2012

Effect of Varying Exercise Intensities on GDNF Expression and Neuromuscular Junction Morphology

Amy Morrison Gyorkos
Western Michigan University

Monica J. McCullough
Western Michigan University, monica.j.mccullough@wmich.edu

John Spitsbergen
Western Michigan University, john.spitsbergen@wmich.edu

Follow this and additional works at: https://scholarworks.wmich.edu/biology_research

Part of the Life Sciences Commons

WMU ScholarWorks Citation
Gyorkos, Amy Morrison; McCullough, Monica J.; and Spitsbergen, John, "Effect of Varying Exercise Intensities on GDNF Expression and Neuromuscular Junction Morphology" (2012). *Biological Sciences Faculty and Graduate Student Research*. 9. https://scholarworks.wmich.edu/biology_research/9

This Poster is brought to you for free and open access by the Biological Sciences at ScholarWorks at WMU. It has been accepted for inclusion in Biological Sciences Faculty and Graduate Student Research by an authorized administrator of ScholarWorks at WMU. For more information, please contact wmu-scholarworks@wmich.edu.
ABSTRACT

GDNF has been shown to:
- be the most potent trophic factor to rescue motoneurons
- play a significant role in postnatal remodeling and maintenance of mature neuromuscular junction (NMJ) structures
- cause hyperinnervation and multiple end plate formation at mature NMJ structures
- be expressed at higher levels in slow-twitch muscle following low-intensity exercise

INTRODUCTION

GDNF has been shown to:
- be the most potent trophic factor to rescue motoneurons
- play a significant role in postnatal remodeling and maintenance of mature neuromuscular junction (NMJ) structures
- cause hyperinnervation and multiple end plate formation at mature NMJ structures
- be expressed at higher levels in slow-twitch muscle following low-intensity exercise

RESULTS

<table>
<thead>
<tr>
<th>Training Alters Muscle Fiber CSA in Recruited Muscles</th>
<th>Training Alters GDNF Protein Content in Recruited Muscles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soleus</td>
<td>Soleus</td>
</tr>
<tr>
<td>Control</td>
<td>Control</td>
</tr>
<tr>
<td>3831 ± 180</td>
<td>2.5 ± 2.2</td>
</tr>
<tr>
<td>Run</td>
<td>Run</td>
</tr>
<tr>
<td>2109 ± 65*</td>
<td>7.6 ± 6.4*</td>
</tr>
<tr>
<td>Swim</td>
<td>Swim</td>
</tr>
<tr>
<td>3243 ± 101**</td>
<td>8.6 ± 4.5*</td>
</tr>
</tbody>
</table>

*Significant difference between the exercise group and control group; #Significant difference from Run Group; Values are means ± S.E.M.; Protein content (pg GDNF/tissue weight)

METHODOLOGY

Subjects
- 6 month-old Sprague Dawley rats
- Randomly assigned to control, swim-training and run-training groups

Swim Training (n=6)
- 2 fold 3 day/week for 2 weeks
- Filled to 100cm at 35°C
- 10 minutes

Run Training (n=5)
- 10 minute intervals

Visualization of GDNF & NMJ
- **Soleus (SOL; slow twitch)**
- **Extensor Digtiorum Longus (EDL; fast twitch)**

Visualization of Skeletal Muscle Fibers
- **Average Cross Sectional Area (CSA)**
- **Transverse sections cut on cryostat (20µm)**
- **Antibodies raised against MHC (I, IIa, IIx, IIb)**
- **CSA measured for 125-150 random EDL and SOL fibers (3 animals/group) using confocal microscopy**

Quantification of GDNF protein content
- **ELISA**

Statistics
- A one-way ANOVA and PostHoc tests used for statistical significance among different groups (P<0.05).
- Linear regression analysis used to evaluate association between variables (P<0.01).

CONCLUSIONS

- Swim- and run-training can alter GDNF protein content at the NMJ
- Higher intensity exercise can increase GDNF protein content in fast twitch muscle fibers
- GDNF may play a role in altering the morphology at the NMJ