
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Parallel Computing and Data Science Lab
Technical Reports Computer Science

2017

GPU-PCC: A GPU Based Technique to Compute Pairwise GPU-PCC: A GPU Based Technique to Compute Pairwise

Pearson’s Correlation Coefficients for Big fMRI Data Pearson’s Correlation Coefficients for Big fMRI Data

Taban Eslami
Western Michigan University, taban.eslami@wmich.edu

Muaaz Gul Awan
Western Michigan University, muaazgul.awan@wmich.edu

Fahad Saeed
Western Michigan University, fahadsaeed11@gmail.com

Follow this and additional works at: https://scholarworks.wmich.edu/pcds_reports

 Part of the Bioinformatics Commons, Computational Engineering Commons, Computer Sciences

Commons, and the Neuroscience and Neurobiology Commons

WMU ScholarWorks Citation WMU ScholarWorks Citation
Eslami, Taban; Awan, Muaaz Gul; and Saeed, Fahad, "GPU-PCC: A GPU Based Technique to Compute
Pairwise Pearson’s Correlation Coefficients for Big fMRI Data" (2017). Parallel Computing and Data
Science Lab Technical Reports. 9.
https://scholarworks.wmich.edu/pcds_reports/9

This Technical Report is brought to you for free and open
access by the Computer Science at ScholarWorks at
WMU. It has been accepted for inclusion in Parallel
Computing and Data Science Lab Technical Reports by
an authorized administrator of ScholarWorks at WMU.
For more information, please contact wmu-
scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/pcds_reports
https://scholarworks.wmich.edu/pcds_reports
https://scholarworks.wmich.edu/cs
https://scholarworks.wmich.edu/pcds_reports?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/pcds_reports/9?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

GPU-PCC: A GPU Based Technique to Compute Pairwise
Pearson’s Correlation Coefficients for Big fMRI Data

Taban Eslami
taban.eslami@wmich.edu

Department of Computer Science
Western Michigan University

Muaaz Gul Awan
muaazgul.awan@wmich.edu

Department of Computer Science
Western Michigan University

Fahad Saeed
fahad.saeed@wmich.edu *∗

Department of Computer Science
Western Michigan University

1 Abstract

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive brain imaging technique for studying the
brain’s functional activities. Pearson’s Correlation Coefficient is an important measure for capturing dynamic
behaviors and functional connectivity between brain components. One bottleneck in computing Correlation
Coefficients is the time it takes to process big fMRI data. In this paper, we propose GPU-PCC, a GPU based
algorithm based on vector dot product, which is able to compute pairwise Pearson’s Correlation Coefficients
while performing computation once for each pair. Our method is able to compute Correlation Coefficients
in an ordered fashion without the need to do post-processing reordering of coefficients. We evaluated GPU-
PCC using synthetic and real fMRI data and compared it with sequential version of computing Correlation
Coefficient on CPU and existing state-of-the-art GPU method. We show that our GPU-PCC runs 94.62×
faster as compared to the CPU version and 4.28× faster than the existing GPU based technique on a real
fMRI dataset of size 90k voxels. The implemented code is available as GPL license on GitHub portal of our
lab at https://github.com/pcdslab/GPU-PCC.

2 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive brain imaging technique for studying the
brain functional activities [1]. This technology helps researchers and physiologists to find the facts related to
human behavior and psychology and is based on Blood Oxygen Level Dependent (BOLD) contrast. fMRI
data includes a sequence of images taken by a scanner through time while subject performs one or more
tasks. The data acquired from an fMRI experiment includes a number of cubic elements called voxels.
Changes in voxel intensity across time reveals the hemodynamics change in the brain [2]. A time series data
set is extracted from each voxel and used for further analysis. Pearson’s Correlation Coefficient has become
popular in fMRI study to analyze functional connectivity of different regions in the brain [3, 4]. This measure
reveals linear dependency between pairs of elements. For a pair of variables (x, y), Pearson’s Correlation

∗*To whom correspondence should be addressed

Coefficient is calculated using the following equation:

ρxy =

∑T
i=1(xi − x̄)(yi − ȳ)√√√√ T∑

i=1

(xi − x̄)2

√√√√ T∑
i=1

(yi − ȳ)2

(1)

In this equation x and y are two T dimensional variables. In case of fMRI data, x and y corresponds to two
individual voxels and T shows the length of time series of each voxel. Pearson’s Correlation Coefficient ρxy
is a real value in range −1 and 1 [5]. Absolute value of 1 indicates strong perfect linear relationship among
variables while value 0 indicates no linear relationship and −1 shows perfect negative linear relationship
among them. Computing pairwise correlations is computationally expensive for large number of data (like
fMRI data), so multiple approaches have been proposed based on parallel computing techniques to accelerate
the computations.
Gembris et al. [6] proposed a GPU based method that computes pairwise Correlation Coefficients among
elements by reformulating the Pearson’s correlation equation to minimize the number of necessary divisions:

ρxy =
T
∑T

i=1 xiyi −
∑T

i=1 xi.
∑T

i=1 yi√√√√T

T∑
i=1

x2i − (

T∑
i=1

xi)2)

√√√√T

T∑
i=1

y2i − (

T∑
i=1

yi)2)

(2)

Wang et al.[4] proposed a parallel method for computing pairwise Correlation Coefficients over multiple time
windows. They used a controller worker method with Message Passing Interface (MPI). In another work, Liu
et al. developed a general framework for computing all pairwise Correlation Coefficients on Intel Xeon Phi
clusters [7]. Based on the symmetric property of Pearson’s Correlation Coefficient (corr(x, y) = corr(y, x)),
pairwise Correlation Coefficients among N elements can be presented by an array containing N(N-1)/2
elements which corresponds to the upper triangle above the main diagonal part of the correlation matrix.
The main diagonal is disregarded since it shows the correlation of each element with itself which is always
one. Fig. 1 shows an example of the desired elements of the correlation matrix and their orders in the
array. In this order, the first N − 1 elements of the array show the Pearson’s Correlations between the
first variable and all other variables, the next N − 2 elements show the correlation of the second variable
with all others and so on. Liang et al [8] developed a tool using GPU for constructing gene co-expression
networks based on computing N(N-1)/2 Pearson Correlation Coefficients. The order of resulting correlation
coefficients in that approach is different from Figure 1; also they applied a different strategy for distributing
work among threads. Based on the symmetric property, a hybrid CPU-GPU framework for computing
Correlation Coefficient using General Matrix-Matrix Multiplication (GEMM) is proposed by Wang et al [9].
In this approach, they normalize the time series of each voxel v using the following equation1

ui =
vi − v̄i
‖vi − v̄i‖ 2

(3)

and U = (u1, u2, ..., un) aggregates all normalized vectors. The correlation matrix can be constructed by
multiplying matrix U to its transpose (U × UT). Since the size of correlation matrix may be larger than
GPU memory, they divide matrix U into smaller blocks and compute matrix multiplication of each block
with others. Using this strategy, this approach can handle correlation matrices of any size. If data contains
N vectors and each block contains d vectors, there will be B =

⌈
N
d

⌉
blocks. Considering the symmetric

property, two blocks are multiplied to each other once which results in B(B+1)/2 block multiplications. The
number of computed elements is greater than N(N-1)/2 and their order is different than what we showed
in Fig. 1. A post processing step is needed in their implementation to eliminate redundant elements and

1ui = vi−v̄i
|vi − v̄i|

is the equation that is mentioned in their paper [9] but we found that equation 3 is used in their implemen-

tation

Figure 1: The order of desired Correlation Coefficients of a 5×5 correlation matrix

reorder the elements. The post processing part runs on CPU.
In this paper, we first perform a preliminary experiment for computing vector of Correlation Coefficients
by performing Matrix-Vector multiplication using CUDA built-in functions. In order to exploit fine-grained
thread level parallelism, we proposed an approach called GPU-PCC in which we designed our own kernel
to compute Pearson’s Correlation Coefficients without using built-in functions. Our proposed technique
normalizes the data and computes their multiplications using massive number of GPU cores. The design
of our parallel strategy allows us to compute the Correlation Coefficients in the desired order and without
redundancies; eliminating the needs for post-processing strategies. This results in highly scalable parallel
strategy with increasing number of elements.

2.1 GPU architecture, CUDA programming model and cuBLAS library

Graphics Processing Unit (GPU) were originally designed to satisfy the demand for higher quality graphics
in video games to create more realistic 3D environment [10]. Recently GPU’s have found multitude of high
performance applications which can exploit high latency and high throughput of enormous number of GPU
cores [11, 12]. A GPU is made up of an array of streaming multiprocessors (SMs). Each SM contains multiple
streaming processors or cores. Hundreds of threads run on the same core concurrently based on SIMT (Single
Instruction Multiple Threads) strategy. A warp is a group of 32 threads which execute the same instruction at
the same time on the SM. Compute Unified Device Architecture (CUDA) is a programming model interface
created by NVIDIA for programming graphic cards. CUDA programmers define functions called kernel which
is executed on device. A kernel is defined using a number of GPU threads which execute the kernel’s code in
parallel. Parallel invocations of kernel are grouped into blocks which are distributed among available SMs.
Each block has up to three dimensions and contains maximum 1024 threads. A grid consists of multiple
blocks in one or two dimensions. The NVIDIA CUDA Basic Linear Algebra Subroutines (cuBLAS) library
is the GPU version implementation of BLAS (Basic Linear Algebra Subprograms) library which performs
vector and matrix operations like Matrix-Vector multiplication and Matrix-Matrix multiplication [13].

3 Proposed Methods

As stated earlier, after normalizing the data, Pearson’s Correlation Coefficient among two variables can be
computed by multiplying their corresponding normalized vectors. It worth mentioning that the normalization
step is performed much faster than the multiplication step so we leave this step to be performed on CPU.
Assume that data is stored in an N ×M matrix called U , which N corresponds to the number of data points
andM corresponds to the length of each data point. In case of fMRI data, N is the number of voxels andM

Figure 2: Example of performing Matrix-Vector multiplication, step i computes n − i elements of the final
result

is to the length of time series. In this section we present our preliminary experiment and proposed method
to compute the ordered array of Correlation Coefficients without the need of post-processing re-ordering of
elements.

3.1 Preliminary experiment of performing Matrix-Vector multiplication using
CUDA built-in function

In order to obtain the desired order of Correlation Coefficients, this approach first computes the Correlation
Coefficient between the first element and all other elements. This can be performed by multiplying the first
row of matrix U to all other rows. We consider the transpose of all the rows except the first row as another
matrix, so correlation between the first element and rest of elements can be computed by performing Matrix-
Vector multiplication. Similarly, the correlation between the second element and the rest of elements can be
computed in the same way, but this time we multiply the second row with a matrix containing all rows except
the first two rows. We don’t consider the first row because correlation between the first and second elements
has been computed in previous step. In step i, row i of matrix U is multiplied to the matrix consisting of
column i+ 1 to column N of matrix UT . We continue performing this procedure until multiplying (N −2)th
vector to (N − 1)th vector. The procedure of this method is illustrated using an example in Fig. 2.

Algorithm 1 shows the pseudocode of this method.

Algorithm 1: Matrix-Vector multiplication

1: Input: Matrix U containing N elements each of length M
2: output: Array R containing N(N − 1)/2 Correlation Coefficients
3: Normalize each vector of matrix U using equation 3
4: for i = 1 to N − 1

5: Multiply row i of matrix U to the matrix containing column
i+ 1 to N of UT

6: Add the N − i computed elements to array R
7: Return R

Matrix-Vector multiplication is implemented efficiently in cuBLAS library and we used that in our imple-
mentation (cublasSgemv function [13]). In order to minimize the latency of transferring data between host
and device, instead of copying the N−i computed elements back to the CPU in each iteration, we store them
in a GPU array until there is not enough space in GPU memory. Once there is no more space all computed
elements are transferred to the CPU and next iteration starts. This approach is successful in computing the
Correlation Coefficients in order. To exploit fine-grained thread level parallelism, we propose an approach
called GPU-PCC in which we designed our own kernel to compute Pearson’s Correlation Coefficients.

3.2 GPU-PCC method

In this method normalized data is initially copied to GPU global memory in row-major order. We launch
blocks of 512 threads and consider multiple groups per block. Each group of threads is responsible to
perform a vector dot product in order to compute a Correlation Coefficient between two vectors. We used
vectorized load by using float2 data type for reading data from global memory to increase bandwidth and
decrease latency [14]. In order to access global memory efficiently and have coalesced memory access, we
considered 16 consecutive threads in each block as a group. Threads of each group request consecutive values
from memory which causes loading 128 bytes aligned data in one transaction. Since each block contains 512
threads and each 16 threads belong to one group, there are 512

16 = 32 groups per block which causes computing
32 Correlation Coefficients simultaneously. After each group finishes performing dot product of two vectors
(we explain about the dot product process soon), it stores the result at index k of resulting vector R. Index
k is computed based on the following equation:

k = blockIdx.x× 32 + threadIdx.x/16 (4)

Based on value of k, threads of each group can compute the index of vectors that they should multiply to
each other (i and j) using the following equations:

i = n− 2−

⌊√
−8× k + 4× n× (n− 1)− 7

2
− 0.5

⌋
(5)

j = k + i+ 1− n× (n− 1)

2
+

(n− i)× ((n− i)− 1)

2
(6)

Equations 5 and 6 guarantee that for any index k of the resulting array, we pick the right vectors to compute
their correlations and in this way the resulting array will have the correct order. Starting from the beginning
of vectors i and j, each thread multiplies two corresponding consecutive values of vector i and j which results
in 32 simultaneous multiplications per group. This process continuous to the next 32 elements of the vectors
until all of their elements are multiplied to each other. A local variable in each thread stores the sum of
products performed by that thread. In order to compute the result of dot product, the partial sums of 16
threads in each group should be added to each other. Since we have to add the values of 16 consecutive

threads and these values are in thread’s registers, we used shuffle warp reduce technique introduced in [15]
for computing global sum. This technique allows exchanging data among threads in the same warp without
needing to use shared memory. After computing the global sum, the result of dot product will be stored at
index k of vector R. Fig. 4 shows the process of vector dot product and Algorithm 2 shows the pseudo code
of the kernel. Since we use float2 data type in our implementation and it needs M/2 load instructions, in
cases that M is not even, we add a zero element at the end of each vector. This does not change the result of
dot product (we don’t consider these additional zeros in normalization step because it will change the result
of correlation).
If the size of resulting array R is larger than GPU memory, we call the kernel multiple times. Each kernel
call continues the computation until there is not enough space in global memory of the GPU to store the
results. Otherwise, the computed elements are copied to host and new kernel call starts to continue the
computation. Fig. 3 shows the work flow of GPU-PCC.

Empirical analysis of the implemented code showed that time-efficiency improved when L1 cache was
enabled. Usually L1 cache can be enabled at compile time depending on the device properties.

Algorithm 2: GPU-PCC kernel

1: Input: Array U containing N ×M normalized elements
located in GPU memory
2: output: Array R containing N(N − 1)/2 Correlation Coefficients
3: thread_groupId = threadIdx.x/16

4: thread_local_offset = threadIdx.x%16

5: k = blockIdx.x× 32 + thread_groupId

6: i = n− 2− b
√

−8×k+4×n×(n−1)−7

2 − 0.5c
7: j = k + i+ 1− n×(n−1)

2 + (n−i)×((n−i)−1)

2
8: iter = m/32

9: local_sum = 0

10: float2 data1, data2

11: for l = 1 to iter

12: data1 = U [i×m/2 + l ∗ 16 + thread_local_offset]
13: data2 = U [j ×m/2 + l ∗ 16 + thread_local_offset]
14: local_sum + = data1.x× data2.x+ data1.y × data2.y

15: if m%32 ! = 0

16: continue the multiplication for the rest of elements
17: sum = adding up local_sum of threads in a group using shuffle
instruction
18: if thread_local_offset = 0

19: R[k] = sum

4 Performance Evaluation

All the experiments reported in this section are performed on a linux server with Ubuntu Operating System
version 14.01. The server consists of two Intel Xeon E5 2620 processors with clock speed 2.4 GHz, 48 GBs
RAM and NVIDIA Tesla K40c Graphic Processing Unit. This GPU contains 15 Streaming Multiprocessors
each consists of 192 CUDA cores and 11520 MBytes global memory.
We evaluated the performance of GPU-PCC by comparing it with three other approaches. The first approach
is the experiment we performed using Matrix-Vector multiplication; second one is the sequential version of
Pearson’s Correlation Coefficient computation on CPU. We used the code that is implemented by Wang et

Figure 3: The work flow of GPU-PCC algorithm

Figure 4: Example of performing vector dot product of two normalized rows (i and j) of matrix U. Multipli-
cation of i and j is performed by a group of 16 threads. Each thread multiplies two consecutive corresponding
elements of i and j, adds the results and stores it in its register. Elements that are processed with the same
thread are shown using the same pattern in figure. Part A shows the multiplication of first chunk of two
vectors each chunk containing 32 elements (since there are 16 threads in group each working on two ele-
ments). Part B shows the same process for the last chunk of the vectors. After multiplying the first chunk,
each thread needs to update its register value by adding the new result to it. In part C, all the elements in
thread registers are summed using warp shuffling technique and stored at index k (equation 4).

al [9]2. In this implementation after normalizing data using equation 3, N(N-1)/2 vector dot products are
computed on CPU. No math library is used in this implementation. We compiled the sequential code using
g++ compiler version 4.8.4. The third approach that we compared our method was implemented by Wang
et al [9]2. This approach computes Correlation Coefficients by performing Matrix-Matrix multiplication on
GPU (refer to section I for more details of this approach). To reorder computed elements and eliminate
redundant ones, the results are post processed on CPU. So for comparing the running time of other methods
with this approach, we considered both matrix multiplication and post processing steps. All reported running
times in this section measure the execution time of pairwise Pearson Correlation Coefficients in desired order.
The execution starts from normalizing data to performing last multiplication (For our proposed approaches
to finish copying the last chunk from GPU to CPU and for Wang’s approach after finishing the postprocessing
to reorder computed coefficients). All the experiments for each dataset are repeated multiple times and the
minimum running time is reported. We performed our experiments using synthetic and real fRMI data sets.
Synthetic data sets were created with N = 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000
and M = 300. For each vector, we generated uniformly random floating point numbers in range −2 and 2 as
intensity of each voxel. For real data set, we used Orangeburg dataset (www.nitrc.org/projects/fcon_1000/).
The dataset contains resting state fMRI data of 20 healthy subjects, 15 female and 5 male with age range 20-
55. The data were acquired using 1.5 Tesla scanner. Subject were asked to close their eyes during acquisition.
We picked one of the subjects randomly for our experiments. Table 1, Fig. 5 and Fig. 6 compare the running

2https://github.com/BNAplatform-organization/PAGANI-toolkit/tree/master/src/BNAPlatform-win64-cuda7.0-
20151118/src/CorMat

Figure 5: Running time comparison of our proposed methods and Wang’s method

Figure 6: Running time comparison of our proposed methods and CPU version

time of different approaches. Based on the results shown in Table 1 and Fig. 5, GPU-PCC and Matrix-Vector
multiplication using CUDA built-in functions show better performance than the other two approaches and
GPU-PCC shows superior results. Fig. 7 shows the achieved speedups of these two methods on synthetic
data. Based on the results, the achieved speedup over Wang’s method for the Matrix-Vector multiplication
using CUDA built-in functions is around 2 and for GPU-PCC is around 2.7. The speedups are around 70
and 100 over CPU version respectively. Table 2 shows the running time comparisons on real data. On real
dataset, Matrix-Vector Multiplication using CUDA built-in functions runs 65.12× faster than CPU version
and 2.95× faster than Wang’s technique. Our GPU-PCC runs 94.62× faster as compared to the CPU version
and 4.28× faster than the Wang’s method. It worth mentioning that we didn’t find specific optimization in
the sequential and the postprocessing codes and we used the default CPU optimizations without using any
optimization flags. Optimization of those codes could result in better running time.

Figure 7: Speedup gained by our proposed methods over Wang’s method and CPU version

Table 2: Comparing running time (Seconds) of different approaches on real fMRI data

Size of N GPU Mat-vec mult GPU-PCC Wang et al[9] CPU version

90112 30.31 20.86 89.45 1973.85

Table 1: Comparing running time (Seconds) of different approaches on synthetic fMRI data

Size of N Mat-Vec mult GPU-PCC Wang et al[9] CPU version

20000 2.5 1.69 4.83 172.412
30000 5.37 3.76 10.45 387.89
40000 9.26 6.62 18.39 689.49
50000 14.45 10.28 28.35 1077.28
60000 20.49 14.8 40.49 1554.23
70000 27.55 20.11 54.61 2140.32
80000 35.64 26.22 71.68 2787.92
90000 44.63 33.14 90.06 3553.47
100000 54.89 40.88 111.47 4415.22

5 Conclusion

Pearson’s Correlation Coefficient is a well-known technique that measures the functional connectivity between
brain voxels. Since there are thousands of voxels in one fMRI experiment, using traditional CPU based
methods are very time consuming. Parallel computing techniques will be essential for processing data-
and compute-intensive operations for big brain research especially in the context of precision and personal
medicine. Exploiting the symmetric property of the Pearson’s Correlation, we can reduce the number
of coefficients that need computation from N2 to N(N-1)/2. Thereafter, we first did an experiment by
performing Matrix-Vector multiplication using CUDA built-in function and then proposed a method called
GPU-PCC which can compute ordered correlations and do not require further post-processing. We compared
our implemented methods with a sequential C++ implementation and also with a GPU based technique
based on General Matrix-Matrix Multiplication (GEMM). Both real and synthetic fMRI data sets were used

in evaluation. We show that our proposed HPC method outperforms existing state-of-art methods and is
around 94× faster than the CPU versions and 4.28× faster than the GPU based techniques for similar GPU
devices and data set.

Acknowledgment

This material is based in part upon work supported by the National Science Foundation under Grant Numbers
NSF CRII CCF-1464268 and NSF CAREER ACI-1651724. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation. We would also like to acknowledge the donation of a K-40c Tesla
GPU from NVIDIA which was used for all GPU based experiments performed in this paper.

References

[1] R. C. Craddock, R. L. Tungaraza, and M. P. Milham, “Connectomics and new approaches for analyzing
human brain functional connectivity,” GigaScience, vol. 4, no. 1, p. 1, 2015.

[2] M. A. Lindquist et al., “The statistical analysis of fmri data,” Statistical Science, vol. 23, no. 4, pp.
439–464, 2008.

[3] H. Zhang, J. Tian, and Z. Zhen, “Direct measure of local region functional connectivity by multivari-
ate correlation technique,” in 2007 29th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society. IEEE, 2007, pp. 5231–5234.

[4] Y. Wang, J. D. Cohen, K. Li, and N. B. Turk-Browne, “Full correlation matrix analysis of fmri data,”
Technical report, Princeton Neuroscience Institute, Tech. Rep., 2014.

[5] J. Lee Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation coefficient,” The
American Statistician, vol. 42, no. 1, pp. 59–66, 1988.

[6] D. Gembris, M. Neeb, M. Gipp, A. Kugel, and R. Männer, “Correlation analysis on gpu systems using
nvidia’s cuda,” Journal of real-time image processing, vol. 6, no. 4, pp. 275–280, 2011.

[7] Y. Liu, T. Pan, and S. Aluru, “Parallel pairwise correlation computation on intel xeon phi clusters,”
in Computer Architecture and High Performance Computing (SBAC-PAD), 2016 28th International
Symposium on. IEEE, 2016, pp. 141–149.

[8] M. Liang, F. Zhang, G. Jin, and J. Zhu, “Fastgcn: a gpu accelerated tool for fast gene co-expression
networks,” PloS one, vol. 10, no. 1, p. e0116776, 2015.

[9] Y. Wang, H. Du, M. Xia, L. Ren, M. Xu, T. Xie, G. Gong, N. Xu, H. Yang, and Y. He, “A hybrid
cpu-gpu accelerated framework for fast mapping of high-resolution human brain connectome,” PloS one,
vol. 8, no. 5, p. e62789, 2013.

[10] J. Sanders and E. Kandrot, CUDA by example: an introduction to general-purpose GPU programming.
Addison-Wesley Professional, 2010.

[11] M. G. Awan and F. Saeed, “Gpu-arraysort: A parallel, in-place algorithm for sorting large number of
arrays,” in Parallel Processing Workshops (ICPPW), 2016 45th International Conference on. IEEE,
2016, pp. 78–87.

[12] A. Eklund, M. Andersson, and H. Knutsson, “fmri analysis on the gpu-possibilities and challenges,”
Computer methods and programs in biomedicine, vol. 105, no. 2, pp. 145–161, 2012.

[13] NVIDIA. (2017, Mar.) cublas. [Online]. Available: http://docs.nvidia.com/cuda/cublas/index.html#
axzz4VJn7wpRs

[14] J. Luitjens. (2013, Dec.) Udaf pro tip: Increase performance with vec-
torized memory access. [Online]. Available: https://devblogs.nvidia.com/parallelforall/
cuda-pro-tip-increase-performance-with-vectorized-memory-access/

[15] ——. (2014, Feb.) Faster parallel reductions on kepler. [Online]. Available: https://devblogs.nvidia.
com/parallelforall/faster-parallel-reductions-kepler/

	GPU-PCC: A GPU Based Technique to Compute Pairwise Pearson’s Correlation Coefficients for Big fMRI Data
	WMU ScholarWorks Citation

	tmp.1498662233.pdf.RujpS

