Protection of Sensitive Data in Clouds
Using Active Privacy Bundles and Agent-Based Secure Multiparty Computation

Akram Y. Sarhan (Advisor: Prof. Leszek T. Lilien)
Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008

Introduction

- Challenges for protecting data in clouds (cf. TechInsights Report, 2013)
 - "Security" below includes privacy
 - Infrastructure readiness/network
 - Visibility into services across cloud
 - Contracts/liability concerns
 - Cultural/political issues
 - Performance/availability
 - Cost
 - Security
 - Privacy/Legal issues
- APB creation – cont.
 - Send APB to a cloud backup server
 - Store APB copy on the backup server
 - Send APB to cloud mediator
 - Send APB to a cloud backup server
- Problems with using TTPs
 - Bottleneck, insecure, single point of failure
- Solution components and their roles
- Two types of solutions for cloud-based privacy and security

Motivation and Objectives

- Providing adequate privacy and security for data in clouds
- Self-protecting data
- Fine-grained access control
- Fault tolerance
- Protect cloud data against attackers
 - Dishonest cloud providers
 - Unauthorized sub-contractors
 - Dishonest tenants (i.e., other cloud users)
- Protecting data with decentralized TTP (without centralized TTP)
 - Using multi-agent systems (MAS) for implementing decentralized TTPs
 - Using MAS for performance improvements
 - Thanks to parallel processing of data

Methods

- Solution components and their roles
- Active privacy bundle
- Secure multiparty computation
- Multi-agent systems
- Attribute-based encryption
- Secret sharing
- Verifiable secret sharing
- Polynomial interpolation

Major results

- Designed and partially developed the APB-SMC scheme
 - Integrated SMC into APB implementation
 - SMC uses RSA threshold cryptography and BGW protocol
 - APB-SMC replaces the centralized TTP with a distributed trust mediator
 - SMC used in constructing and enabling APB
 - Enhanced APB evaporation
 - Enhanced APB apoptosis
 - Integrated ABE and CP-ABE into APB-SMC
 - Provide higher security and fault tolerance
 - Support access right delegation and revocation

Results: The Proposed Solution

- APB creation and enabling algorithms in APB-SMC
 1) APB creation
 - Identify sensitive data
 - Create access policy attributes
 - Create access structure
 - Generate public and master keys
 - Encrypt sensitive data
 - Encrypt metadata
 - Hash and sign the APB
 - Encrypt APB
 - Plan APB itinerary
 2) APB enabling
 - APB host trust verification
 - APB permission
 - APB integrity verification
 - APB policy enforcement
 - APB decryption

Using APB-SMC to protect sensitive data in clouds

Conclusions

- Current work status
 - Completed design of the APB-SMC scheme
 - Working on modeling, formal model analysis, simulation experiments
- Future work
 - Demonstrate that APB-SMC provides privacy, security, fault tolerance, and efficiency
 - Integrate a multi-agent system (MAS) framework into APB-SMC
 - Validate and optimize MAS-based APB-SMC

Data Owner

Mediator

SP

Backup Server

CS

SPA

SP2

SP3

SAAS

Bob

Alex

PK

DA