However, as a rule of thumb, 

40%, 30% and 30% are fair estimates of the ratio of training set, verification set, and 

test set, respectively (Smith, 1996). 

The training set must provide an accurate representation of the problem 

domain; otherwise the performance of network in the real data might not be 

satisfactory. Special attention should be paid to the boundaries and the domain in 

which the ANN is supposed to work. The output of an ANN which is trained based on 

ill-defined training sets might be misleading. Experience and creativity are important to 

select a good training set. 

Having gathered the data, the modeler should normalize them. The neural 

network outputs can only range from 0 to 1 (in some cases from -1 to 1). Although 

there is no limitation for input values, it is suggested to normalize inputs to the linear 

interval of activity functions of neurons. It is suggested to reserve some margins in the 
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normalized domain (e.g. normalize the values within .05 to .95). In this case, if new 

input or output values are above or below the values used to train or test the neural 

network model, the ANN can continue its performance. 

The modeler can use linear or nonlinear functions for normalization. The 

modeler should have a detailed knowledge of the nature of the data to select an 

appropriate normalizing function (Wasserman, 1993). Using an appropriate function 

has a great affect on network's performance. In all of the experiments in this research, 

linear transformation has been used. The linear transformation is presented by 

Equation (22). 

Dmax 

Dmin 

Lmax 

D = L . + Dold -Dmin .( L - L . ) new nun 

D
_ 

D
. max mm 

The normalized data 

max m,n 

The non-normalized data 

The maximum of the non-normalized data set 

The minimum of the non-normalized data set 

The maximum limit of normalized data 

The minimum limit of normalized data 

(22) 

The modeler should note that the sequence in which the data is fed to network 

may be important. It is recommended to feed the data samples randomly. In this 

research, all of the data has been "shuffled" before feeding to networks. 
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The generalization power of ANNs is the critique for measuring the accuracy 

of the network. A larger number of data samples usually do a better job for modeling 

the system. However, the number of data samples can not be increased infinitely, even 

if the data is available. There is a relation between the size of network and the number 

of training data points. Gathering the data is usually expensive and time consuming. 

Therefore, modelers are usually looking for the best size of the network to give the 

best generalization of a given set of data. 

It is suggested that the number of training samples should be approximately ten 

times the number of weights (Hush, 1993). Thus, increasing the network's size not 

only requires more time for learning but also might give a poor result of 

generalization. So, it is desirable to find methods for reducing the network size, while 

at the same time retaining the capability of solving the problem. 

Model Translation 

Model translation is the process of prepanng the model for computer 

processing. Two major features of model translation are building the network and 

training the network. Building the network is the process of synthesizing the 

appropriate network. Choosing the right network size and setting the network's 

parameters appropriately, play important roles in building a network. Training the 

network involves choosing the best values for weights in such a way that maximizes 

the network's generalization power. In the training phase of a network, the 

initialization of the weights and stopping criteria of training are very important. 
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Building a Network 

Building a network is the process of defining layers and neurons and the 

connection between them. The input layer, output layer and hidden layers should be

defined and the neurons in each layer should be recognized. The connection among 

neurons should be established and weights should be assigned to these connections. 

The network's parameters such as momentum and learning rate should be set. There is 

a close relation between building a model and its training. In many cases, building and 

training are done together and setting the parameters of one of them affects the other. 

In this section selecting the network size and setting the network's parameter are 

discussed. 

Network Size. A question that the modeler may face is " What is the optimum 

size of network for building the model?" The size of the network plays an important 

role in the performance of the network. If the network is too small, it will not be

capable of fulfilling the modeler expectations. On the other hand, more complex 

networks are capable of learning more patterns. However, one that is too large will be

slow and computationally expensive, and may require a large training set to generalize 

well. The network size depends on the complexity of the system and the diversity of 

training set. 

The number of inputs and outputs are automatically defined by the structure of 

the problem. Obtaining the optimum number of hidden layers and neurons mostly 

depends on the experience of the model-builder along with some experimentation. 
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Although it is shown that a one-hidden-layer MLP can perform any real-world 

mathematical function, these results do not necessarily imply that there is no benefit in 

having more than one hidden layer. It is shown that for some problems, a small two­

hidden layer network can be used where a one-hidden-layer would require an infinite 

number of nodes (Chester, 1990). Multiple hidden layers can significantly reduce the 

need for large numbers of neurons and make the network flexible for generalization 

during the learning process. 

Two approaches might be considered. The first one is to start with a small 

network and increase the size. Cascade Correlation, Project Pursuit are examples of 

this approach (Hush, 1993). In these methods additional nodes are created during the 

learning processes. Another possibility is to start with a large network and then 

remove weights and/or nodes which do not play important roles in the network; this 

method is called Pruning (Reed 1993). It has been shown that the maximum number of 

hidden layer nodes needed for the MLP to implement the training data is on the order 

of the number of training samples (Huang, 1991). So, one should never use more 

hidden layer nodes than training samples. Setting the network size is a process of 

adjustment and iteration. 

Practically, it is a good method to start with one or two hidden layers. Add 

additional layers only when the training is impossible or difficult or ability of the neural 

network is unsatisfactory. It might be a good idea to increase the number of layers and 

neurons in large jumps (e.g. make it double in each step) and look for successful 

training. Afterwards, decrease the network size in small steps and find a satisfactory 
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size. In this research, and in most of the fully connected MLPs, no more than two­

hidden layers are typically used. In recent years, genetic algorithm has been shown to 

have a promising application in estimating the optimum number of neurons and layers 

(Bebis 1995). 

Setting the Parameters of the Network 

There are many adjustable parameters in a network. Learning rate and 

momentum are among those. The adjustment of learning rate and momentum control 

the way in which the error is used to correct the weights in the network. 

Setting the Learning Rate. When the learning rate is set to high values ( close to 

1), the network may become unstable. But lower values (close to 0) of the learning 

rate may result in longer training times. The modeler can set the learning rate to high 

values and then decrease that if any unstable behavior is seen. On the other hand, the 

modeler may start with a low learning rate and try to increase that if training is taking 

too long. Another approach is to make the learning rate proportional to RMS (Root 

Mean Square) error. In this approach, when a neural network is far from being 

correctly trained, the learning rate will be maximum because the RMS error is high. 

When the RMS error is reduced, the learning rate will be set to low values. 

Setting the Momentum. The momentum makes the current search direction for 

new weights to be an exponentially weighted average of past directions. It keeps the 

weights moving across flat portions of the performance surface after they have 
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descended from steep portions (Hush, 1993). 

The momentum should be set in the interval of (0,1). The higher the values of 

momentum, the greater the percentage of previous errors applied to weight adjustment 

in each training case. The higher value of momentum smoothes out the training 

process. The lower values of momentum are suggested for data which is more regular 

and smoother with relatively simple relation. Again the modeler should try different 

values of momentum and find an appropriate value for the network. 

Training the Network 

Training the network is the process of applying input-output vectors (in the 

supervised method) and choosing an algorithm that set the weights in the way that the 

network can generalize best. Since backpropagation has already been selected for 

training the network, only the number of training time and weight initialization are 

discussed here. 

Stopping the Learning Procedure. The learning process might stop if : 

1. The magnitude of gradient of weights becomes small enough.

2. The Sum-of-Squared-Error Criterion function (goal function) becomes less

than a specific value. 

3. The number of iterations exceeds a specific value. In this method, there is no

guarantee that after this number of iterations, the algorithm reaches the minimum or 

near the minimum. 
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4. There are no more changes in the goal function if the learning process

continues. 

5. The cross-validation method (explained next) reaches an optimum point.

Since the generalization performance is the criterion for termination in the 

cross-validation, this method is recommended in most of the cases. Furthermore, on 

contrary to most of the other methods, cross-validation does not suffer from 

premature termination. While cross-validation is a widely accepted method, it can be 

computationally intensive and if the number of data samples is limited, this method 

reduces the size of the training data even further (Hush, 1993). 

Cross - validation 

According to Smith (1996) it is not recommended to stop training only by 

looking at the error on the training sample. The error on the training sample always 

goes down. At some point, hidden nodes find features that are present in the training 

sample but not in the population in general. At this point overfitting begins. 

For solving this problem, in the cross-validation method, the performance of 

the network on the training set and validation set are considered during the learning 

process. The performance of the network on the training set will usually continue to 

improve, but its performance on the validation set will only improve to a certain point; 

after that the performance starts to degrade. 

At this point the learning algorithm should be terminated. After this point the 

network starts to overfit the training set data. The error is a good indication of the 
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system's performance. The error is the sum of the quadratic differences between the 

teaching input and the real output over all output units summed over the number of 

patterns presented. 

The weights m the cross-validation method should be saved after each 

iteration. Each iteration in training phase is called epoch. In each epoch the· network 

adjusts the weights in the direction that reduces the error. Many epochs are usually 

required before training is completed. To make its weight adjustments, the network 

can be trained with a single pattern for the number of training cycle or it can be trained 

with all patterns for the number of training cycles specified. In this research the 

networks are always trained with all patterns. After finding the optimum point, the 

weights corresponding to that point should be applied to the network. 

Figure 12 shows the Sum Square Error vs. number of epochs in a system. As is 

seen, the training error is always decreasing. On the other hand, validation error 

decreases to a point and after that it suddenly increases. This point is the optimal point 

and it happens after 71,000 epochs. 

When the neural network is forced to learn the target values more exactly, 

overtraining may happen. In this case, the network tries to memorize the training set 

rather than learn the pattern. An overtrained network has an acceptable error of the 

trained data but it suffers from generalization ability. To avoid overtraining several 

methods are suggested: 

1. One method is to put some noise in the training data. The amount of noise

should not be so high that the nature and the relationships be overwhelmed, but it 
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should be sufficient to make the generalization better. 

2. Another method is to use more training data. The complete training data

may be applied to either trained network or blank net. In the former case, the training 

will resume with the existing weight set but using the new data set. In the later case, 

the training restarts from a blank neural network. 

Figure 12. 
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Initializing the Weights. According to Chapter III, the current values of 

weights depend on their prior values, so the initial values of weights are very 

important. If the initial weights for all neurons were the same, then all neurons with the 

same input and output would be adjusted by the same number. In this case, the 

learning processing may fail. So, it is suggested to initialize the weights to random 

values. According to Hush (1992) initializing the weights to small values starts the 

search in a "relatively safe position". However, it is possible for the random initial 

values to change the solution that the neural net finds each time. In this case, more 

than one weight set satisfy the training constraints. Furthermore, the small initial 

values make the learning processes slower, because it takes more time for weights to 

reach their final values. By the way, in this research the weights are always initialized 

to small random numbers within the interval (-1, 1 ). 

Testing the Model 

In this step, the model should be tested to prove that it is a correct 

representative of the real system. Testing the model is usually done after the network 

is built and trained. The power of the system in generalization is a good critique for 

testing the model. The generalization ability of the network is usually measured by 

using the test set. The test may be simply comparing the result from the network and 

the results from the real system. It may also be in the form of contour plots or charts. 

The less the difference, the better the model performs. 

In some applications, the modeler can simply ignore this stage. In these cases, 
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only the training set and validation set exist. The modeler assumes that the model's 

performance on the validation set is a good indication of general performance of the 

model. In other words, the validation set and the test set are the same. However, for 

more precise processes it is recommended to use test samples which have not been 

applied to the network during the learning phase. Again, the model should be tested on 

the domain in which the system is supposed to work (it is crucial for the system to 

work within the domain that the network has been trained and tested). 

Experimentation 

The most attractive part of the simulation life cycle through ANN is 

experimentation. Rapid and parallel processing make the ANN capable of estimating 

the results almost instantly in the experimentation phase. Regardless of the elapsed 

time in the training phase, the mapping of ANNs in the experimentation phase is 

immediate. This unique characteristic makes ANNs suitable for interactive simulation 

of manufacturing systems. Having built the model, the modeler may ask what-if 

questions. For example, questions such as "What will be the throughput of the system 

if another labor is assigned to the job? or the number of machines is increased? or 

decreased?", etc. The modeler simply needs to apply the new input and get the output 

vector rapidly. The input may be a new set of data or it may be the data which has 

been used to train, validate or test the model. In the simple static mapping, one run of 

the simulation is enough but in the dynamic systems, several runs may be needed. The 

methodology of implementing the dynamic systems with MLPs will be discussed later. 
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Analysis of Results and Denormalization 

Since training a neural network involves some random initialization, the results 

of several training runs of the same algorithm on the same data set may differ. It is 

suggested to make several runs and report statistics on the distribution of results 

obtained. Furthermore, the results should be double-checked before implementation. 

The modeler should check the results if they are in an acceptable range or not. The 

result may become misleading and implementation of these results may become 

dangerous if: (a) the network has not been trained properly, or (b) the data which is 

used to train the system has not been collected properly, or ( c) if the execution of the 

model is based on the data set which is not in the expectation range. So, the analysis of 

the results is very crucial. 

The ANN s usually perform very well on the data with which they are trained 

but not on the data which is not in their training set. If the network is trained on-line 

with a manufacturing system, it usually learns the routine tasks in the system. Since the 

results from the network are in the interval of (0,1) and sometimes (-1, 1 ), they should 

be denormalized. The process of denormalizatiort depends on the function with is used 

for normalization. 

Implementation 

This step involves implementation of decisions concluded from the simulation 

experimentation. The results of implemented strategy should feed back to the network. 
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This method is on-line training. The network tries to find new patterns and tries to 

learn the new behavior of the system. This helps the network to update itself with new 

situations. It is very useful for systems which change through time. Aging of machine 

tools is a good example of these phenomena. The characteristics of machines usually 

change through the years because of aging. 

Documentation 

The documentation of the model and its use is very important and essential for 

further study. These documents will be useful for troubleshooting and maintaining the 

system. They can also be used as references for implementing similar models. The 

following items should be considered in a document: (a) problem definition including 

the name, address, version, objectives, comparing criteria; (b) the data: training set, 

validation set and test set; (c) network topology including nodes, connections, 

activation functions; (d) initialization; (e) algorithm parameters (momentum and learning 

rate); (f) termination criteria; (g) error function and its value in the reported result; (h) 

number of runs; and (i) the hardware, operating system and software name and version 

which is used in the experiments. 

Most of the accredited software environments provide users with facilities for 

saving the networks and their parameters. It is recommended that modeler have 

several backups of the model and the results of its implementation. 

Although many suggestion and guidelines were provided in this chapter, still 

the design and implementation of an appropriate ANN depends mainly on the 
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experience, innovation and knowledge of modeler. In brief, design and implementing a 

good ANN is as much an art as a science. 
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CHAPTER VI 

MANUFACTURING SYSTEMS 

Introduction 

Most manufacturing systems can be modeled based on a combination of · 

queues and machines. Figure 13 shows a simple manufacturing system. 

- Machine - Machine 

queue 1 A queue 2 B queue 3 

Figure 13. A Simple Manufacturing System. 

To use ANN in modeling manufacturing systems such as Figure 13, two 

approaches may be considered: 

1. To consider the whole system as a black box and try to find an appropriate

ANN structure which is able to estimate the output of the black box based on its input; 

2. To consider the system as consisting of components (e.g. queues and

machines) and try to find appropriate ANN topologies which can simulate these 

components' behavior. These ANN modules can then be assembled together to 

simulate the whole system. 

In both approaches, the modeler should go through the procedure offered in 
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Chapter V: gathering data, building and training the network, etc. However, the 

complexity of systems and implementation of results may differ. Both methods are 

time consuming and involve many trials and errors. In both cases, the trained networks 

respond rapidly to the new set of data. 

A basic queuing system and a simple manufacturing system are modeled in this 

chapter. Modeling the queuing system is an example of modular approach to simulate 

basic components in complex manufacturing systems. It also gives the direction of 

how ANNs can be used for modeling static systems. The static modeling will be the 

base of modeling the stochastic and dynamic systems offered later in this chapter. The 

manufacturing system modeled in this chapter shows the ANNs' capability to capture 

the behavior of stochastic processes. Three approaches are examined for capturing the 

stochastic behavior of the a manufacturing system. This system is also modeled 

through modular approach. The results in each case are explained and compared to 

those of conventional simulation methodology. 

Simulation of Queuing Systems Using ANNs 

A basic queuing system has been modeled in this survey. There are three 

reasons for choosing this system: 

1. The behavior of queuing systems is well known and it is possible to compare

the ANN's accuracy with a real system. 

2. The procedures for developing ANN to model a queuing system are typical

procedures for many manufacturing systems. So, it is useful in solving problems which 
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may arise when a modeler is trying to use ANN to model a manufacturing system. 

3. It is a systematic attempt to create a library of ANN modules for

manufacturing simulation. 

Definitions 

Waiting lines - called queuing systems - usually occur when the demand for 

current service exceeds the current capacity of servers. Providing the right amount of 

service in queue is important in manufacturing systems. Not enough capacity causes 

long waiting lines and too much capacity involves excessive costs. 

The most common type of queue is one in which a single waiting line forms in 

the front of a facility which has one or more servers. The entities of a queue are 

usually generated by an input source (based on a statistical distribution). Each entity 

then waits in the queue (waiting line). After spending some time (waiting time), each 

entity is served by one of the servers. Examples of entities are unfinished parts, pieces 

of equipment and finished products. For studying the queuing models, it is assumed 

that all interarrival times and service times are independent and identically distributed. 

A queue is recognized by its input distribution, service distribution, number of servers 

and probably the maximum capacity of the queue. The queues are usually labeled 

based on their characteristics. Figure 14 shows the labeling method of queues. 

Each distribution has its own label. For instance M stands for exponential 

distribution (Markovian), or D stands for degenerate distribution (constant times). By 

this definition, M/M/4 stands for a queue system with exponential interarrival time, 
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exponential service time and 4 servers. 

Distribution of service times
� r 
-/-/-

Distribution on interarrival times _/

Figure 14. The Method of Labeling a Queue. 

Number of servers 

Industrial engineers are usually interested in studying the probability of no 

entity in the queue (Po), mean waiting time in the queue (W q) and mean length of the 

queue (Lg), They usually address the queues based on the mean of interarrival rate (A), 

mean of service rate (µ) and the number of servers. The relation between these 

variables is shown in (Hillier, 1995). In this section, first two simple system of M/M/1 

and M/M/2 are considered, followed by a general model of MIMIS which is modeled 

through ANN. 

M/M/1 and M/M/2 Systems 

The first set of experiments was concerned with the application of ANN in 

modeling M/M/1 and M/M/2 queuing systems. In these experiments ANN was 

considered as a map function which generated Po, Wq and Lq based on A and µ. The 

schematic of this approach is shown in Figure 15. 

In the experiment, A and µ were allowed to vary between 1 and 50 and the 
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number of servers was fixed to 1 and 2 in M/M/1 and M/M/2, respectively. Only two 

sets of data, training and test set, were generated by a program written in C language. 

The generated data was then converted to the format which was compatible with 

SNNS software. These data then were applied to an SNNS software version 3.1 which 

had been installed in IPC Sun workstations with Sun OS 4.1.4 operating system. 

Mean arrival ra te (11,) Prob of no entity in the queue (Po) 

Waitin g time in queue (W
q
) 

ANN 

Mean service ra te (u) Expe cted queue length (L
q
) 

Figure 15. Application of ANN in Modeling M/M/1 and M/M/2 Systems. 

Proposed methodology is based on the efforts that have been done for solving 

the problems which occurred in this experimentation. these problems. For example, 

through trial and error and survey of literature, it was found that: 

1. The network performs better if the input vector is normalized to the interval

which has some upper and lower margins; 

2. Generating the training set randomly or applying it after shuffling has a great

effect on the learning ability of the network. In those experiments in which the training 

data was followed a pattern (say, A andµ increase by 3 in each step), the network was 

not able to generalize appropriately. 

In the M/M/1 case, at first, only the probability of no entity in the queue (Po) 
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was considered as the output of ANN. This decision was due to the simple relationship 

between Po, A and µ. The MLP network with the backpropagation momentum learning 

method was considered. Using Rush's (1992) recommendations, the initial weights 

were set to be random numbers in interval of (-1, 1). The input and output vectors 

were normalized. The learning rate of 0.2 and momentum of 0.1 were selected. 

The MLP network with 6 nodes in one hidden layer was able to approximate 

the system effectively. Adding waiting time (W
q
) and expected queue length (L

q
) to the 

output of the ANN makes the system so complicated that ANN was not able to 

understand the system. After testing some networks, a network consisting of two 

hidden layers with 9 neurons in each layer was found to be able to estimate the queue's 

behavior. 

The network was trained by 176 training points which had been generated 

randomly. Only the training set was considered for stopping the training procedure. 

The training was stopped after the Sum of Squared Error (SSE) of the training set 

became almost smooth with a value of less than 0.3. The system was tested by 1,176 

data points. The results were promising (the similar results of an M/M/2 are shown in 

this chapter). The same approach was chosen for the M/M/2 queuing system. This 

time the network was tested by 1801 data points. Figures 16, 17 and 18 compare the 

contour plot results from ANN and the corresponding real M/M/2 system. According 

to the queuing theory, the modeled systems are valid only when the interarrival rate is 

less than the service rate. Therefore, the readers should notice that the proposed 

figures are valid where (A<µ). 
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Figure 16. 
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Figure 17. 
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Figure 18. 
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As shown, the ANN is able to realize the pattern of the queuing systems. The 

results were so promising that encouraged us to study the behavior of the network in 

more general situations. Therefore, a general MIMIS queuing system was considered. 

However, many questions still remained unanswered in that stage; such as "What is the 

best topology of ANN for a given problem?". 

MIMIS Queuing System 

This system consists of queues with exponentially distributed interarrival time, 

exponentially distributed service time and several servers. The theory and discussion of 

this system are presented in (Hillier, 1995). Once more, the ANN strategy shown in 

Figure 15 was used. But in these experiments, another input (number of servers, S) 

was introduced as well. The outputs of the ANN system remained unchanged (L
q
, W

q

and P0). In these experiments, 'A and µ were allowed to be any integer number in the 

interval (1, 50). The number of servers can be between 1 and 10. Training, validation 

and test data sets were generated by a program written in C language. The generated 

data were normalized and prepared in a format compatible with the SNNS software. 

The programs developed for generating the training and validation data set are 

provided in Appendix A. These normalized sets were then applied to different 

configurations of ANN to find the best architecture. 

Several Sun Sparc-5 workstations with Solaris operating system (version 5.5) 

were used. Using SNNS software version 4.0, the MLP with backpropagation 

momentum learning method was studied. Again, the initial weights were set to random 
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numbers in the ( -1, 1) interval. The learning rate of .2 and momentum of .1 were 

chosen. The cross validation method was used to obtain the optimum number of 

epochs. 

For finding the best network size, several experiments were conducted. The 

networks with small sizes and large sizes were considered. In each case, Sum of 

Squared Error (SSE) of training set and validation set were drawn together. The effect 

of the network's size on the network's performance was studied. 

In the first experiment, an MLP network with 9 neurons in one hidden layer 

was considered. The network was trained with a training set consisting of 300 points. 

As shown in Figure 19, the network performs very well on the training data 

Figure 19. 
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After 71,000 epochs the network finds a pattern which exists in the training set 

but it is not valid for the validation set. At this point, the overfitting occurs. Even in 

this optimum point the SSE of validation set is far from the ideal (the minimum value 

of SSE of validation is more than 9). After studying the trained network with a test 

set, it was found that in some areas the network has not been trained properly. This 

was because of a lack of training points in these areas. So, the training set was not a 

good representative of all of the data points. Another experiment with 18 neurons in 

one hidden layer MLP confirmed that the poor generalization is not due to the 

network size. The results of this experimentation are shown in Figure 20. 

Figure 20. 
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As shown in Figure 20, the minimum of SSE in the validation set is still around 

14, but the SSE of training set is almost zero. Therefore, the performance of the 

network in training points has been improved, but the network still suffers from good 

generalization ability. 

Based on these two experiments it was decided to generate the training set 

which was a better representation of the data points. Therefore, a training set 

consisting of 1000 points was generated. 

Once more, a network with 9 neurons in one hidden layer was studied. Figure 

21 shows the performance of this network on the training and validation sets. 

Figure 21. 
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As seen in Figure 21, the network has difficulties understanding the training 

set. If the network can not be trained properly, it will not have satisfactory 

performance on the validation and test sets. 

Thus, another experiment was conducted to understand if this phenomena is 

due to network size. This time a network with 18 neurons in one hidden layer was 

considered. As shown in Figure 22, the network was able to successfully understand 

the training data. The SSE of validation set showed rapid decreasing and optimum 

point had an error which was less than 5. 

Figure 22. 
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According to Smith (1996), improving the network size increases its power to 

learn more complex patterns. But the question was "How big may the size of network 

be?". 

To answer this question in another experiment an MLP with 72 nodes in one 

hidden layer was chosen. This network was trained by 1,000 points. Figure 23 shows 

the performance of this network. The network can learn from training sets. The 

minimum of SSE of the validation set is almost the same as the previous experience. 

However, the network suffers from some instability. It seems that the system has some 

noisy behavior. 

Figure 23. 
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For studying the effect of larger networks, another experiment was conducted. 

In the experiment, a one hidden layer MLP with 144 neurons was considered and 

trained with 1,000 data points. Figure 24 shows the results of this experiment. 

As shown in Figure 24, although the envelope of SSE of validation and data 

sets are almost the same as the network with 9 nodes. (Figure 22), the network suffers 

from some random behavior. 

Based on the last two experiments, it was concluded that increasing the 

network's size not only requires more learning time, but also might give a poor result 

of generalization. 

Figure 24. 
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Another question was "What would happen if the number of layers are 

increased?". To answer this question, two experiments were conducted. In the first 

experiment an MLP with two hidden layers was considered. The first layer had 36 

neurons and the second one had 9. Again, the network was trained with 1,000 points. 

The SSE of validation and training are shown in Figure 25. 

Figure 25. 
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In a similar experiment, an MLP with two hidden layers --36 nodes in the first 

layer and 27 nodes in the second layer-- was considered. As shown in Figure 26, the 

network's performance is better than the previous case, however, the performance of 
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the system is not as good as Figure 22. In one point, the SSE of validation decreases 

to 3.5. This point can not be considered as an optimal point because it is not stable and 

the SSE of the training set shows an increase in that area. Based on these experiments 

it can be concluded that increasing the number of neurons and layers is not necessarily 

helpful to the network's performance. The modelers should search for the optimum 

number of neurons and layers. 

Figure 26. 
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Testing the Network 

The network with 18 neurons in one hidden layer showed the best performance 
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among the experimented networks (consider Figure 22). To criticize the performance 

of this network, an experiment was conducted. In the experiment, the performance of 

the network was compared to that of the real world. First, a test set consisting of 

1,000 randomly-generated data points was applied to the network. This set had not 

been applied to the network before and it was the first time that they were applied to 

the network. After applying the input data (A, µ and S), the network almost instantly 

came up with output data (L
p
, W

q 
and P0). The network output vector was then 

compared to that of the real system. Since the input data include three dimensions (A, 

µ and S), it was difficult to compare the results through contour plots. Thus, other 

statistical tests were chosen for comparing the vector pairs. Each vector pair consisted 

of the vector generated by network and the corresponding vector for the real system. 

For example, P0 generated by the network and Po from the real system. Using Minitab 

software version 9.1 for VAX/VMS, for each vector pair the following two statistical 

tests were conducted: 

1. Two sample t-test was run to see if the mean of first vector (M 1 ) was equal

to the mean of the second vector (M2). A 95% confidence interval for M 1 - M2 was

also constructed. 

2. By subtracting corresponding vectors (d = d 1 - di), a new vector was

generated. The mean and variance of this vector were studied and the histogram of 

points were drawn. In the ideal case, the mean and variance should be close to zero. In 

this case, the results of ANN are exactly the same as the results of the real system. 
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Table 1 

Comparison Between the Probability of No Entity in the Queue (Po) 

Generated by ANN and the Real System 

Two Sample t-Test 

System #No. MEAN ·STDEV SE MEAN 

Real System 1000 0. 294 0.198 0.00626 
Neural Network 1000 0. 294 0.198 0.00625 

95% confidence interval for M, - M2 = (-0.017 26, 0.01743) 

The Pair-wise Comparison (dl-d2) 

N MEAN MEDIAN STDEV MIN MAX 

dl-d2 1000 -0.00009 -0.00037 0.00874 -0.06916 0.0535 2 

Histogram of (dl-d2); each* re presents 20 obs.

Midpoint Count 

-0.07 1 *

-0.06 0 

-0.05 1 *

-0.04 1 *

-0.03 3 *

-0.0 2 24 **

-0.01 150 **********

0.00 689 **********************************************

0.01 84 ******

0.0 2 25 **

0.03 14 *

0.04 4 *

0.05 4 *
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Table 2 

Comparison Between the Waiting Time in the Queue (W q) 
Generated by ANN and the Real System 

Two Sample t-Test 

System # No . MEAN ·STDEV SE MEAN 

Real System 1000 
Neural Network 1000 

0.0241 
0.0240 

0.0942 
0.0901 

0.00298 
0.00285 

95% confidence interval for M 1 - M2 = (-0.008063, 0.008103)

The Pair-wise Comparison (dl-d2) 

N MEAN MEDIAN STDEV MIN 

dl-d2 1000 -0.00002 0.00000 0.04805 -0.76511

Histogram of (dl-d2); each* re presents 20 obs .

Midpoint Count 

-0.8 1 *

-0.7 0 

-0.6 0 

-0.5 2 * 

-0.4 0 
-0.3 2 * 

-0.2 6 *

-0.1 1 *

MAX 

0.42500 

0.0 963 *************************************************

0.1 14 *

0.2 8 *

0.3 1 *

0.4 2 *
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Table 3 

Comparison Between the Length of the Queue (L
q
) 

Generated by ANN and the Real System 

System # No. 

Real System 1000 

Neural Network 1000 

Two Sample t-Test 

MEAN 

0.01354 

0.0138 

·STDEV

0.0616 

0.0588 

SE MEAN

0.00195 

0.00186 

95% confidence interval for M1 - M2 = (-0.005546, 0.005019) 

The Pair-wise Comparison (dl-d2) 

N MEAN MEDIAN STDEV MIN 

dl-d2 1000 0.00026 0.00000 0.03603 -0.74954

Histogram of (dl-d2); each* represents 20 obs.

Midpoint Count 

-0.7 1 *

-0.6 0 

-0.5 0 

-0.4 1 *

-0.3 1 *

-0.2 1 *

-0.1 4 *

MAX 

0.34821 

0.0 980 *************************************************

0.1 6 *

0.2 4 *

0.3 2 *
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Based on statistical experiments, the ANN is able to successfully model the 

system. The performance of ANN in simple functions (such as Po) is better than 

complex functions. There are still a few points which are out of the acceptance range. 

These points mostly belong to the areas that neural network has not been trained 

properly. More data makes the ANN more accurate. 

Simulation of a Manufacturing System Using ANNs 

The results of the previous section's experiments showed the capability of 

ANNs in simulating a queuing system. It showed the power of ANNs in modeling of 

static systems. Modeling the stochastic systems is not as easy as that of the static 

systems. Because, in· stochastic systems each input set may generate different output 

sets. The output values depend on random distribution of processes. 

In this section, a simple manufacturing system is modeled by several ANNs. 

Three methods are suggested to capture the stochastic behavior of the system. The 

offered methodologies are explained in each case and the results are discussed. 

Illustrative Example 

This example (Figure 27) has been taken from (Nuila and Houshyar, 1993). 

Consider a simple manufacturing system with a mai;.:hining center, an inspection 

station, and a rework station. Products of the machining center are inspected at the 

inspection center. Ninety percent of the inspected parts are acceptable and are send to 

shipping, whereas the remaining 10 percent are unacceptable and are sent to the 
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rework station for rework. Upon completion of rework they are also subject to 

inspection. Raw material randomly arrives at the plant at a rate of 1 per minute (i.e., 

interarrival time between parts is exponentially distributed with a mean of 1 minute). 

Processing time at the machining center, inspecting time at the inspection center, and 

reprocessing time at the rework station are random, They follow uniform, uniform, 

and exponential distribution, respectively. Their corresponding parameters are: 

1. Machining center processing time is uniformly distributed between 2.5 and

3.2 minutes. The number of machines can vary between 1 and 10. 

2. Inspection time is uniformly distributed between 2 and 3 minutes. The

number of inspection stations can also vary between 1 and 10. 

3. Rework processing time is exponentially distributed with mean of 10

minutes. The system starts out with no parts present, the machines and the inspector 

are idle and ready for the operations. In addition, there are no set-ups, interruptions, 

and or breakdowns. 

q ueue 1 queue 2 0.9 

Machine Inspection 
-

-

Center ► 
-

Station 

0.1 

' ' 

- Rework 

Station 

Figure 27. Graphical Representation of the Illustrative Example. 
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Many variables affect on the behavior of the system, e.g.: processing time of 

machine centers and inspection stations, failure rate, queues' capacities, the number of 

machine centers and the number of inspection stations. For simplicity, we focus on the 

number of machine centers and inspection stations. Specifically, we are interested in 

the system's performance for an eight hour shift based on the number of machine 

centers and inspection stations. The readers should notice that other variables can be 

used in combination or as substitutes of these two variables. Regardless of selected 

variables, the proposed methodologies can be used. Figure 27 is a graphical 

representation of the system with one machine center and one inspection station. 

This simple manufacturing system was modeled using SLAMSYSTEM 

software (student version 4.5), and the statistics on the throughput of the system was 

gathered. The SLAM's model is presented in Appendix B. It is assumed that the results 

from SLAMSYSTEM are the same as the results from the real system. 

To select the number of test points, Montgomery's (1991) recommendations 

was used. The null hypothesis checked if the mean of data generated by 

SLAMSYSTEM (µ 1) was equal to the mean of results generated by ANNs (µ2). It was 

assumed that the two population variances were unknown but almost equal. 

Furthermore, the sample sizes from the two populations were assumed to be equal. 

We wanted to reject the null hypothesis 95% of time if the difference between the 

normalized means (1µ
1 
-µ

2
1/2) was equal or more than 0.15. Therefore the probability 

of type II error (P) was 0.05. Assuming that the standard deviations would not exceed 
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0.4, yielded d = lµ 1 
-µ2 I 

= 0.9375. The operating characteristic curves for the two
2cr 

sided t-test with a= 0.05 (Montgomery, 1991, page 32) implied n=9. To be on the 

safe side, the number of test points was set to be 10. 

s * t
The number of iterations was calculated based on n = (

a/2 ,n-I )2 . T-
µ- µo

distribution itself is a function of n. However, n was calculated by using trial and'error. 

With 95% confidence interval and assuming that error ofµ would be less 15 (readers 

should notice that the µ can vary between 170 and 530), the number of runs calculated 

to be n= 17.52. To be in the safe side, 20 iterations considered for each experiment. 

The number of machine centers and inspection stations were generated randomly. To 

capture the stochastic behavior of the system three methods were examined. 

In each of these methods, an MLP network with 18 nodes in one hidden layer 

was used and the backpropagation momentum learning method was applied. Using the 

guidelines offered in the Chapter V, the initial weights were set to be random numbers 

in the interval of (-1, 1 ). A training set consisting of 31 points was generated. The 

learning rate of 0.2 and momentum of 0.1 were selected. The gathered data were 

normalized to the interval of (0.1, 0.9). The training was stopped only after 5,000 

epochs. After training, the results from ANN were compared to those of 

SLAMSYSTEM. Readers should keep in mind that these comparisons are done based 

on raw output data. It means the normalized outputs were used for these comparisons. 

These methods are discussed next. 
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Method One (Mean and Standard Deviation) 

In this method, the number of machine centers and the number of inspection 

stations are considered as the input of ANN. The mean of throughputs and standard 

deyiation of throughputs are considered as output. Figure 28 shows the schematic of 

this method. After training the network, the performance of the network was tested 

based on test data. The results are shown in the Tables 4 and 5. 

The number of machine c enters The mean of throughputs 
� 

ANN 

The number of inspection s tations Stand ard deviation of throughputs 

Figure 28. Using the Mean and Standard Deviation to Capture Stochastic 

Behavior of a Manufacturing System. 

According to the results, ANN is capable of understanding the mean and the 

standard deviation of throughputs in the illustrative example. Based on two sample t­

test, there is no significant difference between the results generated by ANN and the 

results from ANN. The histogram of difference between two methods also shows that 

the ANN can effectively capture the system's behavior. Using the mean and standard 

deviation is one way to capture the stochastic behavior of the system. There are other 

techniques in this field which are discussed next. 
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Table 4 

Comparison Between the Mean of Throughputs Generated 

by  ANN and SLAMSYSTEM in Method One 

Two Sample t-Test 

System #No. MEAN -sTDEV SE MEAN 

SLAMSYS 10 0.579 0.352 0.111 

Neural Network 10 0.605 0.329 0.104 

95% confidence interval for M 1 - M2 = (-0.3474, 0.2956) 

The Pair-wise Comparison ( d 1-d2) 

N MEAN MEDIAN STDEV MIN MAX 

dl-d2 10 0.0259 0.0327 0.0425 -0.0454 0.0957 

Histogram of (dl-d2) 

Midpoint Count 

-0.04 1 * 

-0.02 2 ** 

0.00 0 

0.02 1 * 

0.04 4 **** 

0.06 1 * 

0.08 0 

0.10 1 * 
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Table 5 

Compa rison Between the Variance of Throughputs Genera ted 
b y  ANN and SLAMSYSTEM in Method One 

Two Sample t-Test 

System #No. MEAN ·STDEV SE MEAN 

SLAMSYS 10 0.454 0.307 0.0972 

Neural Network 10 0.462 0.298 0.0941 

95% confidence interval for M 1 - M2 = (-0.2937, 0.2772) 

The Pair-wise Comparison (dl-d2) 

N MEAN MEDIAN STDEV MIN MAX 

dl-d2 10 0.0082 0.0016 0.1019 -0.1809 0.1708 

Histogram of (dl-d2) 

Midpoint Count 

-0.20 1 * 

-0.15 0 

-0.10 1 * 

-0.05 2 ** 

0.00 2 ** 

0.05 2 ** 

0.10 0 

0.15 2 ** 
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Method Two (Mean and Confidence Interval) 

Modelers can also use the confidence intervals of the output for modeling their 

stochastic processes. According to Hurrion (1992), the MLPs are able to capture the 

randomness of the systems if the upper bounds and lower bounds of the confidence 

interval are also included in the output. This method is similar to the method which 

was used in the previous section; however, in this method, upper and lower bounds of 

confidence interval are considered instead of standard deviation. 

In this method, several replicates of the desired output should be gathered for 

each set of input. The mean and upper and lower confidence intervals of the output 

should be calculated for each set of input. Then the network should be trained based 

on the input vector and corresponding desired output and output's upper and lower 

bounds. Figure 29 shows this method. The results of this approach are shown in 

Tables 6-8. 

The number of machine cen ters 
Upper 95% confidence interval 

The me an of throughput 

ANN 
The number of inspection s tations 

Lower 95% confidence interval 

Figure 29. Using the Upper and Lower Confidence Interval to Capture Stochastic 

Behavior of a Manufacturing System. 
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Table 6 

Comparison Between the Mean of Throughputs Generated 

by ANN and SLAMSYSTEM in Method Two 

Two Sample t-Test 

System #No . MEAN ·sTDEV SE MEAN 

SLAMSYSTEM 10 0.579 0.352 0.111 

Neural Network 10 0.600 0.337 0.107 

95% confidence interval for M 1 -M2 = (-0.3461, 0.3039)

The Pair-wise Comparison (dl-d2) 

N MEAN MEDIAN STDEV MIN MAX 

dl-d2 10 0.0211 0.0249 0.0347 -0.0376 0.0796 

Histogram of (dl-d2) 

Midpoint Count 

-0.04 1 * 

-0.02 1 * 

0.00 2 ** 

0.02 2 ** 

0.04 2 ** 

0.06 1 * 

0.08 1 * 
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Table 7 

Comparison Between the 95% Upper Bound Confidence Interval 

of the Mean of Throughputs Generated 

by ANN and SLAMSYSTEM 

Two Sample t-Test 

System #No. MEAN STDEV SE MEAN 

SLAMSYSTEM 10 0.579 0.352 0.111 

Neural Network 10 0.598 0.339 0.107 

95% confidence interval for M 1 - M2 = (-0.3460, 0.3062) 

The Pair-wise Comparison (dl-d2) 

N MEAN MEDIAN STDEV MIN MAX 

d l-d2 10 0.0199 0.0244 0.0362 -0.0347 0.0855 

Histogram of (dl-d2) 

Midpoint Count 

-0.04 1 * 

-0.02 1 * 

0.00 2 **

0.02 2 **

0.04 3 ***

0.06 0 

0.08 1 * 
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Table 8 

Comparison Between the 95% Lower Bound Confidence Interval 

of the Mean of Throughputs Genera ted 

by ANN and SLAMSYSTEM

Two Sample t-Test 

System #No. MEAN STDEV SE MEAN 

SLAMSYSTEM 10 0.580 0.351 0.111 

Neural Network 10 0.603 0.335 0.106 

95% confidence interval for M 1 - M2 = (-0.3475, 0.3010) 

The Pair-wise Comparison (dl-d2) 

N MEAN MEDIAN STDEV MIN MAX 

dl-d2 10 0.0232 0.0263 0.0340 -0.0379 0.0767 

Histogram of (dl-d2) 

Midpoint Count 

-0.04 1 * 

-0.02 1 * 

0.00 2 ** 

0.02 3 *** 

0.04 1 * 

0.06 1 * 

0.08 1 * 
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Method Three (Performance Exceedance Probability) 

Another approach is through performance exceedance probability (Flood, 

1996). Performance exceedance probability is an indication of the performance which 

is more than a certain limit at a specific percentage of time. For example, 0.1 

represents the performance that is exceeded 10% of the time or 0.9 refers to the 

throughput which is exceeded 90% of the time (Figure 30). 

Throughput 

0.1 0.9 Performance exceedance probability 

Figure 30. Throughput of the System vs. Performance Exceedance Probability. 

According to this method, the performance exceedance probability should be 

added as an input to the ANN (Figure 31). The throughput can be considered as the 

output of ANN. The network should be trained on these input/output sets. After 

training, the output of the network estimates the throughput that corresponds to the 

probability exceeding value presented at the input. The main advantage of this method 

is its ability to give better information about the output. Industrial Engineers are 
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usually interested in more than mean and variance or confidence intervals; they are 

sometimes looking for the distribution of the outputs. This method gives better 

understanding of the distribution of outputs. 

Performance exceedance probability 
� 

The number of machine cente rs thr oughput 

ANN 
. 

The number of inspection stat ions 

Figure 31. Performance Exceedance Approach for Capturing the Stochastic 

Behavior of the Manufacturing System. 

After training, a test set including 10 samples was used to test the network's 

performance. Each sample included the number of machine centers and the number of 

inspection stations which were generated randomly. Figure 32. shows the performance 

of the network for 4 machines and one inspection center. This test sample was also 

existed in the training set. As shown, the ANN could learn the pattern very efficiently. 

The ability of network in learning the distribution of the output was not limited to the 

training points. ANN were also able to generalize the distribution. 

Figures 33-40 show the performance of the network in the new set of data. 

This set of inputs had not been applied to the network before. The results show that 

ANN can also be used in estimating the distribution of desired outputs in a 

manufacturing system. 
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Figure 32. The Performance of ANN for 4 Machines and 1 Inspection Center. 
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Figure 33. The Performance of ANN for 8 Machines and 1 Inspection Center. 
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Figure 34. The Performance of ANN for 4 Machines and 2 Inspection Centers. 
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Figure 35. The Performance of ANN for 2 Machines and 3 Inspection Centers. 
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Figure 36. The Performance of ANN for 6 Machines and 3 Inspection Centers. 
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Figure 37. The Performance of ANN for 1 Machine and 4 Inspection Centers. 
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Figure 38. The Performance of ANN for 8 Machines and 5 Inspection Centers. 
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Figure 39. The Performance of ANN for 6 Machines and 8 Inspection Centers. 
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Figure 40. The Performance of ANN for 9 Machines and 1 Inspection Center. 



Modular Approach 

As mentioned before, one approach to simulate a manufacturing system is to 

consider that the system consists of several simple components and to try to find 

appropriate ANNs for these components. These networks can later be assembled 

together to estimate the behavior of the complex system. 

In one experiment, the modular approach was applied to the illustrative 

manufacturing system (Figure 27). In this approach, the system was considered as two 

subdivisions which were connected together. As shown in Figure 41, two ANNs were 

trained to capture the behavior of each division. 

............................................... 
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- Machine : 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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.. . . . . . . . . . . . . . . . . ..  

Inspection 
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' 

Rework 
Station 

Figure 41. Modular Approach for Simulating the Manufacturing System. 
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The number of machine centers was considered as the input of the first 

network (ANN I). The output of this network was the mean of interdeparture time. 

This output was applied as an input (interarrival time) to another network (ANN II). 

The number of inspection stations was another input to this network. Finally, the 

output of ANN II was the throughput of the whole system. This structure is shown in 

Figure 42. 

First, ANN I and ANN II were trained to learn the relationship between their 

input and output values. One more time, MLP network with 18 nodes in one hidden 

layer was used and the backpropagation momentum learning method was applied. The 

initial weights were again set to be random numbers in the interval of ( -1, 1). The 

learning rate of 0.2 and momentum of 0.1 were selected. The gathered data were 

normalized to the interval of (0.1 and 0.9). The training was stopped only after 10,000 

epochs. 

No. of inspection stations 

� 
The mea 

No. of machine ce nters 
ANNI ANN II 

through 

n of 

puts 

Figure 42. 

� 

Interarrival 

time 

The Outline of Modular Approach for Simulating the Manufacturing 

System. 
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After training, the results from ANNs were compared to those of SLAMSYS. 

39 points were compared and the results are shown in Table 9. 

Use of the modules are usually involved in some assumptions which are not 

always true. For example, in this experiment, ANN II was trained based on 

exponential interarrival time inputs. The readers should notice that the output of ANN 

I is not necessarily exponentially distributed. More unreal assumptions will result in 

more inaccurate results. 

Another assumption, which is very crucial in some systems, is that the 

networks are isolated. In most of manufacturing systems, the components have mutual 

effects on each other. This interaction is not usually considered when the networks are 

trained separately. As an example, in Figure 36, the queue 2 capacity is given to be 

infinity which makes the ANN I and ANN II work isolated from each other. If there 

was a queue with limited capacity, it might block the machine center. In this case, the 

machine center can not processes any further entities until a free space be available in 

the queue. Therefore, the ANN II can affect ANN I. 

To investigate this phenomena, the capacity of queue 2 was limited to one 

entity at each instant of time. The number of inspection centers was set to be 3 and the 

number of machine centers was changed from 1 to 10. The results from modular 

approach and global approach are compared in Table 10. 

In conclusion, there is a need for more investigation to make modular approach 

an appropriate method in simulating complex manufacturing systems. 
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Table 9 

Comparison Between the Results Generated b y  

ANNs' Modules and SLAMSYSTEM 

Two Sample t-Test 

System #No. MEAN STDEV SE MEAN 

SLAMSYSTEM 39 0.649 0.301 0.0482 

Neu ral Network 39 0.657 0.311 0.0498 

95% confidence interval for M 1 - M2 = (-0.1460, 0.1302) 

The Pair-wise Comparison (dl-d2) 

N MEAN MEDIAN STDEV MIN MAX 

dl-d2 39 0.0079 -0.0042 0.0732 -0.1758 0.1422 

Histogram of (dl-d2) 

Midpoint Cou nt 

-0.16 1 *

-0.12 1 *

-0.08 1 *

-0.04 12 ************

0.00 12 ************

0.04 2 **

0.08 3 ***

0.12 6 ******

0.16 1 *
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No of 

Machines 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Table 10 

Comparison Between the Results Generated by 

Modular and Global Approach 

Type MEAN STD SE MEAN 

Modular 171.7 11.6 3.68 

Global 166.6 1.43 0.452 

Modular 303.6 11.1 3.5 

Global 331.5 2.12 0.671 

Modular 379.3 10.1 3.2 

Global 459.8 16.2 5.13 

Modular 384 13.3 4.21 

Global 471.1 21 6.64 

Modular 384 13.3 4.21 

Global 466.6 21.4 6.77 

Modular 378.5 11.4 3.59 

Global 461.7 13 4.11 

Modular 386.1 9.04 2.86 

Global 452.1 12.4 3.92 

Modular 384.3 16.1 5.09 

Global 470.8 19.9 6.3 

Modular 387.6 7.56 2.39 

Global 470.2 21.8 6.91 

Modular 384 13.3 4.21 

Global 456.4 14.7 4.64 
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95% Confidence 

Interval for M 1 -M2

(-3.287, 13.49) 

(-35.96, -19.84) 

(-93.40, -67 .60) 

(-103.9, -70.34) 

(-99.61, -65.59) 

·(-94.72, -71.68)

(-76.29, -55.71) 

(-103.6, -69.41) 

(-98.69, -66.51) 

(-85.63, -59.17) 



Dynamic Systems 

As mentioned in Chapter III, a dynamic system can be considered as static at 

each instant of time. Flood (1996) has used this property to develop a static network 

which can model dynamic systems. According to the author's, the network can 

produce a series of output values, each corresponding to a successive point in time. 

The network would process the information of the system at time "t" to generate 

output defining the state of the system at a slightly later point in time, "t+ 1 ". A loop 

would feed this information back to the input and the entire process would be 

repeated. Figure 38 shows this approach. This procedure will continue until the final 

point is reached. Since each point depends on previous points, and the procedure 

involves using random values, it is recommended to run this system several times to 

get more accurate results. Uncertainty in the system can be captured by including a 

random value as an input in each iteration. 

Current state S Next State S 

Figure 43. Capturing Dynamic Behavior of a System Through Static ANNs. 
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CHAPTER VII 

CONCLUSIONS AND FURTHER STUDY 

This document surveyed the prospective applications of Artificial Neural 

Networks (ANNs) in interactive simulation. ANNs have proven to be a promising 

technique in this field. They can be used in two main categories of applications: (1) 

situations where there is a need for quick response to a new set of data, and (2) 

situations where the effects of factors involved in the system are poorly understood. 

Literature survey and experimentation show the main advantages of ANNs over 

conventional simulation as follows: 

1. They can learn from example (experience).

2. They do not need any particular assumption about the data ( e.g. normality).

3. Fewer assumption and less precise information about the system is

necessary. 

4. They do rapid and parallel processing.

5. They can first be developed "off-line", to be used "on line".

6. They can re-tune themselves within changing environments.

7. They are robust to noise and missing data.

However, the current lack of knowledge and guidelines for implementing 

ANNs in practical problems create a gap between the capabilities of this technology 

120 



and its application to modeling manufacturing systems. To bridge this gap, 

publications have been reviewed and some practical guidelines have been offered in 

this survey. Due to ambiguity associated with ANNs, it is difficult to have clear 

guidelines. Many decisions should be made based on previous experiences and some 

trial and error experimentation. Throughout this research many limitations and pitfalls 

of ANN s have been realized. Among these: 

1. They do not always learn a satisfactory solution to a problem.

2. It is not always easy to find a good architecture for an ANN.

3. Due to ambiguities associated with the weights and their meanmg

corresponding to the real world system, they may not be helpful for understanding and 

interpreting the components of the real system. 

With the help of recommended guidelines, MIMIS queuing system was 

modeled by an ANN. The procedure of modeling MIMIS is the typical procedure of 

modeling a static manufacturing system. Based on static modeling, some methods have 

been offered to capture the stochastic and dynamic behavior of manufacturing systems. 

A simple manufacturing system was modeled through three different ways. The 

manufacturing system was also modeled through modular approach. In each case, the 

results were criticized and compared to conventional simulation methodology. 

Although some research has been done in the field of ANNs and their 

applications in manufacturing systems, there are still many areas which are unclear. 

Based on our attempt and other studies in this field, these areas should be studied 

further: 
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1. Research should be conducted in the field of ANNs. Although MLPs have

many capabilities, they suffer from many limitations (see Chapter III). For example, 

some networks used in modeling the MIMIS queuing system took days to be trained. 

Therefore, alternative types of ANNs and faster training procedures are among the 

areas that should be investigated. 

2. The applications of new technologies such as Artificial Intelligence, Fuzzy

Logic and Genetic Algorithms as complementary tools of ANNs, should be 

investigated. These sciences have been proved to have potential usage in the ANNs. 

For example, Genetic Algorithm can be used to optimize the number of layers and 

neurons. The modelers should use these sciences to simplify the recommended 

guidelines. 

3. The performance of other ANN types such as recursive networks should be

investigated. Most literature and research in the field deal with static modeling. It is 

suggested to investigate the recursive networks' capabilities especially in modeling the 

dynamic and stochastic manufacturing systems. 

4. The library of manufacturing modules should be enriched. As a first step of

creating a library of manufacturing systems, MIMIS queuing system was modeled in 

this research. General manufacturing components should be modeled and assembled 

together to estimate complex manufacturing systems. According to this project, the 

modular approach suffers from lack of precision because of the interaction between 

modules. More research is needed in this field. 
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5. Several different real manufacturing systems should be modeled through

ANNs. Most studies in the field have been done with computer generated numbers 

rather than real data. One of the capabilities of ANNs is to capture unknown factors in 

the system. Many of these factors are simply neglected when the system is modeled by 

a conventional simulation software. The performance .of ANNs should be compared to 

that of conventional simulation software on data collected from real manufacturing 

sites. 

6. The application of ANNs in optimization should be further studied. Through

this research (see Chapter VI), it has been realized that the SSE of ANNs are usually 

dropped after a few epochs. ANNs can quickly realize the direction of minimum error. 

This phenomena persuades the author to apply ANNs in the optimization. 

Investigation is needed to find appropriate procedures toward this goal. 

7. The offered guidelines should be enriched and updated. This document has

tried to provide industrial engineers with some recommendations and guidelines to 

help them simulate their systems through ANNs. However, implementing many steps 

of these guidelines depend on the previous experiences of the modeler and trial and 

error experimentation. These recommendations may not be attractive for those people 

who are looking for explicit formulas and/or clear cut guidelines. Neuroscience is not 

mature enough yet to support these guidelines with closed-form formulas. Questions 

such as "What is the best topology for the network?", "How many layers and nodes 

are needed?" are still open. Thus, the modelers who are interested in applying ANNs 

to manufacturing systems should get involved in neuroscience and update the 
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suggested guidelines based on forthcoming innovations in that field. 

8. New methods should be developed to use static ANNs m simulating

stochastic processes. The ANNs mostly transform stochastic processes into 

deterministic models. Industrial engineers are usually interested in distribution of data 

rather than mean and variance or upper/lower confidence intervals of data. Thus, more 

approaches similar to performance exceeding probability should be developed. 

Finally, scientists with extensive background in ANNs who think that the 

approximation of computer simulation is trivial, should pay attention to Kilmer's 

( 1996) comments in this regard. 

The idea of using an ANN to approximate a computer simulation may 

initially seem routine to researchers with an extensive background in 

neural networks. The reason for such an assessment is that there are 

many examples of researchers using computer simulations in order to 

obtain data to train their networks. The majority of these cases involved 

research in modifying or developing new ANN methodologies, 

techniques, or procedures. Thus, instead of expending valuable time 

and effort to obtain data from a real system, these researchers obtained 

their data from computer simulations that were built with the sole 

purpose of "feeding" an ANN. However, while it might be fairly trivial 

to build a computer simulation to provide training data to an existing 

ANN, this does not mean that it will be easy to build an ANN that will 

be able to receive and learn the relationships of an existing, complex 

stochastic computer simulation. 
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Appendix A 

Programs' Source Codes 
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/* Program for generating M/M/s inputs for an ANN*/ 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <time.h> 
long int facto(int i) 

{ 
if( i > 1) 
return double(i) * facto(i-1); 
else 

return 1; 

double summ(double rou, int s) 

{ 
double sum=0.; 
int n; 

for (n=0 ; n <= s-1; n++) 
sum = sum + pow(rou,(double)n)/(double)facto(n); 

return sum; 

} 

main(void) 

{ 
FILE *fq; 
int lamda,mue,i,Lamda[2000] ,Mue[2000] ,c=0 ,j, temp,S [2000] ,s; 
char ch; 
double P _nut[2000] ,L_q[2000],W[2000],rou,rou 1,temp l ,temp2,p; 
double L_q_max=0.,W _max=0.,L_q_temp=0.,W _temp=0.; 

fq = fopen("c:\sstest.pat","w+"); 

randomize(); 

forU= 1 ;j< 1 oo 1 ;j++) { 

/* lamda = 1 + random( 49); 
s = random(l0) + 1; 
temp = (int) ( 50. - (float)lamda/(float)s); 

mue =lamda + random(temp)+ l ;  */ 

lamda = random( 49)+ 1; 
mue = random ( 49)+ 1; 

s = random(l0)+ l ;  

while( (p = (float)lamda/((float)mue*(float)s)) < .1  II p> .99){ 
lamda = random( 49)+ 1; 
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mue = random( 49)+ 1; 
s= random( 1 0)+ 1; 
rou = (float)lamda/(float)mue; 
roul= rou/(float)s; 
Mue[c] = mue; 
Lamda[ c] = lamda; 
S[c] = s; 
temp l=summ(rou,s)+pow(rou,( double )s )/(( double )facto(s )*( 1.-rou 1) ); 
P _nut[c] = 1./templ ;  
temp2=( 1.-rou 1 )*( 1.-rou 1 )*( double )facto(s); 
L_q[c]= P _nut[c]*pow(rou,(double)s)*roul /temp2 ; 
W[c] = L_q(c]/(float)lamda; 
c=c+l; 

for (i=0;i<c;i++) 

{ 
L_q_temp = L_q[i]; 
W _temp = W[i]; 
if ( L_q_max < L_q_temp) 

L_q_max = L_q_temp ; 
if ( W _max < W _temp) 

W _max = W _temp; 

fprintf(fq,"SNNS pattern definition file V3.2\n"); 
fprintf(fq,"generated at Sat Aug 19 13:35:27 1995\n\n\n"); 
fprintf(fq,"No. of patterns : %d\n" ,c); 
fprintf(fq,"No. of input units : 2\n"); 
fprintf(fq,"No. of output units : 1\n\n"); 
fprintf(fq," 1.1 * W _max= %f 1.1 * L_q_max=%f 

\n",W _max,L_q_max); 

for (i=0;i<c;i++) 

{ 
fprintf(fq,"# Input pattern %d:\n" ,i+ 1); 
fprintf(fq,"%6.5f %6.5f \n 

%6.5f" ,(float)S [i]/11.,(float)Lamda[i]/50.,(float)Mue[i]/50.); 
fprintf(fq,"# Output pattern %d:\n",i+l ); 
fprintf(fq,"%6.5f %6.5f %6.5f 

\n" ,P _nut[i],W[i]/(1.076596),L_q[i]/(51.222081)); 

} 
fclose(fq); 
exit(0); 
} 
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/* Program for validation of MIMIS Queing System, By Payman Jula*/ 
main(void) 

{ 
FILE *fq; 
int lamda,mue,i,Lamda[2000] ,Mue[2000] ,c=0,j, temp,S [2000] ,s; 
char ch; 
double P _nut[2000],L_q[2000] ,W[2000] ,rou,rou 1,temp 1,temp2,p; 
double L_q_max=0.,W _max=0.,L_q_temp=0.,W _temp=0.; 

fq = fopen("c:\sstest.pat","w+"); 
randomize(); 
for (s=l ;  s<l l; s=s+2) { 
for (lamda= 1 ;lamda<50;lamda=lamda+ 3) 
for (mue=lamda/s + 1; mue<50;mue=mue+2){ 

rou = (float)lamda/(float)mue; 
roul=  rou/(float)s; 
Mue[ c] = mue; 
Lamda[ c] = lamda; 
S[c] = s; 
temp l=summ(rou,s)+pow(rou,( double )s)/(( double )facto(s)*( 1.-rou 1) ); 
P _nut[c] = 1./templ ;  
temp2=( 1.-rou 1 )*( 1.-rou 1 )*( double )facto(s); 
L_q[c]= P _nut[c]*pow(rou,(double)s)*roul /temp2 ; 
W[c] = L_q[c]/(float)lamda; 
c=c+l ;  } } 
for (i=0;i<c;i++) 

{ L_q_temp = L_q[i]; 
W _temp = W[i]; 
if ( L_q_max < L_q_temp) 

L_q_max = L_q_temp ; 
if ( W _max < W _temp) 

W _max = W _temp; \ 

fprintf(fq,"SNNS pattern definition file V3.2\n"); 
fprintf(fq,"generated at Sat Aug 19 13:35:27 1995\n\n\n"); 
fprintf(fq,"No. of patterns: %d\n",c); 
fprintf(fq,"No. of input units: 2\n"); 
fprintf(fq,"No. of output units : 1 \n\n"); 
fprintf(fq," 1.1 *W _max= %f 1.1 *L_q_max=%f \n", 1.1 * W _max, 1.1 * 

L_q_max); 
for (i=0;i<c;i++) 

{ 
fprintf(fq,"# Input pattern %d:\n",i+l ); 
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fprintf(fq,"%6.5f %6.5f %6.5f 
\n" ,(float)S[i]/11.,(float)Lamda[i]/50.,(float)Mue[i]/50.); 

fprintf(fq,"# Output pattern o/od:\n" ,i+ 1); 
fprintf(fq,"%6.5f %6.5f %6.5f \n",P _nut[i],W[i]/(1.1 * 

W _max),L_q[i]/(1.1 * L_q_max)); 

fclose(fq); 
exit(0); 

} 

} 
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AppendixB 

SLAMSYSTEM's Network 

130 



EXPON (31 

llllno4(2.S,3.2i,l o, .9 

e) �- � 

o, 0.1 

rl 

A Simple Manufacturing System Modeled By SLAMSYSTEM. 

EXPONI 10), l 

(1) � 

-w



BIBLIOGRAPHY 

Anscombe, F.J. (1973). Graphs in statistical analysis. American Statistician, 27, 17-21. 

Baldi, P. F., & Hornik, K. (1995). Learning in linear neural networks: a survey. 

IEEE Transactions on Neural Networks, �(4), 837-858. 

Bebis, G., & Georgiopoulos, M. (1995). Improving generalization by using genetic 

algorithms to determine the neural network size. Southcon/95 conference record, 

392-397.

Berenji, H. R., & Khedkar, P. (Sept., 1992). Learning and tuning fuzzy logic 

controllers through reinforcements. IEEE Transactions on Neural Networks, 

J(5), 724-740. 

Blanning, W. R. (1975). Response to Michael, Kleijnen and Permut, Interface, 2, 24-5. 

Chester, D. L. (1990). Why two hidden layers are better than one. Proceedings of the 

International Joint Conference on Neural Networks, 1, 265-268. 

Chung, Y. & Kusiak, A. (1994). Grouping parts with a neural network. Journal of 

Manufacturing Systems, U(4), 262-275. 

Emshoff, J. P., & Sisson, R. L. (1970). Design and Use of Computer Simulation 

Models. Macmillan, London. 

Fishwick, P. A. (1989). Neural network models in simulation: a comparison with 

traditional modeling approaches. Proceedings of the 1989 Winter Simulation 

Conference, 702-710. 

Flood, I. (1991). A Gaussian-based feed forward network architecture and 

complementary training algorithm. Proceedings of 1991 IEEE International Joint 

Conference on Neural Networks, 1, 171-176. 

Flood, I., & Christophilos, P. (1996). Modeling construction processes using artificial 

neural networks. Automation in Construction, 1:(4), 307-320. 

Flood, I., & Worley, K. (1994). Simulation using artificial neural networks. 

Proceedings of the 1994 Summer Computer Simulation Conference (26th, 

San Diego), 217-222. 

132 



Flood, I., & Worley, K. (1995). An artificial neural network approach to discrete­
event simulation. Artificial Intelligence for Engineering Design. Analysis and 
Manufacturing. 2(1), 37-49. 

Foo, S. Y., & Takefuji, Y., & Szu, H. (May, 1995). Scaling properties of neural 
networks for job-shop scheduling. Neurocomputing, .8( 1 ), 79-91. 

Friedman, L. W. (1989). The multivariate metamodel in queuing system simulation. 
Computers and Industrial Engineering. 16(2), 329-337. 

Friedman, L. W., & Pressman. I. (1988). The metamodel in simulation analysis: can it 
be trusted? Journal of Operational Research Society. 39(10), 939-948. 

Hashem, S., & Schmeiser, B. (1994). Improving model accuracy using optimal linear 
combinations of trained neural networks. Proceedings of World Congress on 
Neural Networks, .3., 4. 

Hillier, F. S., & Lieberman, G. J. (1995). Introduction to Operations Research, Sixth 
edition, McGraw Hill. 

Hopfield, J. J. (May, 1984). Neurons with a graded response have collective 
computational properties like those of two-state neurons. Proceedings of the 
National Academy of Science, fil. 

Hornik, K. (1989). Multilayer feedforward Networks are universal approximators. 
Neural Networks, 2. 

Hornik, K. (1994). Neural networks: more than statistics for amateurs? Proceedings of 
11th Symposium on Computational Statistics. 223-35. 

Huang, S. C., & Huang, Y. F. (1991). Bounds on the number of hidden neurons in the 
multilayer perceptrons. IEEE Transactions on Neural Networks, 2(1), 47-55. 

Hurrion, R. D. (1992). Using a neural network to enhance the decision making quality 
of a visual interactive simulation model. Journal of the Operational Research 
Society, 43(4), 333-341. 

Hurrion, R. D. (1993). Representing and learning distribution with the aid of a neural 
network. Journal of Operational Research Society, 44(10), 1013-1023. 

Hush, D.R., & Horne, B. G. (Jan., 1993). Progress in supervised neural networks. 
IEEE Signal Processing Magazine, 10(1), 8-39. 

133 



Hush, D.R., & Salas, J. M., & Horne, B. (1992). Error surfaces for multi-layer 

perceptrons. IEEE Transactions on Systems, Man and Cybernetics, 22(5), 1152-

1161. 

Kilmer, R. A. (1996). Applications of artificial neural networks to combat simulations. 

Mathematical and computer modeling, 23, No 1-2, PP 91-9. 

Kilmer, R. A., & Smith, A. E. (1993).Using artificial neural networks to approximate a 

discrete event stochastic simulation model. Intelligent Engineering Systems 

Through Artificial Neural Networks, .3., ASME Press, 631-636. 

Kilmer, R. A., & Smith A. E. (1994). Neural Networks as a metamodeling for discrete 

event stochastic simulation. Intelligent Engineering Systems Through Artificial 

Neural Networks, 1, ASME Press, 1141-1146. 

K.leijnen, J. P. C. (1992). Regression metamodels for simulation with common random 

numbers: comparison of validation tests and confidence intervals. Management 

Science, 38(8), 1164-1185. 

Kopsco, D., & Pipino, L., & Rybolt, W. (Nov., 1993). Neural networks as adjuncts to 

statistics software. Collegiate Microcomputer, 11(4), 229-239. 

Lampinen, J., & Taipale, 0. (1994). Optimization and simulation of quality properties 

in paper machine with neural networks. IEEE International Conference on Neural 

Networks, June 27-29, 1994, Orlando, Florida, Vol. 6, 3812-3815. 

Law, A. M., & Kelton, W. D. (1991). Simulation Modeling and analysis. 2nd edition, 

McGraw-Hill, New York. 

Law, A. M., & Mccomas, M. G. (July, 1992). How to select simulation software for 

manufacturing applications. Industrial Engineering, 24(7), 29-35. 

Lippmann, R. P. (April, 1987). An introduction to computation with neural nets. IEEE 

ASSP Magazine. 

Montgomery D. C. (1991). Design and Analysis of Experiments. Third edition. John 

Wiley & Sons. 

Narendra, K. S., & Parthasarathy, K. (1991).Gradient methods for the optimization of 

dynamical systems containing neural networks. IEEE Transactions on Neural 

Networks, 2(2), 252-262. 

134 



Nuila, V. H., & Houshyar, A. (1993). Manufacturing Systems Simulation Manual. 
Whirlpool Corp., Benton harbor, Michigan. 

Padgett M. L., & Roppel T. A. (1992). Neural network and simulation: modeling for 
applications. Simulation , 58(5), 295-305. 

Pierreval H. & Huntsinger R. C. (1992). An investigation on neural capabilities as 
simulation metamodels. Proceedings of the 1992 Summer Computer Simulation 
Conference (July 27-30), Reno, Nevada, 413-417.-

Pritsker, A. A. (1986). Introduction to Simulation and Slam II. 3rd edition, John Wiley 
& Sons Press, New York. 

Reed, R. (Sept., 1993). Pruning algorithms - a survey. IEEE Transactions on Neural 
Networks, 1(5), 740-747. 

Rumelhart, D. E. (1986). Learning internal representations by error propagation. 
Explorations in the Microstructure of Cognition, Vol. 1: Foundations. MIT Press. 

Sarne, G. M. L., & Postorino, M. N. (May, 1994). Application of neural networks for 
the simulation of traffic flows in a real transportation network. Proceedings of the 
International Conference on Artificial Neural Networks, Sorrento, Italy, May 26-
29, Vol. 2, 831-834. 

SFINX, Structure and Function In Neural ConneXtions, University of California at 
Los Angeles 

Shannon, R. E., & Biles, W. E. (1970). The utility of certain curriculum topics to 
operations research practitioners. Operations Research, 18, 1011-1025. 

Sim, S. K., & Yeo, K. T., & Lee, W. H. (Aug., 1994). An expert neural network 
system for dynamic job shop scheduling. International Journal of Production 
Research, 32(8), 1759-1773. 

Skrzypek, J. (1994). Neural Networks Simulation Environments. Kluwer Academic 
Publishers. 

Smith, M. (1996). Neural Network for Statistical Modeling. International Thomson 
Computer Press. 

SNNS, Stuttgart Neural Network Simulator. User Manual, Version 4.0, University of 
Stuttgart. 

135 



Wasserman, P. D. (1993). Advanced methods in neural computing. Van Nostrand 

Reinhold Press, New York. 

Werbos, P. J. (1992). Neural networks, system and control in the chemical process 

industries. Hand book of intelligent control. Van Nostrand Reinhold, New York. 

Widrow, B., & Lehr, M. A. (Sept., 1990). 30 years of adaptive neural networks: 

perceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9), 

1415-42. 

Widrow, B., & Rumelhart, D. E., & Lehr, M.A. (March, 1994). Neural networks: 

applications in Industry, Business and Science. Communications of the ACM, 

37(3), 93-105. 

Wildberger, A. M. (Aug., 1989). Application of expert systems, simulation and neural 

networks combined to enhance power plant performance. Proceedings of the AI 

and Simulation Workshop. AAAI. 

Wildberger, A. M., & Hickok, K. A.(1992). Power plant modeling and simulation 

using artificial intelligence and neural networks. Progress in Simulation, l, 100-

125. 

Yu, B. & Popplewell, K. (1994). Metamodels in manufacturing: a review, 

International Journal of Production Research, 32( 4 ), 787-796. 

136 


	Applications of Artificial Neural Networks in Interactive Simulation
	Recommended Citation

	tmp.1578577945.pdf.OYy32

