12-1987

An Attendance Incentive Procedure Using Group Contingencies

Norman Kevin Brown
Western Michigan University

Follow this and additional works at: http://scholarworks.wmich.edu/masters_theses

Part of the Psychology Commons

Recommended Citation
http://scholarworks.wmich.edu/masters_theses/1229

This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact maira.bundza@wmich.edu.
AN ATTENDANCE INCENTIVE PROCEDURE USING GROUP CONTINGENCIES

by

Norman Kevin Brown

A Thesis
Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Master of Arts Department of Psychology

Western Michigan University Kalamazoo, Michigan December 1987
AN ATTENDANCE INCENTIVE PROCEDURE USING GROUP CONTINGENCIES

Norman Kevin Brown, M.A.
Western Michigan University, 1987

This study used a multiple baseline design to examine the effect of a lottery-based group contingency on unscheduled sick leave use by residential treatment workers. Sixty direct-care workers participated in this study. Researchers employed a group contingency that required workers to meet 2-week absence criterion levels in order to participate in a subsequent reinforcement lottery. The workers who won the lottery chose one of four rewards including 20 dollars, 4 hours paid time-off, lunch with a supervisor, and four movie tickets. The mean number of unscheduled sick leave hours used in each of five work units was reduced significantly during intervention. Reductions in USL ranged from 30% to 80%.
ACKNOWLEDGEMENTS

I would like to express my thanks to Dr. William K. Redmon for his continual guidance and support for this thesis. I would also like to thank Fred C. Kapelle, ACSW, Executive Director at Lakeside Residence for Boys and Girls for permitting administration of this research at Lakeside. Finally, I extend my most sincere thanks to Judy Osborne for her assistance in the preparation of this manuscript.

Norman Kevin Brown
INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.
An attendance incentive procedure using group contingencies

Brown, Norman Kevin, M.A.
Western Michigan University, 1987
PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \(\checkmark \).

1. Glossy photographs or pages ______
2. Colored illustrations, paper or print ______
3. Photographs with dark background ______
4. Illustrations are poor copy ______
5. Pages with black marks, not original copy \(\checkmark \)
6. Print shows through as there is text on both sides of page ______
7. Indistinct, broken or small print on several pages ______
8. Print exceeds margin requirements ______
9. Tightly bound copy with print lost in spine ______
10. Computer printout pages with indistinct print ______
11. Page(s) ______ lacking when material received, and not available from school or author.
12. Page(s) ______ seem to be missing in numbering only as text follows.
13. Two pages numbered ______. Text follows.
14. Curling and wrinkled pages ______
15. Dissertation contains pages with print at a slant, filmed as received ______
16. Other __

__

__

U-M-I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii
LIST OF TABLES .. iv
LIST OF FIGURES .. v

CHAPTER
I. INTRODUCTION .. 1
II. METHOD .. 8
 Subjects ... 8
 Independent Variable 8
 Dependent Variable 9
 Experimental Design 10
 Baseline 10
 Intervention 10
 Reliability 11
III. RESULTS ... 13
IV. DISCUSSION ... 18
APPENDIX ... 22
BIBLIOGRAPHY .. 23
LIST OF TABLES

1. Lottery Winners and Incentive Selections for Each Unit per Interval 15

2. Means and Standard Deviations of Unscheduled Sick Leave Used for Baseline and Intervention 17
LIST OF FIGURES

1. Number of Unscheduled Sick Leave Hours for Each Unit, per Consecutive 2-Week Interval, for Baseline and Intervention ... 16
CHAPTER I

INTRODUCTION

Unanticipated employee absences create costly problems for most organizations. The impact of excessive absenteeism is realized as reduced worker effectiveness and increased financial costs within the organization (Gemmell, 1973). Annual losses to public and private organizations due to paid sick leave, replacement personnel, and efficiency declines, have been estimated at 26.4 billion dollars (Steirs & Rhodes, 1980). The fact that absenteeism has not decreased, in general, over the past 10 years, combined with its impact on organizations, has prompted numerous experimental and correlational studies (Hedges, 1973; Kempen & Hall, 1977; Taylor, 1979).

A review of the literature reveals an abundance of studies aimed at decreasing absenteeism in the private sector (Carlson & Hill, 1982; Grove, 1968; Pedalino & Gamboa, 1974; Schneller & Kopelman, 1983; Wallin & Johnson, 1976). While considerably less attention has been accorded absenteeism in human service settings, the costs are very evident. Direct care facilities provide necessary psychiatric, medical, and therapeutic services, and reductions in staff numbers due to absenteeism result in inadequate resident care, overtime costs and staff-
related stress (Pierce, Hoffman, & Pelletier, 1974).

A review of the literature on employee absenteeism shows two separate research directions. The first is referred to as correlational and the second is experimental (Durand, 1985). The focus of correlational research is typically on antecedents to absenteeism. Researchers in this area have found that workers who received more job-related responsibilities and who were involved in decisions were absent less than non-autonomous workers (Hammer, Landau & Stern, 1981). Further, Markham, Danserau, and Alutto (1982) reported that as the work group size increased, so did absenteeism. Studies which examined correlations between absenteeism and peer group size and fair pay and advancement policies were inconclusive (Chadwick-Jones, Nicholson & Brown, 1976). Similar studies (Newman, 1974, Taylor, 1979) indicate that women are absent more than men, lesser educated workers more than higher educated workers, and blue collar workers more than white collar workers. Information from these studies has proved interesting. However, due to lack of experimental controls, correlational research has been minimally useful in designing effective absence-reducing procedures.

The other major type of absence-reduction research is experimental and is typified by organizational behavior
management, (Fredrickson, 1982; O'Brien, Dickenson, & Roscow, 1982). Experimental research on absenteeism usually involves consequence manipulation contingent on worker performance. Consequences for absenteeism may involve the use of rewards, punishers, or a combination of the two. Most organizations have built-in punishers for excessive absences, including verbal reprimands, negative reports, loss of pay, and termination. In spite of the general use of aversive consequences in controlling employee absenteeism, there is little in the literature on the subject. Nicholson (1976) employed a simple AB design to show that verbal and written warnings and termination significantly reduced absenteeism in 330 hourly production workers in a food-processing plant. One other study (Ford, 1981) found that requiring written reports for every absence incurred by 100 institutional staff led to a decrease in absenteeism in a hospital setting.

Several studies have examined the effect that applying a combination of rewards and punishers has on absenteeism. Kempen and Hall (1977) examined the effects of a mixed-consequence program on the absenteeism of 7500 manufacturing employees. Aversive consequences for absences consisted of warnings that could result in termination. The positive consequences for appropriate attendance were: elimination of the time clock, unpaid
time-off, and immunity from warnings for a specified interval. The results showed a 30% decrease in absenteeism. Schneller and Kopleman (1983) implemented an absence control procedure in a medical center with 228 employees. Excessive absences resulted in reductions of paid leave hours that could be traded in for cash. There was no significant decrease in absenteeism, but there was a 54% decrease in overtime.

The most common absence-reduction procedures involve contingent positive consequences. These rewards include cash bonuses, paid time-off, prize-producing lotteries, and work-shift manipulations. Grove (1968) implemented a program in an aerospace and electronics company. One hundred and forty-two hourly employees received 100 dollars or 40 hours of pay for 6 months with no absences. A 34% decrease in absenteeism was realized. Panyan and McGregor (1976) and Orpen (1978) provided cash bonuses for good attendance with 38% and 41% decreases in absenteeism, respectively. Gardner (1970) and Durand (1983) offered time-off to institutional staff for no absences. Employees in the Gardner study earned 4 hours paid time-off for no absences in a month. There was no change in absenteeism. Staff in the Durand study earned 8 hours of paid leave for a month of no absences. Absenteeism decreased from 8.6% to 5.3%.
Behavioral lotteries comprise a major portion of the absence-reduction literature. Shoemaker and Reid (1980) provided supervisory counseling, commendation letters, and access to a lottery to decrease absenteeism in 15 chronically-absent hospital employees. Eleven of the 15 workers reduced their absences as a result. Pedalino and Gamboa (1974) employed an ABA intervention using a lottery. Each day employees attended work on time they received a playing card. The worker with the best poker hand at the end of the week won 20 dollars. The results of this study showed a decrease in absenteeism of 1.6% during intervention. A return to baseline resulted in an increase of 2.6%.

The aforementioned studies provide valuable information regarding procedures designed to reduce absenteeism. However, most of them employed individual contingencies which are often costly and time consuming. Group contingencies provide a potentially useful alternative strategy and have been used extensively in educational settings with promising results. Michelson, Dilorenzo, Calpin, and Williamson (1981) utilized group contingent reinforcement and audio feedback to decrease excessive lunchroom noise among 14 emotionally disturbed students. The contingent delivery of ice cream for reduced group noise combined with audio feedback resulted
in a mean reduction in noise of 41% and a concomitant increase in appropriate lunchroom behavior.

Saigh and Umar (1983) applied a version of the Good Behavior Game in order to decrease seat leaving, talking without permission, and aggression in 20 second graders. The authors separated the class into two teams. The team that exhibited the fewer misbehaviors received extra recess and letters of commendation. Seat leaving was reduced by 50%, talking-out by 80%, and aggression by 94%, as a result of the use of the group contingencies.

A group contingency offers several advantages over other approaches to staff management including the potential for group members to influence the behavior of individuals (Frankosky & Sulzer-Azaroff, 1978), increased peer cooperation, decreased data collection and monitoring requirements, and improved peer moral (Van Houten & Van Houten, 1977).

In spite of these advantages, absence control research utilizing the group contingency has been limited. A study by Reid, Schu-Wear and Brannon, (1978) used a group contingency as a procedural element in an institutional setting. Seventy-five workers were divided into five groups. Each group member could earn an adjusted work schedule, allowing two weekends off per month, if the group met monthly absence criterion levels.
The results showed a mean decrease of 3.4% on the morning shifts and 5.02% on the afternoon shifts. These reductions were deemed significant.

The present study added to the sparse group contingency literature by examining the effects a group-based lottery had on absenteeism. Absenteeism was defined in terms of unscheduled sick leave used.
CHAPTER II

METHOD

Subjects

Sixty hourly direct care workers, aged 21 to 37, employed at a residential treatment facility for emotionally impaired adolescents served as subjects. All of the subjects, of which 39 were male and 21 female, held high school diplomas and had varying degrees of college training. The facility was divided into five units, each served 8 to 12 students. Each cottage utilized twelve counselors as follows:

- two per 7 a.m.-3 p.m. Mon-Fri shift
- three per 2 p.m.-10 p.m. Mon-Fri shift
- one per 9 p.m.-7 a.m. Mon-Fri shift

The remaining counselors worked part-time on weekends. Each cottage contained a staff supervisor who was present in the cottage for part of every shift. The supervisors were responsible for staff scheduling, payroll summaries, and monitoring.

Independent Variable

A group reinforcement contingency utilizing a lottery selection system to gain access to a reward menu served as the intervention. Staff who worked during the 2 week
period were eligible for a bi-monthly lottery contingent upon cottage staff absence totals. The contingency consisted of the following elements:

1. Unscheduled cottage sick leave totals for 2 weeks, of 7-16 hours, allowed participation in the lottery and the selection of one worker per eligible cottage for access to the reinforcement menu.

2. Unscheduled cottage sick leave totals, of 0-6 hours, allowed the selection of 2 workers per eligible cottage for menu access.

3. Unscheduled cottage sick leave totals, above 16 hours disqualified all members of the cottage from the lottery.

Employees who won the lottery were permitted to choose one of the following rewards:

1. Four hours paid time-off.
2. Twenty dollars.
3. Four movie passes.
4. Paid lunch and "feedback" session with supervisor.

Additionally, workers who won the lottery were eligible for all future lotteries immediately.

Dependent Variable

Unscheduled number of sick leave hours used per
cottage was the dependent variable. Any event that necessitated supervisor notification of an absence 24 hours or less prior to a scheduled shift was defined as an unscheduled absence. Workers who notified supervisors of an absence 24 hours prior to their shift were allowed to use sick leave without affecting the incentives available to the cottage. Existing policy permitted workers to earn sick leave at a cumulative rate of 5 hours per 2 week period.

Experimental Design

A multiple baseline design across work units (cottages) was employed. The following conditions were implemented:

Baseline. Staff worked under existing absence control policies during baseline. The policy required employees to notify a supervisor of absences at least 4 hours prior to their scheduled shift and to provide a written explanation of the absence upon their return. There were no other penalties or policies in effect.

Intervention. All staff members were provided with written and verbal explanations of the incentive procedure 7 days prior to intervention. The verbal explanation was presented in cottage staff meetings and consisted of a description of the reward menu, the absence criteria, and
the lottery selection process. The written notices contained the same information (see Appendix A).

The procedure included several steps. At the end of each 2 week period the experimenter and each cottage supervisor examined the payroll summary sheets. When the sick leave totals were below criterion levels, a drawing was held at the next staff meeting. The experimenter entered the names, of workers who had worked at least 25 hours during the previous 2 weeks into the drawing. Workers that worked 50-75 hours (part-time) were entered twice and workers that worked 76-80 hours were entered three times. The supervisor drew the names out of a bowl and employees whose names were selected chose one of the rewards. Cottages that met the hourly criterion for a "double" drawing selected two different workers. This process was repeated in all eligible cottages every 2 weeks. Cottages that were disqualified for failing to meet absence criterion levels were notified at their staff meetings and encouraged to try again.

Reliability

The researcher conducted reliability checks on 20% of the work shifts per week. The researcher contacted relevant supervisors 24 hours prior to the selected shifts to see if any sick calls had been made for those shifts. A
visual inspection of the on-shift staff was conducted by the researcher in order to calculate the percent of agreement. If the visual check indicated that a worker was absent when no phone call had been reported then the supervisor should have reported the absence as "unscheduled." If the workers absent when the visual check was made were reported to have called 24 hours earlier then the absence should have been reported as "scheduled." In each case the independent report and the supervisor's report were compared to determine the extent of agreement. Reliability was calculated by dividing the number of agreements by the total number of agreements plus disagreements and multiplying by 100. Reliability was 100%.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER III

RESULTS

Table 1 displays the workers selected in the drawings from each cottage and the reinforcers that they chose. It is apparent from the data that most workers selected either the 20 dollars or the time-off. Only three workers chose to have lunch with their supervisor and none chose the movie passes. It should also be noted that only a small portion of the total number of workers (50%) involved in this study came in contact with the rewards, due to several repeat winners.

Figure 1 depicts the amount of unscheduled sick leave hours used by staff members in each of the five units. Under the pre-intervention absence policies there was a large amount of unscheduled sick leave usage, with 2-week averages across units ranging from 23.2 to 46.0 hours. Unscheduled sick leave use decreased immediately following the implementation of the lottery-based group contingency. This decrease was maintained in each unit as evidenced by the intervention mean, which ranged from 1.75 to 13.3 hours per 2-week interval.

Units A, B, and D displayed positive and durable effects in response to the intervention. These effects were characterized as low mean unscheduled sick leave
totals with minimal variability. Unit C showed the least amount of durability following intervention with an escalation to baseline sick leave usage after four intervals. Unit E showed a large amount of variability immediately following intervention, however, the limited duration of exposure the workers had to the intervention contingencies may have been responsible for this pattern. Also of interest is the fact that units B and D maintained 2 week mean sick leave totals below lottery criterion for the duration of this study.

Table 2 shows the means and standard deviations for unscheduled sick leave for all units during baseline and intervention. Standard deviations during baseline ranged from 16.0 to 25.0. The amount of variability during intervention was greatly decreased, with standard deviations across units ranging from 3.5 to 12.75.
Table 1

Lottery Winners and Their Selections for
Each Unit per Interval

<table>
<thead>
<tr>
<th>Interval</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>13</td>
<td>Cash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>Cash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>No</td>
<td>5,2</td>
<td>Draw</td>
<td>Cash,</td>
<td>Time</td>
</tr>
<tr>
<td>14</td>
<td>No</td>
<td>12</td>
<td>Draw</td>
<td>Cash</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12,10</td>
<td>5,8</td>
<td>12</td>
<td>Time</td>
<td>Cash,</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>3,4</td>
<td>3</td>
<td>Time</td>
<td>Time,</td>
</tr>
<tr>
<td>17</td>
<td>1,8</td>
<td>No</td>
<td>7,9</td>
<td>9,12</td>
<td>Time,</td>
</tr>
<tr>
<td>18</td>
<td>No</td>
<td>7</td>
<td>5</td>
<td>8,12</td>
<td>Cash,</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>1</td>
<td>No</td>
<td>3</td>
<td>Lunch</td>
</tr>
<tr>
<td>20</td>
<td>1,12</td>
<td>2,8</td>
<td>No</td>
<td>11,12</td>
<td>No</td>
</tr>
<tr>
<td>21</td>
<td>No</td>
<td>5</td>
<td>No</td>
<td>4,10</td>
<td>Cash,</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 1. Number of Unscheduled Sick Hours Used per Cottage, per Two-Week Interval. Data points on the criterion line are noted by an X.
Table 2
Means and Standard Deviations of Unscheduled Sick Leave for Baseline and Intervention

<table>
<thead>
<tr>
<th>Units</th>
<th>Baseline</th>
<th>Lottery</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\bar{X}</td>
<td>27.2</td>
<td>11.1</td>
</tr>
<tr>
<td>SD</td>
<td>24.0</td>
<td>8.2</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\bar{X}</td>
<td>33.8</td>
<td>7.2</td>
</tr>
<tr>
<td>SD</td>
<td>18.4</td>
<td>6.4</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\bar{X}</td>
<td>46.0</td>
<td>17.6</td>
</tr>
<tr>
<td>SD</td>
<td>25.0</td>
<td>12.7</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\bar{X}</td>
<td>27.7</td>
<td>1.7</td>
</tr>
<tr>
<td>SD</td>
<td>16.0</td>
<td>3.5</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\bar{X}</td>
<td>23.2</td>
<td>16.0</td>
</tr>
<tr>
<td>SD</td>
<td>16.0</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER IV

DISCUSSION

The results of this study showed that worker absenteeism can be significantly reduced utilizing a lottery-based group contingency. There were significant reductions in unscheduled sick leave in each work unit during this five-month study. The data showed that these reductions were immediate and durable in four of the five work units. Additionally, the amount of variability present in each unit during intervention was substantially lower than the variability present during baseline.

The results achieved in this study were similar in magnitude to those obtained in studies using group contingencies in educational settings (Hamblin, Hathaway, & Wodarsky, 1971). The group influence may have enhanced the effectiveness of any additional incentives present in these studies.

In the present study the effectiveness of the lottery may have been strengthened by the group contingency. This was evidenced when workers continued to avoid absences even though only a small number of them actually won the lottery. This response by the workers may have been a result of the opportunity to win the lottery combined with the social influence exerted by the group. It is unclear
from this study if the same results could have been obtained with the lottery alone. However, the effects observed were greater than those obtained by other researchers using individual contingencies combined with a lottery. For example, Pedalino and Gamboa (1974) employed a poker game type of lottery in an industrial setting and achieved statistically significant reductions in worker absenteeism. In contrast to the present study this study used individual contingencies that may have influenced employees to encourage their co-workers to be absent. This was evident because a worker had to be present every day to be eligible to participate and the fewer participants the better the individual chances of winning. In the present study the entire group had to meet criterion in order to participate in the lottery so workers may have discouraged their co-workers from calling in sick.

Stephens and Burroughs (1978) and Reid et al. (1978) implemented attendance incentive procedures in hospital settings. They used individual contingencies with a monetary payoff for one of every 20 eligible workers. Workers could not be absent at all for three consecutive weeks in order to be eligible for the lottery. Only weak effects were observed. The rigid criterion and the one in 20 chance of winning 20 dollars may have accounted for the
relatively small effects.

The present study allowed for naturally occurring absences by establishing a reasonable absence criterion. The researcher also allowed for more than one drawing contingent on low sick leave totals. The introduction of these elements may have enhanced the magnitude of the effects of this study.

The present study and the Reid et al. (1978) study used group contingencies in conjunction with incentives to effect significant decreases in absenteeism. The present study showed greater reductions in sick leave. This may have been due to the restrictive nature of the incentives used by Reid et al. (1978). These authors rewarded workers with an extra weekend off per month for meeting criterion. In the present study workers who won the lottery were allowed to choose from a menu of four reinforcing items.

The results of this study are substantial and positive, however, several problems arose during the intervention. When the same worker won the lottery on consecutive intervals workers complained that the procedure was unfair and asked that that worker be excluded from the next lottery. Their complaints were taken under advisement but no action was taken. Repeat winners did not appear to affect sick leave usage in the
units in which they worked. Another area of concern was worker interaction across units which could have influenced the way participants in cottages in baseline behaved. However, the use of a multiple baseline across units showed that this did not compromise the baseline controls.

The one unit that did not respond well to the group contingency experienced substantial employee turnover immediately following the increase in unscheduled sick leave. The fact that workers were aware that they would no longer be working within that group may have lessened the interpersonal influence of the group, which may have accounted for the rise in unscheduled sick leave. This is supported by the observation that 60% of the overall unscheduled sick leave was charged to the workers who were leaving.

Overall, the workers that participated in this study reacted very positively. Although no formal survey was conducted most workers stated that they liked getting something extra for "good" records.

Finally, future research is needed to examine the effects that different menus might have when used in combination with a group contingency. Further, the feasibility of the use of a group contingency in other work environments should be addressed, particularly in
private sector businesses where staff management practices may differ from those of the current setting.
APPENDIX

PRE-INTERVENTION EXPLANATORY NOTE

To: All Cottage Staff

You are invited to participate in an upcoming attendance incentive procedure. This procedure will not involve aversive consequences. If your cottage keeps the number of sick hours below 16 for the pay period there will be a drawing at your next staff meeting. One or two (if less than 6 hours of sick leave are used) staff will be chosen via the drawing. Those who are selected will choose one of the following:

1. Extra 20 dollars (in check)
2. Four hours paid time off
3. Lunch with your supervisor
4. Four movie tickets

If you are going to be absent, call in at least 24 hours prior to the start of your shift and those sick hours will not jeopardize the cottage's entry in the drawing.
BIBLIOGRAPHY

