
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Masters Theses Graduate College

8-1996

Applications of Artificial Neural Networks in Interactive Simulation Applications of Artificial Neural Networks in Interactive Simulation

Payman Jula
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Industrial Engineering Commons

Recommended Citation Recommended Citation
Jula, Payman, "Applications of Artificial Neural Networks in Interactive Simulation" (1996). Masters
Theses. 5046.
https://scholarworks.wmich.edu/masters_theses/5046

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Masters Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F5046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F5046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/5046?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F5046&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS

IN INTERACTIVE SIMULATION

by

Payman Jula

A Thesis

Submitted to the

Faculty of The Graduate Collage

in partial fulfillment of the

requirements for the

Degree of Master of Science

Department of Industrial and

Manufacturing Engineering

Western Michigan University

Kalamazoo, Michigan

August 1996

ACKNOWLEDGMENTS

I can not find the words to express my feeling at this moment. When I started

this project, I didn't know what I would be put through. The guidance and support of

many people helped me in this way. I would like to thank the Computer Aided

Engineering Center's staff, especially Mr. Sridhar Erra, for their understanding and that

they allowed me to extensively use the labs' facilities. I would also like to thank my

advisor, Professor Azim Houshyar, for his guidance. I also want to thank Professor

Frank Severance for his valuable suggestions. I offer my appreciation to Professor

Richard E. Munsterman and Professor Anil Sawhney for their assistance and

knowledge.

The last but not least, I would like to thank my family. Without their support I

definitely wouldn't be able to do this project. I owe them for their sacrifice for my

entire life. I hope they find their sacrifice worthwhile.

Payman Jula

ll

APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS

IN INTERACTIVE SIMULATION

Payman Jula, M. S.

Western Michigan University, 1996

Although there have been many improvements in simulation technology over

the past few years, it still suffers from many limitations. Simulation methods are

usually time consuming and hence not suitable for the interactive decision making

processes.

In this project, applications of Artificial Neural Networks (ANNs) to simulate

manufacturing systems have been studied. The backpropagation Multiple Layer

Perceptrons (MLPs) have been applied to simulate manufacturing systems. Some

guidelines for developing appropriate ANNs have been presented. The results of ANN

approach have been compared to those of conventional simulation methods.

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. ii

LIST OF TABLES . vii

LIST OF FIGURES ... viii

CHAPTER

I. INTRODUCTION... 1

II. SIMULATION METHODOLOGY... 5

Introduction.. 5

Definitions . 6

Applications of Simulation . 7

Simulation Languages and Simulators . 9

Procedure for Developing a Model... 10

Simulation's Limits and Pitfalls . 13

III. ARTIFICIAL NEURAL NETWORKS... 16

Introduction . 16

Natural Neurons .. 17

Artificial Neurons and Netw
0

orks. 19

Basic Processing Elements... 20

Structures of ANNs... 23

Ill

CHAPTER

Table of Contents--Continued

Learning Rules of ANN s . 25

Multiple Layer Perceptrons . 27

The Capabilities of Multiple Layer Perceptrons.......................... 28

The Learning Algorithm for Multiple Layer Perceptron 28

Generalization . 34

Limitations of MLPs . 34

IV. LITERATURE SURVEY ... 38

Introduction... 38

Applications of ANNs.. 39

Applications of ANNs in Industrial Engineering......................... 40

Applications of ANNs in Simulation.. 41

V. DEVELOPING ANN MODELS .. 51

Introduction... 51

Simulation Life Cycle Through ANNs 52

Problem Selection and Formulation ... 52

Selection of Appropriate ANN and Software............................. 55

Data Acquisition and Preparation 60

Model Translation . 63

Testing the Model . 71

IV

CHAPTER

Table of Contents--Continued

Experimentation.. 71

Analysis of Results and Denormalization . 73

Implementation . 73

Documentation.. 7 4

VI. MANUFACTURING SYSTEMS.. 76

Introduction... 76

Simulation of Queuing Systems Using ANNs 77

Definitions... 78

M/M/1 and M/M/2 Systems... 79

MIMIS Queuing System.;.. 85

Simulation of a Manufacturing System Using ANNs........................... 98

Illustrative Example... 98

Method One (Mean and Standard Deviation)............................ 102

Method Two (Mean and confidence Interval) 105

Method Three (Performance Exceedance Probability)............... 109

Modular Approach... 114

Dynamic Systems . 119

VII. CONCLUSIONS AND FURTHER STUDY ... 120

V

Table of Contents--Continued

APPENDICES

A. Programs' Source Codes.. 125

B. SLAMSYSTEM's Network... 130

BIBLIOGRAPHY... 132

Vl

LIST OFT ABLES

1. Comparison Between the Probability of No Entity in the Queue (Po)

Generated by ANN and the Real System ... 95

2. Comparison Between the Waiting Time in the Queue (W
q
)

Generated by ANN and the Real System . 96

3. Comparison Between the Length of the Queue (L
q
)

Generated by ANN and the Real System . 97

4. Comparison Between the Mean of Throughputs Generated

by ANN and SLAMSYSTEM in Method One .. 103

5. Comparison Between the Variance of Throughputs Generated

by ANN and SLAMSYSTEM in Method One .. 104

6. Comparison Between the Mean of Throughputs Generated

by ANN and SLAMSYSTEM in Method Two ... 106

7. Comparison Between the 95% Upper Bound Confidence Interval of the

Mean of Throughputs Generated by ANN and SLAMSYSTEM..................... 107

8. Comparison Between the 95% Lower Bound Confidence Interval of the

Mean of Throughputs Generated by ANN and SLAMSYSTEM 108

9. Comparison Between the Results Generated by

ANNs' Modules and SLAMSYSTEM .. 117

10. Comparison Between the Results Generated by

Modular and Global Approach . 118

Vil

LIST OF FIGURES

1. A Biological Neuron. 18

2. A Simplified Artificial Neural Model.················:·· 20

3. A General Artificial Neural Model. 21

4. An Artificial Neural Network as a Vector Mapper.. 23

5. Three Layer Perceptron Neural Network... . 27

6. A Two-Layer MLP 29

7. MSE Surface of Linear Error. .. 35

8. MSE Surface of Sigmoid Error. ... 36

9. MSE Surface of Signum Error. ... 36

10. Simulation Life Cycle Through Artificial Neural Network. 53

11. A Typical Screen of SNNS......... 60

12. Error of Training and Validation Samples in the
Cross-Validation Method. 70

13. A Simple Manufacturing System. ... 76

14. The Method of Labeling a Queue. .. 79

15. Application of ANN in Modeling M/M/1 and M/M/2 Systems...................... 80

16. Comparison Between Probability of No Entity (Po) in the M/M/2
Queuing System Generated by ANN and Real System 82

17. Comparison Between Waiting Time (W q) in the M/M/2 Queuing
System Generated by ANN and Real System. 83

Vlll

List of Figures --Continued

18. Comparison Between Expected Queue Length (L
q
) in the M/M/2

Queuing System Generated by ANN and Real System. 84

19. The SSE of an MLP Consists of 9 Neurons in One Hidden Layer
Trained by 300 Points 86

20. The SSE of an MLP Consists of 18 Neurons in One Hidden Layer
Trained by 300 Points 87

21. The SSE of One Hidden Layer MLP consists of 9 Neurons
Trained With 1000 Points... 88

22. The SSE of an MLP Trained With 1000 Points for one Hidden Layer
Consists of 18 Neurons. .. 89

23. The SSE of an MLP With 72 Neurons in One Hidden Layer Trained
by 1,000 Points 90

24. The SSE of an MLP With 144 Neurons in One Hidden Layer Trained
by 1,000 Points ... 91

25. The SSE of an MLP With 36-9 Neurons in Two Hidden Layers
Trained by 1,000 Points. 92

26. The SSE of an MLP With 36-27 Neurons in Two Hidden Layers
Trained by 1,000 Points. .. 93

27. Graphical Representation of the Illustrative Example.................................... 99

28. Using the Mean and Standard Deviation to Capture Stochastic
Behavior of a Manufacturing System... 102

29. Using the Upper and Lower Confidence Interval to Capture Stochastic
Behavior of a Manufacturing System... 105

30. Throughput of the System vs. Performance Exceedance Probability 109

IX

List of Figures --Continued

31. Performance Exceedance Approach for Capturing the Stochastic

Behavior of the Manufacturing System.. 110

32. The Performance of ANN for 4 Machines and 1 Inspection Center. 111

33. The Performance of ANN for 8 Machines and 1 Inspection Center.............. 111

34. The Performance of ANN for 4 Machines and 2 Inspection Centers 111

35. The Performance of ANN for 2 Machines and 3 Inspection Centers. 112

36. The Performance of ANN for 6 Machines and 3 Inspection Centers. 112

37. The Performance of ANN for 1 Machine and 4 Inspection Centers 112

38. The Performance of ANN for 8 Machines and 5 Inspection Centers. 113

39. The Performance of ANN for 6 Machines and 8 Inspection Centers. 113

40. The Performance of ANN for 9 Machines and 1 Inspection Center.............. 113

41. Modular Approach for Simulating the Manufacturing System. 114

42. The Outline of Modular Approach for Simulating

the Manufacturing System... 115

43. Capturing Dynamic Behavior of a System Through Static ANNs. 119

X

CHAPTER I

INTRODUCTION

Although the progress made in computer technology m recent years has

provided more abilities and power, computers still are not able to solve most industrial

problems. On the other hand, humans are able to realize systems, classify and

recognize texts, pictures and voices in a short period of time. Currently computers do

not have these features. These abilities have motivated scientists to research the way

humans think and the methods that the human brain uses to analyze problems. The

success of researchers in introducing Artificial Intelligence motivated them to develop

similar fields such as Artificial Neural Network, Fuzzy Logic and Genetic Algorithm.

Each of these fields has shed light on one part of the human's capabilities. Throughout

history, human beings have been interested in the sciences which help them solve their

problems. One of these problems is faced by industrial engineers when they use

simulation.

Simulation methods have the ability to manipulate large amounts of data,

perform mathematical calculations and predict the performance of complex systems

with some accuracy. But simulation methods are usually time consuming and hence

not suitable for interactive decision making processes. In particular, if the decision

makers are using the simulation on-line, they need to obtain the recommendation as

1

soon as possible. Furthermore, in many situations where the details of the system are

not well known and only the input data and the output data are available, there is a

need for a quick and rough estimation of the system's response to a new set of inputs.

Unfortunately, traditional simulation methodology fails to respond to these particular

situations.

On the other hand, experienced individuals can occasionally predict the output

of systems much better and faster than computers. Knowledge, experience and

intelligence are factors that help these experts to out-perform computers. By

mimicking the human capabilities in the computer, researchers have strived to modify

the simulation methodology to make it more intelligent. One approach to intelligent

simulation is through Artificial Neural Networks (ANNs). The capabilities of ANNs in

parallel processing, learning, generalization, classification, pattern recognition and

memorizing make them good candidates to enhance the simulation methodology.

Furthermore, ANNs' adaptability makes them suitable tools for dynamic systems. The

potential applications of ANNs in simulation can range from having a small role in a

simulator to being a stand-alone substitute to the existing simulators. For the

simulation of manufacturing systems, two approaches might be considered: (1) to

create a library of modules of the manufacturing models and assemble these modules

to build more complex models, and (2) to consider the whole system as a black box

and try to find an ANN estimator for the system.

Because the internal workings of ANNs are not clearly known, researchers

have looked at the ANNs as black boxes that can be identified by their input/output

2

relationships. But several questions remam unanswered. For instance, what is the

relation between the ANNs' inputs and outputs and the real world system? Are they

the input and output of the real system, a part of the real system, or a combination of

these? How can the ANNs be used instead of traditional simulation software

applications and/or as a part of them? If the ANN concept can be applied to

conventional simulation, what is the best architecture of the network? What is the best

learning method? How many layers and nodes are needed?, etc.

In this thesis, the applications of ANNs to the simulation of manufacturing

processes are studied and their advantages and disadvantages are discussed. In an

attempt to present a systematic approach to the application of ANN, this thesis

surveys the existing literature and examines the learning methods and structures of

ANNs. Additionally, to answer some of the above questions and contemplate some

concerns on the applicability of ANNs to interactive simulation models, some

recommendations are presented. Based on the suggested guidelines, first an MIMIS

queuing system is modeled by an ANN. This system shows the ability of ANNs in

simulating static systems. The obstacles for the smooth operation are discussed to give

the industrial engineers the feeling of a typical procedure of developing an appropriate

ANN. Later, a simple manufacturing system is modeled using ANNs. This

manufacturing system has stochastic behavior. Three approaches are suggested to

capture its stochastic behavior. Finally, a modular approach is applied to this case and

the results are critiqued. In brief, the manuscript is in this order:

In Chapter II, existing simulation methodologies are briefly discussed, along

3

with the classification of systems and the procedure used to make a suitable model for

the systems.

In Chapter III, the basic concepts of ANNs, their learning rules and structures

are reviewed. A useful structure and a learning method, which is used in later chapters,

are explained.

In Chapter IV, the existing literature on the application of ANNs in industrial

engineering, especially in simulation methodology and related fields are reviewed.

In Chapter V, some guidelines for implementing the appropriate ANN to

simulating systems are presented.

In Chapter VI, simple queuing systems are modeled by using ANN, as a first

attempt in creating a library of ANN modules which can be used to model complex

systems. The results and methodologies are explained. A simple manufacturing system

is also modeled by three different ANN s.

In Chapter VII, some suggestions for future studies in the field are offered.

Computer source codes and bibliography are also attached.

4

CHAPTER II

SIMULATION METHODOLOGY

Introduction

Human societies are challenged by more complicated problems than ever

before. The real world problems are growing in size and complexity. The need to

develop tools and techniques for solving these problems has led to the use of

computers; simulation has become one of the most powerful and widely used tools.

Simulation is a popular tool in the analysis and design of complex systems, and is a

decision support tool in monitoring and controlling these systems. Simulation

modeling is a valuable tool for engineers, system analysts and res�archers. It is a tool

which aids managers in making decisions among different options.

Simulation can be used to evaluate the performance of existing or proposed

systems. It can be used to evaluate the design of a new system, or evaluate changes to

an existing system. It can be used to test operating policies and control algorithms,

when testing and experimentation with the real system would be too expensive, too

disruptive or too risky. It also helps engineers to do sensitivity analysis to answer

what-if questions. In this chapter, computer simulation and its basic concepts are

defined. The application and procedure for development of models are surveyed and

the limitations and pitfalls of existing simulation methodologies are reviewed.

5

Definitions

A simulation model is a simplified representation of a system intended to

enhance our ability to understand, predict, and possibly control the behavior of the

system. In simulation terminology, "system" is "the collection of entities, e.g. people or

machines, that act and interact together toward the accomplishment of some logical

end" (Law, 1991). Pritsker (1986) defines computer simulation as "the process of

designing a mathematical-logical model of a real system and experimenting with this

model on a computer".

For simulation modeling, the system should be presented in the forms which

are acceptable to a computer. If a system can be presented by a set of variables, then

manipulation of the variable values simulates movement of the system from state to

state. Thus, simulation involves observing the dynamic behavior of a model over time.

The state of a system can change continuously over time or at discrete instants in time.

The observed output of a process will be either deterministic or stochastic. The basic

concept of simulating a system portraying the changes in the state of the system over

time for both discrete and continuous systems are the same (Pritsker, 1986). Law

(1991) categorizes the simulation models as follows:

1. Static vs. Dynamic Simulation Models: A static simulation model represents

a system at a specific time, or a system in which time is not important. A dynamic

simulation model is a representation of a system which changes over time.

2. Continuous vs. Discrete Simulation: A discrete system is one for which the

6

state variables change instantaneously at distinct points in time. In continuous systems,

the state variables change continuously over time.

3. Deterministic vs. Stochastic Simulation Models: Deterministic model is the

one which does not contain any probabilistic (i.e. random) components. In these

models, when the input values and relationships in the model are identified, the output

is determined. On the other hand, a stochastic simulation model has at least some

random input components.

Applications of Simulation

The applications of computer simulation have grown rapidly in the past four

decades. Advances in computer technology along with the continuing development of

simulation languages have been important factors in this growth. Simulation is an

iterative experimental problem-solving technique that can be used at different stages of

the process design and process control. Simulation models can be used at four levels

(Pritsker, 1986): (1) as explanatory devices to define a system, (2) as analysis vehicles

to determine critical issues, (3) as design assessors to synthesize and evaluate

proposed solutions, and (4) as predictors to forecast and aid in planning future

developments.

Presently, simulation is widely used. A few examples are its application in

manufacturing operations, project planning and control, health care systems, financial

planning, environmental studies and transportation systems. Simulation makes it

possible (Nuila, 1993):

7

1. To evaluate the performance before a newly designed system is operable.

Before construction, new manufacturing facilities must be laid out, supplied with

material handling equipment, documented with operating procedures and cost justified.

In this case, the real system does not exist and it is expensive, hazardous, or time

consuming to build and experiment with a prototype. Simulation methodology is

recommended as a powerful tool for evaluating the performance of the potential

systems in an operations planning and design phase.

2. To compare different operating strategies of a present system without

changing the system's settings. Within an operating facility, management must react to

a rapidly changing environment to meet production objectives. Decisions on work

order release, scheduling and staffing must be made in light of new orders, equipment

availability, absenteeism and other factors. In most cases, experimentation with the real

system is usually expensive, dangerous, or likely to cause serious disruptions.

Simulation methodology is recommended as a powerful tool for evaluating the various

strategies in an operations control phase.

3. To expand or compress the system's operating time. Simulation is a useful

tool to study the past, present, or future behavior of the system in real time, expanded

time or compressed time.

4. To improve understanding of systems and enhanced communication between

different parties.

8

Simulation Languages and Simulators

There are number of software packages specifically designed for simulation.

The following are advantages of using such special-purpose packages when

performing a simulation study (Shannon, 1970): (a) reduction of the programming

task, (b) guidance in concept articulation and model formulation, (c) aid in

communication and documentation of the study, (d) flexibility in embellishment or

revision of the model, and (e) provision of the common support functions required in

any simulation.

Simulation packages can be categorized into two major categories: simulation

languages and simulators. Simulation languages help analysts develop models by

writing programs using the language's modeling constructs. On the other hand,

simulators can be used to develop a model with little or no programming. Examples of

existing simulation languages are Automod II, GPSS/PC, PCModel, SIMAN/Cinema,

SIMSCRIPT 11.5 and SLAMSYSTEM. Examples of simulators are FACTOR,

SIMFACTORY and PROMODEL.

An appropriate package should be selected based on the requirements of the

modeler and the features of the package. For a detailed analysis of an existing system,

simulation languages are usually used. For an aggregate analysis of a proposed system,

simulators are usually recommended (N uila, 1993). The desirable features of the

packages depend on the specifics of the problem, but can be categorized into (Law,

1992): (a) general features, (b) animation capability, (c) material handling capability,

9

(d) statistical capability, (e) report capability, and (f) customer services. Emshoff and

Sisson (1970) listed the following support functions as required for any simulation

language: (a) generation of random variates, (b) management of the simulated clock,

(c) collection and recording of output data, (d) summarizing and statistical analysis of

output data, (e) detection and reporting of error conditions, and (f) generation of

standard output reports. These supporting functions are required for simulators as

well.

Procedure for Developing a Model

The main purpose of modeling is to establish interrelationships between entities

of a system. The process for the successful development of a simulation model consists

of (Nuila, 1993):

1. Problem formulation: Stating the problem clearly, logically, and

unambiguously is the first step in building a model. Simplicity is an essential criterion

of a good model. Manpower, time and cost should be studied in this phase. Models are

expressed in terms of (a) goals, (b) performance criteria and (c) constraints.

(a) Goals: The goals are the objectives the modeler is trying to achieve. For

example: maximize throughput; reduce work-in-process; and reduce the work-force or

maintain it at a fixed level.

(b) Performance criteria: The criteria are the specifications by which different

alternatives are judged. For example: throughput which should be maximum; and

work-in-process which should be minimum. The goals usually can be considered as

10

performance criteria. The more goals achieved, the better the system performs.

(c) Constraints: The constraints are the limitations that control the availability

of different resources. Possible candidates are restrictions on availability and/or the use

of men, machines, money, time, space and data.

2. Model building: In accordance with the problem formulation, the system

should be expressed into mathematical-logical relationships.

3. Data acquisition: This step includes the identification, specification, and

collection of data. The required data for specifying input parameters and probability

distributions should be collected. It is necessary to characterize the random elements

of a system by particular probability distributions. To select an appropriate distribution

for an input process, the analyst must understand some of the basic properties of the

common distributions and the circumstances in which those distributions arise.

Another set of data should be gathered for validation. The performance criteria

measures are usually selected for this purpose.

4. Model translation: The model should be presented in a way that is

acceptable to the computer. The modeler should decide which computer software is

suitable for the model. e.g., a general purpose language program; a simulation

language; or a simulator.

5. Verification: In this step, the modeler verifies that the implemented

computer program executes as intended. Most common techniques for verification

include: (a) developing the program in a modular manner, (b) checking the output for

any questionable results, (c) using interactive debuggers and traces to locate mistakes,

11

(d) systematically going through the program and check the codes in each step, and (e)

using animation to observe the system's behavior.

6. Validation: In this step, the modeler checks if the desired accuracy between

the simulation model and the real system exists. Most common techniques for

validation include:

(a) The animation should be used to observe the system's behavior,

(b) For an existing system, steps should be taken to ensure that the model's

performance measures closely follow those of the existing system. The model should

then be modified to include the proposed changes,

(c) For a new system, the model performance measures should almost be the

same as the proposed method,

(d) The techniques such as goodness-of-fit test should be applied to ensure

that the computer program's output resembles output data taken from the actual

system.

7. Strategic and tactical planning: The experimental conditions for using the

model should be established in this step. The analyst must specify the appropriate

choice of: (a) the length of each simulation run; (b) the number of independent

simulation runs; (c) the initial conditions for each simulation run; and (d) the length of

warm up period, if required.

8. Experimentation: The simulation model should be executed. The obtained

output should be saved and shown in an appropriate way.

9. Analysis of results: The simulation outputs should be analyzed and

12

recommendation should be made for solving the problem.

10. Implementation and documentation: Finally, the decisions should be

implemented and the model and the results should be documented for further study.

No simulation process should be considered complete without its documentation for

future implementation.

Simulation's Limits and Pitfalls

Along with widespread use of simulation has come a great deal of misuse. A

few of the reasons for this widespread abuse are (Nuila, 1993):

1. The simulation always simulates something, but there is no reason it should

simulate what the simulator had in mind.

2. Sometimes, computer outputs are taken as gospel truth.

3. Simulation languages have succeeded in making it easier to achieve

impressive simulations, without making it easier to achieve valid simulations.

4. The promise of simulation is so great that it is easy to confuse hope with

achievement.

Furthermore, even the suitable models suffer from some limitations. A well

developed simulation model is expected to help researchers do tasks such as sensitivity

analysis, optimization study and answer inverse questions. Unfortunately, the dynamic

nature of simulation models makes them time consuming, especially when long runs

and/or several replications are needed. Each run of a stochastic simulation model

produces only estimates of the model's true characteristics for a particular set of input

13

parameters. Thus, several independent runs of the model will be required for each set

of parameters to be studied. This makes simulation a slow iterative experimental

problem-solving technique. So, simulation is not a fast technique for such tasks as

optimization and sensitivity analysis.

Specifically, simulation techniques fail when the factor of time becomes

important. In many cases, there is a need for the recommendations to be offered as

soon as possible. For example consider a system which is supposed to reach a goal at a

certain time. Unfortunately, because of unforeseen circumstances, the system is short

of the goal. Thus, there is a need for recommendations to correct the system to catch

up with desired schedule as soon as possible. The possible approaches to solving the

problems caused by computational burdens of simulation are to obtain more powerful

hardware, rewrite simulation to more computationally efficient way or develop fast

approximations to simulation. In many cases, the first and second approaches have

already been taken or were impractical due to lack of capital funds or the availability

of simulation programmers. Thus, the third approach, approximating computer

simulation, needs to be examined (Kilmer, 1996).

Simulation models are often expensive and time-consuming to develop. The

relation between independent and dependent variables and the internal workings of the

system should be very well known. The modeler should analyze the statistical behavior

of the inputs and the system. Analyzing the internal part of a system is not always easy.

There are some situations where the input and the output of the system are available in

the form of databases. For example, the number of workers and the number of

14

machines in a shift can be considered as the input, and the throughput of the system

can be considered as the output of the system. There is a need to find the output of the

system from the set of new inputs which are not in the database.

Artificial Neural Networks are good candidates for solving the above

mentioned problems of simulation. Within the next chapters, the capabilities of

Artificial Neural Networks to solve the simulation's limitations will be discussed.

15

CHAPTER Ill

ARTIFICIAL NEURAL NETWORKS

Introduction

Artificial Neural Networks are one of the most important research subjects in

recent years. Although there were a few practical applications of neural networks up

to the late 1980's, the number of applications of ANN is amazing now. Currently,

many engineering fields are trying to find innovative ways in which to use the Artificial

Neural Networks in their real world applications. The capabilities of Artificial Neural

Networks in parallel processing, learning, generalization, classification, pattern

recognition and memorizing make them play important roles in industry, business and

science.

The capabilities of ANNs are due to their simple-nonlinear computational

elements which are parallel and densely interconnected. These computational elements

are connected as networks through the use of weights. ANNs usually do their tasks by

changing some of these weights. Instead of serial and sequential or systematic and

algorithmic methods, which are common in the new computers, an ANN chooses

parallel and non-systematic methods, as the human brain does. These characteristics

make ANNs good candidates for solving experimental, multiple input-multiple output

and non linear problems. Therefore, the "ANN" term is used to describe different

16

structures of processing elements, which introduce a new method of calculation. The

main goal of ANN research is not to introduce machines which are able to do

arithmetic calculations faster than the existing computers. Rather, the goal is to

introduce machines which can be used in those fields that human beings perform better

than computers do. So, the ANNs are complements of existing computers rather than

their competitors.

In this chapter, natural neurons and their corresponding artificial neurons are

discussed. Different network structures and learning rules are explained. Finally,

Multilayer Perceptron (MLP) networks, which will be used in other parts of this work,

are discussed.

Natural Neurons

In this section a simplified sketch of a natural neuron is described. There are

four important parts in a biological neuron: (1) a neuron cell body called Soma, (2)

branching extensions called dendrites, (3) an axon that carries the neuron's output to

the dendrites of other neurons, and (4) synapses which connect different neurons

together.

The soma contains the cell nucleus, various bio-chernical factories and some

other components. A neuron operates by receiving signals from other neurons via

dendrites. The combined stimuli from these input signals, in excess of a certain

threshold level, activate a region called an axon hillock, where an outgoing tendril

called an axon connects to the cell body. The axon then transmits the neuron's output

17

to other neurons through their dendrites. To transfer from destination neuron to target

neuron, the signals pass a region called the "synapse region". In this region, these

signals are controlled by biochemical agents. This process is usually modeled in

electronic neurons by the changing of weights. The synapse represents the junction

between an axon and a dendrite. The process of thinking is actually the collective

effect of the presence or absence of firings in the pattern of synaptic connections

between neurons. Figure 1 shows the simplified sketch of a natural neuron.

Dendrites
\

Axon hillock

Figure 1. A Biological Neuron.

Dendrites from
another neuron

18

At rest, the neuron's electrical potential is around 40-60 millivolts. In the firing

process, the potential will raise to 90-100 millivolts. This prompts a change in the

potential, creates an electrical impulse which travels between 0.5 to 100 meters per

second and lasts for about 1 millisecond. The neurons can not fire continuously. They

need to take a rest - at least 10 milliseconds - before they can fire again.

If the signal speed or rate were the criteria for comparing the performance, the

electronic computers would beat the human brain. With a speed of 200,000,000

meters per second and a switching rate of 100,000,000 per second, today's computers

have a 2,000,000 fold advantage in signal transmission speed and a 1,000,000 fold

advantage in signal repetition rate. But the factors that make the human brain think,

are not solely the signal's speed or the rate of firing of neurons.

Although the neuron's switching time is about a million times slower than

current computer elements, they have a thousand fold greater connectivity than today's

super computers. It is estimated that the human nervous system contains over 100

billion (10
11

) neurons and 1014
synapses. Studies of brain neuroanatomy indicate more

than 1,000 synapses on the input and output of each neuron. Therefore, the human

brain is not as quick as an electronic computer at arithmetic, but it is many times better

and more capable at pattern recognition, learning and intelligence.

Artificial Neurons and Networks

An ANN is characterized by three characteristics: (1) basic processmg

elements, (2) topology or structure, and (3) learning rules. These are described next.

19

Basic Processing Elements

The Processing Elements, which are used in the network, usually are called

"neurons", "nodes" or "units". In Figure 2, a simplified artificial neural model is shown.

This model consists of multiple inputs and multiple outputs. Each input is multiplied by

a weight. The neuron will combine these weighted inputs and, with reference to a

threshold value and activation function and output function, use these to determine its

output.

A new activation of the unit is computed from the output of preceding units

with the current unit, the old activation of the unit and its bias. In many of the existing

ANNs, the net function computes the net value simply by adding weighted activation.

Then, the activation function converts the results with a function. A general neural

model is shown in Figure 3.

0

W2

Input
-------1 _f Output

net a

Figure 2. A Simplified Artificial Neural Model.

20

Legend.

Figure 3.

e

Input
net

f(.) 1-----t g(.)

a

The net value is represented by a net function u(.) and activation
function is shown by f(.) and output function by g(.).

A General Artificial Neural Model.

The general formula for activation function is:

Where:

fact

aj(t)

net1 (t)

activation function of unitj

activation of unit j in step t

net input in unit j in step t

With the additive net function, the net input net1 (t) is computed with

Output

(1)

(2)

For example, fact (x)=ll(l + e-x) yields the well-known logistic (sigmoidial)

21

activation function. The activation function is shown as:

a/t)

net1 (t)

O;(t)

J

1
a(t+ 1) = --=-----< I, W

ij
O;(f)-0 j)

l+e

activation of unit j in step t

net input in unit j in step t

threshold (bias) of unit}

output of unit i in step t

index for some units in the net

index of a predecessor of the unit j

weight of the link from unit i to unit j

(3)

The output function computes the output of every unit from the current activation of

the unit. The output function makes it possible to process the activation before an

output occurs.

a/t)

o/t)

j

o/t) = g (a/t))

activation of unit} in step t

output of unit j in step t

index for all unit in the net

(4)

Since the output function is usually set to identity function, many researchers combine

the f and g function together. The output function has been addressed in this work due

to consistency with the software used for modeling the neural networks.

22

Structures of ANNs

The neurons themselves do not have as much ability to perform as we expect

them to. The connections among neurons, which are called weights, make them

powerful to do their jobs. All ANNs perform essentially the same function: they map

vectors. In this process, they accept a set of inputs (an input vector) and produce a

corresponding set of outputs (an output vector). As shown in Figure 4, a vector

mapper produces a set of outputs according to the input set and the mappmg

relationship encoded in its structure (Wasserman, 1993). Examples of input vector in

manufacturing system are number of machines, number of workers and processing

time. Throughput and Work In Process are examples of the output vector.

Figure 4.

Input

Vector
ANN

Output

Vector

An Artificial Neural Network as a Vector Mapper.

The structure of the connections between the nodes are very important. Two

main categories of network topologies are: (1) Feed-Forward Nets, and (2) Recurrent

Nets.

23

Feed-Forward Nets

In these networks the signals flow only from input to output. Feed-forward

networks have no memory, they are capable of implementing only static mappings.

The mapping relationship between input and output vectors are static when each

application of a given input vector always produces the same output vector

(Wasserman, 1993). From a mathematical point of view, feed forward static networks

are nonlinear functions in the form of y = G(x), where x E R", y E [0,1] m or y E R m ,

where m and n are integers that represent the dimensions of x and y (Hush, 1993).

One of the most important feed forward static networks is the Multiple Layer

Perceptron (MLP) network. This network will be explained later in this chapter.

Recurrent Nets

In these networks the signals can flow forward and backward. Adding

feedback to feed-forward networks makes them recurrent. Recurrent networks have

memory and they are suitable for estimating dynamic systems. Dynamic systems are

the systems where the output produced depends upon previous, as well as current,

inputs and/or outputs. Dynamic networks' node equations are typically described by

differential or difference equation. The Hopfield network is an example of recurrent

nets.

Although the MLPs are used for processing static systems, they are also able to

process time series data. This application will be elaborated later in this thesis.

24

Learning Rules of ANN s

Using an ANN has two phases: the learning phase and the recall phase. In the

learning phase, the network learn the behavior of the system based on the training

data. In the recall phase, the trained network tries to estimate the response of the

system to a new set of data. These two phases can also occur simultaneously. In these

cases, the network will learn the pattern on-line and meanwhile it will recall the

patterns based on its previous experiences. By automatic adjustment of coefficients

and parameters of the network, an ANN can be trained. This process is usually called

Learning Algorithm which usually consists of the changes in the network's weights. By

this definition, the Learning Algorithm does not change the structure of the network.

Extensive research has been done for developing the new learning procedures

which train the ANNs through changing the number of layers or neurons. These

techniques can be divided into three main categories (Bebis, 1995): pruning,

constructive and weight sharing. Unfortunately, there is no mathematical or heuristic

solution for optimization of the number of neurons, links and layers. Currently,

Genetic Algorithm is a promising approach in this field. Throughout this thesis, only

changing of weights will be considered as the learning method. In the next chapters,

some recommendations for optimizing the performance of ANN through changing the

number of layers and neurons will be offered.

There are two main approaches for learning m an ANN: (1) Supervised

Learning, and (2) Unsupervised Learning.

25

Supervised Learning

In this method, the network is trained on training sets consisting of input­

output vector pairs. One vector is applied to the input of the network and the desired

results are considered as output of the ANN. These output signals are usually called

"teacher" or "supervisor". The teacher is responsible for teaching the network until the

desired output is obtained. The training is an iterative process. In each iteration, the

network is trained by adjusting tJie weights so as to minimize the difference between

the desired and actual output. Each iteration is called an epoch. After training, the

performance of the network is criticized based on its power of generalization. The

backpropagation is an example of supervised learning method. The concepts and

terminology of supervised learning are explained later in this manuscript.

Unsupervised Learning

In this method, sometimes called self-organizing, there is no output reference

for ANN and only input vectors are needed to train the network. The learning process

is usually done based on local information and internal signals. During the training

processes the network weights are adjusted so that similar inputs produce similar

outputs. Kohenen and ART are among those networks which use this method.

Recently, other methods, which are usually implemented when there is not much

information available, have become popular. For example the "Reinforcement method"

(Berenji, 1992) uses reward and punishment signals for getting the best results.

26

Since in the most simulation projects some inputs and outputs of systems are

available, supervised ANNs, either feed-forward or recurrent, are usually

recommended. For more information about the learning methods in linear networks

please refer to (Baldi, 1995). Among the varieties of ANNs, only fully connected

Multilayer Perceptron networks are used and explained in this thesis.

Multiple Layer Perceptrons

Multiple Layer Perceptrons (MLP), sometimes called multilayer perceptron,

networks are feed-forward static ANNs. An example of MLP is shown in Figure 5.

Figure 5.

Inputs

Hidden Layers

First
Layer

Second!
Layer

Output
Layer

Three Layer Perceptron Neural Network.

In this kind of network, the input vector is applied to the first layer and the

output of the first layer is connected to the second layer and so on and so forth. In the

fully connected MLP, each neuron in layer l is connected to each neuron in the layer

l+ 1. Figure 5 shows a three layer perceptron which has one input, one output and two

27

hidden layers. In some literature, the first two layers are called hidden because they are

hidden from input and output. For consistency, it is suggested to name the ANNs

based on their hidden layers rather than considering their inputs and output layers. For

example, Figure 5 shows a two-hidden-layer network.

The Capabilities of Multiple Layer Perceptrons

Fully connected MLPs are able to perform these tasks:

1. Provide all Boolean logic functions. The two layer MLP is able to perform

all logical functions (Hush, 1993).

2. Partition the sample space in classification problems. The MLP with one

hidden layer is able to divide every convex region. For classification of both convex

and concave regions, an MLP with two hidden layers is enough (Lippmann, 1987).

3. Perform all kinds of nonlinear mapping in functional approximation

problems. The MLP is able to estimate and model every nonlinear mapping with the

desired degree of precision in a Rn space (Hornik, 1989).

The Learning Algorithm for Multiple Layer Perceptron

For many years the most important problem of MLPs' learning was the

adjustment of the weights of hidden layers in the network. Rumelhart (1986)

introduced a method for solving this problem. This method, called backpropagation, is

based on the steepest descent method. In the backpropagation, a sample of output

error will be propagated in the entire network and it will be used as a reference for

28

adjusting the internal weights of network. Figure 6 shows an MLP network.

Yo,o

Yo.,

Yo,2

Yo,J

Figure 6.

Where:

Ut,J

YtJ

Wt,J,i.

L

p

Y2,1

+

CJ +-T-ct,

y2,2

+

£2 +-r
A Two-Layer MLP.

The weighted summation of jth neuron in the layer l.

The output of }th neuron in the layer L.

d2

The weight which connects the ith neuron of layer /-1 to }th neuron of

layer l.

The pth input pattern of the training set.

The desired output of }th neuron for the pth input pattern.

The output error of jth neuron for the pth input pattern.

The number of neurons in the layer l.

The number of layers.

The number of learning patterns.

For simplicity, this network is composed of only one hidden layer. The input layer is

29

called layer zero. For example, y0,1 is a notation for the first input of the pth pattern.

Thresholds are considered as neurons number zero with input value of one. So,

w1,J,o is the weight of lth layer, connected to jth unit of that layer, with the input of y1,0

=1. In Figure 6,f(x) is a continuous function andf '(x) is its derivative with respect to

X.

Yt.J =f(u1)

N1-1

Ut,J = L w,.1,;Y1-1,;
i=O

(5)

(6)

Equation (6) represents the error of qth output to the input pattern U
p
. The total

squared error to the input pattern U
p

will be:

NL

E
p

= 112 L£2q (U
p
) (7)

q=1

This error can be generalized over all input vectors in the sample space. This generates

a global error function. This function, which is the total error of the network for all of

the patterns, is called Sum-of-Squared-Error Criteria Function and is shown as:

J = "E L.. p

p=l
(8)

J is the goal function which is desired to be minimum. With the help of the gradient

30

method, weights of the network will be adjusted in such a way that fulfill this desire.

To reach this goal, it is necessary to minimize the total error of the network to the

input U
p

in each iteration. This means that for a given input pattern to the network

(U
p
) the weights should be adjusted in a way that minimizes the error of the

corresponding output.

From steepest descent method (Hush, 1993):

a1
�w1 (k)= w1 .(k+l)-w1 (k)=-11- I

,],I ,],I ,].I a W
w=w(k)

f aE/J I�wl ,j.Jk) = -11.L.., a W=w(k)
p=I Wl,j,i

(9)

(10)

In the above formulas, 11 is a positive constant which is called learning rate. Using the

Chain Rule:

a E JJ a E
/J

a Yt ,j
--=--*--

aw
,
.. aY1 · aw1 ·· ,],I ,] ,],I

a Yt . a Yt . a ul .
__ ,]_= __ ,] *--'-]

aw1
·· au{ . aw

,
..

,],I ,] ,],I

aul ,j _ a �,
-- --- .L., wI,j,i Y1-1,; = Y1-1,; a Wl ,j,i a Wl ,j,i i=I

From (5) and (11) it can be concluded that:

a Yt ,j -a--= f (ul,j) Yt-1,i
Wl ,j,i

(11)

(12)

(13)

31

(14)

aE
The term __ P_ expresses the sensitivity of E

P
to the output of the node Yi,j .This

d Y1 ,j

node affects the E
P

through the nodes which belongs to higher layers. Therefore, it

can be expressed as a function of the sensitivities of the higher layers' neurons.

a E N,+, a E a y
__ P = I P • l+l,m

d Y1,j m=I d Y1+1,m d Y1,j

d Y1+1,m _ d Y1+1, m d ul+l,m

d Y1,j d ul+I m
. d Y1,j

d Ul+l, m

= _d_ � L-J wl+l,m,q Y1 ,q = wl+l,m,j
d Y1,j d Yu q=O

d Y1+1,m

f '()
d

= Ul+l,m · Wl+l.m,j
Y1,j

-:-.. E N,+, a E 0 JJ � p ' -
d
-

= L-J
d

· f (Ul+l,m). Wl+l, m ,j
Yu m=I Y1+1,m

(15)

(16)

(17)

(18)

(19)

a E
l' So, the sensitivity can be expressed based on the next layer's sensitivity,

d Y,.m

aE
__ P_ . This process can be continued up to the last layer which is the output layer.

d Y1+1,m

In this layer the boundary conditions exist. From Equations (6) and (7):

32

(20)

The expression m Equation (20) is called the output error, and the

corresponding expression for hidden layer nodes in Equation (19) is referred to as the

hidden layer error. Since the hidden layer error is calculated from the output error

backwards, it is called "backpropagation error" and the algorithm is known as

"Backpropagation Algorithm". By the help of this algorithm, all of the network's

weights will be adjusted.

The learning parameter, 17, is usually a constant for the whole network and

defined in the open interval (0, 1). There are several other methods for setting 17. Some

of them suggest different values of 17 for each layer. The other methods prefer big

values of 17 at the beginning of the learning process, continuing with small values as

the learning process goes on. Choosing different values of 17 for each neuron is another

option. Basically, selecting the right value for 17 is not easy and usually is done based

on trial and error. Speed and performance of MLP radically depends on the values of

17. In some circumstances, wrong values of 17 make the network's output unstable and

divergent. One of the approaches for solving this problem is to make the 17 adaptive. It

has even been suggested to make 17 adaptive with fuzzy logic sets. The simplest and

most popular approach is to add a "Momentum" term to each weight update.

33

a.!).w(k) = a.(w(k)- w(k -1)) 0-<a -<l (21)

In this formula, a is the coefficient of momentum. Adding (21) to (9) makes the

variation of weights smoother.

Generalization

After the learning phase, the performance of the network is usually criticized

based on its generalization power. Generalization is the network's ability to produce

accurate results on new samples which do not belong to the training set. The

Generalization depends on these factors: (a) the number of training points in the

training phase, (b) the sequence and the nature of training data set, (c) the complexity

of the system which is under consideration, and (d) the structure and size of ANN.

Limitations of MLPs

1. Currently, there exist no deterministic or heuristic method for choosing the

best structure and optimum number of neurons and layers. If the network's size is

small, the network will lose its ability to approximate a good model of the system. If

the network's size is big, the number of local minima will increase and the speed of the

network will rapidly decrease.

2. There is no evidence that the network will be able to learn the mapping

function. Although the number of input sets might be very high, there is no guarantee

that the weights will reach unique numbers in a reasonable amount of time.

34

3. The local minima problem in the perceptron networks has not been solved

yet. This problem is due to the gradient method which intrinsically will stop and stay in

the local minima. The method of choosing the nonlinear forms of elements, in the local

minima problem, is very important. The more linear the activation function, the less the

number of local minima. However, smooth nonlinearity is required by backpropagation

technique. Figures 7, 8 and 9 show the Mean Square Error (MSE) surfaces of E[(£)
2
]

as function of two weight values in a one layer perceptron based on different

activation functions (Widrow, 1990).

Figure 7. MSE Surface of Linear Error.

In Figure 7, the activation fu,nction is a linear function. In this case, the global

minimum is accessible through the gradient method. Figure 8 shows the hyperbolic

tangent activation function. This function is a nonlinear function but differentiable. In

this function, selecting the right values for the gradient steps is very important and

gaining the global minimum is possible, but of course not as easy as in the previous

35

one. In Figure 9, a threshold function has been considered.

Figure 8. MSE Surface of Sigmoid Error.

Figure 9. MSE Surface of Signum Error.

This function is not differentiable and nonlinear. As shown, there are many

local minima and gaining the global minimum is almost impossible. Many methods,

36

such as Boltzman Machine and Simulating Annealing, have been suggested for solving

this issue.

4. The backpropagation method is slow. this method usually takes time in the

perceptron networks because of local minima, network size and the small initialization

values. Increasing the values of Tl, is among the suggested methods for overcoming

this limit. Although, it may make the network unstable.

Some guidelines on building good structures of MLPs will be suggested in

Chapter V. Setting the parameters and variables will also be discussed.

37

CHAPTER IV

LITERATURE SURVEY

Introduction

The first simulation systems were mechanical and performed mathematical

operations using combinations of gears and machines. In the late 1970's the

microprocessor became a reality and greatly enhanced the role of simulation,

permitting it to evolve from being a physical tool to acting as a mean for performing

numerical analysis. Now, simulation methods have the ability to manipulate large

amounts of data, perform mathematical calculations and predict the expected

performance of a real system. Concurrent with the increased capability and flexibility

of the simulation was the expansion to many continuous and stochastic processes

including material handling systems, food-processing operations, health care systems,

etc.

But simulation methods are time consummg and expensive m terms of

computer time. Experiments must be repeated in full if new conditions require re­

evaluation. When this is combined with the number of scenarios that the decision

maker has in mind, make the total number of runs prohibitively high, rendering the

simulation unattractive. Researchers have addressed this traditional problem as

"computationally expensive" (Flood, 1995), "expensive in terms of processing time

38

and/or money requirements" (Kilmer, 1993), "resulting in computing costs" (Pierreval,

1992), etc.

In an attempt to solve this problem, a few researchers tried to change the

simulation methodology to the method that human beings use for interpreting the

systems in order to make the simulation "intelligent". Artificial Neural Networks

(ANNs) is among the techniques that have been used to improve the performance of

the simulation of manufacturing systems.

In this chapter, first the general applications of ANNs are briefly reviewed.

Two areas of applications of ANNs in industrial engineering are explained. Then, some

of the literature on application of ANNs in simulation are classified and discussed.

Similar attempts in other fields and the articles which may be useful in some aspects of

simulation are also reviewed.

Applications of ANN s

Although there is no reported practical application of ANNs in industries up to

the late 1980's, the number of applications in industry, business and science in the mid

1990's is amazingly high (Widrow, 1994). ANNs are not able to compete with

conventional techniques at performing numerical operations. However, they are useful

for tasks involving ambiguity such as handwritten character recognition and speech

recognition. The capabilities of ANN in pattern classification, prediction, control and

optimization have been demonstrated by scientists. Most of these studies are based on

articles published by Hopfield (1984), Rumelhart (1986) and Lippmann (1987).

39

Application of ANNs in Industrial Engineering

In the domain of industrial engineering, the application of ANNs in quality

control, optimization and resource allocation have been reported by Widrow (1994).

One area of using ANN in industrial engineering is in Grouping Parts.

Grouping Parts allows design and manufacturing to take advantage of geometric shape

similarities between the parts. Chung and Kusiak (1994) use the recognition of objects

for identification, classification, verification and inspection tasks in manufacturing.

They have developed a feed forward - back propagation ANN to classify the parts

based on their geometry.

Another area is job shop scheduling. Job shop scheduling is a resource

allocation problem. The resources are called machines and basic tasks are called jobs.

Foo, Takefuji and Szu (1995) investigate the applicability of ANN for solving job shop

scheduling problems. They have used a hardware consisting of linear and nonlinear

processors in their survey. Sim, Yeo and Lee (1994) try to apply an expert neural

network to the dynamic job shop scheduling problem. The authors believe that the

major disadvantage of the ANN, as compared to the knowledge based system, is its

inability to explain the factors and decisions made in arriving at the solution. The

expert neural networks system integrate the expert system and neural network to take

advantages of both methods. They propose a network consisting of several sub parallel

nets. The expert system activates sub networks according to the prevailing job shop

environment. They have found that ANN can be used to meet the changeable demands

40

on production scheduling.

The job shop scheduling problem can be modeled by mixed integer-linear

programming. Thus, the proposed approaches for solving this problem open up the

application of ANNs in Operations Research and Linear programming problems.

Application of ANNs in Simulation

In the field of simulation, most researchers have applied ANN to simulate a

process, a machine or a function without writing much about the procedure of building

their network. In these cases, the readers find the ANN a useful tool in simulating a

particular process but not applicable to the other problems, even to similar ones. On

the other hand, there are a few articles which systematically approach how to build

ANNs' models.

In this section, first the literature on the application of ANNs in simulation is

surveyed. Some of this literature is about a particular application. The others talk

about the general idea of application of ANNs in simulation. Then, the articles which

have different approaches to the problem are reviewed. The similar attempts in using

ANN in fields other than manufacturing engineering are the subject of the rest of this

chapter.

Wildberger (1989) has made one of the first attempts in this field. He has

studied the use of neural networks in enhancing the performance of a power plant. He

has discussed the possibility of replacing an artificial intelligent system with neural

network. The system assists operators and performance engineers in improving plant

41

efficiency in real-time (1992).

In a systematic attempt to apply ANN to simulation methodology, Fishwick

(1989) compares the ANNs' performances with traditional methods such as linear

regression and surface response. He has developed a neural network for simulating a

ballistics model and, based on the results of his experiment, the neural net model

appears to be inadequate in most respects. The result of ANN in comparison to the

other two methods is so poor that he comes to the answer "NO" in reply to the

question "Are neural network models useful as simulation models?". But, later

literature shows more promising prospects for applications of ANNs in simulation.

Lampinen and Tai pale (1994) present a neural network based system for

estimating the final quality of paper from process measurements. They have realized

that the final quality of paper depends on many process variables. Furthermore, it is

very difficult to find theoretical rules of the behavior of paper properties when

variables depend on each other. To solve these problems, they have suggested an MLP

network to simulate and optimize the paper manufacturing process.

Sarne and Postorino (1994) use a supervised backpropagation ANN for

simulating at each instant the values of traffic flows in a real transportation network.

They have realized that the ANN can resolve both random aspects and the presence of

a cyclic dependence among the variables of the problem.

Padgett and Roppel (1992) offer a systematic approach m prospective

application of ANN to simulation. Based on their article, rapid computation,

robustness and adaptability of ANNs are the main factors that make ANNs a good

42

candidate for simulation. They have pointed out that ANNs require fewer assumptions

and less precise information about the system modeled than do some of the more

traditional techniques. The authors suggest a design technique for a neural network

simulation model and briefly explain how each step of this design may be implemented.

Their suggested procedure has four steps: (1) definition of global system goals, (2)

algorithm selection and design, (3) implementation and constraints, and (4) evaluation

and performance measures. The necessity of examining the ways to integrate neural

network with fuzzy logic, genetic algorithms, expert systems and other tools for

knowledge based systems designers, has been addressed in their article.

Researchers have different approaches to the application of ANNs in

simulation. Sometimes, they look at the same problem from different perspectives.

Furthermore, ANNs have been used in a variety of fields in different applications.

Some of these approaches can be applied to simulation of manufacturing systems as

well. Thus, a classification of these approaches is presented here. Specifically, these

categories are reviewed: (a) ANNs as map operators, (b) ANNs and metamodeling, (c)

ANNs as a part of simulation software, (d) ANNs in statistics, and (e) ANNs in

consultant projects.

ANN s as Map Operators

One approach to simulation methodology is to consider computer simulation as

a map operator which maps a set of inputs to a set of outputs. In this approach, the

input vector will be mapped to the output vector through a function which will be

43

provided by an ANN. ANNs have been known as a promising method of mapping

vectors (Wasserman, 1993).

In an attempt to compare ANNs and multiple linear regression as two methods

of mapping functions, Kilmer and Smith (1993) conduct an experiment of

approximating a lot size-reorder point inventory system simulation for estimating mean

total cost. The authors compare the ANN with the type of multiple linear regression

typically used in the response surface method. In their experiment, the authors first

produce the output with a traditional simulation language and assume that these

outputs are perfect. Then, they try to compare the result of the ANN with the

regression method. They conclude that regardless of training on mean data or on

individual replication, the ANN outperform the corresponding regression models.

The authors conduct another experiment for calculating mean and variance of

the total cost of a similar case (1994). They have labeled their approach as a

metamodeling technique for discrete event stochastic simulation. This article will be

reviewed next.

ANN s and Metamodeling

One of the approaches for applying ANNs to simulation is to simplify the real

system and reduce the number of inputs and outputs of the model, without loss of

generality. In this method, researchers try to simplify the real systems into smaller

models in which only a selected subset of input variables will be considered. This

method, called metamodeling, was first proposed by Blanning (1975) and later was

44

extensively used by many other researchers (Kleijnen, 1992), (Friedman, 1989). The

application of this method as a post-simulation analysis tool has been discovered by

researchers (Friedman, 1988). A review of published papers on the application of

metamodels in manufacturing from 1975-1993 can be found in Yu (1994). Most of the

researchers, especially those who want to predict the .output of the. real system based

on the output of ANN, have used the metamodeling technique. These researchers have

tried to replace the metamodels with an ANN.

One of the best attempts in this regard has been done by Pierreval and

Huntsinger (1992). According to them, the advantages of using metamodels include:

(a) reduction of computing costs (memory/time) in comparison to traditional software

applications like SLAM II, SIMAN, GPSS; (b) performing sensitivity analysis; (c)

model simplification; (d) enhanced exploration and interpretation of the model; (e)

facilitating the transfer of models; (f) optimization; (g) answering inverse questions;

and (h) reducing the number of inputs.

The authors have successfully implemented this method to a job shop

metamodel as an example of discrete simulation. They compare a traditional simulation

model with an ANN metamodel based on elapsed time and occupied memory of a

computer. In another experiment the authors have used "The percolator coffeepot

metamodel" as an example of the continuous system simulation. This system was

previously modeled with partial differential equations and other mathematical

techniques. Again, an ANN is used for simulating this system. The results in both cases

show a significant reduction of use of computer time and memory.

45

Another attempt in this area has been made by Kilmer and Smith (1993). They

apply neural networks as metamodels for discrete-event stochastic simulation. A

classical (s,S) inventory simulation, taken from the experimental design and

optimization chapter of Law and Kelton (1991), is translated to a metamodel through

the development of parallel neural networks, one. estimating total cost and one

estimating variance of total cost. Kilmer and Smith show that the neural network

metamodel is quite competitive in accuracy to the simulation itself, and is

computationally more efficient.

ANN as a Part of Simulation Software Applications

Hurrion (1992) describes the use of neural networks to represent the results of

simulation of a coal depot operations. The author has applied all results obtained from

the simulation to a neural network. After a suitable period of training the quality of

results obtained from the network is matched to the corresponding results of those

obtained by running the original simulation model. The author concludes that the

ANN, after a suitable period of training, would be able to predict the response of

different model configurations without the need to re-run the simulation. Hurrion

(1992) believes that "it is possible, with the help of ANN, to suggest the next best

configuration to investigate. If this next suggestion is then simulated, then its results

can be added back to the training set, improving the reliability of ANN model".

Because the results obtained from ANN model are fast, it is possible to draw contour

maps in real time. The author also brings up the idea of developing hybrid models

46

which are part simulation and part neural.

ANNs in Statistics

Today, simulation and statistics are convoluted. So any enhancement in

statistics may be applied to simulation methodology. Most accredited simulator

software applications have some parts which are directly concerned with statistics

methods. Examples are random number generators on a given distribution function,

fitting the best curve to a set of data, etc. There are many prospective applications of

ANN in statistics. Realizing that the neural networks are not an amateurish tool in

statistics, Hornik (1994) expresses the advantages of using ANN in this field. He

points out that, in the long run, neural network modeling and special-purpose

hardware realizations should become a standard tool in applied statistics. This section

has been devoted to the application of ANN in statistics, especially the areas that are

common with simulation.

It can be shown that MLPs can approximate any reasonable function arbitrarily

well, provided that enough hidden units are available for internal computations and

that their activation function be non polynomial (Hornik, 1989). Kopsco and Pipino

(1993) investigate the applications of neural networks to the tasks of learning

functional mapping and interpolation. They compare the performance of the neural

networks in the interpolation to that of interpolating polynomials. The results show

that neural network can be useful in learning functional mapping and interpolation. The

authors suggest that neural network models can be added to conventional statistical

47

tools to aid in the recognition of underlying functional forms. The easiest way to

interpolate the data is "by eye". But besides the lack of rigor, a main drawback of the

"by eye" procedure is its inability to generalize beyond three dimensions. So, the

authors recommend the ANN method when the data sets are higher dimensions than

two. The authors have applied the ANN to Ancombe'-s (1973) data sets and compare

the results with that of traditional regression method. They have found ANNs as tools

which are able to model a phenomenon without explicit knowledge of its underlying

function form. Finally, they recommend the ANN as the best method for finding the

best fitted function to a set of data. Hashem and Schmeiser (1993) show that using

MSE-optimal linear combinations of a set of trained feed-forward networks may

significantly improve the accuracy of approximating a function and its first and second

order derivatives.

The application of ANN in statistics is not only in the approximation of

functions and their derivatives. Every user of simulation software applications, to some

extent, is involved in statistical distribution of variables. One of the basic problems for

model makers is to find the best fit of distribution for a set of data and to generate

some random numbers which belong to that distribution. In most practical applications

the distribution functions which exist in a software database are not suitable for

representing the set of data. Inevitably, the model maker should choose the best

functions which exist in the software database for representing the distribution of that

data. Undoubtedly, this approach will increase the error.

Hurrion (1993) describes a method by which a neural network learns to fit a

48

distribution to a sample data. The author has found that the ANN can be an alternative

approach to the problem of selecting suitable distributions and random variate

generation techniques for use in simulation and mathematical models. The author has

been able to fit a neural network to many continuous input distributions such as

normal, uniform, negative exponential, gamma and beta. Several kinds of data such as

one tail, two tails and range over fixed intervals are studied in the experiment. The

statistical goodness-of-fitness shows no significant difference between the distributions

learned by neural network and original theoretical distributions which were used to

train them. They show that if it is not possible to fit a theoretical distribution to the

sample data then this method is an alternative to sampling directly from the empirical

histogram obtained from the sample data.

ANNs in Construction Projects

One of the applications of ANN is in simulation of construction engineering

projects. Since there are many similarities between construction projects and

manufacturing projects, the review of the literature in this field seems useful. Flood has

been trying to find suitable ANNs to model construction processes. His works are

mostly based on Radial-Gaussian neural networks (Flood, 1991). He has addressed the

advantages of using Radial-Gaussian as: (a) they are fast, (b) guaranteed convergence

on a solution during training, (c) an ability to model functions to a high precision, and

(d) automatic determination of the number of neurons to include in a network.

Flood and Worley (1994 and 1995) use the rapid execution of simulation

49

through parallel processing in two experiments. The first experiment concerns a model

of a simple chaotic function. The results prove that complicated behavior in recursive

functions can be captured by using ANN. The second study involves modeling a non

continuous scraper-based earth-moving system that, traditionally, had been modeled

using discrete-event simulation algorithms. Both studies indicate the viability of the

neural network approach in simulation.

Flood and Christophilos (1996) reevaluate a neural network approach to

modeling the dynamics of construction processes that exhibit both discrete and

stochastic behavior. The application of the technique to two classes of earth-moving

systems is reassessed in the article. The results confirm the ability of the neural

network to model the discrete and stochastic behavior of some classes of construction

processes. They have realized the potential application of the method in two situations,

one where there is limited theory describing the dependence between the variables and

the second where there is a need for rapid execution.

50

CHAPTER V

DEVELOPING ANN MODELS

Introduction

Most of the available publications on ANNs emphasize the advantages of one

method and ignore its limitations. Some of them are about the application of ANN to a

particular domain. A few discuss applications of ANNs to manufacturing systems.

Having read these publications, the modeler may have the impression that ANNs are

useful tools for solving many real-world problems. However most modelers, especially

those who are not familiar with ANNs' techniques, are not able to adapt this new

technique to their own case. There are few guidelines to help them simulate their

systems with ANNs.

Modelers face many questions. Some of them are as follows: "What kind of

systems can be modeled by ANNs?", "How should the data be gathered and

prepared?", "When should the learning process be stopped?", "What are the best

values for network parameters?", and in brief , " How can a system be modeled by

ANNs ?".

Most of the above questions are still open questions and there is no absolute

answer for them. However, this chapter tries to give direction to answer the above

questions. This information has been drawn from many sources and from the some

51

experimentation. Some of the proposed answers are based on proven theorems, the

others are based on the rule of thumb. In the latter case, the modeler's judgment and

ingenuity along with trial and error are very important. The goal of this chapter is to

help modelers develop successful models with ANNs. Toward this goal, the simulation

life cycle through ANN is reviewed. Each step is discussed and some suggestions are

offered in each step.

Simulation Life Cycle Through ANNs

Developing a successful model through ANN contains these steps: (a) problem

selection and formulation, (b) selection of appropriate ANN and simulation software,

(c) data acquisition and preparation, (d) model translation (network building, network

training), (e) testing the model, (f) experimentation, (g) analysis of results and

denormalization, (h) implementation, and (I) documentation.

A schematic of the simulation life cycle through ANN is proposed in Figure 10.

It is seen that the development of a successful model is more than just coding and

training a network. Special attention should be paid to activities such as data gathering,

normalization, building and training the network, testing, analyzing the results, etc.

Problem Selection and Formulation

The first step of the simulation life cycle through ANN involves selecting an

appropriate problem and stating the problem clearly.

52

53

Problem Selection &

Formulation

l

Selection of Appropria.
,,;

ANN & Software

!

Data Acquisition &

Normalization

! 0
·-

Network Building t,j
-

,I,

Network Training -

bl)
-0

A
0

·s ::E
·-

� No
(1) Pass
·-

Test

Yes
��

s::: Experimentation 0
·-

t,j

! ·-

-

Analysis of Results &
0

Denormalization

!

Implementation

!

Documentation

Figure 10. Simulation Life Cycle Through Artificial Neural Network.

Problem Selection

One of the first questions the modeler may ask is if the ANN is a good solution

to a given simulation problem. ANNs' applications and capabilities are discussed in

Chapters III and IV. However, there are still some points that the modeler should

consider. For a given problem, if there is a mathematical solution, ANN is not

recommended in most cases. ANNs usually require more computations and produce

less accurate results than closed-form mathematical methods.

The power of ANNs are best shown when there is some ambiguity in the

system. Ambiguity appears when the complexity or inaccessibility of the system makes

the mapping -- relation between input vector and output vector -- unknown. ANNs

have the best performance in the situations where a human's intelligence performs

better than a computer. Examples in manufacturing systems include, but are not

limited to the systems where the characteristics of machines are not well known or in

the cases that the machines are not accessible.

Problem Formulation

Having selected the appropriate problem, the modeler should define the

problem and objectives clearly. The modeler should then go through these steps: (a)

define the data, and input and output vectors; (b) define the relation between the real

systems input/outputs and ANN input/outputs; (c) specify the criteria for comparing

alternative designs; and (d) study the project in terms of manpower, time and cost.

54

Selection of Appropriate ANN and Software

Having decided that ANN is a good approach for modeling a well-defined

problem, the modeler should choose an appropriate ANN method and a good software

for performing the experimentation. In this section, the criteria of choosing ANNs'

methods and software environments are discussed.

ANN Methods

A question which usually arises is "What is the best ANN method for modeling

the system?". The answer to this question depends on the data and the system to be

modeled. According to Wasserman (1993), ANNs can be selected:

1. Based on static or dynamic behavior of the system. Static systems map a

given input vector consistently to the same output vector. Non-recursive (feed­

forward) networks are recommended for modeling static systems. On the other hand,

dynamic systems' outputs depend on the current and previous input/output and on the

state of the system. For dynamic systems, recursive ANNs are usually recommended.

Most real-world problems have some dynamic characteristics. Thus, the recursive

ANNs are good candidates for most practical problems. However, because of the

complicated and lengthy training phase, recursive ANNs have found limited practical

applications.

2. Based on the continuous or classified output of the system. ANNs can be

categorized by those which map their input vectors to continuous valued outputs and

55

those which perform classification. The classifier ANNs can not perform continuous

mapping, but the continuous ANNs can classify.

3. Based on the availability of input-output vector pa1rs. There are many

ANNs that require supervised training and there are some that require unsupervised

(self-organizing) training. For supervised learning the input-output vectors should be

available. Unsupervised learning works based on the local information and internal

signals. The input and output of the manufacturing systems are usually available. So,

the supervised training ANNs are recommended in most of the cases. Furthermore, the

theories of unsupervised training are still under development. Unsupervised ANNs

have not proved their capabilities for solving practical problems yet. In this

manuscript, first static systems are discussed and then suggestions for modifying the

static model to simulate stochastic and dynamic systems are offered.

Not only in the field of simulation but also in many other fields, most of the

researchers have used backpropagation for solving their practical problems.

Backpropagation is usually used to perform supervised training on multilayer, non­

recursive networks. With suitable training, backpropagation can be used for either

continuous mapping or classification. Backpropagation's training algorithms for

recursive networks have also been developed (Narendra, 1991). Furthermore, the

backpropagation-through-time has been successfully applied to dynamic systems, e.g.,

chemical process industries (Werbos, 1992).

As discussed in Chapter III, backpropagation suffers from some limitations. To

overcome the limitations of backpropagation, Flood and Christophilos (1996) use the

56

Radial-Gaussian method for simulation. Although there are many advantages of using

Radial-Gaussian, after training it is generally slower to use, requiring more

computation to perform a classification or functional approximation (Wasserman,

1993). In this method, the required number of hidden units increases geometrically

with the number of inputs, so it becomes impractical for problems with many

independent variables. Hence, more investigations are required to make the Radial­

Guassian an appropriate method for interactive simulation.

From now on, only Multilayer Perceptron (MLP) networks with the

backpropagation learning method, are considered. While MLP is not the only neural

network that can be used in simulation, they are the most popular and clearly illustrate

the major features of neural network approaches to simulation. This decision has been

made based on the capabilities of MLPs (see Chapter III).

Selection of an ANN Software

The modeler can use either a general purpose computer language or a neural

network simulation environment. The modeler can use high level languages such as C,

PASCAL and BASIC. By using these languages, the modeler has control to get any

information which may be needed. However, developing a well structured general

purpose ANN simulation environment is time-consuming and requires thorough

knowledge of computer systems.

On the other hand, the modeler can choose one of the prepared packages for

ANNs simulation. As the field of neuroscience matures, new simulators are being

57

introduced. The available simulators can be classified as either supporting biological

models of neurons or as being tailored toward the artificial neural network. According

to Skrzypek (1994) all neural simulation tools can be classified into four categories:

1. The programs which are not documented and are dedicated to solve

particular problems. These tools can not support a variety of applications.

2. Custom made software programs which are usually borrowed from other

application domains and organized into libraries.

3. Sophisticated programs that integrate advanced graphical user interfaces

(GUI) and analysis tools. These programs are usually dedicated to a particular class of

architecture / algorithm.

4. Advanced simulation tools which are complete, system-level environments.

These tools can support a wide range of neural networks and a variety of learning

methods. These environments have graphical user interfaces and many tools for

analysis, manipulation and visualization. Examples of this group are: SNNS (Stuttgart

Neural Network Simulator) and SFINX (Structure and Function In Neural

ConneXtions).

A good ANN modeling environment should help the modeler to build a model

and to test the synthesized model computationally. The environment should also ease

the problem of tracking all experimental data that has not yet been tested by the

current model. A good GUI should be provided to make the simulator user friendly.

GUI allows the modeler to interact with the simulator and to visualize data generated

by the model.

58

In the domain of simulation of manufacturing systems, modelers are mainly

interested in the neural network simulation environments rather than biological model

environments. The former concerns network aspects, but the latter involves single

neuron behavior. Interested readers can refer to Skrzypek (1994) for further

information about the neural network simulation environments.

The Stuttgart Neural Network Simulator (SNNS) environment has been

selected for implementing the experiments in this research. SNNS has been developed

at the Institute for Parallel and Distributed High Performance Systems at the

University of Stuttgart since 1989. SNNS is a tool for synthesizing, training, testing

and visualizing artificial neural networks. Many different ANNs' methods and varieties

of training algorithms are supported by this software. Its X graphical user interface

(XGUI) gives a graphical representation of the neural networks and controls the kernel

during the simulation run. XGUI is tailored for inexperienced users and helps them to

create, manipulate and visualize neural nets. SNNS has been implemented in ANSI-C

and the source codes of the programs are available to be modified. The availability of

source codes makes it a unique tool for research purposes. It is a portable program

which has been tested on numerous machines and operating systems. Complex

networks can be created quickly and easily by this software. As is shown in Figure 11,

the SNNS helps the users visualize, understand and possibly control the networks.

The reader should keep in mind that the ANN's hardw�e implementation

radically increases the speed of the processes. Therefore, the ANN's hardware will

become popular in the long run. These types of hardware are good candidates for

59

special purpose applications.

Error Function Manager Panel

Figure 11.

out. .bi.-,

I -(o� .• ,-c-,o� .• �l
@C.J�0.339'5 l��n=•"�'---�11

ruwc &ct_toqtsllc out_tdenttty

IE]l!]���lillJ;;....,....,_�-�-�-----�I
T&RCJ:T 2 0 H �IL•·· !L0,558 l�L�Ll _ ___ �,

nJHC ActJ,09isttc Out_Idenlity

IE](!)���[ill]
LllfK �

[E][Il�[ill]

Control Panel

A Typical Screen of SNNS.

Info Panel

Data Acquisition and Preparation

Network Topology

The data should be collected on input vectors and corresponding output

vectors. The modeler should split the data into at least two parts: one set on which

training is performed, called the training data, and another part on which the

performance of the network is measured, called the test set. The idea is that the

60

performance of a network on the test set estimates its performance in real use. In other

words, absolutely no information about the test set should be available during the

training process. In most cases the training data is also subdivided into a training set

and a validation set. The validation set is used as a pseudo-test in order to evaluate the

quality of a network during training. This method, - called cross-validation, will be

explained in this chapter.

The training set is used to train the network and the validation set helps the

modeler to choose the best size of the network or to stop the training. The test set is

used to determine the accuracy of the performance of the network. There is no

formula for the ratio of training, verification and test set. However, as a rule of thumb,

40%, 30% and 30% are fair estimates of the ratio of training set, verification set, and

test set, respectively (Smith, 1996).

The training set must provide an accurate representation of the problem

domain; otherwise the performance of network in the real data might not be

satisfactory. Special attention should be paid to the boundaries and the domain in

which the ANN is supposed to work. The output of an ANN which is trained based on

ill-defined training sets might be misleading. Experience and creativity are important to

select a good training set.

Having gathered the data, the modeler should normalize them. The neural

network outputs can only range from 0 to 1 (in some cases from -1 to 1). Although

there is no limitation for input values, it is suggested to normalize inputs to the linear

interval of activity functions of neurons. It is suggested to reserve some margins in the

61

normalized domain (e.g. normalize the values within .05 to .95). In this case, if new

input or output values are above or below the values used to train or test the neural

network model, the ANN can continue its performance.

The modeler can use linear or nonlinear functions for normalization. The

modeler should have a detailed knowledge of the nature of the data to select an

appropriate normalizing function (Wasserman, 1993). Using an appropriate function

has a great affect on network's performance. In all of the experiments in this research,

linear transformation has been used. The linear transformation is presented by

Equation (22).

Dmax

Dmin

Lmax

D = L . + Dold -Dmin .(L - L .) new nun

D
_

D
. max mm

The normalized data

max m,n

The non-normalized data

The maximum of the non-normalized data set

The minimum of the non-normalized data set

The maximum limit of normalized data

The minimum limit of normalized data

(22)

The modeler should note that the sequence in which the data is fed to network

may be important. It is recommended to feed the data samples randomly. In this

research, all of the data has been "shuffled" before feeding to networks.

62

The generalization power of ANNs is the critique for measuring the accuracy

of the network. A larger number of data samples usually do a better job for modeling

the system. However, the number of data samples can not be increased infinitely, even

if the data is available. There is a relation between the size of network and the number

of training data points. Gathering the data is usually expensive and time consuming.

Therefore, modelers are usually looking for the best size of the network to give the

best generalization of a given set of data.

It is suggested that the number of training samples should be approximately ten

times the number of weights (Hush, 1993). Thus, increasing the network's size not

only requires more time for learning but also might give a poor result of

generalization. So, it is desirable to find methods for reducing the network size, while

at the same time retaining the capability of solving the problem.

Model Translation

Model translation is the process of prepanng the model for computer

processing. Two major features of model translation are building the network and

training the network. Building the network is the process of synthesizing the

appropriate network. Choosing the right network size and setting the network's

parameters appropriately, play important roles in building a network. Training the

network involves choosing the best values for weights in such a way that maximizes

the network's generalization power. In the training phase of a network, the

initialization of the weights and stopping criteria of training are very important.

63

Building a Network

Building a network is the process of defining layers and neurons and the

connection between them. The input layer, output layer and hidden layers should be

defined and the neurons in each layer should be recognized. The connection among

neurons should be established and weights should be assigned to these connections.

The network's parameters such as momentum and learning rate should be set. There is

a close relation between building a model and its training. In many cases, building and

training are done together and setting the parameters of one of them affects the other.

In this section selecting the network size and setting the network's parameter are

discussed.

Network Size. A question that the modeler may face is " What is the optimum

size of network for building the model?" The size of the network plays an important

role in the performance of the network. If the network is too small, it will not be

capable of fulfilling the modeler expectations. On the other hand, more complex

networks are capable of learning more patterns. However, one that is too large will be

slow and computationally expensive, and may require a large training set to generalize

well. The network size depends on the complexity of the system and the diversity of

training set.

The number of inputs and outputs are automatically defined by the structure of

the problem. Obtaining the optimum number of hidden layers and neurons mostly

depends on the experience of the model-builder along with some experimentation.

64

Although it is shown that a one-hidden-layer MLP can perform any real-world

mathematical function, these results do not necessarily imply that there is no benefit in

having more than one hidden layer. It is shown that for some problems, a small two­

hidden layer network can be used where a one-hidden-layer would require an infinite

number of nodes (Chester, 1990). Multiple hidden layers can significantly reduce the

need for large numbers of neurons and make the network flexible for generalization

during the learning process.

Two approaches might be considered. The first one is to start with a small

network and increase the size. Cascade Correlation, Project Pursuit are examples of

this approach (Hush, 1993). In these methods additional nodes are created during the

learning processes. Another possibility is to start with a large network and then

remove weights and/or nodes which do not play important roles in the network; this

method is called Pruning (Reed 1993). It has been shown that the maximum number of

hidden layer nodes needed for the MLP to implement the training data is on the order

of the number of training samples (Huang, 1991). So, one should never use more

hidden layer nodes than training samples. Setting the network size is a process of

adjustment and iteration.

Practically, it is a good method to start with one or two hidden layers. Add

additional layers only when the training is impossible or difficult or ability of the neural

network is unsatisfactory. It might be a good idea to increase the number of layers and

neurons in large jumps (e.g. make it double in each step) and look for successful

training. Afterwards, decrease the network size in small steps and find a satisfactory

65

size. In this research, and in most of the fully connected MLPs, no more than two­

hidden layers are typically used. In recent years, genetic algorithm has been shown to

have a promising application in estimating the optimum number of neurons and layers

(Bebis 1995).

Setting the Parameters of the Network

There are many adjustable parameters in a network. Learning rate and

momentum are among those. The adjustment of learning rate and momentum control

the way in which the error is used to correct the weights in the network.

Setting the Learning Rate. When the learning rate is set to high values (close to

1), the network may become unstable. But lower values (close to 0) of the learning

rate may result in longer training times. The modeler can set the learning rate to high

values and then decrease that if any unstable behavior is seen. On the other hand, the

modeler may start with a low learning rate and try to increase that if training is taking

too long. Another approach is to make the learning rate proportional to RMS (Root

Mean Square) error. In this approach, when a neural network is far from being

correctly trained, the learning rate will be maximum because the RMS error is high.

When the RMS error is reduced, the learning rate will be set to low values.

Setting the Momentum. The momentum makes the current search direction for

new weights to be an exponentially weighted average of past directions. It keeps the

weights moving across flat portions of the performance surface after they have

66

descended from steep portions (Hush, 1993).

The momentum should be set in the interval of (0,1). The higher the values of

momentum, the greater the percentage of previous errors applied to weight adjustment

in each training case. The higher value of momentum smoothes out the training

process. The lower values of momentum are suggested for data which is more regular

and smoother with relatively simple relation. Again the modeler should try different

values of momentum and find an appropriate value for the network.

Training the Network

Training the network is the process of applying input-output vectors (in the

supervised method) and choosing an algorithm that set the weights in the way that the

network can generalize best. Since backpropagation has already been selected for

training the network, only the number of training time and weight initialization are

discussed here.

Stopping the Learning Procedure. The learning process might stop if :

1. The magnitude of gradient of weights becomes small enough.

2. The Sum-of-Squared-Error Criterion function (goal function) becomes less

than a specific value.

3. The number of iterations exceeds a specific value. In this method, there is no

guarantee that after this number of iterations, the algorithm reaches the minimum or

near the minimum.

67

4. There are no more changes in the goal function if the learning process

continues.

5. The cross-validation method (explained next) reaches an optimum point.

Since the generalization performance is the criterion for termination in the

cross-validation, this method is recommended in most of the cases. Furthermore, on

contrary to most of the other methods, cross-validation does not suffer from

premature termination. While cross-validation is a widely accepted method, it can be

computationally intensive and if the number of data samples is limited, this method

reduces the size of the training data even further (Hush, 1993).

Cross - validation

According to Smith (1996) it is not recommended to stop training only by

looking at the error on the training sample. The error on the training sample always

goes down. At some point, hidden nodes find features that are present in the training

sample but not in the population in general. At this point overfitting begins.

For solving this problem, in the cross-validation method, the performance of

the network on the training set and validation set are considered during the learning

process. The performance of the network on the training set will usually continue to

improve, but its performance on the validation set will only improve to a certain point;

after that the performance starts to degrade.

At this point the learning algorithm should be terminated. After this point the

network starts to overfit the training set data. The error is a good indication of the

68

system's performance. The error is the sum of the quadratic differences between the

teaching input and the real output over all output units summed over the number of

patterns presented.

The weights m the cross-validation method should be saved after each

iteration. Each iteration in training phase is called epoch. In each epoch the· network

adjusts the weights in the direction that reduces the error. Many epochs are usually

required before training is completed. To make its weight adjustments, the network

can be trained with a single pattern for the number of training cycle or it can be trained

with all patterns for the number of training cycles specified. In this research the

networks are always trained with all patterns. After finding the optimum point, the

weights corresponding to that point should be applied to the network.

Figure 12 shows the Sum Square Error vs. number of epochs in a system. As is

seen, the training error is always decreasing. On the other hand, validation error

decreases to a point and after that it suddenly increases. This point is the optimal point

and it happens after 71,000 epochs.

When the neural network is forced to learn the target values more exactly,

overtraining may happen. In this case, the network tries to memorize the training set

rather than learn the pattern. An overtrained network has an acceptable error of the

trained data but it suffers from generalization ability. To avoid overtraining several

methods are suggested:

1. One method is to put some noise in the training data. The amount of noise

should not be so high that the nature and the relationships be overwhelmed, but it

69

should be sufficient to make the generalization better.

2. Another method is to use more training data. The complete training data

may be applied to either trained network or blank net. In the former case, the training

will resume with the existing weight set but using the new data set. In the later case,

the training restarts from a blank neural network.

Figure 12.

15.00

14.50

14.00

l3.'50-

13.00-

12,50

12.00

11.'50

11.00

10.50

10.00

9.'50

9.00

8.50

8.00-

7,50-

7.00

6.'50

!,,00

5,50

�.00

4.'50

4.00

3,50

3,00

2.'50-

2.00-

1.50

1.00

\\,.. ,...---··/
'"-j(;-''

""----Optimal
Point

rTraining

No. of
e.'50 Epochs
e.oo+

0
-2_s_oo_o_s_oo_oo_7_5_0(-}0�,--l2�50_0_ 0�--e----'

Error of Training and Validation Samples in the Cross-Validation

Method.

70

Initializing the Weights. According to Chapter III, the current values of

weights depend on their prior values, so the initial values of weights are very

important. If the initial weights for all neurons were the same, then all neurons with the

same input and output would be adjusted by the same number. In this case, the

learning processing may fail. So, it is suggested to initialize the weights to random

values. According to Hush (1992) initializing the weights to small values starts the

search in a "relatively safe position". However, it is possible for the random initial

values to change the solution that the neural net finds each time. In this case, more

than one weight set satisfy the training constraints. Furthermore, the small initial

values make the learning processes slower, because it takes more time for weights to

reach their final values. By the way, in this research the weights are always initialized

to small random numbers within the interval (-1, 1).

Testing the Model

In this step, the model should be tested to prove that it is a correct

representative of the real system. Testing the model is usually done after the network

is built and trained. The power of the system in generalization is a good critique for

testing the model. The generalization ability of the network is usually measured by

using the test set. The test may be simply comparing the result from the network and

the results from the real system. It may also be in the form of contour plots or charts.

The less the difference, the better the model performs.

In some applications, the modeler can simply ignore this stage. In these cases,

71

only the training set and validation set exist. The modeler assumes that the model's

performance on the validation set is a good indication of general performance of the

model. In other words, the validation set and the test set are the same. However, for

more precise processes it is recommended to use test samples which have not been

applied to the network during the learning phase. Again, the model should be tested on

the domain in which the system is supposed to work (it is crucial for the system to

work within the domain that the network has been trained and tested).

Experimentation

The most attractive part of the simulation life cycle through ANN is

experimentation. Rapid and parallel processing make the ANN capable of estimating

the results almost instantly in the experimentation phase. Regardless of the elapsed

time in the training phase, the mapping of ANNs in the experimentation phase is

immediate. This unique characteristic makes ANNs suitable for interactive simulation

of manufacturing systems. Having built the model, the modeler may ask what-if

questions. For example, questions such as "What will be the throughput of the system

if another labor is assigned to the job? or the number of machines is increased? or

decreased?", etc. The modeler simply needs to apply the new input and get the output

vector rapidly. The input may be a new set of data or it may be the data which has

been used to train, validate or test the model. In the simple static mapping, one run of

the simulation is enough but in the dynamic systems, several runs may be needed. The

methodology of implementing the dynamic systems with MLPs will be discussed later.

72

Analysis of Results and Denormalization

Since training a neural network involves some random initialization, the results

of several training runs of the same algorithm on the same data set may differ. It is

suggested to make several runs and report statistics on the distribution of results

obtained. Furthermore, the results should be double-checked before implementation.

The modeler should check the results if they are in an acceptable range or not. The

result may become misleading and implementation of these results may become

dangerous if: (a) the network has not been trained properly, or (b) the data which is

used to train the system has not been collected properly, or (c) if the execution of the

model is based on the data set which is not in the expectation range. So, the analysis of

the results is very crucial.

The ANN s usually perform very well on the data with which they are trained

but not on the data which is not in their training set. If the network is trained on-line

with a manufacturing system, it usually learns the routine tasks in the system. Since the

results from the network are in the interval of (0,1) and sometimes (-1, 1), they should

be denormalized. The process of denormalizatiort depends on the function with is used

for normalization.

Implementation

This step involves implementation of decisions concluded from the simulation

experimentation. The results of implemented strategy should feed back to the network.

73

This method is on-line training. The network tries to find new patterns and tries to

learn the new behavior of the system. This helps the network to update itself with new

situations. It is very useful for systems which change through time. Aging of machine

tools is a good example of these phenomena. The characteristics of machines usually

change through the years because of aging.

Documentation

The documentation of the model and its use is very important and essential for

further study. These documents will be useful for troubleshooting and maintaining the

system. They can also be used as references for implementing similar models. The

following items should be considered in a document: (a) problem definition including

the name, address, version, objectives, comparing criteria; (b) the data: training set,

validation set and test set; (c) network topology including nodes, connections,

activation functions; (d) initialization; (e) algorithm parameters (momentum and learning

rate); (f) termination criteria; (g) error function and its value in the reported result; (h)

number of runs; and (i) the hardware, operating system and software name and version

which is used in the experiments.

Most of the accredited software environments provide users with facilities for

saving the networks and their parameters. It is recommended that modeler have

several backups of the model and the results of its implementation.

Although many suggestion and guidelines were provided in this chapter, still

the design and implementation of an appropriate ANN depends mainly on the

74

experience, innovation and knowledge of modeler. In brief, design and implementing a

good ANN is as much an art as a science.

75

CHAPTER VI

MANUFACTURING SYSTEMS

Introduction

Most manufacturing systems can be modeled based on a combination of ·

queues and machines. Figure 13 shows a simple manufacturing system.

- Machine - Machine

queue 1 A queue 2 B queue 3

Figure 13. A Simple Manufacturing System.

To use ANN in modeling manufacturing systems such as Figure 13, two

approaches may be considered:

1. To consider the whole system as a black box and try to find an appropriate

ANN structure which is able to estimate the output of the black box based on its input;

2. To consider the system as consisting of components (e.g. queues and

machines) and try to find appropriate ANN topologies which can simulate these

components' behavior. These ANN modules can then be assembled together to

simulate the whole system.

In both approaches, the modeler should go through the procedure offered in

76

Chapter V: gathering data, building and training the network, etc. However, the

complexity of systems and implementation of results may differ. Both methods are

time consuming and involve many trials and errors. In both cases, the trained networks

respond rapidly to the new set of data.

A basic queuing system and a simple manufacturing system are modeled in this

chapter. Modeling the queuing system is an example of modular approach to simulate

basic components in complex manufacturing systems. It also gives the direction of

how ANNs can be used for modeling static systems. The static modeling will be the

base of modeling the stochastic and dynamic systems offered later in this chapter. The

manufacturing system modeled in this chapter shows the ANNs' capability to capture

the behavior of stochastic processes. Three approaches are examined for capturing the

stochastic behavior of the a manufacturing system. This system is also modeled

through modular approach. The results in each case are explained and compared to

those of conventional simulation methodology.

Simulation of Queuing Systems Using ANNs

A basic queuing system has been modeled in this survey. There are three

reasons for choosing this system:

1. The behavior of queuing systems is well known and it is possible to compare

the ANN's accuracy with a real system.

2. The procedures for developing ANN to model a queuing system are typical

procedures for many manufacturing systems. So, it is useful in solving problems which

77

may arise when a modeler is trying to use ANN to model a manufacturing system.

3. It is a systematic attempt to create a library of ANN modules for

manufacturing simulation.

Definitions

Waiting lines - called queuing systems - usually occur when the demand for

current service exceeds the current capacity of servers. Providing the right amount of

service in queue is important in manufacturing systems. Not enough capacity causes

long waiting lines and too much capacity involves excessive costs.

The most common type of queue is one in which a single waiting line forms in

the front of a facility which has one or more servers. The entities of a queue are

usually generated by an input source (based on a statistical distribution). Each entity

then waits in the queue (waiting line). After spending some time (waiting time), each

entity is served by one of the servers. Examples of entities are unfinished parts, pieces

of equipment and finished products. For studying the queuing models, it is assumed

that all interarrival times and service times are independent and identically distributed.

A queue is recognized by its input distribution, service distribution, number of servers

and probably the maximum capacity of the queue. The queues are usually labeled

based on their characteristics. Figure 14 shows the labeling method of queues.

Each distribution has its own label. For instance M stands for exponential

distribution (Markovian), or D stands for degenerate distribution (constant times). By

this definition, M/M/4 stands for a queue system with exponential interarrival time,

78

exponential service time and 4 servers.

Distribution of service times
� r
-/-/-

Distribution on interarrival times _/

Figure 14. The Method of Labeling a Queue.

Number of servers

Industrial engineers are usually interested in studying the probability of no

entity in the queue (Po), mean waiting time in the queue (W q) and mean length of the

queue (Lg), They usually address the queues based on the mean of interarrival rate (A),

mean of service rate (µ) and the number of servers. The relation between these

variables is shown in (Hillier, 1995). In this section, first two simple system of M/M/1

and M/M/2 are considered, followed by a general model of MIMIS which is modeled

through ANN.

M/M/1 and M/M/2 Systems

The first set of experiments was concerned with the application of ANN in

modeling M/M/1 and M/M/2 queuing systems. In these experiments ANN was

considered as a map function which generated Po, Wq and Lq based on A and µ. The

schematic of this approach is shown in Figure 15.

In the experiment, A and µ were allowed to vary between 1 and 50 and the

79

number of servers was fixed to 1 and 2 in M/M/1 and M/M/2, respectively. Only two

sets of data, training and test set, were generated by a program written in C language.

The generated data was then converted to the format which was compatible with

SNNS software. These data then were applied to an SNNS software version 3.1 which

had been installed in IPC Sun workstations with Sun OS 4.1.4 operating system.

Mean arrival ra te (11,) Prob of no entity in the queue (Po)

Waitin g time in queue (W
q
)

ANN

Mean service ra te (u) Expe cted queue length (L
q
)

Figure 15. Application of ANN in Modeling M/M/1 and M/M/2 Systems.

Proposed methodology is based on the efforts that have been done for solving

the problems which occurred in this experimentation. these problems. For example,

through trial and error and survey of literature, it was found that:

1. The network performs better if the input vector is normalized to the interval

which has some upper and lower margins;

2. Generating the training set randomly or applying it after shuffling has a great

effect on the learning ability of the network. In those experiments in which the training

data was followed a pattern (say, A andµ increase by 3 in each step), the network was

not able to generalize appropriately.

In the M/M/1 case, at first, only the probability of no entity in the queue (Po)

80

was considered as the output of ANN. This decision was due to the simple relationship

between Po, A and µ. The MLP network with the backpropagation momentum learning

method was considered. Using Rush's (1992) recommendations, the initial weights

were set to be random numbers in interval of (-1, 1). The input and output vectors

were normalized. The learning rate of 0.2 and momentum of 0.1 were selected.

The MLP network with 6 nodes in one hidden layer was able to approximate

the system effectively. Adding waiting time (W
q
) and expected queue length (L

q
) to the

output of the ANN makes the system so complicated that ANN was not able to

understand the system. After testing some networks, a network consisting of two

hidden layers with 9 neurons in each layer was found to be able to estimate the queue's

behavior.

The network was trained by 176 training points which had been generated

randomly. Only the training set was considered for stopping the training procedure.

The training was stopped after the Sum of Squared Error (SSE) of the training set

became almost smooth with a value of less than 0.3. The system was tested by 1,176

data points. The results were promising (the similar results of an M/M/2 are shown in

this chapter). The same approach was chosen for the M/M/2 queuing system. This

time the network was tested by 1801 data points. Figures 16, 17 and 18 compare the

contour plot results from ANN and the corresponding real M/M/2 system. According

to the queuing theory, the modeled systems are valid only when the interarrival rate is

less than the service rate. Therefore, the readers should notice that the proposed

figures are valid where (A<µ).

81

Figure 16.

1
,...._
:i

�

1
,...._
:i

'-'

�

1.0

/
/ of /..
I

.,
0.8 -

·· I I
I 1· ., ./.. .. / /

0.6

JI
.,

•1/i',/ ANN 0.4

i½· .1/
0.2 -

0
-D

0 2)

/ �4---_,,
.,-0.4...04 �-4-

0.0 I I I I

0.0 0.2 0.4 0.6 0.8

1.0

0.8

0.6

0.4

0.2

0.0

Lambda("-) -

o.� I al I

I .. I
.,

I .. I /.. ··11· /' // .. , /"

I
/4:{;?•' Refil Sysrem

·1t�•-------.._____, .4 .4--

0.0 0.2 0.4 0.6 0.8

Lambda("-) -

1.0

1.0

Comparison Between Probability of No Entity (Po) in the M/M/2

Queuing System Generated by ANN and the Real System.

82

Figure 17.

1.0

;; �l. 0.2 'A_f);

0.8 dJv;::,
1 d/ftry @0 04

,......_ 0.6 -

02 1/ :::l
'-'

�·� � �f> 04
ANN

w
04- D

02p

_;j).p· .. 0 2 r0'if'/ to'.Poe 04
\ ./ /

0.0 I I I I

0.0 0.2 0.4 0.6 0.8 1.0

Lambda(J") -

1.0

;;�1... 0.2 Av 1

0.8 dJ?;
1 .it{;} ..

{Ao/ �-
,......_ 0.6

4,:
:::l

'-'

�
�

0.6

0.4 /4'l.?- • Real System
1/P;/ 0.2 0.2

� ,;;i.P.sl 0.4

!0Voe /
\ ./

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Lambda(A)

Comparison Between Waiting Time (W q) in the M/M/2 Queuing
System Generated by ANN and the Real System.

83

Figure 18.

1
,-..

�

1
,-.. ::l

�

1.0

0.8 -

0.6 -

0.4 -

0.2 -

o.v;:!I.../)0,v-

o;:t�/

dff
)

D oz---

0.2 °D
/

/:/'' ANN
0 2 0.2

o✓

0.0 -+---�,--�,--�
,--�

,

0.0 0:2 0.4 0.6 0.8 1.0

Lambda(A) -

1.0

03//.}l.

A
v

0.8 �U/
OV0.4

;JjJ• r

0.6 a.D/
AS).

1/
0.4 0.2 0.2

Real System v

0.2

0.0 -+- -----------------1

0.0 0.2 0.4 0.6 0.8 1.0

Lambda(A) -

Comparison Between Expected Queue Length (Lg) in the M/M/2

Queuing System Generated by ANN and the Real System.

84

As shown, the ANN is able to realize the pattern of the queuing systems. The

results were so promising that encouraged us to study the behavior of the network in

more general situations. Therefore, a general MIMIS queuing system was considered.

However, many questions still remained unanswered in that stage; such as "What is the

best topology of ANN for a given problem?".

MIMIS Queuing System

This system consists of queues with exponentially distributed interarrival time,

exponentially distributed service time and several servers. The theory and discussion of

this system are presented in (Hillier, 1995). Once more, the ANN strategy shown in

Figure 15 was used. But in these experiments, another input (number of servers, S)

was introduced as well. The outputs of the ANN system remained unchanged (L
q
, W

q

and P0). In these experiments, 'A and µ were allowed to be any integer number in the

interval (1, 50). The number of servers can be between 1 and 10. Training, validation

and test data sets were generated by a program written in C language. The generated

data were normalized and prepared in a format compatible with the SNNS software.

The programs developed for generating the training and validation data set are

provided in Appendix A. These normalized sets were then applied to different

configurations of ANN to find the best architecture.

Several Sun Sparc-5 workstations with Solaris operating system (version 5.5)

were used. Using SNNS software version 4.0, the MLP with backpropagation

momentum learning method was studied. Again, the initial weights were set to random

85

numbers in the (-1, 1) interval. The learning rate of .2 and momentum of .1 were

chosen. The cross validation method was used to obtain the optimum number of

epochs.

For finding the best network size, several experiments were conducted. The

networks with small sizes and large sizes were considered. In each case, Sum of

Squared Error (SSE) of training set and validation set were drawn together. The effect

of the network's size on the network's performance was studied.

In the first experiment, an MLP network with 9 neurons in one hidden layer

was considered. The network was trained with a training set consisting of 300 points.

As shown in Figure 19, the network performs very well on the training data

Figure 19.

�1 "·
g

11.58

VJ 11.00

s 1e.::se

10.00

,.
VJ , ...

,.

'Y Validation

\
"----- ,___.,-

"-i(-"'

!�Optii:nal
: Pomt
I

I

'
I

�.

Training

No. of / i Epochs
aa+-==;==,===r=,--�-�-r--'

' 25000 50000 75000 125000

The SSE of an MLP Consists of 9 Neurons in One Hidden Layer

Trained by 300 Points.

86

After 71,000 epochs the network finds a pattern which exists in the training set

but it is not valid for the validation set. At this point, the overfitting occurs. Even in

this optimum point the SSE of validation set is far from the ideal (the minimum value

of SSE of validation is more than 9). After studying the trained network with a test

set, it was found that in some areas the network has not been trained properly. This

was because of a lack of training points in these areas. So, the training set was not a

good representative of all of the data points. Another experiment with 18 neurons in

one hidden layer MLP confirmed that the poor generalization is not due to the

network size. The results of this experimentation are shown in Figure 20.

Figure 20.

--1 23,00

g 22.00

21.00

20.00

::1 19.00

V1 18.00

s 17.00

::1 16.00
V1

15.00

14.00

13.00

12.00

ll.00

10.00

9.00

8.00

7.00

6.00

5.00

4,00

3.00

2.00

l.00

0.00

0

r Validatioo

rTraining

No. of

-=�---,.---,.-----.------.------.------.--' Epochs

i I I i i i

The SSE of an MLP Consists of 18 Neurons in One Hidden Layer

Trained by 300 Points.

87

As shown in Figure 20, the minimum of SSE in the validation set is still around

14, but the SSE of training set is almost zero. Therefore, the performance of the

network in training points has been improved, but the network still suffers from good

generalization ability.

Based on these two experiments it was decided to generate the training set

which was a better representation of the data points. Therefore, a training set

consisting of 1000 points was generated.

Once more, a network with 9 neurons in one hidden layer was studied. Figure

21 shows the performance of this network on the training and validation sets.

Figure 21.

�1
50.00

g
48.00

...
J:.Ll

44.00

@ 42.,00

;:l 48.00

38.00
V)

s
36.0 Validation
34.00

r
V) 32.

38.00

20.00

26.0

24.

22.00

20.00

18.80

16.00

/14.00

12.00

6. r
Training

No. of
0.00

Epochs
w ...

8
"'

I
;;

§
0 0 0

8 8 8 § 0 0 0 8

The SSE of One Hidden Layer MLP Consists of 9 Neurons Trained

by 1000 Points.

88

As seen in Figure 21, the network has difficulties understanding the training

set. If the network can not be trained properly, it will not have satisfactory

performance on the validation and test sets.

Thus, another experiment was conducted to understand if this phenomena is

due to network size. This time a network with 18 neurons in one hidden layer was

considered. As shown in Figure 22, the network was able to successfully understand

the training data. The SSE of validation set showed rapid decreasing and optimum

point had an error which was less than 5.

Figure 22.

--1
13.00

12.se

§ 12.00

11.50

11.00

::, 10.�

C"
VJ

10.00

s
9.50

::,
9.00

VJ 8.'58

....

7.

.. ,,.

rValidation

....

4.58

....

3.50

3.00

2.50

r
Traini

�
g

2.00

1.50

1.00

0.50 No. of
.... Epochs

•
0 N w ... � "'

0 0 0 0 0 0

§ § § 8 8 8 8
0 0 0 0

The SSE of an MLP Trained With 1000 Points for One Hidden Layer

Consists of 18 Neurons.

89

According to Smith (1996), improving the network size increases its power to

learn more complex patterns. But the question was "How big may the size of network

be?".

To answer this question in another experiment an MLP with 72 nodes in one

hidden layer was chosen. This network was trained by 1,000 points. Figure 23 shows

the performance of this network. The network can learn from training sets. The

minimum of SSE of the validation set is almost the same as the previous experience.

However, the network suffers from some instability. It seems that the system has some

noisy behavior.

Figure 23.

�1
g
�

VJ

VJ

12.

11.50

11.00

10.50

10.

9.50

9.00

8. r Validation

7.

lw.J�i�Jk

rTraining

0_50 No. of

0.oe+---,----,--�---.---�--..--�� Epochs

The SSE of an MLP With 72 Neurons in One Hidden Layer Trained by

1,000 Points.

90

For studying the effect of larger networks, another experiment was conducted.

In the experiment, a one hidden layer MLP with 144 neurons was considered and

trained with 1,000 data points. Figure 24 shows the results of this experiment.

As shown in Figure 24, although the envelope of SSE of validation and data

sets are almost the same as the network with 9 nodes. (Figure 22), the network suffers

from some random behavior.

Based on the last two experiments, it was concluded that increasing the

network's size not only requires more learning time, but also might give a poor result

of generalization.

Figure 24.

, ,2.s0

t) l>.08

t:
11.50

i:.t.l

�
11.ee

1ei.,e

10, 00

IJJ ':1'.:50

§
9.00 rVahdation

IJJ
6. :50

8. 00

7.50

7.00

6..:50

6,. 00

5. 50

5.00

4-.50

4.00

3. 50 rTrnining
, ...

2,50

2,88

l, :58

I, 00

0,50

0,00

N w ...

8
"' ...,

8§ 8
0

8
0

0

8
8 8 8 8

80 0 0
0

The SSE of an MLP With 144 Neurons in One Hidden Layer Trained

by 1,000 Points.

91

Another question was "What would happen if the number of layers are

increased?". To answer this question, two experiments were conducted. In the first

experiment an MLP with two hidden layers was considered. The first layer had 36

neurons and the second one had 9. Again, the network was trained with 1,000 points.

The SSE of validation and training are shown in Figure 25.

Figure 25.

�1
48.08

4&.90

44.90

w 42. 00

�
40. 00

::l
39.00

O" 36.00

J VJ

s
34.0il

::l
"2.0il

�

VJ 30.00

28,1:.'8

26,00

24,08 I'"'-_ Validation
�

/2 Trnining

6. 00

4.00 No. of
2.00 Epochs
0.00

w ...
8 I

0 § I
g

§ 8 8 8
0 0 0 0

The SSE of an MLP With 36-9 Neurons in Two Hidden Layers
Trained by 1,000 Points.

In a similar experiment, an MLP with two hidden layers --36 nodes in the first

layer and 27 nodes in the second layer-- was considered. As shown in Figure 26, the

network's performance is better than the previous case, however, the performance of

92

the system is not as good as Figure 22. In one point, the SSE of validation decreases

to 3.5. This point can not be considered as an optimal point because it is not stable and

the SSE of the training set shows an increase in that area. Based on these experiments

it can be concluded that increasing the number of neurons and layers is not necessarily

helpful to the network's performance. The modelers should search for the optimum

number of neurons and layers.

Figure 26.

�1
11.�e

g
11.06

i:il
10.�

�
10.00

,.:se
;:I ,. O"

;:I
7.

en
7.00

,.50

,.00

5.50

5.00

4.50

4.C!8

0.00

Validation

r

1

r
Training

No. of
---'==;----,--......,...--'-'r----'-"-,---------.------.-___J Epochs

N w ...
8 0 0 0 8 8 8

0

8 0 8 8

The SSE of an MLP With 36-27 Neurons in Two Hidden Layers

Trained by 1,000 Points.

Testing the Network

The network with 18 neurons in one hidden layer showed the best performance

93

among the experimented networks (consider Figure 22). To criticize the performance

of this network, an experiment was conducted. In the experiment, the performance of

the network was compared to that of the real world. First, a test set consisting of

1,000 randomly-generated data points was applied to the network. This set had not

been applied to the network before and it was the first time that they were applied to

the network. After applying the input data (A, µ and S), the network almost instantly

came up with output data (L
p
, W

q
and P0). The network output vector was then

compared to that of the real system. Since the input data include three dimensions (A,

µ and S), it was difficult to compare the results through contour plots. Thus, other

statistical tests were chosen for comparing the vector pairs. Each vector pair consisted

of the vector generated by network and the corresponding vector for the real system.

For example, P0 generated by the network and Po from the real system. Using Minitab

software version 9.1 for VAX/VMS, for each vector pair the following two statistical

tests were conducted:

1. Two sample t-test was run to see if the mean of first vector (M 1) was equal

to the mean of the second vector (M2). A 95% confidence interval for M 1 - M2 was

also constructed.

2. By subtracting corresponding vectors (d = d 1 - di), a new vector was

generated. The mean and variance of this vector were studied and the histogram of

points were drawn. In the ideal case, the mean and variance should be close to zero. In

this case, the results of ANN are exactly the same as the results of the real system.

94

Table 1

Comparison Between the Probability of No Entity in the Queue (Po)

Generated by ANN and the Real System

Two Sample t-Test

System #No. MEAN ·STDEV SE MEAN

Real System 1000 0. 294 0.198 0.00626
Neural Network 1000 0. 294 0.198 0.00625

95% confidence interval for M, - M2 = (-0.017 26, 0.01743)

The Pair-wise Comparison (dl-d2)

N MEAN MEDIAN STDEV MIN MAX

dl-d2 1000 -0.00009 -0.00037 0.00874 -0.06916 0.0535 2

Histogram of (dl-d2); each* re presents 20 obs.

Midpoint Count

-0.07 1 *

-0.06 0

-0.05 1 *

-0.04 1 *

-0.03 3 *

-0.0 2 24 **

-0.01 150 **********

0.00 689 **

0.01 84 ******

0.0 2 25 **

0.03 14 *

0.04 4 *

0.05 4 *

95

Table 2

Comparison Between the Waiting Time in the Queue (W q)
Generated by ANN and the Real System

Two Sample t-Test

System # No . MEAN ·STDEV SE MEAN

Real System 1000
Neural Network 1000

0.0241
0.0240

0.0942
0.0901

0.00298
0.00285

95% confidence interval for M 1 - M2 = (-0.008063, 0.008103)

The Pair-wise Comparison (dl-d2)

N MEAN MEDIAN STDEV MIN

dl-d2 1000 -0.00002 0.00000 0.04805 -0.76511

Histogram of (dl-d2); each* re presents 20 obs .

Midpoint Count

-0.8 1 *

-0.7 0

-0.6 0

-0.5 2 *

-0.4 0
-0.3 2 *

-0.2 6 *

-0.1 1 *

MAX

0.42500

0.0 963 ***

0.1 14 *

0.2 8 *

0.3 1 *

0.4 2 *

96

Table 3

Comparison Between the Length of the Queue (L
q
)

Generated by ANN and the Real System

System # No.

Real System 1000

Neural Network 1000

Two Sample t-Test

MEAN

0.01354

0.0138

·STDEV

0.0616

0.0588

SE MEAN

0.00195

0.00186

95% confidence interval for M1 - M2 = (-0.005546, 0.005019)

The Pair-wise Comparison (dl-d2)

N MEAN MEDIAN STDEV MIN

dl-d2 1000 0.00026 0.00000 0.03603 -0.74954

Histogram of (dl-d2); each* represents 20 obs.

Midpoint Count

-0.7 1 *

-0.6 0

-0.5 0

-0.4 1 *

-0.3 1 *

-0.2 1 *

-0.1 4 *

MAX

0.34821

0.0 980 ***

0.1 6 *

0.2 4 *

0.3 2 *

97

Based on statistical experiments, the ANN is able to successfully model the

system. The performance of ANN in simple functions (such as Po) is better than

complex functions. There are still a few points which are out of the acceptance range.

These points mostly belong to the areas that neural network has not been trained

properly. More data makes the ANN more accurate.

Simulation of a Manufacturing System Using ANNs

The results of the previous section's experiments showed the capability of

ANNs in simulating a queuing system. It showed the power of ANNs in modeling of

static systems. Modeling the stochastic systems is not as easy as that of the static

systems. Because, in· stochastic systems each input set may generate different output

sets. The output values depend on random distribution of processes.

In this section, a simple manufacturing system is modeled by several ANNs.

Three methods are suggested to capture the stochastic behavior of the system. The

offered methodologies are explained in each case and the results are discussed.

Illustrative Example

This example (Figure 27) has been taken from (Nuila and Houshyar, 1993).

Consider a simple manufacturing system with a mai;.:hining center, an inspection

station, and a rework station. Products of the machining center are inspected at the

inspection center. Ninety percent of the inspected parts are acceptable and are send to

shipping, whereas the remaining 10 percent are unacceptable and are sent to the

98

rework station for rework. Upon completion of rework they are also subject to

inspection. Raw material randomly arrives at the plant at a rate of 1 per minute (i.e.,

interarrival time between parts is exponentially distributed with a mean of 1 minute).

Processing time at the machining center, inspecting time at the inspection center, and

reprocessing time at the rework station are random, They follow uniform, uniform,

and exponential distribution, respectively. Their corresponding parameters are:

1. Machining center processing time is uniformly distributed between 2.5 and

3.2 minutes. The number of machines can vary between 1 and 10.

2. Inspection time is uniformly distributed between 2 and 3 minutes. The

number of inspection stations can also vary between 1 and 10.

3. Rework processing time is exponentially distributed with mean of 10

minutes. The system starts out with no parts present, the machines and the inspector

are idle and ready for the operations. In addition, there are no set-ups, interruptions,

and or breakdowns.

q ueue 1 queue 2 0.9

Machine Inspection
-

-

Center ►
-

Station

0.1

' '

- Rework

Station

Figure 27. Graphical Representation of the Illustrative Example.

99

Many variables affect on the behavior of the system, e.g.: processing time of

machine centers and inspection stations, failure rate, queues' capacities, the number of

machine centers and the number of inspection stations. For simplicity, we focus on the

number of machine centers and inspection stations. Specifically, we are interested in

the system's performance for an eight hour shift based on the number of machine

centers and inspection stations. The readers should notice that other variables can be

used in combination or as substitutes of these two variables. Regardless of selected

variables, the proposed methodologies can be used. Figure 27 is a graphical

representation of the system with one machine center and one inspection station.

This simple manufacturing system was modeled using SLAMSYSTEM

software (student version 4.5), and the statistics on the throughput of the system was

gathered. The SLAM's model is presented in Appendix B. It is assumed that the results

from SLAMSYSTEM are the same as the results from the real system.

To select the number of test points, Montgomery's (1991) recommendations

was used. The null hypothesis checked if the mean of data generated by

SLAMSYSTEM (µ 1) was equal to the mean of results generated by ANNs (µ2). It was

assumed that the two population variances were unknown but almost equal.

Furthermore, the sample sizes from the two populations were assumed to be equal.

We wanted to reject the null hypothesis 95% of time if the difference between the

normalized means (1µ
1
-µ

2
1/2) was equal or more than 0.15. Therefore the probability

of type II error (P) was 0.05. Assuming that the standard deviations would not exceed

100

0.4, yielded d = lµ 1
-µ2 I

= 0.9375. The operating characteristic curves for the two
2cr

sided t-test with a= 0.05 (Montgomery, 1991, page 32) implied n=9. To be on the

safe side, the number of test points was set to be 10.

s * t
The number of iterations was calculated based on n = (

a/2 ,n-I)2 . T-
µ- µo

distribution itself is a function of n. However, n was calculated by using trial and'error.

With 95% confidence interval and assuming that error ofµ would be less 15 (readers

should notice that the µ can vary between 170 and 530), the number of runs calculated

to be n= 17.52. To be in the safe side, 20 iterations considered for each experiment.

The number of machine centers and inspection stations were generated randomly. To

capture the stochastic behavior of the system three methods were examined.

In each of these methods, an MLP network with 18 nodes in one hidden layer

was used and the backpropagation momentum learning method was applied. Using the

guidelines offered in the Chapter V, the initial weights were set to be random numbers

in the interval of (-1, 1). A training set consisting of 31 points was generated. The

learning rate of 0.2 and momentum of 0.1 were selected. The gathered data were

normalized to the interval of (0.1, 0.9). The training was stopped only after 5,000

epochs. After training, the results from ANN were compared to those of

SLAMSYSTEM. Readers should keep in mind that these comparisons are done based

on raw output data. It means the normalized outputs were used for these comparisons.

These methods are discussed next.

101

Method One (Mean and Standard Deviation)

In this method, the number of machine centers and the number of inspection

stations are considered as the input of ANN. The mean of throughputs and standard

deyiation of throughputs are considered as output. Figure 28 shows the schematic of

this method. After training the network, the performance of the network was tested

based on test data. The results are shown in the Tables 4 and 5.

The number of machine c enters The mean of throughputs
�

ANN

The number of inspection s tations Stand ard deviation of throughputs

Figure 28. Using the Mean and Standard Deviation to Capture Stochastic

Behavior of a Manufacturing System.

According to the results, ANN is capable of understanding the mean and the

standard deviation of throughputs in the illustrative example. Based on two sample t­

test, there is no significant difference between the results generated by ANN and the

results from ANN. The histogram of difference between two methods also shows that

the ANN can effectively capture the system's behavior. Using the mean and standard

deviation is one way to capture the stochastic behavior of the system. There are other

techniques in this field which are discussed next.

102

Table 4

Comparison Between the Mean of Throughputs Generated

by ANN and SLAMSYSTEM in Method One

Two Sample t-Test

System #No. MEAN -sTDEV SE MEAN

SLAMSYS 10 0.579 0.352 0.111

Neural Network 10 0.605 0.329 0.104

95% confidence interval for M 1 - M2 = (-0.3474, 0.2956)

The Pair-wise Comparison (d 1-d2)

N MEAN MEDIAN STDEV MIN MAX

dl-d2 10 0.0259 0.0327 0.0425 -0.0454 0.0957

Histogram of (dl-d2)

Midpoint Count

-0.04 1 *

-0.02 2 **

0.00 0

0.02 1 *

0.04 4 ****

0.06 1 *

0.08 0

0.10 1 *

103

Table 5

Compa rison Between the Variance of Throughputs Genera ted
b y ANN and SLAMSYSTEM in Method One

Two Sample t-Test

System #No. MEAN ·STDEV SE MEAN

SLAMSYS 10 0.454 0.307 0.0972

Neural Network 10 0.462 0.298 0.0941

95% confidence interval for M 1 - M2 = (-0.2937, 0.2772)

The Pair-wise Comparison (dl-d2)

N MEAN MEDIAN STDEV MIN MAX

dl-d2 10 0.0082 0.0016 0.1019 -0.1809 0.1708

Histogram of (dl-d2)

Midpoint Count

-0.20 1 *

-0.15 0

-0.10 1 *

-0.05 2 **

0.00 2 **

0.05 2 **

0.10 0

0.15 2 **

104

Method Two (Mean and Confidence Interval)

Modelers can also use the confidence intervals of the output for modeling their

stochastic processes. According to Hurrion (1992), the MLPs are able to capture the

randomness of the systems if the upper bounds and lower bounds of the confidence

interval are also included in the output. This method is similar to the method which

was used in the previous section; however, in this method, upper and lower bounds of

confidence interval are considered instead of standard deviation.

In this method, several replicates of the desired output should be gathered for

each set of input. The mean and upper and lower confidence intervals of the output

should be calculated for each set of input. Then the network should be trained based

on the input vector and corresponding desired output and output's upper and lower

bounds. Figure 29 shows this method. The results of this approach are shown in

Tables 6-8.

The number of machine cen ters
Upper 95% confidence interval

The me an of throughput

ANN
The number of inspection s tations

Lower 95% confidence interval

Figure 29. Using the Upper and Lower Confidence Interval to Capture Stochastic

Behavior of a Manufacturing System.

105

Table 6

Comparison Between the Mean of Throughputs Generated

by ANN and SLAMSYSTEM in Method Two

Two Sample t-Test

System #No . MEAN ·sTDEV SE MEAN

SLAMSYSTEM 10 0.579 0.352 0.111

Neural Network 10 0.600 0.337 0.107

95% confidence interval for M 1 -M2 = (-0.3461, 0.3039)

The Pair-wise Comparison (dl-d2)

N MEAN MEDIAN STDEV MIN MAX

dl-d2 10 0.0211 0.0249 0.0347 -0.0376 0.0796

Histogram of (dl-d2)

Midpoint Count

-0.04 1 *

-0.02 1 *

0.00 2 **

0.02 2 **

0.04 2 **

0.06 1 *

0.08 1 *

106

Table 7

Comparison Between the 95% Upper Bound Confidence Interval

of the Mean of Throughputs Generated

by ANN and SLAMSYSTEM

Two Sample t-Test

System #No. MEAN STDEV SE MEAN

SLAMSYSTEM 10 0.579 0.352 0.111

Neural Network 10 0.598 0.339 0.107

95% confidence interval for M 1 - M2 = (-0.3460, 0.3062)

The Pair-wise Comparison (dl-d2)

N MEAN MEDIAN STDEV MIN MAX

d l-d2 10 0.0199 0.0244 0.0362 -0.0347 0.0855

Histogram of (dl-d2)

Midpoint Count

-0.04 1 *

-0.02 1 *

0.00 2 **

0.02 2 **

0.04 3 ***

0.06 0

0.08 1 *

107

Table 8

Comparison Between the 95% Lower Bound Confidence Interval

of the Mean of Throughputs Genera ted

by ANN and SLAMSYSTEM

Two Sample t-Test

System #No. MEAN STDEV SE MEAN

SLAMSYSTEM 10 0.580 0.351 0.111

Neural Network 10 0.603 0.335 0.106

95% confidence interval for M 1 - M2 = (-0.3475, 0.3010)

The Pair-wise Comparison (dl-d2)

N MEAN MEDIAN STDEV MIN MAX

dl-d2 10 0.0232 0.0263 0.0340 -0.0379 0.0767

Histogram of (dl-d2)

Midpoint Count

-0.04 1 *

-0.02 1 *

0.00 2 **

0.02 3 ***

0.04 1 *

0.06 1 *

0.08 1 *

108

Method Three (Performance Exceedance Probability)

Another approach is through performance exceedance probability (Flood,

1996). Performance exceedance probability is an indication of the performance which

is more than a certain limit at a specific percentage of time. For example, 0.1

represents the performance that is exceeded 10% of the time or 0.9 refers to the

throughput which is exceeded 90% of the time (Figure 30).

Throughput

0.1 0.9 Performance exceedance probability

Figure 30. Throughput of the System vs. Performance Exceedance Probability.

According to this method, the performance exceedance probability should be

added as an input to the ANN (Figure 31). The throughput can be considered as the

output of ANN. The network should be trained on these input/output sets. After

training, the output of the network estimates the throughput that corresponds to the

probability exceeding value presented at the input. The main advantage of this method

is its ability to give better information about the output. Industrial Engineers are

109

usually interested in more than mean and variance or confidence intervals; they are

sometimes looking for the distribution of the outputs. This method gives better

understanding of the distribution of outputs.

Performance exceedance probability
�

The number of machine cente rs thr oughput

ANN
.

The number of inspection stat ions

Figure 31. Performance Exceedance Approach for Capturing the Stochastic

Behavior of the Manufacturing System.

After training, a test set including 10 samples was used to test the network's

performance. Each sample included the number of machine centers and the number of

inspection stations which were generated randomly. Figure 32. shows the performance

of the network for 4 machines and one inspection center. This test sample was also

existed in the training set. As shown, the ANN could learn the pattern very efficiently.

The ability of network in learning the distribution of the output was not limited to the

training points. ANN were also able to generalize the distribution.

Figures 33-40 show the performance of the network in the new set of data.

This set of inputs had not been applied to the network before. The results show that

ANN can also be used in estimating the distribution of desired outputs in a

manufacturing system.

110

111

P.E.P. SLAMSYS ANN

0 0.30360 0.29445

0.1 0.30051 0.29422 0.8 t-
0.2 0.30017 0.29403 -s
0.3 0.29674 0.29392 _§- 0.6

1
-&SLM,ASYS

I 0,

0.4 0.29468 0.29390 +ANN

0.5 0.29331 0.29401 � 0.4
• • �

0.6 0.29262 0.29426 0.2
0.7 0.29108 0.29468

0.8 0.28782 0.29529 0
0.9 0.28628 0.29609 0 0.2 0.4 0.6 0.8 1

I 0.27787 0.29709 Perforrrance exceedance probability

Figure 32. The Performance of ANN for 4 Machines and 1 Inspection Center.

P.E.P. SLAMSYS ANN

0 0.30360 0.34717

0.1 0.30206 0.33993 0.8
0.2 0.30051 0.33271 -s

0.3 0.29897 0.32556 _@- 0.6 � 1-&-SLAMSYS

I

0,

0.4 0.29503 0.31852 +ANN 0

0.5 0.29331 0.31163 � 0.4
�� � II � II ■ ■ ■ ■ ■

0.6 0.29160 0.30493 0.2
0.7 0.29160 0.29844

0.8 0.28782 0.29221 0

0.9 0.28285 0.28624 0 0.2 0.4 0.6 0.8 1

I 0.27959 0.28056
Perforrrance exceedance probability

Figure 33. The Performance of ANN for 8 Machines and 1 Inspection Center.

P.E.P. SLAMSYS ANN

0 0.59863 0.65433
1

0.1 0.59691 0.65028 0.8
0.2 0.59348 0.64568

-s
0.3 0.59177 0.64057 .§- 0.6 ��i!ii!ii!ii!ii!ii!i�A�

�
0.4 0.59074 0.63502

0.5 0.58319 0.62907 � 0.4 N

0.6 0.57907 0.62278 0.2
0.7 0.57633 0.61619

0.8 0.57427 0.60935 0 I I I I I I I I I I I

0.9 0.57273 0.60231 0 0.2 0.4 0.6 0.8 1

I 0.56261 0.59511 Perforrrance exceedance probability

Figure 34. The Performance of ANN for 4 Machines and 2 Inspection Centers.

112

P.E.P. SLAMSYS ANN

0 0.57461 0.57421

0.1 0.57118 0.56873 0.8
0.2 0.56947 0.56294

0.3 0.56775 0.55692 _g. 0.6 •-■,ijij'JjlJili!;� 1-e-SLAMSYSI
0.4 0.56672 0.55074 -+ANN

0.5 0.56(i()4 0.54449
� 0.4

0.6 0.56(i()4 0.53823 0.2
0.7 0.56552 0.53203 (a)
0.8 0.56398 0.52594 0

0.9 0.55901 0.52002 0 0.2 0.4 0.6 0.8 1

I 0.55746 0.51431
Perforrrance exceedance probability

Figure 35. The Performance of ANN for 2 Machines and 3 Inspection Centers.

P.E.P. SLAMSYS ANN
0 0.85420 0.84011

0.1 0.83928 0.83228 0.8
111-9 •••• '' '� 0.2 0.81578 0.82372 :5

0.3 0.81183 0.81443 _g. 0.6 -e-SLAMSYS
0.4 0.80549 0.80441

::,

-+ANN

0.5 0.79931 0.79368
� 0.4

0.6 0.79177 0.78224 0.2
0.7 0.77993 0.77011

0.8 0.77256 0.75732 0

0.9 0.76398 0.74391 0 0.2 0.4 0.6 0.8

0.71870 0.72992 Perforrrance exceedance probability

Figure 36. The Performance of ANN for 6 Machines and 3 Inspection Centers.

P.E.P. SLAMSYS ANN
1

0 0.28988 0.26142

0.1 0.28662 0.25785 0.8
0.2 0.28645 0.25466 :5

0.3 0.28645 0.25189
_g. 0.6

1-e-SLAMSYS I
0.4 0.28645 0.24957

::,

-+ANN

0.5 0.28473 0.24774
� 0.4

liiiiiii!;ijiil 0.6 0.28473 0.24642 0.2
0.7 0.28473 0.24562

0.8 0.28302 0.24537 0

0.9 0.28130 0.24565 0 0.2 0.4 0.6 0.8 1

I 0.28130 0.24649
Performance exceedance probability

Figure 37. The Performance of ANN for 1 Machine and 4 Inspection Centers.

113

P.E.P. SLAMSYS ANN

0 0.85592 0.86530

0.1 0.84580 0.85605 0.8 .,. 1!1111111 ■
0.2 0.84391 0.84604

■Ill■,

0.3 0.81750 0.83525 2- 0.6
-0-SLAMSYS

Cl

0.4 0.80961 0.82367 +ANN

0.5 0.79846 0.81129 � 0.4

0.6 0.78834 0.798IO 0.2
0.7 0.78010 0.78412

0.8 0.74957 0.76935 0
0.9 0.74563 0.75383 0 0.2 0.4 0.6 0.8

0.72213 0.73759 Perforrrance exceedance probability

Figure 38. The Performance of ANN for 8 Machines and 5 Inspection Centers.

P.E.P. SLAMSYS ANN

0 0.87307 0.85783

0.1 0.85986 0.84741 �ii\9ii�0.2 0.84940 0.83612
0.8

0.3 0.83928 0.82394 _g- 0.6
-S-SLAMSYS

0.4 0.82813 0.81085

0.5 0.81732 0.79686 1 0.4 +ANN

0.6 0.79863 0.78197
f-

0.7 0.79451 0.7fi522
0.2

0.8 0.78113 0.74963 0
0.9 0.76295 0.73227 0 0.2 0.4 0.6 0.8

0.75472 0.71421 Perforrrance exceedance robabil'

Figure 39. The Performance of ANN for 6 Machines and 8 Inspection Centers.

P.E.P. SLAMSYS ANN

0 0.87479 0.86325

..._■I!l:1111!■111k0.1 0.85146 0.85588 0.8
0.2 0.83808 0.84789

0.3 0.81853 0.83927 _g- 0.6 ,-. 1-e-SLAMSYS ICl

0.4 0.80686 0.83000 ::,

+ANN e 04 ...
0.5 0.80274 0.82005 F
0.6 0.79177 0.80942 0.2
0.7 0.78696 0.79808

0.8 0.77187 0.78605 0
0.9 0.75643 0.77330 0 0.2 0.4 0.6 0.8 1

1 0.75129 0.75987 Perl orrrance exceedance probability

Figure 40. The Performance of ANN for 9 Machines and 1 Inspection Center.

Modular Approach

As mentioned before, one approach to simulate a manufacturing system is to

consider that the system consists of several simple components and to try to find

appropriate ANNs for these components. These networks can later be assembled

together to estimate the behavior of the complex system.

In one experiment, the modular approach was applied to the illustrative

manufacturing system (Figure 27). In this approach, the system was considered as two

subdivisions which were connected together. As shown in Figure 41, two ANNs were

trained to capture the behavior of each division.

...
. '

' '

q ueue 1

- Machine :

Center

.

:queue

�

-

2

:ANNII
' '

' '

..

Inspection
Station

0.1

0.9

'

Rework
Station

Figure 41. Modular Approach for Simulating the Manufacturing System.

114

The number of machine centers was considered as the input of the first

network (ANN I). The output of this network was the mean of interdeparture time.

This output was applied as an input (interarrival time) to another network (ANN II).

The number of inspection stations was another input to this network. Finally, the

output of ANN II was the throughput of the whole system. This structure is shown in

Figure 42.

First, ANN I and ANN II were trained to learn the relationship between their

input and output values. One more time, MLP network with 18 nodes in one hidden

layer was used and the backpropagation momentum learning method was applied. The

initial weights were again set to be random numbers in the interval of (-1, 1). The

learning rate of 0.2 and momentum of 0.1 were selected. The gathered data were

normalized to the interval of (0.1 and 0.9). The training was stopped only after 10,000

epochs.

No. of inspection stations

�
The mea

No. of machine ce nters
ANNI ANN II

through

n of

puts

Figure 42.

�

Interarrival

time

The Outline of Modular Approach for Simulating the Manufacturing

System.

115

After training, the results from ANNs were compared to those of SLAMSYS.

39 points were compared and the results are shown in Table 9.

Use of the modules are usually involved in some assumptions which are not

always true. For example, in this experiment, ANN II was trained based on

exponential interarrival time inputs. The readers should notice that the output of ANN

I is not necessarily exponentially distributed. More unreal assumptions will result in

more inaccurate results.

Another assumption, which is very crucial in some systems, is that the

networks are isolated. In most of manufacturing systems, the components have mutual

effects on each other. This interaction is not usually considered when the networks are

trained separately. As an example, in Figure 36, the queue 2 capacity is given to be

infinity which makes the ANN I and ANN II work isolated from each other. If there

was a queue with limited capacity, it might block the machine center. In this case, the

machine center can not processes any further entities until a free space be available in

the queue. Therefore, the ANN II can affect ANN I.

To investigate this phenomena, the capacity of queue 2 was limited to one

entity at each instant of time. The number of inspection centers was set to be 3 and the

number of machine centers was changed from 1 to 10. The results from modular

approach and global approach are compared in Table 10.

In conclusion, there is a need for more investigation to make modular approach

an appropriate method in simulating complex manufacturing systems.

116

Table 9

Comparison Between the Results Generated b y

ANNs' Modules and SLAMSYSTEM

Two Sample t-Test

System #No. MEAN STDEV SE MEAN

SLAMSYSTEM 39 0.649 0.301 0.0482

Neu ral Network 39 0.657 0.311 0.0498

95% confidence interval for M 1 - M2 = (-0.1460, 0.1302)

The Pair-wise Comparison (dl-d2)

N MEAN MEDIAN STDEV MIN MAX

dl-d2 39 0.0079 -0.0042 0.0732 -0.1758 0.1422

Histogram of (dl-d2)

Midpoint Cou nt

-0.16 1 *

-0.12 1 *

-0.08 1 *

-0.04 12 ************

0.00 12 ************

0.04 2 **

0.08 3 ***

0.12 6 ******

0.16 1 *

117

No of

Machines

1

2

3

4

5

6

7

8

9

10

Table 10

Comparison Between the Results Generated by

Modular and Global Approach

Type MEAN STD SE MEAN

Modular 171.7 11.6 3.68

Global 166.6 1.43 0.452

Modular 303.6 11.1 3.5

Global 331.5 2.12 0.671

Modular 379.3 10.1 3.2

Global 459.8 16.2 5.13

Modular 384 13.3 4.21

Global 471.1 21 6.64

Modular 384 13.3 4.21

Global 466.6 21.4 6.77

Modular 378.5 11.4 3.59

Global 461.7 13 4.11

Modular 386.1 9.04 2.86

Global 452.1 12.4 3.92

Modular 384.3 16.1 5.09

Global 470.8 19.9 6.3

Modular 387.6 7.56 2.39

Global 470.2 21.8 6.91

Modular 384 13.3 4.21

Global 456.4 14.7 4.64

118

95% Confidence

Interval for M 1 -M2

(-3.287, 13.49)

(-35.96, -19.84)

(-93.40, -67 .60)

(-103.9, -70.34)

(-99.61, -65.59)

·(-94.72, -71.68)

(-76.29, -55.71)

(-103.6, -69.41)

(-98.69, -66.51)

(-85.63, -59.17)

Dynamic Systems

As mentioned in Chapter III, a dynamic system can be considered as static at

each instant of time. Flood (1996) has used this property to develop a static network

which can model dynamic systems. According to the author's, the network can

produce a series of output values, each corresponding to a successive point in time.

The network would process the information of the system at time "t" to generate

output defining the state of the system at a slightly later point in time, "t+ 1 ". A loop

would feed this information back to the input and the entire process would be

repeated. Figure 38 shows this approach. This procedure will continue until the final

point is reached. Since each point depends on previous points, and the procedure

involves using random values, it is recommended to run this system several times to

get more accurate results. Uncertainty in the system can be captured by including a

random value as an input in each iteration.

Current state S Next State S

Figure 43. Capturing Dynamic Behavior of a System Through Static ANNs.

119

CHAPTER VII

CONCLUSIONS AND FURTHER STUDY

This document surveyed the prospective applications of Artificial Neural

Networks (ANNs) in interactive simulation. ANNs have proven to be a promising

technique in this field. They can be used in two main categories of applications: (1)

situations where there is a need for quick response to a new set of data, and (2)

situations where the effects of factors involved in the system are poorly understood.

Literature survey and experimentation show the main advantages of ANNs over

conventional simulation as follows:

1. They can learn from example (experience).

2. They do not need any particular assumption about the data (e.g. normality).

3. Fewer assumption and less precise information about the system is

necessary.

4. They do rapid and parallel processing.

5. They can first be developed "off-line", to be used "on line".

6. They can re-tune themselves within changing environments.

7. They are robust to noise and missing data.

However, the current lack of knowledge and guidelines for implementing

ANNs in practical problems create a gap between the capabilities of this technology

120

and its application to modeling manufacturing systems. To bridge this gap,

publications have been reviewed and some practical guidelines have been offered in

this survey. Due to ambiguity associated with ANNs, it is difficult to have clear

guidelines. Many decisions should be made based on previous experiences and some

trial and error experimentation. Throughout this research many limitations and pitfalls

of ANN s have been realized. Among these:

1. They do not always learn a satisfactory solution to a problem.

2. It is not always easy to find a good architecture for an ANN.

3. Due to ambiguities associated with the weights and their meanmg

corresponding to the real world system, they may not be helpful for understanding and

interpreting the components of the real system.

With the help of recommended guidelines, MIMIS queuing system was

modeled by an ANN. The procedure of modeling MIMIS is the typical procedure of

modeling a static manufacturing system. Based on static modeling, some methods have

been offered to capture the stochastic and dynamic behavior of manufacturing systems.

A simple manufacturing system was modeled through three different ways. The

manufacturing system was also modeled through modular approach. In each case, the

results were criticized and compared to conventional simulation methodology.

Although some research has been done in the field of ANNs and their

applications in manufacturing systems, there are still many areas which are unclear.

Based on our attempt and other studies in this field, these areas should be studied

further:

121

1. Research should be conducted in the field of ANNs. Although MLPs have

many capabilities, they suffer from many limitations (see Chapter III). For example,

some networks used in modeling the MIMIS queuing system took days to be trained.

Therefore, alternative types of ANNs and faster training procedures are among the

areas that should be investigated.

2. The applications of new technologies such as Artificial Intelligence, Fuzzy

Logic and Genetic Algorithms as complementary tools of ANNs, should be

investigated. These sciences have been proved to have potential usage in the ANNs.

For example, Genetic Algorithm can be used to optimize the number of layers and

neurons. The modelers should use these sciences to simplify the recommended

guidelines.

3. The performance of other ANN types such as recursive networks should be

investigated. Most literature and research in the field deal with static modeling. It is

suggested to investigate the recursive networks' capabilities especially in modeling the

dynamic and stochastic manufacturing systems.

4. The library of manufacturing modules should be enriched. As a first step of

creating a library of manufacturing systems, MIMIS queuing system was modeled in

this research. General manufacturing components should be modeled and assembled

together to estimate complex manufacturing systems. According to this project, the

modular approach suffers from lack of precision because of the interaction between

modules. More research is needed in this field.

122

5. Several different real manufacturing systems should be modeled through

ANNs. Most studies in the field have been done with computer generated numbers

rather than real data. One of the capabilities of ANNs is to capture unknown factors in

the system. Many of these factors are simply neglected when the system is modeled by

a conventional simulation software. The performance .of ANNs should be compared to

that of conventional simulation software on data collected from real manufacturing

sites.

6. The application of ANNs in optimization should be further studied. Through

this research (see Chapter VI), it has been realized that the SSE of ANNs are usually

dropped after a few epochs. ANNs can quickly realize the direction of minimum error.

This phenomena persuades the author to apply ANNs in the optimization.

Investigation is needed to find appropriate procedures toward this goal.

7. The offered guidelines should be enriched and updated. This document has

tried to provide industrial engineers with some recommendations and guidelines to

help them simulate their systems through ANNs. However, implementing many steps

of these guidelines depend on the previous experiences of the modeler and trial and

error experimentation. These recommendations may not be attractive for those people

who are looking for explicit formulas and/or clear cut guidelines. Neuroscience is not

mature enough yet to support these guidelines with closed-form formulas. Questions

such as "What is the best topology for the network?", "How many layers and nodes

are needed?" are still open. Thus, the modelers who are interested in applying ANNs

to manufacturing systems should get involved in neuroscience and update the

123

suggested guidelines based on forthcoming innovations in that field.

8. New methods should be developed to use static ANNs m simulating

stochastic processes. The ANNs mostly transform stochastic processes into

deterministic models. Industrial engineers are usually interested in distribution of data

rather than mean and variance or upper/lower confidence intervals of data. Thus, more

approaches similar to performance exceeding probability should be developed.

Finally, scientists with extensive background in ANNs who think that the

approximation of computer simulation is trivial, should pay attention to Kilmer's

(1996) comments in this regard.

The idea of using an ANN to approximate a computer simulation may

initially seem routine to researchers with an extensive background in

neural networks. The reason for such an assessment is that there are

many examples of researchers using computer simulations in order to

obtain data to train their networks. The majority of these cases involved

research in modifying or developing new ANN methodologies,

techniques, or procedures. Thus, instead of expending valuable time

and effort to obtain data from a real system, these researchers obtained

their data from computer simulations that were built with the sole

purpose of "feeding" an ANN. However, while it might be fairly trivial

to build a computer simulation to provide training data to an existing

ANN, this does not mean that it will be easy to build an ANN that will

be able to receive and learn the relationships of an existing, complex

stochastic computer simulation.

124

Appendix A

Programs' Source Codes

125

/* Program for generating M/M/s inputs for an ANN*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
long int facto(int i)

{
if(i > 1)
return double(i) * facto(i-1);
else

return 1;

double summ(double rou, int s)

{
double sum=0.;
int n;

for (n=0 ; n <= s-1; n++)
sum = sum + pow(rou,(double)n)/(double)facto(n);

return sum;

}

main(void)

{
FILE *fq;
int lamda,mue,i,Lamda[2000] ,Mue[2000] ,c=0 ,j, temp,S [2000] ,s;
char ch;
double P _nut[2000] ,L_q[2000],W[2000],rou,rou 1,temp l ,temp2,p;
double L_q_max=0.,W _max=0.,L_q_temp=0.,W _temp=0.;

fq = fopen("c:\sstest.pat","w+");

randomize();

forU= 1 ;j< 1 oo 1 ;j++) {

/* lamda = 1 + random(49);
s = random(l0) + 1;
temp = (int) (50. - (float)lamda/(float)s);

mue =lamda + random(temp)+ l ; */

lamda = random(49)+ 1;
mue = random (49)+ 1;

s = random(l0)+ l ;

while((p = (float)lamda/((float)mue*(float)s)) < .1 II p> .99){
lamda = random(49)+ 1;

126

mue = random(49)+ 1;
s= random(1 0)+ 1;
rou = (float)lamda/(float)mue;
roul= rou/(float)s;
Mue[c] = mue;
Lamda[c] = lamda;
S[c] = s;
temp l=summ(rou,s)+pow(rou,(double)s)/((double)facto(s)*(1.-rou 1));
P _nut[c] = 1./templ ;
temp2=(1.-rou 1)*(1.-rou 1)*(double)facto(s);
L_q[c]= P _nut[c]*pow(rou,(double)s)*roul /temp2 ;
W[c] = L_q(c]/(float)lamda;
c=c+l;

for (i=0;i<c;i++)

{
L_q_temp = L_q[i];
W _temp = W[i];
if (L_q_max < L_q_temp)

L_q_max = L_q_temp ;
if (W _max < W _temp)

W _max = W _temp;

fprintf(fq,"SNNS pattern definition file V3.2\n");
fprintf(fq,"generated at Sat Aug 19 13:35:27 1995\n\n\n");
fprintf(fq,"No. of patterns : %d\n" ,c);
fprintf(fq,"No. of input units : 2\n");
fprintf(fq,"No. of output units : 1\n\n");
fprintf(fq," 1.1 * W _max= %f 1.1 * L_q_max=%f

\n",W _max,L_q_max);

for (i=0;i<c;i++)

{
fprintf(fq,"# Input pattern %d:\n" ,i+ 1);
fprintf(fq,"%6.5f %6.5f \n

%6.5f" ,(float)S [i]/11.,(float)Lamda[i]/50.,(float)Mue[i]/50.);
fprintf(fq,"# Output pattern %d:\n",i+l);
fprintf(fq,"%6.5f %6.5f %6.5f

\n" ,P _nut[i],W[i]/(1.076596),L_q[i]/(51.222081));

}
fclose(fq);
exit(0);
}

127

/* Program for validation of MIMIS Queing System, By Payman Jula*/
main(void)

{
FILE *fq;
int lamda,mue,i,Lamda[2000] ,Mue[2000] ,c=0,j, temp,S [2000] ,s;
char ch;
double P _nut[2000],L_q[2000] ,W[2000] ,rou,rou 1,temp 1,temp2,p;
double L_q_max=0.,W _max=0.,L_q_temp=0.,W _temp=0.;

fq = fopen("c:\sstest.pat","w+");
randomize();
for (s=l ; s<l l; s=s+2) {
for (lamda= 1 ;lamda<50;lamda=lamda+ 3)
for (mue=lamda/s + 1; mue<50;mue=mue+2){

rou = (float)lamda/(float)mue;
roul= rou/(float)s;
Mue[c] = mue;
Lamda[c] = lamda;
S[c] = s;
temp l=summ(rou,s)+pow(rou,(double)s)/((double)facto(s)*(1.-rou 1));
P _nut[c] = 1./templ ;
temp2=(1.-rou 1)*(1.-rou 1)*(double)facto(s);
L_q[c]= P _nut[c]*pow(rou,(double)s)*roul /temp2 ;
W[c] = L_q[c]/(float)lamda;
c=c+l ; } }
for (i=0;i<c;i++)

{ L_q_temp = L_q[i];
W _temp = W[i];
if (L_q_max < L_q_temp)

L_q_max = L_q_temp ;
if (W _max < W _temp)

W _max = W _temp; \

fprintf(fq,"SNNS pattern definition file V3.2\n");
fprintf(fq,"generated at Sat Aug 19 13:35:27 1995\n\n\n");
fprintf(fq,"No. of patterns: %d\n",c);
fprintf(fq,"No. of input units: 2\n");
fprintf(fq,"No. of output units : 1 \n\n");
fprintf(fq," 1.1 *W _max= %f 1.1 *L_q_max=%f \n", 1.1 * W _max, 1.1 *

L_q_max);
for (i=0;i<c;i++)

{
fprintf(fq,"# Input pattern %d:\n",i+l);

128

fprintf(fq,"%6.5f %6.5f %6.5f
\n" ,(float)S[i]/11.,(float)Lamda[i]/50.,(float)Mue[i]/50.);

fprintf(fq,"# Output pattern o/od:\n" ,i+ 1);
fprintf(fq,"%6.5f %6.5f %6.5f \n",P _nut[i],W[i]/(1.1 *

W _max),L_q[i]/(1.1 * L_q_max));

fclose(fq);
exit(0);

}

}

129

AppendixB

SLAMSYSTEM's Network

130

EXPON (31

llllno4(2.S,3.2i,l o, .9

e) �- �

o, 0.1

rl

A Simple Manufacturing System Modeled By SLAMSYSTEM.

EXPONI 10), l

(1) �

-w

BIBLIOGRAPHY

Anscombe, F.J. (1973). Graphs in statistical analysis. American Statistician, 27, 17-21.

Baldi, P. F., & Hornik, K. (1995). Learning in linear neural networks: a survey.

IEEE Transactions on Neural Networks, �(4), 837-858.

Bebis, G., & Georgiopoulos, M. (1995). Improving generalization by using genetic

algorithms to determine the neural network size. Southcon/95 conference record,

392-397.

Berenji, H. R., & Khedkar, P. (Sept., 1992). Learning and tuning fuzzy logic

controllers through reinforcements. IEEE Transactions on Neural Networks,

J(5), 724-740.

Blanning, W. R. (1975). Response to Michael, Kleijnen and Permut, Interface, 2, 24-5.

Chester, D. L. (1990). Why two hidden layers are better than one. Proceedings of the

International Joint Conference on Neural Networks, 1, 265-268.

Chung, Y. & Kusiak, A. (1994). Grouping parts with a neural network. Journal of

Manufacturing Systems, U(4), 262-275.

Emshoff, J. P., & Sisson, R. L. (1970). Design and Use of Computer Simulation

Models. Macmillan, London.

Fishwick, P. A. (1989). Neural network models in simulation: a comparison with

traditional modeling approaches. Proceedings of the 1989 Winter Simulation

Conference, 702-710.

Flood, I. (1991). A Gaussian-based feed forward network architecture and

complementary training algorithm. Proceedings of 1991 IEEE International Joint

Conference on Neural Networks, 1, 171-176.

Flood, I., & Christophilos, P. (1996). Modeling construction processes using artificial

neural networks. Automation in Construction, 1:(4), 307-320.

Flood, I., & Worley, K. (1994). Simulation using artificial neural networks.

Proceedings of the 1994 Summer Computer Simulation Conference (26th,

San Diego), 217-222.

132

Flood, I., & Worley, K. (1995). An artificial neural network approach to discrete­
event simulation. Artificial Intelligence for Engineering Design. Analysis and
Manufacturing. 2(1), 37-49.

Foo, S. Y., & Takefuji, Y., & Szu, H. (May, 1995). Scaling properties of neural
networks for job-shop scheduling. Neurocomputing, .8(1), 79-91.

Friedman, L. W. (1989). The multivariate metamodel in queuing system simulation.
Computers and Industrial Engineering. 16(2), 329-337.

Friedman, L. W., & Pressman. I. (1988). The metamodel in simulation analysis: can it
be trusted? Journal of Operational Research Society. 39(10), 939-948.

Hashem, S., & Schmeiser, B. (1994). Improving model accuracy using optimal linear
combinations of trained neural networks. Proceedings of World Congress on
Neural Networks, .3., 4.

Hillier, F. S., & Lieberman, G. J. (1995). Introduction to Operations Research, Sixth
edition, McGraw Hill.

Hopfield, J. J. (May, 1984). Neurons with a graded response have collective
computational properties like those of two-state neurons. Proceedings of the
National Academy of Science, fil.

Hornik, K. (1989). Multilayer feedforward Networks are universal approximators.
Neural Networks, 2.

Hornik, K. (1994). Neural networks: more than statistics for amateurs? Proceedings of
11th Symposium on Computational Statistics. 223-35.

Huang, S. C., & Huang, Y. F. (1991). Bounds on the number of hidden neurons in the
multilayer perceptrons. IEEE Transactions on Neural Networks, 2(1), 47-55.

Hurrion, R. D. (1992). Using a neural network to enhance the decision making quality
of a visual interactive simulation model. Journal of the Operational Research
Society, 43(4), 333-341.

Hurrion, R. D. (1993). Representing and learning distribution with the aid of a neural
network. Journal of Operational Research Society, 44(10), 1013-1023.

Hush, D.R., & Horne, B. G. (Jan., 1993). Progress in supervised neural networks.
IEEE Signal Processing Magazine, 10(1), 8-39.

133

Hush, D.R., & Salas, J. M., & Horne, B. (1992). Error surfaces for multi-layer

perceptrons. IEEE Transactions on Systems, Man and Cybernetics, 22(5), 1152-

1161.

Kilmer, R. A. (1996). Applications of artificial neural networks to combat simulations.

Mathematical and computer modeling, 23, No 1-2, PP 91-9.

Kilmer, R. A., & Smith, A. E. (1993).Using artificial neural networks to approximate a

discrete event stochastic simulation model. Intelligent Engineering Systems

Through Artificial Neural Networks, .3., ASME Press, 631-636.

Kilmer, R. A., & Smith A. E. (1994). Neural Networks as a metamodeling for discrete

event stochastic simulation. Intelligent Engineering Systems Through Artificial

Neural Networks, 1, ASME Press, 1141-1146.

K.leijnen, J. P. C. (1992). Regression metamodels for simulation with common random

numbers: comparison of validation tests and confidence intervals. Management

Science, 38(8), 1164-1185.

Kopsco, D., & Pipino, L., & Rybolt, W. (Nov., 1993). Neural networks as adjuncts to

statistics software. Collegiate Microcomputer, 11(4), 229-239.

Lampinen, J., & Taipale, 0. (1994). Optimization and simulation of quality properties

in paper machine with neural networks. IEEE International Conference on Neural

Networks, June 27-29, 1994, Orlando, Florida, Vol. 6, 3812-3815.

Law, A. M., & Kelton, W. D. (1991). Simulation Modeling and analysis. 2nd edition,

McGraw-Hill, New York.

Law, A. M., & Mccomas, M. G. (July, 1992). How to select simulation software for

manufacturing applications. Industrial Engineering, 24(7), 29-35.

Lippmann, R. P. (April, 1987). An introduction to computation with neural nets. IEEE

ASSP Magazine.

Montgomery D. C. (1991). Design and Analysis of Experiments. Third edition. John

Wiley & Sons.

Narendra, K. S., & Parthasarathy, K. (1991).Gradient methods for the optimization of

dynamical systems containing neural networks. IEEE Transactions on Neural

Networks, 2(2), 252-262.

134

Nuila, V. H., & Houshyar, A. (1993). Manufacturing Systems Simulation Manual.
Whirlpool Corp., Benton harbor, Michigan.

Padgett M. L., & Roppel T. A. (1992). Neural network and simulation: modeling for
applications. Simulation , 58(5), 295-305.

Pierreval H. & Huntsinger R. C. (1992). An investigation on neural capabilities as
simulation metamodels. Proceedings of the 1992 Summer Computer Simulation
Conference (July 27-30), Reno, Nevada, 413-417.-

Pritsker, A. A. (1986). Introduction to Simulation and Slam II. 3rd edition, John Wiley
& Sons Press, New York.

Reed, R. (Sept., 1993). Pruning algorithms - a survey. IEEE Transactions on Neural
Networks, 1(5), 740-747.

Rumelhart, D. E. (1986). Learning internal representations by error propagation.
Explorations in the Microstructure of Cognition, Vol. 1: Foundations. MIT Press.

Sarne, G. M. L., & Postorino, M. N. (May, 1994). Application of neural networks for
the simulation of traffic flows in a real transportation network. Proceedings of the
International Conference on Artificial Neural Networks, Sorrento, Italy, May 26-
29, Vol. 2, 831-834.

SFINX, Structure and Function In Neural ConneXtions, University of California at
Los Angeles

Shannon, R. E., & Biles, W. E. (1970). The utility of certain curriculum topics to
operations research practitioners. Operations Research, 18, 1011-1025.

Sim, S. K., & Yeo, K. T., & Lee, W. H. (Aug., 1994). An expert neural network
system for dynamic job shop scheduling. International Journal of Production
Research, 32(8), 1759-1773.

Skrzypek, J. (1994). Neural Networks Simulation Environments. Kluwer Academic
Publishers.

Smith, M. (1996). Neural Network for Statistical Modeling. International Thomson
Computer Press.

SNNS, Stuttgart Neural Network Simulator. User Manual, Version 4.0, University of
Stuttgart.

135

Wasserman, P. D. (1993). Advanced methods in neural computing. Van Nostrand

Reinhold Press, New York.

Werbos, P. J. (1992). Neural networks, system and control in the chemical process

industries. Hand book of intelligent control. Van Nostrand Reinhold, New York.

Widrow, B., & Lehr, M. A. (Sept., 1990). 30 years of adaptive neural networks:

perceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9),

1415-42.

Widrow, B., & Rumelhart, D. E., & Lehr, M.A. (March, 1994). Neural networks:

applications in Industry, Business and Science. Communications of the ACM,

37(3), 93-105.

Wildberger, A. M. (Aug., 1989). Application of expert systems, simulation and neural

networks combined to enhance power plant performance. Proceedings of the AI

and Simulation Workshop. AAAI.

Wildberger, A. M., & Hickok, K. A.(1992). Power plant modeling and simulation

using artificial intelligence and neural networks. Progress in Simulation, l, 100-

125.

Yu, B. & Popplewell, K. (1994). Metamodels in manufacturing: a review,

International Journal of Production Research, 32(4), 787-796.

136

	Applications of Artificial Neural Networks in Interactive Simulation
	Recommended Citation

	tmp.1578577945.pdf.OYy32

