Slow Fires
Commentary by
Dean Lance Query

The University Libraries' books and other paper resources are self-destructing; they are imperceptively deteriorating—cooking, burning, and consuming themselves. Yet, we are doing little to reverse this disastrous situation. That the majority of other libraries in this country, indeed, world-wide, face the same situation is small consolation.

How did we reach this critical point? Prior to 1860, paper was made primarily of rags—a good product, but one that was costly and in short supply. As printing of rags—a good product, but one that was costly and in short supply. As printing technology became more refined and the demand for printed materials grew exponentially, alternative sources of paper had to be found. Wood was the answer, but, as we have learned to our dismay, it was not a good answer. Most of us have had to use the result when working with older newspapers and other paper documents from a few decades ago. The paper has become so brittle that it simply cannot be handled without falling apart in your hands—it has, as it were, turned to ashes. Yet, from approximately 1860 to date, the wealth of our contemporary printed resources has been printed on this highly acidic medium that is eating itself away in every library in the world. Although we have recognized that fact, and have many university presses that now print on non-acidic paper, the use of wood-based paper still prevails—especially in those books and documents obtained from foreign presses, many of which we must purchase to respond to our users and their growing need to have international resources.

The problem is not one that has just come to our attention. For most of this century, the "burning" of resources has been of concern to librarians. However, until recently, the only economically feasible method of "preserving" the contents of the self-destructing paper books and serials was to let them perish, but, in the meantime, reproduce the contents in a less-volatile format. The common methods in use are commercial reprinting on less-acidic paper, micropublishing, and mass individual microfilming by the institutions owning the originals. A few rare items have been saved by hand deacidification, but, due to the high cost, this process cannot be used in most library collections.

"Slow burning," however, is not the only aspect of this massive problem. In addition to acidic instability, libraries simply are not built to provide an environment that will preserve paper materials. Other chemical reactions come from varying temperatures—too cold or too hot—and humidity. Both factors, temperature and humidity, enhance the inherent acidic reaction and produce further deterioration. For books, the ideal temperature appears to be a constant 50 to 60 degrees, 24 hours a day, 365 days a year; this would, at least, slow the self-destruction. However, human comfort inside library walls—as well as the expectation that most books are for use outside of the library—always prevails over preservation needs; in the University Libraries, only the vault in the Special Collections area maintains such a temperature plus a relative humidity (RH) of around 50%. Moreover, this vault has been available for only the short time since Waldo was renovated—and is restricted to rare materials. Untold damage is already present in our general collections. The deterioration continues, unchecked today, with certain areas even more inappropriately protected such as our off-site storage collections in North Hall and in the irreplaceable resources of the Archives and Regional History Collections found in East Hall.

Is there a solution? The renovated Waldo Library does improve the temperature, humidity, and filtration systems essential to resource preservation. Even the book drops have been redesigned, and student stack workers are better trained to handle the books with care. We plan to acquire a microfilm cleaner that will assist in preserving our increasingly large microfilm collection, and, if funds can be found, air conditioning will be installed in North Hall. Funding, as always, is a key issue, and while grant support is being pursued, even if awarded, usually is given only for highly distinctive collections such as our Cistercian material or our German newspaper collection. Far more materials will continue to "cook" than will be treated until such time as a cost-effective mass deacidification and DEZ vapor process can be initiated. A small experimental project, costing $12 a volume, will be implemented; we will send a few cartons of books to an outside firm to see if the results are acceptable. Yet, those funds must be taken from the same pool that is used to acquire new and essential resources to support our growing curriculum and research needs.

The situation seems, to continue my analogy, unquenchable; the fires are burning faster than our fire-fighting efforts. But we have not yet lost the battle. The Michigan Library Consortium, through its Budget and Finance Committee on which I serve, is attempting to broker or negotiate more favorable rates for mass deacidification. Multi-library cooperative programs must be established; we will begin by jointly selecting valuable and at-risk collections for focused microfilming projects. We will lobby for effective, less costly means by which to deacidify, and support other research efforts that are seeking solutions to a problem that threatens the heritage of an entire world. The fires may be burning, but we cannot, will not let them consume our libraries, our civilization.