Analysis of Sandwich Plates Subjected to Blast Loading

Bulla

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons

Recommended Citation
ANALYSIS OF SANDWICH PLATES SUBJECT TO BLAST LOADING

by

Vijay Prasad Bulla

A Thesis
Submitted to the
Faculty of The Graduate College
in partial fulfillment of the
requirements for the
Degree of Master of Science
Department of Mechanical and
Aeronautical Engineering

Western Michigan University
Kalamazoo, Michigan
August 1993
ANALYSIS OF SANDWICH PLATES SUBJECTED TO BLAST LOADING

Vijay Prasad Bulla, M.S.
Western Michigan University, 1993

A dynamic analysis is presented for the bending response of square sandwich plates with isotropic core and facings under blast type pressure. The maximum central deflections of simply supported plates under static and dynamic loadings are compared for various thicknesses and elastic moduli. The deviation of the thick sandwich plate results from the pure-bending theory results is presented for various core properties. Small deflection dynamic iso-response plots are shown for different core rigidities. To study the limits of small deformation linearity for various sandwich plates, non-linear results for deformations under high pressure loads are compared with the linear results. The results show that the maximum occurs at a frequency after the resonant frequency.
ACKNOWLEDGEMENTS

I take this opportunity to thank a few of the many people who helped me in the completion of this thesis. First and foremost, I would like to thank my advisor Dr. Judah Ari-Gur who has been the guiding spirit behind this work. I also extend my sincere thanks to the members of my committee Dr. Philip Guichelaar and Dr. Dennis Vandenbrink for their support. I thank Dr. Jerry Hamelink, Chairperson, Mechanical and Aeronautical Engineering Department for funding the research.

Next, heartfelt thanks to my family members who supported and encouraged me in the pursuance of my master’s. My thanks are to my mother who has sacrificed a lot for my education.

I dedicate this thesis in memory of my father, Dr. Somasekar without whose support I would have never made this far.

Vijay Prasad Bulla
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
Analysis of sandwich plates subjected to blast loading

Bulla, Vijay Prasad, M.S.
Western Michigan University, 1993
# TABLE OF CONTENTS

ACKNOWLEDGMENTS ........................................................................ ii

LIST OF TABLES ............................................................................... v

LIST OF FIGURES .......................................................................... vii

LIST OF SYMBOLS ......................................................................... ix

CHAPTER

I. INTRODUCTION ................................................................. 1

II. LOADING CHARACTERISTICS ......................................... 2

   General .............................................................................. 2

   Duration Ranges .............................................................. 4

III. FEA MODELING OF THE PROBLEM .............................. 8

   Modeling ................................................................. 8

   Structure ........................................................................ 8

   Elements ....................................................................... 8

   Boundary Conditions ...................................................... 11

   Loads ............................................................................ 11

   Material Properties ......................................................... 12

   Static Analysis ............................................................... 13

   Linear Analysis .............................................................. 13

   Nonlinear Analysis ......................................................... 13
Table of Contents - continued

CHAPTER

Modal Analysis ......................................................... 14
Dynamic Analysis ...................................................... 14
   Linear Dynamic Analysis ......................................... 14
   Nonlinear Dynamic Analysis ................................. 16

IV. PLATE RESPONSE TO PRESSURE LOAD ....................... 17
   Static Pressure ...................................................... 17
   Linear Results ...................................................... 17
   Comparison to Thin Plate Theory ............................ 17
   Nonlinear Behavior .............................................. 22

Response to Blast Load ............................................... 27
   Modal Analysis Results ......................................... 27
   Linear Dynamic Analysis ....................................... 28
   Iso-response Plots ............................................... 31
   Nonlinear Behavior .............................................. 38

V. CONCLUSIONS .................................................. 42

APPENDICES

A. Tables for Different Analyses ................................. 43
B. Figures for Various Analyses ................................... 59
C. ANSYS Computer Programs for Various Analyses ....... 79

BIBLIOGRAPHY .................................................. 87
LIST OF TABLES

1. The Different Sizes and Thicknesses of Plates .......................................... 10

2. Deflection of the Plate for Different Number of
   Elements .......................................................................................................... 11

3. The Maximum Deflection (ANSYS) of the Panel for
   Varying $h_c/h_t$ and $E_c/E_f$ ................................................................. 19

4. The Maximum Central Deflection of the Panel by
   Plate Theory for Varying $h_c/h_t$ and $E_c/E_f$ ........................................ 20

5. The Maximum Deflection Ratio (ANSYS/Plate Theory)
   of the Panel for Varying $h_c/h_t$ and $E_c/E_f$ ......................................... 21

6. The Stiffness Ratio (ANSYS/Plate Theory) of the panel
   for varying $h_c/h_t$ and $E_c/E_f$ ............................................................ 25

7. First Mode Natural Frequency (ANSYS) for
   Varying $h_c/h_t$ and $E_c/E_f$ ................................................................. 28

8. First Mode Natural Frequency (Plate Theory) for
   Varying $h_c/h_t$ and $E_c/E_f$ ................................................................. 29

9. First Mode Natural Frequency Ratio (ANSYS/Plate Theory)
   for Varying $h_c/h_t$ and $E_c/E_f$ ............................................................ 30

10. First Mode [Natural Frequency Ratio]$^2$ (ANSYS/Plate Theory)
    for varying $h_c/h_t$ and $E_c/E_f$ ......................................................... 31

11. Iso-response Data for $E_c/E_f=1$ .............................................................. 34

12. Iso-response Data for $E_c/E_f=0.01389$ .................................................... 35

13. Iso-response Data for $E_c/E_f=0.1389e-3$ ............................................. 36

14. Nonlinear Dynamic Deflection Ratio of $w_m/h$ for $E_c/E_f=1$
    and $h_c/h_t=11$ ......................................................................................... 39
15. Nonlinear Dynamic Deflection Ratio of $w_r/h$ for $E_d/E_f=0.01389$ and $h_d/h_f=11$ ......................................................... 40
LIST OF FIGURES

1. Load vs Time ................................................................. 3
2. \( w_m/p_m \) vs \( N \) for \( E_f/E_t =1 \) ................................. 6
3. \( p_m/w_m \) vs \( I/w \) for \( E_f/E_t =1 \) ............................... 6
4. Square Sandwich Plate .................................................. 9
5. Plate Showing Size and Boundary Conditions ............... 12
6. Meshed Quarter Sandwich Plate ................................. 13
7. Response of the Centre of Plate to Dynamic Loading .... 15
8. Response of the Centre of Plate to Impulsive Loading ..... 16
9. \( \log_{10} w_m/h \) (ANSYS) vs \( \log_{10} (E_f/E_p) \) for different \( h/h_t \) .... 18
10. \( w_m \) Plate vs \( E_f/E_t \) for different \( h/h_t \) .................... 23
11. \( w_m \) ANSYS/\( w_m \) Plate vs \( h/h_t \) for Different \( E_f/E_t \) ........ 23
12. \( w_m \) ANSYS/\( w_m \) Plate vs \( E_f/E_t \) for Different Thickness ... 24
13. D ANSYS/D Plate vs \( E_f/E_t \) for different \( h/h_t \) ............ 24
14. Large Deflection / Thickness vs Pressure for \( h/h_t=3 \) ...... 26
15. Large Deflection / Thickness vs Pressure for \( h/h_t=11 \) ... 26
16. f ANSYS / f Plate vs \( E_f/E_t \) ...................................... 29
17. \( f^2 \) ANSYS /\( f^2 \) Plate vs \( E_f/E_t \) ............................ 30
18. \( p_m/p_s \) vs \( N \) ......................................................... 32
19. \( w_m/w_{st} \) vs \( N \) for \( E_f/E_t=0.1389e-3 \) ..................... 32
List of Figures - continued

20. $w_n/w_{st}$ vs $N$ for Different Moduli .................................................. 33
21. Dimensional Iso-response for $h/h_t = 11$, $E/E_t = 0.1389e^{-3}$ ........... 33
22. Iso-response Plot for $h/h_t = 11$, $E/E_t = 0.01389$ ............................. 37
23. Iso-response Plot for $h/h_t = 11$, $E/E_t = 0.1389e^{-3}$ ........................ 37
24. Non-linear Dynamic Behavior for $h/h_t = 11$, $E/E_t = 1$ ..................... 39
25. Non-linear Dynamic Behavior for $h/h_t = 11$, $E/E_t = 0.01389$ ........... 40
LIST OF SYMBOLS

a - Plate Size [m]
D - Plate Bending Stiffness [N-m]
Ec - Elastic Modulus of Core [GPa]
Ef - Elastic Modulus of Facing [GPa]
f - Fundamental Natural Frequency of the Structure [Hz]
h - Total Thickness of the Panel [m]
h_c - Core Thickness [m]
h_f - Facing Thickness [m]
I - Impulse due to pressure p [Pa-sec]
I_m - Impulse due to pressure p_m [Pa-sec], Eqn.(7)
I_{imp} - Minimum impulse required to cause deflection [Pa-sec]
N - Load duration/Half Natural period
p_m - Peak pressure applied [Pa]
P_s - Static Pressure [Pa]
T - First Natural Period of the Structure [sec]
T_1 - Time for linear pressure increase [sec]
T_2 - Time taken for pressure pulse to decay to zero [sec]
T_3 - Total time of the pulse including free vibration [sec]
w_m - Peak Dynamic Deflection at the Center of the Plate [m]
**List of Symbols - continued**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_{st}$</td>
<td>Maximum Static Deflection at the Center</td>
<td>[m]</td>
</tr>
<tr>
<td>$\rho_c$</td>
<td>Density of the Core</td>
<td>[Kg/m$^3$]</td>
</tr>
<tr>
<td>$\rho_f$</td>
<td>Density of the Facing</td>
<td>[Kg/m$^3$]</td>
</tr>
<tr>
<td>$\rho_{av}$</td>
<td>Average Density of the Panel</td>
<td>[Kg/m$^3$]</td>
</tr>
<tr>
<td>$\nu_c$</td>
<td>Core Poisson ratio</td>
<td></td>
</tr>
<tr>
<td>$\nu_f$</td>
<td>Facing Poisson ratio</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Composite sandwich structures have become important in the fields of aerospace and marine structures for the design of light-weight high-stiffness structures. Many structures are replaced by light composite sandwich structures. A lot of work has been done on the bending and vibration characteristics of composite sandwich structures. However, considerably less work has been done on the transient response characteristics of sandwich plates. Watanabe et al. [7], developed a general finite element method for the bending and modal analysis of sandwich plates with general anisotropic composite laminates. Frostig and Baruch [1], have analyzed the bending behavior of foam cored sandwich beams. Kanematsu and Hirano [2] have presented a linear analysis for stiffness and vibration of sandwich plates for unbalanced facings with an orthotropic core. Rao [4] studied the buckling of anisotropic sandwich plates. Ibrahim et al. [3] have presented formulations for analyzing sandwich plates with unequal facings eliminating the coupling of membrane and stiffness actions.

The goal of the present study was to investigate the lateral response of sandwich structures subjected to blast-type pressure.
CHAPTER II

LOADING CHARACTERISTICS

General

A typical pressure wave from an air-blast rises sharply to its peak and then gradually decreases to zero (see Figure 1). The history of loading p(t) may be described as the loading phase and then free vibration phase. In the loading phase the pressure may be approximated as a linear increase from zero to its peak $p_m$ at time $T_1$ and then an exponential decay to zero. The loading is then described by

$$ p(t) = p_m \cdot \frac{t}{T_1}, \quad T_1 \geq t \geq 0 $$

(1)

$$ p(t) = p_m \cdot \exp \left( -\lambda \cdot (t-T_1) \right), \quad t \geq T_1 $$

(2)

where,

$T_1 =$ The time taken for linear pressure increase from zero to peak.

$T_2 =$ The time when the pressure pulse decays to zero.

The parameter $\lambda$ describes the rate of pressure decay.
If $T_3$ is the total time of the pulse, including the free vibration, no load is applied from $T_2$ to $T_3$. The effect of a blast is the gradual decrease of the load in an exponential manner which goes to zero in infinite time. In the present study the load is assumed to decay to 1/1000 of its peak pressure at time $T_2$.

\[ p(t=T_2) = p_m \cdot \exp \left( -\lambda \cdot (T_2 - T_1) \right) \]  \hspace{1cm} (3)

\[ p(t=T_2) = \frac{P_m}{1000} \]  \hspace{1cm} (4)

\[ \lambda = \frac{\ln(0.001)}{(T_2 - T_1)} \]  \hspace{1cm} (5)
For dynamic loading the period of loading is approximately equal to half of the fundamental natural period of the structure. Since the blast load is impulsive in nature, the load is applied only for half of the natural period of the structure. This is done so that the pressure loading is applied only in the direction of the natural vibration of the motion structure. The response is studied for different $E/E_f$ and $h/h_r$. Effects of impulsive and quasi-static loadings have also been shown. The total impulse for a pressure $p$ is

$$I = \int_0^\infty (p \cdot dt)$$

(6)

The impulse for the loading represented in Equations 1 and 2 for time period 0 to $T_2$ is given by

$$I_m = \int_0^{T_2} p \cdot dt$$

(7)

$$I_m = p_m \left[ \left( \frac{T_1}{2} \right) + \frac{1}{\lambda} \exp \left( -\lambda \left( T_2 - T_1 \right) \right) \right]$$

(8)

Duration Ranges

The structural response to the dynamic loading depends also on the duration of loading. This can be explained best by a plot of $w_m/p_m$ versus N shown in Figure...
where \( N \) is the ratio of the load duration \( (T_j) \) to the half of the natural period of the sandwich plate \( (T/2) \). The response of the sandwich plate is studied for \( N \) ranging from 0.1333 to 133.3. In Figure 2, for \( N < 4 \) the loading is impulsive as the deflection of the sandwich plate is smaller than the static response for the applied load. For \( N > 18 \) the response is approximately the same as the static response. This is the quasi-static range. For \( 4 > N > 18 \) the deflection is larger than the static response, which is the dynamic realm, where a dynamic amplification of the deflection occurs.

When \( N < 4 \) the response is impulsive in nature. For \( N > 18 \) it is quasi-static. In the intermediate range the behavior is dynamic. In the dynamic realm less pressure is needed to cause the peak deflection \( w_m \). In the impulsive realm a minimum impulse has to be applied to obtain the same response \( w_m \). For the sandwich plate (see Figure 3), at least an impulse of 46822.3 Pa-s/m has to be applied to cause the peak deflection \( w_m \). In the quasi-static realm, the impulse is very large but the load is applied slowly. Since the response is dominated by the maximum pressure, the deflection \( w_m \) is observed only if the required pressure is applied. For the plate of Figure 3, the ratio of static pressure to the deflection of the sandwich plate due to a static pressure is 0.5055e9 Pa/m. In the impulsive realm a very high pressure is applied for a very short period. Even when the applied load is large a minimum impulse is required for the response of the sandwich structure. In both the impulsive and quasi-static loadings, the loading history is not a dominant factor, but the impulse and peak pressure, respectively, are the only important characteristics. Based on the \( p_m/w_m \) vs \( N \) plot it can be determined when the history of loading is insignificant and
Figure 2. $\frac{w_m}{p_m}$ vs $N$ for $E_f/E_r = 1$.

Figure 3. $\frac{p_m}{w_m}$ vs $I/w$ for $E_f/E_r = 1$. 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
can be ignored. The ratio of the period of loading $T_2$ to the half natural period of the structure $T/2$ provides a basis to define the loading range.
CHAPTER III

FEA MODELING OF THE PROBLEM

Modeling

Structure

The sandwich plate consists of isotropic facings (2mm thickness aluminum) and a thick isotropic core. The elastic modulus of aluminum is 72GPa. The sandwich plate was modeled with plate elements for the facings and 3-D solid elements for the core. As shown in Figure 4, there is an overlap of 1mm between the facing and the core. This is because the nodes of the plate element are on the mid-plane of the facing which is 1mm from the surface of the facings. The 3-D solid elements and the plate elements are connected at the nodes to form the sandwich structure. The translational degrees of freedom (ux, uy and uz) of the plate and the 3-D solid are coupled at these nodes.

Elements

The 3-D solid element has eight nodes and each node has three degrees of freedom, displacements (ux, uy and uz). The plate element has 4 nodes and each node has 6 degrees of freedom (displacements ux, uy, uz and rotations rotx, roty and rotz).
For a quarter sandwich plate the ratio of the side of the 3-D solid element to \((h_c-h_f)\) is 3.

The size \((a)\) of the sandwich plate is twenty four times the ratio of the side of the 3-D solid element to \((h_c-h_f)\). The different sizes of the sandwich plate studied for different core properties are shown in Table 1. The structure was modeled as a quarter taking advantage of symmetries. The maximum deflections of the full sandwich plate and quarter sandwich plate for a static pressure of 1kPa are same. Since the maximum deflections of static loading are same for both the full sandwich plate and quarter sandwich plate, the quarter sandwich plate model with the symmetry boundary conditions has been chosen for the study of the various analyses. The results for the maximum deflection of the quarter model sandwich plate, with 22mm thick core and 72GPa elastic modulus, by ANSYS and the classical plate theory for a static pressure of 1kPa are compared below for one and two layers of 3-D solid elements. For a 4*4 (16 elements) meshing the maximum deflections are given below.
Table 1
The Different Sizes and Thicknesses of Plates

<table>
<thead>
<tr>
<th>a [m]</th>
<th>h_c [m]</th>
<th>(h_c-h_p) [m]</th>
<th>a/2(h_c-h_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.096</td>
<td>0.006</td>
<td>0.004</td>
<td>12</td>
</tr>
<tr>
<td>0.192</td>
<td>0.010</td>
<td>0.008</td>
<td>12</td>
</tr>
<tr>
<td>0.288</td>
<td>0.014</td>
<td>0.012</td>
<td>12</td>
</tr>
<tr>
<td>0.384</td>
<td>0.018</td>
<td>0.016</td>
<td>12</td>
</tr>
<tr>
<td>0.480</td>
<td>0.022</td>
<td>0.020</td>
<td>12</td>
</tr>
</tbody>
</table>

w_{st} ANSYS [m]   w_{st} plate [m]
1 layer of 3-D solid elements   1.978e-6    1.934e-6
2 layers of 3-D solid elements   1.981e-6    1.934e-6

The difference in the maximum deflection between one and two layer 3-D solid elements is 0.15%. This is permissible as this will not affect the results. The model with one layer of 3-D solid elements was then chosen for the analysis. The maximum deflection for a 24mm thick sandwich plate with 72GPa elastic modulus core for different numbers of elements is given in Table 2.

The deflections of the quarter model with 4*4 (16 elements) meshing when compared with the 5*5 (25 elements) meshing within 1%. Hence, the model with 4*4 meshing of the quarter plate is chosen for modeling.
Table 2
Deflection of the Plate for Different Number of Elements

<table>
<thead>
<tr>
<th>Number of elements per quarter plate</th>
<th>$w_{st} \text{ ANSYS} \ [m]$</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9=$3\times3$</td>
<td>1.925e-6</td>
<td>3.65</td>
</tr>
<tr>
<td>16=$4\times4$</td>
<td>1.978e-6</td>
<td>1</td>
</tr>
<tr>
<td>25=$5\times5$</td>
<td>1.998e-6</td>
<td>-</td>
</tr>
</tbody>
</table>

Boundary Conditions

The quarter plate is simply supported along the sides of the lower facing. For the quarter model symmetry boundary conditions, see Figure 5, (for symmetry along $y=a/2$ the degrees of freedom $uy$, $rotx$ and $rotz$ are restrained while for $x=a/2$, $ux$, $roty$ and $rotz$ are restrained) are also applied.

Loads

For the static linear analysis a pressure load of 1kPa is applied. A small load is applied so that the deflections are small and within the linear range. Different pressures are applied for static non-linear and dynamic analyses. The pressure is applied on the upper facing of the sandwich plate.
Material Properties

The facings of the sandwich structure are isotropic and made of aluminum. The core is isotropic and the elastic modulus of the core has been varied from stiff to soft materials, $E_y/E_z$ varying from 1 to $0.1389 \times 10^{-3}$. The density of the core does not depend on the elastic modulus of the material used, and is retained constant $\rho_c = 2700$ Kg/m$^3$ for all the analyses. This is done because the effect of density on the sandwich plates was not of interest.

![Figure 5. Plate Showing Size and Boundary Conditions.](image-url)
Figure 6. Meshed Quarter Sandwich Plate.

Static Analysis

Linear Analysis

The sandwich plate deformation in the ANSYS model accounts for transverse shear deformation through the solid core elements. Hence, the ANSYS model is less rigid than the classical plate theory. The linear analysis is performed to study the effect of the core parameters on the bending stiffness of the sandwich plates, and to compare it to the bending stiffness of the equivalent classical Kirchhoff plate.

Non-linear Analysis

The non-linear static analysis is performed taking into account the large
deflection effects, where the plate deformations are used to continuously redefine the geometry of the sandwich plate and accordingly update the stiffness matrix. During large deflections, the pressure loads remain normal to the element and follow its rotation whereas body forces and concentrated loads remain parallel to the original direction and do not rotate in the direction of the surface. Stress stiffening effects were not included in the analysis.

Modal Analysis

The modal analysis is performed on the full plate model to extract the fundamental natural frequency. When the plate is modeled as a quarter the symmetric conditions eliminate the asymmetric modes of the full plate to behave symmetrically. Hence, the frequencies of the full plate model are considered to find the natural time periods of the structure.

Dynamic Analysis

Linear Dynamic Analysis

The linear dynamic analysis is performed to relate the peak deflection to the pulse duration and intensity, and subsequently to relate the pressure and impulse ratios for the iso-response plots. For 20 integration time steps per cycle a phase shift of 1% is observed with respect to the period elongation, which is acceptable. The loading was applied in 20 integration time steps. Since the blast load rises very sharply, the rise time is $T_r = T_i/4$ for the load pulse. The ratio (N) of the loading period to the half
natural period is varied for values ranging from 0.1333 to 133.33, for different loading ranges. The duration of integration time step \( \delta t \), varies for different loading periods. For dynamic loading \((N=6.6665)\) the peak response of the plate \((a=480\text{mm}, E_c=72\text{Gpa}, p_m=1\text{kpa})\) obtained is shown in the Figure 7. For the same plate when the load is impulsive \((N=1.3333)\) the peak response of the plate is as shown in the Figure 8. No pressure is applied, once the pressure decays to \(p_m/1000\). For impulsive loading, when \(N\) is 0.1333 the plate takes a longer duration to attain the peak response compared to the period of loading. Depending on the nature of loading, the free vibration phase is varied (relatively longer for impulsive and shorter for dynamic and quasi-static loadings). When \(N\) is 0.1333, \(T_3=3.5T_2\), whereas for \(1.3333 > N > 133.33\) \(T_3=1.5T_2\).
Non-linear Dynamic Analysis

For non-linear dynamic analysis the load period is divided into twenty load steps as for the linear analysis, but 5 iterations are now defined for each load step to allow for the non-linear convergence. Large deflection effects are included in the analysis. Also, comparisons with analyses that include stress stiffening effects were conducted. When the geometry of the structure changes because of the loading, the stiffness matrix is updated for every iteration. The stiffness matrix changes along with the nodal positions unlike the linear loading. This is the large deflection effect. When a structure stiffness changes due to the stress state, stress stiffening is said to occur. The effect of stress stiffening is accounted for by the generation of an additional matrix known as stress stiffness matrix.
CHAPTER IV

PLATE RESPONSE TO PRESSURE LOAD

Static Pressure

Linear Results

The maximum deflections of the sandwich plate under the static loading are largely affected by the core shear properties. It is the core modulus and thickness which account for the shear effects. The ANSYS results for the maximum central deflection of the sandwich plate with varying $E_c/E_t$ and $h_c/h_t$ are tabulated in Table 3. The asymptotic nature of the deflection/plate thickness for different core moduli is shown in Figure 9.

Comparison to Thin Plate Theory

According to the Kirchhoff plate theory a line which is straight and normal to the midsurface before deformation is assumed to remain straight and normal throughout the deformation also. The thin plate theory does not include transverse shear effects and it implies infinite transverse shear rigidity. The maximum deflection of a thin rectangular plate with sides a and b under a uniform pressure $p_u$ is given by [5]
\[ w_m = \frac{16}{\pi^6} \frac{P_{st}}{D} \sum_{m=1}^{3} \sum_{n=1}^{3} \frac{(-1)^{m-1} (-1)^{n-1}}{mn \left( \frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^{\frac{3}{2}}} \]  

(9)

\[ w_m = \frac{16}{\pi^6} \frac{P_{st}}{D} \frac{a^4}{m} \sum_{m=1}^{3} \sum_{n=1}^{3} \frac{(-1)^{m-1} (-1)^{n-1}}{mn \left( m^2 + n^2 \left( \frac{a}{b} \right)^2 \right)^{\frac{3}{2}}} \]  

(10)

Figure 9. log10 \( w_m/h \) (ANSYS) vs log10 \( (E_f/E_i) \) for Different \( h/h_f \).
Table 3

The Maximum Deflection (ANSYS) of the Panel for Varying $h_j/h_f$ and $E_j/E_f$

<table>
<thead>
<tr>
<th>$E_j/E_f$</th>
<th>$h_j/h_f=3$</th>
<th>$h_j/h_f=5$</th>
<th>$h_j/h_f=7$</th>
<th>$h_j/h_f=9$</th>
<th>$h_j/h_f=11$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0849</td>
<td>0.3883</td>
<td>0.8381</td>
<td>1.378</td>
<td>1.978</td>
</tr>
<tr>
<td>0.3472</td>
<td>0.1184</td>
<td>0.5804</td>
<td>1.340</td>
<td>2.336</td>
<td>3.516</td>
</tr>
<tr>
<td>0.1389</td>
<td>0.1512</td>
<td>0.7328</td>
<td>1.731</td>
<td>3.099</td>
<td>4.796</td>
</tr>
<tr>
<td>0.0694</td>
<td>0.1884</td>
<td>0.8662</td>
<td>2.025</td>
<td>3.633</td>
<td>5.660</td>
</tr>
<tr>
<td>0.0347</td>
<td>0.2508</td>
<td>1.060</td>
<td>2.401</td>
<td>4.294</td>
<td>6.582</td>
</tr>
<tr>
<td>0.0139</td>
<td>0.4143</td>
<td>1.540</td>
<td>3.256</td>
<td>5.337</td>
<td>8.336</td>
</tr>
<tr>
<td>0.1389e-2</td>
<td>1.747</td>
<td>7.419</td>
<td>13.74</td>
<td>20.58</td>
<td>28.02</td>
</tr>
<tr>
<td>0.6944e-3</td>
<td>2.354</td>
<td>12.63</td>
<td>24.46</td>
<td>36.42</td>
<td>48.8</td>
</tr>
<tr>
<td>0.3472e-3</td>
<td>2.915</td>
<td>20.29</td>
<td>43.63</td>
<td>66.60</td>
<td>89.25</td>
</tr>
<tr>
<td>0.1389e-3</td>
<td>3.563</td>
<td>32.78</td>
<td>87.18</td>
<td>146.1</td>
<td>202.8</td>
</tr>
</tbody>
</table>

and for $a=b$:  

$$w_m = p_{st} \frac{a^4}{D} \cdot 4.055 \cdot 10^{-3} \quad (11)$$

where, $p_{st}$=Applied pressure [Pa]

$a=$Length of the plate [m]

$D=$Bending stiffness of the plate [N m], defined as:
Table 4

The Maximum Central Deflection of the Panel by Plate Theory for Varying \( h_c/h_t \) and \( E_c/E_t \)

<table>
<thead>
<tr>
<th>( E_c/E_t )</th>
<th>( h_c/h_t=3 )</th>
<th>( h_c/h_t=5 )</th>
<th>( h_c/h_t=7 )</th>
<th>( h_c/h_t=9 )</th>
<th>( h_c/h_t=11 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0767</td>
<td>0.3679</td>
<td>0.8074</td>
<td>1.34</td>
<td>1.933</td>
</tr>
<tr>
<td>0.3472</td>
<td>0.0974</td>
<td>0.5216</td>
<td>1.243</td>
<td>2.2</td>
<td>3.345</td>
</tr>
<tr>
<td>0.1389</td>
<td>0.1066</td>
<td>0.6018</td>
<td>1.501</td>
<td>2.767</td>
<td>4.361</td>
</tr>
<tr>
<td>0.0694</td>
<td>0.1101</td>
<td>0.6343</td>
<td>1.613</td>
<td>3.027</td>
<td>4.852</td>
</tr>
<tr>
<td>0.0347</td>
<td>0.1108</td>
<td>0.6520</td>
<td>1.675</td>
<td>3.177</td>
<td>5.142</td>
</tr>
<tr>
<td>0.0139</td>
<td>0.1113</td>
<td>0.6630</td>
<td>1.715</td>
<td>3.274</td>
<td>5.333</td>
</tr>
<tr>
<td>0.1389e-2</td>
<td>0.1114</td>
<td>0.6697</td>
<td>1.740</td>
<td>3.335</td>
<td>5.455</td>
</tr>
<tr>
<td>0.6944e-3</td>
<td>0.1114</td>
<td>0.6701</td>
<td>1.742</td>
<td>3.338</td>
<td>5.461</td>
</tr>
<tr>
<td>0.3472e-3</td>
<td>0.1114</td>
<td>0.6703</td>
<td>1.742</td>
<td>3.340</td>
<td>5.464</td>
</tr>
<tr>
<td>0.1389e-3</td>
<td>0.0114</td>
<td>0.6704</td>
<td>1.743</td>
<td>3.341</td>
<td>5.467</td>
</tr>
</tbody>
</table>

\[
D = \frac{E_c h_c^3}{12 (1-v_c^2)} + \frac{E_t (h_c+h_t)^3}{12 (1-v_t^2)} - \frac{E_t (h_c-h_t)^3}{12 (1-v_t^2)} \tag{12}
\]

and, \( E_c = \) Modulus of elasticity of the core [Pa]

\( E_t = \) Modulus of elasticity of the skin [Pa]

\( h_c = \) thickness of the core [m]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 5

The Maximum Deflection Ratio (ANSYS/Plate Theory) of the Panel for Varying $h_j/h_f$ and $E_o/E_f$.

<table>
<thead>
<tr>
<th>$E_o/E_f$</th>
<th>$h_j/h_f=3$</th>
<th>$h_j/h_f=5$</th>
<th>$h_j/h_f=7$</th>
<th>$h_j/h_f=9$</th>
<th>$h_j/h_f=11$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1070</td>
<td>1.0553</td>
<td>1.0379</td>
<td>1.0284</td>
<td>1.0229</td>
</tr>
<tr>
<td>0.3472</td>
<td>1.2151</td>
<td>1.1127</td>
<td>1.078</td>
<td>1.0618</td>
<td>1.0510</td>
</tr>
<tr>
<td>0.1389</td>
<td>1.4182</td>
<td>1.2177</td>
<td>1.1529</td>
<td>1.1198</td>
<td>1.0996</td>
</tr>
<tr>
<td>0.0694</td>
<td>1.7111</td>
<td>1.3658</td>
<td>1.2551</td>
<td>1.200</td>
<td>1.1663</td>
</tr>
<tr>
<td>0.0347</td>
<td>2.2417</td>
<td>1.6260</td>
<td>1.4328</td>
<td>1.3375</td>
<td>1.2880</td>
</tr>
<tr>
<td>0.0139</td>
<td>3.667</td>
<td>2.2320</td>
<td>1.8980</td>
<td>1.6302</td>
<td>1.5630</td>
</tr>
<tr>
<td>0.1389e-2</td>
<td>15.36</td>
<td>11.0771</td>
<td>7.8950</td>
<td>6.1714</td>
<td>5.1366</td>
</tr>
<tr>
<td>0.6944e-3</td>
<td>20.7015</td>
<td>18.8467</td>
<td>14.0434</td>
<td>10.9102</td>
<td>8.9348</td>
</tr>
<tr>
<td>0.3472e-3</td>
<td>25.6307</td>
<td>30.2685</td>
<td>25.0397</td>
<td>19.9407</td>
<td>16.3304</td>
</tr>
<tr>
<td>0.1389e-3</td>
<td>31.3253</td>
<td>48.8927</td>
<td>50.0214</td>
<td>43.730</td>
<td>37.093</td>
</tr>
</tbody>
</table>

$t_f$ = thickness of the skin [m]

$\nu_c$ = Poisson's ratio of the core

$\nu_f$ = Poisson's ratio of the skin

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The bending stiffness of a sandwich plate, as given by equation 12, is due to
the core and the facings assuming Kirchhoff type linear deformation through the
thickness. The structure is subjected to 1kPa pressure so that the deflections are small
and a linear behavior can be observed. The results for the maximum deflection by
pure bending classical plate theory are tabulated in Table 4. The asymptotic nature of
the maximum deflection with increasing core softness is shown in Figure 10. The
maximum deflection ratio \( \frac{w_m}{} \) is listed in Table 5. Graphs of \( \frac{w_m}{} \) for varying core moduli and thicknesses are shown in Figures 11 and 12,
respectively. It is seen that when \( \frac{E_f}{E_t} \) is greater than 0.0694 the maximum deflections
of the sandwich panel predicted by ANSYS finite element analysis and the thin plate
theory are in close agreement. The stiffness ratio of ANSYS/plate is as shown in
Table 6 and Figure 13. The stiffness of the sandwich plate by ANSYS approaches the
stiffness of the plate theory with the increase of the thickness and core modulus.

Non-linear Behavior

When the displacements and strains developed in a structure are small the
linear deformation approximations can be used. This means that the geometry of the
structure is assumed to remain unchanged. When large displacements occur the
displacements due to geometrical non-linearities is referred to as large displacement
effects. Stresses due to membrane action which are neglected in plate pure bending
increase or decrease in displacements when compared to linear approximation of small
Figure 10. \( w_m \text{ plate} \) vs \( E_J/E_f \) for Different \( h_c/h_f \).

Figure 11. \( w_m \text{ ANSYS}/w_m \text{ plate} \) vs \( h_c/h_f \) for Different \( E_c/E_f \).
Figure 12. \( \frac{w_m \text{ANSYS}}{w_m \text{Plate}} \) vs \( \frac{E_s}{E_t} \) for Different Thicknesses.

Figure 13. \( \frac{D_{\text{ANSYS}}}{D_{\text{Plate}}} \) vs \( \frac{E_s}{E_t} \) for Different \( \frac{h}{h_t} \).
Table 6

The Stiffness Ratio (ANSYS/Plate Theory) of the Panel for Varying $h_f/h_t$ and $E_c/E_r$.

<table>
<thead>
<tr>
<th>$E_c/E_r$</th>
<th>$h_f/h_t=3$</th>
<th>$h_f/h_t=5$</th>
<th>$h_f/h_t=7$</th>
<th>$h_f/h_t=9$</th>
<th>$h_f/h_t=11$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9033</td>
<td>0.9476</td>
<td>0.9634</td>
<td>0.9723</td>
<td>0.9776</td>
</tr>
<tr>
<td>0.3472</td>
<td>0.8233</td>
<td>0.8987</td>
<td>0.9276</td>
<td>0.9418</td>
<td>0.9514</td>
</tr>
<tr>
<td>0.1389</td>
<td>0.7051</td>
<td>0.8212</td>
<td>0.8673</td>
<td>0.8930</td>
<td>0.9094</td>
</tr>
<tr>
<td>0.0694</td>
<td>0.5844</td>
<td>0.7321</td>
<td>0.7967</td>
<td>0.8333</td>
<td>0.8574</td>
</tr>
<tr>
<td>0.0347</td>
<td>0.4461</td>
<td>0.6150</td>
<td>0.6979</td>
<td>0.7476</td>
<td>0.7764</td>
</tr>
<tr>
<td>0.0139</td>
<td>0.2727</td>
<td>0.4480</td>
<td>0.5268</td>
<td>0.6134</td>
<td>0.6398</td>
</tr>
<tr>
<td>0.1389e-2</td>
<td>0.0651</td>
<td>0.0902</td>
<td>0.1266</td>
<td>0.1620</td>
<td>0.1947</td>
</tr>
<tr>
<td>0.6944e-3</td>
<td>0.0483</td>
<td>0.0530</td>
<td>0.0712</td>
<td>0.0916</td>
<td>0.1120</td>
</tr>
<tr>
<td>0.3472e-3</td>
<td>0.0390</td>
<td>0.0330</td>
<td>0.0400</td>
<td>0.0501</td>
<td>0.0612</td>
</tr>
<tr>
<td>0.1389e-3</td>
<td>0.0319</td>
<td>0.0204</td>
<td>0.0200</td>
<td>0.0228</td>
<td>0.0269</td>
</tr>
</tbody>
</table>

Displacements. The large deflection procedure accounts for any structure, translational or rotational. The stiffness of the sandwich plate is then calculated for the new geometric position. During large deflection analysis the pressure loads will remain normal to the element and will follow its rotation. $w_m/h$ for varying $E_c/E_r$ and $h_f/h_t$ are shown in Figures 14 and 15. When the static maximum deflection of the sandwich...
Figure 14. Large Deflection $w/h$ vs Pressure for $h/h_f = 3$.

Figure 15. Large Deflection $w/h$ vs Pressure for $h/h_f = 11$.
plate for large-deflection non-linear analysis is not more than 95% of the maximum deflection for the linear analysis, the sandwich plate is assumed to be behaving non-linearly.

Response to Blast Load

Modal Analysis Results

The natural frequency of a square thin plate is [6]:

\[ f = \frac{\omega}{2\pi} = \frac{19.73}{2\pi a^2} \sqrt{\frac{D}{\rho_{av}h}} \]  

(13)

where,

\[ \rho_{av}h = \rho_c h_c + 2\rho_f h_f \]  

(14)

The natural frequencies of the sandwich panel as predicted by ANSYS are smaller than those of the plate theory, because ANSYS considers the transverse shear of the solid which makes the structure more flexible. The fundamental natural frequencies obtained from ANSYS and plate theory are shown in Tables 7 and 8 respectively. The ratio of the fundamental frequency by ANSYS to the fundamental frequency by thin plate theory is shown in Table 9 and Figure 16. The \( f^2 \) ANSYS/\( f^2 \) Plate vs \( E_c/E_f \) for different \( h_c/h_f \) is shown in Table 10 and Figure 17. As the core modulus \( E_c \) increases the first modal natural frequency of the sandwich structure approaches the first mode natural frequency predicted by the thin plate theory. Also, the first modal natural
### Table 7

First Mode Natural Frequency (ANSYS) for Varying \( h/h_f \) and \( E_o/E_f \)

<table>
<thead>
<tr>
<th>( h/h_f )</th>
<th>( E_o/E_f )</th>
<th>( E_o/E_f )</th>
<th>( E_o/E_f )</th>
<th>( E_o/E_f )</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3362.2</td>
<td>2252.2</td>
<td>1848.9</td>
<td>921.9</td>
</tr>
<tr>
<td>5</td>
<td>1658.9</td>
<td>1039.8</td>
<td>812.2</td>
<td>372.3</td>
</tr>
<tr>
<td>7</td>
<td>998.7</td>
<td>651.9</td>
<td>495.0</td>
<td>239.8</td>
</tr>
<tr>
<td>9</td>
<td>705.3</td>
<td>465.3</td>
<td>344.0</td>
<td>177.1</td>
</tr>
<tr>
<td>11</td>
<td>542.1</td>
<td>348.1</td>
<td>258.2</td>
<td>139.7</td>
</tr>
</tbody>
</table>

frequencies of the full plate and quarter plate models are the same, but the subsequent modes are different. This is apparently because of the asymmetric modes of the full plate which cannot be obtained by the symmetric quarter model.

**Linear Dynamic Analysis**

For \( N < 4 \) an impulsive response is observed, whereas for \( N > 18 \) the response approaches quasi-static realm in a fluctuating manner, Figure 18. In the range between the impulsive and quasi-static realms the response behaves dynamically. The peak response of the sandwich plate is occurring at \( N=7 \). This is due to the shape of the load. The peak pressure of the pulse and the peak of the pulse of the structure are at the maximum position when \( N=6 \). This shows that the history of loading has to be
Table 8

First Mode Natural Frequency (Plate Theory) for Varying $h_o/h_f$ and $E_o/E_t$

<table>
<thead>
<tr>
<th>$h_o/h_f$</th>
<th>$E_o/E_t$</th>
<th>$E_o/E_t$</th>
<th>$E_o/E_t$</th>
<th>$E_o/E_t$</th>
<th>$E_o/E_t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1389</td>
<td>0.1389e-2</td>
<td>0.1389e-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3713.0</td>
<td>3150.0</td>
<td>3059.0</td>
<td>3050.0</td>
<td>3049.0</td>
</tr>
<tr>
<td>5</td>
<td>1695.0</td>
<td>1326.0</td>
<td>1263.0</td>
<td>1257.0</td>
<td>1256.0</td>
</tr>
<tr>
<td>7</td>
<td>1009.0</td>
<td>740.2</td>
<td>692.4</td>
<td>687.5</td>
<td>687.1</td>
</tr>
<tr>
<td>9</td>
<td>708.7</td>
<td>493.1</td>
<td>453.4</td>
<td>449.3</td>
<td>448.8</td>
</tr>
<tr>
<td>11</td>
<td>542.7</td>
<td>361.4</td>
<td>322.8</td>
<td>323.1</td>
<td>322.7</td>
</tr>
</tbody>
</table>

Figure 16. $f_{ANSYS}/f_{Plate}$ vs $E_o/E_t$. 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 9

First Mode Natural Frequency ratio (ANSYS/Plate Theory) for Varying $h/h_f$ and $E_s/E_f$

<table>
<thead>
<tr>
<th>$h/h_f$</th>
<th>$E_s/E_f$</th>
<th>$E_d/E_f$</th>
<th>$E_v/E_f$</th>
<th>$E_s/E_f$</th>
<th>$E_v/E_f$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0.1389</td>
<td>0.0139</td>
<td>0.1389e-2</td>
<td>0.1389e-3</td>
</tr>
<tr>
<td>3</td>
<td>0.9055</td>
<td>0.7149</td>
<td>0.6044</td>
<td>0.3022</td>
<td>0.2132</td>
</tr>
<tr>
<td>5</td>
<td>0.9787</td>
<td>0.7841</td>
<td>0.6430</td>
<td>0.2962</td>
<td>0.1438</td>
</tr>
<tr>
<td>7</td>
<td>0.9898</td>
<td>0.8807</td>
<td>0.7150</td>
<td>0.3488</td>
<td>0.1411</td>
</tr>
<tr>
<td>9</td>
<td>0.9952</td>
<td>0.9436</td>
<td>0.7587</td>
<td>0.3941</td>
<td>0.1497</td>
</tr>
<tr>
<td>11</td>
<td>0.9989</td>
<td>0.9632</td>
<td>0.7901</td>
<td>0.4323</td>
<td>0.1617</td>
</tr>
</tbody>
</table>

Figure 17. $f^2_{\text{ANSYS}} / f^2_{\text{Plate}}$ vs $E_s/E_f$. 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 10

First Mode [Natural Frequency Ratio]$^2$ (ANSYS/Plate Theory) for Varying $h/h_f$ and $E_i/E_f$ considered for the range of $N$ from $N=7$ to $N=18$. The effect of frequency ratio on the dynamic ratio is shown for $E_i/E_f=0.1389e-3$ in Figure 19. This behavior was studied also for other $E_i/E_f$ ratios and it showed that the three realms of response (impulsive, dynamic and quasi-static) occurred at almost the same $N$ for different core moduli as shown in Figure 20. This is possibly due to the relative frequencies, $N$.

Iso-Response Plots

For a given pulse shape, the maximum response of a structure depends on both the peak pressure $p_m$ and the pulse duration. One of these parameters can be substituted by the specific impulse $I$. The same maximum deflection $w_m$ of the
Figure 18. $\frac{p_n}{p_0}$ vs $N$.

Figure 19. $w_{nm}/w_{nt}$ vs $N$ for $E_0/E_f=0.1389e^{-3}$.
Figure 20. \( \frac{w_m}{w_{ct}} \) vs \( N \) for Different Moduli.

Figure 21. Dimensional Iso-response Plot for \( h_t/h_f = 11 \), \( E_f/E_t = 0.01389 \).
<table>
<thead>
<tr>
<th>N</th>
<th>( w_m/w_{st} )</th>
<th>( p_m/p_{st} )</th>
<th>( p_m/w_m ) [Pa/m]</th>
<th>( I/w_m ) [Pa·sec/m]</th>
<th>( I/I_{imp} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1333</td>
<td>0.156</td>
<td>6.4102</td>
<td>3.2425e9</td>
<td>46822.3</td>
<td>1.0000</td>
</tr>
<tr>
<td>1.3333</td>
<td>0.4695</td>
<td>2.1298</td>
<td>1.0767e9</td>
<td>154194</td>
<td>3.2931</td>
</tr>
<tr>
<td>3.9999</td>
<td>1.1435</td>
<td>0.8745</td>
<td>4.4208e8</td>
<td>190406.7</td>
<td>4.0665</td>
</tr>
<tr>
<td>5.3332</td>
<td>1.316</td>
<td>0.7598</td>
<td>3.8417e8</td>
<td>220630</td>
<td>4.7120</td>
</tr>
<tr>
<td>6.6665</td>
<td>1.3842</td>
<td>0.7224</td>
<td>3.6523e8</td>
<td>262125.6</td>
<td>5.5983</td>
</tr>
<tr>
<td>7.9998</td>
<td>1.4332</td>
<td>0.6977</td>
<td>3.5273e8</td>
<td>303809.5</td>
<td>6.4885</td>
</tr>
<tr>
<td>13.333</td>
<td>1.1916</td>
<td>0.8392</td>
<td>4.2426e8</td>
<td>609121.7</td>
<td>13.0092</td>
</tr>
<tr>
<td>26.667</td>
<td>0.9312</td>
<td>1.0738</td>
<td>5.4280e8</td>
<td>1558957.6</td>
<td>33.2952</td>
</tr>
<tr>
<td>66.665</td>
<td>1.0323</td>
<td>0.9687</td>
<td>4.8971e8</td>
<td>3514300</td>
<td>75.0561</td>
</tr>
<tr>
<td>106.66</td>
<td>0.9833</td>
<td>1.017</td>
<td>5.1413e8</td>
<td>5899383</td>
<td>125.9100</td>
</tr>
<tr>
<td>133.33</td>
<td>0.9823</td>
<td>1.0181</td>
<td>5.1466e8</td>
<td>7385486.4</td>
<td>157.7343</td>
</tr>
</tbody>
</table>

structure may be obtained for different combinations of \( p_m \) and I.

An iso-response curve is a plot of all the combinations of \( p_m \) and I that result in the same response. Dimensional Iso-response plot of \( p/w_m \) vs \( I/w_m \), Figure 21, is shown for \( E/E_t = 0.01389 \). In the impulsive realm (high pressure and low impulse), the response is dominated by impulse and hence high pressure is required to provide
Table 12
Iso-response Data for $E_J/E_t = 0.01389$

<table>
<thead>
<tr>
<th>N</th>
<th>$w_m/w_{st}$</th>
<th>$P_m/P_{st}$</th>
<th>$P_m/w_m$ [Pa/m]</th>
<th>$I/w_m$ [Pa-sec/m]</th>
<th>$I/I_{imp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1333</td>
<td>0.1460</td>
<td>6.8496</td>
<td>8.2169e8</td>
<td>24732.9</td>
<td>1.0000</td>
</tr>
<tr>
<td>1.3333</td>
<td>0.5485</td>
<td>1.8231</td>
<td>2.1867e8</td>
<td>65646.2</td>
<td>2.6542</td>
</tr>
<tr>
<td>3.9999</td>
<td>1.1910</td>
<td>0.8396</td>
<td>1.0072e8</td>
<td>91095.9</td>
<td>3.6831</td>
</tr>
<tr>
<td>5.3332</td>
<td>1.3531</td>
<td>0.7390</td>
<td>8.8650e7</td>
<td>106879.4</td>
<td>4.3213</td>
</tr>
<tr>
<td>6.6665</td>
<td>1.4071</td>
<td>0.7106</td>
<td>8.5251e7</td>
<td>128516.6</td>
<td>5.1961</td>
</tr>
<tr>
<td>7.9998</td>
<td>0.4563</td>
<td>0.6866</td>
<td>8.2372e7</td>
<td>149011.5</td>
<td>6.0248</td>
</tr>
<tr>
<td>13.333</td>
<td>1.1950</td>
<td>0.8368</td>
<td>1.0038e8</td>
<td>302650.1</td>
<td>12.2367</td>
</tr>
<tr>
<td>26.667</td>
<td>0.9419</td>
<td>1.0616</td>
<td>1.2735e8</td>
<td>767944.5</td>
<td>31.0495</td>
</tr>
<tr>
<td>66.665</td>
<td>1.0216</td>
<td>0.9788</td>
<td>1.1742e8</td>
<td>1769610.1</td>
<td>71.5488</td>
</tr>
<tr>
<td>106.66</td>
<td>0.9865</td>
<td>1.0136</td>
<td>1.2159e8</td>
<td>2931663.4</td>
<td>118.5239</td>
</tr>
<tr>
<td>133.33</td>
<td>0.9857</td>
<td>1.0145</td>
<td>1.2169e8</td>
<td>3668869.4</td>
<td>148.3396</td>
</tr>
</tbody>
</table>

is shown for $E_J/E_t = 0.01389$. In the impulsive realm (high pressure and low impulse), the response is dominated by impulse and hence high pressure is required to provide the necessary impulse that causes the maximum response $w_m$. In the quasi-static realm (large impulse), the response is dominated by the pressure level and $p/w_m$ converges asymptotically towards the static level. In the dynamic realm $p/w_m$ is smaller than the
Table 13
Iso-response Data for $E_p/E_r = 0.1389e-3$

<table>
<thead>
<tr>
<th>N</th>
<th>$w_m/w_{st}$</th>
<th>$p_m/p_{st}$</th>
<th>$p_m/w_m$ [Pa/m]</th>
<th>$I/w_m$ [Pa·sec/m]</th>
<th>$I/I_{imp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1333</td>
<td>0.1887</td>
<td>5.2994</td>
<td>26130128</td>
<td>3895.22</td>
<td>1.0000</td>
</tr>
<tr>
<td>1.3333</td>
<td>0.5884</td>
<td>1.6995</td>
<td>4730369</td>
<td>7051.56</td>
<td>1.8103</td>
</tr>
<tr>
<td>3.9999</td>
<td>1.3012</td>
<td>0.7685</td>
<td>3789314</td>
<td>16946.2</td>
<td>4.3505</td>
</tr>
<tr>
<td>5.3332</td>
<td>1.4</td>
<td>0.7142</td>
<td>3522367</td>
<td>21002.8</td>
<td>5.3919</td>
</tr>
<tr>
<td>6.6665</td>
<td>1.4546</td>
<td>0.6874</td>
<td>3389830</td>
<td>25263.4</td>
<td>6.4857</td>
</tr>
<tr>
<td>7.9998</td>
<td>1.4778</td>
<td>0.6776</td>
<td>3336670</td>
<td>29844.17</td>
<td>7.6617</td>
</tr>
<tr>
<td>13.333</td>
<td>1.2</td>
<td>0.8333</td>
<td>4105090</td>
<td>61196.22</td>
<td>15.7105</td>
</tr>
<tr>
<td>26.667</td>
<td>0.9467</td>
<td>1.0563</td>
<td>5208333</td>
<td>155281.25</td>
<td>39.8645</td>
</tr>
<tr>
<td>66.665</td>
<td>1.0202</td>
<td>0.9802</td>
<td>4833252</td>
<td>360183.66</td>
<td>92.4681</td>
</tr>
<tr>
<td>106.66</td>
<td>0.9822</td>
<td>1.0181</td>
<td>5020080</td>
<td>598644.57</td>
<td>153.6869</td>
</tr>
<tr>
<td>133.33</td>
<td>0.9812</td>
<td>1.0191</td>
<td>5025125</td>
<td>748944.72</td>
<td>192.2727</td>
</tr>
</tbody>
</table>

static level. It is observed that the dynamic response occurs for $4 > N > 18$.

The impulse which has to be applied for a certain peak deflection to occur is asymptotic to a minimum value in the impulsive realm of the iso-response plot. The static pressure is the asymptotic pressure value in the quasi-static realm.

The impulse and pressure values may be divided by the asymptotic values to
Figure 22. Iso-response Plot for $h_1/h_\ell = 11$, $E_\ell/E_\ell = 0.01389$.

Figure 23. Iso-response Plot for $h_1/h_\ell = 11$, $E_\ell/E_\ell = 0.1389e^{-3}$.
get non-dimensional parameters. The non-dimensional impulse and pressure are then $I/I_{\text{imp}}$ and $p_m/p_{st}$ where $I_{\text{imp}}$ is the minimum asymptotic value of impulse and $p_{st}$ is the static pressure which are required to obtain $w_m$, see Figures 22 and 23.

$I$ and $p_m$ are the applied impulse and pressure to obtain the required deflection $w_m$. When $N < 4$ dynamic pressure higher than the static is needed because the dynamic loading is not acting long enough to deflect the sandwich plate. This is the impulsive realm, where it is not important how large the pressure is but the duration of time the load acts must be sufficient to provide the needed impulse for the peak response to occur. A very large pressure when applied for a very small duration may not result in any significant response at all. For $N > 18$ the load is acting for a very long interval. This is due to the fact that the load is acting long enough for the structure to obtain a peak response relative to the pressure intensity only. The intermediate range is the dynamic range, during which a lower load is required to cause the peak response. It is observed that the peak response occurs when $N=6$. This may be due to the pulse shape, where the peak $p_m$ occurs relatively early and not in a sinusoidal shape as it is for the natural vibration.

**Non-linear Behavior**

The $w_m/h$ for transient loading when $N=6.6665$ for different pressures and $E_I/E_t$ are shown in Tables 14 and 15. It is seen (see Figures 24 and 25) that the large deflection has no effect on the deflection ratio. The ratio $w_m/h$ for stress stiffening, linear and large deflection is same. This is different from the static loading where the
Table 14
Non-linear Dynamic Deflection Ratio of $w_{n}/h$ for $E_{f}/E_{r} = 1$ and $h_{t}/h_{r} = 11$

<table>
<thead>
<tr>
<th>p</th>
<th>$w_{n}/h$ With stress stiffening</th>
<th>$w_{n}/h$ Linear</th>
<th>$w_{n}/h$ Large deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e3</td>
<td>0.1273e-3</td>
<td>0.1141e-3</td>
<td>0.1273e-3</td>
</tr>
<tr>
<td>5e5</td>
<td>0.0659</td>
<td>0.0570</td>
<td>0.0659</td>
</tr>
<tr>
<td>8e5</td>
<td>0.1018</td>
<td>0.0912</td>
<td>0.1018</td>
</tr>
<tr>
<td>1e6</td>
<td>0.1273</td>
<td>0.1141</td>
<td>0.1273</td>
</tr>
<tr>
<td>2e6</td>
<td>0.2338</td>
<td>0.2282</td>
<td>0.2538</td>
</tr>
<tr>
<td>5e6</td>
<td>0.6162</td>
<td>0.5704</td>
<td>0.5758</td>
</tr>
<tr>
<td>8e6</td>
<td>0.9375</td>
<td>0.9128</td>
<td>0.9095</td>
</tr>
</tbody>
</table>

Figure 24. Non-linear Dynamic Behavior for $h_{t}/h_{r} = 11$, $E_{f}/E_{r} = 1$. 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 15

Non-linear Dynamic Deflection Ratio of \( \frac{w_n}{h} \) for \( \frac{E_J}{E_I} = 0.01389 \) and \( \frac{h_J}{h} = 11 \)

<table>
<thead>
<tr>
<th>( p )</th>
<th>( \frac{w_n}{h} ) With stress stiffening</th>
<th>( \frac{w_n}{h} ) Linear</th>
<th>( \frac{w_n}{h} ) Large deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e3</td>
<td>0.5483e-3</td>
<td>0.5408e-3</td>
<td>0.5483e-3</td>
</tr>
<tr>
<td>1e5</td>
<td>0.0492</td>
<td>0.05408</td>
<td>0.0548</td>
</tr>
<tr>
<td>5e5</td>
<td>0.2729</td>
<td>0.2704</td>
<td>0.2729</td>
</tr>
<tr>
<td>8e5</td>
<td>0.4329</td>
<td>0.4325</td>
<td>0.4329</td>
</tr>
</tbody>
</table>

Figure 25. Non-linear Dynamic Behavior for \( \frac{h_J}{h} = 11 \), \( \frac{E_J}{E_I} = 0.01389 \).
non-linearities are very clear.
CHAPTER V

CONCLUSIONS

The response of a sandwich plate subjected to static and dynamic loading was studied. The results of the sandwich plate were compared with the thin plate theory for static loading. It was found that the deviations for soft cores is very wide. The deviations are because the sandwich plate includes transverse shear whereas the cross sections of the Kirchhoff thin plate are assumed straight after deflection. The stiffness of the sandwich plate increases with the thickness of the core. For static non-linearity the large deflections were very high as the core softness increased, especially when $E_c/E_t < 0.01389$. For non-linear transient analysis the effects of large deflection with or without stress-stiffening were generally the same which is different from the static non-linear behavior. Iso-response plots, which give the different non-dimensional values of pressure and impulse for the same peak deflection were shown. Impulsive, dynamic and quasi-static realms were determined for different core elastic moduli.
Appendix A

Tables for Different Analyses
Table A

Ratio of Maximum Deflection to the Thickness of the Sandwich Plate to Show Large Deflection for Static Non-linearity for $E_r/E_f = 1$ and $h_r/h_f = 11$

<table>
<thead>
<tr>
<th>$p$</th>
<th>$w_m/h$ Linear</th>
<th>$w_m/h$ Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e3</td>
<td>0.8241e-4</td>
<td>0.8241e-4</td>
</tr>
<tr>
<td>5e5</td>
<td>0.4121e-1</td>
<td>0.4123e-1</td>
</tr>
<tr>
<td>7e5</td>
<td>0.5769e-1</td>
<td>0.5775e-1</td>
</tr>
<tr>
<td>8e5</td>
<td>0.6593e-1</td>
<td>0.66e-1</td>
</tr>
<tr>
<td>2e6</td>
<td>0.1648</td>
<td>0.1646</td>
</tr>
<tr>
<td>5e6</td>
<td>0.4123</td>
<td>0.4046</td>
</tr>
<tr>
<td>8e6</td>
<td>0.6593</td>
<td>0.6271</td>
</tr>
<tr>
<td>9e6</td>
<td>0.7417</td>
<td>0.6962</td>
</tr>
<tr>
<td>1e7</td>
<td>0.8241</td>
<td>0.7627</td>
</tr>
</tbody>
</table>
Table B

Ratio of Maximum Deflection to the Thickness of the Sandwich Plate
to Show Large Deflection for Static Non-linearity
for $E_d/E_f = 0.3472$ and $h_d/h_r = 11$

<table>
<thead>
<tr>
<th>$p$</th>
<th>$w_m/h$ Linear</th>
<th>$w_m/h$ Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e3</td>
<td>0.1465e-3</td>
<td>0.1465e-3</td>
</tr>
<tr>
<td>1e5</td>
<td>0.1465e-1</td>
<td>0.1465e-1</td>
</tr>
<tr>
<td>5e5</td>
<td>0.7325e-1</td>
<td>0.7329e-1</td>
</tr>
<tr>
<td>8e5</td>
<td>0.1172</td>
<td>0.1173</td>
</tr>
<tr>
<td>1e6</td>
<td>0.1465</td>
<td>0.1465</td>
</tr>
<tr>
<td>5e6</td>
<td>0.7325</td>
<td>0.6971</td>
</tr>
<tr>
<td>6e6</td>
<td>0.8790</td>
<td>0.8192</td>
</tr>
<tr>
<td>7e6</td>
<td>1.0255</td>
<td>0.9337</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table C

Ratio of Maximum Deflection to the Thickness of the Sandwich Plate
to Show Large Deflection for Static Non-linearity
for $E_s/E_t = 0.1389$ and $h_r/h_t = 11$

<table>
<thead>
<tr>
<th>$p$</th>
<th>$w_m/h$ Linear</th>
<th>$w_m/h$ Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e3</td>
<td>0.218e-3</td>
<td>0.218e-3</td>
</tr>
<tr>
<td>1e5</td>
<td>0.218e-1</td>
<td>0.2181e-1</td>
</tr>
<tr>
<td>5e5</td>
<td>0.1090</td>
<td>0.1091</td>
</tr>
<tr>
<td>8e5</td>
<td>0.1744</td>
<td>0.1560</td>
</tr>
<tr>
<td>1e6</td>
<td>0.218</td>
<td>0.2179</td>
</tr>
<tr>
<td>3e6</td>
<td>0.6536</td>
<td>0.6372</td>
</tr>
<tr>
<td>5e6</td>
<td>1.09</td>
<td>1.0111</td>
</tr>
<tr>
<td>6e6</td>
<td>1.3080</td>
<td>1.770</td>
</tr>
<tr>
<td>8e6</td>
<td>1.7440</td>
<td>1.3521</td>
</tr>
<tr>
<td>1e7</td>
<td>2.1800</td>
<td>1.5867</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table D

Ratio of Maximum Deflection to the Thickness of the Sandwich Plate
to Show Large Deflection for Static Non-linearity
for $E_I/E_T = 0.0694$ and $h_I/h_T = 11$

<table>
<thead>
<tr>
<th>$p$</th>
<th>$w_m/h$ Linear</th>
<th>$w_m/h$ Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1e3$</td>
<td>$0.2358e-3$</td>
<td>$0.2358e-3$</td>
</tr>
<tr>
<td>$1e5$</td>
<td>$0.2358e-1$</td>
<td>$0.2359e-1$</td>
</tr>
<tr>
<td>$5e5$</td>
<td>$0.1179$</td>
<td>$0.118$</td>
</tr>
<tr>
<td>$8e5$</td>
<td>$0.1886$</td>
<td>$0.1886$</td>
</tr>
<tr>
<td>$1e6$</td>
<td>$0.2358$</td>
<td>$0.2355$</td>
</tr>
<tr>
<td>$5e6$</td>
<td>$1.1792$</td>
<td>$1.0704$</td>
</tr>
<tr>
<td>$8e6$</td>
<td>$1.8864$</td>
<td>$1.5387$</td>
</tr>
<tr>
<td>$1e7$</td>
<td>$2.3580$</td>
<td>$1.7925$</td>
</tr>
</tbody>
</table>
Table E

Ratio of Maximum Deflection to the Thickness of the Sandwich Plate to Show Large Deflection for Static Non-linearity

for $E_J/E_f = 0.0139$ and $h_J/h_f = 11$

<table>
<thead>
<tr>
<th>$p$</th>
<th>$w_m/h$ Linear</th>
<th>$w_m/h$ Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e3</td>
<td>0.3485e-3</td>
<td>0.3485e-3</td>
</tr>
<tr>
<td>1e5</td>
<td>0.3485e-1</td>
<td>0.3486e-1</td>
</tr>
<tr>
<td>5e5</td>
<td>0.1742</td>
<td>0.1739</td>
</tr>
<tr>
<td>8e5</td>
<td>0.2788</td>
<td>0.277</td>
</tr>
<tr>
<td>1e6</td>
<td>0.3486</td>
<td>0.3447</td>
</tr>
<tr>
<td>3e6</td>
<td>1.045</td>
<td>0.95</td>
</tr>
<tr>
<td>5e6</td>
<td>1.7429</td>
<td>1.4158</td>
</tr>
<tr>
<td>8e6</td>
<td>2.7888</td>
<td>1.9354</td>
</tr>
<tr>
<td>1e7</td>
<td>3.486</td>
<td>2.2071</td>
</tr>
</tbody>
</table>
Table F

Ratio of Maximum Deflection to the Thickness of the Sandwich Plate to Show Large Deflection for Static Non-linearity for $E_r/E_f = 0.3472e-3$ and $h_r/h_f = 11$

<table>
<thead>
<tr>
<th>$p$</th>
<th>$w_m/h$ Linear</th>
<th>$w_m/h$ Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e3</td>
<td>0.3718e-2</td>
<td>0.3718e-2</td>
</tr>
<tr>
<td>4e4</td>
<td>0.1487</td>
<td>0.1451</td>
</tr>
<tr>
<td>5e4</td>
<td>0.1859</td>
<td>0.1792</td>
</tr>
<tr>
<td>1e5</td>
<td>0.3718</td>
<td>0.3318</td>
</tr>
<tr>
<td>5e5</td>
<td>1.8593</td>
<td>1.01</td>
</tr>
<tr>
<td>8e5</td>
<td>2.9748</td>
<td>1.2958</td>
</tr>
<tr>
<td>5e6</td>
<td>18.593</td>
<td>3.09</td>
</tr>
<tr>
<td>8e6</td>
<td>29.75</td>
<td>3.38</td>
</tr>
<tr>
<td>p</td>
<td>( w_m/h ) Linear</td>
<td>( w_m/h ) Non-linear</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>1e3</td>
<td>0.845e-2</td>
<td>0.8445e-2</td>
</tr>
<tr>
<td>1e4</td>
<td>0.845e-1</td>
<td>0.830</td>
</tr>
<tr>
<td>2e4</td>
<td>0.1659</td>
<td>0.1587</td>
</tr>
<tr>
<td>4e4</td>
<td>0.338</td>
<td>0.2835</td>
</tr>
<tr>
<td>5e5</td>
<td>4.225</td>
<td>1.2054</td>
</tr>
<tr>
<td>8e5</td>
<td>6.76</td>
<td>1.5475</td>
</tr>
<tr>
<td>5e6</td>
<td>42.25</td>
<td>3.6</td>
</tr>
<tr>
<td>8e6</td>
<td>67.600</td>
<td>5.8875</td>
</tr>
</tbody>
</table>
Table H

Ratio of Maximum Deflection to the Thickness of the Sandwich Plate
to Show Large Deflection for Static Non-linearity
for $E_2/E_1 = 1$ and $h_e/h_i = 3$

<table>
<thead>
<tr>
<th>$p$</th>
<th>$w_n/h$ Linear</th>
<th>$w_n/h$ Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e3</td>
<td>0.1063e-4</td>
<td>0.1063e-4</td>
</tr>
<tr>
<td>1e6</td>
<td>0.1062e-1</td>
<td>0.1062e-1</td>
</tr>
<tr>
<td>4e6</td>
<td>0.0425</td>
<td>0.0425</td>
</tr>
<tr>
<td>5e6</td>
<td>0.0531</td>
<td>0.0532</td>
</tr>
<tr>
<td>1e7</td>
<td>0.1062</td>
<td>0.1065</td>
</tr>
<tr>
<td>3e7</td>
<td>0.3186</td>
<td>0.3167</td>
</tr>
<tr>
<td>5e7</td>
<td>0.5310</td>
<td>0.5151</td>
</tr>
<tr>
<td>6e7</td>
<td>0.6372</td>
<td>0.6077</td>
</tr>
<tr>
<td>7e7</td>
<td>0.7435</td>
<td>0.6957</td>
</tr>
</tbody>
</table>
Table I

Ratio of Maximum Deflection to the Thickness of the Sandwich Plate
to Show Large Deflection for Static Non-linearity
for $E_E/E_f = 0.3472$ and $h_f/h_r = 3$

<table>
<thead>
<tr>
<th>p</th>
<th>$w_m/h$ Linear</th>
<th>$w_m/h$ Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e3</td>
<td>0.148e-4</td>
<td>0.148e-4</td>
</tr>
<tr>
<td>1e6</td>
<td>0.148</td>
<td>0.148</td>
</tr>
<tr>
<td>5e6</td>
<td>0.074</td>
<td>0.0741</td>
</tr>
<tr>
<td>10e6</td>
<td>0.148</td>
<td>0.1483</td>
</tr>
<tr>
<td>30e6</td>
<td>0.444</td>
<td>0.4367</td>
</tr>
<tr>
<td>55e6</td>
<td>0.814</td>
<td>0.7581</td>
</tr>
<tr>
<td>65e6</td>
<td>0.962</td>
<td>0.8716</td>
</tr>
</tbody>
</table>
Table J

Ratio of Maximum Deflection to the Thickness of the Sandwich Plate to Show Large Deflection for Static Non-linearity for $E_s/E_t = 0.1389$ and $h_s/h_t = 3$

<table>
<thead>
<tr>
<th>p</th>
<th>$w_m/h$ Linear</th>
<th>$w_m/h$ Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e3</td>
<td>0.189e-4</td>
<td>0.189e-4</td>
</tr>
<tr>
<td>1e6</td>
<td>0.0189</td>
<td>0.0189</td>
</tr>
<tr>
<td>3e6</td>
<td>0.0567</td>
<td>0.0567</td>
</tr>
<tr>
<td>5e6</td>
<td>0.0945</td>
<td>0.0946</td>
</tr>
<tr>
<td>8e6</td>
<td>0.1512</td>
<td>0.1512</td>
</tr>
<tr>
<td>2e7</td>
<td>0.3780</td>
<td>0.3726</td>
</tr>
<tr>
<td>4e7</td>
<td>0.7560</td>
<td>0.7055</td>
</tr>
<tr>
<td>5e7</td>
<td>0.9450</td>
<td>0.8512</td>
</tr>
<tr>
<td>7e7</td>
<td>1.323</td>
<td>1.0387</td>
</tr>
<tr>
<td>p</td>
<td>$w_n/h$ Linear</td>
<td>$w_n/h$ Non-linear</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1e3</td>
<td>0.2355e-4</td>
<td>0.2355e-4</td>
</tr>
<tr>
<td>1e6</td>
<td>0.0235</td>
<td>0.0235</td>
</tr>
<tr>
<td>3e6</td>
<td>0.0706</td>
<td>0.0707</td>
</tr>
<tr>
<td>5e6</td>
<td>0.1177</td>
<td>0.1176</td>
</tr>
<tr>
<td>8e6</td>
<td>0.1884</td>
<td>0.1875</td>
</tr>
<tr>
<td>1e7</td>
<td>0.2355</td>
<td>0.2337</td>
</tr>
<tr>
<td>3e7</td>
<td>0.7065</td>
<td>0.6549</td>
</tr>
<tr>
<td>7e7</td>
<td>1.6485</td>
<td>1.2512</td>
</tr>
<tr>
<td>p</td>
<td>( w_{m}/h ) Linear</td>
<td>( w_{m}/h ) Non-linear</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>1e3</td>
<td>0.5178e-4</td>
<td>0.5178e-4</td>
</tr>
<tr>
<td>1e6</td>
<td>0.0517</td>
<td>0.0517</td>
</tr>
<tr>
<td>5e6</td>
<td>0.2590</td>
<td>0.2520</td>
</tr>
<tr>
<td>8e6</td>
<td>0.4142</td>
<td>0.3895</td>
</tr>
<tr>
<td>1e7</td>
<td>0.5178</td>
<td>0.4734</td>
</tr>
<tr>
<td>5e7</td>
<td>2.585</td>
<td>1.4312</td>
</tr>
<tr>
<td>7e7</td>
<td>3.619</td>
<td>1.6937</td>
</tr>
</tbody>
</table>

Table L

Ratio of Maximum Deflection to the Thickness of the Sandwich Plate to Show Large Deflection for Static Non-linearity for \( E_{j}/E_{f} = 0.0139 \) and \( h_{j}/h_{f} = 3 \)
Table M

Ratio of Maximum Deflection to the Thickness of the Sandwich Plate to Show Large Deflection for Static Non-linearity
for $E_s/E_r = 0.3472\times10^{-3}$ and $h_s/h_r = 3$

<table>
<thead>
<tr>
<th>$p$</th>
<th>$w_{ms}/h$ Linear</th>
<th>$w_{ms}/h$ Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1e3$</td>
<td>$0.3643e-3$</td>
<td>$0.3643e-3$</td>
</tr>
<tr>
<td>$5e5$</td>
<td>$0.1821$</td>
<td>$0.1724$</td>
</tr>
<tr>
<td>$1e6$</td>
<td>$0.3643$</td>
<td>$0.3102$</td>
</tr>
<tr>
<td>$5e6$</td>
<td>$1.8215$</td>
<td>$0.8740$</td>
</tr>
</tbody>
</table>
Table N

Ratio of Maximum Deflection to the Thickness of the Sandwich Plate
to Show Large Deflection for Static Non-linearity
for $E_j/E_r = 0.1389e-3$ and $h_j/h_r = 3$

<table>
<thead>
<tr>
<th>$p$</th>
<th>$w_m/h$ Linear</th>
<th>$w_m/h$ Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e3</td>
<td>0.4453e-3</td>
<td>0.4453e-3</td>
</tr>
<tr>
<td>3e5</td>
<td>0.1295</td>
<td>0.1335</td>
</tr>
<tr>
<td>6e5</td>
<td>0.2418</td>
<td>0.2671</td>
</tr>
<tr>
<td>1e6</td>
<td>0.4450</td>
<td>0.3641</td>
</tr>
<tr>
<td>5e6</td>
<td>2.066</td>
<td>1.0378</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table O

Non-linear Dynamic Deflection Ratio of $w_{m}/h$ for $E_{f}/E_{t} = 0.1389e-3$
and $h_{f}/h_{t} = 11$

<table>
<thead>
<tr>
<th>$p$</th>
<th>$w_{m}/h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1e3$</td>
<td>$0.885e-2$</td>
</tr>
<tr>
<td>$1e4$</td>
<td>$0.877e-2$</td>
</tr>
<tr>
<td>$4e4$</td>
<td>$0.3131$</td>
</tr>
<tr>
<td>$8e4$</td>
<td>$0.5408$</td>
</tr>
<tr>
<td>$1e5$</td>
<td>$0.6350$</td>
</tr>
</tbody>
</table>
Appendix B

Figures for Various Analyses
$E_s/E_r = 0.3472$

![Graph showing $W_{m,ext}/W_{m,plan}$ vs. $h/h_r$.]
E/E_f = 0.1389

\[ \frac{W_{m, \text{ANSSRV}}}{W_{m, \text{plane}}} \]

3 4 5 6 7 8 9 10 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
$E/E_r = 0.1389 \quad h/h_r = 11$

- Static linear
- Static non-linear
\( \frac{E/E_0}{h_0/h_1} = 0.3472e^{-3} \)

Graph showing the relationship between \( w/h \) and \( p \) [MPa] for static linear and non-linear cases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
$E_\text{f}/E_\text{p} = 0.0139 \quad h_{\text{f}}/h_{\text{p}} = 11$

$w_{\text{n}}/h$

$p$, [MPa]

- □ Static linear
- + Static non-linear

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
$E_i/E_f = 1 \quad h_i/h_f = 3$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
$E_1/E_p = 0.3472 \quad h_1/h_p = 3$

- Static linear
- Static non-linear

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
$E/E_l = 0.1389 \quad h/h_l = 3$

\[ w/a = \frac{w}{a} \]

\[ p, \text{ [MPa]} \]

- Static linear
- Static non-linear
$E/E_r = 0.0694 \quad h_1/h_1 = 3$

$w/h$ vs $p$, [MPa]

- Square: Static linear
- Plus: Static non-linear

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
$E/E_i = 0.0139$

![Graph showing the relationship between $W = \text{ANSTR}/W_\text{pipe}$ and $h_i/h_f$. The graph indicates a decreasing trend as $h_i/h_f$ increases.](image-url)
Appendix C

ANSYS Computer Programs for Different Analyses
/SHOW,VT340
/PREP7
/TITLE, SANDWICH PLATE WITH 48 ELEMENTS (QUARTER)
KAN,0  *Static analysis
ET,1,63  *Plate element type defined
ET,3,45  *3-D solid element type defined
KAY,6,1  *Large deflection
EX,1,72E9  *Facing modulus of elasticity [pa]
NUXY,1,0.335  *Facing poisson ratio
DENS,1,2700  *Facing density [kg/m^3]
R,1,0.002  *Facing thickness [m]
EX,3,10E9  *Core modulus of elasticity [pa]
NUXY,3,0.335  *Core poisson ratio
DENS,3,2700  *Core density [kg/m^3]
N,1,,11E-3  *Top facing nodes
N,5,0.24,,11E-3
FILL
NGEN,5,5,1,5,1,,0.06
TYPE,1
MAT,1
REAL,1
E,1,2,7,6  *Top facing plate elements
EGEN,4,1,1,1
EGEN,4,5,1,4,1
NGEN,2,200,1,25,1,,22E-3  *Bottom facing nodes
TYPE,1
MAT,1
REAL,1
EGEN,2,200,1,16,1
NGEN,2,300,1,25,1  *Core nodes
NGEN,2,200,201,225,1
TYPE,3
MAT,3
E,301,302,307,306,401,402,407,406  *Core elements
EGEN,4,1,33
EGEN,4,5,33,36,1
D,201,UZ,0,,205,1
D,401,UZ,0,,405,1
D,205,UX,0,,225,5,ROTY,ROTX
D,405,UX,0,,425,5
D,221,UY,0,,225,1,ROTX,ROTY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
D,421,UY,0,425,1
D,206,UZ,0,221,5
D,406,UZ,0,421,5
D,5,UX,0,25,5,ROTY,ROTZ
D,21,UY,0,25,1,ROTX,ROTZ
D,305,UX,0,325,5
D,321,UY,0,325,1
CP,1,UX,1,301
CPSGEN,4,1,1,1,1
CPSGEN,5,5,1,4,1
CP,50,UY,1,301
CPSGEN,5,1,50,50,1
CPSGEN,4,5,50,54,1
CP,100,UZ,1,301
CPSGEN,5,1,100,100,1
CPSGEN,5,5,100,104,1
CP,150,UX,202,402
CPSGEN,3,1,150,150,1
CP,157,UX,206,406
CPSGEN,4,1,157,157,1
CPSGEN,4,5,157,160,1
CP,250,UY,202,402
CPSGEN,4,1,250,250,1
CP,260,UY,206,406
CPSGEN,5,1,260,260,1
CPSGEN,3,5,260,264,1
CP,350,UZ,207,407
CPSGEN,4,1,350,350,1
CPSGEN,4,5,350,353,1
EP,1,2,1000,,16
AFWRITE
FINISH
/exe
/input,27

*Coupling of plate and core element nodes

*Pressure applied on the upper facing
/SHOW,VT340
/PREP7
/TITLE, SANDWICH PLATE WITH 48 ELEMENTS (QUARTER)

KAN,2  *Modal analysis
ET,1,63  *Plate element type defined
ET,3,45  *3-D solid element type defined
KAY,1,-1  *Full subspace iteration used
KAY,2,2  *Expand first mode each load step
KAY,3,2  *Print first two reduced mode shapes
KAY,7,2  *Use subspace iteration to extract first two modes
EX,1,72E9  *Facing modulus of elasticity [pa]
NUXY,1,0.335  *Facing poisson ratio
DENS,1,2700  *Facing density [kg/m^3]
R,1,0.002  *Facing thickness [m]
EX,3,10E9  *Core modulus of elasticity [pa]
NUXY,3,0.335  *Core poisson ratio
DENS,3,2700  *Core density [kg/m^3]
N,1,,11E-3  *Top facing nodes
N,5,0.24,,11E-3  *Top facing nodes
FILL
NGEN,5,5,1,5,1,,0.06
TYPE,1
MAT,1
REAL,1
E,1,2,7,6  *Top facing plate elements
EGEN,4,1,1,1,1
EGEN,4,5,1,4,1
NGEN,2,200,1,25,1,,22E-3  *Bottom facing nodes
TYPE,1
MAT,1
REAL,1
EGEN,2,200,1,16,1  *Bottom facing elements
NGEN,2,300,1,25,1  *Core nodes
NGEN,2,200,201,225,1
TYPE,3
MAT,3
E,301,302,307,306,401,402,407,406  *Core elements
EGEN,4,1,33
EGEN,4,5,33,36,1  
D,201,UZ,0,205,1  
D,401,UZ,0,405,1  
D,205,UX,0,225,5,ROTY,ROTZ  
D,405,UX,0,425,5  
D,221,UY,0,225,1,ROTX,ROTZ  
D,421,UY,0,425,1  
D,206,UZ,0,221,5  
D,406,UZ,0,421,5  
D,5,UX,0,25,5,ROTY,ROTZ  
D,21,UY,0,25,1,ROTX,ROTZ  
D,305,UX,0,325,5  
D,321,UY,0,325,1  
CP,1,UX,1,301  
CPSGEN,4,1,1,1,1  
CPSGEN,5,5,1,4,1  
CP,50,UY,1,301  
CPSGEN,5,1,50,50,1  
CPSGEN,4,5,50,54,1  
CP,100,UZ,1,301  
CPSGEN,5,1,100,100,1  
CPSGEN,5,5,100,104,1  
CP,150,UX,202,402  
CPSGEN,3,1,150,150,1  
CP,157,UX,206,406  
CPSGEN,4,1,157,157,1  
CPSGEN,4,5,157,160,1  
CP,250,UY,202,402  
CPSGEN,4,1,250,250,1  
CP,260,UY,206,406  
CPSGEN,5,1,260,260,1  
CPSGEN,3,5,260,264,1  
CP,350,UZ,207,407  
CPSGEN,4,1,350,350,1  
CPSGEN,4,5,350,353,1  
EP,1,2,1000,16  
AFWRITE  
FINISH  
/exe  
/input,27  

*Boundary conditions (bottom)  

*Symmetry conditions (quarter plate)  

*Coupling of plate and core element nodes  

*Pressure applied on the upper facing
/*Non-linear Transient Dynamic Analysis
*Facing element defined as plate element
*Facing modulus of elasticity (constant)
*Initial velocity and acceleration defined zero
*Large deflection analysis
*Stress stiffening included
*Full Newton-Raphson
*In-memory wavefront equation solution
*Facing Poisson ratio
*Facing density [kg/m^3]
*Thickness of the facing [m]
*Core element defined as 3-D solid element
*Core modulus of elasticity (variable)
*Core Poisson ratio
*Core density [kg/m^3]
*Top facing plate elements
*Bottom facing nodes
*Bottom facing elements
*Core elements
*Boundary conditions (bottom)*/

/*Non-linear Transient Dynamic Analysis
*Facing element defined as plate element
*Facing modulus of elasticity (constant)
*Initial velocity and acceleration defined zero
*Large deflection analysis
*Stress stiffening included
*Full Newton-Raphson
*In-memory wavefront equation solution
*Facing Poisson ratio
*Facing density [kg/m^3]
*Thickness of the facing [m]
*Core element defined as 3-D solid element
*Core modulus of elasticity (variable)
*Core Poisson ratio
*Core density [kg/m^3]
*Top facing plate elements
*Bottom facing nodes
*Bottom facing elements
*Core elements
*Boundary conditions (bottom)*/
D,401,UZ,0,405,1
D,205,UX,0,225,5,ROTY,ROTZ
D,405,UX,0,425,5
D,221,UY,0,225,1,ROTX,ROTZ
D,421,UY,0,425,1
D,206,UX,0,221,5
D,406,UX,0,421,5
D,5,UX,0,25,5,ROTY,ROTZ
D,21,UY,0,25,1,ROTX,ROTZ
D,305,UX,0,325,5
D,321,UY,0,325,1
CP,1,UX,1,301
CPGEN,4,1,1,1,1
CPGEN,5,5,1,4,1
CP,50,UY,1,301
CPGEN,5,1,50,50,1
CPGEN,4,5,50,54,1
CP,100,UX,1,301
CPGEN,5,1,100,100,1
CPGEN,5,5,100,104,1
CP,150,UX,202,402
CPGEN,3,1,150,150,1
CP,157,UX,206,406
CPGEN,4,1,157,157,1
CPGEN,4,5,157,160,1
CP,250,UY,202,402
CPGEN,4,1,250,250,1
CP,260,UY,206,406
CPGEN,5,1,260,260,1
CPGEN,3,5,260,264,1
CP,350,UX,207,407
CPGEN,4,1,350,350,1
CPGEN,4,5,350,353,1
EP,1,2,0,16
ITER,,
AFWRITE
FINISH
/PREP6
NTABLE,2
NSTEP,30
FILL,1,1,30,1,3.067e-5,3.067e-5
FILL,2,1,5,1,200,200
EXP,2,6,20,1,1000,-0.4605,2.3025
*Symmetry conditions (quarter plate)
*Coupling of plate and 3-D solid element nodes
*Element pressure (top)
*Transient loading
*Table of time
*Linear rise (5 steps)
*Exponential decay (15 steps)
FILL,2,21,30,1,0,0  *Zero load
LGR1,TIME,1
EP,1,2,2,,16,1
XVAR,1
PLVAR,2 -
LFWRITE
FINISH
/EXE
/INPUT,27

*Pressure applied on the upper facing
BIBLIOGRAPHY


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.