
Figure 4.2: GK110 chip SMX Architecture [2]

4.3 Hardware Architecture

It is very important for a CUDA developer to understand the hardware con-

figuration of the system before programming the application, because there are

different CUDA programming approaches for different CPU/GPU configurations.

For instance, the design of the simulation in this paper is based on the shared

16

memory structure of a node of the HPC cluster in Western Michigan University’s

Parallel Computing and Data Science (PCDS) Laboratory. This node has dual

Sandy-Bridge Xeon E5 processors with 128 GB of RAM and four Tesla K20 GPU

accelerators as shown in Figure 4.3. In Intel Sandy-Bridge class processor the

I/O hub is integrated into the CPU. A single Sandy-Bridge CPU has up to two

QuickPath Interconnect (QPI) channels, used for accessing remote memory that

is connected to another socket. It also has up to 40 lanes Gen. three PCI Ex-

press bandwidth. Note that the Tesla K20 has up to 16 lanes so 40 lanes of PCI

Express are sufficient for two full size GPUs. Integrated PCI-E has advantages

and drawbacks for CUDA programming. The drawback is that the PCI-E traffic

is always affinitized, thus in Multi-CPU systems, GPUs associated with different

CPUs cannot perform peer-to-peer operations. On the other hand, the CPU cache

can participate in PCI-E bus traffic; the CPU can service Direct Memory Access

(DMA) read request out of cache, and writes by the GPU are posted to the CPU

cache. For Sandy-Bridge Multi-CPU configurations, pinned memory is preferred

over the peer-to-peer operations [14].

Figure 4.3: Simplified Sandy-Bridge architecture

17

4.4 OpenMP

OpenMP is an application programming interface used for shared-memory

parallel programming. The MP signifies ”multi-processing” in OpenMP, where it

corresponds with multi-threading, OpenMP is designed for systems in which each

thread has access to all available memory. In OpenMp programming, the system

may be viewed as a collection of CPU cores, where all have access to main memory.

Figure 4.4: Shared Memory System

OpenMP sometimes permits the programmer to assign a block of code to be

executed in parallel, and the actual parallelization of the given block is handled

by the compiler and run-time system. OpenMP contains a suite of compiler direc-

tives as an extension to C/ C++ and Fortran for shared-memory multi-threaded

programming.

The compiler directives called ”pragmas” in C are special preprocessor in-

structions, to enable behaviors that are not part of the basic C specification.

Pragmas may be ignored by the compiler if they are not supported. Thus, a pro-

gram can be executed and still produces the right results even if some pragmas

are not supported by the platform [15].

18

4.5 CUDA Programming Model

The CUDA programming model is based on a set of application programming

interface (API) tools as an extension to the standard C language and Fortran, that

allow programmers to perform parallel computations on NVIDIA CUDA enabled

GPUs. NVIDIA provides CUDA with a handy CUDA software development kit

(SDK), which includes the compiler, debugger, profiler, and runtime API, etc.

There are some alternatives to CUDA for GPUs such as OpenCL and DirectCom-

pute; however, we chose the CUDA framework.

In the CUDA programming model, the computing system consists of a host

and one or more devices. The host refers to the CPU and its memory, while the

device refers to a GPU and its memory. The code that run on the host side can

manage memory on the host and device. In an ordinary CUDA program, the host

code will allocate a certain size of memory on the host and the device memory,

copy the data from the host to the allocated device memory, launch one or more

kernels to perform parallel computations on the device, and finally copy the results

back form the device to the host.

A kernel is similar to a C function; however, the start of a kernel in the

program is indicated by a function qualifier global keyword. It is launched as

grids of blocks of threads form the host and invoked using triple-angle-bracket in

the call as follows:

Kernel<<<Grid_Size, Block_Size, Shared_Memory, Stream>>>(Parameters, ...);

Figure 4.5: General Syntax of kernel launch

kernels are executed on the device; furthermore, for devices of compute capa-

bility 3.0 or higher kernels can be launched from another kernel for the purpose of

Dynamic Parallelism. A kernel executes asynchronously meaning that it returns

before the device has finished its execution. The grid size specifies the size of

19

an array of blocks; it can be one or two dimensions for compute capability 1.X

hardware, or up to three dimensions for compute capability 2.X and higher. The

block size specifies the dimension of the thread blocks which can be one, two, or

three dimensions. All blocks in the grid have the same size; the block size may

be up to 512 or 1024 threads. Thread blocks are scheduled separately onto SMs,

and threads within the same block are executed by the same SM. Each SM splits

its thread block into chunks of 32 threads called warps and the threads in a warp

(with thread ID called ”lane” within the warp) are executed simultaneously in a

single instruction, multiple data (SIMD) fashion. [14].

4.6 Memory

Different types of memory are used by CUDA to maximize performance.

The type of memory used depends on the expected utilization. Device memory

attached to the GPU is by far the biggest GPU memory. Measured in gigabytes,

it can be allocated and accessed in different ways. Since device memory is located

on the GPU board, it can be accessed by an integrated GPU memory controller.

Host memory refers to the random access memory (RAM) that is attached to the

CPU(s) in the system. There are CUDA APIs are available to enable faster access

to host memory by page-locking and mapping for the GPU.

4.6.1 GPU Memory

4.6.1.1 Global Memory

Global Memory can be allocated statically by using device keyword in

front of the memory deceleration, or dynamically using cudaMalloc(), and de-

stroyed using the cudaFree() function. Data can be copied from the host to the

20

device memory or from the device to the host via cudaMemcpy(). Kernels can

perform read/write operations on allocated global memory via pointers.

4.6.1.2 Register Memory

Register Memory is located within the SM; it is visible only to the thread

that wrote it during the lifetime of that thread.

4.6.1.3 Local Memory

Local Memory is actually a memory concept utilized exclusively by the com-

piler. It contains the stack of local variables that cannot reside in registers (regis-

ter spilling), parameters, and return addresses for subroutines or functions. Local

memory is not an actual hardware component; instead it resides on global memory.

4.6.1.4 Constant Memory

Constant Memory is read-only memory that resides on device memory. It is

optimized for read-only broadcast to multiple threads when all threads are read

from the same location. Constant memory can be declared with the constant

keyword. Data can be copied to and from constant memory using cudaMemcpy-

ToSymbol() and cudaMemcpyFromSymbol(), and even the pointer of constant

can be queried using cudaGetSymbolAddress().

4.6.1.5 Shared Memory

Shared Memory is an on-chip memory that is implemented inside SMs. Shared

memory is 10x faster than global memory and around 10x slower than registers, it

can be accessed very quickly. It is used to exchange data between threads within

the same block. Shared memory can be declared using the shared keyword.

21

4.6.1.6 Texture Memory

Texture memory in CUDA is realized in two parts: a CUDA array contain-

ing the physical memory allocation, and texture reference or surface reference

containing the view that may be used to read/write a CUDA array. This type

of memory is optimized for 2D spatial locality, and performance can be increased

when all the lanes in a warp access nearby locations in texture memory according

to expectation of locality [14].

4.6.2 Host Memory

Host memory by default is pageable, meaning the memory may be expelled

out to disk by the operating system. Peripherals like GPUs cannot access host

pageable memory because the physical addresses of this type of memory may

change without notice. For enabling direct memory access (DMA) by hardware,

operating systems allow host memory to be page-locked. CUDA, for performance

reasons, includes APIs that make page-locked operating system resources available

to application developers. This is commonly known as pinned memory that has

been page-locked and mapped for direct access by CUDA enabled GPUs [14].

Pinned Memory is allocated through a CUDA runtime special function called

cudaHostAlloc(), and freed by the cudaFreeHost() function. These functions work

with the operating system to allocate page-locked memory and map it for direct

memory access by the GPUs. CUDA monitors memory that has been allocated

and boosts memory copies that involve host pointers allocated by cudaHostAlloc().

Default pinned memory is used as a buffer to increase data transfer performance,

and yet it does not enable device kernels to access host memory. There are some

features that allow device kernel access of pinned memory, three of these features

are used in this thesis, are explained in subsequent subsections.

22

4.6.2.1 Mapped Pinned Memory

Mapped Pinned Memory is page-locked host memory that has been mapped

into the CUDA address space, which permit CUDA kernels to directly access and

perform read/write operations on it as illustrated in Figure 4.6. This type of host

memory is allocated using cudaHostAlloc() with the cudaHostAllocMapped flag,

and it is only accessible to the kernels that are being executed on the current GPU

when cudaHostAlloc() is called. The GPU and CPU have updated address ranges

that point to the same host memory buffer in their page table. Since the GPU has

its own address space, the device pointers to the buffer have to be queried using

cudaHostGetDevicePointer().

Figure 4.6: Mapped Pinned Memory

4.6.2.2 Portable Pinned Memory

As mentioned before, pinned memory is available to the GPU whose context

is current, although by invoking cudaHostAlloc() with the cudaHostAllocPortable

flag, the allocated page-locked host memory will be mapped into all the CUDA

address spaces. A separate set of page table entries is created, and the page-locked

host memory address range is mapped for all GPUs plus the CPU in the system.

23

Similar to mapped pinned memory, GPU pointers to the portable host memory

buffer must be queried using cudaHostGetDevicePointer(). It is good practice to

assign all pinned allocations as portable for applications that intend to use multi-

GPUs, especially when Peer-to-Peer operations (reading, writing, copying, and

streaming data that are located on the GPU’s global memory by another GPU in

the system) is not allowed among all the GPUs [14].

Figure 4.7: Portable Pinned Memory

4.6.2.3 Write-Combined Pinned Memory

Write-Combined memory also known as Uncacheable Write Combining (USWC)

memory was first created by Intel to enable the CPU to write to the GPU’s host

memory buffer. In CUDA, write combined pinned memory can be declared by in-

voking cudaHostAlloc() with the cudaHostWriteCombined flag [14]. Application

developers can perform Zero-Copy, by using the mapped or portable flag with the

write-combined flag for pinned memory.

24

Figure 4.8: Write-Combined Pinned Memory

25

Chapter 5

Implementation

5.1 Traditional Sequential Approach

In this approach the simulation, implemented in the C-language, which is

executed sequentially on the CPU as a standard reference. The sequential im-

plementation is used for the purpose of computational model accuracy as well as

for performance comparisons with the parallel implementations. There are three

primary objects, agent, household, and business, which are implemented as struc-

tures. Using malloc(), objects of these structures are allocated as an array of

structures (AOS). The simulation program reads the given data from files, and

generates an array of ten thousand random numbers. Later on these random

numbers are picked in a round-robin fashion and used throughout the simulation.

There are several types of businesses with different numbers of each particular

type as well as different contact rates. In function Generate businesses(), nested

loops are used to run through all the business types and initialize each object of

the business array.

Agents are generated within the households, Figure 5.1 lists pseudo-code of

the Generate Agents function. There are different types of households based on

26

the household members. Household is generated randomly by using a uniform

random number in the interval (0,1) and comparing it with the probability mass

function of the household types. The nominated household will initialize n Adults

and m children, then assign the workplace for each adult and school for each

child. Adults and children are stored as Agents in the Agent array. This process

is repeated in a loop over the given number of households. A counter that is kept

total number generated of agents.

Generate_Agents()

{

for i = 1 : to number_population_center

for k = 1 : to number_household

{

R1 = uniform(0,1);

for s = 1 : to number_household_type

if R1 >= households[s-1][3] && R1 < households[s][3]

Adult = households[s][1];

Child = households[s][2];

// Start generating an adult

for m = 1 : to Adult

Agent[N] = Assign_Workplace()

Agent[N].household = k

Agent[N].household_members = Adult + Child

N= N + 1

//Start generating children

for n = 1 : to Child

Agent[N] = Assign_School()

Agnet[N].household = k

Agent[N].household_members = Adult + Child

N = N + 1

}

}

Figure 5.1: Generate Agent Sequential Pseudocode

For the initial infection, l agents are picked randomly to contract pandemic

flu. Furthermore, l agents are chosen randomly form the agent array to contract

seasonal flu, and the remaining agents are susceptible. The daily loop is executed

for all simulated agents. At the beginning of every day, a schedule of 24 locations

27

is assigned to each agent, where the agent will be present at each hour. The disease

status is monitored hourly for every agent. Agents whose infection has reached

culmination (after a duration of 10 days) are transitioned to recovered status.

Agents are sent to their scheduled location in each hour. Infected agents will

choose contacts randomly from the location’s agent network, leading to potential

disease transmission (as explained in Section 3.4). Figure 5.2 depicts the program

flow of the sequential implementation.

Figure 5.2: Sequential Diagram

28

5.2 GPU Approach

Our approach leads to a parallelized version of the model that can be exe-

cuted on multiple GPUs using CUDA. Implementing GPU acceleration has vital

challenges, arising from the dynamic nature of the simulation and possible race

conditions on the GPUs. In order to improve the performance of the agent-based

simulation, the simulation functions are implemented as CUDA kernels for execu-

tion on one or multiple GPUs.

Portable pinned memory (see Section 4.6.2.2) is used to allocate an array of

structures on the host memory for the primary objects (agent, business,household)

in the simulations for the following reasons:

1. Peer-to-Peer operation is not allowed between GPUs that are connected to

different CPUs (for more detail see Section 4.3).

2. The program cannot scale to simulate large populations due to the limited

size of memory on the GPUs.

3. Portable memory allows sharing agent, household and business arrays among

multiple GPUs.

4. Zero-copy may be performed, which is the best practice for the multiple

GPU implementation.

In subsequent sections we highlight the parallelization of some critical el-

ements of the simulation, such as pseudo-random number generator, agent ini-

tialization and assigning workplace and household to each agent, as well as the

implementation of sending agents to locations. The entire pseudo-code can be

found in the Appendix.

29

5.2.1 Pseudo-Random Number Generator

The agent-based model is a stochastic simulation. A pseudo-random number

generator is used to assign workplaces for adults and schools for children, and gen-

erate daily schedules. Furthermore, the susceptible agents are chosen randomly by

the infector to make contact with them at each location. We employ the cuRAND

library to generate pseudo-random numbers for this simulation. The cuRAND

library has tools that can generate efficient and high quality pseudo-random num-

bers. cuRAND is the only CUDA library that has APIs for the host side as well as

the device side. The device API allows the developer to initialize and use pseudo-

random numbers completely on the GPU. In this implementation, bit generation

with XORWOW and MRG32k3a generators is utilized. A call to curand init()

initializes a sequence of pseudo-random numbers with a period greater than 2192.

Functions curand() or curand uniform() may be called to generate random num-

bers in another kernel. To avoid generation of the same sequence the curandState

variable has to be updated [16].

5.2.2 Generating Agents

Implementing the Generate Agents function (shown in Figure 5.1) in paral-

lel is a challenge due to the enormous data dependency. In order to avoid data

dependencies, we divide the sequential function into three steps. First, the popula-

tion size is computed using a reduce function on the GPU, and three intermediate

arrays are created, which store the number of adults, number of children as well

as the total number of members in each candidate household (see Figure 5.3).

30

__global__ void compute_population_size(curandState *state,

unsigned long *Childsum,unsigned long *Adultsum,

float *household,int*Adult_intermed,int*Child_intermed,

unsigned char *dev_PPhouse)

{

__shared__ float cache[64];

__shared__ float cache2[64];

unsigned long tid = threadIdx.x + blockIdx.x * blockDim.x;

int cacheIndex = threadIdx.x;

int j;

int temp=0;

int temp2=0;

curandState st=state[tid];

float n1=0;

for(j=0;j<houseperthread;j++)

{

n1=curand_uniform(&st);

int p=0;

while(n1>household[p*3+2])

p++;

Adult_intermed[tid*houseperthread+j]=household[p*3+0];

Child_intermed[tid*houseperthread+j]=household[p*3+1];

dev_PPhouse[tid*houseperthread+j]=household[p*3+0] + household[p*3+1];

temp+=household[p*3+0];

temp2+=household[p*3+1];

}

state[tid]=st;

cache[cacheIndex] = temp;

cache2[cacheIndex]= temp2;

__syncthreads();

int i = blockDim.x/2;

while (i != 0) {

if (cacheIndex < i)

{

cache[cacheIndex] += cache[cacheIndex + i];

cache2[cacheIndex]+=cache2[cacheIndex + i];

}

__syncthreads();

i /= 2;

}

if (cacheIndex == 0)

{

Childsum[blockIdx.x] = cache[0];

Adultsum[blockIdx.x] = cache2[0];

}

}

Figure 5.3: Compute population size and generate intermediate arrays

Second, the adult and child intermediate arrays are copied form the device to

the host. Write-combined pinned memory is used to allocate two arrays which are

the adult agents and child agents. The purpose of allocating adult and child agent

arrays is to store the household address for each agent that can further be accessed

in parallel by kernels. In Figure 5.4 we illustrate the extraction of household

31

addresses from the adult intermediate array for adult agents. The index of the

intermediate array represents a certain household and the content represents the

number of adults in that household. The adult agent array is generated from the

adult intermediate array by repeating the index of the adult intermediate array

as many times as indicated by the number contained in the intermediate array

cell. The household addresses for the child agent array is extracted in the same

manner.

Figure 5.4: Extracting array

Third, the pointer of the adult agent array is passed to the Assign Adult

kernel (see Figure 5.5) to assign workplace, household as well as household mem-

bers for each agent. In addition, the pointer of the child agent array and the

size of adult array are passed to Assign Child kernel to assign school, household,

and household member. The adult agent size is used as a starting index for child

agents in the overall agent array. As a result we get a presorted array of agents

starting with adults and then followed by children.

32

__global__ void Assign_Adult(struct entity *Agents,unsigned long startpoint,

unsigned long POPULATION, curandState *state,

float *d_workplaces,unsigned char *dev_PPhouse,

unsigned long *Adult_agent)

{

unsigned long tid=startpoint+threadIdx.x+blockIdx.x*blockDim.x;

while(tid< POPULATION)

{

Agent[tid].id= tid;

Agent[tid].household_number=Adult_agent[tid];

Agent[tid].household_member=dev_PPhouse[Adult_agent[tid]];

Agent[tid].workplace=assign_workplace();

tid+=blockDim.x* gridDim.x;

}

}

Figure 5.5: Assign Adult kernel

5.2.3 Sending Agent to Locations

A schedule of 24 locations is generated, which represents each hour of the

day for all the agents in the simulation at the beginning of every simulated day.

However, in order to send agents to their scheduled location for the given hour,

the id of all present agents at that location has to be stored inside the location.

To implement this on GPU, we have chosen theatomicadd() function. The atomic

function performs a read-modify-write for each thread without interruption on

a shared memory structure. Threads are serialized for that part of the program.

Portable pinned memory is used in this simulation, which means atomic operations

on portable memory in one GPU are not atomic from the point of view of the CPU

or other GPUs in the system. As a consequence, the Send AgentToLocation kernel

(depicted in Figure 5.6) has to be executed on one GPU and CudaDeviceSynchro-

nize() function has to be called after launching Send AgentToLocation() kernel,

to block CPU threads up until the kernel finishes its work.

33

__global__ void Send_AgentToLocation(struct entity *Agent, struct bus *business,

unsigned long size, int hour)

{

unsigned long tid= threadIdx.x + blockIdx.x * blockDim.x;

unsigned long bus;

unsigned int temp;

while(tid<size)

{

bus=Agent[tid].schedule[hour];

if(bus>1 && business[bus].pointer<business_capacity)

{

temp=0;

temp= atomicAdd(&business[bus].pointer,1);

business[bus].count_total=temp+1;

business[bus].array_id[temp]=community[tid].id;

}

tid+=blockDim.x * gridDim.x;

}

}

Figure 5.6: Send AgentToLocations

5.3 Multi-GPU

In general there are two approaches to call multiple GPUs. First, a single host

can process multiple GPUs. The host thread calls a specific GPU to be current by

calling cudaSetDevice(int), then allocate the required memory for this device and

launches one or more asynchronous kernels. Without waiting for the current GPU

to become idle the host thread will set another device to be current. Second, the

host is multi-threaded to access multiple GPUs, which is the approach we use our

implementation. This approach creates one host thread per GPU.

Our implementation uses OpenMP for multi-threading. Each OpenMP thread

calls cudaSetDevice() to set a specific GPU to be current. Since portable memory

is used in the implementation, we cannot overlap kernels asynchronously. How-

ever, GPUs are executing the same kernel but the size of the portable memory is

divided by the number of the GPUs; the first block is passed to the first GPU and

the second block is passed to the second GPU, etc. The following pseudo-code in

Figure 5.7 demonstrates the strategy of dividing pinned memory and launching

the Schedule Weekend() kernel on multiple GPUs.

34

numberOfGPUs = 4;

omp_set_num_threads(numberOfGPUs);

unsigned long start[numberOfGPUs], max[numberOfGPUs];

start[0]=0;

max[numberOfGPUs-1]= POPULATION;

for(int i = 1 ; i < numberOfGPUs ; i++)

{

start[i] = (POPULATION/numberOfGPUs) + start[i-1];

max[i-1] = start[i];

}

#pragma omp parallel

{

int MyId=omp_get_thread_num();

cudaSetDevice(MyId);

cudaHostGetDevicePointer(&Agent[MyId],h_Agent,0);

Schedule_WeekEnd<<<Grid,Block>>>(Agent[MyId],d_state[MyId],start[MyId],max[MyId],

d_workplaces[MyId],d_index[MyId]);

if(cudaDeviceSynchronize()!= cudaSuccess)

printf("fault at weekend GPU %d \n",MyId);

}

Figure 5.7: Splitting Agent into blocks and launching kernel on multiple
GPUs

35

Chapter 6

Results and Conclusion

6.1 Results

The performance of the sequential implementation was measured for a pop-

ulation of up to 25 million individuals on a computer node of the ”thor” cluster

in Western Michigan University’s Parallel Computing and Data Science (PCDS)

laboratory using dual Intel Xeon E5-2670 with 128 GB RAM. For a larger pop-

ulation size such as 50 and 100 million individuals, another computer node with

Quad Intel Xeon E5-4640 and 512 GB is used for performance measurement due

to the agent-based simulations large memory requirement. The performance of

the multiple GPUs implementation is measured on thor’s node 7 that has four

NVIDIA Tesla K20, 128 GB RAM and dual Intel Xeon E5-2670 processor.

For all executions, timing is performed using omp get wtime() function calls.

Implemented simulations can simulate disease spreading for up to 120 days. How-

ever, for the purpose of runtime comparisons we run the simulation for 10 days

due to the fact that the sequential execution for large numbers of days could

take months to simulate. Moreover, the execution time for a population of 50

and 100 million individuals is estimated based on a one day simulation which

36

is the initialization duration time and one day loop duration time. The estima-

tion is calculated by using Init.time+ (OneDay DurationT ime ∗ 10). For exam-

ple, to simulate a population of 100 million individuals the initialization time is

314351.55s and one daily loop iteration time is 361821.132s, so the estimated time

is (314351.55 + (361821.132 ∗ 10))s. The estimated sequential execution time are

marked with an asterisk in the following table:

Locations Population CPU Runtime 2GPUs Runtime 4GPUs Runtime
1280 100000 26.91 1.3 0.95
12800 1000000 361.46 11.3 9.26
12800 2500000 1282.58 31.18 25.09
25600 5000000 4400.77 71.13 54.69
102400 10000000 18938.98 127.56 99.23
512000 25000000 745852.87 343.2 286.16
1024000 50000000 1612272.06* 711.37 553.89
1280000 100000000 3932562.87* 1473.87 1221.45

Table 6.1: Simulation Runtime Comparison in (sec)

Figure 6.1: Runtime Comparison Figure

37

Table 6.2 exhibits the speedup of two GPUs and four GPUs implementations

relative to the sequential implementation. The speed up is calculated according

to Speedup = Ts

Tp
where Ts is the sequential CPU time and Tp is the parallel time.

Locations Population 2GPUs Speedup 4GPUs Speedup
1280 100000 20.7 28.32
12800 1000000 31.98 39.03
12800 2500000 41.13 51.11
25600 5000000 61.86 80.46
102400 10000000 148.47 190.85
512000 25000000 2173.23 2606.41
1024000 50000000 2266.43 2910.81
1280000 100000000 2668.18 3219.58

Table 6.2: Speedup

The population size is the most important component in the simulation. As

the size of the population increases the performance of the sequential simulation

decreases. The performance scales up with the population size enlargement for the

multiple GPU implementation. However, the speedup levels off after the popula-

tion reaches 25 million. This is due to several factors including memory swapping

and data transmission over the QPI (QuickPath Interconnect) channel when GPU

performs a read/write operations on the remote-memory (the memory that is con-

nected to the other CPU in dual Sandy Bridge system, see 4.3).

38

Figure 6.2: Speedup

If we compare the performance between the two GPUs and the four GPUs

execution, we notice that even by doubling the number of GPUs we cannot double

the performance on four GPUs due to memory overhead. Better performance

can be achieved by decreasing memory usage and allocating the entire simulation

objects on GPUs.

6.2 Future Work

We expect to improve the performance on 4 GPUs by:

• Splitting population in to four cities or States, to allocate the entire simu-

lation objects (agent,location,household) on four GPUs and executing each

city/State on one GPU. This requires model customization such as adding

agent mobility between GPUs. For instance, an agent resident in the first

GPU may run errands on the fourth GPU based on statistical data. We

also want to perform peer-to-peer operations between GPUs that are con-

nected to the same CPU. This allows streaming between GPUs without going

through the CPU. Moreover, use a small window buffer on the host main

39

memory to transfer agents between GPUs where peer-to-peer operations are

not allowed.

The following modifications are expected to increase the performance of all (1,2,4)

GPU implementations:

• Replacing cuRAND by Random123. cuRAND requires 48 byte memory for

each state and the state has to be updated after every curand() call func-

tion. In contrast, random123 is a Counter-Based Random Number Generator

(CBRNG)[17]. It has a device-side API and it is stateless, meaning that it

does not require memory to generate pseudo-random numbers.

• Sorting agents by the their presence at locations in scheduled hours and

storing the first agent and last agent indices at the location array. Further,

agents can make contacts at their current location within the stored range

based on the contact rate. Using this approach, only 9.77MB of memory is

needed for location array of size 1.28 million which is used when simulating

a population of size 100 million individuals.

6.3 Conclusion

In this thesis, we demonstrated a high-performance framework of a low-

complexity agent-based model for pandemic simulation. The contact network

of our agent-based simulation is able to include actual data from the field based

social contact. The epidemiological model can accept observational field data ap-

proximation of the initial reproduction number, and then use it to calibrate the

infection probability. This is done in such a way that the results of the infection

pattern is similar to the value of the basic reproduction number.

Our multiple GPUs implementation exhibits remarkable improvement in exe-

cution runtime which permits real time processing. For example, FluTE simulation

40

requires two hours on a cluster environment to simulate a population of size ten

million individuals [8]. In contrast, our simulation on a single machine accelerated

using multiple GPUs can simulate 100 days in 89.6 seconds for a population of

size ten million individuals.

This thesis provides a fundamental framework for implementation of HPC

simulations with GPU acceleration. We achieved speedups of up to 2606.41, which

is relatively faster than the 3.3x achieved by Barrett et al. [18], or the 11.7x by Zou

et al. [19] or the 94.4x achieved by Holvenstot et al. [4]. Moreover, we achieved

a substantial simulation scaling of up to 100 million individuals using multiple

GPUs.

41

Appendix A

An Appendix

A.1 GPU Kernerls Source Code

__global__ void compute_population_size(curandState *state,

unsigned long *c,

unsigned long *d,

float *household,

int*dev_adult,

int*dev_child,

unsigned char *dev_PPhouse)

{

__shared__ float cache[64];

__shared__ float cache2[64];

unsigned long tid = threadIdx.x + blockIdx.x * blockDim.x;

int cacheIndex = threadIdx.x;

int j;

int temp=0;

int temp2=0;

curandState st=state[tid];

float n1=0;

for(j=0;j<houseperthread;j++)

{

n1=curand_uniform(&st);

int p=0;

while(n1>household[p*3+2])

p++;

42

dev_adult[tid*houseperthread+j]=household[p*3+0];

dev_child[tid*houseperthread+j]=household[p*3+1];

dev_PPhouse[tid*houseperthread+j]=household[p*3+0] + household[p*3+1];

temp+=household[p*3+0];

temp2+=household[p*3+1];

}

state[tid]=st;

cache[cacheIndex] = temp;

cache2[cacheIndex]= temp2;

__syncthreads();

int i = blockDim.x/2;

while (i != 0)

{

if (cacheIndex < i)

{

cache[cacheIndex] += cache[cacheIndex + i];

cache2[cacheIndex]+=cache2[cacheIndex + i];

}

__syncthreads();

i /= 2;

}

if (cacheIndex == 0)

{

c[blockIdx.x] = cache[0];

d[blockIdx.x] = cache2[0];

}

}

__global__ void init_rand(curandState *state,int seed)

{

unsigned long idx=threadIdx.x+blockIdx.x* blockDim.x;

curand_init(seed,idx,0,&state[idx]);

}

__global__ void generate_businesses(unsigned long *index,

unsigned long SIZE,

float *d_workplaces,

unsigned char * contact_rate,

int v) // generate all business entities

{

__shared__ float lworkplaces[14][7];

long i,j;

for(i=0;i<14;i++)

43

for(j=0;j<7;j++)

{

lworkplaces[i][j]=d_workplaces[i*7+j];

}

unsigned long idx=threadIdx.x+blockIdx.x*blockDim.x;

while(idx<SIZE)

{

if(idx<index[0])

{

contact_rate[idx] = lworkplaces[0][6];

}

else if(idx>=index[0] && idx<index[1])

{

contact_rate[idx] = lworkplaces[1][6];

}

else if(idx>=index[1] && idx<index[2])

{

contact_rate[idx] = lworkplaces[2][6];

}

else if(idx>=index[2] && idx<index[3])

{

contact_rate[idx] = lworkplaces[3][6];

}

else if(idx>=index[3] && idx<index[4])

{

contact_rate[idx] = lworkplaces[4][6];

}

else if(idx>=index[4] && idx<index[5])

{

contact_rate[idx] = lworkplaces[5][6];

}

else if(idx>=index[5] && idx<index[6])

{

contact_rate[idx] = lworkplaces[6][6];

}

else if(idx>=index[6] && idx<index[7])

{

contact_rate[idx] = lworkplaces[7][6];

}

else if(idx>=index[7] && idx<index[8])

{

contact_rate[idx] = lworkplaces[8][6];

}

else if(idx>=index[8] && idx<index[9])

44

{

contact_rate[idx] = lworkplaces[9][6];

}

else if(idx>=index[9] && idx<index[10])

{

contact_rate[idx] = lworkplaces[10][6];

}

else if(idx>=index[10] && idx<index[11])

{

contact_rate[idx] = lworkplaces[11][6];

}

else if(idx>=index[11] && idx<index[12])

{

contact_rate[idx] = lworkplaces[12][6];

}

else if(idx>=index[12])

{

contact_rate[idx] = lworkplaces[13][6];

}

idx+=blockDim.x*gridDim.x;

}

}

__device__ unsigned long Assignworkplace(float *d_workplaces, curandState state)

{

float sum=0,PRNG;

PRNG=curand_uniform(&state);

unsigned long work=0;

for(int i=0;i<14;i++)

{

sum+=d_workplaces[i*7+2];

if(sum>PRNG)

{

sum-=PRNG;

sum=sum/d_workplaces[i*7+2];

sum=sum* d_workplaces[i*7+1];

return (unsigned long) work+sum;

}

else

work+= (unsigned int) d_workplaces[i*7+1];

}

return work;

}

45

__global__ void Assign_Adult(struct entity *community,

unsigned long startpoint,

unsigned long POPULATION,

curandState *state,

float *d_workplaces,

unsigned char *dev_PPhouse,

unsigned long *dev_adultset)

{

unsigned long tid=startpoint+threadIdx.x+blockIdx.x*blockDim.x;

int i=0;

unsigned long workpla=0;

curandState st;

while(tid< POPULATION)

{

community[tid].id= tid;

community[tid].household_number=dev_adultset[tid];

community[tid].household_member=dev_PPhouse[dev_adultset[tid]];

community[tid].infection_day_pandemic = -6;

community[tid].infection_day_seasonal = -6;

st=state[(tid%(128*128))];

community[tid].workplace = Assignworkplace(d_workplaces,st);

state[(tid%(128*128))]=st;

community[tid].age=23;

tid+=blockDim.x* gridDim.x;

}

}

__global__ void Assign_Child(struct entity *community,

unsigned long POPULATION,

unsigned long Adult,

unsigned long startpoint,

curandState *state,

unsigned char *dev_PPhouse,

unsigned long *dev_childset,

float *dev_AgeChild,

unsigned long *index)

{

__shared__ float age[5][4];

unsigned long tid=startpoint+threadIdx.x+blockIdx.x*blockDim.x;

unsigned long ctid=0;

int i=0,j=0;

46

curandState st;

float PRNG;

for(int i=0;i<5;i++)

for(int j=0;j<3;j++)

age[i][j]=dev_AgeChild[i*3+j];

while(tid < POPULATION)

{

ctid=tid+Adult;

community[ctid].id= ctid;

community[ctid].household_number=dev_childset[tid];

community[ctid].household_member=dev_PPhouse[dev_childset[tid]];

community[ctid].infection_day_pandemic = -6;

community[ctid].infection_day_seasonal = -6;

st=state[(tid%(128*128))];

PRNG=curand_uniform(&st);

j=0;

while(PRNG>age[j][1]&& j<5)

j++;

community[ctid].age=dev_AgeChild[j*3];

long randval=curand(&st);

long value=0;

if(j!=0)

{

value= randval % (1+index[3+j]-index[3+(j-1)]);

value+=index[3+(j-1)];

}

else

{

value= randval %(1+index[3]-index[2]);

value+=index[2];

}

community[ctid].workplace = value;

state[(tid%(128*128))]=st;

tid+=blockDim.x* gridDim.x;

}

}

__global__ void initialpandemic(int size, curandState *state,

unsigned long POPULATION,

float reproduction,

struct entity *community)

{

int tid=threadIdx.x + blockIdx.x* blockDim.x;

unsigned long index,person;

if(tid<size)

47

{

curandState st=state[tid];

index=curand(&st);

person= index %(1+POPULATION);

community[person].disease_clock_pandemic=0;

community[person].generation_pandemic=1;

community[person].infection_day_pandemic=-2;

community[person].virus=1;

community[person].prior_virus=1;

community[person].rn_init_pandemic=reproduction;

state[tid]=st;

}

}

__global__ void initialseasonal(int size, curandState *state,

unsigned long POPULATION,

float reproduction,

struct entity *community)

{

int tid=threadIdx.x + blockIdx.x* blockDim.x;

unsigned long index,person;

if(tid<size)

{

curandState st=state[tid];

index=curand(&st);

person= index %(1+POPULATION);

community[person].disease_clock_seasonal=0;

community[person].generation_seasonal=1;

community[person].infection_day_seasonal=-2;

community[person].virus=2;

community[person].prior_virus=2;

community[person].rn_init_seasonal=reproduction;

state[tid]=st;

}

}

__global__ void ChildWeekDay(unsigned long startpoint,unsigned long size,

unsigned long adult, struct entity *community,

unsigned long *index, float *d_workplaces, curandState *state)

{

unsigned long tid=startpoint+threadIdx.x+blockIdx.x*blockDim.x;

unsigned long ctid=0;

int i=0;

long PRNG=0,work=0;

curandState st;

48

while(tid<size)

{

ctid=tid+adult;

for(i=0;i<24;i++)

{

if(i>6 && i<15)

community[ctid].schedule[i]=community[ctid].workplace;

else

community[ctid].schedule[i]=1;

}

st=state[(tid%(128*128))];

PRNG=curand(&st);

work=PRNG %(index[8]+1-index[7]);

community[ctid].schedule[17]=index[7]+work;

PRNG=curand(&st);

work=PRNG %(index[8]+1-index[7]);

community[ctid].schedule[18]=index[7]+work;

state[tid%(128*128)]=st;

tid+=blockDim.x*gridDim.x;

}

}

__global__ void AdultWeekDay(unsigned int startpoint,unsigned long size,

struct entity *community, unsigned long *index,

float *d_workplaces, curandState *state)

{

unsigned long tid=startpoint+threadIdx.x+ blockIdx.x* blockDim.x;

int i=0;

unsigned long value=0;

float PRNG=0;

curandState st;

while(tid<size)

{

for(i=0;i<24;i++)

{

if(i>6 && i<17)

community[tid].schedule[i]=community[tid].workplace;

else

community[tid].schedule[i]= 1;

}

st=state[tid%(128*128)];

for(int j=1;j<3;j++)

{

float sum=0;

PRNG=curand_uniform(&st);

49

for(i=9;i<number_business_type;i++)

{

sum = sum+ d_workplaces[i*7+3];

if(PRNG< sum ||i==number_business_type-1)

{

sum-=PRNG;

sum=sum/d_workplaces[i*7+3];

sum*=d_workplaces[i*7+1];

value=index[i-1]+(long)sum;

break;

}

}

community[tid].schedule[16+j]=value;

}

state[(tid%(128*128))]=st;

tid+=blockDim.x *gridDim.x;

}

}

__global__ void WeekEnd(struct entity *community,curandState *state,

unsigned long start,unsigned long size,

float *d_workplaces,unsigned long *index)

{

unsigned long value, tid=start+threadIdx.x+ blockIdx.x*blockDim.x;

unsigned long a[3],swap=0,i=0;

curandState st;

float PRNG=0;

long rnd=0;

while(tid < size)

{

for(i=0;i<24;i++)

community[tid].schedule[i]=1;

st=state[tid%(128*128)];

rnd= curand(&st);

rnd = (rnd %6);

a[0]=curand(&st); a[0]= (a[0] % 11) +9;

a[1]=curand(&st); a[1]= (a[1]% 11) +9;

while(a[0]==a[1])

{

a[1]=curand(&st); a[1]= (a[1]% 11)+9;

}

if(a[1]<a[0])

{

swap=a[0]; a[0]=a[1]; a[1]=swap;

50

}

a[2]=curand(&st);

a[2]= (a[2]% 11)+9;

while(a[0]== a[2] || a[1]==a[2])

{

a[2]= curand(&st); a[2]= (a[2]%11)+9;

}

if(a[2]<a[0])

{

swap=a[2]; a[2]=a[1]; a[1]=a[0]; a[0]=swap;

}

else

{ if(a[2]<a[1])

{

swap=a[2]; a[2]=a[1]; a[1]=swap;

}

}

for(int j=0;j<3;j++)

{

float sum=0;

PRNG=curand_uniform(&st);

for(i=9;i<number_business_type;i++)

{

sum+=d_workplaces[i*7+4];

if(PRNG< sum ||i==number_business_type-1)

{

sum-=PRNG;

sum=sum/d_workplaces[i*7+4];

sum*=d_workplaces[i*7+1];

value=index[i-1]+(long)sum;

break;

}

}

community[tid].schedule[a[j]]=value;

community[tid].errandw[j]= a[j];

}

state[(tid%(128*128))]=st;

tid+=blockDim.x *gridDim.x;

}

}

__global__ void DiseaseProgPandemic(struct entity *community,int* PandemicReduce,

unsigned long size,int hour)

{

51

unsigned long tid=threadIdx.x +blockIdx.x*blockDim.x;

while(tid<size)

{

if(community[tid].infection_day_pandemic== -6)

community[tid].disease_clock_pandemic=0;

if(community[tid].disease_clock_pandemic >=0 &&

community[tid].disease_clock_pandemic < culmination_period)

{

if(community[tid].infection_day_pandemic >0)

{

++community[tid].disease_clock_pandemic;

community[tid].disease_clock_pandemic;

community[tid].infection_day_pandemic= (int)(community[tid].disease_clock_pandemic/13)+1;

}

else{

if(community[tid].infection_day_pandemic== -2 && hour==7)

{

++community[tid].disease_clock_pandemic;

community[tid].disease_clock_pandemic;

community[tid].infection_day_pandemic=(int)(community[tid].disease_clock_pandemic/13)+1;

}

}

}

else{

if(community[tid].disease_clock_pandemic >= culmination_period)

{

community[tid].disease_clock_pandemic = -3;

community[tid].infection_day_pandemic = -5;

PandemicReduce[tid]+=1;

}

}

tid+=blockDim.x*gridDim.x;

}

}

__global__ void DiseaseProgSeasonal(struct entity *community,int *SeasonalReduce,

unsigned long size,int hour)

{

unsigned long tid=threadIdx.x +blockIdx.x*blockDim.x;

while(tid<size)

{

if(community[tid].infection_day_seasonal== -6)

52

community[tid].disease_clock_seasonal=0;

if(community[tid].disease_clock_seasonal >=0 &&

community[tid].disease_clock_seasonal < culmination_period)

{

if(community[tid].infection_day_seasonal >0)

{

++community[tid].disease_clock_seasonal;

community[tid].infection_day_seasonal= (int)(community[tid].disease_clock_seasonal/13)+1;

}

else{

if(community[tid].infection_day_seasonal== -2 && hour ==7)

{

++community[tid].disease_clock_seasonal;

community[tid].infection_day_seasonal= (int)(community[tid].disease_clock_seasonal/13)+1;

}

}

}

else

{

if(community[tid].disease_clock_seasonal >= culmination_period)

{

community[tid].disease_clock_seasonal = -3;

community[tid].infection_day_seasonal = -5;

SeasonalReduce[tid]+=1;

}

}

tid+=blockDim.x*gridDim.x;

}

}

__global__ void ReduceReproduction(struct entity *community,unsigned long *SemiSea,

unsigned long *SemiSea2, unsigned long *Semisum,

unsigned long *Semisum2,unsigned long size,

unsigned long startpoint,int day)

{

__shared__ unsigned int temp[64],bin[64];

unsigned long tid= startpoint+threadIdx.x + blockIdx.x* blockDim.x;

int thrd=threadIdx.x;

unsigned long value=0,rn_p=0, generation=0;

while(tid< size)

{

generation=community[tid].generation_pandemic;

if(generation==day)

53

{

value+=1;

rn_p+=community[tid].rn_pandemic;

}

tid+=blockDim.x*gridDim.x;

}

temp[thrd]=value;

bin[thrd]=rn_p;

__syncthreads();

int i=blockDim.x/2;

while(i!=0)

{

if(thrd<i)

{

temp[thrd]+=temp[thrd+i];

bin[thrd]+=bin[thrd+i];

}

__syncthreads();

i/=2;

}

if(thrd==0)

{

Semisum[blockIdx.x]=temp[0];

Semisum2[blockIdx.x]=bin[0];

}

}

__global__ void init_households(struct house *household,unsigned long size,unsigned long startpoint)

{

unsigned long tid=startpoint+threadIdx.x+ blockIdx.x * blockDim.x;

unsigned int i=0,max=0;

while(tid<size)

{

max=household[tid].count_total;

household[tid].pointer=0;

for(i=0;i<max;i++)

household[tid].array_id[i]=0;

household[tid].count_total=0;

tid+=blockDim.x * gridDim.x;

}

}

__global__ void init_business(struct bus *business,unsigned long size,unsigned long idx)

54

{

unsigned long tid =idx+threadIdx.x + blockIdx.x * blockDim.x;

unsigned int i=0,max=0;

while(tid<size)

{

max=business[tid].count_total;

business[tid].count_infected=0;

business[tid].pointer=0;

for(i=0;i<max;i++)

business[tid].array_id[i]=0;

business[tid].count_total=0;

tid+=blockDim.x* gridDim.x;

}

}

__global__ void declare_locationBusiness(struct entity *community, struct bus *business,

unsigned long size, int hour)

{

unsigned long tid= threadIdx.x + blockIdx.x * blockDim.x;

unsigned long bus;

unsigned int temp;

while(tid<size)

{

bus=community[tid].schedule[hour];

if(bus>1 && business[bus].pointer<business_capacity)

{

temp=0;

temp= atomicAdd(&business[bus].pointer,1);

business[bus].count_total=temp+1;

business[bus].array_id[temp]=community[tid].id;

}

tid+=blockDim.x * gridDim.x;

}

}

__global__ void declarehouse(struct entity *community,struct house *household,

unsigned long size,int hour)

{

unsigned long tid= blockIdx.x * blockDim.x +threadIdx.x;

unsigned long bus=0,house=0,id;

unsigned int temp,member=0;

while(tid<size)

{

55

bus=community[tid].schedule[hour];

house=community[tid].household_number;

member=community[tid].household_member;

id=community[tid].id;

if(bus==1 && household[house].pointer<member)

{

temp=0;

temp=atomicAdd(&household[house].pointer,1);

household[house].count_total=temp+1;

household[house].array_id[temp]=id;//community[tid].id;

}

tid+=blockDim.x*gridDim.x;

}

}

__global__ void symptomaticpandemic(struct entity *community, curandState *state,

unsigned long start, unsigned long size,int hour)

{

unsigned long tid=start+ threadIdx.x + blockIdx.x * gridDim.x;

curandState st;

float PRNG;

unsigned int value;

while(tid < size)

{

st=state[(tid%(128*128))];

if (community[tid].disease_clock_pandemic >= 1 &&

community[tid].disease_clock_pandemic < culmination_period)

{

if(community[tid].infection_day_pandemic>0 &&

community[tid].symptomatic==0 && community[tid].virus==1)

{// for the individuals initiating the outbreak

PRNG=0;

value=0;

PRNG=curand_uniform(&st);

if(PRNG<= percent_symptomatic)

{

community[tid].symptomatic=1;

value=curand(&st); value%=3;

if(value==0)

value=3;

community[tid].profile_pandemic= value ;

}

else

{

56

community[tid].symptomatic=2;

value=curand(&st);

community[tid].profile_pandemic= (value%3)+4;

}

}

}

state[(tid%(128*128))]=st;

tid+= blockDim.x * gridDim.x;

}

}

__global__ void symptomaticseasonal(struct entity *community,curandState *state,

unsigned long start, unsigned long size,int hour)

{

unsigned long tid=start+threadIdx.x + blockIdx.x * blockDim.x;

curandState st;

float PRNG;

unsigned int value;

while(tid <size)

{

st=state[(tid%(128*128))];

if (community[tid].disease_clock_seasonal >= 1 &&

community[tid].disease_clock_seasonal < culmination_period &&

community[tid].infection_day_seasonal>0 &&community[tid].symptomatic==0 &&

community[tid].virus==2)

{

PRNG=0;

value=0;

PRNG=curand_uniform(&st);

if(PRNG <= percent_symptomatic)

{

community[tid].symptomatic=1;

value= curand(&st); value%=3;

if(value==0)

value=3;

community[tid].profile_seasonal=value;

}

else

{

community[tid].symptomatic=2;

value=curand(&st);

community[tid].profile_seasonal=(value %3)+4;

}

}

57

state[(tid%(128*128))]=st;

tid+= blockDim.x * gridDim.x;

}

}

__global__ void AdultdiseaseSpreadWday(struct entity *community,struct bus *business,

unsigned long size, int hour,curandState *state,

unsigned char* contact_rate)

{

unsigned long tid = threadIdx.x + blockIdx.x * blockDim.x;

unsigned long location;

int contactRate, Rate, count;

curandState st;

while(tid < size)

{

location=community[tid].schedule[hour];

count= business[location].count_total;

st=state[(tid%(128*128))];

if(hour==7)

{

contactRate= contact_rate[location];

if(business[location].count_total <= contactRate)

{

contactRate=business[location].count_total-1;

}

if(contactRate > 0)

{

for (int i = 0; i < contactRate; i++)

{

Rate = curand(&st); Rate = Rate % count;

while(business[location].array_id[Rate] == community[tid].id)

{

Rate = curand(&st); Rate = Rate % count;

}

community[tid].contact_array_id[community[tid].contact_counter+i]=

business[location].array_id[Rate];

}

community[tid].contact_counter += contactRate;

community[tid].contact_counter_wp +=contactRate;

}

}

if(hour==17)

{

contactRate= contact_rate[location];

58

if(business[location].count_total <= contactRate)

{

contactRate=business[location].count_total-1;

}

if(contactRate > 0)

{

for (int i = 0; i < contactRate; i++)

{

Rate = curand(&st);

Rate = Rate % count;

while(business[location].array_id[Rate] == community[tid].id)

{

Rate = curand(&st); Rate = Rate % count;

}

community[tid].contact_array_id[community[tid].contact_counter+i]=

business[location].array_id[Rate];

}

community[tid].contact_counter += contactRate;

community[tid].contact_counter_er +=contactRate;

}

}

state[(tid%(128*128))]=st;

tid+= blockDim.x * gridDim.x;

}

}

__global__ void ChilddiseaseSpreadWday(struct entity *community,struct bus *business,

unsigned long size,unsigned long adult, int hour,

curandState *state, unsigned char *contact_rate)

{

unsigned long tid = adult + threadIdx.x + blockIdx.x * blockDim.x;

unsigned long location;

int contactRate, Rate, count;

curandState st;

while(tid < size)

{

location=community[tid].schedule[hour];

count= business[location].count_total;

st=state[(tid%(128*128))];

if(hour==7)

{

contactRate= contact_rate[location];

if(business[location].count_total <= contactRate)

{

59

contactRate=business[location].count_total-1;

}

if(contactRate > 0)

{

for (int i = 0; i < contactRate; i++)

{

Rate = curand(&st); Rate = Rate % count;

while(business[location].array_id[Rate] == community[tid].id)

{

Rate = curand(&st); Rate = Rate % count;

}

community[tid].contact_array_id[community[tid].contact_counter+i]=

business[location].array_id[Rate];

}

community[tid].contact_counter += contactRate;

community[tid].contact_counter_wp =contactRate;

}

}

if(hour==15)

{

contactRate= contact_rate[location];

if(business[location].count_total <= contactRate)

{

contactRate=business[location].count_total-1;

}

if(contactRate > 0)

{

for (int i = 0; i < contactRate; i++)

{

Rate = curand(&st); Rate = Rate % count;

while(business[location].array_id[Rate] == community[tid].id)

{

Rate = curand(&st);

Rate = Rate % count;

}

community[tid].contact_array_id[community[tid].contact_counter+i]=

business[location].array_id[Rate];

}

community[tid].contact_counter += contactRate;

community[tid].contact_counter_er =contactRate;

}

}

state[(tid%(128*128))]=st;

tid+= blockDim.x * gridDim.x;

}

60

}

__global__ void housediseasespreadWd(struct entity *community,

struct house *household,

unsigned long size,

curandState *state,int hour)

{

unsigned long tid= threadIdx.x + blockIdx.x * blockDim.x;

int contactRate;

unsigned long Rate;

unsigned long house,count;

curandState st;

while (tid < size)

{

house= community[tid].household_number;

count= household[house].count_total;

st=state[(tid%(128*128))];

contactRate=3;

if(household[house].count_total <= contactRate)

contactRate= household[house].count_total -1;

if(contactRate >1)

{

for(int i=0;i<contactRate;i++)

{

Rate=curand(&st); Rate= Rate % count;

while(household[house].array_id[Rate]== community[tid].id)

{

Rate = curand(&st);

Rate = Rate % count;

}

community[tid].contact_array_id[community[tid].contact_counter+i]=

household[house].array_id[Rate];

}

community[tid].contact_counter+=contactRate;

community[tid].contact_counter_hh=contactRate;

}

state[(tid%(128*128))]=st;

tid+=blockDim.x * gridDim.x;

}

}

61

__global__ void d_infection(struct entity *community,curandState *state,

unsigned long size,float reproduction_number_pandemic,

float reproduction_number_seasonal, int day,

float *d_gamma1,float *d_gamma2,float *d_lognorm1,

float *d_lognorm2,float *d_weib1,float *d_weib2)

{

unsigned long tid= threadIdx.x + blockIdx.x * blockDim.x;

int virus, k=0;

curandState st;

float p, z, p_p, p_s, z_p, z_s, PRNG;

unsigned long id,value;

while(tid <size)

{

st=state[(tid%(128*128))];

virus=community[tid].virus;

for(int i=0;i<community[tid].contact_counter;i++)

{

id=community[tid].contact_array_id[i]; k=1;

p=-1;

z=-1;

if(virus==3)

{

if(community[tid].infection_day_pandemic==-2)

{

p_p=0;

}

else

{

float a=0,repnum= community[tid].rn_init_pandemic;

int profile= community[tid].profile_pandemic;

int infection_day=community[tid].infection_day_pandemic;

switch (profile)

{

case 1:

a = d_gamma1[infection_day]; break;

case 2:

a = d_lognorm1[infection_day]; break;

case 3:

a = d_weib1[infection_day]; break;

case 4:

a = d_gamma2[infection_day]; break;

case 5:

a = d_lognorm2[infection_day]; break;

case 6:

a = d_weib2[infection_day]; break;

62

}

if(a!=0)

p_p = ((repnum/(((1-asymp)*percent_symptomatic)+asymp))*a)/

((community[tid].contact_counter_hh*k_hh)+

(community[tid].contact_counter_wp*k_wp)+

(community[tid].contact_counter_er*k_er));

}

z_p=curand_uniform(&st);

if(community[tid].infection_day_seasonal==-2)

{

p_s=0;

}

else

{

float a=0,repnum= community[tid].rn_init_seasonal;

int profile= community[tid].profile_seasonal;

int infection_day=community[tid].infection_day_seasonal;

switch (profile)

{

case 1:

a = d_gamma1[infection_day]; break;

case 2:

a = d_lognorm1[infection_day]; break;

case 3:

a = d_weib1[infection_day]; break;

case 4:

a = d_gamma2[infection_day]; break;

case 5:

a = d_lognorm2[infection_day]; break;

case 6:

a = d_weib2[infection_day]; break;

}

if(a!=0)

p_s = ((repnum/(((1-asymp)*percent_symptomatic)+asymp))*a)/

((community[tid].contact_counter_hh*k_hh)+

(community[tid].contact_counter_wp*k_wp)+

(community[tid].contact_counter_er*k_er));

}

z_s=curand_uniform(&st);

if (z_p <= p_p && z_s > p_s)

{//infected from pandemic

virus = 1; p = p_p; z = z_p;

}

if (z_s <= p_s && z_p > p_p)

{//infected from seasonal

63

virus = 2; p = p_s; z = z_s;

}

if (z_p <= p_p && z_s <= p_s)

{

if (community[id].prior_virus==0)

{//no prior infection, infected with pandemic and seasonal

PRNG=curand_uniform(&st);

if(PRNG <= percent_symptomatic)

{

community[id].symptomatic=1;

value= curand(&st); value%=3;

if(value==0)

value=3;

community[id].profile_pandemic=value;

}

else

{

community[id].symptomatic=2;

value=curand(&st);

community[id].profile_pandemic=(value %3)+4;

}

PRNG=curand_uniform(&st);

if(PRNG <= percent_symptomatic)

{

community[id].symptomatic=1;

value= curand(&st);

value%=3;

if(value==0)

value=3;

community[id].profile_seasonal=value ;

}

else

{

community[id].symptomatic=2;

value=curand(&st);

community[id].profile_seasonal=(value%3)+4;

}

community[id].disease_clock_pandemic = 0;

community[id].disease_clock_seasonal = 0;

community[id].generation_pandemic = community[tid].generation_pandemic + 1;

community[id].generation_seasonal = community[tid].generation_seasonal + 1;

community[tid].rn_pandemic = community[tid].rn_pandemic + 1;

community[tid].rn_seasonal = community[tid].rn_seasonal + 1;

community[id].infection_day_pandemic = -2;

community[id].infection_day_seasonal = -2;

64

community[id].day_begin_infection_pandemic = day;

community[id].day_begin_infection_seasonal = day;

community[id].virus = 3;

community[id].prior_virus = 3;

community[id].rn_init_pandemic = reproduction_number_pandemic*epsilon_ps;

community[id].rn_init_seasonal = reproduction_number_seasonal*epsilon_sp;

community[id].total_infected_pandemic+=1;

community[id].total_infected_seasonal+=1;

community[id].total_sim_coinfected+=1;

}

if (community[id].prior_virus==2 && community[id].disease_clock_seasonal>=0)

{//Infected with seasonal,

//still in the seasonal process and infected with both pandemic and seasonal

virus = 1;

p = p_p;

z = z_p;

}

if (community[id].prior_virus==2 && community[id].disease_clock_seasonal==-3 &&

community[id].infection_day_seasonal==-5)

{

virus = 1;//The person will get infected from pandemic only

p = p_p;

z = z_p;

}

if (community[id].prior_virus==1 && community[id].disease_clock_pandemic>=0)

{

virus = 2;//The person will get infected from seasonal only

p = p_s; z = z_s;

}

if (community[id].prior_virus==1 && community[id].disease_clock_pandemic==-3 &&

community[id].infection_day_pandemic==-5)

{

virus = 2;//The persona will get infected from seasonal only

p = p_s; z = z_s;

}

}

} //end of virus 3

if(virus==1)

{

if (p==-1)

{

if(community[tid].infection_day_pandemic==-2)

{

p=0;

}

65

else

{

float a=0,repnum= community[tid].rn_init_pandemic;

int profile= community[tid].profile_pandemic;

int infection_day=community[tid].infection_day_pandemic;

switch (profile)

{

case 1:

a = d_gamma1[infection_day]; break;

case 2:

a = d_lognorm1[infection_day]; break;

case 3:

a = d_weib1[infection_day]; break;

case 4:

a = d_gamma2[infection_day]; break;

case 5:

a = d_lognorm2[infection_day]; break;

case 6:

a = d_weib2[infection_day]; break;

}

if(a!=0)

p = ((repnum/(((1-asymp)*percent_symptomatic)+asymp))*a)/

((community[tid].contact_counter_hh*k_hh)+

(community[tid].contact_counter_wp*k_wp)+

(community[tid].contact_counter_er*k_er));

}

}

if (z==-1)

{

z=curand_uniform(&st);// uni(0,1);

}

if (z <= (k*p)|| p==0)

{

if (community[id].prior_virus==0)

{//no prior infection, infected with pandemic

PRNG=curand_uniform(&st);

if(PRNG <= percent_symptomatic)

{

community[id].symptomatic=1;

value= curand(&st); value%=3;

if(value==0)

value=3;

community[id].profile_pandemic=value;

}

else

66

{

community[id].symptomatic=2;

value=curand(&st);

community[id].profile_pandemic=(value %3)+4;

}

community[id].disease_clock_pandemic = 0;

community[id].generation_pandemic = community[tid].generation_pandemic + 1;

community[tid].rn_pandemic = community[tid].rn_pandemic + 1;

community[id].infection_day_pandemic = -2;

community[id].day_begin_infection_pandemic = day;

community[id].virus = 1;

community[id].prior_virus = 1;

community[id].rn_init_pandemic = reproduction_number_pandemic;

community[id].total_infected_pandemic+=1;

community[id].total_infected_pandemic_only+=1;

}

if (community[id].prior_virus==2 && community[id].disease_clock_seasonal>=0)

{//Infected with seasonal, still in the seasonal process and infected with pandemic

PRNG=curand_uniform(&st);

if(PRNG <= percent_symptomatic)

{

community[id].symptomatic=1;

value= curand(&st);

value%=3;

if(value==0)

value=3;

community[id].profile_pandemic=value ;

}

else

{

community[id].symptomatic=2;

value=curand(&st);

community[id].profile_pandemic=(value %3)+4;

}

community[id].disease_clock_pandemic = 0;

community[id].generation_pandemic = community[tid].generation_pandemic + 1;

community[tid].rn_pandemic = community[tid].rn_pandemic + 1;

community[id].infection_day_pandemic = -2;

community[id].day_begin_infection_pandemic = day;

community[id].virus = 3;

community[id].prior_virus = 3;

community[id].rn_init_pandemic = reproduction_number_pandemic*epsilon_p;

community[id].total_infected_pandemic+=1;

community[id].total_coinfected_s_p+=1;

}

67

if (community[id].prior_virus==2 && community[id].disease_clock_seasonal==-3 &&

community[id].infection_day_seasonal==-5)

{//Infected with seasonal, recovered from seasonal process and infected with pandemic

PRNG=curand_uniform(&st);

if(PRNG <= percent_symptomatic)

{

community[id].symptomatic=1;

value= curand(&st);

value%=3;

if(value==0)

value=3;

community[id].profile_pandemic=value ;

}

else

{

community[id].symptomatic=2;

value=curand(&st);

community[id].profile_pandemic=(value %3)+4;

}

community[id].disease_clock_pandemic = 0;

community[id].generation_pandemic = community[tid].generation_pandemic + 1;

community[tid].rn_pandemic = community[tid].rn_pandemic + 1;

community[id].infection_day_pandemic = -2;

community[id].day_begin_infection_pandemic = day;

community[id].virus = 1;

community[id].prior_virus = 3;

community[id].rn_init_pandemic = reproduction_number_pandemic*epsilon_pr;

community[id].total_infected_pandemic+=1;

community[id].total_reinfected_s_p+=1;

}

}// end of if (z <= (k*p))

}//end of virus 1

if(virus==2)

{

if (p==-1)

{

float a=0,repnum= community[tid].rn_init_seasonal;

int profile= community[tid].profile_seasonal;

int infection_day=community[tid].infection_day_seasonal;

switch (profile)

{

case 1:

a = d_gamma1[infection_day]; break;

case 2:

a = d_lognorm1[infection_day]; break;

68

case 3:

a = d_weib1[infection_day]; break;

case 4:

a = d_gamma2[infection_day]; break;

case 5:

a = d_lognorm2[infection_day]; break;

case 6:

a = d_weib2[infection_day]; break;

}

if(a!=0)

p = ((repnum/(((1-asymp)*percent_symptomatic)+asymp))*a)/

((community[tid].contact_counter_hh*k_hh)+

(community[tid].contact_counter_wp*k_wp)+

(community[tid].contact_counter_er*k_er));

}

if (z==-1)

{

z=curand_uniform(&st);// uni(0,1);

}

if (z <= (k*p))

{

if (community[id].prior_virus==0)

{//no prior infection, infected with seasonal

PRNG=curand_uniform(&st);

if(PRNG <= percent_symptomatic)

{

community[id].symptomatic=1;

value= curand(&st);

value%=3;

if(value==0)

value=3;

community[id].profile_seasonal=value ;

}

else

{

community[id].symptomatic=2;

value=curand(&st);

community[id].profile_seasonal=(value %3)+4;

}

community[id].disease_clock_seasonal = 0;

community[id].generation_seasonal = community[tid].generation_seasonal + 1;

community[tid].rn_seasonal = community[tid].rn_seasonal + 1;

community[id].infection_day_seasonal = -2;

community[id].day_begin_infection_seasonal = day;

community[id].virus = 2;

69

community[id].prior_virus = 2;

community[id].rn_init_seasonal = reproduction_number_seasonal;

community[id].total_infected_seasonal+=1;

community[id].total_infected_seasonal_only+=1;

}

if (community[id].prior_virus==1 && community[id].disease_clock_pandemic>=0)

{//Infected with pandemic, still in the pandemic process and infected with seasonal

PRNG=curand_uniform(&st);

if(PRNG <= percent_symptomatic)

{

community[id].symptomatic=1;

value= curand(&st);

value%=3;

if(value==0)

value=3;

community[id].profile_seasonal=value ;

}

else

{

community[id].symptomatic=2;

value=curand(&st);

community[id].profile_seasonal=(value %3)+4;

}

community[id].disease_clock_seasonal = 0;

community[id].generation_seasonal = community[tid].generation_seasonal + 1;

community[tid].rn_seasonal = community[tid].rn_seasonal + 1;

community[id].infection_day_seasonal = -2;

community[id].day_begin_infection_seasonal = day;

community[id].virus = 3;

community[id].prior_virus = 3;

community[id].rn_init_seasonal = reproduction_number_seasonal*epsilon_s;

community[id].total_infected_seasonal+=1;

community[id].total_coinfected_p_s+=1;

}

if (community[id].prior_virus==1 && community[id].disease_clock_pandemic==-3 &&

community[id].infection_day_pandemic==-5)

{//Infected with seasonal, recovered from seasonal process and infected with pandemic

PRNG=curand_uniform(&st);

if(PRNG <= percent_symptomatic)

{

community[id].symptomatic=1;

value= curand(&st);

value%=3;

if(value==0)

value=3;

70

community[id].profile_seasonal=value ;

}

else

{

community[id].symptomatic=2;

value=curand(&st);

community[id].profile_seasonal=(value %3)+4;

}

community[id].disease_clock_seasonal = 0;

community[id].generation_seasonal = community[tid].generation_seasonal + 1;

community[tid].rn_seasonal = community[tid].rn_seasonal + 1;

community[id].infection_day_seasonal = -2;

community[id].day_begin_infection_seasonal = day;

community[id].virus = 2;

community[id].prior_virus = 3;

community[id].rn_init_seasonal = reproduction_number_seasonal*epsilon_sr;

community[id].total_infected_seasonal+=1;

community[id].total_reinfected_p_s+=1;

}

}

}//end of virus 2

}

community[tid].contact_counter = 0;

community[tid].contact_counter_hh = 0;

community[tid].contact_counter_wp = 0;

community[tid].contact_counter_er = 0;

state[(tid%(128*128))]=st;

tid+= blockDim.x * gridDim.x;

}

}

__global__ void diseaseSpreadWend(struct entity *community,struct bus *business,

unsigned long start,unsigned long size, int hour,

curandState *state,unsigned char *contact_rate)

{

unsigned long tid = start+threadIdx.x + blockIdx.x * blockDim.x;

unsigned long location;

int contactRate, Rate, count;

curandState st;

while(tid < size)

{

location=community[tid].schedule[hour];

count= business[location].count_total;

st=state[(tid%(128*128))];

71

if(hour==community[tid].errandw[0] || hour == community[tid].errandw[1] ||

hour==community[tid].errandw[2])

{

contactRate= contact_rate[location];

if(business[location].count_total <= contactRate)

{

contactRate=business[location].count_total-1;

}

if(contactRate > 0)

{

for (int i = 0; i < contactRate; i++)

{

Rate = curand(&st); //contact_business(i,b);

Rate = Rate % count;

while(business[location].array_id[Rate] == community[tid].id)

{

Rate = curand(&st);

Rate = Rate % count;

}

community[tid].contact_array_id[community[tid].contact_counter+i]=

business[location].array_id[Rate];

}

community[tid].contact_counter += contactRate;

community[tid].contact_counter_wp +=contactRate;

}

}

state[(tid%(128*128))]=st;

tid+= blockDim.x * gridDim.x;

}

}

72

References

[1] Peter Holvenstot. GPU-accelerated influenza simulations for operational mod-

eling. MS thesis WMU, Dept. of Computer Science, 2014.

[2] NVIDIA. Whitepaper nvidias next generation cuda compute architecture:

Kepler GK110. Technical report, NVIDIA Corporation, 2012.

[3] Diana Prieto, Tapas Das, Alex Savachkin, Andres Uribe, Ricardo Izurieta,

and Sharad Malavade. A systematic review to identify areas of enhancements

of pandemic simulation models for operational use at provincial and local

levels. BMC Public Health, 12(1):251, 2012.

[4] Peter Holvenstot, Diana Prieto, and Elise de Doncker. GPGPU paralleliza-

tion of self-calibrating agent-based influenza outbreak simulation. In High

Performance Extreme Computing Conference (HPEC), 2014 IEEE, pages 1–

6. IEEE, 2014.

[5] Joshua M. Epstein, D. Michael Goedecke, Feng Yu, Robert J. Morris, Di-

ane K. Wagener, and Georgiy V. Bobashev. Controlling pandemic flu: The

value of international air travel restrictions. PLoS ONE, 2(5):e401, 05 2007.

[6] Stefan B. Edlund, Matthew A. Davis, and James H. Kaufman. The spatiotem-

poral epidemiological modeler. In Proceedings of the 1st ACM International

Health Informatics Symposium, IHI ’10, pages 817–820, New York, NY, USA,

2010. ACM.

73

[7] Wouter Broeck, Corrado Gioannini, Bruno Goncalves, Marco Quaggiotto,

Vittoria Colizza, and Alessandro Vespignani. The gleamviz computational

tool, a publicly available software to explore realistic epidemic spreading sce-

narios at the global scale. BMC Infectious Diseases, 11(1):37, 2011.

[8] Dennis L Chao, M Elizabeth Halloran, Valerie J Obenchain, and Ira M

Longini Jr. Flute, a publicly available stochastic influenza epidemic simu-

lation model. PLoS Comput Biol, 6(1):e1000656, 2010.

[9] Douglas Roberts. ”abm++ software framework”. http://parrot-

farm.net/ABM++/.

[10] D. Prieto and T.K. Das. An operational epidemiological model for calibrat-

ing agent-based simulations of pandemic influenza outbreaks. Health Care

Management Science, pages 1–19, 2014.

[11] Jol Mossong, Niel Hens, Mark Jit, Philippe Beutels, Kari Auranen, Rafael

Mikolajczyk, Marco Massari, Stefania Salmaso, Gianpaolo Scalia Tomba,

Jacco Wallinga, Janneke Heijne, Malgorzata Sadkowska-Todys, Magdalena

Rosinska, and W. John Edmunds. Social contacts and mixing patterns rele-

vant to the spread of infectious diseases. PLoS Med, 5(3):e74, 03 2008.

[12] Fabrice Carrat, Elisabeta Vergu, Neil M. Ferguson, Magali Lemaitre, Simon

Cauchemez, Steve Leach, and Alain-Jacques Valleron. Time lines of infection

and disease in human influenza: A review of volunteer challenge studies.

American Journal of Epidemiology, 167(7):775–785, 2008.

[13] R Farber. Introduction to GPGPUs and massively threaded programming.

Bioinformatics High Performance Parallel Computer Architectures, pages 29–

48, 2010.

[14] Nicholas Wilt. The CUDA handbook: A comprehensive guide to GPU pro-

gramming. Pearson Education, 2013.

74

[15] Peter Pacheco. An introduction to parallel programming. Elsevier, 2011.

[16] CUDA Toolkit. 4.2: cuRAND guide. NVIDIA Corporation, Santa Clara,

2012.

[17] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel

random numbers: As easy as 1, 2, 3. In Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and Anal-

ysis, SC ’11, pages 16:1–16:12, New York, NY, USA, 2011. ACM.

[18] C.L. Barrett, K.R. Bisset, S.G. Eubank, Xizhou Feng, and M.V. Marathe.

Episimdemics: An efficient algorithm for simulating the spread of infectious

disease over large realistic social networks. In High Performance Computing,

Networking, Storage and Analysis, 2008. SC 2008. International Conference

for, pages 1–12, Nov 2008.

[19] Peng Zou, Ya-shuai L, Ling-da Wu, Li-li Chen, and Yi-ping Yao. Epidemic

simulation of a large-scale social contact network on gpu clusters. SIMULA-

TION, 89(10):1154–1172, 2013.

75

