Cholinergic Neurons Regulate and Utilize GDNF Secreted by C2C12 Skeletal Muscle Cells in Culture

John-Mary Vianney
Western Michigan University, john-mary.j.vianney@wmich.edu

John Spitsbergen
Western Michigan University, john.spitsbergen@wmich.edu

Follow this and additional works at: https://scholarworks.wmich.edu/biology_research

Part of the Biology Commons, Cell and Developmental Biology Commons, Cellular and Molecular Physiology Commons, and the Molecular and Cellular Neuroscience Commons

WMU ScholarWorks Citation
https://scholarworks.wmich.edu/biology_research/2

This Poster is brought to you for free and open access by the Biological Sciences at ScholarWorks at WMU. It has been accepted for inclusion in Biological Sciences Faculty and Graduate Student Research by an authorized administrator of ScholarWorks at WMU. For more information, please contact wmu-scholarworks@wmich.edu.
GDNF secreted by skeletal muscle cells in culture

Abstract

Glia and cell line–derived neurotrophic factor (GDNF) is a potent survival factor for subpopulations of neurons in both central and peripheral systems (Liu and Weis, 1996). The presence of GDNF in skeletal muscle at the neuromuscular junction (NMJ) suggests a target for neuromuscular diseases. This study examines the role of GDNF in regulating the production of GDNF by C2C12 skeletal muscle cells in culture. The results suggest that cholinergic neural cells regulate GDNF production by muscle cells possibly through acetylcholine receptors.

Aims

a. Examine GDNF production by skeletal muscle cells in culture.

b. Localize GDNF in skeletal muscle and at the nerve-muscle contact.

c. Examine the role that neural cells play in regulating GDNF production by skeletal muscle.

d. Examine if cholinergic neural cells induce their effect through acetylcholine receptors.

Introduction

GDNF is a member of the TGF-β superfamily of growth factors involved in the development and differentiation of neural tissues. It is expressed in multiple cell types, including neurons, glia, and immune cells. GDNF interacts with two receptor tyrosine kinases, RET and GFRα1, which are associated with different signaling pathways.

Results

Neural cells reduce GDNF content by skeletal muscle cells in culture

Neural cells reduce GDNF content in muscle cells

Blocking AChRs reversed the action of neural cells on GDNF secretion

Blocking AChRs did not reverse the action of neural cells on GDNF production in muscle cells

Discussion

These results suggest that cholinergic neural cells regulate GDNF production by skeletal muscle cells through the activation of acetylcholine receptors. The findings provide insight into the potential mechanisms by which neural cells modulate GDNF production and may have implications for the treatment of neuromuscular diseases.

Acknowledgements

Thanks to the Biological Sciences Department at Western Michigan University for providing essential resources to complete this project. Special thanks to the Biology Imaging Center at Western Michigan University.

References

Summary

- C2C12 skeletal muscle cells produce and secrete GDNF in culture medium. However, more GDNF is retained in cells than secreted into culture medium.

- NG108-15 neural cells regulate the production of GDNF by C2C12 skeletal muscle by reducing the amount of GDNF secreted in culture medium and modulating the release of GDNF from muscles.

- Blockade of acetylcholine receptors blocks effects of neurons on GDNF secretion by skeletal muscle cells but does not block the effect of neurons on GDNF content within muscle cells.

- Neural cells grown alone in cell culture do not contain or secrete GDNF; however, neural cells grown in co-culture contain GDNF protein.

Conclusions

Results from this study suggest that neural cells regulate their own supply of GDNF produced by skeletal muscle, in part, via acetylcholine receptor activation.