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SHORT-TERM 2D AND 3D GEOMORPHIC CHANGE DETECTION AT A PUBLIC PARK  

ON LAKE MICHIGAN USING UAS REMOTE SENSING TECHNIQUES 

 

Scott P. Fitzgerald, M.S. 

Western Michigan University, 2022 

 

The high-water level of Lake Michigan (LM) in the past few years has led to significant 

periods of erosion and increased the risk to private property owners on the coast.  To cope with 

this, many property owners on the coast of LM have constructed coastal protections, some opting 

for seawalls.  Previous studies have assessed the effects of seawalls but disagreed on their 

impacts, and only laboratory studies were able to establish their range of influence.  Using a 

different method to study their effects will be pertinent to understanding them. 

This research aims to use a higher temporal and spatial resolution approach, Unoccupied 

Aircraft System (UAS) aerial image collection with Structure from Motion (SfM) image 

processing, than previous studies to examine the effects of a seawall on an adjacent Lake 

Michigan beach.  Previous studies have relied on satellite imagery or visual observation to 

conclude results.  However, satellite data does not provide 3-dimensional data and are too low a 

resolution for repeat observation, and visual inspection can introduce bias. 

 Over 9 months and 18 aerial surveys of a public park on Lake Michigan, 2D and 3D 

changes in the beach and dune were recorded.  Using the extent of shorelines, two sites were set 

up: site 1 under influence of the seawall and site 2, under no influence.  Measurements were 

made between shoreline positions to create the shoreline average difference variable.  A t-test of 

unequal variances was used to determine if site 1 had more erosion than site 2 (p < .50).  For 3D 

data, elevation change values were gathered using raster differencing.  There were significant 



negative elevation changes in many parts of the dune (<-2.5 ft).  However, due to issues with the 

SfM-MVS method, the dune covered in heavy vegetation, elevation changes could not be 

obtained.  Thus, it is difficult to discern if the changes are brought on the adjacent seawall or if 

other factors such as tourist movement or heavy storms could have caused the negative elevation 

changes.
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INTRODUCTION 

 Many hydrologic processes drive the geomorphology of Lake Michigan’s shoreline.  

Lake Michigan’s water level has reached above-average levels for every month of the year since 

2015 (US Army Corps of Engineers, 2020).  The water level in Lake Michigan is inches away 

from breaking the known record, initially set in 1985-1986 (see Figure 1; US Army Corps of 

Engineers, 2020).  Due to the high-water level, Michigan’s Department of Environment, Great 

Lakes, and Energy (EGLE) has characterized most of Michigan’s western shoreline as high risk 

for erosion (EGLE, 2020a).  Shoreline protections are an attempt by private landowners along 

the shore to cease the erosion and loss of their property.  Between October 2019 and July 2020, 

EGLE approved 1,771 permits to construct permanent shoreline protections (House, 2020). 

 

Many shoreline protections exist, classified as ‘hard’ or ‘soft’ (National Research 

Council, 1995).  Hard shore protections include bulkheads, seawalls, breakwaters, revetments, 

jetties, and groins (National Research Council, 1995).  Soft shore protection involves 

nonpermanent structures; beach nourishment is a soft protection type that adds sand to a beach 

(National Research Council, 1995).  Adding sand to the beach will enlarge the reservoir, pushing 

the beach seaward or lakeward; a more extensive beach can better dissipate wave energy than a 

smaller one (National Research Council, 1995).  Other ‘soft’ protections involve adding deep-

rooted plants or unmowed vegetation to decrease erosion (EGLE, 2020b). Hard shoreline 

Figure 1.  Historical water level data of the Lake Michigan-Huron basin from 1918 to 2020.  The red line shows 

the long-term average annual and in blue shows the monthly mean water level (U.S. Army Corps of Engineers, 

2020). 
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protections, such as seawalls, can negatively impact the lake's fishery, wildlife, and water 

quality.  Moreover, seawalls can affect adjacent beaches with the end-wall effect (EGLE, 2020b; 

Balaji et al., 2017; Basco et al., 2006; McDougal et al., 1987; Walton & Sensabaugh, 1978).   

 

LITERATURE REVIEW 

The Lake Michigan-Huron basin has long been an area of study, from the geologic 

formation due to glaciers to more recently focused on the water level (Volpano et al., 2020; 

Theuerkauf et al., 2019; Fraser et al., 1990).  The water level of the Lake Michigan-Huron basin 

is influenced by rainfall, run-off, discharge, evaporation, and evapotranspiration (Fraser et al., 

1990).  The history of its water level has been established by collecting sediment cores and many 

analytical methods for the past 12,000 years (Steven et al., 1994).  Water levels facilitating the 

geomorphic change of the shoreline have been well documented.  Remote sensing (RS) and 

geographic information systems (GIS) have recently been used to aid coastal research (Volpano 

et al., 2020; Zimmerman et al., 2020; Pagán et al., 2019; Theuerkauf et al., 2019; Conlin et al., 

2018; Westoby et al., 2018; Balaji et al., 2017; Cook, 2017; Sturdivant et al., 2017; 

Papakonstantinou et al., 2016; Rossi et al., 2016; Vericat et al., 2016; Javernick et al., 2014; 

Mancini et al., 2013; James & Quinton, 2012).  Repeatable satellite imagery has a lengthy 

catalog dating back to when Landsat 1 was launched in 1972.  The 30-meter spatial resolution of 

the satellite is not high enough spatial resolution to observe precise changes in the shoreline, 

daily, monthly, or yearly, and most likely decadal (Carrivick et al., 2016).   

Many studies have been done regarding geomorphic change due to shoreline protections 

(Balaji et al. 2017; Lin et al. 2014; Miles et al. 2001; MacIntosh & Anglin 1988; Komar & 

McDougal 1988), with only a few utilizing RS and GIS to obtain results (Balaji et al. 2017; Lin 
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et al. 2014).  However, a few studies have found that coastal structures do not significantly affect 

beach profiles (Kraus & McDougal, 1996; Plant & Griggs, 1992).  On the Northwestern U.S. 

coast, Komar and McDougal (1988) did not prove that structures induce erosion of adjacent 

properties during their study due to a lack of strong erosion events.  Plant and Griggs (1992) 

found a lack of severe erosion events in the beach adjacent to a seawall on the Californian coast.  

However, their conclusions were primarily visual observations, suggesting continuous 

monitoring and three-dimensional measurements for future studies (Plant & Griggs, 1992).   

Walton and Sensabaugh (1978) did field observations post-hurricane Eloise of two 

beaches adjacent to seawalls; excessive erosion on the beaches was attributed to the adjacent 

seawall.  Lin et al. (2014) studied the nearshore environment before and after constructing a 

coastal structure in the Lake Michigan-Huron basin using both RS and in-situ observations.  

They found negative impacts on bluff stability due to erosion on the beach adjacent to the newly 

built structure (Lin et al., 2014).  Balaji et al. (2017), on the Indian coast, found that the 

construction of a coastal structure resulted in landward erosion of approximately 65 feet (20 m) 

on the beach downdrift of the seawall.  Attempts have been made by researchers to determine the 

influence range of an adjacent seawall to no success.  However, researchers in controlled 

laboratory studies have concluded that the effect on adjacent beaches is a function of the seawall 

length (McDougal et al., 1987).   

A seawall can protect a beach from erosion occurring at that beach because it redirects 

the wave energy away from hitting the beach (Balaji et al., 2017).  However, that wave energy 

must end up somewhere – typically causing more erosion down-drift of the seawall, producing 

the end-wall effect (Balaji et al., 2017; Basco et al., 2006; McDougal et al., 1987; Walton & 

Sensabaugh, 1978).  Because the purpose of a seawall has an unintended consequence for 
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beaches in relation, their effects must be studied to know the potential outcomes before 

constructing them.   

 Recent research on geomorphic change due to shoreline protections has primarily 

involved RS and GIS (Balaji et al., 2017; Lin et al., 2014).  Repeat data collection of coastal 

environments commonly involve survey-grade, high accuracy (both horizontal and vertical) 

Global Navigation Satellite System (GNSS) equipment (i.e. Real-Time Kinematic or RTK) 

(McKenna & Farrell, 2014; Harley et al., 2011; Yates et al., 2009; Ruggerio et al., 2005), total 

station (Gibbs et al., 2001), terrestrial laser scanning (TLS) (Pietro et al., 2008; laser scanning 

otherwise known as light detection and ranging, simply lidar), and airborne laser scanning (ALS) 

(Sallenger et al., 2003).  These are valuable methods to monitor coastal environments but do 

present disadvantages when observing short term changes, needing a high resolution, .  For 

example, remote sensing from satellite imagery is helpful to monitor geomorphic change when 

the time between observation intervals is yearly to decadal because it cannot distinguish small-

scale changes due to its low spatial resolution (Papakonstantinou et al., 2016).  Likewise, 

techniques involving lidar (TLS and ALS) require expensive equipment and are unavailable in 

many areas (Conlin et al., 2018; Papakonstantinou et al., 2016).  In addition, RTK surveys can 

fail to determine small-scale features in 3D (Ruggiero et al., 2005).  None of these methods can 

provide both two-dimensional and three-dimensional data alone and frequent observations can be 

costly.  While these are valued methods to provide insightful results to their respective 

application, there use may have to be supplemented with other methods to provide insightful 

results.  This study explores a relatively new RS method to determine its applicability to study 

the effects of seawall on an adjacent beach. 
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 A low-cost and high-resolution method to monitor geomorphic change has emerged 

(Conlin et al., 2018; Carrivick et al., 2016; Mathews & Jensen, 2012).  Structure from Motion-

Multiview Stereo (SfM-MVS) photogrammetry creates three-dimensional topographic data and 

two-dimensional orthomosaics from a series of overlapping images.  The relatively low cost of 

this method stems from its ability to perform well with consumer-grade cameras (Carrivick et al., 

2016).  Cameras can be attached to a variety of platforms: unoccupied aircraft systems (UAS) or 

drones (Turner et al., 2016; Mathews & Jensen, 2013; Dunford et al., 2009), blimps (Vericat et 

al., 2009), kites (Westoby et al. 2015; Smith et al., 2009), telescopic poles (Rossi et al., 2016; 

Mathews & Jensen, 2012; Plets et al. 2012), and occupied aircraft (Javernick et al., 2014; James 

& Varley, 2012) have been utilized to collect images for use in SfM-MVS.  Conlin et al. (2018) 

suggest that UAS platforms and SfM-MVS image processing can obtain the most accurate 

results in coastal environments compared to other SfM-MVS methods mentioned.  The resulting 

SfM-MVS point cloud needs to be georeferenced to get measurements; the point cloud can be 

georeferenced directly or indirectly.  Indirect georeferencing is done with ground control points; 

a minimum of three are required, with XYZ coordinates.  Researchers have concluded the 

optimal configuration to maximize accuracy for ground control points (GCPs) on coastal 

environments are in the corners of the study site, at both high and low elevations, and with 

sufficient cross-shore and alongshore coverage (Zimmerman et al., 2020; Westoby et al., 2018).  

Alternatively, a direct georeference can be achieved when the camera positions at the time of 

imaging are derived with an RTK and inertial measurement unit (IMU) (Turner et al., 2014; Tsai 

et al., 2010).   

Many studies have utilized UAS-SfM-MVS (hereby abbreviated to UAS-SfM) to observe 

geomorphic change (Turner et al., 2016; Theuerkauf et al., 2019; Conlin et al., 2018; Cook, 
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2017; Mancini et al., 2013; Pagán et al., 2019; Zimmerman et al., 2020).  Studies suggest that 

UAS-SfM is comparable in accuracy to commonly used methods, such as TLS (Mancini et al., 

2013; Sturdivant et al., 2017; Cook, 2017; Oúedraogo et al., 2014; Favalli et al., 2012; Thoeni et 

al., 2014; James & Quinton, 2013; Westoby et al., 2012).  UAS-SfM cannot produce accurate 

surface elevations in densely vegetated areas; this can be improved by taking oblique images 

(Sturdivant et al., 2017).  This problem does not occur in sand due to the lack of vegetation 

(Sturdivant et al., 2017).  UAS-SfM data produce higher resolution and denser point clouds than 

other surveying methods in sandy beach areas (Sturdivant et al., 2017).  UAS-SfM has the 

capability to provide new insights towards geomorphic change studies due to its low cost, high 

precision 3D point clouds, visual reflectance data, and its capability for rapid deployment 

(Sturdivant et al., 2017).   

Objectives 

 The broad research question for this study is: Do seawalls increase erosion on adjacent 

beaches, and what is the distance range of their influence?  This question will be answered 

through the following research objective (and two-subobjectives): 

1) Examine coastal geomorphic change at Hagar Park/Beach, Michigan by: 

a) comparing seawall and non-seawall two-dimensional (2D) shoreline 

position over time, and 

b) comparing seawall and non-seawall erosional three-dimensional (3D; 

volumetric) change over time. 
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METHODS 

Study Site 

 The study site is in southwestern Michigan on the shore of Lake Michigan, specifically 

Hagar Park/Beach (HPB), located in Hagar Township (Figures 2 and 3).  The park is managed by 

Hagar Township who, granted permission to conduct this study.  Permission was readily granted 

due to the concerns of erosion by township administrators.  The study site is downdrift to a 

seawall located on private property and cement wave breakers located on park property (only the 

public park will be under observation due to access and permissions).  This site was visited bi-

weekly on Wednesdays from March 2021 to November 2021 to observe geomorphic change.  

This site was selected due to its adjacency due to the coast parallel seawall, the easy (and 

continual) access, and the park is publicly owned.  It was essential to have this study at a park 

because private property owners would be unlikely to grant permission (or give concurrent 

permission) if a possible outcome of this study sheds a negative light on the impact of seawalls.  

The study area was split into two sites: Site 1 is under the most influence of the seawall wave 

redirection.  Site 2, farther north on HPB, is under less influence from the seawall (Figure 4).  

The boundary between Site 1 and 2 was placed 205 feet away from the seawall after digitizing 

the shoreline positions and visually observing where the shorelines begin to experience minor 

variation and spread in extent.   
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Figure 2.  Location of the study site in Hagar Township. 

 

Figure 3.  Hagar Park/Beach.  Photographed by UAS on September 26th, 2020. 
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Figure 4.  Aerial view of the study area, 6-2-21.  The study area is divided into two sites, at 205 feet 

from the seawall, by the red line to compare the shorelines differences.  The southern portion of the 

beach is Site 1 (closest to the seawall), and the Northern part is Site 2. 
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Aerial Image Data to Observe Geomorphic Change 

Aerial images were collected using an off-the-shelf DJI Inspire 1 UAS with an integrated 

camera and gimbal system (Figure 5).  Aerial images were gathered on two automated flight 

paths with 90% overlap with the camera at an 80-degree angle on the first path and 70-degrees 

on the second to improve keypoint matching and the resulting outputs (Mancini et al., 2016; 

Mathews & Jensen, 2013; Dandois & Ellis, 2010).  Camera settings were adjusted to maintain 

high within-image contrast (Pix4D, n.d).  A flying height altitude of 45 meters (~148 ft) above 

ground-level was used throughout the study to ensure a similar spatial resolution for each data 

collection and significant overlap between images (at least ten overlapping images) to ensure 

adequate keypoint matching on bare sand (Zimmerman et al., 2020; Carrivick et al., 2016; 

Mancini et al., 2016) and to increase the density of the resulting point cloud (Mathews & Jensen, 

2013).  Propeller Aeropoints were used as GCPs to indirectly georeference the images, 

orthomosaic, and point cloud (Carrivick et al. 2016).  GCPs were placed on both high (on the 

dune) and low (the beach face) areas and spatially distributed throughout the study site following 

Zimmerman et al. (2020) and Westoby et al. (2018) methods.  GCPs were placed in the corners 

of the study area.  However, one corner could not be used due to its location in heavy vegetation; 

a viable alternative was chosen (Zimmerman et al., 2020; James & Robson, 2012).  A stratified 

placement of GCPs was utilized with one-fifth (9 m) to one-tenth (4.5 m) spacing between GCPs 

(Harwin & Lucieer, 2012) of the flight altitude (=45 m) was utilized for the GCPs to procure 

sufficient cross-shore distribution (Zimmerman et al., 2020) and avoid clustering to decrease the 

root mean square error (RMSE) and mean absolute error (MAE) (Javernick et al., 2014; James & 

Robson, 2012).  GCPs with substantial horizontal and vertical errors were removed to improve 

the total error (Vericat et al., 2016).  A minimum of three GCPs is needed to georeference a point 
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cloud.  If GCPs are removed to below three, the entire survey will be removed.  Positions of the 

camera at the time of capture will be used to process these data but ultimately overwritten by the 

indirect georeference.  Pix4Dmapper and Pix4Dcloud software created digital surface models 

(DSMs) and orthomosaics, multiple overlapping aerial view photos ‘stitched’ together to form 

one cohesive photo of the study area.   An informational table describes survey conditions and 

collection amounts for each date below (Table 1).  

  

Figure 5.  DJI Inspire 1 UAS with camera and gimbal system used to 

photograph Hagar Park/Beach (Simon, 2015). 

 

Table 1.  Weather conditions of each UAS data collection 

Date Weather 

Conditions 

# of 

GCPs 

# of 

Flights 

# of 

Images 

Used in 

Study 

If no, why? 

3-3-21 Sunny 20 3 253 No Snow/Ice accumulation 

3-17-21 Sunny 20 3 683 Yes --- 

4-5-21 Partly cloudy 20 3 630 Yes --- 

4-21-21 Partly cloudy 20 2 411 Yes --- 

5-5-21 Sunny 19 2 389 Yes --- 

5-19-21 Cloudy 18 3 529 No Substantial GCP vertical errors 

6-2-21 Sunny 20 2 396 Yes --- 

6-16-21 Sunny 18 2 318 No Substantial GCP vertical errors 

7-7-21 Sunny 19 2 320 No Georeferencing errors 

7-28-21 Sunny 18 3 585 Yes --- 

8-4-21 Sunny 16 2 316 No Substantial GCP vertical errors 

– Propeller failure to reprocess 

8-18-21 Partly cloudy 17 2 344 Yes --- 

9-1-21 Sunny 15 2 344 Yes --- 
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Table 1 – continued 

9-15-21 Sunny 15 2 346 Yes --- 

10-6-21 Cloudy 15 2 412 Yes --- 

10-20-21 Sunny 17 2 346 Yes --- 

11-3-21 Sunny 16 2 326 Yes --- 

11-17-21 Cloudy 16 2 389 Yes --- 
 

UAS Operation 

 During UAS flight, all rules of Part 107 CFR 14 put forth by the Federal Aviation 

Administration (FAA) were followed.  At no point did flight happen over another person not part 

of the flight crew.  Signs and cones were placed around the study area to inform park patrons of 

the study.  The study area is in Class G airspace, underneath Class E airspace, which begins at 

700 feet above ground level (AGL).  I did not need air traffic control (ATC) authorization to 

operate a UAS because flight will never exceed the FAAs limit of UAS flight over 400 feet 

AGL.  Likewise, Hagar Park/Beach is not within a five-mile radius of controlled airspace; the 

nearest airport (Southwest Michigan Regional Airport) is 6.17 miles away.  The UAS was 

always in the visual observers (VO), and my visual line-of-sight (VLOS) and communication 

was established through a two-way radio.  Further, approval for the study was granted by the 

Western Michigan University UAS Review Board on April 5th, 2021. 

2D Methods 

 Orthomosaics were exported into ArcGIS Pro to digitize the position of the shoreline; 

identified using the high-water line (ESRI, n.d; Pagán et al., 2019).  Measurements were made 

laterally along 56 transects perpendicular to shorelines; these transects were created using the 

USGS’s Digital Shoreline Analysis System (DSAS) add-on to ArcMap (USGS).  These 

measurements were made between shorelines of different dates to determine their difference, and 

negative values were given if the shoreline accreted and positive if the shoreline eroded. 
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3D Methods 

DSMs were exported from Pix4Dmapper and imported into ArcGIS Pro (ESRI, n.d).  The 

DSMs were converted to raster images using elevation as the cell value.  The raster calculator 

tool was used to find the difference between elevation values using the following equation: 

Elevation Difference = [Later date elevation raster] – [Earlier date elevation raster]         Eq.1 

(e.g., DSMdifference = DSM11/17/21 – DSM3/17/21) 

The original plan for the 3D methods was to get volumetric changes.  To do this I used ArcGIS 

Pro’s Surface Difference Tool, however, each time it was utilized the tool would fail to execute.  

No error message was given due to the tool never completing, the program itself would freeze.  It 

is likely due to the point clouds created by UAS-SfM being too dense, as the tool is specifically 

meant for lidar datasets. 

Structure-from-Motion-Multiview Stereo (SfM-MVS) Photogrammetry 

 SfM-MVS is a computer vision technique used to model objects and environments in 3D 

(Carrivick et al., 2016; Thoeni et al., 2014; Favalli et al., 2014; Ouédraogo et al., 2014; Fonstad 

et al., 2012; Westoby et al., 2012; James & Robson, 2012; Snavely et al., 2008).  The 

mathematical backing of the SfM-MVS method is outside the scope of this thesis, but interested 

readers are referred to significant sources (Triggs et al., 2000; Hartley & Zisserman, 2003; Lowe, 

2004; Snavely, 2008; Szeliski, 2011).  A 3D point cloud of features in the study area was 

constructed using Pix4Dmapper software by taking overlapping photos at different angles and 

distances with the same vantage point.  Using the Pix4D software, the point cloud was projected 

using the North American Datum (NAD) (2011) / Michigan South (ft).  The method to process 

these collected data into digital surface models and orthomosaics is shown in Figure 6.  GCP 

data and aerial imagery was used to generate a sparse point cloud.  The GCP data were uploaded 
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to Propeller’s server for processing using the Propeller Correction Network.  The file, 

downloaded from Propeller, was imported into Pix4Dmapper and each GCP was marked in at 

least 15 images with the GCPs visible using the software’s GCP/MTP manager and basic editor.  

A dense georeferenced point cloud was then generated in Pix4D mapper; both an orthomosaic 

and LAS dataset, an industry standard format for elevation datasets, were created as outputs.  

 

 

RESULTS 

2D Shoreline Position Analysis 

  The shoreline over the study duration (March 17th to November 17th) changed 

drastically, whether in site 1 or site 2 (Figure 7).  Both locations have accretional and erosional 

periods.  Starting on March 17th, most of site 1 is already farther landward than in site 2.  A 

tombolo forms behind the cement foundation; however, the side facing the seawall is typically 

longer (Figure 7).  There is some accretion between March 17th and April 7th, but most of the 

beach undergoes erosion, while site 2 has minimal accretion (Figure 8).  The remnant of the 

tombolo is still there but is no longer connected to the cement foundation (Figure 7b).  Between 

April 21st and May 5th, both sites 1 and 2 experience erosion (Figure 8).  Both sites have a 

significant accretional period between May 5th and June 2nd (Figure 8).  The tombolo is 

beginning to form again (Figure 7e).  Between June 2nd and June 16th, there is erosion in site 1 

Figure 6. SfM-MVS workflow. The flow chart used to process data into a DSMs and orthomosaics. 
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and a mix of erosion and accretion in site 2, mainly erosion by a small margin  (Figure 8).  

Between June 16th and July 28th, there is a majority accretion and spurts of erosion in site 1 

(Figure 8).  There is a significant erosional period between July 28th and August 18th, with more 

erosion occurring in site 2 (Figure 8).  There is another significant erosional period between 

August 18th and September 1st, with more erosion in site 1 (Figure 8).  In site 1, the shoreline is 

where the unvegetated dune begins; the flat beach has nearly dissipated (Figure 7i).  Between 

September 1st and September 15th, both sites experience minimal changes in erosion and 

accretion; however, a majority erosion by a small margin (Figure 8).  There is a switch along 

with site 1 between erosion and accretion, while in site 2, there is one dramatic switch (Figure 8).  

Between September 15th and October 6th, both sites had a massive accretion period, but site 2 

experienced more accretion (Figure 8).  Between October 6th and October 20th, there is 

significant erosion in site 1 closest to the seawall, while there is minimal accretion towards the 

205-foot boundary (Figure 8).  Site 2 experiences majority accretion, with one minimal spot of 

erosion.  Between October 20th and November 11th, in site 1, there is a significant accretional 

period and an erosional period in site 2 (Figure 8).  Between November 11th and November 17th, 

there is an erosional period on both sites, but more on site 1 (Figure 8).   
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Figure 7.  Shoreline positions from March 17th to November 17th, 2021. 

The difference between shoreline positions is relatively tiny; towards the middle of the 

study (June 2nd, 2021, to September 15th, 2021), the differences between shoreline positions are 

minimal but visually noticeable in Figure 7.  Figure 9 shows the difference in the spread of the 

 
Figure 8.  Shoreline average difference between biweekly surveys.  Positive values indicate erosion, and negative 

values indicate accretion. 
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shoreline between site 1 and 2; the shoreline in site 1 reaches a further extent in-land and out.  

There are different accretional and erosional periods towards the end of the study (October 6th, 

2021, to November 17th, 2021).  The shoreline is eroded to the beginning of the dune in Site 1 

multiple times and experiences a period of accretion after.  The most substantial difference 

between the sites’ average shoreline difference is between October 20th and November 3rd when 

Site 1 undergoes a significant period of accretion and Site 2 experiences moderate erosion.  

Utilizing a t-test of unequal variances, the average shoreline difference variable from both sites 

was used to determine if they differed (Table 2).  The results showed that the shorelines had 

equal erosion and accretion over the study duration, therefore site 1 did not have significantly 

more erosion than site 2 (p < 0.49).  Both sites had an average negative value, meaning that there 

was more accretion than erosion (Site 1 = -0.38, Site 2 = -0.42).  The shoreline average 

difference variable was graphed to see the periods of accretion and erosion temporally; the two 

sites experience periods differently towards the fall season (Figure 8).  

 Table 2. T-test results with the shoreline average difference variable 

  Site 1 Site 2 

Mean -0.380456936 -0.42135475 

P(T<=t) one-tail 0.496730884 
 

t Critical one-tail 1.713871528 
 

P(T<=t) two-tail 0.993461767 
 

t Critical two-tail 2.06865761   
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Figure 9.  All shoreline positions, March 17th to November 17th, 2021.  Orthomosaic from March 17th, 2021. 
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3D Change Analysis 

 Elevation change is significant during the duration of the study.  Point clouds produced 

by Pix4Dmapper were converted to raster datasets, the raster calculator in ArcGIS Pro, and the 

color scale modified to highlight changes.  Between March 17th and April 7th, there was a 

significant change in site 1 on the dune, where a portion of it collapsed and increased the 

elevation of the dune below it (Figure 10a).  Both sites have minimal changes along the beach 

face, except for some moderate decreases in site 2 just before the shoreline.  Between April 7th 

and April 21st, the only changes are moderate decreases just before the shoreline across both 

sites; however, this does not occur behind the cement foundation (Figure 10b).  Between April 

21st and May 5th, changes are significant decreases in site 2 just before the shoreline in both sites 

and evenly on both sites (Figure 10c).  Between May 5th and June 2nd, there are moderate 

increases along the shoreline in both sites and a decrease, then an increase in the area below, on 

the dune in site 1 (Figure 10d).  Between June 2nd and June 16th, there are minimal changes along 

the beach face (Figure 10e).  On the dune in site 1, there is a significant decrease on the dune and 

a substantial increase below the decrease (Figure 10e).  There are similar changes between June 

16th and July 28th to the previous survey.  However, the decrease in elevation occurs at a higher 

location, and the increase in elevation is more significant and moved to the shoreline (Figure 

10f).  Between July 28th and August 18th, there is a moderate decrease along the entire shoreline 

and a significant reduction just before the toe of the dune in site 1; there are spots of considerable 

decrease at the top of the dune (Figure 10g).  Between August 18th and September 1st, there is 

only a decrease at the shoreline in site 1 (Figure 10h).  Between September 1st and September 

15th, there is a substantial decrease at the shoreline in both sites (Figure 10i).  Between 

September 15th and October 6th, there is a significant decrease in elevation between the shoreline  
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Figure 10.  Raster elevation differences. 

and the toe of the dune (Figure 10j).  In parts of site 1 and all of site 2, there is an elevation 

increase on the shoreline; moving landward, there is a slight elevation decrease (Figure 10j).  

Between October 6th and October 20th, there are small pockets of elevation that decrease and 

increase towards the toe of the dune (Figure 10k).  Along the beach face, there is a stretch of 

elevation increase mostly in site 1 part partly in site 2 (Figure 10k).  The dune crest collapsed 

between October 20th and November 3rd, and a subsequent increase below it (Figure 10l).  

Likewise, at the toe of the dune, there are significant areas of elevation decrease (Figure 10l).  

There is a considerable elevation increase along the entire study area (Figure 10l).  Between 
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November 3rd and November 11th, there is a moderate elevation increase at the toe of the dune 

(Figure 10m).  Across the whole shoreline, there is an elevation decrease (Figure 10m).   

 The difference between the first (March 17th, 2021) and the last survey (November 17th, 

2021) shows that the most significant elevation decrease is on the dune in Site 1; there are only 

minimal increases and decreases to elevation on the beach face (Figure 10n).  Figure 11 shows 

the standard deviation of elevation throughout the study; areas that deviate from the mean the 

most are the toe, crest, and body of the dune; more minor deviations are present on the beach 

face. 

 

Figure 11.  The standard deviation of elevation using data from all dates. 
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DISCUSSION 

 This study illuminated a high spatial and temporary resolution approach to monitor 

geomorphic coastal change.  UAS-SfM has high potential for research into coastal environments 

due to its low cost, high spatial and temporal resolution allowing for frequent observations, and 

its ability to generate both 2D and 3D data for analysis.  Hagar Park/Beach was surveyed thirteen 

times on a biweekly interval over nine months (early spring to late fall).  Massive changes in the 

shoreline and elevation were observed.  The shoreline spread was used to place the seawalls’ 

range of influence on the adjacent beach at 205 feet (~62 m) away from the seawall.  The 

shoreline immediately adjacent to the beach experiences the most change, meeting the toe of the 

dune multiple times over the study period.  The wave action onto the toe of the dune is a likely 

factor decreasing the elevation in the dune (Volpano et al., 2020; Lin et al., 2014; Plant & 

Griggs, 1992).  Due to limitations with the SfM-MVS method, most of the dune at HPB cannot 

be observed because of the presence of dense vegetation (Volpano et al., 2020; Carrivick, 2016).  

Thus, the elevation changes on the due immediate to the coastal protections cannot be compared 

to areas not adjacent or in-between, leaving room for other factors to impact elevation change 

other than just the seawall.  The foot traffic of tourists or heavy rain could move sediment off the 

dune, thus causing an elevation change.  Without observations of the other dune at HPB, the 

elevation changes of the dune immediately adjacent to the coastal protections cannot be 

concluded to have been caused by adjacent coastal protections redirecting waves to attack the 

dune toe. 

The finding which supports the ‘end-wall’ phenomena is the tombolo formation behind 

the cement foundation immediately adjacent to the coastal protections (Theuerkauf et al., 2019; 

Balaji et al., 2014).  The question of whether seawalls cause more erosion, and their extent of 
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influence is a question that needs a longer study period to answer.  The t-test using the shoreline 

average difference variable had a slightly higher average in site 1, but it was not significant and 

within the realm of random chance.  It is likely that over a longer period, the erosion in site 1 

could be more.   

 This study conducted research with the UAS-SfM method to explore it applicability for 

monitoring erosional change adjacent to a seawall.  Many considerations could not be included 

due to time and resource constraints.  Future research should take place over several years, 

including in-situ water level measurements, wave height, and direction to understand their 

contribution.  Waves can crash against the toe of the dune drawing significant amounts of 

sediment, data on waves and water level could be used to creates rates of erosion.  Likewise, 

linear regression analysis could be used to determine the association between the hydrological 

variables and erosion.  Substantial effort should be put into finding a suitable site to control 

factors.  It is likely the cement wave breakers in between the study area and the seawall dampen 

the effect of the ‘end-wall,’ decreasing the potential erosion.   Communication with permitting 

agencies could allow surveying of the site before construction.  This was not possible due to the 

timeframe to complete this study.   

To minimize error with the UAS-SfM method, a site with minimal vegetation would be 

beneficial, as it cannot get the elevation of the surface if dense vegetation is present.  For other 

methods, such as ALS or TLS, this would not be a problem; however, their cost is significantly 

more (Carrivick, 2016).  Likewise, conducting surveys on days with cloud cover would reduce 

shadows on the site, allows the shoreline to be seen easier, but also limits the vertical error of 

points present within the shadow.  The possibility of real-time monitoring, by mounting a camera 

in a strategic location on the beach could give insight into the causes of erosion. 
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CONCLUSION 

 This study, through repeated surveys conducted over nine months, analyzes shoreline and 

elevation changes at Hagar Park Beach using high temporal and spatial resolution data.  The 

spread of the shoreline was found dramatically different 205 feet (~62 m) from the seawall.  This 

boundary allows the comparison of the two sites.  The difference in shoreline position was 

measured at multiple points and averaged to create the variable: average shoreline difference.  

Utilizing a t-test of unequal variances for both sites, it was found that there was not a significant 

difference between them (p>.50).  However, the difference between erosional and accretionary 

periods is evident between the two sites (Figure 7).  When one site may be eroding, the other 

may experience accretion.  Nonetheless, we fail to establish a clear influence range of the 

adjacent seawall because the shoreline average difference becomes equal when averaged over the 

study duration.  Using the 3D results, the most dramatic change is a decrease in elevation 

occurring on the dune adjacent to the seawall (>1ft).  However, the entire dune could not be 

surveyed due to dense vegetation, thus there is not a 2nd site to compare this elevation change to.  

There only are minor changes occurring along the beach face (<1ft).   
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