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ESTIMATION OF THE FATIGUE LIFE OF ADDITIVELY MANUFACTURED METALLIC
COMPONENTS USING MODIFIED STRAIN LIFE PARAMETERS

BASED ON SURFACE ROUGHNESS

Peter Grohs, M.S.E.

Western Michigan University, 2019

In this study, a method is developed to estimate the effects of surface roughness on the

fatigue life of additively manufactured titanium Ti6Al4V, aluminum 7075–T6, and steel 4340

alloys through modified strain life parameters using finite element analysis (FEA). This

method is highly beneficial to the fatigue analysis of as-built additively manufactured metal

components, which possess rough surfaces that reduce fatigue life significantly but are

challenging to analyze directly using finite element simulation because of complex

geometries, i.e., modeling an exact surface profile is arduous.

An effective stress concentration factor, incorporating roughness data, is defined to

quantify their effects on effective stress and fatigue life. Notched finite element models with

effective stress concentration factor values ranging from 3.058 – 10.75, representing rough

surfaces from as-built additively manufactured components, are analyzed, and the S–N curves

obtained. A parametric study is done to reproduce these S–N curves by using a smooth finite

element model with modified strain life parameters. A mathematical model describing the

variation of stress concentration in fatigue is incorporated into these lines of constant stress

concentration factors to produce a more realistic fatigue model. Finally, there is a relationship

established between effective stress concentration factor and modified strain life parameters

such that the fatigue life of as-built additively manufactured parts can be easily calculated

using finite element simulation by measuring surface roughness data and calculating the new

effective strain life parameters, without using an actual rough surface in FEA.
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NOMENCLATURE

Ra Arithmetic surface mean roughness

Rt Maximum profile height across domain

Rz Maximum profile height

Rz,ISO Ten point height roughness

ρ̄10 10 point valley radii

Nf Number of cycles to failure

σ′f Fatigue strength coefficient

b Fatigue strength exponent (Basquin’s exponent)

ε′f Fatigue ductility coefficient

c Fatigue ductility exponent

K ′ Cyclic strength coefficient (H ′ in some texts)

n′ Cyclic strain hardening exponent

ε Local (total) strain

σ Local stress

e Nominal elastic strain

S Nominal elastic stress

kt Stress concentration factor

k f Fatigue stress concentration factor

k̄t Effective stress concentration factor

k f ,real Realistic fatigue stress concentration factor, accounting for variations from loading

q Notch sensitivity

E Elastic (Young’s) modulus

R Fatigue load ratio

ν Poisson ratio

ρ Density

σ′∗f /ε
′∗
f Strain life parameters, from parametric analysis

σ′if /ε
′i
f Strain life parameters, initial, using σ′f and ε′f as coefficients

δ Modified strain life correction factor

σ′δf /ε
′δ
f Strain life parameters, correction factor

σ̄′f /ε̄
′
f Effective strain life parameters for roughness analysis
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1 Introduction

Additive manufacturing, or 3D printing, is a method of manufacturing that has a surge

in popularity in recent years, particularly in the aerospace industry [1, 2]. In contrast to

conventional manufacturing—in which a material solid is shaped into a final geometry using

various cutting heads—the additive manufacturing (AM) process produces part geometries

by fusing a series of flat layers from a material filament or powder substrate using a

computer-controlled deposition head [1, 3, 4]. This method allows complex geometric

features to be produced, like internal cooling passages, which are otherwise too difficult for

conventional machining [2]. Both metal and polymer parts can be produced using AM,

though metallic parts are more challenging to produce due to their higher melting points [1].

Three groups broadly classify AM methods. Extrusion systems force a filament through a

heated deposition head. Powder feed systems accelerate powder through a deposition head

and fuse it to a build surface using a laser. Powder bed systems use a flat bed of powder,

which is selectively fused using a laser [1].

Static properties for conventional metals and AM metals are broadly similar, with

differences caused by imperfections in the additive manufacturing process. 3D printed parts

primarily differ from conventional materials in fatigue performance. AM parts experience

significantly shorter fatigue life and lower fatigue strength than those made from

conventional metals. In general, as-built 3D printed metals will experience fatigue failure

approximately 50% faster than conventional metals [5, 6]. With AM, unmelted regions of

material substrate (pores) or gas pockets (voids) can be present, affecting the overall porosity

[7]. The occurrence of these imperfections on the surface of the part form significant stress

concentration factors. Pores and voids present on the surface and interior of a part contribute

to significant surface roughness, or inhomogeneities on a material’s surface. 3D printed parts

have surface roughnesses orders of magnitude larger than conventionally machined parts.

Surface effects are the primary failure mechanism for 3D printed parts undergoing fatigue

loading [5, 7].
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The 3D printing processes produce parts that have highly random surface profiles at

the microscopic level, which contributes to a characteristically poor fatigue performance and

makes accurate representation difficult in finite element analysis (FEA). The real complex

surface profile of the final printed part, caused by imperfections and roughness, is highly

random and distinct from the ideal CAD geometry used to print the part. The CAD geometry

will not accurately represent the as-built 3D printed part for this reason. Several techniques

have been developed to represent a real surface algorithmically or import data from actual

surfaces into FEA, but this adds considerable complexity to the meshing model. Any intricate

geometric feature necessitates adding more elements in the model, which leads to more

overall solving time [8–10].

A method to simulate a rough surface using modified material properties rather than a

realistic geometry with unmodified material properties has several benefits for FEA. The

original CAD drawing of the part can be imported into the FEA software as is, without

modification or consideration to the manufacturing method. However, roughness and surface

profile data are complex data that are difficult to quantify into a simple parameter. There

exists one method that encapsulates four roughness parameters into a single effective stress

concentration factor [11]. This method may link roughness to standard fatigue analysis,

making fatigue life prediction of as-built 3D printed parts more straightforward. The only

input parameters are measurable roughness values from a sample part. However, this linking

will require the development of a new method.

1.1 3D Printing Methods

Additive manufacturing has a broad definition, and several manufacturing methods

exist. This section outlines their essential functions so that the characteristics of 3D printed

parts can be more easily understood.
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Figure 1: Principles of fused deposition modeling (FDM) extrusion system [12].

The most common method of 3D printing is an extrusion system, also called wire feed

systems. This category encompasses some of the simplest and least expensive machines for

AM, including most hobbyist machines. In an extrusion system, feed stock in the form of a

filament or pellets is heated to just above the melting point and extruded through a computer

positioned nozzle. The material rapidly solidifies upon leaving the extruder forming a bead of

material at the location of the nozzle. Layers are built up through repeated passes, forming

the final part [1]. Figure 1 illustrates this process, showing the feed stock filament, the

position controlled extrusion head, and the process for building the part in layers. The final

unfinished part features a distinct crisscross, stair-stepping pattern of fused bead in layers,

which become more homogeneous as the quality of the machine rises. The most cited method

extrusion system is fused deposition modeling (FDM, Figure 1), a filament-based technology,

which is a high volume manufacturing technique best suited for plastics. It has relatively poor

surface quality, porosity, and accuracy, and requires extensive machining to produce a smooth

surface [1, 3]. The filament diameter dictates the layer thickness and is relatively thick for

AM. The highly rough surfaces from FDM make it an unsuitable method for many practical
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engineering applications. These machines are simple and often used for geometric

prototyping using low-cost plastics and rarely metals [3].

Figure 2: Principles of laser engineered net shaping (LENS) powder feed system [1].

Powder feed systems operate similarly to extrusion systems. They send a stream of

powder through a deposition head, accelerated by compressed gas or gravity and heated by a

laser, to deposit layers of material on a substrate, building a part up layer by layer. Figure 2

shows a conceptual powder feed system. The beam guidance system and focus lens guides

the laser to heat the part surface into a small pool, while the carrier gas expels the powder

supply into this pooled part surface. This method can be used to build new parts or, uniquely,

to repair preexisting damaged parts [1]. The predominant AM powder feed method is laser

engineered net shaping (LENS). With LENS, a laser melts a small region on the substrate

surface, forming a pool, consuming the deposited powder, and increasing its size. An

advantage of the LENS system is that parts can be several meters in size. However, the

accuracy and surface roughness are worse than with other non-extrusion systems [3]. LENS

systems often use metals, with the titanium alloy Ti6Al4V being the focus of much research

[4, 13–16].
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Figure 3: Principles of powder bed AM systems [1].

Powder bed manufacturing differs in principle to extrusion or powder feed systems. It

is a selective fusing process rather than a deposition process. In this method, the machine

rakes a level layer of material powder onto a work surface. A laser or other focused energy

source targets the flat powder and selectively fuses it into thin solid layers. Once the layer is

complete, the machine lowers the work surface, it rakes a new layer of powder over the fused

surface, and the process repeats. Unused powder encases a finished part within the work area

when completed. This powder is blasted off and recycled [3, 16]. Figure 3 illustrates this

process. The powder supply platform raises to produce more powder to supply the roller,

which pushes powder to the building to building platform, which lowers. The beam guidance

system solidifies this new layer of powder.

Two primary systems for powder bed manufacturing exist which use different energy

sources to melt the powder: selective laser melting (SLM), selective laser sintering (SLS), and

direct metal laser sintering (DMLS) use lasers as their power source, and electron beam

manufacturing (EBM) uses a high voltage electron beam [3].
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SLM and SLS are very similar processes, with the primary difference being the

lower-powered 200 W laser in SLS and the more powerful 400 W laser used in SLM, with the

higher-powered laser producing a more homogeneous structure. These processes use both

plastics and metals. Both heat the powder to a point just below its melting point before

fusing. As its name implies, SLS sinters the powder together into a solid mass. SLS is highly

accurate and has good surface quality, but the sintering process leads to reduced

homogeneity, which may develop cracks [3]. SLM’s higher power laser is enough to

completely melt the powder into a part leading to greater homogeneity. DMLS is a

trademarked process by EOS Electro Optical Systems and is very similar to SLM and SLS, but

restricted to metals only [3]. SLM is the method of most significant interest to current

research in laser-based additive manufacturing due to its higher fatigue performance without

post-manufacture treatments [4, 17–25].

EBM is a newer technique that is functionally identical to SLM/SLS processes but uses

a 30–60 kV electron beam to fuse the powder. Unlike laser-based systems, the build chamber

for EBM is under a high vacuum to avoid material oxidation. It is suited for metal parts only

and has a lower surface quality than SLM/SLS but a higher output [3]. It tends to have

inferior fatigue limits to DMLS and related processes due to more severe surface roughness

[26].

1.2 Part Characteristics

Any part produced using additive manufacturing will differ from a conventional

machined part in several ways, although static properties, such as ultimate strength or

Young’s modulus, are similar to conventionally fabricated parts due to fine microstructures

[5]. The localized fusion of the 3D printing process is a cause for density variance in 3D

printed parts not typically present in wrought materials. These occur in the forms of flaws

(pores), in the form of voids and inclusions [14]. These terms are loosely defined and are

highly dependent on the method of manufacture. Voids are typically caused by bubbles of
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trapped gasses present during manufacturing or by lack of fusion pockets of unfused

powders. In one study, the average diameter of gas pore voids in a sample of EBM Ti6Al4V

was less than 10 µm, with spherical pore diameters upwards of 50 µm. SLM parts have fewer

significant gas pore voids, with the largest size of lack of fusion pores being 240 µm for SLM

and 320 µm for EBM [4]. Inclusions occur less commonly than voids and are caused by

“contamination”, “particle debris”, and “un-melted powder”. They have a similar effect as

voids, though overall part porosity is less affected [14]. A study that simulated the fatigue

effects of voids and inclusions with identical diameters using FEA concluded that broadly

similar results occurred with either types of flaws [27].

The microscopically random geometry of additive manufactured parts contributes to a

characteristically poor fatigue performance. Voids and inclusions function as stress

concentrations throughout the part, and, if present at the surface, contribute significantly to

local and overall roughness. Surface roughness is caused by both solidification of the melt

pool and by partly melted powders for both DMLS and EBM processes [26]. Stress

concentrations are locations where crack growth originates, which may occur at any point in

the volume of the part. Although it is shown that the location of the flaw, particularly its

proximity to the surface, has a much more significant effect on the fatigue life of the part than

the pore size. Surface flaws the primary cause of fatigue failure in AM parts [23].

Additionally, steep temperature gradients and rapid thermal cycles in 3D printing

produce parts with high residual internal stresses, which can lead to accelerated crack

growth. Crack growth originating from part interiors may be mitigated to a certain degree by

post-process heat treatments such as hot isostatic pressing (HIP) [3, 17]. Though accurate at

the macroscopic level, 3D printed parts are inherently geometrically random at the

microscopic level, typically requiring machining or other post-processing treatments for

precision applications.
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1.3 Post-manufacturing Treatments

Post manufacturing treatments can mitigate undesirable part characteristics like

porosity, residual stress, and roughness, and vary on their effectiveness and feasibility. As AM

parts have broadly identical static properties to conventional materials, these treatments

primarily serve to increase the fatigue properties of the parts [5, 13]. Surface flaws, namely

surface level pores, voids, and roughness, have the most significant effect on the fatigue

performance of as-built parts. With roughness values such as Rz being upwards of 200 µm,

and pores with diameters of approximately 300 µm, polishing can be a highly effective

method to increase fatigue life. Polishing produces a smooth surface with negligible

roughness values. However, polishing can be impractical or unfeasible for parts with complex

shapes and intricate internal geometries.

Shot peening is a well-known method to induce compressive stresses on the surface of

a part to suppress crack growth and improve fatigue performance, though in practice it

proves ineffective as a treatment to prevent crack growth [20, 28]. One study found that shot

peening actually reduced the fatigue limit of an SLM Ti6Al4V part by 15% compared to a

polished sample, concluding that the compressive surface stresses are balanced by tensile

stresses in the part’s interior, to detrimental effect [21].

Hot isostatic pressing (HIP) is a heat treatment used to reduce the effects of pores and

inhomogeneity for AM parts. It subjects a part to a high temperature, high pressure, inert gas

environment for several hours to reduce the porosity of the part. A typically HIP treatment

will subject a part to a 1000◦C, 1000 bar argon gas environment for 2–4 hours [18, 19, 29].

HIP is routinely done for many studies in the literature with little mention, particularly for

SLM parts [4, 17–25]. It can increase the fracture toughness of SLM parts by 30%, but it does

not affect un-machined EBM: the EBM method is performed in a high vacuum, high

temperatures environment that is similar to HIP treatments (see section 1.1), causing this

heat treatment to be less effective on it [4, 19, 28–30]. HIP heat treatments are effective in

reducing internal flaws and removing almost all of a part’s internal porosity, eliminating
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almost all internal crack growth from within the part. Critically though, HIP treatments do

not affect surface pores, which are the primary source of fatigue failure and remain the

primary limiting factor for as-built 3D printed metals [5, 13, 14]. A combination of polishing

and HIP will produce a 3D printed part with the highest fatigue strength [4, 19]. The fatigue

properties of polished/HIP’ed SLM parts are “more comparable” and “similar” to conventional

parts [28]. However, HIP can produce larger grain sizes in post-treated parts, which can

increase the fatigue crack growth rate [26].

Post manufacturing treatments can improve fatigue performance of AM parts nearly to

that of conventional machined parts, but they are often unfeasible, not effective, or

impractical for many of AM’s most desirable applications. It is advantageous to limit AM

research into the area of as-built part development if 3D printing is to further develop as a

viable alternative.

1.4 Roughness

The primary engineering limiting factor of 3D printed parts is as-built fatigue

performance, with surface effects being the most critical factor to that. Roughness is a general

measurement of irregularities present on the surface of a component. Surface roughness can

be thought of in the same way as small cracks [31]. There are over a dozen roughness

parameters that quantify a specific quality of the surface profile; however, there is no one

agreed-upon roughness parameter standard to compare multiple components like-for-like.

Final surface conditions of AM parts are highly dependent on process and geometry;

the manufacturing process can introduce innumerable chaotic features, creating a chaotic

surface at the microscopic level. In general, primary roughness describes overall surface

waviness, and secondary roughness is the presence of partially fused substrate [26]. Figure 4

shows a scanning electron microscope image of two specimens, one produced using DMLS

powder bed manufacturing, and the other with EBM powder bed manufacturing, and

illustrates these roughnesses and the generally random surface of as-built 3D printed
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materials.

Figure 4: Scanning electron microscope for two specimens produced using (a) DMLS (Ra = 13
µm, Rt = 110 µm) and (b) EBM 3D printing (Ra = 27 µm, Rt = 214 µm) [26].

The most commonly reported roughness parameter in literature is mean profile

height, Ra, which measures the average true profile height of a sample region compared to

the ideal surface height. The ubiquity of Ra as a roughness parameter is mostly historical

rather than from merit. Ra does give an overall idea of the total surface variance of a sample

region, however.

Ra =
1
l

∫ l

0

|Z(x)| d x (1)
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where Z(x) is the depth function of the part surface with respect to the surface axis.

Rz, or maximum profile height, is a more straightforward roughness parameter,

defined as the height difference between the peak height, Rmax , and valley depth, Rmin, of a

surface profile. If the height difference is defined over a portion of the domain, Rz,i is more

appropriate, as there will be several Rz terms over different sections of the domain. When the

domain is large or constitutes the entire surface of a component, total profile length, Rt may

be specified.

Rz =
�

�zmax ,i − zmin,i

�

� (2)

Rt = |zmax − zmin| (3)

where zmin,i is the depth of the lowest valley from the ideal surface height, zmax ,i is the

height of the highest peak from the ideal surface height, and zmin and zmax and the lowest

valley and highest peak along the entire domain, respectively. Figure 5 provides a graphic

demonstration for how roughness parameters Ra, Rz, Rt , zmin, and zmax are calculated, to

complement equations (1) through (3).

Figure 5: Definition of common roughness parameters.
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1.5 Modeling

Computer FEA simulation is an attractive option for verifying the viability of 3D

printed designs due to the long manufacturing times required — typically hours even for

simple parts a few centimeters high. Unfortunately, the random porosity and surface

roughness present in AM parts are challenging to represent directly in FEA. Meshing a

full-sized realistic model, as shown in Figure 4, using typical industry and academic computer

workstations is unfeasible. Research in modeling realistic as-built geometries using FEA is

sparse; studies that incorporate simulation often assume a machined or other ideal surface or

will ignore porosity effects. Studies into material properties of 3D printed materials often do

no computer modeling at all before testing. Assuming an ideal smooth surface is acceptable

for a standard symmetric fatigue testing specimen, which has simple, regular geometry and is

easy to polish after printing. However, this assumption is implausible for the sort of irregular

geometries often requested of AM manufacturing, where intricate designs make surface

refinishing difficult. Because the surface profile of as-built 3D printed parts is the limiting

factor to fatigue performance, it is advantageous to simulate a part that represents this

quality in FEA.

The most straightforward model of a roughness effect is the regular stair-stepping

effects produced by FDM and, to a lesser extent, by the other 3D printing methods. Ahn et al.

[32, 33] developed two methods to predict Ra for FDM using filament geometry and

deposition angle of the nozzle, which matched the measured data to within 3–5 µm. A

related geometric model for FDM achieved 5.7% accuracy to actual results for Ra [34]. Other

geometric models for SLM produce similar results [35]. Figure 6 shows a clear demonstration

of the filament stair-stepping effect produced by FDM. Each cross-cross layer is one layer

produced by the filament.
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Figure 6: Interior stairstep effect within FDM parts [32].

Statistically generated surfaces are a better way to represent the random surface

profile of as-built 3D printed parts. These methods modify an existing FEA mesh using

several input parameters. Research done by Thompson documents this procedure using

Ansys Mechanical APDL [8]. The first method generates a normal Gaussian distributed rough

surface, assuming a regular part with a simple geometry, that was not wavy, and with a

constant surface inhomogeneity effect across the surface defined by asperity width, length,

and maximum height. Figure 7 shows the Gaussian distribution geometry and mesh used by

Ansys. The study compares four mesh algorithms, but standard roughness terms such as Ra

and Rz were not incorporated. In a later publication, a similar technique produced

anisotropic surfaces with more complex features, such as waviness or irregular shapes, but

the study did not go into detail how this is implemented [10].

Figure 7: Statistically generated roughness model rough surface using key points, exaggerated
100 times [8].
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Beyond generating random roughness values in software, 3D surface profile data

measured from as-built parts using optical profilometers could be used to modify a finite

element mesh. The primary disadvantage of this is that a sample has to be built before it can

be simulated. However, this allows nondestructive simulated testing of the part using an

accurate model to the specimen. One study of note captured x , y, z coordinates of a material

and used to generate node locations of a mesh in Ansys Mechanical ADPL. The result had

good matching with the actual test, despite the model using only 1/3 of the surface data at a

resolution of 3 µm to save computation time [9].

All these methods have their limitations. A focus on Ra for many models does not take

into account random geometric pores and voids, which form the greatest stress concentrators.

These models may be better suited to friction and wear analysis. The Ansys models require

significant manipulation to the geometry of a model in FEA, use prodigious meshing, and

have understandably long processing times. Additionally, their intended use is for regular, flat

geometries, which are unrealistic for practical engineering. Models that incorporate easily

measured roughness parameters that do not require any modification to geometry for FEA is

an ideal solution.

1.6 Effective Stress Concentration Factor

An alternate method, that utilizes an effective stress concentration factor term, k̄t ,

which is a function of Ra, Rt , 10-point height roughness Rz,ISO, and 10-point valley radii ρ̄10.

(k̄t is described in detail in section 2.5). The method was initially developed for polymers

and has demonstrated good accuracy for as-built 3D printed Ti6Al4V. This method attempts

to increase the effective local stress response for use in standard fatigue life analysis. Stress

concentrations, like severe roughnesses, will reduce part life [11].

k̄t = 1+ n
�

Ra

ρ̄10

�

�

Rt

Rz,ISO

�

(4)
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n=







1 shear

2 tension
(5)

Rz,I ZO =
1
5

�

5
∑

i=1

zi,min +
5
∑

j=1

z j,max

�

(6)

ρ̄10 =
1
5

�

5
∑

i=1

ρi,min

�

(7)

where ρi,min are the radii of the deepest valleys measured in a sample. The study finds

a good correlation between fatigue life and the effective fatigue stress concentration k̄t ,

shown in Figure 8. Straight lines indicate predicted response, and points indicate

experimental fatigue results using a smooth specimen, a specimen with Ra = 22.7 µm (k f =

4.21), and a specimen with Ra = 31.4 µm (k f = 6.04). However, this relation is achieved

through empirical relations only, with an engineering reference table based on the ultimate

strength of the material used with the 3D printed Ti6Al4V, producing an empirical scaler f ,

which modifies the endurance limit at 103 cycles, σ′f ,103 . The predicted k̄t scales the run-out

stress at 107 cycles for a smooth specimen for two different specimens. A straight line on a

log–log graph connects σ′f ,103 to the run-out stress levels and is plotted with a set of

experimental data, shown in Figure 4. This method has good accuracy, but is challenging to

implement in FEA as it is currently used — applying a single notch with a known k̄t at the

point of peak stress is difficult for parts models with complex geometries.
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Figure 8: S–N correlation to experiments (points) of as-built Ti6Al4V specimens using σ′f ,103

and runout stress, and predicted k̄t (lines). A smooth specimen, a specimen with Ra = 22.7
µm (k f = 4.21), and a specimen with Ra = 31.4 µm (k f = 6.04) are shown [11].

1.7 Summary

As described in section 1.5, current models with statistically realistic surface

roughnesses fall short in several ways. They use probabilistic algorithms to produce an

irregular, random surface that is not customizable to specific roughness parameters such as

Ra or Rz, or require 3D profiling of an entire part surface, requiring substantial investment in

measurement equipment. Additionally, all the models require significant modifications to the

CAD model and a more complex mesh. All this adds time and cost to the simulation. In an

ideal case, the FEA simulation of an as-built AM part would not require any modification to

the model geometry. FEA would use the same CAD file sent to the AM CAM software without

modification.

Given data on part roughness and using the effective stress concentration factor k̄t

described in section 1.6, it may be possible to approximate the effects on as-built 3D printed

surface roughness on fatigue life by applying a notch, or, ideally, by selectively modifying

material properties such as strain life. The resulting mesh would be much simpler for the
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former case, or identical to the original for the latter. In the latter method, a simple

profilometer measures an as-built 3D printed specimen for roughness parameters Ra, Rt ,

Rz,ISO, and ρ̄10. New strain life parameters could then be calculated using a formula and

applied to the existing FEA model. The predicted fatigue life for the rough part is calculated

using a smooth specimen, with surface effects accounted for in the strain life parameters.

This case is the focus of the following research.
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2 Background

This section describes additional elements required to perform strain life fatigue

analysis using finite element analysis in Ansys Workbench and describes stress concentrators

in detail.

2.1 Strain Life Analysis

Stress life and strain life analysis are two fatigue methods available in Ansys

Workbench to predict the cyclical life of any part [36]. In general, stress life is suitable only

for high cycle fatigue. Additionally, in Ansys, stress life analysis relies on tabulated

experimental S–N data from a fully reversed test of the material. For this reason, a parametric

study of stress life in Ansys Workbench is difficult or impossible because of the requirement of

an S–N curve. It is also less accurate at low cycles.

Conversely, strain life accounts for plasticity during high stress, low cycles fatigue

loading, improving results for both low and high cycle fatigue. It is superior to stress life

when local plastic behavior is possible, such as the case with notches. Furthermore, the strain

life equation uses four material properties: σ′f , b, ε′f , and c (see Nomenclature), which,

unlike for stress life analysis, can be parametrically varied in Ansys. Due to these benefits,

both practical and conceptual, this research uses strain life analysis.

The results of a fully reversed (R= −1) strain-controlled fatigue experiment determine

strain life parameters σ′f , b, ε′f , and c for a material by plotting elastic and plastic strain

amplitudes seperately with respect to their reversals to failure, 2Nf , on a log–log plot. Figure

9 illustrates the procedure. ε′f is the intercept of the plastic strain amplitude (εpa) curve at

2Nf = 1, c is the slope of this curve. σ′f is determined by the intercept of the elastic strain

amplitude curve, and b is the slope of this curve. In the figure, black points are the total

strain amplitude for the test and their associated cycles to failure, blue points are the elastic

portion of the strain amplitude for that test, and red points are the plastic portion of the strain
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amplitude for that test. Together, the blue and red points add up to the black for one test.

∆ε

2
=
σ′f

E
(2Nf )

b + ε′f (2Nf )
c (8)

Figure 9: Sample strain life plot, illustrating how to derive strain life parameters σ′f , b, ε′f , and
c for RQC-100 steel. Intercepts occur at 2Nf = 1 for this logarithmic axis [37].

Published data from literature experiments often vary from fully reversed load

conditions. A mean stress theory may be applied to account for this. The Morrow and

Smith-Watson-Topper (SWT) approaches in equations (9) and (10), respectively, are available

in Ansys Mechanical to modify the strain life equation for non-fully reversed loadings.

Simulations are done with ideal fully reversed loadings only, so mean stress theories are not

utilized.

∆ε

2
=
σ′f −σmean

E
(2Nf )

b + ε′f (2Nf )
c (9)
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σmax
∆ε

2
=
(σ′f )

2

E
(2Nf )

2b +σ′f ε
′
f (2Nf )

b+c (10)

2.2 Ansys

The finite element software package used for these simulations is Ansys Workbench. It

is highly scriptable for parametric study, allows new materials to be easily defined with units,

and has a robust fatigue module. A limitation of Ansys Workbench is the lack of fine meshing

controls in the preprocessing. In practice, a user is limited to manipulating the parameters of

a limited set of automated meshing algorithms to achieve a quality mesh. 2D analysis is

limited to PLANE182 or PLANE183 elements, which are linear or quadratic 2D elements,

respectively, with nodal displacement degrees of freedom in x and y directions only [38].

These elements are quadrilateral, but the meshing algorithm may forcibly degenerate them

into triangular elements. A user can request to override this behavior, but the meshing engine

will automatically overrule this option if the geometry is impossible to reproduce with an all

quad mesh. A model is limited to global meshing controls only, with options for precise local

refinements being minimal. Therefore, it is necessary to balance refinement for areas of

concern and mesh efficiency in noncritical areas when selecting global mesh algorithms and

parameters.

Five size function algorithms are available for 2D meshing: Adaptive, which is an all

automatic meshing operation with minimal settings; Curvature, which examines part

curvature to generate mesh which does not violate a maximum curvature normal angle;

Proximity, to specify a minimum number of elements between two edges; and Uniform,

which incorporates growth rate and global element size controls only. Proximity and

Curvature can be combined. In a comparison between these five algorithms in initial tests,

the combined Proximity and Curvature produced the highest quality mesh, which followed

the curve of the rough surface accurately and produced regular quadrilateral elements in

both the focus area and in areas of least concern for both smooth and notches models. For
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areas in the model where steep gradients in the solution are expected, Ansys allows a

refinement feature to be added to gradually split elements, making the mesh in that region

finer. A maximum refinement, or element division, of 3 is possible, which splits one element

into 16 elements for the desired region.

Ansys Workbench incorporates fatigue analysis by utilizing the built in fatigue tool.

This tool allows applied loading conditions on the model to be cycled, determining the

number of loading cycles to failure to be predicted from either stress or strain analysis,

selected as an option by the user. As specified in section 2.1, this research utilizes strain life

analysis. Ansys implements the following procedure to predict the number of cycles to failure

for a FEA model using strain life.

First, the peak loading condition for the model is applied, and the finite element

model is solved for ideal elastic stress, S, using finite element methods. However it is noted

that the strain life equation (equation (8)) uses total (elastic + plastic) strain amplitude as

input. A number of assumptions are made by Ansys to determine total strain amplitude from

ideal elastic stress. It it assumed that the material behavior will be nominally elastic for the

given loading condition, therefore an ideal elastic strain, e, response, or e = S/E, is

calculated. Ansys then links ideal elastic stress and strain to total stress and strain (σ and ε,

respectively) with Neuber’s rule, equation (11).

εσ = k2
t eS (11)

Ansys assumes a kt value of 1 for equation (11), which can be explained as follows. In

manual calculations, kt is applied theoretically in the equation only, with no consideration

taken for its actual location. However, given a finite element model with a sufficiently fine

mesh, the higher stress at the point of stress concentration will be solved for directly. Because

this local stress response around the concentration factor is known, kt does not need to be

incorporated in Neuber’s rule. If a notch or other stress concentrator is present in the

geometry, it is assumed that the mesh will be fine enough in the stress concentration region
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to account for any localized stress behavior.

A second equation is needed to solve equation (11) and determine the total stress and

strain response for the entire finite element model. This is achieved using the

Ramberg–Osgood equation for cyclic stress-strain response of a material, taken from a plot of

the stable half-life hysteresis loop: equation (12). Figure 10 shows these hysteresis loops, or

the relationship between stress and strain under cyclic loading, for three different strain

controlled experiments, taken at 0.5Nf . The tips of the three loops are connected by fitting

the curve of equation (12), which determines parameters K ′ and n′.

∆ε =
∆σ

E
+ 2

�

∆σ

2K ′

�1/n′

(12)

Figure 10: A theoretical hysteresis loop to determine K ′ and n′ (connecting tips 0–A–B–C).
Three hysteresis loops are shown (0–A–D, 0–B–E, and 0–C–F), which are produced using strain-
controlled fatigue tests to failure at three different strain amplitudes [37].

Equations (8) and (11) are then solved together to determine total stress and strain

response. They are solved iteratively, as their relationship is nonlinear. Once total elastic

strain, ε, is known for the finite element model, equation (8) can be solved to determine the

number of cycles to failure for the model.
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2.3 Simulation Geometry

A testing geometry standard is used for consistency with published experiments,

although a geometry designed for physical testing is not strictly necessary for finite element

analysis. ASTM E466 is a testing standard to obtain fatigue strength of metallic materials

subject to constant amplitude uniaxial loads and primarily experiencing elastic strains. The

2015 version of the standard (ASTM E466–15) notes the utility of this standard for stress

controlled experiments to “determine the effect of variations in material, geometry, surface

condition, stress, and so forth, on the fatigue resistance of metallic materials subjected to

direct stress for relatively large numbers of cycles.” [39] This standard is often used by

published studies to test the fatigue performance of 3D printed parts [6, 17, 20, 24, 28]. The

standard describes geometry requirements for straight necks, continuous radius necks, and

loading conditions for a valid test. Figure 11 is taken from this standard, and shows an

axisymmetric geometry specified in the standard. This model is used as the basis for the finite

element analysis models. Table 1 lists geometric parameters for Figure 11, which abide by the

standard. They are used to define the FEA model.

Figure 11: Axisymmetric model for uniaxial testing as defined in ASTM E466–15, used for
simulations [39].

23



Table 1: Geometry parameters for FEA models which abide ASTM E466–15 standard for uni-
axial axisymmetric fatigue testing.

D 5mm

L 10mm

R 50mm

Dshank 12mm

Ltotal 70mm

2.4 Notches

Notches produce stress concentrations at their root in a way that is calculated

analytically. A study examining stress concentration geometries describes the stress

concentration factor of a circular notch as a function of its root depth h, the angle of its walls

θ , and the radius of the notch root ρ. Figures 12 and 13 show a graphic representation of

this geometry and how stress concentration kt is defined based on the geometric relations. A

minimum stress concentration factor of ≈ 3 is possible because the roots of all the notches

are circular, meaning a notch with a circular profile can multiply the stress at its root by a

minimum factor of three [40].

Figure 12: Geometry of Circular Notches defining notch depth h, notch radius ρ, and notch
angle θ [40].
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Figure 13: kt of circular notches as a function of depth h, radius ρ, and notch angle θ [40].

2.5 Stress Concentration Factors

Before describing the simulations themselves, it is critical to note the difference

between the various stress concentration factors and how this research uses them. kt is a

purely geometric, elastic stress concentration factor typically used for elastic loading. A notch

or discontinuity with a stress concentration factor of 3 will increase the stress response at that

point by a factor of three. This relation is used to establish loading limits, so a component

does not surpass the material’s ultimate strength, yield strength, safety factor, or other

engineering limit.

While kt is useful for elastic loadings, it does not apply when a cyclic load is applied.

Under such conditions, localized plasticity or crack growth often occurs, reducing the

intensity of the stress concentrator. In such cases, notch sensitivity q, a material and geometry

dependent property, is used to modify kt into k f , or the fatigue stress concentration factor

using equation (13). In general, k f < kt . One model to determine q is Peterson’s equation,

which uses the root radius ρ (used to calculate kt) and a material property α, which can be a
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function of the material’s ultimate strength or its microstructure. In section 1.6, the α used

was the width of the average acicular grain in the microstructure, measured to be 1.5 µm.

q =
k f − 1

kt − 1
(13)

q =
1

1+ α
ρ

(14)

k f is only constant at very high cycles. At lower cycles, it will vary depending on the

load intensity. At or below low cycle failure (Nf ≈ 103) k f will approach 1, i.e., no stress

concentration effects are present. At or above high cycle failure (Nf ≈ 107), the stress

concentration factor approaches the nominal k f response. In order to account for all cycles, a

simple logarithmic interpolation function approximates the response at medium cycles to

failure into another term: k f ,real . Figure 14 and equation (16) summarizes these behaviors

[41].

k f ,real = 1+
k f − 1

4
log

Nf

103
(15)

Figure 14: Variation of k f in fatigue loading as the number of cycles to failure varies. (Graphic
representation of equation (15)).
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Fatigue notch factor=



















1 Nf < 103

k f ,real 103 < Nf < 107

k f or k̄t Nf > 107

(16)

Matching the data from Figure 8 using this method proves its effectiveness. Figure 8

used a different model of empirical relations based on the ultimate strength of the material at

Nf = 103 and drawing a straight line to the run out stress. However, by varying the value of

actual k f using equation (15) and scaling the smooth loading curve by that factor, the

accuracy of the model is improved, as shown in Figure 15.

In the Ansys simulations to follow, notches are defined geometrically using Figure 13

to produces a constant stress concentration factor. However, as described in Figure 14,

fatigue notch factor effects will vary as the cycles to failure changes due to yielding, plasticity,

crack growth, or other localized effects. None of these effects are present in an elastic finite

element model, however. The fatigue notch factor effects of the notch will remain constant.

As a result, data from notch simulations in this study should be considered lines of constant

stress concentration, not realistic fatigue response. In Section 4.2, a data set from finite

element analysis has equation (16) applied to it, producing a realistic response.
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Figure 15: Matching fatigue life literature data of as-built Ti6Al4V using realistic k f ,real analysis.
(Data by Pegues [11]).
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3 Simulation

The goal of this research is matching the S–N curve of a rough surface by modifying

the strain life parameters. Simulations using Ansys Workbench are done to study

representations of as-built, rough surface 3D printed Ti6Al4V, 7075-T6, and 4340 fatigue

specimens, using material properties from Table 2. The geometry used is the axisymmetric

model from ASTM E466–15. A 2D model saves significant computational time. Making the

model symmetric about the center axis further reduces the node count. (For a representation

of the meshing of a smooth specimen, see Figure 16.) Notches, when applied, are placed at

the axis of symmetry at the center of the model. The Proximity and Curvature sizing model

used for the simulation produces the best representation of the surface profiles compared to

the other models, with and without notches. An all quad mesh is specified. A refinement

factor of three, which splits one node into sixteen, is applied to the region expected to receive

50% of peak stress, which occurs within a depth approximately half the length of the applied

notch feature into the part. In other words, if a notch extends 20 µm into the surface, a

refinement is applied to a region extending 30 µm into the part. Lower refinement levels of

two or one, producing a coarser mesh around the notch, varied the stress response of the

model by less than 1%. Furthermore, a higher refinement level did not result in meaningfully

longer solving times, so the higher refinement level of three was used. Mesh Defeaturing is

disabled to retain fine roughness details on the surface. Fully reversed uniaxial loading is

applied to produce S–N curves for each model. Material models use properties from Dowling

[37].
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Table 2: Material reference properties for FEA [37].

Ti6Al4V 7075–T6 4340

σ′f [MPa] 2030 1466 1758

b -0.104 -0.143 -0.0977

ε′f 0.841 0.262 2.12

c -0.688 -0.619 -0.744

K ′ [MPa] 1772 977 1655

n′ 0.106 0.106 0.131

E [GPa] 117 71 207

ρ [kg/m3] 4620 2700 7870

ν 0.33 0.345 0.3

Figure 16: Axisymmetric/symmetric Ansys model with a smooth specimen, showing loading
axis and mesh.

3.1 Initial Experiments

Initial simulations attempted to modify the surface of an axisymmetric specimen with

a profile function resulting in a desired theoretical roughness. Models with a mathematically

correct Ra and Rz/Rt were attempted using sine wave and with “stacked circle” constant

radius surface discontinuity profiles, with the latter more closely matching the shape of flaws

on the surface of a 3D printed part (Figure 4). However these tests were not successful. The

sine wave profile, shown in Figures 17 and 18, had an infinite number of configurations

which mathematically matched the roughness profile. The amplitude of the sine wave alone

determined the Ra value and Rz/Rt value, with the wavelength of the sine wave having no

effect on roughness calculation (see section 1.4). However, as the wavelength were varied,
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different S–N results were produced. This behavior is shown in Figure 19, where a constant

amplitude of 42 µm produced a roughness of Ra = 26.7 µm and Rz = 21 µm, but as the

period length varied from 150 – 1000 µm, the S–N curve changed significantly.

The stacked circle profile is shown in Figure 20, and is defined by a male radius r1 and

a female radius r2, as illustrated in the figure. Both radii could be independently varied.

However, regardless of configuration of the radii, the S–N curves converged on an identical

profile and did not match experimental data from literature, as shown in Figure 21. All

configurations in the figure met the mathematical definition of Ra = 26.7 µm and Rz = 21

µm. This rapid convergence is explained by section 2.4. The stacked circle profile are

effectively a series of circular notches with θ = 0, as in Figure 12, being 0. At this θ level,

stress concentrations converge at approximately 3 (as shown in Figure 13), meaning any

circular notch with the same root depth will produce the same degree of amplified stress. The

convergeant results in Figure 21 are therefore expected.

It was clear that although these regular geometric profiles matched the mathematical

definition of roughness, they could not functionally or practically duplicate the random

surface of as-built 3D printed metals. Matching Ra and Rz/Rt alone are not sufficient to

describe the effects of roughness on fatigue life. Notches, applied to the model and calculated

using effective stress concentration factor k̄t (section 1.6) are a better way to represent

roughness. Furthermore, as shown in Figure 22, a single sine wave produces an identical

fatigue life result as several sine waves. Because of this, a single notch is deemed sufficient to

produce a stress concentration effect for the following simulations to represent roughness.
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Figure 17: Axisymmetric fatigue testing model in Ansys, with mesh, showing sine wave rough-
ness along the entire length of the testing region.

Figure 18: Meshing detail on a sine wave surface profile in Ansys (see Figure 17).

32



Figure 19: Comparing FEA results of a rough surface represented by a sine wave (amplitude
42 µm, period length 150–1000 µm) with roughness Ra = 26.7 µm and Rz = 21 µm, to exper-
imental fatigue data of as-built 3D printed fatigue specimens from literature [26].

Figure 20: Meshing detail on a stacked circle surface profile. The male radius is r1, the female
radius is r2.
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Figure 21: Comparing FEA results of a rough surface represented by stacked circles (varying
r1 and r2 values) with roughness Ra = 26.7 µm and Rz = 21 µm, to experimental fatigue data
of as-built 3D printed fatigue specimens from literature [26].

Figure 22: Convergence of the fatigue life curves for rough FEA models with a sine wave
profile, as the number of sine wave cycles increases from 0 (smooth surface) to 30 cycles (total
roughness along the shank).
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3.2 Parametric Study

The first part of this study examines the effects of strain life parameters σ′f , b, ε′f , and

c on a smooth FEA model to illustrate the transformative effects they have on an S–N curve.

Although the trends may be guessed based on Figure 9, it is still necessary to determine

accurate data for a stress-controlled experiment rather than for strain, as shown in the figure.

A smooth axisymmetric model is used with the omission of any refinements, as there are no

notches or areas of increased stress in the smooth model. A baseline S–N curve for the three

materials is established using properties from Table 2. From there, the four strain life

parameters are varied and plotted to determine their transformative effects on the S–N curve.

The parametric variation of Ti6Al4V strain life parameters is shown in Figures 23 through 26.

Figure 23: Effects of σ′f on S–N curve of Ti6Al4V.
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Figure 24: Effects of b on S–N curve of Ti6Al4V.

Figure 25: Effects of ε′f on S–N curve of Ti6Al4V.
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Figure 26: Effects of c on S–N curve of Ti6Al4V.

Analysis of Figures 23 through 26 reveals overall trends. σ′f generally affects the

intercept at lower stresses to failure, ε′f generally affects the intercept at higher stresses to

failure, and b and c deal primarily with the slope of the curve in those respective regions.

Initial experiments in notch S–N response (section 3.3 reveal that stress concentration factors

do not substantially change the S-N slope, but the graph does translate up and down

significantly. Further strain life modifications omit b and c from consideration because they

primarily concern slope. They are held constant at their reference values for all further

simulations.

3.3 Notched Models

Simulations into the effects of notches on the S–N curve establishes a baseline of

constant stress concentration effects. Equation (4) shows that k̄t can sufficiently represent

roughness effects on fatigue life. Notched models are created in Ansys using the procedure

above with geometry, as described in section 2.4. Circular, θ = 90° notches with kt values of

3.058, 3.988, 5.878, 8.044, and 10.750 are applied to the center of the models at the point of

peak expected stress. The simulation of notched models with standard material properties
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produces S–N curves of constant stress concentration for the three materials described above,

shown in Figures 27 through 29.

Figure 27: Effects of notches on S–N curve for Ti6Al4V.

Figure 28: Effects of notches on S–N curve for 7075–T6.
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Figure 29: Effects of notches on S–N curve for 4340.

3.4 Matching Notches With Modified Strain Life

Reproducing the S–N curves shown in Figures 27 through 29 is possible with a using a

smooth specimen and by by modifying strain life parameters σ′f and ε′f as in section 3.2.

Accuracy of the modified S–N curves defined as the minimum magnitude of variance from the

notched S–N curves, with precision of the modified strain life properties carried out to a

maximum of three significant figures of precision. Through significant simulation, Figure 30

is obtained using this procedure (see Appendix D for aluminum and steel). Table 3

summarizes the modified strain life parameters, σ′∗f and ε′∗f , used to obtain the S–N curves for

all stress concentration factors.
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Figure 30: Matching S–N curve of notched Ti6Al4V using σ′∗f and ε′∗f .

Table 3: Parametrically determined strain life terms, σ′∗f and ε′∗f , to match notches in S–N
curve.

Ti6Al4V 7075–T6 4340

kt σ′∗f ε′∗f σ′∗f ε′∗f σ′∗f ε′∗f

1.000 2030 0.841 1466 0.262 1758 2.12

3.058 735 0.180 540 0.028 627 0.275

3.988 567 0.135 417 0.0262 487 0.210

5.878 386 0.0860 285 0.0172 334 0.129

8.044 289 0.0620 212 0.0130 250 0.0920

10.75 218 0.0450 159 0.00870 189 0.0600
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4 Analysis

4.1 Matching S–N Curve

Data from Table 3 accurately matches the S–N curve of notched fatigue samples in

FEA simulation for only the stress concentration factors tested. In order to determine an S–N

curve for any constant stress concentration, regression analysis is done to identify trends in

this table.

Figures 31 and 32 show a plot of σ′∗f and ε′∗f with respect to k̄t . The curves produced

with this data strongly correlates with power law regression (see Appendix B for all).

However, there is some divergence, particularly as k̄t approaches one, where the modified

strain life parameters should approach the reference σ′f and ε′f . A correction factor is

introduced to account for this, shown as the second term in equations (17) and (18), which

reduces the variable count and increases accuracy as (k̄t → 1).

Figure 31: Trends of σ′∗f for Ti6Al4V (Power Law Regression).
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Figure 32: Trends of ε′∗f for Ti6Al4V (Power Law Regression).
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1
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�
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ε̄′f = ε
′
f

�

k̄t

� j
+

1

m
�

k̄t − 1
�p

�

k̄t 6= 1
�

(18)

Steps 1 through 10 describe the procedure for determining parameters for equations

(17) and (18). For tabulated steps for all materials, see Appendices A through C.

1. Plot σ′∗f and ε′∗f against k̄t; perform power law regression.

2. Take the exponent of this regression to be d and j for σ and ε, respectively.

3. Replace the coefficient of this regression with the original σ′f and ε′f from Table 2.

4. Using the coefficient and exponent from steps 2–3, produce a list of predicted initial

terms: σ′if and ε′if , as in equation (19).

5. The differences between σ′if and ε′if and σ′∗f and ε′∗f terms are called the correction

factors, δ, as in equation (20).

6. Take the inverse of delta and graph against (k̄t −1). Perform power law regression as in

Figures 33 and 34.
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7. Take the coefficient of the step 6 regression to be f and k for σ and ε, respectively.

8. Take the exponent of the step 6 regression to be g and m for σ and ε, respectively.

9. A list of predicted correction terms, σ′δf and ε′δf , is produced from the inverse of this

regression, shown in equation (21).

10. The difference between the initial terms and correction terms is the final result: σ̄′f and

ε̄′f , as in equation (22).

σ′if = σ
′
f

�

k̄t

�d
, ε′if = ε

′
f

�

k̄t

� j
(19)

δ = σ′if −σ
′∗
f , δ = ε′if − ε

′∗
f (20)

σ′δf =
1

f
�

k̄t − 1
�g , ε′δf =

1

m
�

k̄t − 1
�p (21)

σ̄′f = σ̄
′i
f − σ̄

′δ
f , ε̄′f = ε̄

′i
f − ε̄

′δ
f (22)

Figure 33: Inverse of correction factor of σ′∗f for Ti6Al4V (power law regression), computing
parameters f and g.
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Figure 34: Inverse of correction factor of ε′∗f for Ti6Al4V (power law regression), computing
parameters m and p.

Table 4 demonstrates the effectiveness of this method in FEA for titanium ε′f analysis.

Where the initial ε′if term varied from the known ε′∗f by up to 48%, the addition of ε′δf reduced

the error to 4.5%. Table 5 shows all variables required for equations (17) and (18). Figure 35

compares the notched FEA models to smooth models using the calculated σ̄′f and ε̄′f and

parameters from equations (17) and (18). (For σ̄′f , and other materials, see Appendix D).

With this correction factor, the list of parametrically determined strain life terms are able to

be reproduced accurately for any stress concentration factor in the ranges tested.

Table 4: Process for determining ε̄′f for Ti6Al4V, illustrating error correction effectiveness.

kt ε′∗f ε′if δ 1/δ (kt - 1) ε′δf ε̄′f % error

1.000 0.841 0.841 0 0.000 0.841 0.00%

3.058 0.170 0.2140 0.04396 22.74 2.058 0.05165 0.162 4.52%

3.988 0.135 0.1546 0.01957 51.10 2.988 0.02136 0.133 1.33%

5.878 0.0860 0.09612 0.01012 98.82 4.878 0.006694 0.0894 3.98%

8.044 0.0620 0.06546 0.003459 289.1 7.044 0.002805 0.0627 1.06%

10.75 0.0450 0.04589 0.0008936 1119 9.75 0.001299 0.0446 0.90%
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Table 5: Modified strain life parameters for use with equations (17) and (18).

Ti6Al4V 7075–T6 4340

d -0.941 -0.936 -0.940

j -1.22 -1.39 -1.48

f 0.00835 0.00376 0.155

m -3.51 -7.37 -1.18

g 2.07 2.68 1.02

p 2.37 2.17 2.41

Figure 35: S–N comparison between smooth, notched, and smooth with computed σ̄′f and ε̄′f
for Ti6Al4V.

4.2 Realistic S–N Modeling

Figure 35 illustrates the correlation between equations (17) and (18) and

parametrically determined variables from FEA simulation. Though, as described in section

2.5, it only shows lines of constant stress concentration. Equation (16) must be applied to

account for stress concentration variance. Assuming a nominal k f of 10.75, a curve of

realistic S–N response is drawn using equation (15), connecting between points of constant

stress concentration. The curve illustrates a realistic response expected from physical
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experimentation. Data from Figure 8 can also be added to compare experimental results. The

nominal k f is taken to be 4.21 and 6.04, as from the experiment. (See Appendix D for other

materials without literature comparison).

Figure 36 provides a summary of this for Ti6Al4V. Lines of constant stress

concentration 10.75, 8.044, 5.878, 3.988, and 3.058 from notched FEA models is shown, as

well as a smooth FEA model (section 3.3). Parametric data points from section 3.4 are

graphed as diamonds. Data points using equations (17) and (18) (section 4.1) are shown as

x’s. Experimental data from Pegues, Roach, and Williamson [11] (section 1.6) is plotted as

circles, filled circles, and filled squares. Finally, the experimental data is matched by

connecting the lines of constant stress concentration as described by the realistic fatigue

stress concentration effect in equation (16) (section 2.5) using thick black and blue lines. A

predicted response for kt = 10.75 is also shown. The realistic response correlates graphically

with the experimental data, illustrating the viability of this procedure.

Figure 36: S–N comparison between smooth, notched, and smooth with computed σ̄′f and ε̄′f
for Ti6Al4V, with realistic S–N response for a varying k f , compared to literature [11].
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5 Conclusions

This research proposes a model for representing the effects of stress concentration

factors on fatigue life through modified strain life parameters. 3D printed components, in

their as-built state, have extremely rough surfaces, which contribute significantly to the up to

50% lower fatigue life compared to standard materials. Literature has shown that these

materials can have their roughnesses expressed as an effective stress concentration factor

with reasonably good accuracy in predicting fatigue life.

When a finite element model expresses an effective stress concentration factor as a

physical notch, the S–N curve shifts downward. Modifying σ′f and ε′f in a strain life analysis

replicates this curve shift, and equations are derived to reproduce those results for constant

stress concentration factors of any range. A model that replicates realistic variation in stress

concentration is applied to connect the lines of constant stress concentration. The curves of

experimental data from literature and realistic FEA results align and perform as expected

when plotted together, demonstrating their effectiveness.

With this method, the fatigue life of as-built 3D printed metals can be easily predicted

using FEA or any other analysis. The model is effective for titanium, aluminum, and steel.

The six parameters used in the model are material dependent and can be determined using

simulation. Additional physical experimentation using as-built 3D printed specimens and

known material properties may increase the accuracy of the model and verify its integrity.

The fatigue life of components with significant surface roughness can be predicted by

measuring the roughness data and applying the equations above. Components with complex

geometries can be analyzed using FEA as quickly as simple ones and without applying

notches or any modifications to the geometry or mesh. All that is required is to measure the

surface roughness and change the strain life parameters. This research can accelerate fatigue

analysis of as-built 3D printed parts, adding another tool to fatigue life prediction of complex

parts other than physical testing.
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A Modified Strain Life Procedures

Table 6: Process for determining σ̄′f for Ti6Al4V, illustrating error correction effectiveness.

kt σ′∗f σ′if δ 1/δ (kt - 1) σ′δf σ̄′if % error

1.000 0.841 0.841 0 0.000 0.841 0.00%

3.058 0.170 0.2140 0.04396 22.74 2.058 0.05165 0.162 4.52%

3.988 0.135 0.1546 0.01957 51.10 2.988 0.02136 0.133 1.33%

5.878 0.0860 0.09612 0.01012 98.82 4.878 0.006694 0.0894 3.98%

8.044 0.0620 0.06546 0.003459 289.1 7.044 0.002805 0.0627 1.06%

10.75 0.0450 0.04589 0.0008936 1119 9.75 0.001299 0.0446 0.90%

Table 7: Process for determining ε̄′f for Ti6Al4V, illustrating error correction effectiveness.

kt ε′∗f ε′if δ 1/δ (kt - 1) ε′δf ε̄′if % error

1.000 0.841 0.841 0 0.000 0.841 0.00%

3.058 0.170 0.2140 0.04396 22.74 2.058 0.05165 0.162 4.52%

3.988 0.135 0.1546 0.01957 51.10 2.988 0.02136 0.133 1.33%

5.878 0.0860 0.09612 0.01012 98.82 4.878 0.006694 0.0894 3.98%

8.044 0.0620 0.06546 0.003459 289.1 7.044 0.002805 0.0627 1.06%

10.75 0.0450 0.04589 0.0008936 1119 9.75 0.001299 0.0446 0.90%

Table 8: Process for determining σ̄′f for 7075–T6, illustrating error correction effectiveness.

kt σ′∗f σ′if δ 1/δ (kt - 1) σ′δf σ̄′if % error

1.000 0.841 0.841 0 0.000 0.841 0.00%

3.058 0.170 0.2140 0.04396 22.74 2.058 0.05165 0.162 4.52%

3.988 0.135 0.1546 0.01957 51.10 2.988 0.02136 0.133 1.33%

5.878 0.0860 0.09612 0.01012 98.82 4.878 0.006694 0.0894 3.98%

8.044 0.0620 0.06546 0.003459 289.1 7.044 0.002805 0.0627 1.06%

10.75 0.0450 0.04589 0.0008936 1119 9.75 0.001299 0.0446 0.90%
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Table 9: Process for determining ε̄′f for 7075–T6, illustrating error correction effectiveness.

kt ε′∗f ε′if δ 1/δ (kt - 1) ε′δf ε̄′if % error

1.000 0.841 0.841 0 0.000 0.841 0.00%

3.058 0.170 0.2140 0.04396 22.74 2.058 0.05165 0.162 4.52%

3.988 0.135 0.1546 0.01957 51.10 2.988 0.02136 0.133 1.33%

5.878 0.0860 0.09612 0.01012 98.82 4.878 0.006694 0.0894 3.98%

8.044 0.0620 0.06546 0.003459 289.1 7.044 0.002805 0.0627 1.06%

10.75 0.0450 0.04589 0.0008936 1119 9.75 0.001299 0.0446 0.90%

Table 10: Process for determining σ̄′f for 4340, illustrating error correction effectiveness.

kt σ′∗f σ′if δ 1/δ (kt - 1) σ′δf σ̄′if % error

1.000 0.841 0.841 0 0.000 0.841 0.00%

3.058 0.170 0.2140 0.04396 22.74 2.058 0.05165 0.162 4.52%

3.988 0.135 0.1546 0.01957 51.10 2.988 0.02136 0.133 1.33%

5.878 0.0860 0.09612 0.01012 98.82 4.878 0.006694 0.0894 3.98%

8.044 0.0620 0.06546 0.003459 289.1 7.044 0.002805 0.0627 1.06%

10.75 0.0450 0.04589 0.0008936 1119 9.75 0.001299 0.0446 0.90%

Table 11: Process for determining ε̄′f for 4340, illustrating error correction effectiveness.

kt ε′∗f ε′if δ 1/δ (kt - 1) ε′δf ε̄′if % error

1.000 0.841 0.841 0 0.000 0.841 0.00%

3.058 0.170 0.2140 0.04396 22.74 2.058 0.05165 0.162 4.52%

3.988 0.135 0.1546 0.01957 51.10 2.988 0.02136 0.133 1.33%

5.878 0.0860 0.09612 0.01012 98.82 4.878 0.006694 0.0894 3.98%

8.044 0.0620 0.06546 0.003459 289.1 7.044 0.002805 0.0627 1.06%

10.75 0.0450 0.04589 0.0008936 1119 9.75 0.001299 0.0446 0.90%
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B Regression Data

Figure 37: Trends of σ′∗f for Ti6Al4V (power law regression).

Figure 38: Trends of ε′∗f for Ti6Al4V (power law regression).
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Figure 39: Trends of σ′∗f for 7075–T6 (power law regression).

Figure 40: Trends of ε′∗f for 7075–T6 (power law regression).
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Figure 41: Trends of σ′∗f for 4340 (power law regression).

Figure 42: Trends of ε′∗f for 4340 (power law regression).
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C Correction Factor

Figure 43: Inverse of correction factor of σ′∗f for Ti6Al4V (power law regression), computing
parameters f and g.

Figure 44: Inverse of correction factor of ε′∗f for Ti6Al4V (power law regression), computing
parameters m and p.
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Figure 45: Inverse of correction factor of σ′∗f for 7075–T6 (power law regression), computing
parameters f and g.

Figure 46: Inverse of correction factor of ε′∗f for 7075–T6 (power law regression), computing
parameters m and p.
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Figure 47: Inverse of correction factor of σ′∗f for 4340 (power law regression), computing
parameters f and g.

Figure 48: Inverse of correction factor of ε′∗f for 4340 (power law regression), computing
parameters m and p.
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D S–N Comparison With Model

Figure 49: S–N comparison between smooth FEA simulation, notched FEA simulation, smooth
with parametrically determined σ′∗f and ε′∗f , smooth with computed σ̄′f and ε̄′f (Model), and a
realistic k f representation for Ti6Al4V.

Figure 50: S–N comparison between smooth FEA simulation, notched FEA simulation, smooth
with parametrically determined σ′∗f and ε′∗f , smooth with computed σ̄′f and ε̄′f (Model), and a
realistic k f representation for 7075–T6.
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Figure 51: S–N comparison between smooth FEA simulation, notched FEA simulation, smooth
with parametrically determined σ′∗f and ε′∗f , smooth with computed σ̄′f and ε̄′f (Model), and a
realistic k f representation for 4340.
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