
Western Michigan University Western Michigan University 

ScholarWorks at WMU ScholarWorks at WMU 

Masters Theses Graduate College 

4-1-2023 

Improving Future Vehicle Fuel Economy and Operational Design Improving Future Vehicle Fuel Economy and Operational Design 

Domain Through Novel Data Pipelines Domain Through Novel Data Pipelines 

Kyle James Carow 
Western Michigan University 

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses 

 Part of the Automotive Engineering Commons, and the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Carow, Kyle James, "Improving Future Vehicle Fuel Economy and Operational Design Domain Through 
Novel Data Pipelines" (2023). Masters Theses. 5366. 
https://scholarworks.wmich.edu/masters_theses/5366 

This Masters Thesis-Open Access is brought to you for 
free and open access by the Graduate College at 
ScholarWorks at WMU. It has been accepted for inclusion 
in Masters Theses by an authorized administrator of 
ScholarWorks at WMU. For more information, please 
contact wmu-scholarworks@wmich.edu. 

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F5366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1319?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F5366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F5366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/5366?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F5366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/


 
 

 IMPROVING FUTURE VEHICLE FUEL ECONOMY AND OPERATIONAL 
DESIGN DOMAIN THROUGH NOVEL DATA PIPELINES 

Kyle James Carow, M.S.E. 

Western Michigan University, 2023 

Modern automobiles have greatly advanced in recent years, with technological 

developments that enhance performance, safety, and comfort. However, there is still much room 

for improvement. Today’s vehicles are heavily reliant on the combustion of fossil fuels, proven 

to be harmful for the environment on both a local and global scale. In addition, the safety 

benefits of autonomous vehicles and advanced driver assistance systems are not yet fully realized 

due to the limited operational design domain of these technologies. In this research, these needs 

are addressed through the development of two novel data pipelines. In the first study, a novel 

methodology is outlined that generates vehicle fuel economy models from real-world sparse fleet 

telematics data, enabling heavy-duty vehicle fleet operators to explore the minimization of 

fueling costs in new ways and to serve as an initial probe into a fully data-informed pipeline. In 

the second study, a data processing procedure is described that recovers lane-line geometry 

information from high-definition map data, expanding the operational design domain of 

automated vehicle technology to scenarios where lane lines are totally occluded by snow, leaves, 

or shadows. It is concluded that these methodologies have significant potential to improve the 

fuel efficiency and operational design domain of future vehicles.
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CHAPTER I 

INTRODUCTION 

Today’s vehicles are tremendous feats of engineering. From the invention of the 

automobile, a century of multi-disciplinary engineering has greatly improved performance, 

range, fuel efficiency, emissions, comfort, and safety. However, modern cars still leave much to 

be desired, and the vehicles of the future must conform to even stricter requirements. For 

example, the improvement of fuel economy and safety are two areas that will surely see ever-

increasing engineering focus as pressure from consumers and governmental environmental 

regulation grows. This research is broken into two sections, with a study focusing on each topic 

individually. 

The consumption of fossil fuels is directly tied to greenhouse gas emissions, which must 

be reduced as much as possible to mitigate impending climate disaster. Fuel is also a significant 

expense for heavy-duty vehicle fleet operators, who need to continually refuel vehicles that are 

innately less efficient due to large mass and poor aerodynamic characteristics. Likely the most 

rapid and inexpensive avenue of fuel economy improvement is through vehicle powertrain 

simulation, where software can simulate the required energy and fuel of a specific vehicle on a 

drive cycle. The first research question thus is “Can the sparse, telematics data available to fleet 

operators today be used to create and validate heavy-duty vehicle models?” To address this, the 

first study details a pipeline that creates heavy-duty vehicle models from real-world telematics 

data, enabling heavy-duty fleet operators to investigate ways to minimize fuel economy with 

reduced need for costly prototyping and testing. This work is found in Chapter II. 

Automobile safety has always been a cornerstone of vehicle engineering, with inventions 

like seatbelts and airbags becoming mandatory and omnipresent in modern vehicles. Today, 
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advancements in the field of vehicle automation enable technology like advanced driver 

assistance systems, which will eventually develop into fully autonomous vehicles. This 

technology is currently limited to near-optimal scenarios, where the visibility of road features 

like lane lines is ensured. As such, when lane lines are occluded, as happens when snow, water, 

leaves, or shadows are present, the perception subsystem that enables automated driving loses 

necessary input and begins to break down. This limited operational design domain must be 

expanded to include lane line occlusion in order for autonomous vehicle technology to be viable 

anywhere. The second research question thus is “How can the operational design domain of 

automated vehicle technology be expanded to occluded lane-line scenarios?” The second study 

addresses this research question by describing a novel methodology for recovering occluded lane 

line geometry from high-definition maps that subverts the need for line-of-sight from perception 

sensors to the lane lines, thereby expanding the operational design domain of automated vehicle 

systems. This work is found in Chapter III. 

 To summarize the research questions of this thesis, Chapter II addresses the question 

“Can the sparse, telematics data available to fleet operators today be used to create and validate 

heavy-duty vehicle models?” by detailing a data processing pipeline that creates heavy-duty 

vehicle models from real-world telematics data, and Chapter III addresses the question “How can 

the operational design domain of automated vehicle technology be expanded to occluded lane-

line scenarios?” by describing a novel methodology where occluded lane-lines geometry is 

recovered using high-definition maps.
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CHAPTER II 

HIGH-FIDELITY HEAVY-DUTY VEHICLE MODELING 
USING SPARSE TELEMATICS DATA 

 This chapter consists of work developed in a project sponsored by Allison 

Transmission and presented in a conference publication at SAE World Congress Experience 

2022, authored by Kyle Carow, Nathaniel Cantwell, Andrej Ivanco, Jacob Holden, Chad Baker, 

Eric Miller, and Zachary D. Asher. Please note that much of this chapter is presented verbatim 

from this publication. Kyle Carow led the development of the methodology and authorship of the 

publication, with the co-authors providing data, suggestions, and guidance. The citation for this 

work is below. 

Carow, K., Cantwell, N., Ivanco, A., Holden, J. et al., “High-Fidelity Heavy-Duty Vehicle 

Modeling Using Sparse Telematics Data,” SAE Technical Paper 2022-01-0527, 2022, 

doi:10.4271/2022-01-0527. 

Abstract 

Heavy-duty commercial vehicles consume a significant amount of energy due to their 

large size and mass, directly leading to vehicle operators prioritizing energy efficiency to reduce 

operational costs and comply with environmental regulations. One tool that can be used for the 

evaluation of energy efficiency in heavy-duty vehicles is analysis of energy efficiency using 

vehicle modeling and simulation. Simulation provides a path for energy efficiency improvement 

by allowing rapid experimentation of different vehicle characteristics on fuel consumption 

without the need for costly physical prototyping. The research presented in this paper focuses on 

using real-world, sparsely sampled telematics data from a large fleet of heavy-duty vehicles to 

create high-fidelity models for simulation. Samples in the telematics dataset are collected 
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sporadically, resulting in sparse data with an infrequent and irregular sampling rate. Captured in 

the dataset was geospatial information, time-series measurements, and vehicle-specific metadata 

from a subset of 96 vehicles from varied geographic regions across North America. A series of 

custom algorithms was developed to process vehicle data and derive both vehicle model input 

parameters and representative drive cycles. Derived models provide a basis on which to simulate 

real-world vehicles and iterate on vehicle aerodynamics, auxiliary power loads, transmission 

shift schedules, and other parameters to achieve reduced fuel consumption and increase energy 

efficiency. Notably, these models were developed without the use of field data collection, using 

only data collected through fleet telematics. Processed representative drive cycles are used to 

validate the fuel economy of derived models. The models developed through this research allow 

for more representative vehicle simulations with increased flexibility regarding vehicle-to-

vehicle variations. 

Introduction 

Heavy-duty vehicles (HDVs) consume a greater amount of fuel compared to light-duty 

vehicles because of their substantial mass, significant aerodynamic drag, and high auxiliary 

power loads. The greater consumption of fuel in HDVs leads to increased expenses for HDV 

fleet companies. Fueling accounts for 24% of motor carrier operating costs, second only to driver 

wages [1]. In addition, HDV fuel consumption contributes significantly to harmful greenhouse 

gas emissions. According to the U.S. Environmental Protection Agency (EPA), the combustion 

of fuel in freight trucks comprises the second largest source of CO2 emissions within the 

transportation sector, at 23.6% [2]. Due to this, the EPA has set targets through the Clean Trucks 

Plan which sets increasingly strict limits for HDV greenhouse gas emissions [3]. These factors 

prompt HDV operators to explore optimization of fuel efficiency. 
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Energy efficiency optimization can be achieved through modeling and simulation of 

vehicles through software. While physical experimentation on vehicle parameters is expensive 

and time-consuming, simulation using validated models allows for rapid results through software 

alone. Modeling of HDVs presents a unique challenge, however, as unlike light-duty vehicles, 

HDVs possess a high degree of specialization as a result of vehicle vocation. Vehicle 

specialization causes great variations in mass, shape, and auxiliary power loads from vehicle to 

vehicle. In order to create sufficiently representative HDV models, model parameters must be 

tuned on a vehicle-to-vehicle basis, necessitating the use of a flexible and customizable vehicle 

simulation software, as well as an abundance of tuning data. 

The Future Automotive Systems Technology Simulator (FASTSim), developed by the 

National Renewable Energy Laboratory (NREL), is a high-level advanced vehicle powertrain 

systems analysis tool that provides a simple yet extremely flexible vehicle simulation platform 

[4]. Due to FASTSim’s high-level nature, simulations execute very quickly, allowing rapid 

iteration. In addition, as FASTSim is written in Python, it is highly transparent and customizable 

by nature. These features make FASTSim an excellent choice for highly customized vehicle 

modeling and simulation, as is necessary for HDVs. 

Parameters must be tuned through the use of real-world vehicle performance data to 

generate a model with sufficient fidelity to be useful. Traditionally, the threshold for vehicle 

model validation has been an absolute error of 3% between measured and simulated fuel 

economy [5]. Real-world fleet telematics is one potential source of tuning data, containing a 

wide range of useful data such as geospatial information, time-series measurements, and vehicle-

specific metadata such as vehicle make and model. However, it does not allow for 

straightforward model creation, as measurements are often sparsely sampled or sometimes 
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entirely absent. For this reason, a high degree of data processing, where input data is manipulated 

and adjusted through a series of steps, is often required to derive useful model parameters from 

fleet telematics data. 

Telematics data has previously been used to characterize and optimize fuel consumption 

and vehicle emissions. A study of HDVs in the Houston–Galveston Area successfully utilized 

telematics measurements to characterize idling and found an average idling time of 185 minutes 

per day for the analyzed dataset [6]. Work by Mane, Djordjevic, and Ghosh shows that HDV 

telematics data can be leveraged to construct a framework for incentivizing HDV drivers to 

adopt more fuel efficient driving behavior [7]. Telematics data has also been used to identify 

potential for fuel economy improvement through HDV “platooning,” where multiple vehicles 

drive in close proximity in order to minimize aerodynamic drag energy losses [8]. This research 

demonstrates that telematics data is an extremely useful resource for the characterization and 

optimization of HDV fuel economy. 

Other research extracted fuel economy information from telematics data without the use 

of vehicle modeling and simulation. One paper studied utilizes Kalman Filters created from 

telematics data to predict fuel economy for different hypothetical departure times over a 

predetermined route [9]. Another paper explores the use of geospatial data and CAN bus 

measurements to predict fuel economy using machine learning [10]. Both of these rely on the 

usage of collected data to calculate fuel economy measurements, rather than extrapolation to 

hypothetical drive cycles, as is possible with vehicle simulation. In general, little published work 

has been done to use telematics data as source of vehicle model derivation and validation, despite 

the potential for low-cost simulation and fuel cost savings. 
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This paper seeks to remedy this by providing a detailed and comprehensive methodology 

for using a large, sparse fleet telematics dataset to derive validated HDV fuel economy models. 

The hypothesis of this study is then that industry-typical quality telematics data provides 

sufficient detail to derive validated HDV models. Due to the preliminary nature of the research, 

the primary aim of this paper is to prove the hypothesis that HDV models can be generated and 

validated using sparse and poor-quality telematics data from a large and varied fleet of vehicles. 

In this paper, the phrase “high-fidelity” will refer to models achieving absolute errors below this 

threshold, as the phrase has no consistently used definition other than a model that simulates 

results to a subjectively acceptable degree. A dataset consisting of approximately 100 vehicles of 

many vocations from regions across North America was processed using a custom algorithm to 

derive model parameters. Representative drive cycles from the telematics dataset were used in 

FASTSim vehicle simulations to validate models against measured fuel economy. 

Methodology 

Telematics Data Overview 

 The telematics dataset used in this study consists of data from approximately 100 HDVs 

of multiple vocations (usage purposes) from across North America. The dataset includes time-

series vehicle measurements, time-series geospatial data, and vehicle metadata. Time-series 

measurements encompass a majority of important signals such as velocity and fuel consumption. 

Time-series geospatial data includes GPS coordinates over time. Vehicle metadata provides 

information on the types of vehicles captured in the dataset, mostly regarding engine 

identification codes and vehicle vocation. Each type of data comes with its own set of unique 

challenges for adaptation to HDV modeling. 
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A challenge common to all time-series measurements in the dataset is the sparsity and 

uneven frequency of sample collection. Due to bandwidth limitations, the Ramer–Douglas–

Peucker algorithm previously had been applied for data reduction in the sample collection 

process. Originally developed for image vector graphic optimization, this algorithm reduces the 

number of data points, maintaining overall curve detail at the expense of an acceptable level of 

error. The algorithm works by recursively analyzing several hypothetical linear segments 

between data points, selecting a piecewise linear approximation for any points that fall within a 

supplied perpendicular distance [11,12]. The reduction in sample count results in an uneven 

sampling rate and loss of temporal resolution, making the application of traditional data 

processing algorithms or any other process dependent on evenly spaced samples more 

complicated. 

During data collection, certain signals were prioritized, resulting in great variations in 

sample counts measurement-to-measurement. The signal with the highest sample count was 

geospatial data, followed by measured vehicle velocity. Other signals with high sample counts 

included cumulative fuel consumption, engine speed, and miscellaneous engine fluid 

temperatures. Table 1 lists sample counts by measurement signal for the 15 most common time-

series measurements. The same data is shown graphically in Figure 1, with signal names 

removed for simplicity. 

Table 1. Sample counts for the 15 most common telematics measurement signals across entire 

fleet. 

Signal Total Sample Count 

1 Geospatial coordinates 1,150,367 

2 Measured velocity 730,650 
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Table 1 - continued 

Signal Total Sample Count 

3 Fan drive state 477,016 

4 Engine speed 360,669 

5 Total cumulative fuel consumption 246,658 

6 Ambient air temperature 205,106 

7 Longitudinal acceleration 172,060 

8 Acceleration (up-down) 161,135 

9 Acceleration (side-to-side) 129,050 

10 Transmission oil temperature 87,265 

11 Acceleration (forward/braking) 78,714 

12 Engine coolant temperature 76,173 

13 Odometer 74,358 

14 Cranking voltage 73,601 

15 Torque converter lockup count 46,079 

 

 

Figure 1. Sorted bar plot showing counts for the 15 most common telematics measurement 
signals. Note that the y-axis is in millions. 

The presence and frequency of time-series measurement signals varies greatly between 

vehicles in the data, where some measurements are sampled very sparsely or not at all in certain 

vehicles. Low sample counts present a challenge for use in modeling, as for some vehicles 
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critical information like odometer readings can be too infrequently sampled to be usable. In this 

study, “sparse data” will refer to data that is sampled too infrequently and irregularly to be useful 

for straightforward vehicle modeling. In addition, some samples had gaps, where samples were 

uncollected for an extended period of time. These gaps are especially problematic for signals like 

vehicle velocity, where signal details critical to fuel economy may be missing. Moreover, 

information about power takeoff loads, ambient environment, auxiliary loads, and some other 

operating conditions influential to fuel economy were missing or insufficiently captured in the 

dataset for use in modeling. 

The dataset consists of vehicles from across North America, with most geospatial data 

points located in the United States and some in southern Canada. Geospatial data consisted of 

time-series latitude and longitude measurements, and had the highest sample count of all time-

series signals in the dataset. Due to this, the primary challenge presented by the geospatial data 

was the amount of processing required to derive useful information rather than sample sparsity. 

 

Figure 2. Map of all telematics geospatial data. 

Obtained by augmenting available vehicle information with National Highway Traffic 

Safety Administration (NHTSA) data [13], the metadata includes details on the HDVs in the 

telematics dataset, providing engine parameters, transmission parameters, gross vehicle weight 

rating, and other useful information. Vehicles from a wide variety of vocations were captured in 
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the dataset, including coach and school buses, construction vehicles, refuse trucks, emergency 

service vehicles, and utility company service vehicles. This provided a diverse set of HDV 

telematics data to work with. 

Model Derivation 

 As a starting point, the two pre-validated HDV models provided with FASTSim were 

used to create a base model. Many model parameters remained the same between the two and 

were reused in the base model. Some parameters were not the same for both models so the 

average value of the two parameters was used in the base model instead, where applicable. The 

result was the creation of a generic HDV model, but simulation results were poor. This was 

expected due to the wide variety of HDV characteristics. 

Dynamic model variation was implemented using telematics data where possible to 

provide more representative parameter values. Vehicle mass, number of wheels, and other 

parameters were adjusted from the defaults using vehicle metadata, resulting in much higher 

fidelity simulation performance, as detailed in the ‘Results and Discussion’ section. 

The use of vehicle metadata was enough to produce high-fidelity models. However, there 

are vehicles where metadata is incomplete or insufficient for deriving models. This will be the 

subject of future work, as described in the ‘Conclusions’ section. 

Drive Cycle Derivation 

Along with vehicle models, speed-by-time drive cycles are critical inputs to a backward-

looking simulation, establishing the driving conditions and serving as the framework for iterative 

calculation. Drive cycles derived from vehicle speed measurements can be used to perform a 

simulation in order to validate vehicle models, allowing measured and simulated vehicle 
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performance to be compared directly. These vehicle speed measurements, however, must 

adequately represent the true driving behavior for use as a model validation drive cycle. This 

necessitates extensive drive cycle processing for sparse velocity signals. A summary of all 

velocity signal processing steps described in this section can be found in Table 2. A flowchart of 

velocity signal processing depicting all steps in detail is shown in Figure 3. 

Table 2. Velocity signal processing summary table. 

Velocity Signal Processing Summary 

Step Step Description 

0 Preprocessing • Organize data for further processing 
• Derive secondary velocity signal from geospatial data 

1 Stop Capturing • Apply discontinuity correction algorithm and set small velocities to zero 

2 Signal Fusion • Fuse both velocity signals into one using custom algorithm 

3 Upsampling • Resample and interpolate signal to regular 1 Hz frequency 

4 Smoothing • Apply Savitzky–Golay filtering to smooth signal while retaining fine detail 
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Figure 3. Velocity signal processing summary flowchart. 
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As the telematics measurements include many driving sessions over the course of 

multiple months, slices of data were selected for simulation. The two requirements to select data 

slices were a duration of around 30 to 60 minutes, and having at least 5 samples of each signal 

important to fuel economy derivation (odometer readings and cumulative fuel consumption). 

Initially, the measured velocity signal was used as drive cycles for model validation. It 

quickly became apparent that large gaps in the velocity signal were causing issues with 

simulation results. While FASTSim allows unevenly spaced drive cycles, large time steps from 

one data point to another cause breakdowns in simulation fidelity. In addition, the use of the 

Ramer–Douglas–Peucker algorithm and other data loss led to loss of nuanced detail in the 

velocity signal. Velocity signal events and details such as accelerations, velocity peaks, stops, 

and overall signal smoothness are highly influential in the overall vehicle fuel economy [14]. If 

any of these events or details are not adequately captured due to missing data, simulation fidelity 

will be negatively impacted. 

To remedy issues caused by gaps in data, a secondary velocity signal was derived using 

geospatial data. Iterating through the data, geodesic distances and timestamp differences were 

calculated between points. By dividing calculated distances by time differences, a new geospatial 

velocity signal was generated. The average timestamp between each data point was used as the 

timestamp for the newly created velocity signal. Points derived from data with large (over 60 

second) timestamp differences or unrealistically high accelerations were removed from the 

derived signal. The presence of a secondary signal provides details not captured in the measured 

velocity signal and allows for a single velocity signal to be derived. Before this is possible, 

velocity signal features influential to fuel economy such as stops must be accurately represented. 

In both velocity signals, vehicle stops are occasionally captured inadequately due to signal gaps. 



15 
 

At many of these gaps, both velocity signals “jump” from a moving velocity to a stopped 

velocity of approximately zero, or from a stopped velocity to a moving velocity, leaving 

expansive straight lines across gaps. These features lead to derivation of inaccurate drive cycles 

and must be remedied. 

To better capture vehicle stops, a custom algorithm was developed to detect 

discontinuities in velocity. The algorithm is applied on the entirety of a velocity signal, 

iteratively identifying samples that meet all of the following criteria: (1) there is a sufficient gap 

between analyzed sample and the previous sample, (2) the velocity at the analyzed sample is at 

least a threshold value, and (3) the velocity at the previous sample is at most a secondary 

threshold value. The custom discontinuity detection algorithm also detects downward velocity 

drops by looking forward at the next sample, with the third criterion satisfied if the velocity at 

the next sample is at most a secondary threshold value. Examples of both upward and downward 

velocity discontinuities are shown in Figure 4, outlined with dashed boxes. 

 

Figure 4. Examples of an upward discontinuity in velocity (top) and a downward discontinuity in 
velocity (bottom) commonly found at signal gaps. 
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After detection of velocity discontinuities, zero-velocity samples are imputed in the 

velocity signal. For upward velocity discontinuities, where a near-zero velocity is followed by a 

gap in samples before a nonzero velocity, a zero-velocity point is created in the signal just before 

the nonzero sample. The temporal location of this data point is found by using the acceleration 

value after the nonzero value if it is positive, otherwise a reasonable positive acceleration value 

is used. For downward velocity drops, where a near-zero velocity is preceded by a gap in 

samples after a nonzero velocity, this imputed zero-velocity point is placed just after the nonzero 

sample. The temporal location of the imputed data point is found in a similar way as in upward 

velocity discontinuities, but uses the acceleration before the nonzero velocity if it is negative. 

Otherwise, the timestamp of the imputed zero-velocity point is found using a reasonable negative 

acceleration value. The timestamp of imputed zero-velocity points is found by adding the time 

difference calculated with Equation 1 to the analyzed sample timestamp. In addition to 

discontinuity correction, velocities close to zero were set to zero to better capture vehicle stops. 

  (1) 

Where, 

t = time relative to analyzed sample to place zero-velocity value 

v = velocity of analyzed sample 

a = acceleration, selected as detailed above 

Once major problems with the velocity signals had been addressed, the two signals 

needed to be fused into a single velocity signal to be used as a drive cycle. Due to the existence 

of gaps, straightforward signal averaging and other simplistic methods could not be used. 

Instead, a custom algorithm was developed to iteratively fuse the measured and geospatial 

velocity signals into a single output velocity signal. The algorithm first splits the signals into 60-
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second time intervals. For each time interval, the algorithm chooses one of two options to 

construct an output signal depending on interval sample counts. If one signal has at least twice 

the number of samples compared to the other signal, the signal with more samples is the output 

for that interval. If no signal has at least twice the number of samples than the other, the two 

signals are interpolated and averaged together. This algorithm fuses two signals together in a 

novel method robust to signal gaps, preserving detail from either signal where possible. A 

demonstration of the custom signal fusion methodology is shown in Figure 5. 

 

Figure 5. Signal fusion demonstration for three consecutive time intervals. From left to right: 
fusion by interpolated averaging, fusion using signal A, fusion using signal B. 

For optimal simulation performance in FASTSim, drive cycles should not have large time 

steps between samples. Typically, a regular sampling rate of 1 Hz is most common for fuel 

economy evaluation. To implement this sampling rate, nonlinear interpolation was initially used 

to upsample the fused signal, but was found to produce undesirable features such as velocity 

peaks and valleys when applied over large gaps, so linear time-based interpolation was used 

instead. Upsampling to a regular frequency also enables the utilization of traditional signal 

processing techniques, such as Savitzky–Golay filtering. 



18 
 

Savitzky–Golay filtering is often used for signal smoothing due to its simplicity and 

appropriate handling of signal endpoints. However, it requires evenly spaced samples, like many 

other digital filters. After upsampling, the velocity signal could be smoothed using this 

algorithm. Smoothing parameters such as window size and polynomial order were carefully 

selected to be 15 seconds and 3rd order, respectively, to preserve as many fuel-economy-critical 

details (stops, peaks, and accelerations) as possible. 

The end result of velocity signal processing was transformation from one measured 

velocity signal and geospatial data into a single, more reliable velocity signal, easily applied as a 

FASTSim simulation drive cycle. A summary of velocity signal processing at each step is shown 

in Table 2. A flowchart visualizing signal processing at each step is shown in Figure 5.  



19 
 

Model Validation 

 To validate derived models, simulated fuel economy over processed drive cycles must be 

compared to measured fuel economy, with a target absolute error between the two being within 

3%. Because fuel economy is calculated over the entire drive cycle, rather than at one 

instantaneous point, measured fuel economy needed to be calculated from sparse odometer 

readings and fuel consumption measurements. 

Measured fuel economy can be derived by comparing samples of odometer readings and 

cumulative fuel consumption from the start and end of data slices. Distance traveled can be 

calculated by subtracting the first odometer reading in the drive cycle from the last odometer 

reading. Fuel consumption over a data slice can be calculated similarly by subtracting the first 

value of the total fuel consumption from the last fuel consumption value. Dividing distance 

traveled by fuel consumption provides a measured fuel economy value. However, due to sparsity 

of data, the first and last signal values within the data slice available may not be temporally close 

to data slice endpoints, which could cause measured fuel economy to be inaccurate. That is, if 

the available odometer and fuel consumption values are far from drive cycle endpoints, it is 

possible the fuel economy derived could differ from its true value. To minimize this risk, before 

deriving measured fuel economy, the odometer and fuel consumption signals were both linearly 

interpolated and linearly extrapolated using available signal processing libraries to provide 

measurement samples close to data slice endpoints. While alternative methods of odometer and 

fuel consumption interpolation were considered, linear interpolation was selected as the data was 

essentially linear. A minimum sample count for both signals used to derive measured fuel 

economy was enforced to ensure measured data adequately captured real-world behavior. 
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As distance traveled is not an input to FASTSim drive cycles, simulated fuel economy is 

derived by dividing a distance derived from the integral of the velocity by the total simulated fuel 

consumption. This is useful for applications where total distance is unavailable, but the 

telematics data provides a better indication of the true total distance traveled. This measured 

distance traveled was divided by simulated fuel consumption to provide an alternative simulated 

fuel economy with error from FASTSim distance calculation minimized. 

Results and Discussion 

Overall Results 

 Due to the vast number of vehicles and trips in the dataset, a single vehicle was selected 

for result analysis, however, significant reductions in absolute errors occurred for the vast 

majority of vehicles tested. The application of model and drive cycle derivation described in this 

study resulted in a simulated fuel economy with an absolute error of 1.67% when compared to 

measured fuel economy. This is below the traditional fuel economy model validation threshold 

of 3%. This shows the methodology presented in this paper can be used to successfully derive 

and validate HDV models. The cumulative fuel consumption over time from measurements and 

simulation are compared in Figure 6. 

 

Figure 6. Comparison of measured vs. simulated fuel consumption over time. 



21 
 

Velocity Signal Processing Results 

Derivation of a secondary geospatial velocity provided a secondary source of velocity 

data, however both signals had issues with sparsity and missing features. This is shown in Figure 

7 through comparison of the two signals. In sections where the two signals follow each other 

closely, measured-versus-simulated fuel economy absolute errors are relatively low. In sections 

where a feature is missing from one signal due to inadequate sampling, errors are larger. 

 

Figure 7. Comparison of unprocessed measured and geospatially-derived velocity signals. 

Missing features are undesirable because they negatively affect drive cycle fidelity. This 

can be seen in the high absolute errors when unprocessed signals are used as simulation drive 

cycles. Use of unprocessed (but upsampled, for FASTSim performance) measured velocity 

resulted in an error of 10.55%. Similarly, use of geospatial velocity resulted in an error of 8.83%. 

Discontinuities at vehicle stops originally missing from the velocity signals were 

recaptured using a custom algorithm. For the specific drive cycle tested, absolute errors did not 

noticeably decrease, likely due to lack of discontinuities. For a vehicle with more occurrences of 

discontinuities, application of the correction algorithm to measured velocity resulted in a 

reduction of absolute error by 0.22 percentage points. Application of the algorithm to geospatial 
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velocity resulted in a reduction of absolute error by 0.84 percentage points. Examples of stop 

capturing algorithm results are shown in Figure 8 and Figure 9. 

 

Figure 8. Results of upward discontinuity correction. Shown is an uncorrected upward 
discontinuity (top) and the results of applying the correction algorithm (bottom). 

 

Figure 9. Results of downward discontinuity correction. Shown is an uncorrected upward 
discontinuity (top) and the results of applying the correction algorithm (bottom). 

After stops were captured, a custom signal fusion algorithm was applied to transform the 

two velocity signals into one through consideration of sample counts in 60-second time intervals. 

Application of the signal fusion algorithm resulted in an absolute error of 3.05%, a considerable 
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improvement from the absolute errors achieved in the previous signal processing step, 10.55% 

and 8.83%. 

To achieve optimal simulation performance, signals must be upsampled before use in 

FASTSim. For this reason, all fuel economy results shown are simulated using upsampled 

velocity signals. This is also why fuel economy simulation fidelity does not increase due to 

upsampling. 

As fuel economy results are impacted considerably by signal smoothness, Savitzky–

Golay filtering was applied to the fused velocity signal. This resulted in a reduction in measured-

versus-simulated fuel economy absolute error from 3.05% to 1.67%. A summary of velocity 

signal processing and associated simulation results is shown in Table 3. 
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Table 3. Tabulated velocity signal processing results. 

Velocity Signal Processing Results 

Step Signal Plots 

FE Results 
Measured 
FE: 7.57 

MPG 

0 Preprocessing 

Measured 

 

Simulated 
FE: 6.77 

MPG 
(10.55% 

error) 

Geospatial 

 

Simulated 
FE: 8.24 

MPG 
(8.83% 
error) 

1 Stop 
Capturing 

Measured 

 

Simulated 
FE: 6.77 

MPG 
(10.57% 

error) 

Geospatial 

 

Simulated 
FE: 8.24 

MPG 
(8.83% 
error) 

2 Signal Fusion  

 

Simulated 
FE: 7.34 

MPG 
(3.05% 
error) 

3 Upsampling  

 

Simulated 
FE: 7.34 

MPG 
(3.05% 
error) 

4 Smoothing  

 

Simulated 
FE: 7.44 

MPG 
(1.67% 
error) 
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Conclusions 

This study showcases the methodology and results from utilizing real-world telematics 

data for heavy-duty vehicle (HDV) modeling and simulation in the Future Automotive Systems 

Technology Simulator (FASTSim). Models were derived using FASTSim pre-validated HDV 

models as a starting point, from which a basic HDV model was constructed and dynamically 

varied using vehicle metadata available. Models were simulated using vehicle velocity signals 

from both velocity measurements and geospatial data. Simulated fuel economy was compared to 

a derived measured fuel economy value and was found to achieve an absolute error of 1.67%, 

within the traditional fuel economy model validation threshold of 3%. It has been shown that 

sparse telematics data can be used to generate validated HDV models that allow for the 

extrapolation of fuel economy performance to hypothetical drive cycles and the examination of 

the impact of different HDV characteristics on fuel economy. 

When working with a fleet of vehicles across large regions under many different 

vocations, instrumentation of vehicles beyond simple telematics data recorders quickly grows 

prohibitively expensive. The methodology presented in this paper can be used to derive and 

validate fuel economy models when physical experimentation is unacceptably impractical, as is 

the case with fleets of diverse HDVs with widely varied vocations. However, before wide-scale 

application of this methodology, additional work must be performed to expand the methodology 

to more vehicles in the dataset and further improve performance. 

Much of the work in this study focused around the restoration of data quality lost during 

data collection. The amount of data processing could be cut down substantially while increasing 

the fidelity of data by increasing sample count. While sample count seems to be prioritized by 

measurement, with important signals such as geospatial coordinate, vehicle velocity, and fuel 
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consumption sampled much more often than other signals—as shown in Figure 1—there often 

was not enough data within a slice to validate a vehicle model. Vehicle stops were often 

inadequately sampled, resulting in sudden velocity signal discontinuities, requiring rectification. 

Where possible, the sparsity of important measurements should be minimized. 

To improve on the work done in this study, it is recommended that focus be placed on 

additional methods of deriving model parameters. Time-series measurements such as engine 

torque and speed could provide ways of deriving vehicle parameters through theoretical 

relationships. In addition, the use of sliding windows rather than static windows in the signal 

fusion data processing step could provide an improvement in performance. As this is a proof-of-

concept study, future work should also include refinement and rigorous analysis of the 

application of this methodology with a wider set of vehicles. 
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CHAPTER III 

PROJECTING LANE LINES FROM HIGH-DEFINITION MAPS FOR AUTOMATED 
VEHICLE PERCEPTION IN ROAD OCCLUSION SCENARIOS 

This chapter consists of work developed in a project sponsored by the Michigan 

Translational Research & Commercialization (MTRAC) program and submitted for review as a 

conference publication at SAE World Congress Experience 2023 authored by Kyle Carow, Parth 

Kadav, Johan Fañas Rohas, and Zachary D. Asher. Please note that much of this chapter is 

presented verbatim from this publication. Kyle Carow led the data collection, methodology 

development, and publication authorship with essential assistance from all co-authors. 

Abstract 

 Contemporary ADS and ADAS localization technology utilizes real-time perception 

sensors such as visible light cameras, radar sensors, and lidar sensors, greatly improving 

transportation safety in sufficiently clear environmental conditions. However, when lane lines 

are completely occluded, the reliability of on-board automated perception systems breaks down, 

and vehicle control must be returned to the human driver. This limits the operational design 

domain of automated vehicles significantly, as occlusion can be caused by shadows, leaves, or 

snow, which all occur in many regions. High-definition map data, which contains a high level of 

detail about road features, is an alternative source of the required lane line information. This 

study details a novel method where high-definition map data are processed to locate fully 

occluded lane lines, allowing for automated path planning in scenarios where it would otherwise 

be impossible. A proxy high-definition map dataset with high-accuracy lane line geospatial 

positions was generated for routes at both the Eaton Proving Grounds and Campus Drive at 

Western Michigan University (WMU). Once map data was collected for both routes, the WMU 

Energy Efficient and Autonomous Vehicles Laboratory research vehicles were used to collect 
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video and high-accuracy global navigation satellite system (GNSS) data. The map data and 

GNSS data were fused together using a sequence of data processing and transformation 

techniques to provide occluded lane line geometry from the perspective of the ego vehicle 

camera system. The recovered geometry is then overlaid on the video feed to provide lane lines, 

even when they are completely occluded and invisible to the camera. This enables the control 

system to utilize the projected lane lines for path planning, rather than failing due to undetected, 

occluded lane lines. This initial study shows that utilization of technology outside of the norms 

of automated vehicle perception successfully expands the operational design domain to include 

occluded lane lines, a necessary and critical step for the achievement of complete vehicle 

autonomy. 

Introduction 

 The US Centers for Disease Control and Prevention (CDC) and the US National 

Highway Traffic Safety Administration (NHTSA) report that motor vehicle accidents account for 

nearly 40,000 US deaths in 2019 and comprised the 13th leading cause of death in the US in 

2016 and 2017 [1-3]. CDC data indicates the estimated cost of US motor vehicle fatalities to be 

about $390 billion in 2019 when accounting for both medical costs and economic productivity 

losses [4]. Additionally, motor vehicle traffic crashes consistently rank the 7th greatest 

contributor to years of life lost, as they disproportionately cause more deaths to younger people 

[3]. In response to the great cost of motor vehicle accidents, the emerging technological field of 

vehicle automation seeks to mitigate motor vehicle accidents and injuries. While in the future, 

high levels of autonomy through Automated Driving Systems (ADS) and Autonomous Vehicles 

(AVs) will be available, some vehicles available today offer Advanced Driver Assistance 

Systems (ADAS) features to improve safety. 
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ADAS features such as lane departure warning (LDW), lane keeping assistance (LKA), 

and lane centering assistance (LCA) can dramatically improve motor vehicle safety. LDW 

reduces single-vehicle, sideswipe, and head-on injury crashes by 21% [5]. It is estimated by 

Benson et al. that LDW and LKA could have prevented about 520,000 crashes in 2016, 

associated with about 190,000 injuries. They also report that ADAS technology at large has the 

potential to mitigate 40% of all passenger vehicle crashes, and about 30% of all crash-related 

deaths [6]. In terms of the cost of motor vehicle accidents, Harper, Hendrickson, and Samaras 

estimate that incorporating ADAS features into the entire US light-duty vehicle fleet would lead 

to an annual net savings of between $4 billion to $215 billion when considering the cost of the 

technology and the cost of motor vehicle crash injuries and deaths [7]. ADAS has also been 

demonstrated to be useful for enabling energy efficiency improvements for individual vehicles 

[8-11]. But, these ADAS features have an operational design domain (ODD) limited to 

unoccluded lane lines, as they work by using real-time perceptive sensors such as computer 

vision (CV) to detect road features, primarily lane lines, which are normally visible in clear 

driving environments [12-14]. However, many vehicle crashes occur in inclement weather, 

where road features can be completely occluded by snow or ice. 

In fact, while vehicles regularly travel less in winter seasons as evidenced by seasonal 

vehicle-miles-traveled trends, the inclement driving environment conditions associated with the 

colder seasons leads to increased vehicle accidents and fatalities [15-16], as seen in Figure 10. 

According to the Federal Highway Administration (FHWA), approximately 21% of all vehicle 

crashes in the US from 2007 to 2016 were weather-related [17]. The ODD of vehicle autonomy 

does not effectively include inclement weather conditions where lane lines are occluded, as 

perception systems lack the necessary input to determine road geometry [18-19]. It is estimated 
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that approximately 70% of US roads are located in snowy regions, meaning for higher levels of 

automation throughout the continental US, the ODD of automated vehicles must be expanded to 

handle roads occluded by snow and ice [20]. How can the ODD be expanded to occluded lane-

line scenarios, thus enabling higher levels of driving autonomy? 

 

Figure 10. Percent changes in crash rate due to inclement weather (directly from [16]). 

Greater connectivity of the vehicle to the internet of things has great potential to aid 

automated vehicle technologies [21]. Specifically, the utilization of high-definition maps for 

localization of the ego vehicle has been shown to have great potential. High-definition maps are 

datasets that contain highly detailed regional data, far surpassing the minimum level of detail 

required for road network route planning as is available in standard maps. Notably, they can 

include the positions of road features such as traffic signs, road shape, and lane lines [22]. Little 

research has focused on occluded lane line scenarios, despite the potential for safety 

improvements. Poggenhans, Salscheider, and Stiller present a method of localization where high-

definition maps are queried with estimated lane line locations to determine the true ego vehicle 

position. This method begins to lose accuracy in inclement weather and relies on real-time 

perception of road markings, thus would likely break down when lane lines are occluded, similar 

to the current state-of-the-art [23]. VSI Labs described use of high-definition maps in their study, 

where lane lines were used directly as an input to the ego vehicle control system, but their exact 



33 
 

methodology appears to be proprietary and confidential [24]. High-definition maps have the 

potential to increase the level of automation of ADS technology, but no method exists with 

sufficient ability to operate in occluded lane line scenarios. This paper describes a novel 

methodology for utilizing high-definition map data to expand the ODD of ADS and ADAS 

technologies to occluded lane line scenarios. 

Methods 

Data Collection 

To avoid the cost of a high-definition map service, data was collected manually over two 

distinct routes, and proxy high-definition maps were created. The first route was selected to be a 

portion of the Eaton Proving Grounds main test track in Marshall, Michigan, shown in Figure 12. 

This route contained a straight section, followed by a curve to the left surrounded by trees. The 

second route was selected to be the Campus Drive loop near Western Michigan University’s 

Parkview Campus, shown in Figure 13. This route consisted of a winding, continuously curving 

road segment. Several hundred extremely high-precision geospatial points were collected along 

the right and left lane lines for each route using a Trimble Catalyst DA2 GNSS receiver, as 

shown in Figure 11, which advertises an accuracy of 2 centimeters when using the Catalyst 1 

subscription level. High accuracy geospatial data was especially important in this study, as the 

lane lines are relatively small and any substantial displacement degrades the results significantly. 

 

Figure 11. Trimble Catalyst DA2 GNSS receiver (directly from [25]). 
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Figure 12. Collected lane line points at the Eaton Proving Grounds test track. 

 

Figure 13. Collected lane line points over the Campus Drive loop. 

To achieve smoothed lane lines over both routes, all lane lines points were put in order 

along the route and cubically interpolated, resulting in many equidistant geospatial points. This 

interpolation of geospatial points should theoretically be mapped to true distances before 

interpolation, as the length of latitude and longitude increments is not constant over Earth, but at 

this relatively small scale the error is negligible. After this step, the proxy high-definition maps 

for both routes were complete. 

The Western Michigan University (WMU) Energy Efficient and Autonomous Vehicles 

Laboratory research vehicles, shown in Figure 14, were then used to collect data over both 

routes. The Kia Niro Hybrid was used at the Eaton Proving Grounds, and the Kia Soul Electric 



35 
 

Vehicle was used to collect data over the Campus Drive route. Both vehicles were equipped with 

the same sensor suite, including but not limited to a Stereolabs ZED 2i stereo camera (Figure 15) 

and a Swift Navigation Duro Inertial RTK GNSS receiver (Figure 16), which advertises 4 

centimeter accuracy when using the Skylark Precise Positioning service. 

 

Figure 14. WMU EEAV Lab research vehicles. 

 

Figure 15. Stereolabs ZED 2i stereo camera (directly from [26]). 

 

Figure 16. Swift Navigation Duro Inertial RTK GNSS receiver (directly from [27]). 

The ego vehicles were driven over the selected routes and data was collected from the 

camera, IMU, and GNSS receiver using the Robot Operating System (ROS). The ego vehicle 

was operated by a human driver, driving no more than 25 miles per hour. A data processing 
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methodology was developed to project lane lines over the camera feed utilizing the sensor data in 

various ways. Figures 16 and 17 show unprocessed sample camera frames from the Eaton 

Proving Grounds route and the Campus Drive Route, respectively. 

 

Figure 17. Frame from image data collected over the Eaton Proving Grounds test track. 

 

Figure 18. Frame from image data collected over the Campus Drive loop. 

Data Processing 

 There are several coordinate frames relevant to this study. The lane line points are in the 

WGS 1984 coordinate system, consisting of latitude, longitude, and altitude. The cartesian 

coordinate frame of the vehicle is chosen to be z-forward, x-right, and y-down to be consistent 

with the coordinate systems of both the ZED stereo camera and the freely-available OpenCV 
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Python/C++ library. The overarching goal of data processing was to transform the geospatial 

points of both the lane lines and the ego vehicles into the local coordinate frame aligned with the 

camera, where the data could be overlaid and given to camera-based path planning systems. To 

do this, several coordinate transformations were necessary. All points were transformed from the 

WGS 1984 coordinate system to the north, east, down (NED) coordinate system, with the origin 

specified as the ego vehicle GNSS base station. This transformation brings the data from a global 

coordinate system into a right-handed local coordinate system. The NED coordinate system was 

chosen over the east, north, up (ENU) coordinate system in order to best match the coordinate 

system of the camera, shown in Figure 19, as well as the pinhole camera model coordinate 

system used by OpenCV, where the x-axis is right, the y-axis is down, and the z-axis is forward. 

The coordinate transformation of the lane line points to the NED system was handled by the 

pymap3d Python library. 

 

Figure 19. Stereolabs ZED camera coordinate frame (directly from [28]). 

 Next, the local NED coordinate frame needed to be rotated to align with the ego vehicle 

heading. However, the sampling rate of the vehicle heading was insufficient for real-time 

alignment of the lane line points, especially for curved road segments. To better align with the 

vehicle over time, IMU data were then used to interpolate the vehicle heading. Measurements of 

the angular velocity were multiplied by elapsed time to provide angular adjustments to the 
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heading as shown in Equation 2. The angle  is the heading reported by the sensor,  is the 

angular velocity about the IMU (up) z-axis,  is the time elapsed from the heading sample, and 

 is the adjusted heading. In summary, the coordinate frame was rotated by the adjusted heading 

𝜃 about the down axis. This can be represented as shown in Equation 3, where the x-axis is right, 

the y-axis is down, and the z-axis is forward. This rotation is shown graphically in Figure 20. 

The equations for the transformation are given as 

  (2) 

 
. 

(3) 

 

Figure 20. NED to XYZ coordinate frame rotation. 

Once all points were rotated to the new XYZ coordinate system, offsets in each direction 

were used as appropriate to translate from the base station GNSS receiver to the left camera. 

Once this was complete, all lane line points had been transformed from the global WGS 1984 

coordinate system to the local XYZ coordinate system used by the camera. Next, the points 

needed to be projected onto the camera image feed, applying a maximum-distance threshold if 

desired. To do this, the pixel location (u, v) of each point must be found, which can be done 
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given the XYZ coordinates and intrinsic camera properties retrieved from the camera metadata. 

The point projection method equations below are summarized from the OpenCV documentation, 

following the notation in Figure 21 [29]. 

 

Figure 21. OpenCV pinhole camera model coordinate frame (directly from [29]). 

First, the ratios of the x- and y-coordinates to the z-coordinate of the point are calculated, 

and the hypotenuse of the x- and y-coordinates r is found following 

 
 

(4) 

 . (5) 

The relevant camera properties were the radial distortion coefficients k1, k2, and k3, the 

tangential distortion coefficients p1 and p2, the principal point coordinates cx and cy, and the focal 

lengths fx and fy. These properties can be used to find an intermediate result in both the x- and y-

directions. The additional radial distortion coefficients k4, k5, and k6 and thin prism distortion 

coefficients s1, s2, s3, and s4 were not necessary and are excluded here. This gives Equation 6 as 
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. 

(6) 

Finally, the projected pixel location (u, v) of the point is found using the focal lengths fx 

and fy and the principal point x- and y-coordinates cx and cy by Equation 7 by 

 
. 

(7) 

Sequential application of Equation 3 through Equation 6 results in the appropriate pixel 

locations of all 3-dimensional points projected onto the 2-dimensional camera image. This is the 

basis for augmentation of a camera-frame path planning algorithm with high-definition map lane 

line geometry, without the need for line-of-sight to the lane line. 

Additionally, for a sense of distance, a radius or diameter rpoint for each point to be drawn 

can be calculated by dividing a size scaling factor s by the distance of the point from the origin, 

and rounding the result to the nearest integer. This is shown in Equation 7 and Equation 8, 

defined as  

  (8) 

 . (9) 

Alternatively, as selected for this study, a polygonal chain can be drawn connecting all 

points for a result that most closely imitates lane lines. This is simply done by connecting the 

points with line segments. 

Artificial Occlusion of Lane Lines 

 For result comparison, lane lines were extracted from the data using CV techniques. 

Hue/saturation/lightness thresholding masks were created to isolate yellow and white lane line 

pixels. While this did successfully identify the appropriate pixels, many pixels from the sky and 
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background passed through the threshold. To remedy this, a second processing step was taken 

where a region of interest (ROI) mask crops the image to a trapezoidal shape. The values of the 

threshold masks and the shape of the ROI mask differed between the two datasets due to 

different camera orientation and different lighting conditions. This provided a basic methodology 

for extraction of lane line pixels. 

Data along both routes could not be collected when lane lines were occluded, e.g. by 

collected snow or leaves. For this reason, lane lines in the camera feed were artificially occluded 

using further video postprocessing, thereby simulating road coverage conditions. The concept of 

postprocessing the camera feed in order to simulate different conditions is not entirely novel – 

Rubaiyat, Qin, and Alemzadeh utilized a similar method in their study in order to analyze 

resilience of autonomous vehicles to disturbed camera input [30]. The specific postprocessing 

methodology chosen was to use extracted lane line pixels and draw circles at each, using 

approximately the same color as the road surface. This resulted in the camera feed now having 

fully occluding lane lines, making normal detection of lane lines through CV or machine 

learning techniques impossible. Indeed, if one applies the same lane detection CV technique to 

detect lane lines on these processed images, no detections would be possible. The result of this 

CV image processing is shown for the Eaton Proving Grounds test track route in Figure 22, and 

for the Campus Drive loop route in Figure 23. Lane line geometry extracted from the proxy high-

definition map was drawn on top of these images to demonstrate that the methodology is entirely 

independent of camera-based lane line detections. The occluded lane lines shown in subsequent 

figures does not perform perfectly, but as this was just for demonstration purposes current results 

are satisfactory. 
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Figure 22. Eaton Proving Grounds test track camera frame with lane lines artificially occluded, 
before and after. 

  

Figure 23. Campus Drive camera frame with lane lines artificially occluded, before and after. 

Metrics of Evaluation 

Data Accuracy Metrics 

 The most important metric for ensuring the quality of collected geospatial data was 

horizontal (tangential to ellipsoid surface) and vertical (perpendicular to ellipsoid surface) 

accuracy. These metrics are reported by both the Trimble Catalyst DA2 handheld sensor as well 

as the Swift Navigation Duro Inertial sensor. The Swift Navigation Duro Inertial sensor also 

operates in several accuracy modes, depending on satellite visibility and mobile network 

conditions. The highest accuracy mode is RTK fixed, determined by the number of visible 

satellites and whether the rover sensor is receiving corrections from the base station sensor. The 
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goal of data collection was to keep collected lane line points accurate to 2 centimeters, and to 

keep the ego vehicle GNSS system operating in RTK fixed mode, accurate to 4 centimeters. 

Lane Line Overlay Metrics 

 At present, no metrics exist for quantitative analysis of projected lane line accuracy. The 

scope of this study did not include development of such a quantitative metric, instead a 

qualitative analysis showcasing the current strengths and areas of improvement was selected. 

The exploration and development of a quantitative metric is proposed as a topic for future study. 

Results 

Data Accuracy Analysis 

 In the lane line data collected with the Trimble Catalyst DA2 sensor over the Campus 

Drive route, the horizontal accuracy of the collected lane line points never exceeded 2 

centimeters, and the vertical accuracy never exceeded 5 centimeters. Weather conditions and 

mobile network strength were poorer at the Eaton Proving Grounds test track, so despite multiple 

attempts, the maximum horizontal accuracy reached 7 centimeters, and the maximum horizontal 

accuracy reached 25 centimeters. In general, most collected points had a horizontal accuracy 

between 1 to 3 centimeters and a vertical accuracy between 6 to 9 centimeters. The lane line data 

collected along both routes were more than sufficient to create the proxy high-definition map. 

The Swift Navigation Duro Inertial sensor consistently operated in the highest accuracy 

fixed RTK mode for the duration of the Campus Drive route. As such, the Campus Drive route 

data has very good accuracy; the horizontal accuracy of the ego vehicle GNSS receiver was at 

most 5.0 centimeters, and the vertical accuracy was at most 7.2 centimeters. The ego vehicle 

GNSS receiver faced more accuracy challenges at the Eaton Proving Grounds test track, 
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switching from fixed RTK to float RTK mode near the end of the route, when the vehicle was 

surrounded by trees. 

Lane Line Overlay Analysis 

Eaton Proving Grounds Test Track 

 The projected lane lines in the straight road segment of the Eaton Proving Grounds route 

align very well with the true lane line locations, and little deviation is observed. This shows the 

methodology holds promise for determination of occluded lane lines, especially for straight 

roadways. Two example results from this segment are shown in Figure 24. 
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Figure 24. Two examples of Eaton Proving Grounds camera frames from straight road segments 
with high-definition map lane line data overlaid on artificially occluded lane lines. These show 

well-aligned lane lines. 

When the ego vehicle entered the more wooded area, the Swift Navigation Duro Inertial 

sensor switched from the higher-accuracy RTK fixed mode to the lower-accuracy RTK float 

mode. This resulted in a divergence of the projected lane lines away from the true lane lines. 

Curves present a challenge to this method, even in RTK fixed mode, as discussed further in the 

following Campus Drive route results. This divergence is shown in Figure 25. 
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Figure 25. Eaton Proving Grounds camera frame from a curved road segment with high-
definition map lane line data overlaid on artificially occluded lane lines. Deviation from true 

lane lines occurs in this curved road segment due to the GNSS operating in lower-precision RTK 
float mode and the insufficient sampling rate of the GNSS heading sensor. 

Campus Drive Loop 

 The transformed and projected lane line geometry aligns well with the lane line pixels in 

the Campus Drive dataset in straight road segments as well, as shown in two examples in Figure 

26. The text overlaid on the images shows the instantaneous Swift Navigation Duro Inertial 

sensor accuracy and operating mode. Note that the Eaton Proving Grounds dataset did not 

include this accuracy data due to technical limitations at the time of collection. 
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Figure 26. Two examples of Campus Drive camera frames from straight road segments with 
high-definition map lane line data overlaid on artificially occluded lane lines. These show well-

aligned lane lines. 

The largest challenge in this dataset was caused by heading sensor sampling rate and the 

constantly curving road. As the road curves, any delay in the heading data will cause lateral 

misalignment of the projected lane lines. This is why IMU data was utilized for corrections, as 

described in Equation 1. This is shown in Figure 27. These results show that in order to most 

accurately overlay lane line geometry using high-definition map data, in addition to very high 

sensor accuracy, the ego vehicle IMU and GNSS sensors must sample at a very high rate, 

otherwise the projected lane lines will become misaligned with the true lane lines in curves. This 
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problem is less apparent for straight road segments, where the sensed ego vehicle heading does 

not change much. 

 

Figure 27. Campus Drive camera frame from a curved road segment with high-definition map 
lane line data overlaid on artificially occluded lane lines. Deviation from true lane lines occurs 
in this curved road segment due to the insufficient sampling rate of the GNSS heading sensor. 

Results Summary 

 Overall, the results of this proof-of-concept study are encouraging. Lane line geometry 

was successfully transformed from a proxy high-definition map into a local coordinate frame, 

then projected onto the camera feed. This allows for the control system of the ego vehicle to 

utilize high-definition map data in the same way that it would have used camera-detected lane 

line data, thus solving the problem of lane line occlusion. These results show that this 

methodology, with sufficient further development, can be used to assist the ego vehicle 

controller when lane lines become occluded, such as by shadows, leaves, or snow on the road 

surface. 

One challenge with the development of this technology is alignment of the lane lines in 

curved road segments. Any rotation of the ego vehicle not captured frequently enough will 

effectively cause a drift of the projected lane lines away from the true lane lines. A very 
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frequently sampled heading sensor could address this challenge. Further development of 

quantitative metrics is also suggested. 

Conclusions 

This paper describes and demonstrates a novel methodology to extract lane line geometry 

through high-definition maps without the use of real-time camera perception. The lane lines from 

the high-definition maps were transformed from a global coordinate frame to a local coordinate 

frame aligned with the camera, and then projected onto the image. This results in the lane lines 

effectively becoming visible once again and able to be used by the path planning process that 

would otherwise be inoperable due to lack of input. Overall the results show that this technology 

concept can be used for augmenting vehicle automation in occluded lane line scenarios. The 

reconstructed lane lines align very well with the true lane lines in straight road segments, but 

challenges presently exist with overlay accuracy in curved roads and when GNSS accuracy 

degrades due to obstruction by trees. 

This methodology provides a foundation from which to build an automated navigation 

procedure robust to lane line occlusion. Perception technology that breaks out of the established 

norms of camera, radar, and lidar sensing is needed to address the problems of resilient operation 

and operation in inclement weather. This initial study can be expanded through development of a 

quantitative measurement in order to rigorously define the accuracy of projected lane lines and 

enable optimization. Among the suggested metrics was quantification of the mean intersection 

over union over the drivable region, that is, the area bounded between the two lane-lines. 

Another metric hypothesized involves using the transformed high-definition map lane line data 

to construct mathematical equations for the lines on the image, and quantifying the geometric 

distance of detected lane line pixel locations as the error. This could also be compared with the 
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current standard of lane line detection. Furthermore, this methodology can be applied to winter 

driving, where lane lines may be occluded by snow collected on the road surface and line-of-

sight to satellites can be disturbed by cloudy weather or precipitation. This methodology could 

also prove useful for mapping lane line locations by reversing the data processing pipeline, 

where lane line locations detected through AI or other methods can be transformed into high-

precision geospatial points. To improve the issues surrounding heading sampling rates, the data 

pipeline could be altered to incorporate Kalman filters or other data prediction algorithms. 
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CHAPTER IV 

CONCLUSION 

 The methodologies presented in this document demonstrate novel expansions of the field 

of vehicle engineering. The topics of focus were the improvement of fuel economy, and 

increasing the range of applicable scenarios in which automated vehicle systems can operate. 

 The first study details a data pipeline that allows heavy-duty vehicle operators to analyze 

the fuel economy and performance of their fleets through modeling and simulation alone, 

reducing the cost of prototyping and experimentation. By sequentially applying the outlined 

procedure of preprocessing, stop capturing, signal fusion, upsampling, and signal fusion to 

existing fleet telematics data, vehicle models and drive cycles can be generated, validated to 

within 3% absolute error (as seen by the 1.67% error achieved), and then used to evaluate real-

world fuel economy in order to reduce fueling costs and greenhouse gas emissions. This study 

addressed the stated research question, proving that the industry-typical sparse telematics data 

can indeed be used for creation and validation of heavy-duty vehicle models and drive cycles. 

The second study shows how the limited operational design domain of the developing 

field of vehicle automation is remedied through recovery of lane line geometry via high-

definition maps. A proxy high-definition map was created using several high-precision 

geospatial sensors. The data was then interpolated and transformed in a data pipeline from the 

global WGS 1984 coordinate frame to exactly align with the local coordinate frame of the ego 

vehicle camera. This allows the perception subsystem of automated vehicle systems to operate 

even without line-of-sight to lane lines, showing that the operational design domain can be 

expanded while only depending on network connectivity and availability of high-definition map 

data. This second study successfully addressed the associated research question by describing 
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and demonstrating a novel methodology that expands the operational design domain of 

automated vehicle technology to occluded lane-lines. 

Together, these studies form a basis for the future improvement of vehicle fuel economy 

and the expansion of the operational design domain of automated vehicle systems to lane line 

occlusion scenarios, paving the way for the vehicle of the future. 
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