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Prediction of vehicle velocity is essential since it can realize improvements in the fuel 

economy/energy efficiency, drivability, and safety. Many publications address velocity prediction 

problems, yet there is a need for the understanding effect of different signals for the prediction. There 

are numerous new sensor and signal technologies like vehicle-to-vehicle and vehicle-to-infrastructure 

communication that can be used to obtain comprehensive datasets. Several references considered 

deterministic and stochastic approaches that use the datasets as input to determine future operation 

predictions. These approaches include different traffic models and artificial neural networks such as 

Markov chain, nonlinear autoregressive model, Gaussian function, and recurrent neural network. In 

this research, we developed different neural networks and machine learning algorithms that use 

different groups of datasets collected in Fort Collins, Colorado. Synchronous data was gathered using 

a test vehicle equipped with sensors along the drive route. The custom dataset consists of ego vehicle 

position, current velocity, ADAS-derived near-neighbor relative position, infrastructure-level transit 

time, and Signal Phase and Timing (SPaT). The effect of different groups of datasets on future velocity 

prediction windows of 10, 15, 20, and 30 seconds was studied.  The results are assessed based on MAE 

and time shift. This research shows a 10-second prediction horizon that the lowest Mean Absolute Error 

(MAE) and the time shift of future velocity prediction. GPS, current vehicle velocity, and Signal Phase 

and Timing (SPaT) were the most influential parameters for prediction accuracy. Artificial neural 

networks performed better in terms of getting lower MAE while the classical machine learning model 

performed better in terms of the getting lower time shift. 
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1. INTRODUCTION 

1.1 Intelligent Transportation system (ITS) 

The shift toward Intelligent Transportation Systems (ITS) will be the most disruptive since the 

initial days of automobiles[1]. It has the potential to completely transform the movement of people and 

goods, enabling safer and smarter transportation[2]. The ITS consists of several technologies such as 

Advanced Driver Assistance System (ADAS), Automated Driving Functions (ADF), Vehicle to 

Vehicle(V2V) and Vehicle to Infrastructure (V2I) communication [3].ITS also incorporates both 

wireless and wireline communications-based information and electronics technologies. Wireless 

technology is used to connect vehicle information and location to other vehicles, other transportation 

modes (such as pedestrians or bicyclists), local infrastructure, and remote infrastructure in the cloud. 

IDC forecasts that worldwide spending in 2017 on connected vehicles will be $29.6 billion, and 

government spending on intelligent transportation systems will be $16.5 billion [4]. However, obstacles 

to ITS adoption include sluggish growth in global infrastructure and high installation costs. 

 

1.2. Autonomous Vehicle Technology 

Autonomous cars could revolutionize the way we travel, giving us more time to work, play, 

learn, and relax on the road. Even if advancement in automation, most cars still have a human driver. 

SAE International has divided autonomy into five stages [5], which are shown [6] in Figure 1.  

 

Figure 1: Stages of automation 

Level 0 has No automation. The full-time performance by the human driver of all aspects of the 

dynamic driving task 
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(a)       (b) 

Figure 2:(a) Driver assistance (b) partial automation 

Level 1 is the driver assistance [6] is shown in Figure 2(a). The driving mode-specific execution 

by a driver assistance system of either steering or acceleration/deceleration 

Level 2 is partial automation [6] shown in Figure 2(b). The driving mode-specific execution by 

one or more driver assistance systems of both steering and acceleration/deceleration. Here the car can 

do some of the steering, braking, and accelerating, but still needs a driver with hands on the wheel, 

because level 1 and 2 are still just driver support. Both level 1 and level 2, use information about the 

driving environment and with the expectation that the human driver performs all remaining aspects of 

the dynamic driving task. 

  

(a)       (b) 

Figure 3:(a) Conditional automation (b) high automation 

Level 3 is conditional automation [6], is shown in Figure 3(a), which means that the car is in 

control, but requires human intervention in an emergency, or when prompted by the system. So, lane 

keeping, collision warning, even active interventions that will swerve the vehicle if it is about to get 
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into an accident. At this level, the vehicle operates with the expectation that the human driver will 

respond appropriately to a request to intervene. 

Level 4 is high automation [6], shown in Figure 3 (b). The driving mode-specific performed by 

an automated driving system of all aspects of the dynamic driving task. At this level, the vehicle 

operates even if a human driver does not respond appropriately to a request to intervene. 

 

Figure 4: Full automation 

The ultimate self-driving car would be operating at level 4 or 5, shown in Figure 4, where it can steer, 

brake, accelerate, monitor the road, respond to random events, choose to change lanes, and turn by 

giving blinker. At this level, the vehicle operates under all roadway and environmental conditions that 

can be managed by a human driver. 

1.3. Motivation for the Project 

1.3.1. Fuel Economy 

In 2016, the transportation sector became the top contributor to greenhouse gas emissions, 

which eventually contribute to climate change [7]. Climate change is projected to significantly affect 

human health, the economy, and the environment in the world, particularly in futures with high 

greenhouse gas emissions and limited or no adaptation. Recent findings reinforce the need for 

substantial and sustained reductions in greenhouse gas emissions, and regional adaptation efforts. 

Without these methods, there will be significant and far-reaching changes over the 21st century with 

negative consequences for a vast majority of sectors, particularly towards the end of the century [8]. 

These accelerating emissions are putting the world on track to face some of the most severe 

consequences of global warming sooner than expected [9]. Figure 5 shows the effect of global warming 
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around the world. To mitigate climate change, most recently, the Paris Agreement of 2015 took on the 

long-term aims. It requires holding the increase in the global average temperature to well below 2°C 

above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-

industrial levels [10]. Because of these issues, governments around the world have imposed various 

Fuel economy (FE) requirements that automotive manufacturers are required to meet [11]. 

 

Figure 5: Effect of climate change 

 In Autonomous vehicle technology, one of the strategies proposed to minimize fuel 

consumption is Optimal Energy Management. Hybrid Electric Vehicles (HEVs) and Plug-in Hybrid 

Electric Vehicles (PHEVs) can increase the precision of vehicle operation and automation with the 

usage of the future prediction horizon. Optimal Energy Management Systems (Optimal EMS) adjusts 

powertrain operation proactively in connected and autonomous vehicles (CAV) [12]. With the usage 

of correct automation and accurate future operation prediction, HEVs and PHEVs can control the 

operations of a vehicle precisely.  

 

Figure 6: Optimal energy management strategy 

Therefore, CAVs can adjust vehicle powertrain operation proactively using Optimal EMS. 

Figure 6 shows the Optimal Energy Management Strategy, where the dashed line highlights the input 
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of future velocity prediction to the strategy. This example shows that the prediction of future driving 

conditions essentially determines the constraints of the energy optimization problem [14]. Due to such 

dependency between prediction horizon and Optimal EMS, there is a pressing need to develop accurate 

and robust approaches for predicting vehicle speed. It is also essential to understand which signals 

would produce better results.  

1.3.2. Safety 

 In 2017, over 37,000 people killed and injured in US fatal collisions. These accidents often 

originate from driver inattention or impairment shown in Figure 7. More than 90 % of the time, the 

driver error is responsible for crashes in the U.S. Hence, autonomous vehicles must follow a robust 

design and validation process.  

 

Figure 7: Crashes due to driver inattention 

 

Figure 8: Collision risk estimator strategy 

The Strategy proposed for increasing the safety of autonomous vehicles, as shown in Figure 8, where 

the dashed line highlights the input as velocity prediction to the strategy. The system is designed to be 

modular with interchangeable components for each of the main tasks. Neural networks perform object 

detection and presented new methods for approaching object tracking, distance estimation, and speed 
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prediction [13]. The speed predictions can be integrated into collision risk estimators, thereby helping 

drivers avoid accidents. 

1.4. Artificial Intelligence 

Many researchers have recognized Self-driving vehicle technology potential. The vehicle can 

use an ANN prediction model whose outputs can derive a control strategy to improve FE [14]. Artificial 

Neural Networks (ANN) can model and extract unseen features and relationships, which makes it 

reliable to model complex prediction problems and patterns. They are a very powerful tool to predict 

the future output of any system, which enables the utilization of different strategies to improve fuel 

economy and safety of autonomous vehicles. 

              

(a)       (b) 

Figure 9: (a)Artificial intelligence subsets (b) DNN performance 

The subsection of AI is Machine learning, shown in Figure 9 (a), which is about extracting 

knowledge from data [15]. It is a research field at the intersection of statistics, artificial intelligence, 

and computer science and is also known as predictive analytics or statistical learning. Machine learning 

is really fast in terms of getting results. Another advantage of the machine learning algorithm is that 

they are easy to interpret and understand. 

Deep Learning is a subset of machine learning, which has multilayered neurons. Deep 

Learning models are algorithms inspired by the structure and function of the brain called artificial 

neural networks. It Consists of hidden layers and multiple neurons. As we construct larger neural 

networks and train them with more and more data [16], their performance continues to increase, as 

shown in Figure 9 (b).  

 

 



7 

 

1.5. Literature 

Many publications address the problem of velocity prediction. Mainly a prediction study should 

be able to address three main points. 1)Are there certain types of perception algorithms that work better 

than others (e.g., Markov chain, autoregression, machine learning)? 2)Are there specific sensor inputs 

that enable high-quality predictions (e.g., GPS, ADAS detections, V2I, weather information)? 3) Which 

is a better model with sensor/signal inputs for different prediction windows as an output? Starting in 

2008, the earliest and presently most cited research about the prediction model comes from researchers 

at the University of Florida and the University of Wisconsin-Milwaukee. Their study used V2I and 

GPS signals as inputs into a perception model. The perception model was then able to output vehicle 

operation predictions using an analytical traffic model [17]. The approach was later revised to employ 

an artificial neural network (NN) [18]. The use of a NN to characterize a driving pattern was found to 

be effective.  

In 2014, researchers at the University of Minnesota applied a traffic model to predict future 

vehicle velocity with V2V and V2I as inputs [19]. Prediction using ego vehicle velocity over 1-10 sec 

was compared for parametric and non-parametric models in Lefèvre et al. [20]. Results show that 

simple models performed well for short term prediction and advanced models for long term prediction. 

Then, in 2015, researchers from the University of California at Berkeley recognized the critical 

relationship between perception and planning and investigated three perception models for use with a 

Model Predictive Control Optimal EMS. They use previous driving data and the current vehicle state 

as inputs prediction models. Their prediction model includes an exponentially varying perception 

model, a stochastic Markov chain perception model, and an NN perception model [21]. Additional 

studies by this group have shown FE results closer to optimal when traffic information is included [22]. 

A deep learning network is also used to predict ego vehicle velocity and route in Lemieux et al. [23]. 

Amir Rezaei et.al. Studied prediction for 1, 6, 10 seconds with GPS/GIS used in ANN [24]. Hellström 

and Jankovic proposed a model for a human driver operating an accelerator pedal and used it for 

prediction [25]. 

Starting in 2017, researchers at Colorado State University began publishing research that 

included a perception model, Optimal EMS, and FE results. The first study used current and previous 

vehicle velocity and GPS data input to a shallow NN perception model. They also developed an 

Optimal EMS computed using DP on a validated model of a 2010 Toyota Prius, which uses prediction 

from shallow NN. The maximum FE improvement was achieved using 30 seconds of prediction [26]. 

Deep Neural Networks (DNNs) is used to predict in Olabiyi et al. [27]. Zhang et al. utilized V2V and 
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V2I communications for future vehicle velocity prediction [28]. They also developed an energy 

management strategy based on vehicle velocity prediction. 

Researchers from the Beijing Institute of Technology, China, demonstrated more consistent FE 

improvements with the aid of historical velocity data and a Gaussian NN perception model [29]. 

Additionally, researchers from the Beijing Institute of Technology used previous drive cycle data as an 

input into a Markov chain and NN perception subsystem with an Optimal EMS based on a genetic 

algorithm. Also, David Baker et al. and researchers at Colorado state university studied different 

prediction windows for error distribution with the NARX model [30]. They used Vehicle speed and 

GPS from CAN in the NARX model. 

Recent trends have begun to implement advancements in machine learning and have replaced 

shallow NNs with deep NNs. Research conducted at the University of Michigan explored a variety of 

perception models. They studied auto-regressive moving average, shallow NN, long short-term 

memory (LSTM) deep NN, Markov chain, and conditional linear Gaussian models for prediction 

accuracy. Their study concluded that the LSTM deep NN provided the best prediction fidelity 

(measured in mean absolute error) [31]. Furthermore, using the prediction from LSTM, they realized a 

fuel economy improvement of 3% in the dynamometer validated model of a 2017 Toyota Prius Prime  

[14]. 

1.6. Novel Contribution 

Despite the fact that the issue of vehicle speed prediction has been previously studied, the 

dependency of prediction on different groups of signals still needs to be understood. The prediction 

model study should address research gaps in the project. Such as, are there certain types of perception 

algorithms that work better than others? Are there specific sensor inputs that enable high-quality 

predictions? Which is a better model with sensor/ signal inputs for different prediction windows as an 

output? 

Considering the huge potential in the above applications and implementations, we used various 

methods, which include ANN and machine, learning models. We gathered numerous different signals 

along the roads of Fort Collins, Colorado, to get the custom drive cycle for the velocity prediction. 

Moreover, the research expands into the effect of these signals and models on different prediction 

horizons. For a better assessment, we used two different assessment methods, which are MAE and time 

shift. 
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1.7 Thesis Overview 

The research is organized as follows:  In section 2, the vehicle velocity prediction strategy and drive 

cycle development are described. It also elaborates prediction models used for the project. Section 3 

presents the assessment methods and the results in different scenarios. Finally, section 4 summarizes 

the conclusions and sets the direction of discusses future research in terms of implementation. 

2. METHODOLOGY 

2.1 Vehicle Velocity Prediction Strategy 

The objectives of this research are to assess the potential for radar signal, GPS, EGO vehicle 

parameters, and V2I data to improve vehicle velocity prediction. We are also focusing on the effect of 

these signals and the effect of different ANN models on different prediction windows. In the strategies 

discussed in section 1.3, an inaccurate prediction can deteriorate energy savings or even cause safety 

concerns. Because of such dependence on the prediction horizon, there is a pressing need to develop 

accurate and robust approaches to predict vehicle velocity for getting better results. 

 

Figure 10: Vehicle velocity prediction strategy 

Figure 10 represents the overall strategy used in the research. First, a sensor-equipped vehicle 

collects drive inputs by driving along the route. Developed deep neural networks and machine learning 

models uses these collected datasets as input to predict the velocity. The prediction model can give 

output for different prediction windows. These results are then assessed to find out the best possible 

velocity prediction. 

2.2. Drive Cycle Development and Signal Recording 

To obtain signals for drive input, a driving vehicle equipped with different sensors such as GPS, 

CAN data logger, and radar is driven on the route in Fort Collins, Colorado.  
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(a)       (b) 

Figure 11: (a)Drive cycle map of the Fort Collins dataset (b) traffic signal map 

Figure 11(a) shows the view of the GPS map. Traffic signal map is shown in Figure 11(b), with 

the black arrows representing the driving directions, the black circle representing the start point and 

endpoint, the red targets representing traffic signals, and the blue lines representing traffic segments. 

In total, this route is 4 miles and should take 10-12 minutes per cycle, depending on traffic. The Fort 

Collins dataset was collected in October 2019 and contained data from repeated drives along a fixed 

route by the same driver. This route represents the round trip on the following: 

1. Parking Lot 

2. West on Mulberry until Shields 

3. South on Shields until Prospect 

4. East on Prospect until College 

5. North on College until Mulberry 

6. West on Mulberry until Parking Lot 

7. Parking Lot 

The test generated Autonomous Driver Assistance System (ADAS) data for the vehicle forward cone 

from smart radar, which is a standard setup for production vehicle ADAS systems. Test also generated 

the Vehicle to Infrastructure (V2I) data in the form of traffic signal information and segment travel 

times. The ego vehicle was specially instrumented research vehicle with the afore-mentioned ADAS 

sensors and a stereo camera with a Freematics logger. It is important to note that the timestep used for 

the analysis is 0.1 seconds. 
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Figure 12: Velocity versus time for one drive instance 

Figure 12 shows the data plot for Velocity vs. time for one drive instance. Figure 13 shows the plotted 

longitude versus latitude versus time. The velocity is on the map against time for three drive instances. 

We can observe that the velocity profiles are a similarity. 

 

Figure 13: Velocity on the longitude versus latitude versus time 
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(a) 

 

  

(b) 

Figure 14: (a)Radar object detections immediately in front (b)Velocity on map terrain 

The radar objects detections immediately in front are plotted and shown in Figure 14(a). These show 

the objects detected and position from the vehicle. Figure 14(b). Shows the plot for the longitude versus 

latitude versus altitude, i.e., velocity, is shown on this map terrain. 
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Table 1 shows all collected signals on the drive cycle. The signals in the red box represent the data 

collected from the EGO vehicle, which consists of the ego vehicle parameter and the ego vehicle’s 

position (GPS). Signals in the blue box represent V2I data, which includes the Traffic Signal Phase and 

Timing (SPaT), Segment speed (SS), and radar data. 

Table 1: List of collected signals in drive input 

Sr. No. Parameters  Sr. No. Parameters 

1 Time  11 Turn Signal 

2 Latitude  12 Vehicle Speed 

3 Longitude  13 Acceleration Longitude 

4 Distance  14 Acceleration Latitude 

5 Brake Pedal Position  15 Yaw Rate 

6 Transmission Gear  16 Altitude 

7 Engine Speed  17 SPaT 

8 Max Torque  18 Segment Speed 

9 Min Torque  19 ADAS 

10 Engine Torque    

  

All these signals are grouped in different combinations, which are used as input to the neural network 

and machine learning models. This is discussed in the subsequent section. 
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2.3 Neural Networks and Machine Learning Models 

2.3.1 Artificial Neural Networks and Machine learning analogy 

Artificial Neural Networks are algorithms consist of multilayered neurons that are inspired by 

the structure and function of the brain. The human brain can be considered into four different sections, 

depending on their functions are shown in Figure 15. A trained neural network is generally the one 

with stored weights. They can act as long-term memory or store data through a time similar to the 

frontal lobe. For object detection convolutional neural networks (CNNs) are used, which acts as an 

occipital lobe whose primary function is the vision. CNN could also perform feature extraction and 

regression model. Current technology is limited in terms of the parietal lobe, whose function is 

sensation, perception, and creating a spatial coordinate system. Recurrent Neural Networks (RNNs) 

can function as short term memory, which is similar to the frontal lobe, which is responsible for 

personality, behavior, and short-term memory. LSTM is a type of RNN, which is an excellent example 

of short term memory. ANN offer increased flexibility and can scale in proportion to the amount of 

training data available. 

On the other hand, deep learning neural networks are nonlinear methods. Machine learning 

Algorithms are easier to understand and more comfortable to implement. Classical machine learning 

algorithms are also very interpretable, which means it is much easier to understand the reasoning for 

the model’s prediction.  

Subsequent sections explain the different models used in the project. The lit review shows the 

use of DNN in different prediction models. It was observed that LSTM could perform better for 

prediction. In many cases, it can be observed that CNN can perform better than LSTM. We are also 

using different machine learning for their interpretability. 

 

Figure 15: ANN analogy 
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2.3.2 Neural Network and Machine learning Algorithms:  

The neural networks and machine learning models used for the study are shown in Table 2.  

Table 2: Neural networks and machine learning models 

Type Network 

RNN 
LSTM 

CNN LSTM 

CNN CNN 

Machine 

Learning 

Decision Trees 

Bagged Trees 

Random Forest 

Extra Trees 

Linear Regression 

LR With Interactions 

Ridge 

KNN 

a) LSTM (Long-Short Term Memory): 

LSTM is a special type of Recurrent Neural Network (RNN) capable of learning long-term 

dependencies from large data sets (i.e., data sets with lots of inputs) and avoiding issues such as gradient 

vanishing/exploding of conventional RNNs. For the analysis of sequential data, LSTM is the most 

commonly used deep learning model. An RNN composed of LSTM units is often called the LSTM 

network, where units of RNN are LSTM units. 

Inside the repeating parts, the conventional RNNs have only one activation function, while 

LSTMs have three gates with different activation functions, interacting with each other. A typical 

LSTM unit, often called a memory cell, memory block, is composed of a cell, an input gate, an output 

gate, and a forget gate [32]. The cell remembers values over arbitrary time intervals, and the three gates 

regulate the flow of information into and out of the cell. The sigmoid layer outputs numbers between 

zero and one, describing how much of each component should be let through. 𝐶𝑡−1 and 𝐶𝑡 are old and 

new cell state, respectively. ℎ𝑡−1 and ℎ𝑡 are outputs of the previous and current cell. 𝑋𝑡 is the input to 

the cell. 
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Figure 16: LSTM cell 

The typical LSTM Cell internal structure shows in Figure 16. Computation details can be found 

in  [33-35]. The gates are computation can be summarized by the following equations. 

❶ Forget Gate: Decides what information to discard from the cell.  

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1
𝑇 , 𝑋𝑡

𝑇]𝑇 + 𝑏𝑓) 

❷ Input Gate: Decides which values from the input to update the memory state. 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1
𝑇 , 𝑋𝑡

𝑇]𝑇 + 𝑏𝑖)    

�̃�𝑡 = tanh(𝑊𝐶[ℎ𝑡−1
𝑇 , 𝑋𝑡

𝑇]𝑇 + 𝑏𝐶)  

❸ Output Gate: Decides what to output based on input and the memory of the cell. 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1
𝑇 , 𝑋𝑡

𝑇]𝑇 + 𝑏𝑜) 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶�̃�   

ℎ𝑡 = 𝑜𝑡 × tanh(𝐶𝑡)  

where 𝑊𝑓 , 𝑊𝑖, 𝑊𝐶 , 𝑊𝑜 and 𝑏𝑓 , 𝑏𝑖, 𝑏𝐶 , 𝑏𝑜 designate vectors (matrices) of weights and biases for forget 

gate, input gate, cell state, and output gate, respectively.  In the above expressions, σ is a sigmoid 

function. 

b) CNN (Convolutional Neural Networks): 

Convolutional Neural Networks are a powerful artificial neural network technique. These 

networks preserve the structure of the problem and used for object recognition such as handwritten 

digit recognition. They are popular because people are achieving state-of-the-art results on challenging 

computer vision and natural language processing tasks. They are also used for regression problems and 
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sequence prediction. In many cases, CNN can outperform LSTM models. CNN can achieve what 

LSTM has been used, and performs better in predicting sequences, but in a much faster, more 

computationally efficient manner [36-37]. 

 There are three types of layers in Convolutional Neural Network shown in Figure 17: 

1. Convolution Layers 

2. Pooling Layers. 

3. Fully Connected Layers. 

 

Figure 17: CNN structure 

Convolutional Layers are comprised of filters and feature maps. Features have both weighted inputs 

and generate an output value like a neuron. The feature map is the output of one filter applied to the 

previous layer. A feature map can also be called the collected output of the filters. 

The pooling layers down-sample the previous layers feature map. Pooling layers follow a sequence 

of one or more convolutional layers and are intended to consolidate the features learned and expressed 

in the previous layers feature map. Pooling can be considered a technique to compress or generalize 

feature representations and generally reduce the overfitting of the training data by the model.  

Fully connected layers are the standard flat feedforward neural network layer. Fully connected 

layers are used at the end of the network after the convolutional and pooling layers have performed 

feature extraction and consolidation. They are used to create final nonlinear combinations of features 

and for making predictions by the network. 
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c) Decision Tree 

Decision Tree algorithms are used for classification and regression predictive modeling problems [38]. 

Each node represents a single input variable (x) and a split point on that variable. The leaf nodes of the 

tree contain an output variable (y), which is used to make a prediction. Given a dataset with two inputs 

of X1 and X2, the output of y, below Figure 18(a), is an example of a binary decision tree. 

 

(a) 

    

(b) 

Figure 18: (a)Example decision tree (b) partitioning of input space 

Making predictions is relatively straightforward. Given a new input, the tree moves forward by 

evaluating the specific input starting at the root node of the tree. A learned decision tree is a partitioning 

of the input space shown in Figure 18(b). The input variable can be considered as a dimension on a p-

dimensional space. The decision tree split this up into rectangles (when p = 2 input variables) or hyper-

rectangles with more inputs. New data is filtered through the tree and lands in one of the rectangles, 

and the output value for that rectangle is the prediction made by the model.  
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d) Ensembles (Random Forest, Bagged Tree, Extra Tree): 

Ensemble learning is a technique that combines the predictions from multiple neural network 

models to reduce the variance of predictions and reduce generalization error [39]. Bootstrap 

Aggregation (or Bagging) involves taking multiple samples from the training dataset and training a 

model for each sample. The final output prediction is averaged across the predictions of all of the sub-

models.  The three-bagging model used in the research are: 

• Bagged Tree 

• Random Forest 

• Extra Trees 

Bagging (Bootstrap Aggregation) is a procedure that can be used to reduce the variance for 

those algorithms that have high variance, typically decision trees. Decision trees are sensitive to the 

specific data on which they are trained. If the training data is changed, the resulting decision tree can 

be quite different, and in turn, the predictions can be quite different. In bagged trees, many random 

subsamples of the input dataset are created. Decision trees are trained on each of these subsamples. 

When the new dataset is given as input, the average prediction from each model is calculated. 

Random Forests are an improvement over bagged decision trees. Decision trees tend to get 

greedy, meaning they make an optimal local choice at each node. They choose which variable to split 

on using a greedy algorithm that minimizes error. Even with bagging, the trees can have a lot of 

structural similarities, and it turns to result in a high correlation in their predictions. Combining 

prediction from multiple models in the ensemble’s works better if the predictions from the sub-models 

are not correlated or weakly correlated. The random forest changes the algorithm for the way that the 

sub-trees are learned so that the resulting predictions from all the subtrees have less correlation. When 

selecting a split point in decision trees, the learning algorithm can consider through all variables and 

all variable values to select the most optimal split point. The random forest algorithm changes this 

procedure so that the learning algorithm is limited to a random sample of features.  

 Extra Trees (Extremely randomized Trees) is a type of ensembles where random trees are 

constructed from samples of the training dataset. Extra trees randomize certain decisions and subsets 

of data to minimize over-learning from the data and overfitting [40]. Its two main differences with 

other ensembles methods are that it splits nodes by choosing cut points entirely at random. This leads 

to more diversified trees and fewer splitters to evaluate when training an extremely random forest. 

Also, Extra Trees seem to keep higher performance in the presence of noise features.  
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e) Linear Regression: 

 Linear regression is one of the most common techniques used for regression analysis. The linear 

regression model can also be referred to as estimating the values of the coefficient (weights and bias) 

used in the representation training data [39]. When we have multiple input features, it is called multiple 

linear regression. In that case, linear regression uses ordinary least squares to estimate the values of 

coefficients. The ordinary least square procedure seeks to minimize the sum of squared residuals. 

Considering a regression line, the distance from each data point from that line is squared, and the sum 

of all the squared errors, which is then minimized. Linear regression uses gradient descent for 

iteratively minimizing the squared error. In linear regression, interaction terms can be taken into 

account. Considering the interaction terms between the features can significantly expand understanding 

of the relationships among features in the model and can improve the prediction. 

Ridge Regression is an extension of linear regression where the loss function is modified to 

minimize the complexity of the model measured as the sum squared value of the coefficient values. 

Ridge regression learns weights and bias, using the least-squares criterion but adds a penalty for large 

variations in weights parameters. Once the parameters are learned, the ridge regression uses least 

squares for prediction. The addition of a parameter penalty is called regularization. Regularization 

prevents overfitting by restricting the model, typically to reduce its complexity. 

f) KNN (K- Nearest Neighbor): 

 K-Nearest Neighbor is the algorithm used for classification and regression, which uses training 

data directly to make predictions [39]. Predictions are made for a new data point by searching through 

the entire training set for the ‘k’ most similar instances(neighbors) and averaging the output variable 

for those k instances.   
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2.4. Training and Testing 

Recorded signals consist of 13 drive instances. These recorded data is split between training data 

consisting of 12 drive cycles and testing data consisting of 1 drive cycle, as shown in Figure 19. 

 

Figure 19: Training and testing dataset split 

The training data is given as an input to the developed models. Then the testing dataset is given as input 

to the trained network to get the predicted output. This is shown in Figure 20 

 

Figure 20: Training and testing input to neural network 

Implementation of Code is shown below: 

           Create training and testing datasets in the MATLAB, such that, training dataset contains 12 

drive instances and testing dataset contains 1 drive instance. 

Import the training and testing dataset in python environment 

Import required model library from the keras/scikit learn. 

Reshape the input data according to requirement of model. 

 

Create model and give the training data to the model. 

  Then give testing data to the model and get predicated velocity. 

   

  Tune the model to get accurate predictions. 

  Save final output to MATLAB file. 

The results then can be analyzed based on assessment methods using MATLAB toolbox. 

Above method is repeated for each drive instance to find the prediction for that instance. This way we 

are able to calculate the cross-validation results for velocity prediction. 
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3.RESULTS 

3.1. Assessment 

For accurate assessment of the prediction results, we introduced two assessment criteria: Mean absolute 

error (MAE) and Time shift. 

a) Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) is a measure of the difference between the two variables. Assume 

𝑦t1, … , 𝑦𝑡𝑛  are prediction results and 𝑍t1, … , 𝑍𝑡𝑛 are target values. The MAE is given by, 

MAE(Yt, Zt) =
∑ |yti − Zti|

n
i=1

n
 

Smaller MAE means smaller errors between prediction results and target values. 

b) Time Shift 

The time shift is a measure of the time lag between the predicted time series and target time series. It 

uses a cross-correlation technique for finding the time shift error. A smaller time shift means a smaller 

time lag between the prediction results and target values. It can be expressed as, 

time shift = argδmax (∑ |Yt−δ ∗ Zt1|

𝑛

0

) 

 

3.1.2. Analysis of MAE and Time Shift 

 The effect of accuracy of MAE and time shift on fuel economy and safety improvement strategy 

is unknown. Though to understand the assessment methods, we consider two cases of different 

hypothetical predictions are shown in Figure 21. The red line represents target velocity, and the blue 

line represents the prediction. It is important to note that, MAE in both cases is 1.6763 m/s. In Figure 

21(a), we can observe the upward shift in prediction, while in Figure 21(b), we can see a sideways 

shift. In the first case, the MAE increases as upward shift increases while the time shift remains the 

same. In the second case, an increase in MAE and time-shift both is observed with an increase in time 

shift error up to 10 seconds. We can also see that prediction in the first case is not zero at any stop 
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event. On the other hand, velocity predictions are correct in the second case, but it is predicted at the 

wrong time. 

 
(a) 

 
(b) 

Figure 21: (a) Upward shift in prediction (b) Sideways shift in prediction 

 

 

Increase in MAE 

Increase in MAE 

and Time shift 
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In the case of actual prediction, it is essential to understand that it may contain both types of errors.  

Figure 22 shows the example which has MAE of 4.3901 m/s and the time shift of 10 seconds. 

 

Figure 22:Hypothetical example of prediction consisting of both errors 

 

Analysis of results. 

 For better understanding, we have divided the study into the following sections: 

• Effect of Different Signals on prediction. 

• Effect of Different Models on prediction. 

• Effect on prediction window by different signals and different models. 

• 1- 10 seconds forward prediction.  
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3.2. Effect of Different Signals on Prediction 

For comparing different signals, we divided the signals into different groups. The prediction plots show 

a comparison of the prediction of the 10th second using the LSTM model against the Target values. 

Table 3: Signals used in group A 

Data Group A 

Signals  

Current Velocity 

GPS 

   

Group A data contains current velocity and GPS, as mentioned in Table 3.  Figure 23 shows the results 

for the velocity prediction for the 10th second using Group A signals and plotted against the target 

value. It can be observed that the prediction results are not aligning with the target. 

 

Figure 23: 10th-second prediction results using group A signals 
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Table 4: Signals used in group B 

Data Group B 

Signals 

 

Signals 

Current Velocity 

Group A 

GPS 

Previous 5 Seconds Previous 5 Seconds 

EGO and Engine 

Parameters 

EGO and Engine 

Parameters 

 

Group B data contains current velocity, GPS, previous 5 seconds of velocity, and all EGO and Engine 

parameters, as shown in Table 4. Figure 24 Velocity prediction for 10th second using Group B signals 

and plotted against the target value.  

 

Figure 24: 10th-second prediction results using group B signals 
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Group C data contains current velocity, GPS, previous 5 seconds of velocity, EGO and Engine 

parameters, and radar data, as mentioned in Table 5. Figure 25 shows the velocity prediction for the 

10th second using Group C signals and plotted against the target value.  

Table 5: Signals used in group C 

Data Group C 

Signals 

 

Signals 

Current Velocity 

Group B 

GPS 

Previous 5 Seconds 

EGO and Engine 

Parameters 

Radar Data Radar Data 

 

 

Figure 25: 10th-second prediction results using group C signals 

Group D data contains current velocity, GPS, previous 5 seconds of velocity, EGO, and Engine 

parameters, and Spat (Signal Phase and Timing), as shown in Table 6. Figure 26 shows the velocity 



28 

 

prediction for the 10th second using Group D signals and plotted against the target value. We can 

observe improvement in the alignment of the plots.  

Table 6: Signals used in group D 

Data Group D 

Signals 

 

Signals 

Current Velocity 

Group B 

GPS 

Previous 5 Seconds 

EGO and Engine 

Parameters 

SPat SPat 

 

 

Figure 26: 10th-second prediction results using group D signals  
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Group E data contains current velocity, GPS, previous 5 seconds of velocity, EGO, and Engine 

parameters, SPaT (Signal Phase and Timing), and Segment speed, as shown in Table 7. Figure 27 

shows the velocity prediction for the 10th second using Group E signals and plotted against the target 

value.  

Table 7: Signals used in group E 

Data Group E 

Signals 

 

Signals 

Current Velocity 

Group D 

GPS 

Previous 5 

Seconds 

EGO and Engine 

Parameters 

SPat 

Segment Speed Segment Speed 

 

 

Figure 27: 10th-second prediction results using group E signals  
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Group F data contains current velocity, GPS, previous 5 seconds of velocity, EGO, and Engine 

parameters, SPaT (Signal Phase and Timing), Radar, and Segment speed, as mentioned in Table 8. 

Figure 28 shows the velocity prediction for the 10th second using Group F signals and plotted against 

the target value.   

Table 8: Signals used in group F 

Data Group F 

Signals 

 

Signals 

Current Velocity 

Group E 

GPS 

Previous 5 Seconds 

EGO and Engine 

Parameters 

SPat 

Segment Speed 

Radar Radar 

 

 

Figure 28: 10th-second prediction results using group F signals   
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Group G data contains current velocity, GPS, previous 5 seconds of velocity, EGO, and Engine 

parameters, and Segment speed, as shown in Table 9. Figure 29 shows the velocity prediction for the 

10th second using Group G signals and plotted against the target value.  

Table 9:Singals used in group G 

Data Group G 

Signals 

 

Signals 

Current Velocity 

Group B 

GPS 

Previous 5 

Seconds 

EGO and Engine 

Parameters 

Segment Speed Segment Speed 

 

 

Figure 29: 10th-second prediction results using group G signals  
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Cross-validation results for the effect of signals on the prediction window: 

Box and whiskers plot for MAE is shown in  Figure 30 for every model for cross-validation results. 

Table 10 shows the result values. The horizontal axis represents different models, and the vertical 

axis represents MAE. 

 

Figure 30: MAE results for different signals for 10th-second prediction 

Table 10: MAE results for different signals for 10th -second prediction 

  Group A Group B Group C Group D Group E Group F Group G 

Test1 2.612 2.208 2.274 1.692 1.976 1.864 2.445 

Test2 2.300 2.028 2.044 1.811 2.525 2.337 2.148 

Test3 2.593 2.395 2.393 1.957 1.769 1.895 2.210 

Test4 2.455 2.420 2.422 1.913 1.853 2.030 2.331 

Test5 2.559 2.246 2.307 1.933 1.890 1.928 2.204 

Test6 2.475 2.171 2.190 2.011 1.922 1.840 2.278 

Test7 1.983 1.859 1.849 1.485 1.922 1.869 1.769 

Test8 3.024 2.384 2.465 2.113 1.959 1.910 2.337 

Test9 2.249 1.903 1.938 1.329 1.462 1.521 1.849 

Test10 2.172 1.789 1.763 1.256 1.291 1.260 1.677 

Test11 2.366 2.096 2.173 1.789 1.649 1.592 1.999 

Test12 2.360 2.093 2.303 2.055 2.088 1.915 2.119 

Test13 2.675 2.272 2.265 1.796 1.928 2.101 2.443 

Average 2.448 2.143 2.184 1.780 1.864 1.851 2.139 
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Figure 31 represents the box and whiskers plot, and Table 11 result values for time shift for every 

model for cross-validation results. It can be observed that groups with SPaT data perform better in 

terms of time shift.  

 

Figure 31: Time shift results for different signals for 10th-second prediction 

Table 11: Time shift results for different signals for 10th -second prediction 

  Group A Group B Group C Group D Group E Group F Group G 

Test1 55 39 41 19 26 22 43 

Test2 52 37 33 20 20 14 38 

Test3 59 46 45 31 31 29 42 

Test4 60 50 49 21 15 18 47 

Test5 66 58 58 36 26 32 57 

Test6 68 53 50 32 25 32 51 

Test7 45 35 31 24 25 14 22 

Test8 60 48 51 34 36 35 49 

Test9 55 38 45 30 19 23 41 

Test10 55 37 36 23 24 22 41 

Test11 46 32 31 6 14 6 25 

Test12 57 40 39 23 32 29 40 

Test13 59 37 44 19 21 17 45 

Average 56.69 42.31 42.54 24.46 24.15 22.54 41.62 
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3.2.1 Discussion on the Effect of Different Signals on Prediction  

Signals are divided into different groups to assess the effect of different signals on prediction. 

It was observed in the literature that LSTM had performed better compared to other prediction models. 

Research conducted at the University of Michigan explored a variety of perception models. They 

studied auto-regressive moving average, shallow NN, long short-term memory (LSTM) deep NN, 

Markov chain, and conditional linear Gaussian models for prediction accuracy. Their study concluded 

that the LSTM deep NN provided the best prediction fidelity (measured in mean absolute error) [31]. 

Hence, these signals are used as input to the LSTM model for getting velocity prediction.  

In cross-validation, prediction for each drive instance is obtained, such that the remaining 12 

are used for prediction. Using these results, box and whiskers plot is obtained for both MAE and 

Timeshift. The box and whiskers plot divide the result into four quartiles. The two whiskers represent 

the extreme ends of results. The line within the box represents the median of the results, separating two 

quartiles on both sides, i.e., 50% of results lye below the median line. The cross represents the mean 

value of the results. 

 It is important to understand that GPS and current velocity are most important for velocity 

prediction. It is one of the essential parameters to understand the velocity profile and understand the 

location of the vehicle. Hence it has been kept common in all the groups. We can observe that, in both 

cases, the prediction results for group D, group E, and group F shows the lowest average values for 

MAE and time shift. Among these groups, group D shows the lowest MAE. One common signal used 

in this group is SPaT data. These results, therefore, show that the SPaT data is beneficial for getting an 

accurate prediction. On the other hand, segment speed data may worsen the prediction results, as 

observed in group E results. Segment speed is the average velocity of vehicles traveling at a certain 

point on the map. This point may not be relevant to the current position of the vehicle. Therefore, usage 

of Segment speed data may result in poor prediction.  
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3.3 Effect of Different Models 

We can understand from 3.2 that Group D signals perform better than other groups. These group D 

signals are used as input to the different models for getting the 10th-second prediction. We can observe 

in Figure 32 that LSTM and CNN perform better, while Extra trees and Random forest shows some 

misprediction. 

   

(a)       (b) 

   

(c)       (d) 

Figure 32: 10th -second prediction for (a) LSTM (b) CNN (c) Extra Trees (d) Random Forest 

Box and whiskers plot for MAE is shown in  Figure 33 for every model for cross-validation results. 

Table 12 shows the result values. The horizontal axis represents different models, and the vertical axis 

represents MAE. The significance of the line within the box is that two-quarters of the values lie below 

the line. The whiskers represent upper and lower values found during cross-validation.  
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Figure 33: MAE results for different models for 10th-second prediction 

Table 12: MAE results for different models for 10th -second prediction 
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Test 1 2.84 2.60 2.34 2.15 1.69 2.09 1.99 2.27 2.81 2.83 2.83 

Test 2 2.20 2.38 2.25 2.05 1.81 2.00 1.80 2.19 2.75 2.80 2.80 

Test 3 2.40 3.87 3.49 2.47 1.96 2.02 1.83 3.22 2.91 2.88 2.88 

Test 4 2.47 2.41 2.00 1.81 1.91 2.10 1.95 1.90 2.72 2.75 2.75 

Test 5 2.47 3.63 3.09 2.12 1.93 1.98 2.19 3.04 2.76 2.83 2.83 

Test 6 2.70 2.43 2.14 2.06 2.01 1.91 2.02 2.10 2.55 2.54 2.54 

Test 7 2.27 2.36 1.88 1.76 1.49 1.83 1.67 1.85 2.33 2.35 2.35 

Test 8 2.33 2.76 2.52 2.27 2.11 2.30 2.03 2.49 2.75 2.71 2.71 

Test 9 2.13 2.63 2.16 1.81 1.33 1.58 1.47 2.01 2.42 2.41 2.41 

Test 10 3.98 2.01 1.79 1.51 1.26 1.55 1.45 1.83 2.28 2.30 2.30 

Test 11 2.37 2.14 1.91 1.82 1.79 2.15 1.67 1.94 2.83 2.85 2.85 

Test 12 2.66 3.07 2.34 2.17 2.06 2.08 2.05 2.26 2.71 2.77 2.77 

Test 13 2.57 2.62 1.94 1.84 1.80 2.07 1.77 1.91 2.63 2.65 2.65 

Average 2.57 2.69 2.30 1.99 1.78 1.97 1.84 2.23 2.65 2.67 2.67 
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Figure 34 represents the box and whiskers plot, and Table 13 result values for time shift for every 

model for cross-validation results. It can be observed that Machine learning models perform better in 

terms of time shift.  

 

Figure 34: Time Shift results for different models for 10th-second prediction 

Table 13: Time Shift results for different model for 10th-second prediction 
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Test 1 2.1 2.3 2.5 2.6 2.8 2.9 2.9 3.1 5.5 5.6 5.6 

Test 2 2.3 1.8 1.2 1.6 2.8 2.3 3.3 1.6 5.1 5.2 5.2 

Test 3 3.1 3.4 2.6 3.4 4 4 4.3 3.1 5.1 5.2 5.2 

Test 4 1.5 1.7 1.4 1.6 2.1 0.3 2.9 1.7 4.9 5 5 

Test 5 1.5 2.8 1.7 1.5 3.1 2.4 4.5 2.7 5.7 5.9 5.9 

Test 6 2.3 1.9 1.3 1.5 3.1 2.2 3.3 1.4 5.3 5.6 5.6 

Test 7 1.7 0.3 0.1 0.7 0.8 0.5 2.2 0.3 4.3 4.4 4.4 

Test 8 2.3 3.9 3.3 3.2 3.8 3.6 3.7 3.5 5.6 5.8 5.8 

Test 9 2.7 1.1 1.1 1.4 2.7 1.6 3.2 1.4 5.1 5.2 5.2 

Test 10 2.7 1.5 0.6 0.6 1.4 1.9 2.2 1 4.2 4.4 4.4 

Test 11 1.1 1.4 0.6 0.8 0.3 0 1.8 1 4.4 4.5 4.5 

Test 12 2.7 2.1 1.4 1.5 1.9 1.6 4 1.6 4.6 4.7 4.7 

Test 13 1.2 1.9 1.7 1.6 1.8 1.7 2.7 2.1 4.4 4.5 4.5 

Average 2.09 2.01 1.50 1.69 2.35 1.92 3.15 1.88 4.94 5.08 5.08 
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3.3.1 Effect of Different Models on Prediction 

 From Section 3.2.1, we can understand that group D signals perform better, which contains 

the SPaT data. Now group D signals are used as input to different models to get the prediction. 

Similar to the previous case, results for each drive instance is obtained to get cross-validation results. 

These results are then plotted in box and whiskers plot for MAE and Timeshift. 

 In the case of MAE, deep neural networks perform better than machine learning models. 

Among the deep learning, model LSTM performs best in terms of MAE. CNN model performance is 

very close to LSTM. CNN-LSTM performs third best, but in the case of neural networks, it is very 

difficult to provide reasoning for why it did not perform the best. In the case of machine learning 

models, the extra trees model performed better, followed by the random forest model. 

 In the case of time shift, Machine learning models perform better than deep neural network 

models. Extra trees perform best in terms of time shift. The current velocity is an essential input to 

get an accurate velocity profile. It seems that machine learning models do not use velocity input on 

priority. For example, in the case of extra trees, feature performance was observed, and it shows that 

brake pedal is more important than current velocity. We can observe in Figure 32 that the machine 

learning models show more predict errors compared to DNN models. Hence more emphasis is given 

to the lower MAE than the lower time shift. Therefore, LSTM performed better compared to other 

models.  
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3.4. Effect on Prediction Window 

3.4.1. Effect of Signal Groups on Prediction Window 

Signal Groups are used to obtain the prediction results for the next 10, 15, 20, and 30 seconds 

of forward prediction. These results are assessed based on MAE, and the plot is shown in Figure 35. 

Table 14 represents the average result values for MAE. We can observe that as the target horizon 

increases, the MAE starts increasing. Group D results perform the best, as SPat data is beneficial for 

prediction.  It can also observe that Group D shows almost 50% error reduction compared to Group A. 

Although Group E and Group F have more signals, the Segment speed did not improve the results. 

These are consistent with the results obtained in Asher, Zachary D [41], where less fuel economy was 

observed due to mispredictions when the Segment Speed signal is used for prediction.  

 

Figure 35: Effect of signal groups on MAE 

Table 14: Effect of signal groups on MAE 

Prediction 

Window 
Group A Group B Group C Group D Group E Group F Group G 

10 sec 2.45 2.14 2.18 1.78 1.86 1.85 2.14 

15 sec 3.52 3.22 3.24 2.55 2.64 2.66 3.11 

20 sec 4.32 4.02 4.02 3.09 3.24 3.28 3.71 

30 sec 5.29 4.91 5.02 4.04 4.18 4.23 4.53 
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The effect due to signal groups on time shift is shown in Figure 36. The average result values are shown 

in Table 15. We can observe that, as the prediction window increases, the time shift in the prediction 

increases.  

 

Figure 36: Effect of groups on time shift 

Table 15: Effect of groups on time shift 

Prediction 

Window 

Group 

A 

Group 

B 

Group 

C 

Group 

D 

Group 

E 

Group F Group G 

10 sec 5.67 4.23 4.25 2.35 2.42 2.25 4.16 

15 sec 9.65 7.59 7.55 3.68 3.23 3.44 6.77 

20 sec 13.43 10.64 10.72 4.05 4.27 4.23 8.85 

30 sec 22.19 17.31 17.48 7.07 7.45 7.46 13.01 
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3.4.2. Effect of Different Models on the Prediction Window: 

 Different models are used for predicting 10, 15, 20, 30 seconds predictions. The effect of different 

models on MAE is shown in Figure 37. We can observe that as the prediction window increases, there 

is an increase in MAE. On the other hand, Machine learning models are consistent in terms of time 

shift, while deep neural networks still show an increase in time shift. The values for MAE and time 

shift are shown in Table 16 and Table 17. 

 

Figure 37: Effect of different neural networks on MAE 

Table 16: Effect of different neural networks on MAE 

 Models 10 sec 15 sec 20 sec 30 sec 

LSTM 1.78 2.55 3.09 4.04 

CNN 1.84 2.77 3.50 4.43 

CNN LSTM 1.97 2.70 3.26 4.01 

Extra trees 1.99 2.73 3.30 4.02 

Bagged trees 2.23 3.09 3.67 4.38 

Random forest 2.30 3.15 3.72 4.37 

LR with interactions 2.57 3.60 4.28 5.09 

Linear regression 2.65 3.82 4.65 5.45 

KNN 2.67 3.84 4.67 5.48 

Ridge 2.67 3.84 4.67 5.48 

Decision trees 2.69 3.60 4.12 4.72 
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Figure 38:Effect of the different neural network on time shift 

Table 17: Effect of different neural networks on time shift 

 MODEL 10 sec 15 sec 20 sec 30 sec 

Random forest 1.50 1.43 1.70 0.84 

Extra trees 1.69 1.79 2.11 0.90 

Bagged trees 1.88 1.81 2.08 1.37 

CNN -LSTM 1.92 2.02 2.08 1.75 

Decision trees 2.01 2.01 1.11 0.52 

LSTM 2.35 3.68 4.05 7.07 

CNN 3.15 5.41 6.23 9.07 

LR with interactions 3.26 3.72 1.37 1.14 

Linear regression 4.94 8.39 11.42 12.16 

KNN 5.08 8.59 11.72 12.99 

Ridge 5.08 8.59 11.72 12.99 
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3.4.3 Discussion on the Effects on Prediction Window 

 To understand the effects of signals and prediction models, average prediction for 10, 15, 20 

and 30 seconds are obtained. In the case of effects of signals, we can understand clearly that with the 

increase in prediction window, there is increase in MAE and time shift. Also group D, E and F 

containing SPaT signals show lowest MAE and time shift. 

 In case of effects of different model of prediction, there is increase in MAE with increase in 

prediction window. On the other hand, in case of time shift, the ensembled models show consistency 

with lower time shift. The time shift of 30 second prediction is even lower than 10, 15, and 20 

seconds. DNN models show increase in time shift with increase in MAE. Models such as Linear 

regression, KNN, and Ridge regression is worse compared to other models.  
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3.5. 1- 10 seconds Forward Prediction. 

 Nowadays, many researchers are exploring the optimal EMS, which can be implemented 

practically, which is the motivation for this project, as discussed in section 1.3. Model predictive 

control (MPC) is a prospective strategy that can deliver optimal controls with practical considerations  

[42-44]. Model predictive control (MPC) involves control of a dynamic system based on different 

control inputs which are applied from the current time to a future time resulting in minimization of a 

cost function subject to the system dynamics and additional constraints [45-47] 

 

 

 

 

 

 

 

 

 

 

Figure 39: Detailed view of model predictive control 

The detailed MPC planning sub-system is shown in Figure 39. It is difficult to obtain a 

prediction for the whole drive cycle in advance. But, we can get the velocity predictions for the desired 

horizon at each time index as we move forward. So, MPC takes the predicted velocity of the desired 

horizon as an input to calculate optimal controls only for that selected horizon using dynamic 

programming optimizer in backward in time. This process provides us optimal control for the entire 

horizon, which can result in fuel economy. 

The forward prediction for every second from 1st second to 10th second is obtained from 

different neural networks. These forward prediction from 1- 10 seconds is plotted at every 10-second 

interval. So, at every 10-second interval, a hairy plot can be obtained, which is shown in Figure 40. In 

a hairy plot, we observe more distinct hairs, which are mispredictions. We can observe that there are 

few mispredictions for LSTM and CNN. While we see many mispredictions in Extra trees and Random 

Forest.  
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(a)       (b) 

 

(c)       (b) 

Figure 40: Velocity prediction 1-10 second ahead using (a) LSTM (b) CNN (c) Extra Trees (d) 

Random Forest 
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4. Summary 

Overall following are the summary points of each study conducted in the research 

• Effect of Different Signals on prediction.  

When grouped signals are given input to the LSTM neural network to predict 10-second 

prediction, it was observed that Group D signals perform better. It was observed that Group B 

signals perform better than Group A due to adding of the previous 5 seconds and EGO and 

Engine parameters. Group D data contains current velocity, GPS, previous 5 seconds of 

velocity, EGO, and Engine parameters, and Spat (Signal Phase and Timing). In the case of 

Group E and Group F, Segment speed tends to worsen prediction. Hence group E and group F 

show some mispredictions when compared with the group D performance. Overall, we 

observed that Group D shows an almost 50% error reduction compared to Group A. Group D 

as an input to LSTM used for 10th-second prediction MAE of 1.78 m/s and the time shift of 

2.35 seconds is observed. 

• Effect of Different Models on prediction. 

Results are assessed based on MAE and time shift. Group D signals are used as input to various 

models to prediction 10th-second velocity. We can observe that a deep neural network model 

performs better in terms of MAE, while classical machine learning models perform better in 

terms of time shift. Overall, we observed that the LSTM model performs best for vehicle 

velocity prediction since it can predict more accurately compared to other models. MAE of 1.78 

is observed with the LSTM model for 10-second prediction. Random forest time shift 1.50 

seconds for 10th- seconds. 

• Effect on prediction window by different signals and different models. 

When we predict velocity using different signals or different models, we observed an increase 

in MAE in both cases. Time shift increases for prediction using different signals. On the other 

hand, the time shift does not increase much in the case of ensembles. Overall 10th-second 

prediction gives better accuracy. 

• 1-10 seconds forward prediction. 

Forward prediction of every second is obtained for 1 to 10 seconds and plotted on hairy plots 

for every 10-second interval. Overall it was observed that the LSTM and CNN model performed 

better compared to other machine learning models. 
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5. Conclusion 

In this study, multiple signals collected in Fort Collins, Colorado, which are used in different 

Groups for getting a prediction for 10, 15, 20,30 seconds from LSTM. Group D dataset showed the 

best performance, where SPaT data was observed very useful for prediction. The assessment was done 

based on MAE and time shift. We also compared different models, which include deep neural networks 

and classical machine learning models. LSTM shows excellent performance for predicting vehicle 

velocity and can be used for predicting different prediction horizons. This study demonstrates that V2I 

data is essential to obtain significant improvement in vehicle velocity prediction. ANN’s ability to 

predict future velocity is observed. It also shows the performance of different signals and models on 

the prediction.  

In future work, this study could be extended with a higher number of drive cycles. We can also 

include V2V and Camera data and more V2I data in the dataset and study the combination in different 

groups. Prediction with respect to distance can be used by gathering data with respect to distance for 

predicting velocity in the forward distance. It also seeks to work on implementation where signals 

collected on NVIDIA Drive PX2 can be used for getting predictions. 

  



48 

 

References 

1. Fagnant, Daniel J., and Kara Kockelman. "Preparing a nation for autonomous vehicles: 

opportunities, barriers and policy recommendations." Transportation Research Part A: Policy and 

Practice 77 (2015): 167-181.Energy-Efficient Driving of Road Vehicles:.  

2. Waschl, Harald, Ilya Kolmanovsky, and Frank Willems. Control Strategies for Advanced Driver 

Assistance Systems and Autonomous Driving Functions. Springer Vlg, 2019.Nkoro, A.B. and 

Vershinin, Y.A., “Current and Future Trends in Applications of Intellige.  

3. Birky, A., Laughlin, M., Tartaglia, K., Price, R. et al.,“Electrification Beyond Light Duty: Class 

2b-3 Commercial Vehicles,” No. ORNL/TM-2017/744. Oak Ridge National Lab.(ORNL), Oak 

Ridge, TN (United States), 2018.  

4. IDC's Worldwide Semiannual Internet of Things Spending Guide, May 2016 and Vehicles, 

connected cars are a subset of Connected.  

5. Automated Driving, Levels of Driving automation defined in new SAE International Stanadard 

J3016.  

6. Seeker. “How Close Are We to a Self-Driving World?”. Filmed [Apr 12, 2019]. YouTube video 

Posted [Apr 12, 2019]. https://youtu.be/U5laBg-ERbQ.  

7. EIA, 2017: May 2017 Monthly Energy Review. DOE/EIA-0035(2017/5). U.S. Department of 

Energy, U.S. Energy Information Administration (EIA), Washington, DC, 243 pp.  

8. Reidmiller, D. R., C. W. Avery, D. R. Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock, 

and B. C. Stewart. "Impacts, Risks, and Adaptation in the United States: Fourth National Climate 

Assessment, Volume II." (2017).  

9. Pierre-Louis, Kendra " Greenhouse Gas Emissions Accelerate Like a ‘Speeding Freight Train’ in 

2018" The new York times [New York] Dec. 6, 2018 Published: Page A1.  

10. UNFCCC, 2015: Paris Agreement. United Nations Framework Convention on Climate Change, 

[Bonn, Germany], 25 pp.  

11. Atabani, A.E., Badruddin, I.A., Mekhilef, S., Silitonga, A.S.: A review on global fuel economy 

standards, labels and technologies in the transportation sector. Renewable Sustainable Energy Rev. 

15, 4586–4610 (2011).  

12. Bender, F.A., Kaszynski, M., and Sawodny, O., “Drive Cycle Prediction and Energy 

Management Optimization for Hybrid Hydraulic Vehicles,” IEEE Trans Veh Technol 62:3581-3592, 

2013.  

13. Phillips, Derek J., Real-time Prediction of Automotive Collision Risk from Monocular Video 

(2019)).  

14. Gaikwad, Tushar D., Zachary D. Asher, Kuan Liu, Mike Huang, and Ilya Kolmanovsky. Vehicle 

Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning 

Vehicle Velocity Prediction with Optimal Energy Management to Improve.  



49 

 

15. Bernard Marr. “What is the Difference Between Artificial Intelligence and Machine Learning?” 

Time, Dec 6, 2016. https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-

between-artificial-intelligence-and-machine-learning/.  

16. What is Deep Learning by Jason Brownlee, August 2019 in Deep Learning, Machine learning 

mastery.  

17. Gong Q, Li Y, Peng ZR (2008) Trip-Based Optimal Power Management of Plug-in Hybrid 

Electric Vehicles. IEEE Trans Veh Technol 57:3393–3401.  

18. Gong Q, Li Y, Peng Z (2009) Power management of plug-in hybrid electric vehicles using neural 

network based trip modeling. In: 2009 American Control Conference. ieeexplore.ieee.org, pp 4601–

4606.  

19. Mohd Zulkefli MA, Zheng J, Sun Z, Liu HX (2014/8) Hybrid powertrain optimization with 

trajectory prediction based on inter-vehicle-communication and vehicle-infrastructure-integration. 

Transp Res Part C: Emerg Technol 45:41–63.  

20. Lefèvre, S., Sun, C., Bajcsy, R., and Laugier, C., “Comparison of Parametric and Non-Parametric 

Approaches for Vehicle Speed Prediction,” in American Control Conference, June 4-6, 2014, 

doi:10.1109/ACC.2014.6858871.  

21. Sun C, Hu X, Moura SJ, Sun F (2015) Velocity Predictors for Predictive Energy Management in 

Hybrid Electric Vehicles. IEEE Trans Control Syst Technol 23:1197–1204.  

22. Sun C, Moura SJ, Hu X, Hedrick JK, Sun F (2015) Dynamic Traffic Feedback Data Enabled 

Energy Management in Plug-in Hybrid Electric Vehicles. IEEE Trans Control Syst Technol 23:1075–

1086.  

23. Lemieux, J. and Ma, Y., “Vehicle Speed Prediction Using Deep Learning,” in IEEE Vehicle 

Power and Propulsion Conference, 1-5, 2015.  

24. Rezaei, Amir, and Jeffrey B. Burl. "Prediction of vehicle velocity for model predictive control." 

IFAC-PapersOnLine 48, no. 15 (2015): 257-262.  

25. Hellstrom, E., and Jankovic, M., “A Driver Model for Velocity Tracking with Look-Ahead”, in 

American Control Conference, Chicago, IL, 2015.  

26. Baker D, Asher Z, Bradley T (2017) Investigation of Vehicle Speed Prediction from Neural 

Network Fit of Real World Driving Data for Improved Engine On/Off Control of the EcoCAR3 

Hybrid Camaro. SAE Technical Paper.  

27. Olabiyi, O., Martinson, E., Chintalapudi, V., Guo, R., “Driver Action Prediction Using Deep 

(Bidirectional) Recurrent Neural Network”, eprint arXiv:1706.02257, 2017.  

28. Zhang, F., Xi, J., and Langari, R., “Real-Time Energy Management Strategy Based on Velocity 

Forecasts Using V2V and V2I Communications,” IEEE Transactions on Intelligent Transportation 

Systems 18:416-430, 2017.  



50 

 

29. Sun C, Sun F, He H (2017) Investigating adaptive-ECMS with velocity forecast ability for hybrid 

electric vehicles. Appl Energy 185, Part 2:1644–1653.  

30. Baker, David, Zachary Asher, and Thomas Bradley. Investigation of vehicle speed prediction 

from neural network fit of real world driving data for improved engine On/Off control of the 

EcoCAR3 hybrid camaro. No. 2017-01-1262. SAE Technical Paper, 2017.  

31. Liu K, Asher Z, Gong X, Huang M, Kolmanovsky I (2019) Vehicle Velocity Prediction and 

Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using 

Machine Learning.  

32. Jason Brownlee, Long Short-Term Memory Networks With Python (Machine learning mastery).  

33. Olah, C. et al., “Understanding LSTM Networks,” 2015, http://colah.github.io/posts/2015-08-

Understanding-LSTMs/.  

34. LSTM and RNN Tutorial with Demo (with Stock/Bitcoin Time Series Prediction, Sentiment 

Analysis, Music Generation) https://github.com/omerbsezer/LSTM_RNN_Tutorials_with_Demo.  

35. Huang, Chiou-Jye, and Ping-Huan Kuo. "A deep cnn-lstm model for particulate matter (PM2. 5) 

forecasting in smart cities." Sensors 18, no. 7 (2018): 2220.  

36. Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "An empirical evaluation of generic 

convolutional and recurrent networks for sequence modeling." arXiv preprint arXiv:1803.01271 

(2018).  

37. Should We Abandon LSTM for CNN? by Geoffrey So, Mar 29 2019, medium.com.  

38. Hadelin de Ponteves. “Deep Learning A-Z™: Hands-On Artificial Neural Networks” June 9, 

2019, https://www.udemy.com/course/deeplearning/.  

39. Jason Brownlee, Machine learning Mastery with python (Machine learning mastery).  

40. Geurts, Pierre, Damien Ernst, and Louis Wehenkel. "Extremely randomized trees." Machine 

learning 63, no. 1 (2006): 3-42.  

41. Asher, Zachary D., Jordan A. Tunnell, David A. Baker, Robert J. Fitzgerald, Farnoush Banaei-

Kashani, Sudeep Pasricha, and Thomas H. Bradley. Enabling Prediction for Optimal Fuel Economy 

Vehicle Control. No. 2018-01-1015. SAE Technical Paper, 2018.  

42. Xie, Shaobo, Xiaosong Hu, Zongke Xin, and James Brighton. "Pontryagin’s minimum principle-

based model predictive control of energy management for a plug-in hybrid electric bus." Applied 

energy 236 (2019): 893-905.  

43. Borhan, Hoseinali, Ardalan Vahidi, Anthony M. Phillips, Ming L. Kuang, Ilya V. Kolmanovsky, 

and Stefano Di Cairano. "MPC-based energy management of a power-split hybrid electric vehicle." 

IEEE Transactions on Control Systems Technology 20, no. 3 (201.  

44. Fu, Lina, Ö. Ümit, Pinak Tulpule, and Vincenzo Marano. "Real-time energy management and 

sensitivity study for hybrid electric vehicles." In Proceedings of the 2011 American Control 

Conference, pp. 2113-2118. IEEE, 2011.  



51 

 

45. Meyer, Richard, Raymond A. DeCarlo, Peter H. Meckl, Chris Doktorcik, and Steve Pekarek. 

"Hybrid model predictive power flow control of a fuel cell-battery vehicle." In Proceedings of the 

2011 American Control Conference, pp. 2725-2731. IEEE, 2011.  

46. Meyer, Richard T., Raymond A. DeCarlo, Peter H. Meckl, Chris Doktorcik, and Steve Pekarek. 

"Hybrid model predictive power management of a fuel cell‐battery vehicle." Asian Journal of Control 

15, no. 2 (2013): 363-379.  

47. Meyer, Richard T., Raymond A. DeCarlo, and Steve Pekarek. "Hybrid Model Predictive Power 

Management of a Battery‐Supercapacitor Electric Vehicle." Asian Journal of Control 18, no. 1 

(2016): 150-165.  

 


	Vehicle Velocity Prediction Using Artificial Neural Networks and Effect of Real-World Signals on Prediction Window
	Recommended Citation

	tmp.1598465725.pdf.vHT56

