
Western Michigan University Western Michigan University 

ScholarWorks at WMU ScholarWorks at WMU 

Parallel Computing and Data Science Lab 
Technical Reports Computer Science 

2017 

An Out-of-Core GPU based dimensionality reduction algorithm for An Out-of-Core GPU based dimensionality reduction algorithm for 

Big Mass Spectrometry Data and its application in bottom-up Big Mass Spectrometry Data and its application in bottom-up 

Proteomics Proteomics 

Muaaz Awan 
WMU, muaazgul.awan@wmich.edu 

Fahad Saeed 
Western Michigan University, fahadsaeed11@gmail.com 

Follow this and additional works at: https://scholarworks.wmich.edu/pcds_reports 

 Part of the Bioinformatics Commons, Computational Biology Commons, Computational Engineering 

Commons, and the Numerical Analysis and Scientific Computing Commons 

WMU ScholarWorks Citation WMU ScholarWorks Citation 
Awan, Muaaz and Saeed, Fahad, "An Out-of-Core GPU based dimensionality reduction algorithm for Big 
Mass Spectrometry Data and its application in bottom-up Proteomics" (2017). Parallel Computing and 
Data Science Lab Technical Reports. 8. 
https://scholarworks.wmich.edu/pcds_reports/8 

This Technical Report is brought to you for free and open 
access by the Computer Science at ScholarWorks at 
WMU. It has been accepted for inclusion in Parallel 
Computing and Data Science Lab Technical Reports by 
an authorized administrator of ScholarWorks at WMU. 
For more information, please contact wmu-
scholarworks@wmich.edu. 

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/pcds_reports
https://scholarworks.wmich.edu/pcds_reports
https://scholarworks.wmich.edu/cs
https://scholarworks.wmich.edu/pcds_reports?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/28?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/pcds_reports/8?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/


An Out-of-Core GPU based dimensionality reduction algorithm

for Big Mass Spectrometry Data and its application in

bottom-up Proteomics

Muaaz Gul Awan2 and Fahad Saeed 1,2

1Department of Electrical and Computer Engineering,
2Department of Computer Science, Western Michigan

University, MI, USA.

Abstract

Modern high resolution Mass Spectrometry instruments can generate millions of spectra
in a single systems biology experiment. Each spectrum consists of thousands of peaks but
only a small number of peaks actively contribute to deduction of peptides. Therefore, pre-
processing of MS data to detect noisy and non-useful peaks are an active area of research.
Most of the sequential noise reducing algorithms are impractical to use as a pre-processing
step due to high time-complexity. In this paper, we present a GPU based dimensionality-
reduction algorithm, called G-MSR, for MS2 spectra. Our proposed algorithm uses novel
data structures which optimize the memory and computational operations inside GPU.
These novel data structures include Binary Spectra and Quantized Indexed Spectra (QIS).
The former helps in communicating essential information between CPU and GPU using
minimum amount of data while latter enables us to store and process complex 3-D data
structure into a 1-D array structure while maintaining the integrity of MS data. Our
proposed algorithm also takes into account the limited memory of GPUs and switches
between in-core and out-of-core modes based upon the size of input data. G-MSR achieves
a peak speed-up of 386x over its sequential counterpart and is shown to process over a million
spectra in just 32 seconds. The code for this algorithm is available as a GPL open-source
at GitHub at the following link: https://github.com/pcdslab/G-MSR.

GPU; Big Data; Data Reduction; Mass Spectrometry; Proteomics; Denoising;

1 Introduction and Background

With the advent of high resolution and more sensitive mass spectrometers, MS based proteomics
has become a go-to method for systems biology research. It has found its applications in
detection, treatment and determination of phenotypes of cancer [1], protein sequencing and
quantization [2], profiling of exosomes [3], study of toxicology [4] [5] and in evolutionary biology
[6].

For the above mentioned uses of MS based proteomics, protein sequencing and quantization
is the core step. This process involves breaking down a protein into peptides and separating
them based on their masses followed by fragmentation and quantization in a mass spectrometer
[7]. The resultant spectra contain mass-to-charge ratios of these fragments along with their
corresponding intensities which are referred to as peaks. These MS2 spectra can be large in
number where each spectrum can have up to 4000 peaks [8].
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For peptide sequencing MS2 spectra can then be processed through two types of peptide
sequencing algorithms: i) denovo algorithms or ii) database search algorithms. Both algorithms
have to sift through large number of combinatorial possibilities to deduce a peptide for a given
spectra. In our previous studies we [8] [9] have shown that 90% of the peaks in a given spectra are
not helpful in peptide deduction. However, classifying peaks as useful/non-useful before peptide
deduction is a difficult problem which has led to the development of complex pre-processing
algorithms [10][8]. Pre-processing of MS data has been studied under three major categories i.e.
clustering [11], noise reduction [12] and quality assessment [13]. Algorithms from all categories
have a common goal of assisting in peptide deduction by improving the quality of peptide
spectral matches using standard peptide deduction algorithms. Several existing algorithms
[10][14][12] are able to isolate and remove about 60% to 70% of the useless peaks which results
in speeding up the process of peptide deduction. However, many of these compute intensive
algorithms require more time for pre-processing than actual processing of peptide deduction;
defeating the purpose of their design. A detailed review of these algorithms can be found in [8].

In our previous work, we introduced MS-REDUCE, a pre-processing algorithm [8]. It is
shown to bring down pre-processing time from days to minutes. To the best of our knowledge,
MS-REDUCE is the fastest known sequential noise/data reduction algorithm for MS2 spectra.
But even with MS-REDUCE the pre-processing time forms a significant portion of proteomics
pipeline. This calls for the introduction of many-core devices such as GPUs to solve this
problem. GPUs with their thousands of cores have the capability of performing thousands of
calculations concurrently thus speeding up the process manifolds. However, the performance of
most GPU-based algorithms is limited by the memory-related bottlenecks [15]. Typical memory
bottlenecks in GPU include large transfer times[16], limited in-core memory [15] and the toll
incurred by the irregular memory accesses when large data structures are used [17][18].

In this paper we present a GPU based dimensionality reduction algorithm for MS2 spectra
and we call it G-MSR. We introduce two novel data structures i.e. Binary Spectra and Quan-
tized Indexed Spectra (QIS) which solves the memory-bottleneck problems and achieves large
speed up over MS-REDUCE. G-MSR is effectively an out-of-core algorithm since it is capable
of processing datasets larger than the size of GPU’s in-core memory. Using the novel data
structures and careful parallel design we were able to achieve a peak speed-up of 386x over
MS-REDUCE without loss of any accuracy.

1.1 Overview of MS-REDUCE

The algorithm first introduced in [8] operates in three steps: 1) Spectral Classification, 2)
Quantization and 3) Weighted Sampling stage. Given a spectrum s and a reduction factor
0 < R ≤ 1, MS-REDUCE outputs a reduced spectrum s′ such that the size of reduced spectrum
is approximately R∗|s|. The core step of MS-REDUCE is the weighted sampling step, in which
a reduced spectrum s′ is constructed such that the following total peak equation is satisfied.

n∑
i=1

(
xi

100
∗ qi) = p

′

here xi is the sampling weight for i-th quantum, qi is the number of peaks in quantum i, p
′

represents total peaks in reduced spectrum and n is the number of quanta for given spectrum.
Details of remaining steps can be found in [8]. Flow of MS-REDUCE algorithm can be observed
in Fig. 2 A).
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Figure 1: Here N denotes the number of spectra, n the size of largest spectrum and m the size of
other information. Transferring only intensities to GPU for processing can conserve more than
50% of scarce in-core memory. G-MSR outputs the newly introduced Binary Spectra(defined
in section: 2.1.2).

1.2 CUDA Programing Model

With the introduction of CUDA programing environment GPUs have become easier to program
and have offered a new platform in the realm of parallel computing [17] [19]. A GPU houses
several Streaming Multiprocessors (SM) with each SM containing multiple CUDA cores. In
modern GPUs with compute capability 3.0 and later, each SM can have up to 192 CUDA cores.
Using CUDA programing environment the intricacies of hardware architecture are hidden from
a programmer; instead she can focus on parallelizing the problem. GPUs employ SIMT model
which combines the usual SIMD with multiple threading. Threads in CUDA environment are
organized in a two level hierarchy of grids and thread blocks. A grid consists of multiple blocks
and each block contains several threads. Each thread within a block has a unique thread and
a block id. Threads within a block can communicate via a shared memory and local thread
synchronizations. Inter block communication is performed through global memory and block
synchronizations. The global memory is 100x slower than the shared memory but the smaller
size of shared memory limits its utilization to a user controlled cache [20].

2 GPU Based MS-REDUCE (G-MSR)

2.1 In-Core G-MSR

We have designed G-MSR to operate only on peak intensities. This preserves PCIe bandwidth
since we only transfer intensities after rounding them off to the nearest integer. This does not
have any effect on the quality as shown in our subsequent quality assessment experiments. Fig.
1 shows the difference in the amount of data handled by MS-REDUCE and G-MSR. In this
paper, the word spectra or spectrum will refer to the arrays of peak-intensities.

2.1.1 Sorting and Intensity Spread Calculation

The calculation of average intensity spread (Iavg) requires sorting of intensities which forms
a bottleneck [8]. To counter this we recently proposed a array sorting algorithm called GPU-
ArraySort. It is a highly scalable algorithm for sorting large number of arrays making full use of
GPU’s resources [17]. We refer to the GPU-ArraySort Kernel as Kernel-1. Next, the intensity
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Figure 2: A) Shows the work flow of MS-REDUCE. B) Shows the construction of QIS from
3-D quantized spectrum from MS-REDUCE. C) Shows the work flow of G-MSR, blocks with
same color represent processing in same kernel. A copy of actual spectra is maintained on the
CPU for construction of reduced spectra.

4



spread kernel i.e. Kernel-2 calculates intensity spread for each spectrum and calculates Iavg.
Pseudo code for Kernel 2 is given in Algo. 1.

2.1.2 Spectral Classification, Quantization and Sampling

Spectral Classification, Quantization and Sampling steps are boxed together in one single ker-
nel function; we call it Kernel-3. Output of this kernel is a list of Binary Spectra. Binary
Spectra provides a way of communicating this information between CPU and GPU necessary
for constructing reduced spectrum from Binary Spectrum, as shown in Fig. 2.

Definition 1 Given a spectrum si = {p1, p2, p3, . . . , pn} a Binary Spectrum Bi for the corre-
sponding reduced spectrum s′i is defined as, Bi = {ej = 1|pj ∈ s′i} ∪ {ej = 0|pj /∈ s′i}.

As shown in Fig. 2 A), quantization step yields a complex 3-D data structure. Maintaining
and accessing 3-D data structures inside GPU’s memory can be very inefficient. To tackle this
problem we introduce a novel data structure, Quantized Indexed Spectrum (QIS) to represent
a quantized spectrum in a simple 1-D array. QIS helps avoiding irregular memory accesses
and uses 50% less data, resulting in efficient, in-core memory usage. Fig. 2 B) shows the
construction of QIS from intensity array. QIS can be formally defined as:

Definition 2 Given a spectrum si of size n, if after quantization, si has m quanta, then its
QIS is given by Qi = {l1, l2, l3, . . . , ln}. Here lx represents a peak index. Starting and ending
offsets of quanta are stored in a separate array p = {st1, e1, st2, e2, . . . , stm, em} where sty is
the offset where quantum y starts and ey is where quantaum y ends.

The Sampling step involves determining the sampling weights for satisfying the peak equa-
tion. Peak-indices in QIS are sampled across all quanta based on these sampling weights. From
the sampled-indices a Binary Spectrum is constructed using the array O = {01, 02, 03, . . . 0k}
of size same as si. And placing 1s at each index sampled before. Fig. 2 B) shows the process
of constructing reduced spectra from Binary Spectra on CPU side.

2.2 Out-of-Core G-MSR

The out-of-core algorithm estimates the amount of memory required to process a given dataset.
Depending on the total in-core memory of given GPU it then divides the dataset into parts
and processes them in passes. However, because of data dependencies processing has to be
performed in phases.

2.2.1 Phase 1

After moving the first chunk of spectra in the GPU memory, Kernel-1 is launched followed by
Kernel-2 to calculate Iavg. The array of Ii for each chunk is stored on CPU temporarily. Then
the process is repeated for remaining chunks, till Ii for all spectra and their sum is available on
CPU. Iavg value for complete dataset is calculated on CPU and copied back.

2.2.2 Phase 2

In phase 2, each chunk of spectra along with its corresponding Ii array is copied to GPU and
Kernel-3 is launched. The process repeats till all the chunks have been processed. Fig. 3 shows
the flow of out-of-core execution.
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Algorithm 1 Per thread Pseudo code for Kernel 2

Require: An array A of intensities and array S containing spectrum sizes. Subscript i wherever
used, represents unique spectrum

Ensure: Array B containing binary spectrum of A
for each thread i do

Ri ← SUM(Max10Peaks) - SUM(Min10Peaks)
Ravg ← Average(R)

end for

Figure 3: The figure showing the flow for out-of-core processing, phase 1 and phase 2 have been
shown separately.

Algorithm 2 Per thread Pseudo code for Kernel 3

Require: An array A of intensities, Average Intensity Spread R and array of Intensity Spread
R

Ensure: Array B containing binary spectrum of A
for each thread i do

Ci ← getClass(Ai, Ri)
Qi ← getTotalQuanta(Ci)
for each aj ∈ Ai do

aj ← getQuantum(aj)
end for
qj ∈ qS ← quantaSizes(Ai)
B ← 0
for each qj ∈ qS do
qj ← getSampleRate(qj)
B[getSample(qj)]← 1

end for
end for
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3 Time Complexity Analysis

GPU-ArraySort uses insertion sort for sorting small sized bins. If p CUDA threads are used
for sorting a spectrum of size n, its time complexity would be O(n

2

p ), we can extend this for N

spectra and B CUDA blocks to get O(N∗n
2

B∗p ) for the sorting step. Intensity Spread calculation
and Classification steps are constant time processes and take O(N) for N spectra, while using
a total of B threads across all CUDA blocks, both of these steps can be performed in O(NB ).
The Quantization step takes O(n) time for a spectrum of size n. For N spectra this would
take O(N ∗ n), and when using B threads across all blocks it becomes O(N∗nB ). The Random
Sampling step has an execution time of O(s ∗ n) where s is the rate of sampling and its value
varies from 0 to 1. While using a total of B threads across all blocks and for N spectra it becomes
O( s∗NB ). Combining all of the above time complexities and replacing l = p ∗ (2 + n + n ∗ s), we
get:

O(
N ∗ (n2 + l)

B ∗ p
) (1)

4 Performance Evaluation

We evaluated the performance of G-MSR from two different aspects. First was a time based
analysis to determine the amount of speed-up obtained over the serial version. Second was a
quality assessment experiment to see how the number of high quality peptide spectral matches
(PSMs) varied when treating the spectra with G-MSR. We also evaluate the performance of
G-MSR while using it as a tool for reductive proteomics for high resolution instruments.

4.1 Data Generation

For all the experiments, we made use of the thirteen datasets we used before in [8] and [11].
Naming conventions for all thirteen data sets are same as in [8].

4.2 Experiment Setup

For all the experiments we made use of a Linux server running Ubuntu Operating System,
version 14.01. The server houses two Intel Xeon E5-2620 Processors, clocked at 2.40 GHz with
a total RAM of 48 GBs. The system has an NVIDIA Tesla K-40c GPU with a total of 2880
CUDA Cores and 12 GBs of RAM. CUDA version 7.5 and GCC version 4.8.4 were used for
compilation.

4.3 Scalability and Time Analysis

For this experiment, we used the appended UPS2 dataset which had over a million spectra.
Timing experiments were performed with increasing datasizes to cover the out-of-core cases.
Results for scalability studies can be observed in Fig. 5. In Fig. 5, when N is small and
is almost equal to B we get huge speed ups. But as the number of spectra increase and the
number of concurrent threads reach their limit we observe a decrease in speed up in accordance
with Eq. 1. Also term l in Eq. 1 increases when reduction factor is increased. This explains
higher speed ups for lower reduction factors.
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Figure 4: Timing plots of peptide deduction process using Tide with hiXcorr algorithm. Here
RF is the reduction factor. An increasing RF makes the process more scalable.

4.4 Quality Assessment

We used the same method of quality assessment as discussed in [8]. For our experiments we set
the FDR value of interest to 5% i.e. any PSM having FDR value below 5% is an acceptable
match, we call them effective matches. Fig. 6 shows percentage of effective matches with
varying reduction factors for both algorithms. G-MSR and MS-REDUCE gave almost same
percentages of effective matches.

4.5 Reductive Proteomics for high resolution instruments

In high resolution mass spectrometery data, number of bins created can be quite large which
can lead to large processing times for all sorts of peptide deduction algorithms [21].

Pre-processing of spectra with G-MSR will reduce the size of spectrum and hence the pro-
cessing time for peptide deduction. We performed peptide deduction for UPS2 dataset after
preprocessing it with G-MSR at different reduction factors. For this experiment Tide [22] in-
tegrated with hiXcorr [21] was used for peptide deduction. Fig. 4 shows that with smaller
reduction factors the performance of peptide deduction algorithm becomes more scalable even
with increasing resolution.

5 Discussion and Conclusion

Modern day multi- and many-core devices are changing the way scientists tackle computation-
ally complex problems. Theoretically intractable problems with complex approximate solutions
are now being solved in acceptable times using modern high performance computing devices.
In the field of bioinformatics datasets may range from a few gigabytes to several terabytes.
These large datasets not only provide computational bottlenecks but an added problem of data
management inside the limited in-core memories of these devices. In this paper we presented a
GPU based data reduction algorithm for MS2 spectra called G-MSR. We introduced two novel
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data structures called Quantized Indexed Spectrum (QIS) and Binary Spectrum which helped
minimize the use of GPU memory and making memory accesses more localized and thus en-
abled the processing of large data sets in a single pass with maximum efficiency. Binary spectra
allowed us to process spectra by just copying the required information on to the GPU while
storing the actual spectra on CPU Memory.

Our proposed strategy is capable of processing datasets which exceed the memory limits
of a GPU using an out-of-core technique. Our experiments show a peak speed-up of 386x
as compared to the serial version of the algorithm. And finally we introduce G-MSR to be
used as a pre-processing step in reductive proteomics for high resolution instruments for high
throughput processing.
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