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Extending the Capabilities of Von Neumann with a Dataflow
Sub-ISA

Martin Cowley, M.S.E.

Western Michigan University, 2019

Instruction set architectures (ISAs) such as x86, ARM, and RISC-V follow the control flow

model of computation, where a program is defined as a sequence of instructions. Early proces-

sors executed instructions one-by-one based on the control flow of a program. Dataflow is an

alternative model of computation that uses the availability of data to drive instruction execu-

tion. Any instruction can be chosen for execution, independent of the instruction order, as long

as the data is available for that instruction. While modern processors incorporate concepts of

the dataflow model in the microarchitecture, the implementation of the ISA, the amount of in-

struction level parallelism is still limited. Explicit dataflow architectures bring the concept of

dataflow execution into the ISA. This increases the amount of parallelism, but also introduces

problems, such as control flow bottlenecks, inefficient data structures, and lack of speculative

execution, that have prevented dataflow architectures from surpassing Von Neumann for all

applications. Rather than chose one model or the other, this work extends the RISC-V ISA

with a dataflow sub-ISA. A microarchitecture implementation of this ISA is capable of execut-

ing both types of instructions: Von Neumann and dataflow. This thesis introduces a dataflow

sub-ISA and determines when it is best to use the dataflow subset, and when the standard in-

structions give better performance. The ideal situations for dataflow are sections of code with

simple control structures and irregular memory accesses. A program with regular memory

accesses and simple control structures gave a speedup of 9% over the Von Neumann version,

and a similar irregular application was estimated to have a speedup of 1.2x.
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1 Introduction

Due to power constraints, improving performance by increasing the frequency of CPUs is in-

feasible. Computer architects have instead turned towards using instruction level parallelism

(ILP) to increase performance. ILP refers to how many instructions can be executed at once.

Many hardware and software techniques exist to take advantage of the maximum amount of

parallelism in a program. For example, loop unrolling, pipelined CPUs, multithreading, mul-

ticore processors, and very long instruction word (VLIW) architectures.

The instruction set architecture (ISA) of a processor defines how the software and hardware

interact. The ISA defines the set of instructions, addressing modes, data types, memory mod-

els, and number of registers. The design of an ISA has an important impact on the hardware

implementation, performance, and even ILP.

ISAs are typically categorized into two main categories: complex instruction set computer

(CISC) or reduced instruction set computer (RISC). CISC instructions are complex, often

performing multiple functions for each instructions. This is contrast to RISC instructions,

which use simple instructions and hardware. x86 is an example of a CISC instruction set,

while ARM is a RISC ISA. VLIW is another type of ISA which defines instructions in blocks

that are executed in parallel to increase ILP.

Many ISAs in use today are based off of Von Neumann architecture, which share the fol-

lowing properties:

• Program counter (PC) for fetching instructions

• Register file to store instruction operands

• Shared memory for instructions and data
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One of the key features of this architecture is that it follows the control flow model of

computation. The PC points to the next instruction to be fetched, and is incremented each

cycle to fetch a sequence of instructions. Each instruction reads its operands from the register

file, sends the data to the ALU and/or memory, and writes the result back to the same register

file.

There are a few difficulties when trying to adapt this model to parallel processing. First, it is

inherently sequential–each instruction is fetched based on program order. The second problem

is that the register file system makes it difficult to detect independent instructions and increases

the complexity of the hardware. Both of these problems are potential roadblocks to extracting

parallelism.

Numerous hardware techniques have been developed, such as pipelining, superscalar pro-

cessors, multicore, etc., to allow hardware to take advantage of ILP. However, this raises an

interesting question: can we increase ILP at the level of the program? Specifically, how much

ILP can Von Neumann ISAs extract from a program, and are there other types of ISAs that can

extract more parallelism?

VLIW ISAs use compiler techniques to group instructions together for parallel execution.

This simplifies the hardware needed for parallel processing, but complicates the compiler and

can limit ILP because it only uses static techniques.

The dataflow model represents a program in a graphical form. Each node is an instruction,

and arcs between nodes represent data dependencies. The dataflow model ignores the ordering

of instructions, and instead focuses on the availability of data to drive the execution of instruc-

tions. The dataflow representation of a program explicitly shows the dependencies between

instructions.

The motivation for this model comes from the search for increasing ILP. This model does not

suffer from the problems discussed above. It is nonsequential because the order of instructions

is not specified, only the dependencies between instructions. It also replaces the register file

representation with explicit dependencies, making it easier to know which instructions can be

executed in parallel.

This work proposes to extend an existing ISA with a dataflow sub-ISA. Instead of imple-
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menting a new, separate ISA for the dataflow instructions, a sub-ISA simplifies the compiler

and the hardware by extending a unified ISA with both types of instructions. A microarchitec-

ture implementation of our design would be able to execute both Von Neumann and dataflow

programs. We expect that this will improve performance by being able to switch between the

two modes using whichever one is more suitable to the code. We extended the RISC-V ISA,

a research based ISA [1], created a compiler toolchain, and implemented a simulation model

for our microarchitecture.

1.1 Contributions

The contribution of this thesis are listed below:

• Dataflow extension of the RISC-V ISA as a sub-ISA.

• Implementation of limited forms of dataflow speculation (Loop Predictor and Prefetcher)

• Addition of a hybrid dataflow/Von Neumann CPU model to the gem5 simulator.

• Dataflow compilation toolchain (limited capacity) that can compile standard C/C++ pro-

grams.

• Analysis of the dataflow capabilities and bottlenecks

The rest of this thesis is organized as follows: Chapter 2 discusses relevant background and

related work. Chapter 3 describes in detail the proposed dataflow sub-ISA. Chapter 4 details

the microarchitecture implementation we used for our evaluation. Chapters 5 and 6 give our

methodology and results, respectively. Finally, chapter 6 concludes the thesis and discusses

future work.
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2 Background and Related Work

ILP can be quantified as the number of instructions that can be executed at the same time

determined by data dependencies between instructions. Two instructions are independent if

there are no data dependencies between them and can be executed in parallel or in any order.

If the second instruction depends on the first instruction, then the second instruction must

execute after the first one. Figure 2.1 shows two code segments, the first where each instruction

is independent, and the second where each instruction is part of a chain of dependencies.

Each instruction in the first program can be executed in parallel. Additionally, the order of

instruction execution does not matter–independent instructions can be executed in any order.

The second program is inherently sequential because each instruction must wait for its parent

instruction to complete. Performance of a program is limited by the amount of parallelism

intrinsic to a program and the amount of ILP that the hardware can extract.

Figure 2.1: Difference between dependent and independent instructions

There are many ways to extract ILP. Pipelined processors execute multiple instructions si-

multaneously but in different stages. Superscalar pipelines fetch, decode, and execute multiple

instructions simultaneously. Out-of-order processors dynamically reorder instructions to in-

crease ILP. However, these are hardware implementations of a control flow ISA. This thesis

examines the possibility of using the dataflow model of computation to improve performance,
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which has the potential to exploit more ILP.

Processors with low levels of parallelism are susceptible to instructions with long latency.

One example is a memory instruction that results in a cache miss. A simple sequential proces-

sor that must execute each instruction one at a time is susceptible to these instructions because

it cannot move onto the next instruction until the previous one is finished. A cache miss that

takes many cycles to resolve wastes time because there could be other independent instruc-

tions ready to be executed. Researchers turned towards the dataflow model to help alleviate

the problem.

2.1 Model of Computation

A model of computation defines the way a program is executed. Most programming languages

and processors adopt the control flow model, where a program is treated as a sequence of

instructions. Conceptually, a control flow processor fetches and executes instructions in the

order they are found in memory (called in-program order). This model is very simple and

widely used in computation.

There exists another model of computation, dataflow, which takes a different perspective.

Instructions are executed based on the availability of data, ignoring program order. This model

is nonsequential and is able to execute any instruction that is ready. Researchers have been

interested in the dataflow model to see if it can help CPUs exploit ILP in a program by focusing

on data rather than program order, which is often incidental to the execution of the program.

An example of a dataflow graph is shown in Figure 2.2. Each node in the graph is an

instruction and arcs between nodes represent true data dependencies. Nodes that are next

to each other have no dependencies and can either be executed in parallel or in any order

the processor decides. This makes parallelism between instructions explicit and can improve

performance over sequential execution.

5



Figure 2.2: Dataflow Graph of formula (A+B) * (C+D)

2.2 Von Neumann Architectures

Von Neumann ISAs are sequential: a basic program is a sequence of instructions and the CPU

follows the flow of control specified by the program. A program counter (PC) is used to keep

track of the next instruction to be executed. It is either incremented after each instruction or,

when a control instruction is reached, the PC is modified to begin executing a different part

of the program. However, modern microarchitectures deviate from this pattern internally be-

cause of the limitations of sequential execution. Extra hardware is added to allow for dataflow

execution.

With a Von Neumann program the dataflow graph above can be constructed by analyzing

register access patterns of each instruction. Modern processors incorporate this concept into

the hardware. Instead of executing sequentially, extra hardware is added to dynamically an-

alyze dependencies between registers and execute instructions out of their program order to

increase ILP. This technique is called out-of-order (OoO) processing and greatly improves

performance. OoO processors can hide the latency of some instructions by executing other

independent instructions instead of stalling the pipeline.

One limitation of this method is that these processors are still sequential at the ISA level.

OoO processors fetch in-order and write back the result in-order to maintain consistency with

sequential processing and support precise interrupts. This is done by loading instructions
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into a re-order buffer (ROB), which acts like a "window of instructions" that allows dataflow

execution while still maintaining program order. Any instruction in the ROB can be executed

if it is ready and the processor will skip over instructions that are still waiting or are have not

finished executing.

The size of the ROB limits ILP, because there could be ready instructions that have not yet

entered the ROB. One solution is to increase the window of instructions. There is another

type of architecture, explicit dataflow, that exposes the dataflow graph to the ISA level and

increases ILP.

2.3 Data�ow Architectures

Explicit dataflow architectures differ because they expose the concept of a dataflow graph to

the ISA level and execute the dataflow graph directly. Pointers to dependent instructions are

encoded in the machine binary, so that each instruction explicitly points to its dependencies.

Rather than fetching instructions using a PC, dataflow architectures use the dependency arcs

in the dataflow graph to fetch new instructions, which could be anywhere in memory. This

increases the window of instructions to the entire program and increases the potential amount

of parallelism that can be extracted. When an instruction executes, the explicit pointers are

used to fetch and activate dependent instructions rather than a program counter. Instead of a

register file, data is sent directly to the required instructions. Many architectures have been

developed for executing dataflow graphs.

The table at the end of the section gives an overview of different dataflow architectures.

We categorize them with the following features: scheduling methods, code coverage, pure

dataflow or hybrid architecture, programming language, and how the CPU was implemented.

Other work related to dataflow architecture not included in the table are [2, 3, 4, 5, 6, 7, 8].

Direct Communication Conceptually, dataflow programs pass data from one instruction

to the next. There are different ways to implement this in hardware. The first concept of

an explicit dataflow architecture grew from the register file system used in Von Neumann ar-

chitectures. The computer would contain a set of instruction cells (or registers). Each cell

7



contains space for the instruction and two operands. When the two operands arrive, the in-

struction and data are sent together to the function units (FUs) for execution. The result of

the instruction is then sent directly to dependent instruction cells. Hence, we call this method

direct communication. We chose not to use this method for our microarchitecture implemen-

tation because the number of instruction cells would severely limit the size of the code. The

SEED [9] architecture utilizes direct communication, but only by limiting the scope of exe-

cution (discussed below). The TRIPS [10] architecture uses direct communication, but on the

level of hyperblocks rather than individual instructions.

Tag Matching Tagged token architectures create a common pool of data to store operands

until the corresponding instruction is ready. Each piece of data is stored in a token, which

contains the data and an identification tag. An instruction becomes ready when both operands

have arrived to the pool. This event is detected when two tokens with the same tag have

reached the pool.

One common technique for dataflow execution is called tag matching. It uses random access

memory (RAM) to temporarily store operands until their corresponding instructions are ready.

This approach is used because it can store a large number of operands for many different in-

structions. The Manchester [11] machine and MIT [12] tagged-dataflow both independently

took a step in this direction by using associative memory (full-associate memory or hash func-

tions). The instruction address is used as a key to index the memory. This is done so that

two operands destined for the same instruction will be mapped to the same location in cache.

When this happens, the instruction is determined to be ready for execution and is sent to a FU

along with the operands. We use the same process for our microarchitecture implementation

using a fully associate cache to store operands. The Monsoon architecture [13] uses similar

tag-matching hardware, but its goal was to replace the associate memory, which can be expen-

sive, with a simpler approach [13]. A simple effective address calculation is used to determine

where the token is stored in the pool. A program is statically split into frames, and each in-

struction is located at an offset from the current frame. A static instruction offset is added

to a dynamic frame pointer to calculate the location in memory the token needs to go. This
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introduces the problem of having to maintain the allocation and deallocation of each frame as

part of the calling convention, but greatly simplifies the matching mechanism.

Programming Paradigms The programming methodology used for dataflow architectures

has changed over the years. Early systems exclusively used functional or single-assignment

languages. Examples languages include FORTRAN [14, 15, 16], SISAL [11], and ID [12,

13, 16, 17]. Single-assignment languages have variables that can only be assigned once. This

greatly simplifies the compilation process for dataflow, but destroys legacy code written in

imperative languages like C/C++.

More recent dataflow architectures recognize that they need to be programmed using stan-

dard languages. SEED [9], Wavescalar [18], and our design use benchmarks that are written

in C++ so we can compile and run standard benchmarks written in imperative languages.

Memory Disambiguation Memory instructions can have hidden dependencies that are not

revealed by analyzing register access patterns, because the addresses are not always known

statically. Memory disambiguation is a class of techniques for overcoming this problem.

Early dataflow architectures did not use normal memory instructions. Manchester avoided

the problem of memory disambiguation by not using memory instructions at all: all data is

stored inside the processor, without any data memory access. They recognized that this was a

serious bottleneck, since any program would run out of space when large data structures are

used [11].

Many architectures solved this problem using a special type of data structure called I-

Structures [19, 13, 17]. This extended the single-assignment language approach to memory

instructions. Each location in memory can only be written to once. If two store instructions at-

tempt to store at the same location, a runtime error occurs. If a load instruction tries to execute

before data has been written, then it is added to a queue and waits. When the corresponding

store executes, the data is sent to every value in the queue.

This solves the problem of memory disambiguation, but only by restricting the program-

mer to single-assignment paradigm. We chose not to use these data structures for the same

reason we abandoned single-assignment languages in general. They are not compatible with

9



the C/C++ language and therefore not suitable for a hybrid architecture that can run realistic

benchmarks.

We take a conservative approach that is also utilized by other architectures like SEED ar-

chitecture [9]. We start by assuming that all memory instructions are dependent and must be

executed in a sequence. We enforce this sequence by adding true data dependencies between

each store-load instruction. This creates a chain of memory instructions; each memory instruc-

tion must wait for the previous one to execute. However, because this conservative approach

forces instructions to be executed in a sequence without speculation, it can lower performance

unnecessarily. We offset this problem by using a compiler optimization that removes memory

instructions from the chain if it is known they are independent at compile time.

WaveScalar [18] removes the need for I-structures by having "wave-ordered memory" [18].

WaveScalar was one of the first dataflow ISAs to focus on the execution of conventional pro-

grams. They use a hardware implementation to chain dependent memory operations and force

them to execute in sequence. This is similar to SEED but implemented through hardware

structures instead of on the dataflow graph level.

2.4 Hybrid Model

The idea of hybrid dataflow architectures were discussed from the early days of dataflow ar-

chitecture [17]. Iannucci discussed how the features of dataflow and Von Neumann could be

combined to improve performance [17]. However, there are different ways of approaching a

hybrid architecture and different definitions of the word hybrid.

Blending Iannucci pointed out that the dataflow architecture and the Von Neumann archi-

tecture were not orthogonal–instead, they lie on opposite sides of a spectrum [17]. He took

features of dataflow architecture and added them to a Von Neumann base. Because OoO cores

borrow dataflow properties, they can be considered a form of a hybrid Von Neumann/dataflow

architecture. This is orthogonal to our microarchitecture, because we are not attempting to

blend the properties of both architectures. Our work separates the two models into two distinct

modes of operation.

10



The epsilon 2 architecture was an early a hybrid approach–a local PC was used for schedul-

ing within a block, but chose which block to execute in a dataflow manner [16]. When con-

structing a dataflow graph, each node was a block of sequential instructions.

Another example is the TRIPS architecture, an implementation of the EDGE ISA. EDGE

splits a program into blocks of instructions, called hyperblocks. In the TRIPS architecture,

every instruction in a block is sent to a functional unit together. Data is passed between hyper-

blocks using dataflow scheduling, but execute in the Von Neumann way inside a block. This

removes the global register file found in most Von Neumann designs, but each functional unit

has a local register file.

Another notable work was Tartan, which used a reconfigurable fabric to remove the fetch-

decode system found in Von Neuamann architecture. The fabric is made up of functional units

that pass their data directly to where it is needed, without writing to a register file. The fabric is

connected to a standard processor, making this a hybrid architecture. While this is a dataflow

machine, their work is orthogonal to ours.

Mode The closest paper to our work is the SEED architecture [9]. They investigated the

performance of a hybrid model with fine-grain switching. Our work is similar because we

have two distinct modes of operation: dataflow and Von Neumann. The hybrid processor is

able to switch back and forth between these two modes over the lifetime of a program. Our

work is different than SEED because we implemented a sub-ISA and used a tagged-token

pipeline for our dataflow architecture. Additionally, we implemented a simulation model to

test our design, while SEED was evaluated using a high-level analysis.
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Table 2.1: Overview of Dataflow Architectures

• Communication – how is data sent from one instruction to the next.

• Region – "full" indicates entire benchmarks can run on this architecture while partial
means the dataflow hardware only supports a subset of code.

• Hybrid – “*” indicates this is a hybrid architecture

• Language – supported programming languages

• Implementation – the implementation method (simulation, RTL, or VLSI)

Name Communication Region Hybrid Language Implementation
Dennis [14] Direct full NA Theoretical
Manchester [11] TTDA full ID VLSI
MIT [12] TTDA full ID VLSI
Monsoon [13] TTDA full ID VLSI
Wavescalar [18] TTDA full C/C++ RTL
TRIPS [10] Direct full * C/C++ VLSI
Tartan [20] Direct full * C/C++ C Simulation
SPEED [9] Direct nested loops * C/C++ Simulation
This work TTDA full * C/C++ Simulation
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3 RISC-V Sub-ISA

The design of an ISA has more to do than just selecting a set of instructions. The ISA of a

processor does not specify all of the microarchitectural details, but it does define the basic

modes of operation; it defines what the CPU is doing from the point of view of the program.

For example, Von Neumann ISAs follows the standard register file, PC, and control flow model

of computation.

The ISA is an important first step when designing a CPU. There are many layers of abstrac-

tion that are used in computer architecture. An ISA is the layer that defines how the software

interacts with the hardware. There are many existing ISAs, for example x86, ARM, RISC-V,

MIPS, Alpha, etc. The next question is why is it necessary to create special dataflow instruc-

tions. After all, the out-of-order model shows that many complex operations can be happening

underneath the surface that the ISA does not know about. This simplifies the compilation pro-

cess greatly, because it allows for limited dataflow without modifying the program. However,

the existing out-of-order hardware demonstrates the difficulty with this approach. Dynami-

cally analyzing the dependencies between instructions is difficult and expensive in terms of

hardware and energy. We need a new ISA with instructions that could contain the dataflow

graph explicitly. This greatly simplifies the microarchitecture since it does not require extra

hardware for analyzing dependencies. However, it also complicates the compilation process

because the dataflow graph needs to be statically constructed. A sub-ISA is advantageous

because the microarchitecture can execute normal instructions as well as our dataflow instruc-

tions. A sub-iSA is slightly different than a normal hardware accelerator or coprocessor, which

are more like peripherals where some of the work is offloaded from the host CPU. By imple-

menting our sub-ISA, we are creating a single processor capable of executing dataflow and
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control flow software.

3.1 RISC-V Base ISA

RISC-V is an ISA specifically designed for research. It is open source, meaning it can be

used and modified by anyone in academia or industry. It was also designed to be customizable

through different extensions. The base ISA is relatively small and only contains 32-bit integer

instructions. It does not support multiplication and division. If more functionality is needed,

extra extensions can be added on top of the base ISA. The existing list of extensions includes

RV64I (64 bit instruction subset), RV32M (32-bit multiplication instructions), RV64M (64-

bit multiplication and division instructions to RV32M), and RV32F/RV64F (includes floating

point instructions). The base is required for all RISC-V implementations, but each of the

extensions are optional. This allows each implementation to be customizable and small, using

only the extensions that are needed. These features made the RISC-V ISA desirable for our

research.

3.2 Data�ow sub-ISA

Creating an extension in RISC-V is a simple task. The designers left sections of the opcode

space empty so new instructions can be inserted. Table 3.1 lists each instruction in the dataflow

extension. It also shows the different fields for each instruction. Because dataflow instructions

are radically different from their control flow counterpart, we can not reuse any of the in-

structions from the base ISA. We added dataflow versions of add, addi, sub, branch, multiply,

etc. The next question is how does the hardware know to execute the instructions through a

dataflow or von Neumann process? We created two different modes of operation, and added a

control register that tells the microarchitecture how to behave. This is the only register added

to the ISA, as the dataflow model does not read or write to registers. On startup, the archi-

tecture begins executing in control flow mode. In continues until it reaches a special switch

instruction. The CPU will immediate switch to dataflow mode, and begin executing instruc-

14



tions in the dataflow manner described above. Communication is handled one of two ways.

First, because the two models share memory, loading and storing data directly to memory is

a simple way to communicate. This is used when large data structures are needed. The sec-

ond way is through the use of special instructions that pass data between the two models (i.e.

translate a register value into a data token, or write a token back into a register). The "tok"

instruction is used by the Von Neumann pipeline to generate a data token from the value in a

specified register.

Despite these theoretical advantages, dataflow architectures have yet to surpass state-of-the-

art OoO processors. Some of the reasons include lack of compiler support, the difficulty of

implementing speculation in dataflow architectures, and the fact that OoO cores are very good

when running regular applications. Instead of trying to solve all of these problems and surpass

OoO for all applications, we have extended the RISC-V instruction with a subset of dataflow

instructions. The reason being that an architecture built from this ISA would be capable of

executing both Von Neumann and dataflow programs with reduced overhead.

It is possible to improve performance by creating a hybrid integrated with multiple types

of CPU models. This technique is called specialization; it comes from the recognition that

one architecture cannot optimally handle all types of program behavior. Having specialized

subsets would let us target different architectures for different application requirements.

3.3 RISC-V Data�ow Extension

Our ISA defines two modes of operation. In the standard mode, instructions are fetched and

executed using the standard ISA. In the dataflow mode, instructions are executed as part of a

dataflow graph. A switch instruction was added to allow for easy switching between the OoO

execution and the explicit dataflow modes. Switching modes changes the driving force behind

how instructions are fetched: the PC for the OoO and explicit pointers for the dataflow. Each

destination also has a left/right bit, which distinguishes between the left and right operand for

the instruction. This is important because some of the instructions, such as subtraction, require

the ability to distinguish between left and right operands.
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Data�ow Instruction Format Dataflow instructions take one of the forms in Figure 3.1.

The second form replaces two of the destination operands with an immediate operand.

Figure 3.1: Dataflow Instruction Formats

Fan-out One of the efficiency of Von Neumann architecture is that once an instruction

writes to a register, the result can be read from the register by multiple dependent instructions.

With dataflow, however, the data must be sent to each dependent instruction separately. This

is a problem because each destination address needs to be encoded directly into the machine

code. Each instruction is 32 bits, which limits the number of destinations we can encode.

Fan-out describes the number of destination instructions. Many previous dataflow ISAs use

a fan-out of two. However, we found that this produces serious performance bottlenecks.

Figure 3.2 shows the difference between a fan-out of two and three. A smaller fan-out limits

the number of dependencies. In order for data to be sent to an arbitrary number of destination

instructions, we use copy instructions. These instructions do not perform any operation; they

simply pass on the data to more dependent instructions. By chaining a sequence of copy

instructions, we can create as many copies as needed–but this affects performance.

Figure 3.2: Fan-out defines the max number of output arcs.

This makes the fan-out size an important factor. Figure 3.3 gives an example of an instruc-

tion with 5 output arcs. If each instruction has a fan-out of two, three copy instructions need to

be inserted into the program. Each copy forms a dependency chain, so they cannot be executed

in parallel. Each one has to wait for the previous copy to execute.

There is a trade off between the fan-out and the size of the machine instruction. We can
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not have an infinite number of destination, because each destination has to be encoded into

the instruction binary. A fan-out of three reduces the number of copy instructions and is a

reasonable number for an instruction size of 32-bits.

Figure 3.3: Increasing the fan-out

Monadic vs Dyadic Instructions For simplicity, we limit the number of operands for

each instruction to either one or two. Monadic instructions require only one operand to fire.

Dyadic instructions have two operands. Having instructions with more than three inputs would

complicate the microarchitecture (described in the next section).

Data�ow Immediate Format While there are three slots for dependent addresses, two

of the slots can be replaced with an immediate field. This transforms an instruction into a

Monadic instruction, but lowers the fan-out to one and increases the number of copy instruc-

tions.

Data�ow Control Instructions An important question in any dataflow architecture is

how to handle conditional execution, Specifically branch instructions. Branch instructions use

conditionals to control the flow of the program. In Von Neumann architecture, this is done

by modifying the PC. The dataflow counterpart works by having conditional execution paths.

Standard dataflow instructions have multiple output arcs. Dataflow has two conditional output
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arcs as shown in Figure 3.4. If the condition is true, then the input data will be sent along the

left path. When the condition is false, the right arc is chosen.

Figure 3.4: Branch instructions send data down either one path or the other depending on a
boolean.

Instruction List The following table shows all of the instructions in our dataflow extension.

Table 3.1: Dataflow Extension

Operation Addressing Mode Description

df_add dataflow signed addition (+)
df_addi df_immediate Addition with immediate operand
df_call dataflow Function Call
df_ret dataflow Return from function
df_sl df_immediate shift left by immediate value

df_mult dataflow Signed multiplication (*)
df_sub dataflow Subtraction (-)

df_cmpLT dataflow Compare less than (<)
df_cmpEq dataflow Compare equal to (==)
df_cmpGT dataflow Compare greater than (>)

df_and dataflow bit-wise AND
df_not dataflow bit-wise NOT
df_cpy dataflow cpy input to all destinations
df_lw dataflow load word from memory
df_lwi dataflow load word from memory with immediate offset
df_br control branch between two possible destination arcs

df_switch control switch modes of operation
df_tok control create a data token using a value from a register
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4 Data�ow Microarchitecture

This chapter describes the different stages and features of our dataflow implementation. We

start with a discussion of each stage of the pipeline and how they differ from similar stages in

Von Neumann architectures. The chapter also discusses the different features of the pipeline

and how the dataflow ISA affects the structure of the microarchitecture. Finally it mentions

the advantages and the bottlenecks of dataflow microarchitecture compared to Von Neumann

microarchitectures.

4.1 Data Tokens

Conceptually, dataflow instructions send data to their dependent instructions when executed.

However, typically the microarchitecture does not look anything like this. In hardware, data

is represented in the form of data tokens, shown in Figure 4.1. When an instruction executes,

one or more result tokens are generated. The address of the destination instruction is added to

the token so the processor knows where to send the data.

Figure 4.1: Data token

4.2 Data�ow Pipeline

The width of the pipeline is 8, and can execute up to 8 instructions every cycle. This parallels

the superscalar architectures found in Von Neumann models. A simplified view of the dataflow
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pipeline is shown in Figure 4.2. The decode, match, and execute stages each takes a minimum

of one cycle. The fetch stage takes longer because the memory model we are using requires

3 cycles to access the first level cache. So each instruction takes a minimum of 6 cycles to

be processed by the pipeline. One exception is the copy instruction, which is executed in the

match unit. Copy instructions do not need a functional unit to execute, so they are not sent to

the execute stage. This optimization saves a couple of cycles for each copy instruction.

Flow of data between stages Figure 4.2 shows how the different stages interact. When

an instruction executes, the execute stage sends the resulting tokens back to the match unit.

This is done to check if the instruction has been fetched already. If it has, then the instruction

continues at this stage of the pipeline. If not, then the token is sent back to the token queue at

the beginning of the pipeline.

Figure 4.2: Pipeline diagram showing the connection between pipeline stages

Fetch and Decode The driving force of instruction execution is the token queue, which

is a FIFO buffer which stores all of the data that needs to be processed next. Each cycle, the

front tokens of the queue are popped. As mentioned in a previous section, each token contains

a pointer to an instruction. The fetch unit sends this address to the cache port to fetch the

corresponding instruction. Once fetched, the instruction and the token are sent together to the

decode stage.

While the width of the pipeline is four, it is inefficient to restrict the fetch stage to this limit.

The rest of the pipeline processes instructions faster than the fetch unit can keep up with. This

severely limits performance, and causes sections of the pipeline to remain idle for significant

periods of time. To alleviate this problem, we increased the fetch width to 12 and added a

buffer between the fetch and decode stages. Up to 12 instructions can be fetched in each cycle.

Everything that cannot be immediately processed by the decode stage waits in the buffer. This
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helps smooth out the gaps in the pipeline execution and keep the pipeline full.

The decode stage does not differ significantly from its Von Neumann counterpart. It extracts

the required information from the instruction. The biggest difference is that there is no register

file to read from. The operands instead come from the data tokens. The following information

is determined at this stage: destination addresses, the number of operands, immediate values,

etc.

Figure 4.3: Fetch width is increased to hide fetch latency

Next, we handled another problem that was affecting performance: token shortage. Some

programs do not have enough instruction level parallelism to keep the pipeline full. Sometimes

the data is not being generated fast enough, so there are not enough tokens in the token queue

to fetch instructions every cycle. This can happen with code that has a lot of data dependencies

between instructions and not enough instruction level parallelism.

Figure 4.4: Dataflow graph and pipeline diagrams with and without prefetching

An example is given in Figure 4.4. Figure 4.4.A is a dataflow graph that shows a small

section of a program with three addi instructions: addi0, addi1, and addi2. The important

feature of this code is that the instructions must be executed in a sequence because there is

a data dependency between each subsequent instruction. On Von Neumann hardware, this

code would be executed efficiently, because instructions are fetched in program order. The
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processor automatically fetches instructions in a sequence.

Figure 4.4.B is a pipeline diagram. It shows how the program would be executed on our

pipeline, and reveals a problem with the initial dataflow implementation. Each column is a

different cycle, so at each point in time we can see what stage an instruction is in. We can

also see that each instruction takes 6 cycles to execute. In the first cycle, the pipeline begins

fetching the first instruction. Even though the fetch width is 12, as mentioned above, only

addi0 is fetched because the data has not been generated for the second or third instruction.

This version of the pipeline does not know what the next instruction is going to be until the

tokens are generated. It takes 6 cycles to execute each instruction, and each instruction waits

until its parent instruction has been executed before entering the pipeline. Therefore, it takes

18 cycles to execute this program.

To alleviate this problem, we integrated a next-instruction prefetcher to the pipeline. When

a token is processed, and the instruction is fetched, the prefetcher automatically fetches the

next instructions in memory. If a fetch request is made for address A, then the prefetcher also

fetches the instructions at address A+4, A+8,A+12, etc. Essentially, the prefetcher guesses

which instructions are going to be needed next in an attempt to hide the fetch latency between

dependent instructions.

Prefetched instructions are speculatively fetched, decoded, and placed into a prefetch buffer

in the match unit. When a token is generated, it is sent to the match unit to see if the instruction

has already been fetched. If it has, then we can send the instruction to the next stage without

repeating the fetch and decode stages.

Figure 4.4.C shows the pipeline diagram with prefetching enabled. It takes about half the

number of cycles (10) to execute the program because addi1 and addi2 are fetched and decoded

at the same time as addi0, hiding the latency. Instructions that are prefetched incorrectly are

simply discarded.

Match Unit The matching unit is used to detect which instructions are available for exe-

cution. This module is significantly different from any other in Von Neumann architecture.

Out-of-order cores utilize hardware to analyze dependencies between instructions and detect
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instructions that are ready. Instead of a register file, the matching unit has a small cache of

memory for storing data tokens, called matching space (also called token store). When both

of an instruction’s operand tokens have been generated and sent to the matching space, the

instruction is "fired" and sent to the next stage to be executed.

The match space is implemented as a fully associative cache using the token’s tag as the key.

The size of the cache is set to 100K so we can test large benchmarks. A detailed analysis needs

to be done to find the optimal size. There are two scenarios that result in an instruction being

executed. If an instruction only has a single operand, then it bypasses the match unit and is

sent directly to the execute stage. If the instruction requires two operands, then the first token

is stored in the cache when it arrives. At some time in the future, the second operand token is

generated and a match is detected because both tokens have the same tag (and are mapped to

the same spot in the cache). The first token is removed from the cache and both tokens are sent

to the next stage for execution. This is why the number of operands is limited to two, since

more operands would complicate the matching process.

Figure 4.5 shows the internals of the stage. It is composed of a cache for storing and match-

ing tokens, and a buffer for temporarily storing prefetched instructions. The only thing stored

in the match unit is the data and the destination address. The tag is used to index the cache.

Figure 4.5: Match stage with token cache and fetch buffer

Execute The execute stage is largely similar to ones found in Von Neumann architecture.

There are a number of functional units for issuing instructions in parallel. Each functional unit

is pipelined, allowing them to work on multiple instructions.
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An instruction arrives to the execute stage with both of its operands (because a match has

already been determined). The instruction is immediately issued to one of the available func-

tional units. The only deviation from Von Neumann architecture is during the write back

process. The executed instruction produces between 1 and 3 result tokens. Instead of writing

back to a register file, these tokens are sent back to the match stage. The circular pipeline is

then repeated with the result tokens.

The issue width of the execute stage is four, so four instructions can be issued to functional

units simultaneously. Similarly, four tokens can be produced every cycle.

4.3 Hybrid Microarchitecture

The hybrid CPU is shown in Figure 4.6. The out-of-order core and the dataflow core com-

municate either through direct communication (message passing) or through a shared memory

system. The shared memory is used when large amounts of data needs to be communicated.

For example, if an array is needed, the OoO model will initialize the array and then pass the

address of the array to the dataflow model with direct communication. Currently, only one

core is active at one time. While one core is executing, the other is idle, waiting for the active

core to hand over control. It could be possible in the future to explore parallel execution.

Figure 4.6: Hybrid Dataflow/Von Neumann
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5 Methodology

This section describes the experimental and evaluation methodology to evaluate the proposed

dataflow sub-ISA. We built a set of microbenchmarks to evaluate the sub-ISA and its microar-

chitecure implementation. Microbenchmarks are used to create common coding structures

in order to evaluate the different cases where the dataflow ISA is superior to Von Neumann.

This chapter also discusses the simulation models and their features, the process of compiling

benchmarks using the dataflow sub-ISA, and finally the benchmark evaluation process.

5.1 The Gem5 Simulation

The gem5 simulator [21] is a computer architecture and microarchitecture simulator that is

extensively used in research. It is a popular simulator because of its flexibility and because

it supports many different ISAs (x86, arm, alpha, mips, RISC-V) and CPU models (atomic,

in-order, out-of-order) [22] as shown in Figure 5.1. The Atomic simple model is a single-cycle

CPU that is used for functional simulations. This model is used to warm-up the cache and

branch predictors and to fast-forward to specific regions of interest. The gem5 simulator also

contains an out-of-order CPU model called O3. The O3 model is often used to simulate the

state-of-the-art processors in the gem5 simulator. We added a dataflow model to the gem5 sim-

ulator to test our new sub-ISA. Additionally, we developed a framework for explicit dataflow

execution in gem5, which previously could only simulate Von Neumann architecture.

The gem5 simulator is flexible because of its polymorphic design. Different layers of ab-

straction are used to separate the ISA from the CPU model. Each CPU is an abstract model

that makes no assumption about the underlying ISA. This allows different ISAs to be swapped
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without changing the CPU model.

Figure 5.1: The gem5 simulator

However, gem5 still assumes Von Neumann architecture. Pure dataflow execution is not just

a matter of created an additional CPU model, because even though the CPU models and ISAs

are abstractions, they still make certain assumptions based on features that are common to all

Von Neumann architectures. The two biggest challenges to dataflow execution:

• Built into each CPU model is the assumption of fetching driven by a PC.

• Built into the ISA structure is the concept of source and destination registers.

Rather than starting from scratch, our pipeline is a construct of different pipeline stages and

constructions taken from existing gem5 models. This sometimes causes problems because it is

based on Von Neumann assumptions. We analyze the pipeline to verify that the it is executing

in a typical dataflow fashion. One example are the functional units. They were stalling the

pipline unnecessarily because they were built in gem5 to detect dependencies between instruc-

tions and stall when there is a conflict. This is necessary for Von Neumann execution, but not

for dataflow. We removed this problem from the simulator. A similar problem was detected

with the Load/Store queue, but this problem is not yet solved due to the size and complexity

of gem5.

The PC problem was fixed by adding a token queue to the fetch stage. The PC still exists,

but rather than incrementing the PC, the address is taken directly from incoming tokens. Each

cycle, a token is taken from the queue and the destination address is placed into the PC before

a fetch request is made. The cache returns the instruction at that address. This creates dataflow

fetching with very few modifications to the simulator.
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The register file problem was overcome with a similar method. The gem5 simulator defines

an ISA through switch statements. This statement defines the instruction behavior for each

opcode, including source and operand registers. Our challenge is how to use this format to

simulate a design without a register file? We solved this problem by creating virtual registers

for dataflow instructions. We added 6 registers: operand0, operand1, destination0, destina-

tion1, destination2, and result. These registers are used to temporary store data before being

transformed into data tokens. Again, a typical dataflow instruction executes by taking data

from two operand tokens and producing a result token. When an instruction is executed, the

required operand data is loaded in the two operand registers. The instruction executes and

places the result and destinations into the corresponding registers. The simulator then uses

these registers to create up to three data tokens.

5.2 Pipeline Viewer

Another useful tools is the pipeline viewer. Just looking at the output of a program is not very

useful for debugging or analysis. A pipeline diagram tells us when an instruction enters the

pipeline and the number of cycles that it stays in each stage. the gem5 simulator contains a tool

that builds a pipeline diagram, but it only supports the o3 model. As such we implemented a

tool that allows us to view the dataflow pipeline diagram. The pipeline diagram is constructed

using debug print statements output from the simulator. Whenever an instruction enters a

stage in the pipeline, this event is logged. The pipeline viewer reads the log file and constructs

a visual representation of the pipeline. Figure 5.2 shows an example of the pipeline viewer

output. It displays the program counter, operation, and pipeline diagram for each instruction.

10324 _0 df_cpy | F | F | F | F | D | D |M| − |
10328 _0 df_cpy | F | F | F | F | F | D | D |M| − |
1032 c_0 df_cpy | F | F | F | F | F | D | D |M| − |

Figure 5.2: Example PipeView output
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5.3 Compilation Process

One challenge of computer architecture research is creating a compiler. Compiling for dataflow

machines is especially challenging because traditional software assumes a Von Neumann CPU

model. One option is to use special programming languages that are more suitable for dataflow

architectures. The Manchester [11] machine was programmed using the ID programming lan-

guage. This is a single-assignment language, meaning that each variable is generated once

and cannot be modified. This restriction makes it easier to see true data dependencies between

instructions, making it easier to compile for a dataflow architecture. We wish to balance the

ease of compiling ID code while still being able to compile normal c code. Thankfully, tools

exits which makes this practical. We use LLVM [23], a state-of-the-art compilation toolchain.

LLVM compiles C/C++ code down to an intermediate representation (IR). This language is

ISA independent. While it assumes the use of some registers, each register is only initialized

once, and never modified. LLVM IR is a single-assignment assembly language [23]. Essen-

tially, LLVM provides a dataflow analysis of each instruction in a program, and our compiler

uses this dataflow analysis to construct a dataflow graph.

Figure 5.3: The dataflow compilation process

We created an LLVM module that creates the dataflow graph from the IR code. Each instruc-

tion in the IR code is converted into a dataflow instruction. The data dependencies between

instructions are detected (by LLVM) and converted into explicit pointers. Once the graph has

been formed, the next step is to generate the executable. Because there is no official RISC-

V backend for LLVM, we can not use it for creating the executable. Instead, we added the
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dataflow instructions to the RISC-V GCC assembler. We use inline assembly to add the out-

put of our LLVM module directly to the source code. The RISC-V GCC then compiles the

program, which is a mix of Von Neumann and dataflow instructions, into a single executable.

However, our compiler is limited because it does not correctly find all of the data depen-

dencies. It relies on LLVM to extract all of the data dependencies and translate them into

a dataflow graph. The compiler works for simple programs, but it fails to extract all of the

dependencies accross nested loop iterations. LLVM does provide loop dependence analysis,

but we have not correctly integrated this into the graph generator. To compensate for this, we

correct the missing dependencies by hand.

5.4 Benchmark Selection

Because the compiler has yet to be completed, and dataflow graphs must be manually com-

pleted by hand, this work focuses on writing microbenchmarks that investigate specific prop-

erties of the dataflow architecture, determining its improvements and bottlenecks. This sec-

tion describes the different programs, the reasons for choosing them, and the overall testing

methodology. The next chapter reveals the results of these benchmarks and discusses the im-

provements and bottlenecks.

The difficulties of computer architecture research include the design of not only a simulation

model, discussed in the previous section, but also the design or extension of a compiler that

supports the new architecture we have designed. The problem is compounded because we are

compiling standard C/C++ code to a non-traditional ISA.

Without a complete compiler, we focused on exposing the benefits and problems with the

ISA through the implementation of microbenchmarks. Each microbenchmark exposes a dif-

ferent characteristic or flaw with our design and the dataflow model in general. Three mi-

crobenchmarks were implemented: sum array, indirect sum, and matrix multiplication. Ap-

pendix C shows the source code for the different microbenchmarks.

The sum array represents a simple for-loop implementation. Loops are ubiquitous in pro-

gramming, so it is important to see how the dataflow version implements looping. This
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program also represents a regular application–an application that accesses memory in a pre-

dictable manner.

Indirect array is similar in structure to the sum array, but does not access the array sequen-

tially. Instead it accesses random elements of the array. Applications with irregular memory

access patterns, also known as irregular applications, make it difficult or impossible to predict

what location in memory a program is going to access next. We are interested to see if dataflow

can outperform Von Neumann for this type of application.

Matrix Multiplication was chosen because it has more complex looping structure. Multi-

nested loops are common in programming, so it is important to know ow well dataflow per-

forms when executing complex control structures. This can give us insights on how to im-

porove the dataflow implementation in the future.

5.5 Benchmark Evaluation

The microbenchmarks were analyzed using the following procedure:

1. Compile for both dataflow and Von Neumann

2. Set checkpoint at begging of region of interest

3. Run both versions of the program separately in Gem5

4. Verify function equivalence

5. Use gem5 statistical output to measure speedup and reasons for speedup

The gem5 simulator is complex and it would take a very long time to simulate an entire appli-

cation, which makes it impractical to simulate an entire benchmarks with large input arrays.

Instead, a region of interest is determined and a checkpoint is created at the beginning of the

region. Each region is compiled twice; first using instructions from the standard set, and again

using the dataflow sub-ISA. Both versions of the code are run separately for comparison.

First, we compare the functional output of the simulator to see if both versions are function-

ally equivalent. This is done by running the program with various different input combinations.
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If the dataflow version produces the same results as the Von Neumann, we conclude that they

are functionally equivalent.

Next, we evaluate the performance of the two experiments. The gem5 simulator outputs

numerous statistics. The following stats are used in this work:

• sim inst: total number of instructions simulated

• cycles: total number of cycles simulated

• dcache miss rate: percentage of memory instructions that resulted in a L1 cache miss

• L2 cache miss rate: percentage of memory instructions that resulted in a L2 cache miss

Because both the dataflow and O3 models use the same clock frequency, the number of

cycles is used to calculate the execution time and thus the speedup or slowdown over the O3

model. The other statistics are used to determine why there is a difference in performance

between the two models. The number of simulated instructions is used to detect if there are

any overheads associated with the dataflow sub-ISA. Finally, the cache miss rate for L1 and L2

are used to determine if the memory access patterns are different between the O3 and dataflow

architectures.

Next we draw conclusions about if we should use the dataflow sub-ISA for the given case.

The question arises when to use dataflow instructions, and when to use instructions from the

base ISA. One scenario is when dataflow it is difficult to compile due to the limitations of the

compiler. If the program makes a call to a library compiled in the Von Neumann ISA, then

we would not be able to use dataflow at this time. One option in the future is to recompile the

entire library into the dataflow ISA. There are two choices after detecting bottlenecks in the

sub-ISA: optimize the dataflow sub-ISA or hardware, or use the Von Neumann instructions.
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6 Results

This chapter is split into three sections–each describing the results one of the microbenchmarks

used in this work. The microbenchmarks are analyzed using the statistical output from gem5.

Each microbenchmark is run on the dataflow model and gem5’s out-of-order model, O3. The

statistics used for analysis are normalized to the O3 value (so the O3 value is always 1). The

source code for each microbechmark is attached to appendix C.

6.1 Case 1: Simple Loops and Regular Memory

Access Patterns

Our first microbenchmark is a simple program that finds the sum of an array of 10 million inte-

gers. A single for-loop iterates over each element in the array, making the code relatively sim-

ple and, because the array is accessed sequentially, this is an example of a regular application.

Because OoO processors are efficient at executing regular programs, a significant speedup is

not expected. We calculate a speedup of approximately 1 (1.01x), assuming approximately the

same number of instructions and similar cache statistics.

Figure 6.1 shows four statistics output from the gem5 simulator. While there are many more

statistics available, these four are the most relevant for this analysis: number of instructions

simulated, number of cycles the program took to execute, and the data cache (dcache) miss

rate for L1 and L2. The left bar is the O3 result, and the right shows the same statistic when

run on the dataflow model. For easy comparison, each value is normalized to the O3 result.

A 9% speedup over the OoO processor is detected. The cache miss rate helps us understand

why–there are about 4x more cache misses on the OoO processor. We attribute this to the
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fact that dataflow and OoO have different memory access patterns. In this case, the dataflow

accesses the cache in a way that has better locality than the OoO. Therefore, the dataflow

performance exceeded expectations.

Figure 6.1: Simulated instructions, number of cycles, and cache miss rate for the sum array
program. Each value is normalized to the O3 value.

Here a situation where dataflow can provide similar performance to OoO: simple control

structure and predictable data accesses. While it can even improve performance under some

circumstances, we do not expect this to be true for all regular applications.

6.2 Case 2: Irregular Application

The second case is similar to the previous except it finds the sum of an indirect array, as shown

in the C-code below. Rather than accessing the array sequentially, the index is loaded from

a second array, which was created randomly. Essentially, this is the same program above but

access the array in a random order. Irregular applications have memory access patterns that

make it difficult or impossible to predict where the next memory access is going to be, resulting

in a high number of data cache misses.

Dataflow has the potential to improve the performance of irregular applications. Out-of-

order are able to handle regular applications but have trouble with irregular programs because

of the limited window of instructions. Irregular applications cause the pipeline to stall if a large

number of load instructions fill the ROB or the LSQ. The dataflow model, on the other hand,

is less likely to stall the pipeline because it has a bigger window of instructions. Therefore, the

dataflow sub-ISA should be able to tolerate irregular applications better than the O3 model.
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However, the performance did not match expectations. Figure 6.2 shows the same metrics

used in the sum array analysis. Looking at the number of cycles, the dataflow version takes

about 2.4x longer to execute than the O3 model. What is unusual is that the slowdown is not

consistent with the other statistics. When the program was initially run, the number of dynamic

instructions was much higher for the dataflow program. We attributed this to be the reason for

the slowdown. The next step was to perform loop unrolling to increase the basic block size.

After optimization, the number of simulated instructions was lowered significantly, and now

it is approximately the same as the OoO model, but the performance did not improve. Addi-

tionally, the two programs have almost identical dcache and L2 cache miss rates. The other

statistics from the simulator show the same–little difference between the OoO and dataflow,

yet there is a significant slowdown.

Figure 6.2: Simulated instructions, number of cycles, and cache miss rate for the indirect array
program.

The problem was detected using our pipeline viewer and the GDB debugger to view the

behavior of the pipeline. The dataflow pipeline is stalling unnecessarily. We attribute this to

a flaw in the simulator caused by the contention between Von Neumann and dataflow execu-

tion. The load-store queue (LSQ) temporally buffers all memory instructions before they are

executed. The size is set to 72 entries, but GDB reveals that the LSQ stalling the pipeline after

only two load instructions. The problem derives from the fact that memory disambiguation is

handled differently between the dataflow and Von Neumann ISAs. The LSQ must be modified

so it can be adapted to dataflow execution. This a pitfall when trying to adapt a Von Neumann

simulator to dataflow.
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This problem was not observed in the previous case (sum array) because, being an irregular

application, there are significantly more cache misses for the indirect sum, making the problem

move noticeable. By our estimation, from analyzing the cache miss rate, program structure,

and actual size of the LSQ, there should be a 1.2x speedup.

6.3 Case 3: Multi-Nested Loop

Our final case, matrix multiplication, is a regular application but uses three nested loops. Based

on previous dataflow work, it is expected that this benchmark will have worse performance due

to the control flow overhead of converting complex looping structures to a dataflow graph.

Figure 6.3 shows a 1.3x slowdown for this program. While the body of the loop is similar in

structure to Von Neumann, there is a significant increase in the number of control instructions

(even after the hand optimization phase). There are about 1.29x more instructions for the

dataflow version which correlates to the 1.3x slowdown. The overhead from excess control

instructions is the cause the slowdown. The figure also shows significantly fewer dataflow

cache misses, but because the L1 dcache miss rate is only 0.2% for the O3 model, this does

not provide significant speedup. This case indicates that complex control structures should be

avoided for dataflow execution.

Figure 6.3: Simulated instructions, number of cycles, and cache miss rate for the matrix mul-
tiplication program.

There are two possible conclusions to draw: delegate this type of control structure to Von

Neumann instructions, or find ways to optimize the code/hardware to reduce the control flow

bottleneck.
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7 Conclusion

This work implemented and evaluated a dataflow sub-ISA extension to the RISC-V ISA.

Some cases were detected where dataflow execution provides better performance than the

out-of-order (OoO) execution model, and other cases show a slowdown. As such, a hybrid

dataflow/Von Neumann model that combines the benefits of both architectures is preferred.

By extending a traditional Von Neumann ISA with specialized dataflow instructions, our mi-

croarchitecture model can improve performance of applications and even reduce their energy

consumptino because the dataflow model is more energy efficient compared to OoO.

From our analysis, the dataflow sub-ISA should be used when the number of control in-

structions is low, or can be optimized away, the dataflow execution produces memory access

patterns that result in lower cache miss rates, or the program is highly irregular. Conversely,

the OoO architecture is better for regular applications that have complex control structures,

such as multi-nested loops, and regular memory access patterns like the matrix multiplication.

A limitation of this work is the compiler, which limits our methodology and the scope of

the research:

1. The benchmarks are limited to microbenchmarks. It takes too long to manually correct

all of the mistakes for a program with hundreds or thousands of lines of code.

2. Without the optimization techniques found in most compilers, the dataflow code is less

optimal than a Von Neumann version. We are forced to optimize the dataflow graphs by

hand. This is difficult and time consuming for large benchmarks.

3. An improved compiler would allow for expiements that test different partitioning be-

tween normal RISC-V and the dataflow sub-ISA. This would make it easier to find the
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regions where dataflow would normally be better. This research compiles a single region

per program, and measured the speedup of that region alone.

7.1 Future Work

Below is a list of things that can be improved or added to the dataflow model that we plan to

add in the future.

• We will explore options to remove the control overhead discussed above.

• The capabilities of the gem5 simulator need to be extended to make it easier to explore

different models of computation like dataflow. This will fix problems with the simulator,

including the LSQ issue discussed in the results section.

• RTL implementation for more accurate results.

• Experiment with different dataflow microarchitecture features.

• Measuring energy efficiency is outside the scope of this thesis. By removing complex

hardware used by OoO processors–ROB, register renaming, etc.– dataflow processors

have the potential to lower energy cost, while still providing improved ILP. Future work

will compare energy consumption of the sub-ISA with the OoO model.

• Finally, we will extend the capabilities of the compiler, which will enable the execution

of larger programs and experiments with different partitioning schemes between the

dataflow and Von Neumann instructions.

• Rather than statically choosing the dataflow regions, A hybrid architecture capable of

dynamically switching between the dataflow and Von Neumann ISAs could greatly im-

prove performance.
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Appendix A The Gem5 Simulator

The following are snapshots that showcase some of our modifications to the gem5 simulator.

i f ( i n s t −> s t a t i c I n s t −>getName ( ) == " df_cpy " ) / / i f t h i s i s a copy

i n s t r u c t i o n , e x e c u t e i t h e r e

{

DPRINTF ( Match , " found a cpy i n s t r u c t i o n , e x e c u t i n g i t h e r e \ n " ) ;

DPRINTF ( Match , " s e n d i n g new i n s t r u c t i o n 0x%x : %s , b i n a r y =0x%x %l x \

n " , pc , i n s t −> s t a t i c I n s t −>d i s a s s e m b l e ( pc ) , i n s t −> s t a t i c I n s t −>machIns t ,

t . c o n t e x t ) ;

e x e c u t e _ c o p y ( i n s t , t ) ;

cpu . i n s t _ c o u n t . t o t a l ++;

cpu . i n s t _ c o u n t . copy ++;

}

e l s e i f ( i s _ m o n a d i c ) / / i f i n s t r u c t i o n on ly has one operand , send t o

e x e c u t e s t a g e

{

op0 = t . d a t a ;

op1 = 0 ;

DPRINTF ( Match , " 0x%l x i s monadic , s k i p p i n g match u n i t : %l u \ n " , t .

d e s t i n a t i o n , t . d a t a ) ;

f i r e d = t r u e ;

}

e l s e i f ( lookup ( c o n t e x t _ t a g ) == f a l s e ) / / i f o t h e r ope rand i s n o t i n

match s p a c e

{

DPRINTF ( Match , " no match \ n " ) ;
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/ / s t o r e t o k e n i n match s p a c e

match_space [ c o n t e x t _ t a g ] = d a t a _ i n ;

i f ( max_match_s ize_ < match_space . s i z e ( ) )

{

max_match_s ize_ = match_space . s i z e ( ) ;

max_match_s ize = max_match_s ize_ ;

}

}

e l s e

{

DPRINTF ( Match , " match : %d , %d \ n " , t . da t a , ma tch_space [ c o n t e x t _ t a g

] . t o k e n . d a t a ) ;

t 1 = match_space [ c o n t e x t _ t a g ] . t o k e n ;

f i r e d = t r u e ;

ma tch_space . e r a s e ( c o n t e x t _ t a g ) ; / / remove from match

i f ( t . l e f t _ r i g h t == ’L ’ )

{

op0 = t . d a t a ;

op1 = t 1 . d a t a ;

}

e l s e

{

op0 = t 1 . d a t a ;

op1 = t . d a t a ;

}

}

Listing 1: Testing to see if an instruction is ready to be executed ("fired"). Copy instructions

are executed immediately instead of being sent to the execute stage.

i f ( ! t oken_queue . empty ( ) )

{

DataToken t = token_queue . f r o n t ( ) ;

t oken_queue . pop ( ) ;

39



Addr pc = t . d e s t i n a t i o n ;

i f ( pc )

{

DPRINTF ( Fetch , " s e n d i n g new f e t c h r e q u e s t f o r pc 0x%x wi th c o n t e x t

%x \ n " , pc , t . c o n t e x t ) ;

f e t c h L i n e ( pc , t , f a l s e ) ;

i n _ f l i g h t _ f e t c h _ r e q u e s t s ++;

p r e f e t c h _ p c = pc ; / / s t a r t p r e f e t c h i n g i n s t r u c t i o n s a t t h i s add r

}

}

Listing 2: The dataflow Fetch stage grabs a token from the queue, and fetches the

corresponding instruction.

vo id

BaseHybr id : : Toggle ( )

{

s w i t c h ( d f _ s w i t c h )

{

c a s e runningO3 :

d f _ s w i t c h = r u n n i n g D a t a f l o w ;

df_cpu−> s t a r t ( ) ;

DPRINTF ( P r o f i l e , " was i n o3 f o r %l u c y c l e s \ n " , ( c u r C y c l e ( ) −

c y c l e _ s t a r t ) ) ;

a s s e r t ( df_cpu−>p i p e l i n e −>match . ma tch_space . empty ( ) ) ;

DPRINTF ( Hybrid , " s i z e o f match s p a c e : %d \ n " , df_cpu−>p i p e l i n e

−>match . ma tch_space . empty ( ) ) ;

b r e a k ;

c a s e r u n n i n g D a t a f l o w :

d f _ s w i t c h = runningO3 ;

DPRINTF ( P r o f i l e , " was i n d a t a f l o w f o r %l u c y c l e s \ n " , ( c u r C y c l e

( ) − c y c l e _ s t a r t ) ) ;

} ;

c y c l e _ s t a r t = c u r C y c l e ( ) ;
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}

Listing 3: A simple switching mechanism for switching between OoO and dataflow execution.

The tick function is called every clock cycle.

vo id

P i p e l i n e : : t i c k ( )

{

cpu . s t a t s . c y c l e _ c o u n t ++;

e x e c u t e . e v a l u a t e ( ) ;

match . e v a l u a t e ( ) ;

decode . e v a l u a t e ( ) ;

f e t c h . e v a l u a t e ( ) ;

Listing 4: Snapshot from pipeline.cc which calls each of the pipeline stages every cycle.

0x2 : decode OPCODE{

f o r m a t ROp {

0x00 : d f_add ( { {

d f _ d i r = DIR0 | ( DIR1 << 1) | ( DIR2 << 2) ;

d f _ d e s t 0 = ( DESTINATION0 > 0 x3f ) ? ( DESTINATION0 | 0

x f f f f f f f f f f f f f f c 0 ) : DESTINATION0 ;

d f _ d e s t 0 = ( d f _ d e s t 0 == 0) ? 0 : 4∗ d f _ d e s t 0 + PC ;

i f ( ! IS_IMMEDIATE )

{

d f _ d e s t 1 = ( DESTINATION1 > 0 x3f ) ? ( DESTINATION1 | 0

x f f f f f f f f f f f f f f c 0 ) : DESTINATION1 ;

d f _ d e s t 1 = ( d f _ d e s t 1 == 0) ? 0 : 4∗ d f _ d e s t 1 + PC ;

d f _ d e s t 2 = ( DESTINATION2 > 0 x3f ) ? ( DESTINATION2 | 0

x f f f f f f f f f f f f f f c 0 ) : DESTINATION2 ;

d f _ d e s t 2 = ( d f _ d e s t 2 == 0) ? 0 : 4∗ d f _ d e s t 2 + PC ;

}

e l s e
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{

df_op1 = (DF_IMMEDIATE > 0 x 7 f f f ) ? (DF_IMMEDIATE | ~ ( ( u i n t 3 2 _ t )

0 x f f f f ) ) : ( u i n t 3 2 _ t )DF_IMMEDIATE ;

d f _ d e s t 1 = 0 ;

d f _ d e s t 2 = 0 ;

}

d f _ r e s u l t = df_op0 + df_op1 ;

} } ) ;

0x01 : d f _ c a l l ( { {

Listing 5: Gem5 ISA description for dataflow add instruction. It calculates the result and

destination address of the instruction. Each destination is cacluated by a sign-

extended offset from the address of the current instruction (PC).
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Appendix B LLVM

The following code is a section from our LLVM module that creates the dataflow graph. This

function adds a data edge between two instructions. What complicates the program is if the

case where the two instructions belong to different basic blocks. Then branch instructions

must be inserted in between.

vo id add_edges ( l lvm : : B a s i c B l o c k ∗bb , s t r i n g s r c _ i d , l lvm : : I n s t r u c t i o n ∗

d e s t i n a t i o n , s t r i n g d i r e c t i o n )

{

Block ∗b = f i n d _ b l o c k ( g e t I d (&∗bb ) ) ;

i f ( d e s t i n a t i o n −> g e t P a r e n t ( ) == bb )

b−>edges += s r c _ i d + "−>" + g e t I d ( d e s t i n a t i o n ) + d i r e c t i o n + " \ n " ;

e l s e i f ( l lvm : : B r a n c h I n s t ∗ br = l lvm : : dyn_cas t < l lvm : : B r a n c h I n s t >( bb−>

g e t T e r m i n a t o r ( ) ) )

{

/ / i n s e r t b r a nc h i n s t r u c t i o n

s t r i n g b r _ i d = g e t I d ( bb ) + " _ " + t o _ s t r i n g ( o u t p u t _ c o u n t ++) ;

b−> i n s t r u c t i o n s += b r _ i d + " : b r \ n " ;

l lvm : : B a s i c B l o c k ∗ f a l s e _ p a t h = br−>g e t S u c c e s s o r ( 0 ) ;

l lvm : : B a s i c B l o c k ∗ t r u e _ p a t h = NULL;

i f ( br−>ge tNumSuccessors ( ) > 1 ) t r u e _ p a t h = br−>g e t S u c c e s s o r ( 1 ) ;

/ / f a l s e p a t h

i f ( i s _ d e p e n d e n t ( f a l s e _ p a t h , d e s t i n a t i o n −> g e t P a r e n t ( ) ) )

{

/ / add edge from s r c t o b ra nc h

b−>edges += s r c _ i d + "−>" + b r _ i d + "R \ n " ;
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/ / add edge from compare t o b ra nc h

b−>edges += g e t I d ( br−>g e t C o n d i t i o n ( ) ) + "−>" + b r _ i d + "L \ n " ;

add_edges ( f a l s e _ p a t h , b r _ i d +" [ F ] " , d e s t i n a t i o n , d i r e c t i o n ) ;

}

/ / t r u e p a t h

i f ( i s _ d e p e n d e n t ( t r u e _ p a t h , d e s t i n a t i o n −> g e t P a r e n t ( ) ) )

{

/ / add edge from s r c t o b ra nc h

b−>edges += s r c _ i d + "−>" + b r _ i d + "R \ n " ;

/ / add edge from compare t o b ra nc h

b−>edges += g e t I d ( br−>g e t C o n d i t i o n ( ) ) + "−>" + b r _ i d + "L \ n " ;

add_edges ( t r u e _ p a t h , b r _ i d +" [ T ] " , d e s t i n a t i o n , d i r e c t i o n ) ;

}

}

}

Listing 1: This function adds data edges between dependent instructions in the dataflow graph.
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Appendix C Microbenchmark Source

Code

The following programs are the microbenchmarks used in this work.

# i n c l u d e < s t d i o . h>

# i n c l u d e < s t d l i b . h>

# i n c l u d e < a s s e r t . h>

u n s i g n e d s i z e = −1;

i n t sum ( i n t ∗ a r r a y )

{

i n t sum = 0 ;

f o r ( i n t i =0 ; i < s i z e ; i ++)

sum += a r r a y [ i ] ;

r e t u r n sum ;

}

i n t main ( i n t a rgc , c h a r ∗ a rgv [ ] )

{

s r a n d ( 2 0 ) ;

s i z e = a t o i ( a rgv [ 1 ] ) ;

i n t ∗ a r r a y = ma l l oc ( ( u n s i g n e d long ) s i z e ∗ s i z e o f ( i n t ) ) ;

a s s e r t ( a r r a y ) ;
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f o r ( i n t i =0 ; i < s i z e ; i ++)

{

a r r a y [ i ] = rand ( ) % 2000 ;

p r i n t f ( "%d : %d \ n " , i , a r r a y [ i ] ) ;

}

p r i n t f ( " sum of a r r a y = %d \ n " , sum ( a r r a y ) ) ;

}

Listing 1: Source code for sum array.

# i n c l u d e < s t d i o . h>

# i n c l u d e < s t d l i b . h>

# i n c l u d e <random >

u n s i g n e d s i z e = −1;

i n t ∗ a r r a y ; / / a r r a y o f i n t e g e r s

i n t ∗ i d x ; / / a r r a y o f i n d i c e s

long i n d i r e c t _ s u m ( )

{

long sum = 0 ;

f o r ( i n t i = 0 ; i < s i z e ; i ++)

{

sum += a r r a y [ i d x [ i ] ] ;

}

r e t u r n sum ;

}

i n t main ( i n t a rgc , c h a r ∗ a rgv [ ] )

{

s r a n d ( 2 0 ) ;

s i z e = a t o i ( a rgv [ 1 ] ) ;

s t d : : d e f a u l t _ r a n d o m _ e n g i n e g e n e r a t o r ;
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s t d : : u n i f o r m _ i n t _ d i s t r i b u t i o n < i n t > d i s t r i b u t i o n ( 0 , 1 0∗ s i z e ) ;

/ / c r e a t e i n d e x t a b l e

a r r a y = ( i n t ∗ ) ma l l oc ( 10∗ s i z e ∗ s i z e o f ( i n t ) ) ;

i d x = ( i n t ∗ ) ma l lo c ( s i z e ∗ s i z e o f ( i n t ) ) ;

f o r ( i n t i = 0 ; i <10∗ s i z e ; i ++)

a r r a y [ i ] = rand ( ) % 2000 ;

f o r ( i n t i = 0 ; i < s i z e ; i ++)

{

i d x [ i ] = d i s t r i b u t i o n ( g e n e r a t o r ) ;

p r i n t f ( " a r r a y [%x ] = %x \ n " , i d x [ i ] , a r r a y [ i d x [ i ] ] ) ;

}

p r i n t f ( " sum = %l d \ n " , i n d i r e c t _ s u m ( ) ) ;

r e t u r n 0 ;

}

Listing 2: Source code for indirect sum (C++).

# i n c l u d e " s t d i o . h "

# i n c l u d e " s t d l i b . h "

# d e f i n e A_rows 100

# d e f i n e A_cols 100

# d e f i n e B_rows 100

# d e f i n e B_co l s 100

i n t A[ A_rows ] [ A_cols ] ;

i n t B[ B_rows ] [ B_co l s ] ;

i n t r e s u l t [ A_rows ] [ B_co l s ] ;

vo id m a t r i x _ m u l t ( i n t A[ A_rows ] [ A_cols ] , i n t B[ B_rows ] [ B_co l s ] , i n t r e s u l t [

A_rows ] [ B_co l s ] )

{

f o r ( i n t k =0; k<A_rows ; k ++)
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{

f o r ( i n t j =0 ; j < B_co l s ; j ++)

{

i n t sum = 0 ;

f o r ( i n t i =0 ; i < A_cols ; i ++)

sum += A[ k ] [ i ]∗B[ i ] [ j ] ;

r e s u l t [ k ] [ j ] = sum ;

}

}

}

i n t main ( )

{

s r a n d ( 1 0 ) ;

/ / i n i t i a l i z e a r r a y s

p r i n t f ( " a r r a y A : \ n " ) ;

f o r ( i n t i =0 ; i <A_rows ; i ++)

{

f o r ( i n t j =0 ; j < A_cols ; j ++)

{

A[ i ] [ j ] = rand ( ) % 1 0 ;

p r i n t f ( "%d " , A[ i ] [ j ] ) ;

}

p r i n t f ( " \ n " ) ;

}

p r i n t f ( " a r r a y B : \ n " ) ;

f o r ( i n t i =0 ; i <B_rows ; i ++)

{

f o r ( i n t j =0 ; j < B_co l s ; j ++)

{

B[ i ] [ j ] = r and ( ) % 1 0 ;

p r i n t f ( "%d " , B[ i ] [ j ] ) ;

}
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p r i n t f ( " \ n " ) ;

}

m a t r i x _ m u l t (A, B , r e s u l t ) ;

f o r ( i n t i =0 ; i < B_co l s ; i ++)

{

f o r ( i n t j =0 ; j < B_co l s ; j ++)

p r i n t f ( "%d " , r e s u l t [ i ] [ j ] ) ;

p r i n t f ( " \ n " ) ;

}

r e t u r n 0 ;

}

Listing 3: Source code for matrix multiplication.
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