DESIGN AND ANALYSIS OF A COLD GAS **PROPULSION SYSTEM FOR STABILIZATION** AND MANEUVERABILITY OF A HIGH ALTITUDE RESEARCH BALLOON

COLLEGE OF ENGINEERING & APPLIED SCIENCES SENIOR DESIGN THESIS

GREGORY A. NEFF MITCHELL B. BROWNELL RYAN A SAVARD

OBJECTIVE

Design a propulsion system to stabilize a high altitude research balloon and provide means of anti-rotation via yaw control

DESIGN CONSIDERATIONS

- FAA regulations
 - 2.72 kg limit for a single payload
 - 5.44 kg total
- Jet stream
- Temperatures and pressures at altitude
- Amount of thrust needed
- Time of system operation

PROPULSION SYSTEM SELECTION

- Propeller low-density medium at high altitudes
- Solid Rocket Engines inability for instantaneous control
- Chemical Combustion volatile and high-density fuel
- Cold Gas Propulsion feasible

BASICS OF COLD GAS PROPULSION

- Releasing a compressed gas (N2, CO2, AIR, etc) through a nozzle
 - e.g, Exhausting fire extinguisher while sitting in a rolling chair.
- Nitrogen (N₂) gas was selected
- Nitrogen has an average specific heat
- Abundant, ethically validated
- Hydrogen has a specific heat almost 14x that of Nitrogen but is highly combustible

				Concept Reference Number	1.a	2.a	3.a	4.a
Concept Selection Evaluation Design Concepts Design for Cold Gas Propulsion System Western Michigan University College of Engineering & Applied Sciences			Gas/Propellant	Nitrogen	Nitrogen	Nitrogen	Carbon Dioxide	
			Thruster Material	410 Stainless Steel	410 Stainless Steel	410/NACE Stainless Steel	410/NACE Stainless Steel	
			Design Concepts	Other Design Notes	Converging Custom Propellant Tank	Subsonic, Converging/Diverging Custom Propellant Tank	Converging Modular Propellant Tank	High Pressure Converging Custom Tank
		Mitch Brownell Greg Neff Ryan Savard		OVERALL DESIGN RATING	82.91	66.05	73.00	67.54
	Rating Sun			Geometric/Design Rating	85.06	65.08	70.52	61.52
			Cost/Quality Rating	79.68	67.51	76.73	76.58	
		Design Para	meters/Conditons					
Ref No.		Description of Design Parameter		Importance Factor				
1		Manufacturability/Proc	ducability		73.6	74.5	77.3	83.6
	1.1	Ease of material access		4	8.0	10.0	9.0	9.0
	1.2	Part Complexity		7	7.0	6.0	7.0	8.0
2		Thrust Maximization			83.2	68.8	58.4	70.4
	2.1	Optimization of gas flow		9	8.0	4.0	10.0	8.0
	2.2	Overall Thrust Value		8	8.0	8.0	4.0	4.0
	2.3	Head Loss		8	9.0	9.0	3.0	9.0
3		Gas Delivery System			85.7	60.5	76.2	69.5
	3.1	Tank Design/Materials/Analysis		6	9.0	6.0	7.0	8.0
	3.2	Gas Delivery System and Mass Flow		8	7.0	7.0	6.0	7.0
	3.3	Material Properties		7	10.0	5.0	10.0	6.0
4		Design Considerations			93.0	74.3	90.0	45.2
	4.1	Ability for CAD/ANSYS modeling		7	10.0	5.0	9.0	8.0
	4.2	2 Maximization of laminar flow		8	8.0	9.0	10.0	5.0
	4.3	3 Ideal gas properties for application		8	10.0	8.0	8.0	1.0
5		Geometric Characteristics			78.9	52.1	63.2	68.9
	5.1	Size applicable to cube sat		6	10.0	8.0	7.0	8.0
-	5.2	.2 Machinibility relative to size		7	6.0	3.0	6.0	5.0
	5.3	3 Mountability on application		6	8.0	5.0	6.0	8.0

OVERALL DESIGN

NOZZLE DESIGN PROCESS

NOZZLE DESIGN

- Required thrust 0.0476 N total, 0.0238 N per Nozzle.
- Velocity calculation based on a set mass flow rate, the geometry of the nozzle, and the state of the gas.
- ANSYS simulation modeled the geometry and specified inlet and outlet conditions
- If the velocity being produced did not produce enough thrust, either the mass flow rate was increased or the nozzle area ratio was increased
- Initial assumption of incompressible flow was confirmed through fluid flow analysis in ANSYS

$$F_{air} = \rho_{air} V_{air}^2 A \qquad V = \frac{\dot{m}}{\rho A} \qquad T = \dot{m} V$$
Western Michigan University

RESULTS

	Hand Equations	Ansys	
Velocity (m/s)	35.3	36.1	
Thrust (N)	0.024	0.0256	
Inlet Diameter (mm)	6.35		
Outlet Diameter (mm)	1.5875		

	Inlet	Outet	
Pressure (Pa)	689	9475	1185
Temperature (K)		231	231
Density (kg/m ³)	1	0.17	10.17

DENSITY

TEMPERATURE

PRESSURE

MESH

PROPELLANT TANK DESIGN PROCESS

TANK DESIGN REQUIREMENTS

- Lightweight material
- High Strength (i.e, high strength to weight ratio)
- Compatibility of pressure vessel manufacturability
- Low stress concentration (geometric factor)
- Compact, non-robust design
- High safety factor due to application

BASELINE VESSEL PROPERTIES

• Density of nitrogen propellant at operating conditions

- 275.8 bar (4000 psi, 27.6 MPa), -60 ° C (Ideal Gas)
- Nozzle mass flow rate: 0.0014 kg/s, 5 minutes continuous thrust
- 0.336 kg of N_2 gas (design mass)
- Using density relationship, vessel volume of 0.00088 m³ (0.88 L)
- Rough geometric boundary: (10 cm diameter, 18 cm length)

CONCEPT SUMMARY

	Concept 1	Concept 2	Concept 3	Concept 4
Overall Length (cm)	16.54	17.78	14.22	15.24
Overall Diameter (cm)	10.16	10.16	10.16	10.16
Displacement Volume (cm ³)	1139	1065	1145	1056
Volume of Material (cm ³)	115.5	140.2	140.1	141.4
Volume Inefficiency (%)	13.65	13.16	12.23	13.39
Tank Material	Carbon Fiber	Carbon Fiber	304 Stainless Steel	Titanium
Wall Thickness (cm)	0.25	0.13	0.25	0.25
Density (kg/m ³)	1630	1630	8050	4430
Mass, excluding gas (kg)	0.28	0.25	1.13	0.64

CHOSEN TANK CONCEPT

Overall Geometric Layout

FEA Loading

FEA Von-Mises Stress Results

CHOSEN TANK CONCEPT

FEA Displacement Results

FEA Safety Factor Results

FRAME DESIGN PROCESS

MATERIAL SELECTION

	AL 6061-T6	Ti-6AL-4V	17-7 Stainless Steel	High Modulus Carbon Fiber
Density (g/cc)	2.7	4.43	7.8	1.63
Rockwell Hardness	40	36	38	10.16
Tensile Strength, Ultimate(MPa)	310	950	1240	1056
Tensile Strength, Yield(MPa)	276	880	1030	141.4
Elongation at Break (%)	17	14	3-7	N/A
Modulus of Elasticity(GPa)	68.9	113.8	204	215
Modulus/weight ratio	2.6	2.53	2.54	13.44
Mass of Frame (grams)	398.72	572.71	1818.4	380

FRAME FEA RESULTS

Max .00269mm

Min .00081mm

Total Deformation (mm)

Frame Assembly

FRAME FEA RESULTS

Maximum Principal Stresses on struts(MPa)

Total Deformation of Strut (corner impact 35N) (mm)

DESIGN RESULTS & RECOMMENDATIONS

- Total design mass is 79% of target mass
- Nozzle, frame and pressure vessel component design valid for application
- Testing/prototyping of propulsion system
- Remote control system design
- Simulate/analyze system within vacuum chamber to measure thrust characteristics

QUESTIONS & COMMENTS

